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Abstract
We study solutions to measure data elliptic systems with Uhlenbeck-type structure that
involve operator of divergence form, depending continuously on the spacial variable, and
exposing doubling Orlicz growth with respect to the second variable. Pointwise estimates for
the solutions that we provide are expressed in terms of a nonlinear potential of generalized
Wolff type. Not only we retrieve the recent sharp results proven for p-Laplace systems, but
additionally our study covers the natural scope of operators with similar structure and natural
class of Orlicz growth.
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1 Introduction

A broad and profuse branch of the theory of nonlinear partial differential systems stems
from seminal ideas by Ural’tseva [85] and Uhlenbeck [84]. There is a solid stream of recent
studies on regularity of solutions to general growth elliptic systems [4, 25, 33, 38, 67, 72, 81]
and related minimizers of vectorial functionals [7, 15, 30, 32, 35, 36, 47, 73]. Our aim is to
contribute to the field by providing pointwise estimates for very weak solutions to measure
data problems in the terms of potentials of relevant Orlicz growth. As a consequence, we
infer sharp description of fine properties of solutions being the exact analogues of the ones
available in the classical linear potential theory or in the case of p-Laplace systems [65].

Let us stress that weak solutions do not have to exist for arbitrary measure datum. Thus
we employ a notion of very weak solutions obtained by an approximation studied since [9].
Despite they can be unbounded, they can be controlled by a certain potential. There are known
deep classical results for scalar problems [57, 58] settling the nonlinear potential theory for
solutions to −�pu = − div(|Du|p−2Du) = μ, 1 < p < ∞, followed by their variable
exponent version [68] and recently by the Orlicz one [22, 70], as well as a counterpart proven
for systems involving p-Laplace operator [27, 65]. We study the nonstandard growth version
of pointwise estimates involving suitably generalized potential of the Wolff type and infer
their regularity consequences.

In fact, we investigate very weak solutions u : �→ R
m to measure data elliptic systems

involving nonlinear operators

− div
(
a(x)

g(|Du|)
|Du| Du

)
= μ in �, (1)

where a ∈ C(�) is bounded and separated from zero, g = G ′, μ ∈ M(�,Rm) is a bounded
measure, whereas div stands for the R

m-valued divergence operator. Here we admit G to be
a Young function satisfying both �2- and ∇2-conditions, which follows from the condition

2 ≤ iG = inf
t>0

tg(t)

G(t)
≤ sup

t>0

tg(t)

G(t)
= sG <∞. (2)

SeeAssumption (A-vect) in Sect. 2 for all details.We stress thatwe impose the typical assump-
tion of quasi-diagonal structure of A naturally covering the case of (possibly weighted)
p-Laplacian when Gp(s) = s p, for every p ≥ 2, together with operators governed by the
Zygmund-type functions Gp,α(s) = s p logα(1+ s), p ≥ 2, α ∈ R, as well as their multipli-
cations and compositions with various parameters. In turn, we generalize the corresponding
results of [27, 65] to embrace also p-Laplace systems with continuous coefficients, and –
on the other hand – cover the natural scope of operators with similar structure and Orlicz
growth. Let us stress that the operator we consider is not assumed to enjoy homogeneity of
a formA(x, kξ) = |k|p−2kA(x, ξ). Consequently, our class of solutions is not invariant with
respect to scalar multiplication.

Obtaining sharp regularity results for solutions to nonlinear systems is particularly chal-
lenging. In the scalar case one can infer continuity or Hölder continuity of the solution to
−divA(x, Du) = μ when the dependence of the operator on the spacial variable is merely
bounded and measurable and the growth ofAwith respect to the second variable is governed
by an arbitrary doubling Young function (cf. [22]). The same is not possible for systems
even with far less complicated growth and null datum, cf. [29, 55, 82] and [75, Sect. 3]. To
justify why we restrict our attention to operators having a specific form as in (1), let us point
out that the typical assumption of a so-called Uhlenbeck structure is imposed in order to

123



Wolff potentials and vectorial problems with Orlicz growth Page 3 of 41 64

control energy of solutions. The continuity of the coefficients is a minimal assumption to get
continuity of the solution in the view of counterexample of [29].

The studies on the potential theory to measure data problems dates back to [52, 74].
We refer to [62] for an overview of the nonlinear potential theory, to [54, 57, 58, 69] for
cornerstones of the field, and [1, 53] for well-present background of the p-growth case.
In the scalar case, in their seminal works [57, 58], Kilpeläinen and Malý provided optimal
Wolff potential estimates for p-superharmonic functions u generating a nonnegative measure
μ from above and below

1
cWμ

p (x0, R) ≤ u(x0) ≤ c
(

inf
BR(x0)

u + Wμ
p (x0, R)

)
for some c = c(n, p) (3)

with the so-called Wolff potential

Wμ
p (x0, R) =

∫ R

0

(
r p−nμ(Br (x0))

) 1
p−1

dr

r
=

∫ R

0

(
μ(Br (x0))

rn−1

) 1
p−1

dr ,

see also [60, 83]. In the linear case (p = 2) the estimates of (3) become the classical Riesz
potential bounds. The precise Orlicz counterpart of this result with nonnegative measure μ
is proven with the nonstandard growth potential

Wμ
G(x0, R) =

∫ R

0
g−1

(
μ(Br (x0))

rn−1

)
dr ,

see [22, 70]. To our best knowledge, the only reference one can find on the related results for
systems are [27, 65] that involves problems with the p-Laplace operator. The estimate related
to (3) provided therein establishes the upper bound only. Note however that no lower bound
can be available in the vectorial case. Indeed, it origins in the lack of the possibility of proving
maximum principle. Our method of proof relies on the ideas of [65]. We employ a properly
adapted Orlicz version of A-harmonic approximation relevant for measure data problems
(Theorem 4.1 in Sect. 4) and careful estimates on concentric balls. The proof of Theorem 4.1
is based on the arguments that essentially apply the Uhlebeck structure of the system and the
lower growth restriction (2). By the very nature of the result one cannot hope forA-harmonic
approximation of functions that do not have at least Sobolev regularity. In order to ensure that
a distributional solution to a measure data problem belongs at least toW 1,1

loc , the operator need
to be far from 1-Laplacian. Note that already in the case of scalar p-Laplace equation, the
value p = 2− 1

n is the integrability threshold for a fundamental solution. Indeed, for p 	= n a

function u(x) = c(|x | p−n
n−1 −1), being a solution to−�pu = δ0 on a ball, has locally integrable

distributional gradient only for p > 2 − 1
n . Similarly, one can show the natural Orlicz

counterpart of this threshold. If this condition is violated, a fundamental part of the proof of
Theorem 4.1, i.e. the estimate on summability of u and Du, is false. Note that Remark 4.2
explains that the proof of Theorem 4.1 works for functions G having iG slightly below 2.
Other available proofs of summability estimates for solutions to similar problems with Orlicz
growth also do not cover the natural range reflecting p > 2− 1

n , see [4]. We stress that rest of
the proofs, including those of pointwise Wolff potential estimate (Theorem 2.1), continuity
criterium (Theorem 2.3) and Hölder continuity criterium (Theorem 2.9), do not make use of
other growth assumptions than G ∈ �2 ∩ ∇2. Nonetheless, all of them substantially rely on
measure data A-harmonic approximation result.

Let us also mention that a lot of attention is attracted by potential estimates on gradients of
solutions, generalized harmonic approximation, and their application in the theory of partial

123



64 Page 4 of 41 I. Chlebicka et al.

regularity [5, 6, 10–13, 16, 17, 19, 34, 37, 41–44, 62, 64, 71, 76] which is an open path from
now on.

The paper is organized as follows. Our assumptions, main results and their regularity
consequences are presented in Sect. 2. Sect. 3 is devoted to notation and information on the
setting. In particular see Sect. 3.5 for the precise definition of the notion of veryweak solutions
we employ. Sect. 4 provides the most important tool of paper—a measure data A-harmonic
approximation. Sect. 5 contains the proofs of comparison estimates, the sufficient condition
for u to be in VMO of Proposition 2.2, the potential estimates of Theorem 2.1, the continuity
criterion of Theorem 2.3 and the Hölder continuity criterion of Theorem 2.9.

2 Main result and its consequences

2.1 The statement of the problem

Let us present an essential notation and details of the measure data problem we study.
Essential notation. By ‘·’ we denote the scalar product of two vectors, i.e. for ξ =
(ξ1, . . . , ξm) ∈ R

m and η = (η1, . . . , ηm) ∈ R
m we have ξ · η = ∑m

i=1 ξiηi ; by ‘:’ –
the Frobenius product of the second-order tensors, i.e. for ξ = [ξαj ] j=1,...,n, α=1,...,m and
η = [ηαj ] j=1,...,n, α=1,...,m we have

ξ : η =
m∑
α=1

n∑
j=1

ξαj η
α
j .

By ‘⊗’ we denote the tensor product of two vectors, i.e for ξ = (ξ1, . . . , ξk) ∈ R
k and

η = (η1, . . . , η�) ∈ R
�, we have ξ ⊗ η := [ξiη j ]i=1,...,k, j=1,...,�, that is

ξ ⊗ η :=

⎛
⎜⎜⎜⎝
ξ1η1 ξ1η2 · · · ξ1η�
ξ2η1 ξ2η2 · · · ξ2η�
...

...
...

ξkη1 ξkη2 · · · ξkη�

⎞
⎟⎟⎟⎠ ∈ R

k×�.

Assumption (A-vect). Given a bounded, open, Lipschitz set � ⊂ R
n , n ≥ 2, we investigate

solutions u : �→ R
m to the problem{

−divA(x, Du) = μ in �,

u = 0 on ∂�
(4)

with a datum μ being a vector-valued bounded Radon measure and a function A : � ×
R
n×m → R

n×m is a weighted operator of Orlicz growth expressed by the means of g(t) :=
G ′(t), where an N -function G ∈ C2((0,∞)) ∩ C([0,∞)) satisfies iG ≥ 2 with iG given
by (2). Let g ∈ �2 ∩ ∇2. Namely, A is assumed to admit a form

A(x, ξ) = a(x)
g(|ξ |)
|ξ | ξ, (5)

where a : �→ [ca,Ca], 0 < ca < Ca is a continuous function with a modulus of continuity
ωa . We define a potential

Wμ
G(x0, R) =

∫ R

0
g−1

( |μ|(Br (x0))
rn−1

)
dr . (6)
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For the case of referring to the dependence of some quantities on the parameters of the
problem, we collect them as

data = data(iG , sG , ca,Ca, ωa, n,m).

Having (5), one can infer the strong monotonicity of the vector field A of a form given by
Lemma 3.2.

Let us define the notion of very weak solutions we employ. Let us define the notion of
very weak solutions we employ, cf. [23].
Solutions Obtained as a Limit of Approximation. A map u ∈ W 1,1

0 (�,Rm) such that∫
�
g(|Du|) dx < ∞ is called a SOLA to (4) under the regime of Assumption (A-vect),

if there exists a sequence (uh) ⊂ W 1,G(�,Rm) of local energy solutions to the systems

−divA(x, Duh) = μh

such that uh → u locally in W 1,1(�,Rm) and (μh) ⊂ L∞(�,Rm) is a sequence of maps
that converges to μ weakly in the sense of measures and satisfies

lim sup
h

|μh |(B) ≤ |μ|(B) (7)

for every ball B ⊂ �.
Observe that the above approximation property immediately implies that a SOLA u is a

distributional solution to (4), that is,∫
�

A(x, Du) : Dϕ dx =
∫

ϕ dμ for every ϕ ∈ C∞(�,Rm).

2.2 Main results

Our main accomplishment reads as follows.

Theorem 2.1 (Pointwise Wolff potential estimates) Suppose u : � → R
m is a SOLA to (4)

with A satisfying Assumption (A-vect) and μ ∈ M(�,Rm). Let Br (x0) � � with r < R0

for some R0 = R0(data). If Wμ
G(x0, r) is finite, then x0 is a Lebesgue’s point of u and

|u(x0)− (u)Br (x0)| ≤ CW
(
Wμ

G(x0, r)+
∫
Br (x0)

|u − (u)Br (x0)| dx
)

(8)

holds for CW > 0 depending only on data. In particular, we have the following pointwise
estimate

|u(x0)| ≤ CW
(
Wμ

G(x0, r)+
∫
Br (x0)

|u(x)|dx
)
. (9)

2.3 Local behaviour of very weak solutions

Potential estimates are known to be efficient tools to bring precise information on the local
behaviour of solutions. We refer to [62] for clearly presented overview of consequences of
estimates like (9) in studies on p-superharmonic functions together with a bunch of related
references and to [22] for similar results for A-harmonic functions where the operator A
is exhibiting Orlicz type of growth. Notice however we referred to the scalar case. In the
vectorial one, the only investigations on the potential estimates to solutions to measure data
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problem we are aware of are available in [27, 65] for p-Laplace systems. Let us present the
regularity consequences of Wolff potential estimates to p-Laplace system with continuous
coefficients and the natural scope of operators with similar structure and Orlicz growth.

