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Abstract
We consider the evolution problem associated to the infinity fractional Laplacian introduced
by Bjorland et al. (Adv Math 230(4–6):1859–1894, 2012) as the infinitesimal generator
of a non-Brownian tug-of-war game. We first construct a class of viscosity solutions of
the initial-value problem for bounded and uniformly continuous data. An important result
is the equivalence of the nonlinear operator in higher dimensions with the one-dimensional
fractional Laplacianwhen it is applied to radially symmetric andmonotone functions. Thanks
to this and a comparison theorem between classical and viscosity solutions, we are able to
establish a global Harnack inequality that, in particular, explains the long-time behavior of
the solutions.

Mathematics Subject Classification 35R11 · 35K55 · 35A01 · 35B45

1 Introduction

In this paper we study a parabolic equation associated to the (normalized) infinity fractional
Laplacian operator. We recall that the local version of the game had been introduced by Peres
et al. in 2009 [33] where it is shown that the standard infinity Laplace equation is solved by
the value function for a two-players random turn “tug-of-war” game. The game is as follows:
a token is initially placed at a position x0 ∈ � and every turn a fair coin is tossed to choose
which of the players plays. This player moves the token to any point in the ball of radius
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ε > 0 around the current position. If, eventually, iterating this process, the token reaches a
point xe ∈ ∂�, the players are awarded (or penalized) f (xe) (payoff function). For a PDE
overview of the infinity Laplacian operator and its role as an absolute minimizer for the L∞
norm of the gradient, see [26, 27].

In 2012 Bjorland et al. [6] introduced equations involving the so-called infinity fractional
Laplacian as a model for a nonlocal version of the “tug-of-war” game. Following their
explantation, instead of flipping a coin at every step, every player chooses a direction and it
is an s-stable Lévy process that chooses both the active player and the distance to travel. The
infinity fractional Laplacian, with symbol �s∞, is a nonlinear integro-differential operator,
the original definition is given in Lemma 2.1 below. However, for the purpose of this paper,
we also consider the alternative equivalent definition introduced in [6] (see also [16]) given
by

�s∞φ(x) := Cs sup
|y|=1

inf
|ỹ|=1

ˆ ∞

0
(φ(x + ηy) + φ(x − η ỹ) − 2φ(x))

dη

η1+2s
where s ∈ (1/2, 1).

(1.1)

The constant is usually taken as Cs = (4ss�( 12 +s))/(π
1
2 �(1−s)) but the value is irrelevant

for our results. In their paper [6] the authors study two stationary problems involving the
infinity fractional Laplacian posed in bounded space domains, namely, a Dirichlet problem
and a double-obstacle problem.

Here, we consider the evolution problem

{
∂t u(x, t) = �s∞u(x, t), x ∈ R

n, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

(1.2)

(1.3)

with s ∈ (1/2, 1) and n ≥ 2. When n = 1 the operator −�s∞ is just the usual linear
fractional Laplacian operator (−�)s of order s, and Eq. (1.2) is just the well-known fractional
heat equation [7, 23]. See also a detailed study of that equation using PDE techniques in
[3, 8, 20, 38]. Note that for n ≥ 2 the operator is nonlinear so a new theory is needed.
A non-normalized version is introduced in [12] along with a well-posedness theory for the
corresponding equations of the type (1.2)–(1.3).However, the twoproblems are not equivalent
nor closely related.

The local counterpart of (1.2), given by ∂t u = �∞u, is studied in [21], where the authors
present several applications such as image processing [10] or tug-of-war games over a finite
time horizon [4]. In this case, the game finishes when the terminal time is reached, instead of
when the boundary of the domain is reached. In the nonlocal case treated in the present paper,
the application to image processing has not been described to our knowledge. However, a
derivation similar to the one in [4], based on dynamic programming, seems to be reasonable.

Here, we develop an existence theory of suitable viscosity solutions for the parabolic
problem (1.2)–(1.3), based on approximation with monotone schemes. We show that the
obtained class of solutions enjoys a number of good properties. As in the elliptic case [6], we
lack a uniqueness result in the context of viscosity solutions. However, we are able to prove
an important comparison theorem relating two types of solutions, classical and viscosity
ones, see Theorem 2.6. As a counterpart, we also obtain uniqueness and comparison of
classical solutions. Moreover, we show that for smooth, radially symmetric functions which
are nonincreasing along the radius in R

n with n ≥ 2, the operator −�s∞ reduces to the
classical fractional Laplacian (−�)s in dimension n = 1 (Theorem 6.1). A similar example
regarding nondecreasing one-dimensional profiles can be found in Lemma 6.3. In this waywe
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may construct a large class of classical solutions that make the comparison theorem relevant
(Theorems 2.10, 2.12). Note that no similar reduction to a lower dimensional problem applies
in general, even in the radial case (see Sect. 6.2 for a counterexample).

Using the developed tools, we study the asymptotic behavior of the constructed solutions,
and obtain a global Harnack type principle, see Theorem 2.13.

1.1 Related literature

It is interesting to compare the nonlocal model (1.2) with the local version of the infinity
Laplacian that has been studied by many authors, both in the stationary and evolution cases,
cf. [1, 2, 21, 26, 27, 33–35]. Asymptotic expansions for the game theoretical p-Laplacian in
the local case and related approximation schemes in the elliptic case are studied in [19, 29,
30] and in the parabolic case in [28]. For the variational version of the p-Laplacian operator
see [17].

There exist in the literature other nonlocal generalizations of the p-Laplacian and the
infinityLaplacian.Let usmention (i) the normalizedversion [5, 6]with asymptotic expansions
and game theoretical approach [9, 16, 25]; (ii) nonnormalized version [12] both elliptic and
parabolic; (iii) Hölder infinity Laplacian [11]; and (iv) the (variational) fractional p-Laplacian
[13, 14, 31, 32, 36, 37, 39].

2 Preliminaries and statement of main results

First let us fix some notation that we will use along the paper.
For given δ > 0, standard mollifiers are denoted by ρδ . Following [6], we say that φ ∈

C1,1(x) at some x ∈ R
n if there exists px ∈ R

n and Cx , ηx > 0 such that

|φ(x + y) − φ(x) − px · y| ≤ Cx |y|2 for all |y| < ηx . (2.1)

Note that C2
b (BR(x)) ⊂ C1,1(x). Here Ck

b (U ) is the space of functions on the set U with
bounded continuous derivatives of all orders in [0, k]. Let us also define:

B(Rn) := {φ : Rn → R | φis pointwisely bounded},
UC(Rn) := {φ : Rn → R | φis uniformly continuous},

BUC(Rn) := B(Rn) ∩ UC(Rn) with ‖φ‖Cb(Rn) := sup
x∈Rn

|φ(x)|,

and for β ∈ (0, 1], we define |φ|
C0,β (Rn) = supx,y∈Rn |φ(x) − φ(y)|/|x − y|β and

C0,β(Rn) := {φ ∈ Cb(R
n) | ‖φ‖C0,β < ∞} where ‖φ‖C0,β = ‖φ‖Cb + |φ|C0,β .

A modulus of continuity is a nondecreasing function ω : R
+ → R

+ such that
limr→0+ ω(r) = 0. For a function f ∈ BUC(Rn), we define the corresponding modu-
lus of continuity as follows:

ω f (r) = sup
|y|≤r

‖ f (· + y) − f ‖Cb(Rn).

For a Hölder continuous function f ∈ C0,β(Rn), ω f (r) ≤ | f |C0,β rβ .
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We will also need ei := (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ R
n , where 1 is at the i th component,

and denote average integrals by ∞

ε

g(η)
dη

η1+2s
:= 1´∞

ε
dη

η1+2s

ˆ ∞

ε

g(η)
dη

η1+2s
.

2.1 Alternative characterization of the infinity fractional Laplacian

We have the following alternative characterization of operator �s∞ that we will use through-
out:

Lemma 2.1 (Alternative characterization) Assume φ ∈ C1,1(x) ∩ B(Rn). Then:

• If ∇φ(x) �= 0, then

�s∞φ(x) = Cs

ˆ ∞

0

(
φ (x + ηζ ) + φ (x − ηζ ) − 2φ(x)

) dη

η1+2s
where ζ := ∇φ(x)/|∇φ(x)|.

• If ∇φ(x) = 0, then

�s∞φ(x) = Cs sup
|y|=1

ˆ ∞

0

(
φ(x + ηy) − φ(x)

) dη

η1+2s

+Cs inf|y|=1

ˆ ∞

0

(
φ(x − ηy) − φ(x)

) dη

η1+2s
.

The equivalence when ∇φ(x) = 0 follows from the fact that the integrals in this case are
well-defined and can be combined to get (1.1). When ∇φ(x) �= 0, it can be shown that the
supremum and infimum of (1.1) is actually taken at ζ , see Proposition 2.2 in [16]. To sketch
the proof, assume for simplicity that the supremum in (1.1) is taken at y, and let us argue that
y = ζ . Indeed, by splitting the integral and using the definitions of C1,1 and the infimum,

�s∞φ(x) ≤ Cs

ˆ ∞

0

(
φ (x + ηy) + φ (x − ηζ ) − 2φ(x)

) dη

η1+2s

≤ Cs
(∇φ(x) · (y − ζ )

)ˆ ηx

0
η

dη

η1+2s
+ C .

Now, since �s∞φ(x) is well-defined and the integral diverges if y �= ζ , we must have y = ζ .
A similar argument holds for the infimum.