We start with finding a density condition around a point x0 implying that a solution has
vanishing mean oscillations at x0. The proposition below does not follow from Theorem 2.1,
for the proof see Sect. 5.

Proposition 2.2 (VMO criterion) Suppose A satisfies Assumption (A-vect) and μ ∈
M(�,Rm). Let u be a SOLA to (4) and let Br (x0) � �. If

lim
�→0

� g−1
( |μ|(B�(x0))

�n−1

)
= 0, (10)

then u has vanishing mean oscillations at x0, i.e.

lim
�→0

∫
B�(x0)

|u − (u)B�(x0)| dx = 0. (11)

An application of Theorem 2.1 is the following continuity criterion proven also in Sect. 5.

Theorem 2.3 (Continuity criterion) Suppose u is a SOLA to (4) under the regime ofAssump-
tion (A-vect) and Br (x0) � �. If

lim
�→0

sup
x∈Br (x0)

Wμ
G(x, �) = 0, (12)

then u is continuous in Br (x0).

If μ = 0, then Wμ
G(x, �) = 0, thus trivially we have the following consequence.

Corollary 2.4 Under Assumption (A-vect) if u is an A-harmonic map in �, then u is con-
tinuous in every �′ � �.

Condition (12) holds true provided the datum belongs to a Lorentz-type space. In order
to define it we recall some definitions. We denote by f � the decreasing rearrangement of a
measurable function f : �→ R by

f �(t) = sup{s ≥ 0 : |{x ∈ R
n : f (x) > s}| > t},

the maximal rearrangement by

f ��(t) = 1

t

∫ t

0
f �(s) ds and f ��(0) = f �(0).

Following [80] by Lorentz space L(α, β)(�) for α, β > 0 we mean the class of measurable
functions such that ∫ ∞

0

(
t1/α f ��(t)

)β dt

t
<∞.

The following fact is proven in Appendix.

Lemma 2.5 Suppose μ = F : R
n → R

m is a locally integrable map vanishing outside �,
then there exists a constant c = c(n, iG , sG) > 0, such that

WF
G(x, R) ≤ c

∫ |BR |

0
t
1
n g−1

(
t
1
n |F|��(t)

) dt

t
=: IR .
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Note that if IR < ∞, the datum F is in the dual space to W 1,G(BR) and, consequently,
we deal with a weak solution, see [3]. Let us present a corollary of Theorem 2.3 holding due
to Lemma 2.5.

Corollary 2.6 If u is a weak solution to −divA(x, Du) = F with A satisfying Assumption
(A-vect) and F : �→ R

m such that

I :=
∫ |�|

0
t
1
n g−1

(
t
1
n |F|��(t)

) dt

t
<∞ (13)

for �0 � �, then u ∈ C(�0,R
m) and ‖u‖L∞(�0,Rm ) ≤ c(data)I. This bound is optimal

and attained by a radial solution on a ball, see [3]. Moreover, as a special case we get that u
is continuous under the regularity restrictions on |F| = f of [3, Example 1 (A) and Example 2
(A)], still within our regime requiring g ∈ �2 ∩ ∇2 and iG ≥ 2.

The above corollary results in the following extension of [65, Theorem 10.6] to the weighted
case.

Remark 2.7 If u is a weak solution to −div
(
a(x)|Du|p−2Du

) = F for p ≥ 2 and 0 < a ∈
C(�) is separated from zero and |F| belongs locally to the Lorentz space L( np , 1

p−1 )(�) then
u is continuous in �.

As another application of Corollary 2.6 let us present its consequences for the Zygmund case.

Remark 2.8 Suppose that 2 ≤ p < n, α ≥ 0, 0 < a ∈ C(�) separated from zero is bounded,
and u is a weak solution to

− div
(
a(x)|Du|p−2 logα(e + |Du|) Du

) = F. (14)

Observe that in this case g−1(λ) ≈ λ
1

p−1 log− α
p−1 (e + λ). If F satisfies (13), then u is

continuous in �.

Wolff potential estimates can be used to find a relevant condition on a measure μ to infer
Hölder continuity of solutions. One of the natural ones is expressed in the Orlicz modification
of the Morrey-type scale.

Theorem 2.9 (Hölder continuity criterion) Suppose u is a SOLA to (4) under the regime of
Assumption (A-vect). Assume further that forμ there exist positive constants c = c(data) >
0 and θ ∈ (0, 1) such that

|μ|(Br (x)) ≤ crn−1g(r θ−1) ≈ rn−θG(r θ−1) (15)

for each Br (x) � � with sufficiently small radius. Then u is locally Hölder continuous in�.

For p-growth problems condition (15) reads as |μ|(Br (x)) ≤ crn−p+θ(p−1)well known since
[14, 57, 59, 78]. Moreover, in the scalar case (15) is proven in [22] to be equivalent to Hölder
continuity of solutions, while in [20] to characterize removable sets for Hölder continuous
solutions. In the vectorial case we cannot get equivalence, because by Theorem 2.1 we are
equipped with one-sided estimate only. Specializing Theorem 2.9, we have the following
results.

Remark 2.10 Suppose p ≥ 2, positive a ∈ C(�) is separated from zero, and u is a SOLA to

−div
(
a(x)|Du|p−2Du

) = μ

with |μ|(Br (x)) ≤ crn−p+θ(p−1) for some c > 0, θ ∈ (0, 1) and all sufficiently small r > 0.
Then u is locally Hölder continuous in �.
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Remark 2.11 Suppose p ≥ 2, α ∈ R, positive a ∈ C(�) is separated from zero, and u is a
SOLA to

− div
(
a(x)|Du|p−2 logα(e + |Du|)Du

) = μ (16)

with |μ|(Br (x)) ≤ crn−p+θ(p−1) logα(e + r θ−1) for some c > 0, θ ∈ (0, 1) and all suffi-
ciently small r > 0. Then u is locally Hölder continuous in �.

The sufficient condition for (15) and, in turn, for the Hölder continuity of the solution is
to assume that |μ| = |F| belongs to a relevant Marcinkiewicz-type space. Following [77] for
a continuous increasing function ψ : (0, |�|)→ (0,∞) we say that f ∈ L(ψ,∞)(�) if the
maximal rearrangement f �� of f satisfies

sup
s∈(0,|�|)

f ��(s)

ψ−1(1/s)
<∞.

There holds the following consequence of Theorem 2.9.

Corollary 2.12 Suppose u is a SOLA to −divA(x, Du) = F under the regime of Assump-
tion (A-vect) and |F| belongs locally to the Marcinkiewicz-type space L(ψ,∞)(�) with
ψ−1(1/λ) = λ− 1

n g
(
λ
θ−1
n

)
for some θ ∈ (0, 1), then u is locally Hölder continuous.

For justification that indeed under the assumptions of Corollary 2.12 the condition (15) is
satisfied see the calculations provided for the scalar case [22, Sect. 2]. The above fact has the
best possible consequence in the p-Laplace case.

Remark 2.13 If p ≥ 2, positive a ∈ C(�) is separated from zero, u is a SOLA
to −div

(
a(x)|Du|p−2Du

) = F and |F| belongs locally to the Marcinkiewicz space

L( n
p+θ(p−1) ,∞)(�) for some θ ∈ (0, 1), i.e. supλ>0

(
λ

n
p+θ(p−1)

∣∣{x ∈ �0 : |F(x)| > λ}|
)
<

∞ for any �0 � �, then u is locally Hölder continuous in �.

Remark 2.14 When G(t) ≈ t p logα(e + t), p ≥ 2, α ∈ R, u is a SOLA to (14) with F such
that

sup
λ>0

(
λ

n
p+θ(p−1) log− α(1−θ)

p+θ(p−1) (e + λ n
1−θ )

∣∣{x ∈ �0 : |F(x)| > λ}|
)
<∞,

for any �0 � �, then u is locally Hölder continuous in �.

3 Preliminaries

3.1 Notation

We shall adopt the customary convention of denoting by c a constant that may vary from line
to line. To skip rewriting a constant, we use�. By a ≈ b, wemean a � b and b � a. To stress
the dependence of the intrinsic constants on the parameters of the problem, we write �data

or ≈data. By BR we denote a ball skipping prescribing its center, when it is not important.
By cBR = BcR we mean a ball with the same center as BR , but with rescaled radius cR. We
make use of the truncation operator, Tk : R

m → R
m , defined as follows

Tk(ξ) := min

{
1,

k

|ξ |
}

ξ . (17)
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Then, of course, DTk : R
m → R

m×m is given by

DTk(ξ) =
{
Id if |ξ | ≤ k,
k
|ξ |

(
Id − ξ⊗ξ

|ξ |2
)

if |ξ | > k.
(18)

For a measurable set U ⊂ R
n with finite and positive n-dimensional Lebesgue measure

|U | > 0 and f : U → R
k , k ≥ 1 being a measurable map, we define

(f)U =
∫
U
f(x) dx = 1

|U |
∫
U
f(x) dx .

ByC0,γ (U ), γ ∈ (0, 1], we mean the family of Hölder continuous functions, i.e. measurable
functions f : U → R

k for which

[f]0,γ := sup
x,y∈U ,
x 	=y

|f(x)− f(y)|
|x − y|γ <∞.

We describe the ellipticity of a vector fieldA using a function V : R
n×m → R

n×m given by

V(ξ) =
(
g(|ξ |)
|ξ |

)1/2

ξ. (19)

3.2 Basic definitions

References for this section are [61, 79].
We say that a function G : [0,∞)→ [0,∞] is a Young function if it is convex, vanishes

at 0, and is neither identically equal to 0, nor to infinity. A Young function G which is
finite-valued, vanishes only at 0 and satisfies the additional growth conditions

lim
t→0

G(t)

t
= 0 and lim

t→∞
G(t)

t
= ∞

is called an N -function. The complementary function G̃ (called also the Young conjugate,
or the Legendre transform) to a nondecreasing function G : [0,∞) → [0,∞) is given by
the following formula

G̃(s) := sup
t>0
(s · t − G(t)).

If G is a Young function, so is G̃. If G is an N -function, so is G̃.
Having Young functions G, G̃, we are equipped with Young’s inequality reading as fol-

lows

ts ≤ G(t)+ G̃(s) for all s, t ≥ 0. (20)

We say that a functionG : [0,∞)→ [0,∞) satisfies�2-condition if there exists c�2 > 0
such that G(2t) ≤ c�2G(t) for t > 0. We say that G satisfy ∇2-condition if G̃ ∈ �2.

Note that it is possible that G satisfies only one of the conditions �2/∇2. For instance,
for G(t) = ((1 + |t |) log(1 + |t |) − |t |) ∈ �2, its complementary function is G̃(s) =
(exp(|s|)−|s|−1) /∈ �2. See [79, Sect. 2.3, Theorem 3] for equivalence of various definitions
of these conditions and [21, 31] for illustrating the subtleties. In particular, G ∈ �2 ∩ ∇2

if and only if 1 < iG ≤ sG < ∞, see (2). This assumption implies a comparison with
power-type functions i.e. G(t)

t iG
is non-decreasing and G(t)

t sG is non-increasing, but it is stronger
than being sandwiched between power functions.
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64 Page 10 of 41 I. Chlebicka et al.

Lemma 3.1 If an N-function G ∈ �2 ∩ ∇2, then g(t)t ≈ G(t)
and G̃(g(t)) ≈ G(t) with the constants depending only on the growth indexes of G, that

is iG and sG. Moreover, g−1(2t) ≤ cg−1(t) with c = c(iG , sG).

Due to Lemma 3.1 and [33, Lemmas 3 and 21], we have the following relations.

Lemma 3.2 If G is an N-function of class C2((0,∞)) ∩ C([0,∞)), G, g ∈ �2 ∩ ∇2, A is
given by (5), then for every ξ, η ∈ R

n×m it holds

(A(x, ξ)− A(x, η)) : (ξ − η) �data
g(|ξ | + |η|)
|ξ | + |η| |ξ − η|2 ≈data |V(ξ)− V(ξ)|2 , (21)

and

g(|ξ | + |η|)|ξ − η| ≈data G
1
2 (|ξ | + |η|)|V(ξ)− V(η)|. (22)

3.3 Orlicz spaces

Basic reference for this section is [2], where the theory of Orlicz spaces is presented for
scalar functions. The proofs for functions with values in R

m can be obtained by obvious
modifications.

We study the solutions to PDEs in the Orlicz-Sobolev spaces equipped with a modular
function G ∈ C1((0,∞)) - a strictly increasing and convex function such that G(0) = 0 and
satisfying (2). Let us define a modular

�G,U (ξ) =
∫
U
G(|ξ |) dx . (23)

For anybounded� ⊂ R
n , byOrlicz space LG(�,Rm)weunderstand the spaceofmeasurable

functions endowed with the Luxemburg norm

||f||LG (�,Rm ) = inf
{
λ > 0 : �G,�

( 1
λ
|f|) ≤ 1

}
.

We define the Orlicz-Sobolev space W 1,G(�) as follows

W 1,G(�,Rm) = {
f ∈ W 1,1(�,Rm) : |f|, |Df| ∈ LG(�,Rm)

}
,

where the gradient is understood in the distributional sense, endowed with the norm

‖f‖W 1,G (�,Rm ) = inf

{
λ > 0 : �G,�

( 1
λ
|f|) + �G,�

( 1
λ
|Df|) ≤ 1

}

and by W 1,G
0 (�,Rm) we denote the closure of C∞

c (�,R
m) under the above norm. Since

condition (2) imposed on G implies G, G̃ ∈ �2, the Orlicz-Sobolev space W 1,G(�,Rm)

we deal with is separable and reflexive. Moreover, one can apply arguments of [49] to infer
density of smooth functions in W 1,G(�,Rm).

The counterpart of the Hölder inequality in this setting reads

‖fg‖L1(�,Rm ) ≤ 2‖f‖LG (�,Rm )‖g‖LG̃ (�,Rm )
(24)

for all f ∈ LG(�,Rm) and g ∈ LG̃(�,Rm).
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3.4 The operator

We notice that in such regime the operator AG acting as

〈AGu,φ〉 :=
∫
�

A(x, Du) : Dφ dx for φ ∈ C∞
0 (�,R

m)

is well defined on a reflexive and separable Banach space W 1,G
0 (�,Rm) and AG

(W 1,G
0 (�,Rm)) ⊂ (W 1,G

0 (�,Rm))′. Indeed, when u ∈ W 1,G
0 (�,Rm) and φ ∈

C∞
c (�,R

m), structure condition (5), Hölder’s inequality (24), and Lemma 3.1 justify that

|〈AGu,φ〉| ≤ c
∫
�

g(|Du|)|Dφ| dx ≤ c ‖g(|Du|)‖LG̃(·) ‖|Dφ|‖LG

≤ c‖|Du|‖LG‖|Dφ|‖LG ≤ c‖φ‖W 1,G .

3.5 Definitions of solutions and comments on existence results

We stress that the problems are considered under the regime of Assumption (A-vect).
A function v ∈ W 1,G

loc (�,R
m) is called an A-harmonic map in � ⊂ R

n provided
∫
�

A(x, Dv) : Dϕ dx = 0 for all ϕ ∈ C∞
c (�,R

m). (25)

As a consequence of our main result, in Corollary 2.4, we prove that A-harmonic maps are
continuous. In fact, by Campanato’s characterization [48, Theorem 2.9] one can infer from
Proposition 3.13 Hölder continuity C0,γ (�,Rm) of A-harmonic maps with any exponent
γ ∈ (0, 1).

A function u ∈ W 1,G
loc (�,R

m) is called a weak solution to (4), if∫
�

A(x, Du) : Dϕ dx =
∫
�

ϕ dμ(x) for every ϕ ∈ C∞
c (�,R

m). (26)

Recall that W 1,G
0 (�,Rm) is separable and by its definition C∞

c (�,R
m) is dense there.

Remark 3.3 (Existence and uniqueness of weak solutions) For μ ∈ (W 1,G
0 (�,Rm))′, due to

the strict monotonicity of the operator, there exists a unique weak solution to (4), see [56,
Sect. 3.1].

Recall that the notion of SOLA is defined in Sect. 2.2. The problem (4) admits a solution
of this type for arbitrary bounded measure.

Proposition 3.4 If a vector field A satisfies Assumption (A-vect) and μ ∈ M(�,Rm), then
there exists a SOLA u ∈ W 1,1

0 (�,Rm) to (4).

The idea to prove it is to consider

fk(x) :=
∫

Rm
�k(x − y) dμ(y),

where �k stands for a standard mollifier i.e. for a nonnegative, smooth, and even function
such that

∫
Rm �(s) ds = 1 we define �k(s) = kn�(ks) for k ∈ N. Of course

fk
∗−⇀ μ and sup

k
‖fk‖L1(�) ≤ |μ|(Rn) <∞.
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64 Page 12 of 41 I. Chlebicka et al.

By Remark 3.3 one finds uk ∈ W 1,G
0 (�,Rm) such that for every ϕ ∈ W 1,G

0 (�,Rm) it holds
that ∫

�

A(x, Duk) : Dϕ dx =
∫
�

ϕ fkdx .

The existence of SOLA by passing to the limit can be justified by modification of arguments
of [39].
See [3, 8, 18, 21, 24, 26] for related existence and regularity results in the scalar case and
[28, 39, 40, 46, 66] for vectorial existence results in various regimes.

3.6 Auxiliary results

Lemma 3.5 For g : B → R
k , k ≥ 1 and any ξ ∈ R

k it holds that∫
B

|g − (g)B | dx ≤ 2
∫
B

|g − ξ | dx .

We have the following corollary of the Cavalieri Principle.

Lemma 3.6 If ν ∈ M(�) has a density ω (i.e. dν = ω(x) dx with ω ∈ L1(�)) and (1 +
| f |)−(γ+1)ω ∈ L1(Rn) for some γ > 0, then∫ ∞

0

ν({| f | < t})
(1 + t)2+γ

dt = 1

1 + γ
∫

Rn

dν

(1 + | f |)γ+1 .

Lemma 3.7 ([48], Lemma 6.1) Let φ : [R/2, 3R/4] → [0,∞) be a function such that

φ(r1) ≤ 1

2
φ(r2)+ A + B

(r2 − r1)β
for every R/2 ≤ r1 < r2 ≤ 3R/4

with A,B ≥ 0 and β > 0. Then there exists c = c(β), such that

φ(R/2) ≤ c

(
A + B

Rβ

)
.

Lemma 3.8 ([50], Lemma 3.4) Let φ(t) be a nonnegative and nondecreasing function on
[0, R]. Suppose that

φ(ρ) ≤ A
[(ρ

r

)α + ε
]
φ(r)+ Brβ

for any 0 < ρ ≤ r ≤ R, with A, B, α, β nonnegative constants and β < α. Then for any
γ ∈ (β, α), there exists a constant ε0 = ε0(A, α, β, γ ) such that if ε < ε0, then for all
0 < ρ ≤ r ≤ R we have

φ(ρ) ≤ c
{(ρ

r

)γ
φ(r)+ Bρβ

}

where c is a positive constant depending on A, α, β, γ .

The next lemma is a self-improving property for the reverse Hölder inequalities.

Lemma 3.9 ([53], Lemma3.38)Let0 < r < q < p <∞,0 < ρ < R ≤ 1andw ∈ L p(B1).
If the following reverse Hölder inequality holds

(∫
Bσ ′
w p dx

)1/p

≤ c0
(σ − σ ′)κ

(∫
Bσ
wq dx

)1/q

+ c1
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for some constants c0 and c1, whenever ρ ≤ σ ′ ≤ σ ≤ R. Then there exists c =
c(c0, ξ, p, q, r) such that

(∫
Bρ
w p dx

)1/p

≤ c

(R − ρ)κ̃
(∫

BR

wr dx

)1/r

+ c1,

where

κ̃ = κr(p − q)

q(p − r)
.

The followingmodular version of the Sobolev-Poincaré inequality follows almost directly
as in [5], but we present the proof for vector-valued functions for the sake of completeness.

Proposition 3.10 Suppose � is a bounded Lipschitz domain in R
n, m, n ≥ 1, and G :

[0,∞) → [0,∞) is an N-function such that G ∈ �2 ∩ ∇2. Then there exist a constant
C = C(n,m, |�|,G) > 0, such that for every u ∈ W 1,G

0 (�,Rm)

∫
�

Gn′
(|u|) dx ≤ C

(∫
�

G(|Du|) dx
)n′

.

Proof We provide the proof only in the case of continuously differentiable G. Otherwise
every time one can find a sufficiently smooth function G◦ comparable to G, i.e. such that
there exists c > 0, such that G◦(t)/c ≤ G(t) ≤ cG◦(t). Moreover, we start with the proof
for fixed u ∈ C∞

c (�,R
m) and then conclude by the density argument. The classical Sobolev

inequality in W 1,1 gives

(∫
�

Gn′
(|u|) dx

) 1
n′

≤ c
∫
�

|D(G(|u|))| dx . (27)

Since G ∈ �2, it satisfies g(t) ≤ c G(t)/t and G∗
(
G(t)
t

)
≤ G(t). Thus by the Young

inequality we arrive at

|D(G(|u|))| = g(|u|)∣∣D|u|∣∣ ≤ c
G(|u|)

|u| |Du|

≤ εG∗
(
G(|u|)

|u|
)

+ c G(|Du|) ≤ εG(|u|)+ c G(|Du|).
(28)

Summing up, we have

(∫
�

Gn′
(|u|) dx

) 1
n′

≤ Cε
∫
�

G(|u|) dx + Ccε

∫
�

G(|Du|) dx,

where according to the Hölder inequality we obtain

(∫
�

Gn′
(|u|) dx

) 1
n′

≤ εC |�| 1n
(∫
�

Gn′
(|u|) dx

) 1
n′

+ Ccε

∫
�

G(|Du|) dx .

Now we can choose ε small enough to absorb it on the right-hand side and obtain the
claim for u ∈ C∞

c (�,R
m). Since smooth function are dense in W 1,G

0 (�,Rm) by standard

approximation argument we get the claim for all u ∈ W 1,G
0 (�,Rm). ��
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3.7 Properties ofA-harmonic maps

Let us establish some fundamental properties of A-harmonic maps.

Proposition 3.11 (Caccioppoli estimate) If v ∈ W 1,G
0 (�,Rm) is a nonnegativeA-harmonic

map, λ ∈ R
m, and 7/8 ≤ σ ′ < σ ≤ 1, then there exists c = c(data) > 0, such that

∫
Bσ ′r

G(|Dv|) dx ≤ c

(σ ′ − σ)sG
∫
Bσr

G

( |v − λ|
r

)
dx . (29)

Proof Let us pick a cutoff function η ∈ C∞
c (Bσr ) such that 1Bσ ′r ≤ η ≤ 1Bσr and |Dη| ≤

c1/(σ ′ − σ). We use ξ = ηq(v − λ) as a test function to get∫
�

A(x, Dv) : Dv ηq dx =
∫
�

A(x, Dv) : (−qηq−1(v − λ)⊗ Dη) dx .

Therefore, due to the coercivity of A and the Cauchy–Schwarz inequality we have
∫
Bσr

G(|Dv|)ηq dx ≤ c
∫
Bσr

g(|Dv|)
|Dv| η

q−1|Dv : ((v − λ)⊗ Dη)| dx =: K

Noting that q is large enough to satisfy s′
G ≥ q ′, we have in turn that G̃(ηq−1t) ≤ cηq G̃(t)

and

G̃(ηq−1g(t)) ≤ cηq G̃(g(t)) ≤ cηqG(t).

Then, using Young inequality (20) applied to the integrand of K we get

K ≤ ε
∫
Bσr

G̃(ηq−1|Dv|) dx + cε

∫
Bσr

G (|v − λ| |Dη|/c1) dx

≤ εc
∫
Bσr
ηqG(|Dv|) dx + cε

∫
Bσr

G (|v − λ| |Dη|/c1) dx

with arbitrary ε < 1. Choosing ε small enough to absorb the term, and finally by properties
of η we obtain (29). ��

An A-harmonic function v is a minimizer of a functional

v �→
∫
�

G(|Dv|) dx .

Therefore, taking the operator independent of the spacial variable

A(x, ξ) = ca
g(|ξ |)
|ξ | ξ (30)

A-harmonic functions are Lipschitz regular by the following fact.

Lemma 3.12 ([35], Lemma 5.8) Suppose G is an N-function of class C2((0,∞)) ∩
C([0,∞)), G, g ∈ �2 ∩ ∇2, w is A-harmonic in � for A given by (30). Let B ⊂ 2B � �.
Then there exists c = c(data) > 0 such that

sup
B

G(|Dw|) ≤ c
∫
2B

G(|Dw|) dx .
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Proposition 3.13 Supposea vector fieldA satisfiesAssumption (A-vect). Ifv ∈ W 1,G(�,Rm)

is A-harmonic, then for any ς ∈ (0, 1) there exists R0 = R0(data, ς) ∈ (0, 1] such that
for any 0 < R ≤ R0 and BR � � it holds that

∫
BδR

|v − (v)BδR | dx ≤ coδ
1+(ς−1)K

∫
BR

|v − (v)BR | dx (31)

whenever δ ∈ (0, 1/4], where co ≥ 1 is a constant depending only on data and ς and
K = K (iG , sG).