2.2 Existence of solutions and basic properties

We are able to construct a suitable class of viscosity solutions of (1.2)–(1.3). The two steps
are as follows:
(i) Approximating �s∞ by removing the singularity, i.e., we introduce

Lε[φ](x) := Cs sup
|y|=1

inf
|ỹ|=1

ˆ ∞

ε

(
φ(x + ηy) + φ(x − η ỹ) − 2φ(x)

) dη

η1+2s
.

(ii) Discretizing in time by letting τ > 0 and t j := jτ for j ∈ N, i.e., t j ∈ τ N, and then
considering the semidiscrete problem⎧⎪⎨

⎪⎩
U j+1(x) − U j (x)

τ
= Lε[U j ](x), x ∈ R

n, j ∈ N,

U 0(x) = u0(x), x ∈ R
n .

(2.2)

(2.3)
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We study the properties of (2.2)–(2.3) in Sect. 3. Existence of viscosity solutions follows
by taking the limit in this approximate scheme, as well as properties inherited from the
approximations.

Theorem 2.2 (Existence and a priori results) If u0 ∈ BUC(Rn), then there is at least one
viscosity solution u ∈ Cb(R

n × [0,∞)) of (1.2)–(1.3). Moreover:

(a) (Cb-bound) For all t > 0, ‖u(·, t)‖Cb(Rn) ≤ ‖u0‖Cb(Rn).
(b) (Uniform continuity in space) For all y ∈ R

n and all t > 0,
‖u(· + y, t) − u(·, t)‖Cb(Rn) ≤ ωu0(|y|).

(c) (Uniform continuity in time) For all t, t̃ > 0,

‖u(·, t) − u(·, t̃)‖Cb(Rn) ≤ ω̃(|t − t̃ |) where ω̃(r) := infδ>0

{
ωu0(δ) +

r supε>0 ‖Lε[u0,δ]‖Cb(Rn)

}
is a modulus satisfying ω̃(r) ≤ ωu0(r

1/3)+C
(
r1/3+r

)
, C := cs‖u0‖Cb(Rn)‖∇ρ‖2−2s

L1(Rn)

‖D2ρ‖2s−1
L1(Rn)

, and ρ is a standard mollifier.

Remark 2.3 The definition of viscosity solutions is given Sect. 4 (Definition 4.3). We obtain
viscosity solution as limits of monotone approximations of the problem in Sect. 3.

Note that if u0 is Hölder continuous and s ∈ (1/2, 1), then the above modulii will be
(more) explicit.

Lemma 2.4 If u0 ∈ C0,β(Rn) for β ∈ (0, 1], then

ωu0(δ) = |u0|C0,β δβ and ‖Lε[u0,δ]‖Cb(Rn) ≤ c(s, ρ)|u0|C0,β δβ−2s .

The above result will be proved at the end of Sect. 4.

It follows after a minimization in δ that ω̃(r) = c(s, ρ)|u0|C0,β r
1
2s , and the solution u will

be Hölder continuous with the correct parabolic regularity.

Corollary 2.5 (Existence and a priori results) If u0 ∈ C0,β(Rn) for β ∈ (0, 1], then there is
at least one viscosity solution u ∈ Cb(R

n × [0,∞)) of (1.2)–(1.3). Moreover:

(a) (Cb-bound) For all t > 0 ‖u(·, t)‖Cb(Rn) ≤ ‖u0‖Cb(Rn).
(b) (Hölder in space) For all y ∈ R

n and all t > 0,
‖u(· + y, t) − u(·, t)‖Cb(Rn) ≤ |u0|C0,β |y|β .

(c) (Hölder in time) There is a constant c(s, ρ) only depending on s and ρ such that for all
t, t̃ > 0,

‖u(·, t) − u(·, t̃)‖Cb(Rn) ≤ C |u0|C0,β |t − t̃ | β
2 s .

2.3 Classical solutions, radial solutions, comparison, and uniqueness

There could be other ways of obtaining viscosity solutions, and unfortunately, we lack gen-
eral comparison and uniqueness results. Nevertheless, we can obtain that classical solutions
are unique and we can compare our constructed viscosity solutions with classical sub- and
supersolutions of (1.2)–(1.3).1

1 We will work with classical solutions in C2
b . Actually, we can reduce to C1

b for the temporal variable, and

to C1,1 ∩ B for the spatial variables.
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Theorem 2.6 (Comparisonbetween classical andviscosity solutions)Assume u0 ∈ BUC(Rn).
Let u, u ∈ C2

b (R
n ×[0,∞)) be respective classical sub- and supersolution of (1.2)–(1.3), and

let u ∈ BUC(Rn × [0,∞) be a viscosity solution of (1.2)–(1.3) as constructed in Theorem
2.2. Then u ≤ u ≤ u in R

n × (0,∞).

The above result is proved in Sect. 7. We want to emphasize that it is done in a rather
nonstandard way, since we inherit the comparison from the approximation scheme when the
solution is classical. In general, this cannot be done in the context of viscosity solutions since
the approximation scheme only converges up to a subsequence.

Remark 2.7 By Theorem 2.6, we can in addition get comparison of constructed viscosity
solutions as long as the initial datas are separated by an initial data which produces a classical
solution.

An immediate consequence of Theorem 2.6:

Corollary 2.8 (Comparison of classical sub- and supersolutions) Let u, v ∈ C2
b (R

n ×[0,∞))

be respective classical sub- and supersolutions of (1.2)–(1.3) with initial data u0, v0. If
u0 ≤ v0, then u ≤ v.

Corollary 2.9 (Uniqueness of solutions)Classical solutions of (1.2)–(1.3) in C2
b (R

n×[0,∞))

are unique.

Theorem 2.6 might be an empty statement unless we provide a class of classical solutions
of (1.2)–(1.3). The following result, proved in Sect. 6, solves this issue.

Theorem 2.10 (Existence of classical radial solutions) Assume that u0 ∈ C∞
b (Rn) is radial

and radially nonincreasing. Then there exists a classical and radial solution u ∈ C∞
b (Rn ×

[0,∞)) of (1.2)–(1.3). Moreover, if U0(r) := u0(|x |) and U0(−r) := U0(r) for r = |x | ≥ 0,
then

u(x, t) = (Ps(·, t) ∗ U0)(r) =
ˆ ∞

−∞
Ps(r − s, t)U0(s) ds for all |x | = r ,

where Ps is the fundamental solution of the one-dimensional fractional heat equation (cf. 5.3).

Remark 2.11 (a) The idea in the above result is that, for radially nonincreasing radial func-
tions, the operators −�s

∞,Rn and (−�)s
R1 coincide (Proposition 6.1), and (1.2) then

reduces to the one-dimensional fractional heat equation.
(b) In view of Theorem 2.6, this classical solution is also a viscosity solution in our sense.

Another class of classical solutions are:

Theorem 2.12 (Existence of classical solutions with one-dimensional profiles) Assume that
U0 ∈ C∞

b (R) is nondecreasing, and let u0 ∈ C∞
b (Rn) be defined as

u0(x) := U0(x1).

Then there exists a classical solution u ∈ C∞
b (Rn × [0,∞)) of (1.2)–(1.3). Moreover,

u(x, t) = (Ps(·, t) ∗ U0)(x1) =
ˆ ∞

−∞
Ps(x1 − s, t)U0(s) ds,

where Ps is the fundamental solution of the one-dimensional fractional heat equation (cf.
(5.3)).

The proof is similar to the one of Theorem 2.10, and we will omit it. One just needs to
note that Ps(·, t) ∗ U0 is nondecreasing.
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2.4 Asymptotic behavior and Harnack inequality

Having established Theorems 2.6 and 2.10, we can prove that solutions of (1.2)–(1.3) behave
like solutions of the one-dimensional fractional heat equation, up to suitable constants. In
Sect. 5, we recall some results on that equation and its fundamental solution denoted by Ps .
In Sect. 8, we prove the following result.

Theorem 2.13 (GlobalHarnack principle)Let u ∈ BUC(Rn×[0,∞)) be a viscosity solution
of (1.2)–(1.3), as constructed in Theorem 2.2, with initial data u0 ∈ BUC(Rn) such that
u0 �≡ 0 and

0 ≤ u0(x) ≤ (1 + |x |2)− 1+2s
2 for all |x | ≥ R ≥ 1.

Then, for all τ > 0, there exist constants C1, C2 > 0 depending only on s, R, and u0, such
that

C1Ps(|x |, t) ≤ u(x, t) ≤ C2Ps(|x |, t) for all (x, t) ∈ R
n × [τ,∞).

Moreover, for all τ > 0, there exist constants C̃1, C̃2 > 0 depending only on s, R, and u0,
such that

C̃1
t

(t
1
s + |x |2) 1+2s

2

≤ u(x, t) ≤ C̃2
t

(t
1
s + |x |2) 1+2s

2

for all (x, t) ∈ R
n × [τ,∞).

In particular, u > 0 in R
n × [τ,∞).

Remark 2.14 (a) Note that u0 is not necessarily in L1(Rn) since the decay required for large
x is the one corresponding to the one-dimensional fractional heat kernel Ps .

(b) The above theorem provides a counterexample to conservation of mass for (1.2)–(1.3):
For any smooth compactly supported 0 ≤ u0 ∈ L1(Rn), the corresponding solution u
satisfies

ˆ
Rn

u(x, 1) dx ≥ C̃1

ˆ
Rn

1

(1 + |x |2) 1+2s
2

dx .

The last integral is infinite if 1+ 2s ≤ n, and hence there is no conservation of mass for
n ≥ 3.

(c) In Theorem 2.12, we construct other types of special solutions which could also be used
to prove the global Harnack principle.