Proof In this proof, we use a classical perturbation argument, see for instance [50, Theorem
3.8]. It suffices to prove (31) for v solving

−div
(
a(x)

g(|Dv|)
|Dv| Dv

)
= 0 in B1.

Indeed, the general case can be deduced then by considering ṽ(x) = v(x0 + Rx)/R solving
−divĀ(x, Dṽ) = 0 on B1(0) with

Ā(x, ξ) = ā(x)
ḡ(|ξ |)
|ξ | ξ = 1

g(R)
A(x0 + Rx, Rξ) = a(x0 + Rx)

g(R|ξ |)
g(R)|ξ |ξ.

In this case, the modulus ωā of continuity of ā satisfies ωā(r) = ωa(r R).
Note first Propositions 3.10 and 3.11 imply that for any 7/8 ≤ σ ′ < σ ≤ 1 it holds

(∫
Bσ ′

Gn′
( |v − (v)Bσ ′ |

σ ′

)
dx

)1/n′

≤ c

(σ − σ ′)sG

∫
Bσ

G

( |v − (v)Bσ |
σ

)
dx .

From the doubling property of G and the upper and lower bound on σ ′ and σ , we have
(∫

Bσ ′
Gn′ (|v − (v)Bσ ′ |

)
dx

)1/n′

≤ c

(σ − σ ′)sG

∫
Bσ

G
(|v − (v)Bσ |

)
dx .

Using the triangle inequality and Jensen’s inequality

(∫
Bσ ′

Gn′ (|v − (v)B1 |
)
dx

)1/n′

≤ c

(∫
Bσ ′

Gn′ (|v − (v)Bσ ′ |
)
dx

)1/n′

+ c G
(|(v)Bσ ′ − (v)B1 |

)

≤ c

(σ − σ ′)sG

∫
Bσ

G
(|v − (v)Bσ |

)
dx + c

∫
Bσ ′

G
(|v − (v)B1 |

)
dx

≤ c

(
1

(σ − σ ′)sG
+ 1

)∫
Bσ

G
(|v − (v)B1 |

)
dx

≤ c

(σ − σ ′)sG

∫
Bσ

G
(|v − (v)B1 |

)
dx,

for c = c(data). From Lemma 3.9, for any t ∈ (0, 1/sG), we have
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(∫
B7/8

Gn′ (|v − (v)B7/8 |
)
dx

)1/n′

≤ c

(∫
B7/8

Gn′ (|v − (v)B1 |
)
dx

)1/n′

≤ c

(∫
B1

Gt (|v − (v)B1 |
)
dx

)1/t

≤ c G

(∫
B1

|v − (v)B1 | dx
)
. (32)

Here, in the last line, as t �→ Gt (t) is a concave function for every t ∈ (0, 1/sG) we have
used Jensen’s inequality.

Let w ∈ v + W 1,G
0 (Bσ ,Rm) for any σ ∈ (1, 1/2) be the weak solution to

− div
(
a(x0)

g(|Dw|)
|Dw| Dw

)
= 0 in Bσ . (33)

Recall that the function V describing ellipticity of A is defined in (19) and a is a function
bounded below by ca > 0 and with a modulus of continuity ωa . Testing (33) and (25) against
(w − v), and applying Lemma 3.2, for any ε ∈ (0, 1] we see

∫
Bσ

ca |V(Dw)− V(Dv)|2 dx

≤ c
∫
Bσ

a(x0)

(
g(|Dw|)
|Dw| Dw − g(|Dv|)

|Dv| Dv
)

: (Dw − Dv) dx

= c
∫
Bσ
(a(x0)− a(x))

g(|Dv|)
|Dv| Dv : (Dw − Dv) dx

≤ cωa(σ )
∫
Bσ

g(|Dw| + |Dv|) |Dw − Dv| dx

≤ c ε
∫
Bσ

|V(Dw)− V(Dv)|2 dx + c
ωa(1/2)2

ε

∫
Bσ

G(|Dw| + |Dv|) dx,

where in the last line we used Young’s inequality. As c = c(data) and ca > 0, we can
take ε small enough to absorb the first term on the right-hand side. Then Jensen’s inequality
implies

∫
Bσ

|V(Dw)− V(Dv)|2 dx ≤ cωa(1/2)
2
∫
Bσ

[G(|Dv|)+ G(|Dw|)] dx .

Since w is a minimizer of the integral functional

w �→
∫
Bσ

G(|Dw|) dx,

we have ∫
Bσ

|V(Dw)− V(Dv)|2 dx ≤ cωa(1/2)
2
∫
Bσ

G(|Dv|) dx . (34)

Since we know the Lipschitz regularity of w, provided by Lemma 3.12

sup
Bσ/2

G(|Dw|) ≤ c
∫
Bσ

G(|Dw|) dx,
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it follows from (34) that∫
Bδσ

G(|Dv|) dx ≤ c
∫
Bδσ

|V(Dv)|2 dx

≤ c
∫
Bδσ

|V(Dv)− V(Dw)|2 dx +
∫
Bδσ

|V(Dw)|2 dx

≤ c
∫
Bσ

|V(Dv)− V(Dw)|2 dx + δn
∫
Bσ

|V(Dw)|2 dx

≤ c
(
δn + ωa(1/2)2

) ∫
Bσ

G(|Dv|) dx .

We take R0 = R0(data, ς) small enough to ensure that ωa(R0)
2 < ε0, where ε0 is a

constant given in Lemma 3.8. Then Lemma 3.8, Proposition 3.11 and (32) give∫
Bδ

G(|Dv|) dx ≤ cδς−1
∫
B1/2

G(|Dv|) dx ≤ cδς−1G

(∫
B1

|v − (v)B1 | dx
)

(35)

where c depends only on data and ς .
Using the Sobolev-Poincaré inequality in W 1,1 and Jensen’s inequality, we conclude that∫

Bδ
|v − (v)Bδ | dx ≤ c δ

∫
Bδ

|Dv| dx

≤ c δ G−1
(∫

Bδ
G(|Dv|) dx

)

≤ c δ1+(ς−1)K
∫
B1

|v − (v)B1 | dx,

what completes the proof. ��

4 Measure dataA-harmonic approximation

In this section we provide the tool of crucial meaning for our further reasoning – the approx-
imation of a W 1,G -function by an A-harmonic map for weighted operator A of an Orlicz
growth given by (5). Results in this spirit can be found in [37, 41, 45], but most preeminently
for the approximation relevant for application to measure data problems we refer to [65,
Theorem 4.1].

We define an auxiliary function

Hs(t) =
∫ t

0

g(r)1−sG(r)s

r
dr for s ∈ [0, 1/2). (36)

It is readily checked that when s > max{2 − iG , 0}, Hs is a Young function satisfying

Hs(t) ≈ g(t)1−sG(t)s (37)

with intrinsic constants depending only on iG , sG and s. In fact, Hs ∈ �2 ∩ ∇2 since

0 < s + iG − 2 ≤ t H ′′
s (t)

H ′
s(t)

= (1 − s)tg′(t)
g(t)

+ stg(t)

G(t)
≤ s + sG − 2. (38)

Furthermore, there exist ε, c, t0 > 0, such that Hs(t) ≥ ct1+ε and Hs(t) ≥ cg1+ε(t) for all
t ≥ t0.
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Theorem 4.1 Under Assumption (A-vect) let ε > 0, γ ∈ (0, 1/(sGn)), and

max{2 − iG , 0} < s < sm := iG − γ sGn
iG + sGn

. (39)

Suppose that u ∈ W 1,G(Br (x0),Rm) satisfies∫
Br (x0)

|u| dx ≤ Mr , M ≥ 1 (40)

then there exists δ = δ(data, s,M, ε) ∈ (0, 1] such that if u is almost A-harmonic in a
sense that for every ϕ ∈ W 1,G

0 (Br (x0),Rm) ∩ L∞(Br (x0),Rm) it holds∣∣∣∣
∫
Br (x0)

A(x, Du) : Dϕ dx

∣∣∣∣ ≤ δ

r
‖ϕ‖L∞(Br (x0),Rm ), (41)

then there exists an A-harmonic map v ∈ W 1,G(Br/2(x0),Rm) satisfying∫
Br/2(x0)

Hs(|Du − Dv|) dx ≤ ε (42)

together with∫
Br/2(x0)

|v| dx ≤ 2nMr and
∫
Br/2(x0)

Hs(|Dv|) dx ≤ cHs(M), (43)

where c = c(data) > 0.

Remark 4.2 The limitation that G has to be superquadratic (iG ≥ 2) can be a little bit relaxed
in Theorem 4.1 and later on the restriction is not needed. The key property is to ensure that
the range of admissible s from (39) is nonempty. We need to assume that iG is either bigger
or equal to 2, or close to 2 in a sense that

2 − iG <
iG − 1

iG + sGn
.

Proof The plan is to first establish suitable a priori estimates for the rescaled problem and
then proceed with the proof via contradiction. The proof is presented in 6 steps.

Step 1. Scaling. We fix arbitrary ϕ ∈ W 1,G
0 (Br (x0),Rm) ∩ L∞(Br (x0),Rm) satisfy-

ing (41). Let us change variables putting

ū(x) := u(x0 + r x)

Mr
, Ā(x0 + r x, ξ) = A(x0 + r x,Mξ), and η(x) := ϕ(x0 + r x)

r
.

(44)

Then Ā satisfies the same conditions as A with the functions ḡ(t) := g(Mt) and Ḡ(t) :=
G(Mt)/M (with Ḡ ′ = ḡ), and the constants depending on data. Of course in such a case
iG = iḠ and sG = sḠ .

Having (40) and (41), by denoting the unit ball by B1, we get further that∫
B1

|ū| dx ≤ 1, (45)

∣∣∣∣
∫
B1

Ā(x, Dū) : Dη dx

∣∣∣∣ ≤ δ‖η‖L∞(B1,Rm ). (46)
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Step 2. A priori estimates. We choose q ≥ sG , pick

η := φqTk(ū) with some φ ∈ C∞
c (B1), 0 ≤ φ ≤ 1, k ≥ 0, (47)

and denote

P := ū ⊗ ū
|ū|2 .

Then

Dη = 1{|ū|≤k}(φq Dū + qφq−1ū ⊗ Dφ)

+ 1{|ū|>k}(φq(Id − P)Dū + qφq−1ū ⊗ Dφ).

We use (47) in (46) to get
∣∣∣∣
∫
B1∩{|ū|≤k}

Ā(x, Dū) : (φq Dū + qφq−1ū ⊗ Dφ) dx

+
∫
B1∩{|ū|>k}

Ā(x, Dū) : (φq(Id − P)Dū + qφq−1ū ⊗ Dφ) dx

∣∣∣∣ ≤ δ|B1|‖η‖L∞(B1,Rm ).

(48)

Since Ā has the quasi-diagonal structure resulting from (5) and

Dū : ((Id − P)Dū
) = |Dū|2 − Dj ūαūαDj ūβ ūβ

|ū|2 = |Dū|2 −
∑m

j=1〈Dj ū, ū〉2
|ū|2 ≥ 0,

we infer that

Ā(x, Dū) : ((Id − P)Dū
) ≥ 0. (49)

By rearranging terms in (48), applying Lemma 3.1, noting that ‖η‖L∞(B1,Rm ) ≤ k, and
dropping a nonnegative term due to (49), we get for some c = c(data, q)

∫
B1∩{|ū|≤k}

Ḡ(|Dū|)φq dx ≤ c
∫
B1∩{|ū|≤k}

ḡ(|Dū|)
|Dū| φ

q−1
∣∣Dū : (ū ⊗ Dφ)

∣∣ dx
+ c

∫
B1∩{|ū|>k}

k

|ū|
ḡ(|Dū|)
|Dū| φ

q−1
∣∣Dū : (ū ⊗ Dφ)

∣∣ dx + c|B1|δk.

We estimate the first term on the right-hand side of the last display by the use of Young
inequality with a parameter, use Lemma 3.1, and we absorb one term. The second term can
be estimated by the Cauchy–Schwarz inequality. Altogether we obtain

∫
B1∩{|ū|<k}

Ḡ(|Dū|)φq dx ≤ c
∫
B1∩{|ū|<k}

Ḡ(|ū| |Dφ|) dx + c|B1|δk

+ ck
∫
B1∩{|ū|≥k}

ḡ(|Dū|)φq−1|Dφ| dx (50)

for some c = c(data, q).
Step 3. Summability of ū and Dū. We choose k = t in (50), then multiply this line by

(1+ t)−(γ+2), where γ > 0, integrate it from zero to infinity and apply Cavalieri’s principle
(Lemma 3.6) twice (with ν1 = Ḡ(|Dū|)φq and ν2 = Ḡ(|ū| |Dφ|). Altogether we get
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1

1 + γ
∫
B1

Ḡ(|Dū|)φq
(1 + |ū|)1+γ dx ≤ c

1 + γ
∫
B1

Ḡ(|ū| |Dφ|)
(1 + |ū|)1+γ dx + c

γ
δ

+ c
∫ ∞

0

t

(1 + t)γ+2

∫
B1∩{|ū|>t}

ḡ(|Dū|)φq−1|Dφ| dx dt .
(51)

The right-most term in the last display can be estimated as follows

c
∫ ∞

0

t

(1 + t)γ+2

∫
B1∩{|ū|>t}

ḡ(|Dū|)φq−1|Dφ| dx dt

≤ c
∫ ∞

0

1

(1 + t)γ+1 dt
∫
B1

ḡ(|Dū|)φq−1|Dφ| dx

≤ c

γ

∫
B1

ḡ(|Dū|)φq−1|Dφ| dx . (52)

To estimate it further we note that q is large enough to satisfy s′
G ≥ q ′, there exist c0, c1 > 0

depending on iG , sG , such that we have Ḡ∗(c0φq−1ḡ(t)) ≤ c1φq Ḡ∗(ḡ(t)) ≤ φq Ḡ(t). Then,
using Young inequality (20) applied to the integrand in (52) and the above observation we
get ∫

B1
ḡ(|Dū|)φq−1|Dφ| dx

≤ 1

2(1 + γ )
∫
B1

Ḡ∗ (
c0φq−1ḡ(|Dū|))
(1 + |ū|)1+γ dx + c̃

∫
B1

Ḡ
(
(1 + |ū|)1+γ |Dφ|)
(1 + |ū|)1+γ dx

≤ 1

2(1 + γ )
∫
B1

Ḡ (|Dū|) φq
(1 + |ū|)1+γ dx + c̃

∫
B1

Ḡ
(
(1 + |ū|)1+γ |Dφ|)
(1 + |ū|)1+γ dx

with c̃ = c̃(γ, iG , sG). By applying this estimate in (51) and rearranging terms we obtain
∫
B1

Ḡ(|Dū|)φq
(1 + |ū|)1+γ dx ≤ c

∫
B1

Ḡ
(
(1 + |ū|)1+γ |Dφ|)
(1 + |ū|)1+γ dx + c δ

1 + γ
γ

. (53)

Observe that 1/(sGn) < iG − 1, as otherwise the condition required by Remark 4.2 is
violated. Recall that since γ < 1/(sGn), we have γ < iG − 1. Let us set

ϑ(x) := Ḡ((1 + |ū|)φq)
(1 + |ū|)1+γ (54)

and notice that since |D|ū|| ≤ |Dū|, using Lemma 3.1, we can estimate

|Dϑ | =
∣∣D(Ḡ((1 + |ū|)φq)(1 + |ū|)1+γ − D

(
(1 + |ū|)1+γ )Ḡ((1 + |ū|)φq)∣∣

(1 + |ū|)2+2γ

≤ ḡ((1 + |ū|)φq) |D((1 + |ū|)φq)|
(1 + |ū|)1+γ + (1 + γ ) |Dū| Ḡ((1 + |ū|)φq)

(1 + |ū|)2+γ
≤ ḡ((1 + |ū|)φq)|Dū|φq

(1 + |ū|)1+γ

+ q
ḡ((1 + |ū|)φq)(1 + |ū|)φq−1 |Dφ|

(1 + |ū|)1+γ + (1 + γ ) |Dū|
1 + |ū|ϑ

≤ c(γ )
|Dū|
1 + |ū|ϑ + c

|Dφ|
φ
ϑ. (55)
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For the later use in Step 6, we emphasize the dependence of constants on γ by denoting
c(γ ). Note that every c(γ ) in (55)-(59) is an increasing function of γ .

Since q ≥ sG , for any κ ∈ [1, iG) we see
∣∣∣D (

ϑ
1
κ

)∣∣∣ ≤ 1

κ
ϑ

1
κ
−1 |Dϑ | ≤ c(γ ) ϑ

1
κ

|Dū|
1 + |ū| + c ϑ

1
κ
|Dφ|
φ

and
∣∣∣D (

ϑ
1
κ

)∣∣∣κ ≤ c(γ )
G((1 + |ū|)φq)
[(1 + |ū|)φq ]κ

(|Dū|φq)κ
(1 + |ū|)1+γ + c

G(1 + |ū|)
(1 + |ū|)1+γ |Dφ|κ . (56)

To proceed further, we define an auxiliary function hκ by setting

h−1
κ (t) :=

∫ t

0

1[
G−1(τ )

]κ dτ.

A straightforward calculation gives

− 1 < − κ

iG
≤ t[h−1

κ ]′′(t)
[h−1
κ ]′(t) = −κt[G

−1]′(t)
G−1(t)

≤ − κ

sG
< 0, (57)

which implies that h−1
κ is an increasing concave function on [0,∞). Note that (57) also gives

hκ

(
G(t)

tκ

)
≈ G(t)

with intrinsic constants depending on iG , sG and κ only. Moreover, we have

ḡ(t)[h−1
κ ]′(Ḡ(t)) = [h−1

κ (Ḡ(t))]′ = d

dt

(∫ G(t)

0

1

[G−1(τ )]κ dτ

)
= ḡ(t)

tκ
,

and so

[h̃κ ]−1(G(t)) ≈ h′
κ (h

−1
κ (Ḡ(t)) = 1

[h−1
κ ]′(hκ (h−1

κ (G(t))))
= 1

[h−1
κ ]′(G(t)) = tκ .

Hence, h̃κ (t) ≈ Ḡ(t1/κ ).
Applying Young’s inequality (20) with the pair of Young functions (hκ , h̃κ ) to (56), for

any ε0 ∈ (0, 1) we discover
∣∣∣D (

ϑ
1
κ

)∣∣∣κ ≤ ε0G((1 + |ū|)φq)
(1 + |ū|)1+γ + c(ε0)c(γ )

Ḡ (|Dū|φq)
(1 + |ū|)1+γ + c

G(1 + |ū|)
(1 + |ū|)1+γ |Dφ|κ .

By the classical Sobolev inequality we get that

(∫
B1

|ϑ | n
n−κ dx

) n−κ
n ≤ c

∫
B1

∣∣∣D (
ϑ

1
κ

)∣∣∣κ dx . (58)

Merging (51), (53), (54), (55) and (58) and taking ε0 small enough, we get

(∫
B1

(
Ḡ((1 + |ū|)φq)
(1 + |ū|)1+γ

) n
n−κ

dx

) n−κ
n

≤ c̄

(∫
B1

Ḡ
(
(1 + |ū|)1+γ |Dφ|)
(1 + |ū|)1+γ dx + 1

γ

)
. (59)
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It is worth to mention that c̄ = c̄(data, γ, δ) > 0 depends on data, γ and δ and it is an
increasing function of γ and δ. Since γ ∈ (0, 1/(sGn)) is fixed, we may choose α such that

α ∈
(
1,

n

n − κ
)

and
αsGγ

α − 1
≤ 1. (60)

Then ∫
B1
(1 + |ū|) αsG γα−1 dx ≤

∫
B1

1 + |ū| dx ≤ 1 + |B1|

and we can estimate
∫
B1

Ḡ
(
(1 + |ū)|)1+γ |Dφ|)
(1 + |ū|)1+γ dx ≤

∫
B1

Ḡ ((1 + |ū|)|Dφ|)
(1 + |ū|)1+γ−γ sG dx

≤
(∫

B1
(1 + |ū|) αsG γα−1 dx

) α−1
α

(∫
B1

(
Ḡ ((1 + |ū|)|Dφ|)
(1 + |ū|)1+γ

)α
dx

) 1
α

≤ c

(∫
B1

(
Ḡ ((1 + |ū|)|Dφ|)
(1 + |ū|)1+γ

)α
dx

) 1
α

. (61)

Thus, from (59) and (61) we obtain

(∫
B1

(
Ḡ((1 + |ū|)φq)
(1 + |ū|)1+γ

) n
n−κ

dx

) n−κ
n

≤ c

(∫
B1

(
Ḡ ((1 + |ū|)|Dφ|)
(1 + |ū|)1+γ

)α
dx

) 1
α

+ c. (62)

For 7/8 ≤ r1 < r2 ≤ 1, we take a cut-off function φ satisfying

φ ≡ 1 on Br1 and |Dφ| ≤ 100

r2 − r1
.

It then follows from the doubling property of Ḡ and Lemma 3.9 that for any υ ∈ (0, 1/sG)
we have

(∫
B7/8

(
Ḡ(1 + |ū|)
(1 + |ū|)1+γ

) n
n−κ

dx

) n−κ
n

≤ c

(∫
B1

(
Ḡ (1 + |ū|)
(1 + |ū|)1+γ

)υ
dx

) 1
υ

+ c

≤ c

(∫
B1
(Ḡ (1 + |ū|))υ dx

) 1
υ + c

≤ Ḡ

(∫
B1
(1 + |ū|) dx

)
+ c.

In the last line, we have used Jensen’s inequality with the concave function t �→ Ḡ(t)υ .
Recalling (45), we obtain

(∫
B7/8

(
Ḡ(1 + |ū|)
(1 + |ū|)1+γ

) n
n−κ

dx

) n−κ
n

≤ c (63)

for some c = c(data, γ ) > 0.
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To proceed further, we recall Hs defined in (36) with s from (39). By (37) function Hs

satisfies also Hs(Mt) ≈data ḡ(t)1−s Ḡ(t)s . We apply Young’s inequality, (53), and (63) with
suitable choice of φ. In turn we see∫

Bρ1

Hs(M |Dū|) dx �data

∫
Bρ1

ḡ(|Dū|)1−s Ḡ(|Dū|)s
(1 + |ū|)1+γ (1 + |ū|)1+γ dx

≤
∫
Bρ1

Ḡ(|Dū|)
(1 + |ū|)1+γ dx +

∫
Bρ1

ḡ(|Dū|)(1 + |ū|) 1+γ1−s

(1 + |ū|)1+γ dx

≤
∫
Bρ1

Ḡ(|Dū|)
(1 + |ū|)1+γ dx +

∫
Bρ1

Ḡ(1 + |ū|)(1 + |ū|) (s+γ )sG(1−s)

(1 + |ū|)1+γ dx

≤
∫
Bρ1

Ḡ(|Dū|)
(1 + |ū|)1+γ dx

+
(∫

Bρ1

(
Ḡ(1 + |ū|)
(1 + |ū|)1+γ

) n
n−κ

dx

) n−κ
n

(∫
Bρ1

(1 + |ū|) (s+γ )sGn
(1−s)κ dx

) κ
n

(64)

In order to use (45) we need to have

(s + γ )sGn
(1 − s)κ

≤ 1. (65)

Observe that by Remark 4.2 we have 2− iG < (iG − γ sGn)/(iG + sGn), and we can choose
κ ∈ [1, iG) such that

max{2 − iG , 0} < s ≤ κ − γ sGn
κ + sGn

< sm

and the bound (65) follows. Then (64) combined with (53), (61) and (63) implies for s < sm
that ∫

B3/4
Hs(M |Dū|) dx ≤ cap = cap(data, γ ). (66)

Step 4. Contradiction argument. We state the counter–assumption.
Namely, we assume that there exists ε and sequences of balls {Br j (x j )} and almost A-

harmonic maps {u j } ⊂ W 1,G(Br j (x j ),R
m) such that∫

Br j (x j )
|u j | dx ≤ Mr j , M ≥ 1, (67)

∣∣∣∣∣
∫
Br j (x j )

A(x, Du j ) : Dϕ dx

∣∣∣∣∣ ≤ 2− j

r j
‖ϕ‖L∞(Br j (x j ),Rm ) (68)

for all ϕ ∈ W 1,G
0 (Br j (x j ),R

m) ∩ L∞(Br j (x j ),Rm), but such that∫
Br j /2(x j )

Hs(|Du j − Dv|) dx > ε (69)

whenever v ∈ W 1,G(Br/2(x0),Rm) is an A-harmonic map in Br/2(x0) satisfying

∫
Br j /2(x0)

|v| dx ≤ 2nMr j and

(∫
Br j /2(x j )

Hs(M |Dv|) dx
)

≤ c, (70)

123



64 Page 24 of 41 I. Chlebicka et al.

where c = c(data) > 0.
Let ū be scaled as in (44), but with the use of x j and r j , that is we set

ū j (x) := u(x j + r j x)

Mr j
and Ā(x j + r j x, ξ) := A(x j + r j x,Mξ).