3 Properties of an approximation scheme

We will now start the detailed development of the theory. The basic idea we follow is to
discretize explicitly in time and use the asymptotic expansion of�s∞ found in [16] to provide
a monotone zero-order approximation of the operator.
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We recall that, for s ∈ (1/2, 1),

Lε[φ](x) := Cs
1

2sε2s

(
sup
|y|=1

 ∞

ε

φ(x + ηy)
dη

η1+2s
+ inf|y|=1

 ∞

ε

φ(x + ηy)
dη

η1+2s
− 2φ(x)

)

= Cs

(
sup
|y|=1

ˆ ∞

ε

φ(x + ηy)
dη

η1+2s
+ inf|y|=1

ˆ ∞

ε

φ(x + ηy)
dη

η1+2s
− 1

sε2s
φ(x)

)

= Cs sup
|y|=1

inf
|ỹ|=1

ˆ ∞

ε

(
φ(x + ηy) + φ(x − η ỹ) − 2φ(x)

) dη

η1+2s
. (3.1)

Lemma 3.1 The operator Lε : Cb(R
n) → Cb(R

n) is well-defined and bounded.

Remark 3.2 Note that, in general, �s∞ : C∞
b (Rn) �→ Cb(R

n). See Sect. 9.

Proof of Lemma 3.1 Let φ ∈ Cb(R
n). Since

´∞
ε

η−(1+2 s) dt = 1
2 s ε−2 s , we have

‖Lε[φ]‖Cb(Rn) ≤ 4Cs
2 s ‖φ‖Cb(Rn)ε

−2 s for any ε > 0. It follows that Lε[φ] is bounded. If
Lε[φ] is continuous, it also follows that Lε is a bounded operator on Cb(R

n). To show conti-
nuity at an arbitrary point x1 ∈ R

n , we fix ε > 0. By the above bound there is (large) R > 0
such that

‖LR[φ]‖Cb(Rn) <
ε

4
.

For x2 ∈ B(x1, 1), we find by the triangle inequality and sup inf(· · · ) − sup inf(· · · ) ≤
sup sup(· · · − · · · ),∣∣Lε[φ](x1) − Lε[φ](x2)

∣∣
≤ Cs sup

|ỹ|=1
sup
|y|=1

ˆ R

ε

∣∣(φ(x1 + ηy) + φ(x1 + η ỹ)
) − (

φ(x2 + ηy) + φ(x2 + η ỹ)
)∣∣ dη

η1+2s

+ 2Cs

ˆ R

ε

dη

η1+2s
|φ(x1) − φ(x2)| + ε

4
+ ε

4

≤ 2Csωφ,R(x1 − x2)
ˆ R

ε

dη

η1+2s
+ ε

2
,

whereωφ,R is the modulus of continuity of φ in the ball B(0, |x1|+1+ R). Since the integral
is finite, the last expression is less than ε when |x2 − x1| is small enough and continuity of
Lε[φ] follows. ��
To state the consistency, we introduce admissible test functions φ: There is ηx > 0, such that

(i) φ ∈ C2(B̄ηx ) and (ii) φ ∈ B(Rn) ∩ UC(Rn \ B̄ηx ).

Lemma 3.3 (Consistency, Theorem 1.1 in [16]) Under the above assumptions on φ, for every
ε < ηx , ∣∣∣Lε[φ](x) − �s∞φ(x)

∣∣∣ = oε(1),

where the bound oε(1) depends only on |∇φ(x)|−1, ‖D2φ‖Cb(B̄ηx ), and ωφ,B̄c
ηx

.

We also need ε independent bounds to send ε → 0.
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Lemma 3.4 (Uniform bound) If φ ∈ C2
b (R

n), then there is a constant c(s) only depending
on s such that

|Lε[φ](x)| ≤ c(s)‖∇φ‖2−2s
Cb(Rn)

‖D2φ‖2s−1
Cb(Rn)

.

Proof We add to Lε the gradient term

sup
|y|=1

inf
|ỹ|=1

ˆ 1

ε

tpx · (y − ỹ)
dt

t1+2s
=
ˆ 1

ε

η
dη

η1+2s
sup
|y|=1

inf
|ỹ|=1

px · (y − ỹ) = 0,

Since the intgrand is bounded, we then split the resulting integral in two—an integral with
the inf and an integral with the sup. The result for the sup-part is:

sup
|y|=1

ˆ ∞

ε

(
φ(x + ηy) − φ(x) − tpx · yη10<η<1

) dη

η1+2s
.

Splitting this integral in two,
´ r
ε

+ ´∞
r , and Taylor expanding, we find the following upper

bound

1

2
‖D2φ‖Cb

ˆ r

0
η2

dη

η1+2s
+ 2‖∇φ‖Cb

ˆ ∞

r
η

dη

η1+2s
≤ 1

2
‖D2φ‖Cb

1

2 − 2s
r2−2s

+ 2‖∇φ‖Cb

1

2s − 1
r1−2s .

Minimizing with respect to r then proves the result for the sup-part. The inf-part is similar.
��

Remark 3.5 Note that Lε is monotone in the following two ways:

(i) Lε[φ] ≤ 0 at any global maximum of φ.
(ii) In the sense of monotone approximations in viscosity solution theory:

ψ1 ≤ ψ2 in R
n �⇒ L(ε, ψ1, r) ≤ L(ε, ψ2, r) in R

n,

where Lε[ψ](x) = L(ε, ψ,ψ(x)) and L : R+ × BUC(Rn) × R is given by

L(ε, ψ, r) = Cs

(
sup
|y|=1

ˆ ∞

ε

ψ(x + ηy)
dη

η1+2s
+ inf|y|=1

ˆ ∞

ε

ψ(x + ηy)
dη

η1+2s
− 1

sε2s
r

)
.

These properties are crucial in order to obtain approximation schemes that preserves the
properties of the limit problem (1.2)–(1.3).

3.1 Semi-discrete scheme defined onRn × {�N ∪ 0}

We will now study the semi-discrete scheme (2.2)–(2.3).

Proposition 3.6 (Well-posedness and properties) Assume u0 ∈ BUC(Rn) and ε, τ > 0.
Then there exists a unique solution U j ∈ Cb(R

n) of (2.2)–(2.3). Moreover, if

τ ≤ s

Cs
ε2s, (CFL)

then the following properties hold:

(a) (Cb-stability) ‖U j‖Cb(Rn) ≤ ‖u0‖Cb(Rn).
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(b) (Comparison principle) Let U j and V j be sub- and supersolutions of (2.2)–(2.3) with
respective initial data u0 ∈ BUC(Rn) and v0 ∈ BUC(Rn). If u0 ≤ v0 in R

n, then
U j ≤ V j in R

n for all j ∈ N.
(c) (Cb-contraction) Let U j and V j be solutions of (2.2)–(2.3) with respective initial data

u0 ∈ BUC(Rn) and v0 ∈ BUC(Rn). Then

‖U j − V j‖Cb(Rn) ≤ ‖u0 − v0‖Cb(Rn) for all j ∈ N .

(d) (Equicontinuity in space) For all y ∈ R
n and all j ∈ N,

‖U j (· + y) − U j‖Cb(Rn) ≤ ωu0(|y|).
(e) (Equicontinuity in time) For all j, k ∈ N and all 0 < ε < 1,

‖U j+k − U j‖Cb(Rn) ≤ ω̃(|t j+k − t j |), where ω̃ is defined in Theorem 2.2 (c).

Proof Since (2.2)–(2.3) is explicit and Lε : Cb(R
n) → Cb(R

n) is well-defined and bounded
by Lemma 3.1, existence and uniqueness follows by construction.

Let us then show the different a priori estimates:
(b) Since u0 ≤ v0, we have U 0 ≤ V 0. Then, by induction assume that U j ≤ V j . By (2.2),
we get

U j+1(x) − V j+1(x) ≤ U j (x) − V j (x) + τ
(
Lε[U j ](x) − Lε[V j ](x)

)

=
(

U j (x) − V j (x)
) (

1 − τ
Cs

sε2s

)

+ τCs

(
sup
|y|=1

ˆ ∞

ε

U j (x + ηy)
dt

t1+2s
− sup

|y|=1

ˆ ∞

ε

V j (x + ηy)
dη

η1+2s

)

+ τCs

(
inf|y|=1

ˆ ∞

ε

U j (x + ηy)
dη

η1+2s
− inf|y|=1

ˆ ∞

ε

V j (x + ηy)
dη

η1+2s

)

≤ 0,

where the last inequality follows from the induction hypothesis U j ≤ V j and CFL.
(a) Note that

V j := inf
x∈Rn

{u0(x)} and W j := sup
x∈Rn

{u0(x)} for all j ∈ N

are solutions of (2.2)–(2.3). Since infx∈Rn {u0(x)} ≤ u0 ≤ supx∈Rn {u0(x)}, we have by (b)
that

inf
x∈Rn

{u0(x)} = V j ≤ U j ≤ W j = sup
x∈Rn

{u0(x)}.