In such a case by (67) we get that ∫
B1

|ū j | dx ≤ 1, (71)

so by (68) we infer that for all η = ϕ(x j +r j x)/r j ∈ W 1,G
0 (B1,R

m)∩ L∞(B1,R
m) it holds∣∣∣∣

∫
B1

Ā(x, Dū j ) : Dη dx

∣∣∣∣ ≤ 2− j‖η‖L∞(B1,Rm ) (72)

and ∫
B1

Hs(M |Dū j − Dv̄|) dx > ε (73)

whenever v̄ ∈ W 1,G(B1/2(x0),Rm) is an Ā-harmonic map in B1/2(x0) satisfying

∫
B1/2

|v̄| dx ≤ 2n and

(∫
B1/2

Hs(M |Dv̄|) dx
)

≤ c, (74)

where c = c(data) > 0.
Since ū satisfies (71), we have (66) for so < sm from (39). Therefore∫

B3/4
Hso(M |Dū j |) dx ≤ C for C = C(data, γ ).

We fix any s < so from the range (39). Then we pick ε > 0 for which there exist c, t0 > 0,
such that Hs(t) ≥ ct1+ε and Hs(t) ≥ cg1+ε(t) for all t ≥ t0. In turn, we conclude with the
following estimates uniform in j∫

B3/4
g1+ε(M |Dū j |) dx ≤ c1 and

∫
B3/4
(M |Dū j |)1+ε dx ≤ c2 (75)

with c1, c2 depending on data and γ only. Further we infer that there exist

ũ ∈ W 1,Hs (B3/4,R
m), A ∈ L1+ε(B3/4,R

n×m), and h ∈ LHs (B3/4)

such that up to a subsequence

Dū j − Dũ⇀0 in LHs (B3/4,R
n×m),

|Dū j − Dũ|⇀h in LHs (B3/4),

Ā(x, Dū j )⇀A in L1+ε(B3/4,R
n×m),

ū j → ũ strongly in LHs (B3/4,R
m) and a.e. in B3/4.

(76)

By (71), lower semicontinuity of a functional ϕ �→
∫
B1/2

Hs(M |Dϕ|) dx , and (66) we have
∫
B1/2

|̃u| dx ≤ 2n and
∫
B1/2

Hs(M |Dũ|) dx ≤ c, (77)
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Step 5. Strong convergence of gradients. Our aim is now to prove that

Dū j → Dũ in LHs (B3/4,R
n×m). (78)

For this we need to show that h ∈ LHs (B3/4) from (76) satisfies

h = 0 (79)

a.e. in B3/4. This almost everywhere and weak convergence in L1 implies strong L1-
convergence of Dū j → Dũ in B3/4. Using the monotonicity property of Hs and (74),
for sufficiently small ε̃ ∈ (0, 1

sHs
) we have

∫
B3/4

Hs(M |Dū j − Dũ|) dx

≤
∫
B3/4

Hs(M |Dū j − Dũ|)̃ε2Hs(M |Dū j | + M |Dũ|)1−ε̃2 dx

≤
(∫

B3/4
Hs(M |Dū j − Dũ|)̃ε dx

)ε̃(∫
B3/4

Hs(M |Dū j | + M |Dũ|)1+ε̃ dx
)1−ε̃

≤ c

(∫
B3/4

Hs(M |Dū j − Dũ|)̃ε dx
)ε̃
. (80)

Denoting

�(t) =
∫ t

0

H−1
s (τ 1/̃ε)

τ
dτ,

one can immediately check

t� ′′(t)
� ′(t)

= t1/̃ε

ε̃H ′
s(H

−1
s (t1/̃ε))H−1

s (t1/̃ε)
− 1 ≥ 1

ε̃sHs

− 1 > 0,

and so � is a Young function. We then apply Jensen’s inequality to (80) to obtain

∫
B3/4

Hs(M |Dū j − Dũ|) dx ≤ c

[
Hs

(
M

∫
B3/4

|Dū j − Dũ| dx
)]ε̃2

j→∞−→ 0.

Hence, it remains to show (79) to obtain (78).
We pick x̄ being a Lebesgue’s point simultaneously for ũ, Dũ, h,A, that is

lim
�→0

∫
B�(x̄)

Hs(M |̃u − ũ(x̄)|)+ Hs(M |Dũ − Dũ(x̄)|)

+ Hs(M |h − h(x̄)|)+ |A − A(x̄)|1+ε dx = 0 (81)

and

|̃u(x̄)| + |Dũ(x̄)| + |h(x̄)| + |A(x̄)| <∞. (82)

Almost every point of B3/4 satisfies this conditions. Thus it is enough to show that (79) holds
for x̄ .

We restrict our attention to � small enough for B�(x̄) ⊂ B3/4 and we set the linearization
of ũ at x̄

��(x) := (̃u)B�(x̄) + Dũ(x̄) : (x − x̄). (83)
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Having the classical Poincaré inequality and (81), we obtain that

lim
�→0

∫
B�(x̄)

∣∣∣∣ ũ − ��

�

∣∣∣∣
1+ε

dx ≤ c lim
�→0

∫
B�(x̄)

|Dũ − Dũ(x̄)|1+ε dx = 0. (84)

Let us set

I0j,� :=
∫
B�/2(x̄)

|Dū j − Dũ| dx .

By (76) we have the weak convergence of |Dū j − Dũ| → h in LHs (B�). Since x̄ is
a Lebesgue’s point of Dũ we infer that

h(x̄) = lim
�→0

lim
j→∞ I0j,�. (85)

In order to prove that h(x̄) = 0, let us write

I0j,� =
∫
B�/2(x̄)

|Dū j − Dũ| dx =
∫
B�/2(x̄)

1{|ū j−�� |≥�}|Dū j − Dũ| dx

+
∫
B�/2(x̄)

1{|ū j−�� |<�}|Dū j − Dũ| dx := I1j,� + I2j,�

(86)

and prove the convergence of both terms first when j → ∞ and then � → 0.
We start with I1j,�. Let us observe that

I1j,� ≤
∫
B�/2(x̄)

1{|ū j−ũ|≥�}|Dū j − Dũ| dx

+
∫
B�/2(x̄)

1{|̃u−�� |≥�}|Dū j − Dũ| dx =: I1,1j,� + I1,2j,�.

Notice that I1,1j,� vanishes as j → ∞. Indeed, I1,1j,� ≥ 0 and by Hölder inequality we have

I1,1j,� ≤ 1

|B�/2(x̄)|

(∫
B�/2(x̄)

|Dū j − Dũ|1+ε dx
) 1

1+ε (|{x ∈ B3/4 : |ū j − ũ| ≥ �/2}|) ε
1+ε .

Since by (76) one has that |ū j − ũ| → 0 strongly in L1(B3/4), so

lim
j→∞ |{x ∈ B3/4 : |ū j − ũ| ≥ �/2}| = 0.

The rest of the terms are bounded as ε is chosen such that (75) is true and |Dũ| shares the
same a priori estimates as |Dū j |. Therefore, we infer that lim j→∞ I1,1j,� = 0. On the other

hand, I1,2j,� is convergent when j → ∞, because of the weak convergence of |Dū j −Dũ| → h

in LHs (B�). Hence, we get

lim
j→∞ I1,2j,� =

∫
B�/2(x̄)

1{|̃u−�� |≥�}h dx =: I1,2� .

We can estimate further
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I1,2� ≤
(∫

B�(x̄)
h1+ε dx

) 1
1+ε (∫

B�(x̄)
1{|̃u−�� |≥�/2} dx

) ε
1+ε

≤ c

⎡
⎣
(∫

B�(x̄)
|h − h(x̄)|1+ε dx

) 1
1+ε

+ h(x̄)

⎤
⎦

(∫
B�(x̄)

∣∣∣∣ ũ − ��

�

∣∣∣∣
1+ε

dx

) ε
1+ε

which tends to 0 as � → 0 as x̄ is a Lebesgue’s point of h as in (81) and the last bracket
converges to 0 due to (84). Altogether, we have that I1j,� vanishes in the limit, so we will now

concentrate on I2j,� for which we have

I2j,� ≤
∫
B�/2(x̄)

1{|ū j−�� |<�}|Dū j − D��| dx + 2n
∫
B�(x̄)

1{|ū j−�� |<�}|D�� − Dũ| dx

=: I2,1j,� + I2,2j,�.

By (76), (81), and (83) we have that lim�→0 lim sup j→∞ I2,2j,� = 0. Proving the convergence

lim sup
�→0

lim sup
j→∞

I2,1j,� = 0 (87)

requires more arguments. We take

φ ∈ C∞
c (B�(x̄)) with 0 ≤ φ ≤ 1, φ ≡ 1 on B�/2(x̄) and |Dφ| ≤ 4/�.

Let

η = φT�(ū j − ��),

where the truncation is defined in (17). Let us denote

Pj := (ū j − ��)⊗ (ū j − ��)

|ū j − ��|2 and P := (̃u − ��)⊗ (̃u − ��)

|̃u − ��|2 (88)

when |ū j − ��| 	= 0 and |̃u − ��| 	= 0, respectively. Within this notation we have that
(Ā(x, Dū j )− Ā(x, D��)

) : Dη

= 1{|ū j−�� |<�}
[(Ā(x, Dū j )− Ā(x, D��)

) : D(ū j − ��)
]
φ

+ �1{|ū j−�� |≥�}
|ū j − ��|

[(Ā(x, Dū j )− Ā(x, D��)
) : (Id − Pj)D(ū j − ��)

]
φ

+ (Ā(x, Dū j )− Ā(x, D��)
) : [T�(ū j − ��)⊗ Dφ

]
=: G1

j,�(x)+ G2
j,�(x)+ G3

j,�(x).

Moreover, we recall that since �� is affine, whenever B ⊂ B1 it holds that∫
B
Ā(x, D��) : Dϕ dx = 0 for every ϕ ∈ W 1,1

0 (B,Rm).

Therefore, by (72) it is justified to write that

0 ≤
∫
B�(x̄)

G1
j,�(x) dx ≤ 2− j�1−n −

∫
B�(x̄)

G2
j,�(x) dx −

∫
B�(x̄)

G3
j,�(x) dx . (89)
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The first term in the above display is nonnegative because of the monotonicity of Ā. Instru-
mental for proving that I2,1j,� → 0 is to establish that

lim sup
�→0

lim sup
j→∞

∫
B�(x̄)

G1
j,�(x) dx = 0, (90)

which will be proven provided one justifies that the last two terms of (89) vanish in the limit.
We will show first that

lim sup
�→0

lim sup
j→∞

(
−

∫
B�(x̄)

G2
j,� dx

)
≤ 0. (91)

The quasi-diagonal structure of Ā ensures that Ā(x, Dū j ) : [(Id − Pj)Dū j ] ≥ 0, see (49).
Therefore,

(Ā(x, Dū j )− Ā(x, D��)
) : (Id − Pj)D(ū j − ��)

≥ −Ā(x, Dū j ) : (Id − Pj)D�� − Ā(x, D��) : (Id − Pj)D(ū j − ��). (92)

Recall that Pj and P, defined in (88), are bounded. Notice that for j → ∞ we have
1{|ū j−�� |≥�}Pj → 1{|̃u−�� |≥�}P almost everywhere and thus, by the Lebesgue’s dom-
inated convergence theorem, also strongly in Lt (B3/4) for every t ≥ 1. Moreover,
1{|ū j−�� |≥�}|ū j − ��|−1 → 1{|̃u−�� |≥�}|̃u − ��|−1 almost everywhere and, as a uniformly
bounded sequence of functions, it converges also strongly in Lt (B3/4) for every t ≥ 1.
Having this, (92), and (76), we obtain

lim sup
j→∞

(
−
∫
B�(x̄)

G2
j,� dx

)
≤

∫
B�(x̄)

A : (Id − P)D��

�1{|̃u−�� |≥�}
|̃u − ��| dx

+
∫
B�(x̄)

Ā(x, D��) : (Id − P)D(̃u − ��)
�1{|̃u−�� |≥�}

|̃u − ��| dx =: II1� + II2�. (93)

We can estimate

|II1�| ≤ c
∫
B�(x̄)

|A|
∣∣∣∣ ũ − ��

�

∣∣∣∣
ε

dx ≤ c

(∫
B�(x̄)

|A|1+ε dx
) 1

1+ε (∫
B�(x̄)

∣∣∣∣ ũ − ��

�

∣∣∣∣
1+ε

dx

) ε
1+ε

where the first term is bounded and the second term is convergent to zero by (84). On the
other hand, by (83) and (82) we may estimate

|II2�| ≤ c
∫
B�(x̄)

|D(̃u − ��)|
∣∣∣∣ ũ − ��

�

∣∣∣∣
ε

dx

≤ c

(∫
B�(x̄)

|Dũ − Dũ(x̄)|1+ε dx
) 1

1+ε (∫
B�(x̄)

∣∣∣∣ ũ − ��

�

∣∣∣∣
1+ε

dx

) ε
1+ε

where, again, the first term is bounded and the second convergent to zero by (84). Summing
up the information from the last three displays we get (91).