(c) By the proof of (b) and the fundamental inequalities | sup(· · · )− sup(· · · )| ≤ sup(| · · · −
· · · |) and | inf(· · · ) − inf(· · · )| ≤ sup(| · · · − · · · |), we can also get that
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|U j+1(x) − V j+1(x)|

≤
∣∣∣U j (x) − V j (x)

∣∣∣
(
1 − τ

Cs

sε2s

)
+ τCs

∣∣∣∣∣ sup|y|=1

ˆ ∞

ε

U j (x + ηy)
dη

η1+2s

− sup
|y|=1

ˆ ∞

ε

V j (x + ηy)
dη

η1+2s

∣∣∣∣∣
+ τCs

∣∣∣∣ inf|y|=1

ˆ ∞

ε

U j (x + ηy)
dη

η1+2s
− inf|y|=1

ˆ ∞

ε

V j (x + ηy)
dη

η1+2s

∣∣∣∣
≤

∣∣∣U j (x) − V j (x)

∣∣∣
(
1 − τ

Cs

sε2s

)
+ 2τCs sup

|y|=1

ˆ ∞

ε

∣∣∣U j (x + ηy) − V j (x + ηy)

∣∣∣ dη

η1+2s

≤
∥∥∥U j − V j

∥∥∥
Cb(Rn)

(
1 − τ

Cs

sε2s

)
+ 2τCs

∥∥∥U j − V j
∥∥∥

Cb(Rn)

ˆ ∞

ε

dη

η1+2s

=
∥∥∥U j − V j

∥∥∥
Cb(Rn)

.

In this way we have proved that∥∥∥U j+1 − V j+1
∥∥∥

Cb(Rn)
≤

∥∥∥U j − V j
∥∥∥

Cb(Rn)
for all j ∈ N .

An iteration then concludes the proof.
(d) This follows by using the translation invariant properties of (2.2)–(2.3) and part (c).
More precisely, W j := U j (· + y) is the unique solution of (2.2)–(2.3) with initial data
w0 := u0(· + y) for all y ∈ R

n . Part (c) then yields

‖U j (· + y) − U j‖Cb(Rn) = ‖W j − U j‖Cb(Rn) ≤ ‖w0 − u0‖Cb(Rn) = ‖u0(· + y) − u0‖Cb(Rn).

(e) Consider a mollification of the initial data u0,δ := u0 ∗ ρδ , and denote the corresponding
solution by U j

δ . Choose j = 1 in (2.2)–(2.3) to get

‖U 1
δ − U 0

δ ‖Cb(Rn) ≤ τ‖Lε[U 0
δ ]‖Cb(Rn) = τ‖Lε[u0

δ ]‖Cb(Rn) := τ K (u0,δ).

Now, define

V j
δ := U j+1

δ for all j ∈ N .

Then V j
δ is the unique solution of (2.2)–(2.3) with initial data V 0

δ = U 1
δ . By (c),

‖U j+1
δ − U j

δ ‖Cb(Rn) = ‖V j
δ − U j

δ ‖Cb(Rn) ≤ ‖V 0
δ − U 0

δ ‖Cb(Rn)

= ‖U 1
δ − U 0

δ ‖Cb(Rn) ≤ τ K (u0,δ).
(3.2)

Repeated use of the triangle inequality then yields

‖U j+k
δ − U j

δ ‖Cb(Rn) ≤
k−1∑
i=0

‖U ( j+i)+1
δ − U j+i

δ ‖Cb(Rn) ≤ kτ K (u0,δ) = (t j+k − t j )K (u0,δ).

Then by (c),

‖U j+k − U j‖Cb(Rn) ≤ ‖U j+k − U j+k
δ ‖Cb(Rn) + ‖U j+k

δ − U j
δ ‖Cb(Rn) + ‖U j

δ − U j‖Cb(Rn)

≤ 2‖u0 − u0,δ‖Cb + (t j+k − t j )K (u0,δ) ≤ 2ωu0(δ) + (t j+k − t j )K (u0,δ),

where we used that by properties of mollifiers, ‖u0 − u0,δ‖Cb ≤ sup|y|≤δ ‖u0(· + y) −
u0‖Cb(Rn) ≤ ωu0(δ). Hence the result follows by the definition of ω̃. ��
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3.2 Semi-discrete scheme defined onRn × [0,∞)

In order to get uniform convergence of our approximation scheme, we need to define it on
R

n ×[0,∞). Let us therefore consider the solution of (2.2)–(2.3) Uε : Rn ×{τ N ∪ 0} → R

and the function uε : Rn × [0,∞) → R defined as:{
uε(x, 0) := U 0

ε (x) = u0(x),

uε(x, t) := t j+1−t
τ

U j
ε (x) + t−t j

τ
U j+1

ε (x) if t ∈ (t j , t j+1] with j ∈ N .

Corollary 3.7 (Well-posedness and properties) Under the assumptions of Proposition 3.6,
there exists a unique pointwise solution uε ∈ BUC(Rn × [0,∞)) of (2.2)–(2.3) with initial
data u0 ∈ BUC(Rn). The solution, moreover, enjoys Cb-stability, comparison principle, Cb-
contraction, continuity in space, and continuity in time in form of ‖uε(·, t)−uε(·, t̃)‖Cb(Rn) ≤
ω̃(|t − t̃ |) for all t, t̃ ∈ [0,∞].
Proof We easily inherit all properties from Uε to uε, e.g.

‖uε(·, t)‖Cb ≤ (t j+1 − t)

τ

∥∥∥U j
ε

∥∥∥
Cb

+ (t − t j )

τ

∥∥∥U j+1
ε

∥∥∥
Cb

≤
( (t j+1 − t)

τ
+ (t − t j )

τ

)
‖u0‖Cb = ‖u0‖Cb .

The other properties follows in a similar way, and we only explain the most difficult one, the
continuity in time. Repeating the steps of the proof of Proposition 3.6(e), for

t̃ ∈ (t j+k, t j+k+1] and t ∈ (t j , t j+1],
|(uε)δ(x, t̃) − (uε)δ(x, t)|

≤ |(uε)δ(x, t̃) − (uε)δ(x, t j+k)| + |(uε)δ(x, t j+1) − (uε)δ(x, t)|

+
j+k−1∑
l= j+1

|(uε)δ(x, tl+1) − (uε)δ(x, tl)|

= |(uε)δ(x, t̃) − (U j+k
ε )δ(x)| + |(U j+1

ε )δ(x) − (uε)δ(x, t)

+
j+k−1∑
l= j+1

|(Ul+1
ε )δ(x) − (Ul

ε)δ(x)|.

By the definition of linear interpolation

‖(uε)δ(·, t̃) − (U j+k
ε )δ‖Cb(Rn) ≤ (t̃ − t j+k)

τ
‖(U j+k+1

ε )δ − (U j+k
ε )δ‖Cb(Rn),

‖(U j+1
ε )δ − (uε)δ(·, t)‖Cb(Rn) ≤ (t j+1 − t)

τ
‖(U j+1

ε )δ − (U j
ε )δ‖Cb(Rn),

and then by repeated use of (3.2),

‖(uε)δ(·, t̃) − (uε)δ(·, t)‖Cb(Rn) ≤
⎛
⎝(t̃ − t j+k) +

j+k−1∑
l= j+1

τ + (t j+1 − t)

⎞
⎠ K (u0,δ)

= (t̃ − t)K (u0,δ).

We can then conclude the proof continuing as in the proof of Proposition 3.6(e). ��
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3.3 Compactness in UCloc(Rn × [0,∞))

Proposition 3.8 (Compactness) Under the assumptions of Proposition 3.6, there exists a
subsequence {uεk }k∈N and a u ∈ Cb(R

n × [0,∞))

such that

uεk → u locally uniformly in R
n × [0,∞)as k → ∞.

Proof The sequence {uε}ε is equibounded and equicontinuous by Corollary 3.7 (see also
Proposition 3.6). The result then follows from the Arzelà-Ascoli compactness theorem. ��

Taking pointwise limits in the a priori estimates of Corollary 3.7 (see also Propostion 3.6),
the limit u immediately inherits these estimates.

Corollary 3.9 (A priori estimates) Assume u0 ∈ BUC(Rn). Then the limit u from Propostion
3.8 enjoys the following properties:

(a) (Cb-stability) For all t > 0, ‖u(·, t)‖Cb(Rn) ≤ ‖u0‖Cb(Rn).
(b) (Uniform continuity in space) For all y ∈ R

n and all t > 0,
‖u(· + y, t) − u(·, t)‖Cb(Rn) ≤ ωu0(|y|).

(c) (Uniform continuity in time) For all t, t̃ > 0,
‖u(·, t) − u(·, t̃)‖Cb(Rn) ≤ ω̃(t − t̃) where ω̃ is defined in Theorem 2.2.

4 Definitions, existence and properties of viscosity solutions

In this section we define the concept of viscosity solution. Before doing so we need to
introduce two new operators that will be used when testing at zero gradient points.

Definition 4.1 For φ ∈ C1,1(x) ∩ B(Rn),

�s,+∞ φ(x) := Cs sup
|y|=1

ˆ ∞

0

(
φ (x + ηy) + φ (x − ηy) − 2φ(x)

) dη

η1+2s
,

�s,−∞ φ(x) := Cs inf|y|=1

ˆ ∞

0

(
φ (x + ηy) + φ (x − ηy) − 2φ(x)

) dη

η1+2s
.

We immediately have:

Lemma 4.2 For φ ∈ C1,1(x) ∩ B(Rn),

�s,−∞ φ(x) ≤ �s∞φ(x) ≤ �s,+∞ φ(x).
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Proof Recall Lemma 2.1. The result is trivial unless ∇φ(x) = 0. In that case,

�s∞φ(x) = Cs sup
|y|=1

ˆ ∞

0

(
φ(x + ηy) − φ(x)

) dη

η1+2s

+ Cs inf|y|=1

ˆ ∞

0

(
φ(x − ηy) − φ(x)

) dη

η1+2s

= Cs sup
|y|=1

ˆ ∞

0

(
φ(x + ηy) − φ(x)

) dη

η1+2s

− Cs sup
|y|=1

(
−
ˆ ∞

0

(
φ(x − ηy) − φ(x)

) dη

η1+2s

)

≤ Cs sup
|y|=1

(( ˆ ∞

0

(
φ(x + ηy) − φ(x)

) dη

η1+2s

)

−
(

−
ˆ ∞

0

(
φ(x − ηy) − φ(x)

) dη

η1+2s

))

= �s,+∞ φ(x).

The result �s,−∞ φ(x) ≤ �s∞φ(x) follows in a similar way. ��
We are now ready to define the concept of viscosity solution.

Definition 4.3 (Viscosity solution)

(a) A globally bounded upper semicontinuous function u : R
n × (0,∞) → R is a vis-

cosity subsolution of (1.2) if, for all (x0, t0) ∈ R
n × (0,∞), all φ ∈ C2(BR(x0, t0)) ∩

BUC(Rn × (0,∞)\BR(x0, t0)) for some R > 0 and such that

(i) u(x0, t0) − φ(x0, t0) = sup(x,t)∈BR(x0,t0)

(
u(x, t) − φ(x, t)

)
,

(ii) u(x0, t0) − φ(x0, t0) > u(x, t) − φ(x, t) for all (x, t) ∈ BR(x0, t0)\(x0, t0),
(iii) u(x0, t0) − φ(x0, t0) ≥ u(x, t) − φ(x, t) for all (x, t) ∈ R

n × (0,∞)\BR(x0, t0),

then {
∂tφ(x0, t0) ≤ �s∞φ(x0, t0), if ∇φ(x0, t0) �= 0

∂tφ(x0, t0) ≤ �s,+∞ φ(x0, t0), if ∇φ(x0, t0) = 0. (4.1)

(b) A globally bounded lower semicontinuous function u : Rn × (0,∞) → R is a viscosity
supersolution of (1.2) if, for all (x0, t0) ∈ R

n × (0,∞), all φ ∈ C2(BR(x0, t0)) ∩
BUC(Rn × (0,∞)\BR(x0, t0)) for some R > 0 and such that

(i) u(x0, t0) − φ(x0, t0) = inf(x,t)∈BR(x0,t0)(u(x, t) − φ(x, t)),
(ii) u(x0, t0) − φ(x0, t0) < u(x, t) − φ(x, t) for all (x, t) ∈ BR(x0, t0)\(x0, t0),
(iii) u(x0, t0)−φ(x0, t0) ≤ u(x, t)−φ(x, t) for all (x, t) ∈ R

n × (0,∞) \ BR(x0, t0),

then {
∂tφ(x0, t0) ≥ �s∞φ(x0, t0), if ∇φ(x0, t0) �= 0

∂tφ(x0, t0) ≥ �s,−∞ φ(x0, t0), if ∇φ(x0, t0) = 0. (4.2)

(c) A function u ∈ Cb(R
n × [0,∞)) is a viscosity solution of (1.2) if it is both a viscosity

subsolution and a viscosity supersolution.
(d) The viscosity solution u takes the initial data in a pointwise way: u(x, 0) = u0(x) for

all x ∈ R
n .
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Remark 4.4 (a) In points where the gradient of u is zero, we only require ∂t u ∈
[�s,−∞ u,�

s,+∞ u].
(b) In the local elliptic and homogeneous case [22], comparison follows without any

condition at points where ∇φ = 0. In more general cases conditions are needed. We
impose conditions (4.1) and (4.2) which are generalisations of the conditions introduced
in the local parabolic case [1]. It is easy to show that comparison and uniqueness cannot
hold without such conditions: E.g. u(x, t) = 1 and v(x, t) = 2 sin(t) would then both
be viscosity solutions of (1.2) since ∇u = ∇v = 0 at every point. However comparison
does not hold since u(x, 0) = 1 ≥ 0 = v(x, 0) while u(x, π/2) = 1 ≤ 2 = v(x, π/2).
Let us check that v is not longer a viscosity solution when we impose (4.1). Let K > 0
and 0 ≤ ψ ∈ C2

b (R) be radial with ψ(r) = r2 for |r | < 1 and ψ(r) = 0 for |r | > 2. We
define

φ(x, t) = v(t) + Kψ(|x |) + ψ(t − t0) for some t0 ∈ (0,∞).

It is then immediate that v − φ has a strict local max at (0, t0) and ∇φ = ∇v = 0. Now
let t0 = 2π , then ∂tφ(0, 2π) = ∂tv(0, 2π) = 2 cos(2π) = 2, and by radial symmetry
and followed by compact support of φ leads to

�s,+∞ φ(0, 2π) = K Cs

ˆ ∞

0

(
φ(ηe1, 2π) + φ(−ηe1, 2π) − 2φ(0, 2π)

) dη

η1+2s

≤ K Cs

ˆ 2

0
‖ψ ′′‖Cbη

2 dη

η1+2s
= K Cs‖ψ ′′‖Cb

22−2s

(2 − 2s)
≤ 1

if K is small enough. This contradicts (4.1) since

∂tφ(0, 2π) = 2 ≥ 1 ≥ �s,+∞ φ(0, 2π).

We conclude that v(x, t) = 2 sin(t) is not a viscosity subsolution in the sense of Defini-
tion 4.3.

(c) Since ∂t , �s∞, �s,+∞ and �
s,−∞ are invariant under translations of φ by constants, without

loss of generality, we can replace the conditions on the test function in Definition 4.3 by

(i’) φ(x0, t0) = u(x0, t0),
(ii’) φ > u (resp. φ < u) in BR(x0, t0) \ (x0, t0),
(iii’) φ ≥ u (resp. φ ≤ u) in R

n × (0,∞) \ BR(x0, t0).

(d) We can also assume that the max is globally strict by adding a small in C2
b perturbation

to φ supported in Bc
R , e.g. replacing φ by φ + δψ where ψ ∈ C2

b is such that 0 ≤ ψ ≤ 1,
ψ = 0 in BR and ψ > 0 in Bc

R . This new test function also satisfies (c), but with a
strict inequality in part (iii’). Moreover, at the max point local derivatives up to order
2 coinside with those of φ, while nonlocal derivatives differ by an O(δ) term since
|�s∞ψ | + |�s,+∞ ψ | + |�s,−∞ ψ | ≤ C‖ψ‖C2

b
. Before concluding the proof we then need

to send δ → 0. Since this is never a problem, we will omit this modification in some
proofs and simply assume globally strict max in the definition of viscosity solutions.

4.1 Existence and properties of solutions

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2 By Proposition 3.8 there is a subsequence uε such that

uε → u locally uniformly inRn × [0,∞) as ε → 0+,
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and by Corollary 3.9, u ∈ BUC(Rn × [0,∞)) and satisfies the a priori estimates in Theo-
rem 2.2. Let us prove that ω̃ has the property claimed in part (c). To do this we use two basic
facts about mollifiers: Since u0 ∈ BUC(Rn), it follows that (differentiate ρ, use Young for
convolutions)

‖Dku0,δ‖Cb ≤ ‖Dkρ‖L1‖u0‖Cbδ
−k for k ∈ N .

Then by Lemma 3.4, we have the following bound:

‖Lε[u0,δ]‖Cb ≤ c(s)‖∇ρ‖2−2s
L1 ‖D2ρ‖2s−1

L1 ‖u0‖Cbδ
−2s .

Since δ−2s ≤ 1 + δ−2, the estimate on ω̃ follows after taking δ = r1/3.
It remains to check that u is a viscosity solution according to Definition 4.3. By

Remark 4.4(d), consider (x0, t0) ∈ R
n × (0,∞) and φ ∈ C2(BR(x0, t0)) ∩ BUC(Rn ×

(0,∞)\BR(x0, t0)) such that

(i) u(x0, t0) − φ(x0, t0) = sup(x,t)∈BR(x0,t0)(u(x, t) − φ(x, t)),
(ii) u(x0, t0) − φ(x0, t0) > u(x, t) − φ(x, t) for all (x, t) ∈ R

n × (0,∞)\(x0, t0).

Local uniform convergence ensures that there exists a sequence {(xε, tε)}ε>0 such that

(i) uε(xε, tε) − φ(xε, tε) = sup(x,t)∈BR(xε,tε)(u(x, t) − φ(x, t)) := Mε,
(ii) uε(xε, tε) − φ(xε, tε) > uε(x, t) − φ(x, t) for all (x, t) ∈ R

n × (0,∞) \ (xε, tε),

and

(xε, tε) → (x0, t0) asε → 0.