Now we concentrate on justifying that

lim
�→0

lim
j→∞

∣∣∣∣∣
∫
B�(x̄)

G3
j,�(x) dx

∣∣∣∣∣ = 0. (94)
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Let us observe that because (76) provides weak convergence of Ā(x, Dū j ) to A in L1+ε and
strong convergence ū j to ũ in L1+ε , we obtain that

lim
j→∞

∫
B�(x̄)

G3
j,�(x) dx =

∫
B�(x̄)

(
A − Ā(x, D��)

) : [T�(̃u − ��)⊗ Dφ] dx .

By Hölder inequality and the choice of φ, we estimate further

lim
j→∞

∫
B�(x̄)

G3
j,�(x) dx ≤

(∫
B�(x̄)

|A − A(x̄)|1+ε + |A(x̄)|1+ε + g(|Dũ(x̄)|)1+ε dx
) 1

1+ε

·
(∫

B�(x̄)

(
min{�, |̃u − ��|}

�

) 1+ε
ε

dx

) ε
1+ε
,

where the first integral on the right-hand side is finite and the second term converges to zero.
Indeed, since 0 ≤ min{�, |̃u − ��|} ≤ �, we have

∫
B�(x̄)

(
min{�, |̃u − ��|}

�

) 1+ε
ε

dx ≤
∫
B�(x̄)

(
min{�, |̃u − ��|}

�

)1+ε
dx

≤
∫
B�(x̄)

( |̃u − ��|
�

)1+ε
dx −−−→

�→0
0,

where the last convergence results from (84). Therefore, we get (94).
We have shown (91) and (94), so because of (89) the limit (90) follows. Hence, we are in

the position to prove (87). In the view of (21), (90) implies that

lim sup
�→∞

lim sup
j→∞

∫
B�(x̄)

1{|ū j−�� |<�}
g(|Dū j | + |D��|)
|Dū j | + |D��| |D(ū j − ��)|2 dx = 0. (95)

At this stage, we calculate similarly to (80) in order to show (87). For any ε̂ < 2
sG
, it is readily

checked that t �→ tg(t)−ε̂/(2−ε̂) is a monotone increasing function. Then∫
B�(x̄)

1{|ū j−�� |<�}|D(ū j − ��)| dx

≤
∫
B�(x̄)

1{|ū j−�� |<�}
(

|D(ū j − ��)|2 g(|Dū j | + |D��|)
|Dū j | + |D��|

) ε̂
2 (|Dū j | + |D��|)1− ε̂

2

g(|Dū j | + |D��|) ε̂2
dx

≤
(∫

B�(x̄)
1{|ū j−�� |<�}|D(ū j − ��)|2 g(|Dū j | + |D��|)

|Dū j | + |D��| dx

) ε̂
2

·
⎛
⎝∫

B�(x̄)
1{|ū j−�� |<�}

|Dū j | + |D��|
g(|Dū j | + |D��|) ε̂

2−ε̂
dx

⎞
⎠

1− ε̂
2

≤ c

(∫
B�(x̄)

1{|ū j−�� |<�}|D(ū j − ��)|2 g(|Dū j | + |D��|)
|Dū j | + |D��| dx

) ε̂
2

·
(∫

B�(x̄)
(|Dū j | + |D��| + 1) dx

)1− ε̂
2

,

123



64 Page 30 of 41 I. Chlebicka et al.

where c = c(g) > 0. Noting that the very last term in the above display is bounded, by (95)
we infer that (87) holds.

Summing up all the convergences of this step, we get in (85) that h(x̄) = 0 and, conse-
quently, (79) holds almost everywhere in B3/4. As explained in the beginning of this step,
this suffices to get the final aim of Step 5, that is strong convergence of gradients (78).

Step 6. Ā-harmonicity of the limit map and conclusion by contradiction.Having (78),
we can pass to the limit in (72) with j → ∞ getting that

∫
B1/2

Ā(x, Dũ) : Dη dx = 0 for η ∈ C∞
c (B1/2,R

m). (96)

Therefore, if ũ ∈ W 1,G(B1/2,R
m), then it will be proven to be Ā-harmonic. Indeed, since

we know (77), it is allowed to take v̄ = ũ in (73). Note that in such a case (77) is precisely the
restriction on the test function from (74). Then, in the view of (78), taking j large enough,
we will get the desired contradiction. Hence, it remains to prove that |Dũ| ∈ LG(B1/2).

Wehave (63) for each ū j with the constant independent of j , so by the lower semicontinuity
we can write that

(∫
B7/8

(
Ḡ(1 + |̃u|)
(1 + |̃u|)1+γ̃

) n
n−κ

dx

) n−κ
n

≤ lim inf
j→∞

⎛
⎝∫

B7/8

(
Ḡ(1 + |ū j |)
(1 + |ū j |)1+γ̃

) n
n−κ

dx

⎞
⎠

n−κ
n

≤ c

for some c = c(data, γ̃ ) > 0. Analogically, by (50) for ū j and with δ = 2− j , by letting
j → ∞, Fatou’s lemma on the left-hand side of the resultant inequality and (78) on its
right-hand side, we get

∫
B3/4∩{|̃u|<t}

Ḡ(|Dũ|)φq dx ≤ c∗
∫
B3/4∩{|̃u|<t}

Ḡ(|̃u| |Dφ|) dx

+ c∗ t
∫
B3/4∩{|̃u|≥t}

ḡ(|Dũ|)φq−1|Dφ| dx

for every t > 0 and φ ∈ C∞
c (B3/4) with φ ≥ 0, and c∗ = c∗(data, q). We proceed as

in the beginning of Step 3. We multiply the above display by (1 + t)−(γ̃+1), γ̃ > 0 to be
chosen sufficiently small in a few lines, integrate it from zero to infinity and apply Cavalieri’s
principle (Lemma 3.6) twice (with ν1 = Ḡ(|Dũ|)φq and ν2 = Ḡ(|̃u| |Dφ|). Altogether we
get

1

γ̃

∫
B3/4

Ḡ(|Dũ|)φq
(1 + |̃u|)γ̃ dx ≤ c∗

γ̃

∫
B3/4

Ḡ(|̃u| |Dφ|)
(1 + |̃u|)γ̃ dx

+ c∗
∫ ∞

0

1

(1 + t)γ̃

∫
B3/4∩{|̃u|≥t}

ḡ(|Dũ|)φq−1|Dφ| dx dt = III1 + III2.

To estimate further the very last term we note that q is large enough to satisfy s′
G ≥ q ′, and

so Lemma 3.1 implies that Ḡ∗(φq−1ḡ(t)) ≤ cGφq Ḡ(t). Then, using Young inequality (20)
and by taking γ̃ ∈ (0, 1/(2c∗cG + 1)], get
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III2 ≤ c∗
1 − γ̃

∫
B3/4

ḡ(|Dũ|)(1 + |̃u|)1−γ̃ φq−1|Dφ| dx

≤ 1

2γ̃ cG

∫
B3/4

Ḡ∗ (
φq−1ḡ(|Dũ|))
(1 + |̃u|)γ̃ dx + 1

2γ̃

∫
B3/4

Ḡ
(
2γ̃ c∗cG
1−γ̃ (1 + |̃u|)|Dφ|

)
(1 + |̃u|)γ̃ dx

≤ 1

2γ̃

∫
B3/4

Ḡ (|Dũ|) φq
(1 + |̃u|)γ̃ dx + c∗cG

1 − γ̃
∫
B3/4

Ḡ ((1 + |̃u|)|Dφ|)
(1 + |̃u|)γ̃ dx

where in the last line we used that 2γ̃ c∗cG
1−γ̃ < 1 can be taken out of the integrand by Jensen’s

inequality. Summing up we obtain

∫
B3/4

Ḡ(|Dũ|)φq
(1 + |̃u|)γ̃ dx ≤ C

∫
B3/4

Ḡ ((1 + |̃u|)|Dφ|)
(1 + |̃u|)γ̃ dx (97)

where C = C(data) > 0. Then similar calculations to (55)-(59) yield that

(∫
B3/4

(
Ḡ((1 + |ū|)φq)
(1 + |ū|)γ̃

) n
n−1

dx

) n−1
n

≤ c
∫
B3/4

Ḡ ((1 + |ū|)|Dφ|)
(1 + |ū|)γ̃ dx .

holds with c = c(data) > 0. Indeed, in Step 4, we have checked that the above c =
c(data, γ̃ ) is an increasing function of γ̃ . As we consider small γ̃ , c in fact depends only
on data. For 5/8 ≤ r1 < r2 ≤ 3/4 we take φ ∈ C∞

c (Br2) to satisfy

φ ≡ 1 on Br1 and |Dφ| ≤ 100

r2 − r1
.

Then the doubling property of Ḡ and Lemma 3.9 gives

(∫
B5/8

(
Ḡ(1 + |ū|)
(1 + |ū|)γ̃

) n
n−1

dx

) n−1
n

≤ c

⎛
⎝∫

B3/4

(
Ḡ(1 + |ū|)
(1 + |ū|)γ̃

) 1
2sG

dx

⎞
⎠

2sG

. (98)

We now restrict ourselves to γ̃ ∈ (
0,min{1/(2c∗cG + 1), iG2 }) and define

�γ̃ (t) =
∫ t

0

1

τ

(
Ḡ(τ )

τ γ̃

) 1
2sG

dτ,

which is an increasing concave function on [0,∞) satisfying
t� ′′̃
γ (t)

� ′̃
γ (t)

= tg(t)

2sGḠ(t)
− 1 − γ̃

2sG
∈ (−1,−1/2) and �γ̃ (t) ≈

(
Ḡ(t)

t γ̃

) 1
2sG
.

Then Jensen’s inequality gives

∫
B3/4

(
Ḡ(1 + |ū|)
(1 + |ū|)γ̃

) 1
2sG

dx ≤ c
∫
B3/4

�γ̃ (1 + |ū|) dx ≤ c�γ̃

(∫
B3/4
(1 + |ū|) dx

)

≤ c�γ̃

(∫
B3/4
(1 + |ū|) dx + 1

)
≤ c Ḡ

1
2sG

(∫
B3/4
(1 + |ū|) dx + 1

)
≤ c, (99)
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with c = c(data) > 0. We used that if t > 1 is arbitrarily fixed there exists c > 0

independent of γ̃ such that for all t > 1 and all γ̃ , we have�γ̃ (t) ≤ c
(
Ḡ(t)

) 1
2sG . By Hölder

inequality, (98) and (99) we get that

∫
B5/8

Ḡ(1 + |ū|)
(1 + |ū|)γ̃ dx ≤

(∫
B5/8

(
Ḡ(1 + |ū|)
(1 + |ū|)γ̃

) n
n−1

dx

) n−1
n

≤ c (100)

with c = c(data) > 0.
We now consider (97) with a cutoff function φ ∈ C∞

c (B5/8) satisfying

φ ≡ 1 in B1/2 and |Dφ| ≤ 100

and combine it with (100), to obtain for some c = c(data) > 0 that∫
B1/2

Ḡ(|Dũ|)
(1 + |̃u|)γ̃ dx ≤ c

∫
B3/4

Ḡ(1 + |̃u|)
(1 + |̃u|)γ̃ dx ≤ c.

Therefore, using Fatou’s lemma we justify that∫
B1/2

Ḡ(|Dũ|) dx ≤ lim sup
γ̃→0

∫
B1/2

Ḡ(|Dũ|)
(1 + |̃u|)γ̃ dx ≤ c.

Consequently, we conclude that |Dũ| ∈ LG(B1/2). This completes the proof of Theorem 4.1.
��

5 Proof of Wolff potential estimates

5.1 Comparison estimate

We need onemore auxiliary estimate yielding comparison between energy of a weak solution
and an A-harmonic function.