Recall that Corollary 3.7 ensures that uε solves the semidiscrete scheme. For simplicity,
we use the notation in Remark 3.5. Let t j be such that tε ∈ (t j , t j+1]. It is standard to check
that

uε(xε, tε) − uε(xε, t j )

tε − t j
= L(ε, uε, uε(xε, t j )).

or equivalently

(uε(xε, tε) − Mε) − (uε(xε, t j ) − Mε)

tε − t j
= L(ε, uε − Mε, uε(xε, t j ) − Mε)

By defining ũε := uε − Mε , we have that ũε(xε, tε) = φ(xε, tε) and φ > ũε in R
n ×

[0,∞)\(xε, tε). Let us then rewrite the scheme to obtain

φ(xε, tε) = ũε(xε, tε)

= ũε(xε, t j )

(
1 − (tε − t j )

Cs

sε2s

)

+ (tε − t j )Cs

(
sup
|y|=1

ˆ ∞

ε

ũε(xε + ηy, t j )
dη

η1+2s
+ inf|y|=1

ˆ ∞

ε

ũε(xε + ηy, t j )
dη

η1+2s

)

< φ(xε, t j )

(
1 − (tε − t j )

Cs

sε2s

)

+ (tε − t j )Cs

(
sup
|y|=1

ˆ ∞

ε

φ(xε + ηy, t j u)
dη

η1+2s
+ inf|y|=1

ˆ ∞

ε

φ(xε + ηy, t j )
dη

η1+2s

)
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that is,

φ(xε, tε) − φ(xε, t j )

tε − t j
< L(ε, φ, φ(xε, t j )). (4.3)

Assume ∇φ(x0, t0) > 0 (the ∇φ(x0, t0) < 0 case is similar). Then for ε0 > 0 small
enough, ∇φ(xε, t j ) > 0 for ε ≤ ε0, and we use (4.3) og Lemma 3.3 to find that

∂tφ(xε, tε) ≤ �s∞φ(xε, t j ) + oε(1) + O(τ ), (4.4)

where oε depends on supε≤ε0
|∇φ(xε, t j )|−1 which is uniformly bounded by the above dis-

cusion. Since φ is smooth, for every η ∈ [0,∞),

φ

(
xε ± ∇φ(xε)

|∇φ(xε)|η, t j

)
ε→0+−→ φ

(
x0 ± ∇φ(x0)

|∇φ(x0)|η, t0

)
.

The dominated convergence theorem then ensures that

�s∞φ(xε, t j ) → �s∞φ(x0, t0) asε → 0+.

We thus pass to the limit in (4.4) and get the correct viscosity subsolution inequality.
When ∇φ(x0, t0) = 0 we have (see proof of Lemma 4.2)

L(ε, φ, φ(xε, t j )) ≤ sup
|y|=1

ˆ ∞

ε

(
φ(xε + ηy, t j ) + φ(xε − ηy, t j ) − 2φ(xε, t j )

) dη

η1+2s

= �s,+∞ φ(xε, t j ) + oε(1),

and it only remains to check �
s,+∞ φ(xε, t j )

ε→0+−→ �
s,+∞ φ(x0, t0). To do that, note that

C−1
s |�s,+∞ φ(xε, t j ) − �s,+∞ φ(x0, t0)|
≤ sup

|y|=1

∣∣∣∣
ˆ ∞

0

((
φ(xε + ηy, t j ) − φ(x0 + ηy, t0)

)
+

(
φ(xε − ηy, t j ) − φ(x0 − ηy, t0)

)

− 2
(
φ(xε, t j ) − φ(x0, t0)

))
dη

η1+2s

∣∣∣∣
≤ sup

|y|=1

∣∣∣∣
ˆ R

4

0

((
φ(xε + ηy, t j ) − φ(x0 + ηy, t0)

)
+

(
φ(xε − ηy, t j ) − φ(x0 − ηy, t0)

)

− 2
(
φ(xε, t j ) − φ(x0, t0)

))
dη

η1+2s

∣∣∣∣
+ sup

|y|=1

∣∣∣∣
ˆ ∞

R
4

((
φ(xε + ηy, t j ) − φ(x0 + ηy, t0)

)
+

(
φ(xε − ηy, t j ) − φ(x0 − ηy, t0)

)

− 2
(
φ(xε, t j ) − φ(x0, t0)

))
dη

η1+2s

∣∣∣∣ =: I 1ε + I 2ε .

Since φ ∈ BUC(Rn × (0,∞)),

I 2ε ≤ 4ωφ((xε − x0, t j − t0))
ˆ ∞

R
4

dη

η1+2s
→ 0 as ε → 0+.
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Then note that I 1ε ≤ ´ R
4

0 Fε(η) dη where

Fε(η) = 1

η1+2s
sup
|y|=1

∣∣∣(φ(xε + ηy, t j ) − φ(x0 + ηy, t0)
)

+
(
φ(xε − ηy, t j ) − φ(x0 − ηy, t0)

)

− 2
(
φ(xε, t j ) − φ(x0, t0)

)∣∣∣.
By a second order Taylor expansion and continuity of all involved functions,

|Fε(η)| ≤ ‖D2φ‖Cb(BR/2(x0,t0))η
1−2s for εsmall, and Fε(η) → 0 pointwise as ε → 0.

By the dominated convergence theorem it follows that I 1ε → 0. Finally, the initial condition
trivially holds since u(x, 0) = limε→0+ uε(x, 0) = u0(x). ��

It remains to proof Lemma 2.4 and then also Corollary 2.5 is proved.

Proof of Lemma 2.4 Since u0 ∈ C0,β(Rn), ωu0(δ) ≤ |u0|C0,β δβ , and basic facts about mol-
lifiers yields

‖Dku0,δ‖Cb ≤ c(ρ)|u0|C0,β δ−k+β for k ∈ N,

see e.g. [18, Appendix A] and [24]. Then, by Lemma 3.4, we have ‖Lε[u0,δ]‖Cb ≤
c(s, ρ)δ−2 s+β . ��

5 Review of basic results on the fractional heat equation

Here we collect some well-known results on the fractional heat equation that we will need,
see e.g. [3, 7, 8, 20]. The one-dimensional problem we consider is

{
∂tv(x, t) + (−∂2xx )

sv(x, t) = 0, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R.

(5.1)

(5.2)

The fundamental solution of (5.1) is given by

Ps(x, t) = F−1(e−|ξ |2s t )(x)

whereF denotes the Fourier transform andF−1 its inverse. Since the Fourier symbol e−|ξ |2s t

is a tempered distribution, it follows that

Ps ∈ C∞(R × (0,∞)).

Moreover, it is well-known that

Ps(x, t) = t−
1
2s F(|x |t− 1

2s ), (5.3)

with a profile F(r) that is a smooth and strictly decreasing function of r > 0. We can also
deduce that, for all τ > 0, there exist constants c1, c2 > 0 depending only on s, such that

c1
t

(t
1
s + |x |2) 1+2s

2

≤ Ps(x, t) ≤ c2
t

(t
1
s + |x |2) 1+2s

2

for all (x, t) ∈ R × [τ,∞). (5.4)
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Once the basic properties of the fundamental solution are established, we also recall that
given any 0 ≤ v0 ∈ L1(R) (actually a bigger class can be considered), the unique (very
weak) solution of (5.1)–(5.2) is given by convolution as

v(x, t) = (Ps(·, t) ∗ v0)(x) =
ˆ ∞

−∞
Ps(x − y, t)v0(y) dy. (5.5)

Actually, since it is obtained by convolution with a C∞ kernel, the solution with nonnegative
L1-initial data will be C∞ smooth in R × (0,∞). We will also need:

Lemma 5.1 (Classical solutions) Let v0 ∈ C∞
b (R) be radially symmetric and radially nonin-

creasing. Then there exists a unique solution v ∈ C∞
b (R× [0,∞)) of (5.1)–(5.2). Moreover,

v is radial, radially nonincreasing, and given by (5.5).

Let us also recall Theorem 8.1 in [8].

Lemma 5.2 (Global Harnack principle) Let v be the very weak solution of (5.1)–(5.2) with
initial data v0 ∈ L1(R) such that v0 �≡ 0 and

0 ≤ v0(x) ≤ (1 + |x |2)− 1+2s
2 for all |x | ≥ R ≥ 1.

Then, for all τ > 0, there exist constants k1, k2 > 0 depending only on s and R, such that

k1‖v0‖L1(R) Ps(x, t) ≤ v(x, t) ≤ k2‖v0‖L1(R) Ps(x, t) for all (x, t) ∈ R × [τ,∞).

Moreover, by (5.4), for all τ > 0, there exist constants C1, C2 > 0 depending only on s, R,
and ‖v0‖L1(R), such that

C1
t

(t
1
s + |x |2) 1+2s

2

≤ v(x, t) ≤ C2
t

(t
1
s + |x |2) 1+2s

2

for all (x, t) ∈ R × [τ,∞).

6 Smooth solutions and the 1d fractional heat equation

This section investigates different smooth solutions of (1.2)–(1.3).

6.1 Radial solutions

Wewill now focus on obtaining Theorem 2.10. To do so, we will demonstrate that for radially
symmetric and radially nonincreasing functions, the operator �s∞ reduces to the classical
fractional Laplacian.

Proposition 6.1 Assume that φ ∈ C1,1(x)∩ B(Rn) is radial and radially nonincreasing, i.e.,

φ(x) = �̃(|x |) for all x ∈ R
n,

where �̃ : [0,∞) → R is nonincreasing. Then

�s∞φ(x) = −(−∂2rr )
s�(|x |),

where � is the even extension of �̃ to R: �(r) = �̃(r) and �(−r) = �(r) for r ∈ [0,∞).

Remark 6.2 (a) When φ is radial and ∇φ(x) �= 0, a similar observation has been done in
the proof of Lemma 3.1 in [6].
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(b) “Radially nonincreasing” is needed only when ∇φ(x) = 0, but it cannot be removed in
general; see the Sect. 6.2 below.

Proof of Proposition 6.1 Assume ∇φ(x) �= 0, and let r = |x |. We have that

∇φ(x) = �′(r)

r
x, |∇φ(x)| = |�′(r)|, ∇φ(x)

|∇φ(x)| = − x

|x | ,

Lemma 2.1 then yields

�s∞φ(x) = Cs

ˆ ∞

0

(
φ

(
x(1 + η

|x | )
)

+ φ

(
x(1 − η

|x | )
)

− 2φ(x)

)
dη

η1+2s

= Cs

ˆ ∞

0

(
�

(
|x |(1 + η

|x | )
)

+ �

(
|x |(1 − η

|x | )
)

− 2�(|x |)
)

dη

η1+2s

= Cs

ˆ ∞

0
(� (r + η) + �(r − η) − 2�(r))

dη

η1+2s

= −(−∂2rr )
s�(r).

(6.1)

Assume ∇φ(x) = 0. Note that

dist(0, ∂ Bη(x)) = dist

(
0, x − η

x

|x |
)

,

which implies that

sup
z∈∂ Bη(x)

{φ(z)} = φ

(
x − η

x

|x |
)

,

since φ = �(| · |) is radially nonincreasing. Then,
ˆ ∞

0

(
φ

(
x − η

x

|x |
)

− φ(x)

)
dη

η1+2s
≤ sup

|y|=1

ˆ ∞

0
(φ (x + ηy) − φ(x))

dη

η1+2s

≤
ˆ ∞

0

(
sup

z∈∂ Bη(x)

{φ(z)} − φ(x)

)
dη

η1+2s

=
ˆ ∞

0

(
φ

(
x − η

x

|x |
)

− φ(x)

)
dη

η1+2s
,

so that

sup
|y|=1

ˆ ∞

0
(φ (x + ηy) − φ(x))

dη

η1+2s
=
ˆ ∞

0

(
φ

(
x − η

x

|x |
)

− φ(x)

)
dη

η1+2s
.

In the same way,

inf|y|=1

ˆ ∞

0
(φ (x + ηy) − φ(x))

dη

η1+2s
=
ˆ ∞

0

(
φ

(
x + η

x

|x |
)

− φ(x)

)
dη

η1+2s
.

Finally, Lemma 2.1 and the argument in (6.1) gives the result. ��
Proof of Theorem 2.10 Define v0(r) := U0(|x |) for x ∈ R

n and r = |x |, then v0 ∈ C∞
b (R)

is radial and radially nonincreasing. Let v be the corresponding solution of (5.1)–(5.2). By
Lemma 5.1, v is radial, radially nonincreasing, and C∞

b smooth. Then by Proposition 6.1,
u(x, t) := v(|x |, t) is a classical solution of (1.2)–(1.3). ��
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Fig. 1 Characteristic set for the
radial counterexample

6.2 Counterexample for functions not being radially nonincreasing

We shownow an example of a functionφ not satisfying the radially nonincreasing assumption
in the zero gradient case, and such that the operators �s∞ and −(−∂2rr )

s do not coincide. For
R > 0, consider the radial function φ : R2 → R given by φ(x) = 1BR+1\BR−1(x), see Fig. 1.

We note that at x0 = (r , 0), we have that φ ∈ C1,1(x0) ∩ B(Rn) and ∇φ(x0) = 0.
Moreover, we have a = 1 and R2 + l2 = (R + 1)2, so that l = √

2R + 1. We denote by
e1 = (1, 0) and e2 = (0, 1). Then

sup
|y|=1

ˆ ∞

0
(φ(x0 + ηy) − φ(x0))

dη

η1+2s
≥
ˆ ∞

0
(φ(x0 + ηe2) − φ(x0))

dη

η1+2s

= −
ˆ ∞

l

dη

η1+2s
= − 1

2s

1

(2R + 1)s

and

inf|y|=1

ˆ ∞

0
(φ(x0 + ηy) − φ(x0))

dη

η1+2s
=
ˆ ∞

0
(φ(x0 + ηe1) − φ(x0))

dη

η1+2s

= −
ˆ ∞

1

dη

η1+2s
= − 1

2s
.

By Lemma 2.1,

�s∞φ(x) ≥ −Cs

2s

(
1

(2R + 1)s
+ 1

)
.

On the other hand, we define � : R → R by �(r) := φ(|x |) when r = |x | and �(−r) :=
�(r), and let r0 = |x0|.
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−(−∂2rr )
s�(r0) = Cs

ˆ ∞

0

(
�(r0 + η) + �(r0 − η) − 2�(r0)

) dη

η1+2s

= Cs

ˆ ∞

0

(
φ

(
x0 + η

x0
|x0|

)
− φ(x0)

)
dη

η1+2s

+ Cs

ˆ ∞

0

(
φ

(
x0 − η

x0
|x0|

)
− φ(x0)

)
dη

η1+2s

= −Cs

ˆ ∞

1

dη

η1+2s
− Cs

ˆ 2R−1

1

dη

η1+2s
− Cs

ˆ ∞

2R+1

dη

η1+2s

= −Cs

2s

(
2 + 1

(2R + 1)2s
− 1

(2R − 1)2s

)
.

Finally, taking R big enough, we get

−�s∞φ(x0) − (−∂rr )
s�(r0) ≤ −Cs

2s

(
1 + 1

(2R + 1)2s
− 1

(2R − 1)2s
− 1

(2R + 1)s

)
< 0.

Thus, the operators cannot coincide.

6.3 Another example of smooth solutions

We present here another example of functions for which �s∞ reduces to a one-dimensional
fractional Laplacian. As before, this allows to produce smooth solutions of (1.2)–(1.3). We
will adopt the notation x = (x1, . . . , xn) ∈ R

n .

Lemma 6.3 Assume that � ∈ C2
b (R) is nondecreasing, and let φ ∈ C2

b (R
n) be defined as

φ(x) := �(x1).

Then

�s∞φ(x) = −(−∂2x1x1)
s�(x1).

Remark 6.4 We could also take � ∈ C2
b (R) and nonincreasing in the above result.

Proof of Lemma 6.3 Note that ∇φ(x) = �′(x1)e1 and �′(x1) ≥ 0. On one hand, if �′(x1) =
0, then it is clear that

�s∞φ(x) = Cs sup
|y|=1

ˆ ∞

0

(
φ(x + ηy) − φ(x)

) dη

η1+2s
+ Cs inf|y|=1

ˆ ∞

0

(
φ(x − ηy) − φ(x)

) dη

η1+2s

= Cs

ˆ ∞

0

(
φ(x + ηe1) − φ(x)

) dη

η1+2s
+ Cs

ˆ ∞

0

(
φ(x − ηe1) − φ(x)

) dη

η1+2s

= Cs

ˆ ∞

0

(
�(x1 + η) + �(x1 − η) − 2�(x1)

) dη

η1+2s

= −(−∂2x1x1)
s�(x1).

On the other hand, if �′(x1) > 0, then ζ = ∇φ(x)/|∇φ(x)| = e1 (cf. Lemma 2.1) and

�s∞φ(x) = Cs

ˆ ∞

0
(φ(x + ηe1) + φ(x − ηe1) − 2φ(x))

dη

η1+2s

= −(−∂2x1x1)
s�(x1).

��
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7 Comparison and local truncation errors

We are not able to prove comparison (neither uniqueness) for the family of viscosity solutions
constructed in Sect. 4. However, we are able to compare any constructed viscosity solution
with any classical solution.

The argument is based on the fact that for classical solutions we can get full convergence
of the scheme (2.2)–(2.3) (and not just compactness and convergence up to a subsequence).
Then we can inherit the comparison result of the scheme to the limit solutions.

7.1 Comparison and convergence estimates under regularity assumptions

Proposition 7.1 Assume CFL and u0 ∈ BUC(Rn). Let u, v ∈ C2
b (R

n ×[0,∞)) be respective
classical sub- and supersolutions of (1.2)–(1.3). Then:

(a) Let Uε, Vε respective super- and subsolutions of the scheme (2.2)–(2.3). Then, for all
T < ∞,

u + oε(1) + O(τ ) ≤ Uε and v + oε(1) + O(τ ) ≥ Vε, uniformly in R
n × {τ N∪0}.

(b) Let Uε be a solution of the scheme (2.2)–(2.3). Then, for all T < ∞,

u + oε(1) + O(τ ) ≤ Uε ≤ v + oε(1) + O(τ ), uniformly in R
n × {τ N∪0}.

We immediately get:

Corollary 7.2 Assume CFL. Let u ∈ C2
b (R

n × [0,∞)) be a classical solution of (1.2)–(1.3),
and Uε be a solution of the scheme (2.2)–(2.3), both with initial data u0. Then, for all T < ∞,

max
t j ≤T

‖u(·, t j ) − Uε(·, t j )‖Cb(Rn) = oε(1) + O(τ ).

Proof of Proposition 7.1 (a) Define the local truncation error,

(Rε)
j (x) := u(x, t j + τ) − u(x, t j )

τ
− Lε[u(·, t j )](x). (7.1)

Clearly, since u is a classical subsolution of (1.2) we have (from Lemma 3.3)

(Rε)
j (x) ≤

(
u(x, t j + τ) − u(x, t j )

τ
− ∂t u(x, t j )

)
− (Lε[u(·, t j )](x) − �s∞[u(·, t j )](x)

)

≤ O(τ ) + oε(1)

with uniform bounds in t j and x .
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Define now e j (x) = u(x, t j ) − (Uε)
j (x) = u(x, t j ) − Uε(x, t j ). By (2.2) and (7.1), we

get

e j+1(x) = u(x, t j+1) − (Uε)
j+1(x)

≤ e j (x) + τ
(Lε[u(·, t j )](x) − Lε[(Uε)

j ](x)
) + τ(Rε)

j (x)

= e j (x)(1 − τ
Cs

sε2s
) + τCs

(
sup
|y|=1

ˆ ∞

ε

u(x + ηy, t j )
dη

η1+2s
− sup

|y|=1

ˆ ∞

ε

(Uε)
j (x + ηy)

dη

η1+2s

)

+ τCs

(
inf|y|=1

ˆ ∞

ε

u(x + ηy, t j )
dη

η1+2s
− inf|y|=1

ˆ ∞

ε

(Uε)
j (x + ηy)

dη

η1+2s

)
+ τ(Rε)

j (x)

≤ e j (x)(1 − τ
Cs

sε2s
) + 2τCs sup

|y|=1

ˆ ∞

ε

e j (x + ηy)
dη

η1+2s
+ τ(Rε)

j (x)

≤ sup
x∈Rn

e j (x)(1 − τ
Cs

sε2s
) + 2τCs sup

|y|=1

ˆ ∞

ε

sup
x∈Rn

e j (x + ηy)
dη

η1+2s
+ τ sup

t j ≤T
sup

x∈Rn
(Rε)

j (x)

= sup
x∈Rn

e j (x)(1 − τ
Cs

sε2s
) + τ

Cs

sε2s
sup

x∈Rn
e j (x) + τ sup

t j ≤T
sup

x∈Rn
(Rε)

j (x)

= sup
x∈Rn

e j (x) + τ sup
t j ≤T

sup
x∈Rn

(Rε)
j (x).

I.e.,

sup
x∈Rn

e j+1(x) ≤ sup
x∈Rn

e j (x) + τ sup
t j ≤T

sup
x∈Rn

(Rε)
j (x).

Iterating, we obtain

sup
x∈Rn

e j (x) ≤ sup
x∈Rn

e0(x) + jτ sup
t j ≤T

sup
x∈Rn

(Rε)
j (x)

≤ sup
x∈Rn

(
u(x, 0) − (Uε)

0(x)
) + T

(
O(τ ) + oε(1)

)

≤ 0 + O(τ ) + oε(1).

By changing the roles of u, Uε with −v,−Vε , we obtain the other inequality in a similar
way.
(b) Follows directly from part (a). ��

7.2 Comparison for classical sub- and supersolutions

In order to continue, we note that Proposition 7.1 and Corollary 7.2 hold exactly as before
with the time interpolant uε replacing Uε (cf. the proof of Corollary 3.7).

Proof of Theorem 2.6 The proof is similar for u, u, and we only provide it for u. Since u is
a constructed viscosity solution in the sense of Theorem 2.2, by Proposition 3.8 there is a
sequence uε j ∈ BUC(Rn ×[0,∞)) of time-interpolated solutions of (2.2)–(2.3) with initial
condition u0 such that

uε j → u locally uniformly in R
n × [0,∞) as ε j → 0+.

Then by taking the limit as ε j → 0+ in Proposition 7.1(b), we get u ≤ u. ��
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Fig. 2 Upper bound for u0 in the proof of Theorem 2.13

8 Global Harnack principle

The proof of Theorem 2.13 is based on the relation between our problem and the smooth
solutions of the fractional heat equation, the properties of smooth solutions in 1D for the
fractional heat equation presented in the review Sect. 5, and the comparison principle of
Theorem 2.6 for viscosity and classical solutions.

Proof of Theorem 2.13 A key point of the proof is the fact that if v is a smooth, radial,
and radially nonincreasing solution of the fractional heat equation in one dimension, then
u(x, t) := v(|x |, t) is a solution of (1.2)–(1.3). See Theorem 2.10.
(1) Upper bound. Let u0 : Rn → R+ be such that (i) u0(x) = (1+|x |2)− 1+2s

2 if |x | ≥ R +1;
(ii) u0 is radially symmetric and radially nonincreasing; (iii) u0 ∈ C∞

b (Rn); and (iv) u0 ≤ u0

in R
n . Consult Fig. 2.

Moreover, let v0 : R → R be defined by v0(r) := u0(|x |) with r = |x | and v0(−r) :=
v0(r). Clearly, v0 ∈ C∞

b (R) is radially symmetric and radially nonincreasing. Let v be
the corresponding solution of the fractional heat equation (5.1)–(5.2) and define u(x, t) =
v(|x |, t). By Theorem 2.10, u ∈ C∞

b (Rn × [0,∞)) is a classical solution of (1.2)–(1.3).

Moreover,u is radial and radially nonincreasing. Sinceu0(x) = (1+|x |2)− 1+2s
2 if |x | ≥ R+1,

then v0(r) = (1 + |r |2)− 1+2s
2 if |r | ≥ R + 1, so that, by Lemma 5.2, for all t > τ we have

u(x, t) = v(|x |, t) ≤ k2‖v0‖L1(R) Ps(|x |, t) ≤ C1
t

(t
1
s + |x |2) 1+2s

2

Finally, since u ∈ C∞
b (Rn × [0,∞)) is a classical solution of (1.2)–(1.3) and u0 ≤ u0 we

have, by Theorem 2.6, that u(x, t) ≤ u(x, t).
(2)Lower bound.Without loss of generality, assumeu0(0) = supx∈Rn u0(x)>0.By continuity
of u0, there exists R0 > 0 such that u0(x) ≥ u0(0)/2 for all x ∈ BR0(0). Consider e.g. the
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Fig. 3 Lower bound for u0 in the proof of Theorem 2.13

scaled standard mollifier

u0(x) = u0(0)

2
e
1− R20

(R20−|x |2)+

Clearly, (i) u0(x) = 0 ≤ (1 + |x |2)− 1+2s
2 if |x | ≥ R0; (ii) u0 is radially symmetric and

radially nonincreasing; (iii) u0 ∈ C∞
b (Rn); and (iv) u0 ≥ u0 in R

n since

u0(x) ≤ u0(0) = u0(0)

2
e
1− R20

(R20−0)+ = u0(0)

2
≤ u0(x) for all x ∈ BR0(0)

and u0(x) = 0 ≤ u0 for x ∈ R
n\BR0(0) (see Fig. 3). From here, the proof follows as in Step

(1) by using the lower bound in Lemma 5.2. ��

9 Extensions and open problems

• There is an important open problem concerning the uniqueness and general comparison
principle of viscosity solutions, either defined in our way or another suitable way that
includes existence. For the moment we know that the following two classes of BUC
viscosity solutions are unique: (i) radial radially nonincreasing solutions and (ii) mono-
tone solutions evolving in one dimension only. Uniqueness in these cases follows by
comparison with classical solutions. The problem is also open for elliptic equations of
the same type, cf. [6].

• A main question that we deal with here is: how different is the theory and its results
from the linear case (fractional heat equation)? The answer seems to be that they are
quite different if n ≥ 2, since then the infinity fractional Laplacian is a heavily nonlinear
operator.
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Fig. 4 Evolution of the level sets of the solution

• It is not clear whether for n ≥ 2 the solutions evolve in time towards a radial profile
(as in the local case, see below) or preserve a certain distortion. This is an interesting
open problem to which we give a partial answer in our Sect. 8 with the global Harnack
principle. In Fig. 4 (obtained with a rigorous finite difference scheme taken from the
companion paper [15]) the distortion of the initial datum can still be observed for all the
computed times.

• In particular, the evolution equation for the local version posed in thewhole space has been
studied by Portilheiro and the fourth author in [34, 35]. Then, there is a fine asymptotic
behaviour as t → ∞ that implies a sharp convergence rate to radiality. The Aleksandrov
Principle is amain ingredient in the proof.On the condition that theAleksandrovPrinciple
is true for some class of solutions of our Cauchy problem, we could also obtain a similar
sharp asymptotic behaviour as t → ∞ for such solutions. Such discussion is not included
here.

• Large part of the concepts and results of this paper can be applied to the more general
equation ∂t u = �s∞u + f (x, t). In particular, this could be applied to the stationary
equation �s∞u = f (x), thus relating the present results to the results of [6].

• We end the discussion by including an example demonstrating that the operator �s∞
could indeed be pointwise discontinuous, even when applied to some smooth function
φ. Consider � ∈ C2

b (R) satisfying �(x1) = �(−x1) and strictly decreasing for x1 ≥ 0.
As in Lemma 6.3, we define φ(x) := �(x1) (see Fig. 5) where, for the sake of simplicity,
x = (x1, x2) ∈ R

2. On one hand, when x1 �= 0, we have ζ = ±e1 (cf. Lemma 2.1)
which yields �s∞φ(x1, x2) = −(−∂2x1x1)

s�(x1). On the other hand, when x1 = 0,
∇φ(0, x2) = 0 and by construction,

inf|y|=1

ˆ ∞

0

(
φ(0, x2) − ηy) − φ(0, x2)

) dη

η1+2s
=
ˆ ∞

0

(
�(x1 − η) − �(x1)

) dη

η1+2s
.
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Fig. 5 Example of discontinuity of the operator �s∞

Since x1 = 0 is a maximum point and φ(0, x2) = φ((0, x2) + ηe2) = �(x1),

0 ≥ sup
|y|=1

ˆ ∞

0

(
φ((0, x2) + ηy) − φ(0, x2)

) dη

η1+2s

≥
ˆ ∞

0

(
φ((0, x2) + ηe2) − φ(0, x2)

) dη

η1+2s
= 0.

We then conclude by Lemma 2.1 and symmetry of � that

�s∞φ(0, x2) = Cs

ˆ ∞

0

(
�(−η) − �(0)

) dη

η1+2s

= 1

2
Cs

ˆ ∞

0

(
�(η) + �(−η) − 2�(0)

) dη

η1+2s

= −1

2
(−∂2x1x1)

s�(0).

Hence,

�s∞φ(x1, x2) =
{

−(−∂2x1x1)
s�(x1), if x1 �= 0,

− 1
2 (−∂2x1x1)

s�(x1), if x1 = 0.
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