Lemma 5.1 Under Assumption (A-vect) suppose u ∈ W 1,G(Br ,Rm) is a weak solution
to (4) in Br = Br (x0), r < 1 and let ε ∈ (0, 1). Then there exists a positive constant
cs = cs(data, ε) and a map v being A-harmonic in Br/2 and such that∫

Br/2
|Du − Dv| dx ≤ ε

r

∫
Br

|u − (u)Br | dx + csg
−1

( |μ|(Br )
rn−1

)
. (101)

Proof Let us fix

λ := 1

r

∫
Br

|u − (u)Br | dx + g−1
(
δ
|μ|(Br )
rn−1

)

with δ = δ(data, ε) from Theorem 4.1 with M = 1. If λ = 0, then u is constant and v = u.
Otherwise λ > 0 and we can argue by scaling

ū := u − (u)Br
λ

, μ̄ := μ

g(λ)
, Ā(x, ξ) = A(x, λξ)

g(λ)
.

Then ∣∣∣∣
∫
Br

Ā(x, Dū) : Dϕ dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Br )|μ|(Br )
g(λ)rn−1 ≤ δ

r
‖ϕ‖L∞(Br ).
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By definition of ū and λ we notice that∫
Br

|ū| dx ≤ r .

Therefore, by Theorem 4.1 applied to ū we get that there exists v̄ being Ā-harmonic in Br/2
and such that ∫

Br/2
|Dū − Dv̄| dx ≤ ε.

Then (101) follows by rescaling back with v = λv̄ which is A-harmonic. ��

5.2 Estimates on concentric balls

This subsection is devoted to prove some properties of weak solutions to (4) with μ ∈
C∞(�,Rm) holding over a family of concentric balls {B j }. Before we pass to this, let
us fix some notation and parameters. Recall that we have chosen R0 = R0(data, ς) in
Proposition 3.13. We take an arbitrary constant αV ∈ (0, 1) and take ς = ς(sG , αV ) to
satisfy αD := αV +1

2 ≤ 1+ (ς−1)K . To prove Theorem 2.1, it is enough to take αV = 1
2 , but

for the later use in the proof of Theorem 2.9, we have taken αV arbitrarily. We now choose

σ0 := min

⎧⎨
⎩

(
1

2n+6co

) 1−αV
2

,
1

4

⎫⎬
⎭ . (102)

If r ∈ (0, R0) is given, for every j ∈ N ∪ {0} let us fix
r j := σ j+1r , B j := Br j (x0),

so that r−1 = r .We denote

E j :=
∫
B j

|u − (u)B j | dx . (103)

Lemma 5.2 SupposeAssumption (A-vect) is satisfied. Ifu ∈ W 1,G(�,Rm) is aweak solution
to (4) with μ ∈ C∞(�,Rm), j ∈ N is fixed, E j is given by (103), while 0 < σ ≤ σ0 is
arbitrary, then we have that

E j+1 ≤ cDσ
αD E j + cEr j g

−1

(
|μ|(B j )

rn−1
j

)
(104)

for cD = cD(data, αV ) = 2n+4co and cE = cE(data, αV ) = 2n+2cscPcoσ−n, where cP
is the constant from Poincaré inequality in W 1,1(�,Rm).

Proof We may apply Lemma 5.1 in Br = Br j (x0) to get that there exists an A-harmonic
map v j ∈ W 1,G(Br j/2 ,R

m) in Br j/2 such that

∫
1
2 B

j
|Du − Dv j | dx ≤ ε

r j
E j + csg

−1

(
|μ|(B j )

rn−1
j

)
. (105)

By Poincaré inequality in W 1,1(�,Rm) for w j = u − v j we have∫
1
2 B

j
|w j − (w j ) 1

2 B
j | dx ≤ cPr j

∫
1
2 B

j
|Du − Dv j | dx .
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Then
∫

1
2 B

j
|w j − (w j ) 1

2 B
j | dx ≤ εcP E j + cscP r j g

−1

( |μ|(Br j )
rn−1
j

)
. (106)

Thus by Lemma 3.5, the triangle inequality, (106), and Proposition 3.13, we estimate

E j+1 =
∫
B j+1

|u − (u)B j+1 | dx

≤
∫
B j+1

|w j − (w j )B j+1 | dx +
∫
B j+1

|v j − (v j )B j+1 | dx

≤ 2
∫
B j+1

|w j − (w j ) 1
2 B

j | dx + 2coσ
1+(ς−1)/sG

∫
1
2 B

j
|v j − (v j ) 1

2 B
j | dx

≤
(
2n+1

σ n
+ 2coσ

αV

) ∫
1
2 B

j
|w j − (w j ) 1

2 B
j | dx + 2coσ

αV

∫
1
2 B

j
|u − (u) 1

2 B
j | dx

≤ 2n+2coσ
αV E j +

(
2n+1

σ n
+ 2coσ

αV

) ∫
1
2 B

j
|w j − (w j ) 1

2 B
j | dx

≤
(
2n+2coσ

αV + 2εcocPσ
αV + εcP 2

n+1

σ n

)
E j

+ cscP

(
2n+1

σ n
+ 2c0σ

αV

)
r j g

−1

( |μ|(Br j )
rn−1
j

)
.

By choosing ε = σ n+αV
cP

we complete the proof. ��

Proposition 5.3 Suppose Assumption (A-vect) is satisfied. If u ∈ W 1,G(�,Rm) is a weak
solution to (4) with μ ∈ C∞(�,Rm), then there exists a constant cV = cV (data, αV ) ≥ 1
such that for every τ ∈ (0, 1] we have∫

Bτr (x0)
|u − (u)Bτr(x0) | dx

≤ cV τ
αV

∫
Br (x0)

|u − (u)Br (x0)| dx + cV sup
0<�<r

� g−1
( |μ|(B�(x0))

�n−1

)
.

Proof Lemma 5.2 implies that for j ∈ N ∪ {0} it holds that

E j+1 ≤ cDσ
αD E j + cEr j g

−1

(
|μ|(B j )

rn−1
j

)
.

Iterating this estimate we get that for any k ∈ N ∪ {0} we have

Ek+1 ≤ (cDσαD )k+1E0 + cE

k∑
j=0

(cDσ
αD) j r j g

−1

(
|μ|(B j )

rn−1
j

)
,

where c = c(data). Recalling αD = αV +1
2 , cD = 2n+4co and (102), we see

cDσ
αD ≤ σαV

4
.
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By Lemma 3.5 and direct computation we have for any k ∈ N ∪ {0} that

Ek ≤ σ kαV
∫
Br (x0)

|u − (u)Br (x0)| dx + 2cE sup
0<�<r

� g−1
( |μ|(B�(x0))

�n−1

)
. (107)

We take τ ∈ (0, σ ) and k ≥ 1 such that σ k+1 < τ ≤ σ k . Then by Lemma 3.5 and (107) we
obtain ∫

Bτr (x0)
|u − (u)Bτr (x0)| dx

≤ 2σ kn

τ n

∫
Brσk (x0)

|u − (u)Bk−1 | dx ≤ 2Ek−1

σ n

≤ σ (k+1)αV

σ n+2αV

∫
Br (x0)

|u − (u)Br (x0)| dx + 2cE
σ n

sup
0<�<r

� g−1
( |μ|(B�(x0))

�n−1

)

≤ ταV

σ n+2αV

∫
Br (x0)

|u − (u)Br (x0)| dx + 2cE
σ n

sup
0<�<r

� g−1
( |μ|(B�(x0))

�n−1

)
.

By taking cV = cV (data, αV ) = 2cEσ−n−2αV we conclude the claim for τ ∈ (0, σ ). For
completing the range of τ ∈ [σ, 1] it suffices to note that∫

Bτr (x0)
|u − (u)Bτr (x0)| dx ≤ 2

σ n

∫
Br (x0)

|u − (u)Br (x0)| dx .
��

5.3 SOLA u belongs to VMO

Proof of Proposition 2.2 Supposeμ ∈ C∞(�,Rm) and u ∈ W 1,G(�,Rm) is a weak solution
to (4). By Proposition 5.3 we can find constants cV = cV (data, αV ) we have∫

Bτr
|u − (u)Bτr | dx ≤ cV τ

αV

∫
Br

|u − (u)Br | dx + cV sup
0<�<r

� g−1
( |μ|(B�)
�n−1

)
. (108)

Let us consider a SOLA u ∈ W 1,1(�,Rm) existing due to Proposition 3.4. Suppose (uh) and
(μh) are approximating sequences from definition of SOLA, see Sect. 2.2. Inequality (108)
hold for each uh and μh . We have to motivate passing to the limit with h → ∞. Since (7)
holds, we can write (108) for the original SOLA too. From now on this kind of solution is
considered.

Our aim now is to show that u is VMO at x0 provided (10) is assumed. Let δ ∈ (0, 1).
By (10) we find a positive radius r1,δ < r such that

cV sup
0<�<r1,δ

� g−1
( |μ|(B�(x0))

�n−1

)
≤ δ

2

and then τδ so small that

cV τ
αV
δ

∫
Br1,δ

|u − (u)Br1,δ (x0)| dx ≤ δ

2
.

For rδ := τδr1,δ from estimate (108) (applied with r = r1,δ) it follows that

sup
0<�<rδ

∫
B�(x0)

|u − (u)B�(x0) |dx ≤ δ,
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that is that u has vanishing mean oscillation at x0. ��

5.4 Proofs of Theorems 2.1, 2.3 and 2.9

We start with the proof of pointwise Wolff potential estimate, then pass to continuity and
Hölder continuity criteria.

Proof of Theorem 2.1 We notice that having E j defined in (103) with r = r j we can fix σ in
Lemma 5.2 to get that

E j+1 ≤ 1

2
E j + cr j g−1

(
|μ|(B j )

rn−1
j

)
for every j ∈ N ∪ {0}. (109)

We sum up inequalities from (109) to obtain

k+1∑
j=1

E j ≤ 1

2

k∑
j=0

E j + c
k∑
j=0

r j g
−1

(
|μ|(B j )

rn−1
j

)
, k ∈ N ∪ {0}.

By rearranging terms we have

k+1∑
j=1

E j ≤ 2E0 + c
k∑
j=0

r j g
−1

(
|μ|(B j )

rn−1
j

)
.

We notice that for some c = c(data) we can estimate

k∑
j=0

r j g
−1

(
|μ|(B j )

rn−1
j

)
≤ c

∫ r

0
g−1

( |μ|(B�)
�n−1

)
d� = cWμ

G(x0, r).

Last two displays imply that

k+1∑
j=1

E j ≤ 2E0 + cWμ
G(x0, r).

For every m, k ∈ N such that m < k we have

|(u)Bk − (u)Bm | ≤
k−1∑
j=m

|(u)B j+1 − (u)B j | ≤ σ−n
k+1∑
j=m

E j ≤ σ−n
k+1∑
j=0

E j

≤ 2σ−n E0 + cσ−nWμ
G(x0, r)

≤ 2σ−n
∫
Br (x0)

|u − (u)Br (x0)| dx + cσ−nWμ
G(x0, r),

where σ = σ(data) and c = c(data). For j → ∞, ((u)B j ) j is a Cauchy sequence that
converges to u(x0), that is

lim
�→0

(u)B�(x0) = u(x0)

and x0 is a Lebesgue’s point of u. This completes the proof of (8), while (9) follows as a
direct corollary. ��

Let us concentrate on the continuity criterion.
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Proof of Theorem 2.3 Our aim is to infer continuity of u in Br (x0) knowing that (12) holds.
We will show that for every δ > 0 and x1 ∈ Br (x0) we can find rδ ∈ (0, dist (Br (x0), ∂�))
such that

oscBrδ (x1) u < δ. (110)

Without loss of generality we assume that μ is defined on whole R
n , as we can extend it by

zero outside �. By (12) we can take �1 small enough for

sup
x∈Br (x0)

Wμ
G(x, �1) ≤ δ

16
. (111)

Let rδ > 0 to be chosen in a moment. We take an arbitrary point x2 ∈ Brδ (x1) and estimate

|u(x1)− u(x2)| ≤ |u(x1)− (u)B2rδ (x1)| + |(u)B2rδ (x1) − (u)Brδ (x2)|
+ |(u)Brδ (x2) − u(x2)| =: A1 + A2 + A3. (112)

We start with estimating A2 by noting that

A2 = |(u)Brδ (x2) − (u)B2rδ (x1)| ≤
∫
Brδ (x2)

|u − (u)B2rδ (x1)| dx .

Since (12) implies (10), Proposition 2.2 implies that u has vanishing mean oscillations at x1.
Therefore there exists �2 ∈ (0,min{�1, dist(x1, ∂Br (x0))/4}) such that for every � ≤ �2 it
holds ∫

B�(x1)
|u − (u)B�(x1)| dx ≤ δ

2n+4 .

We choose rδ = �2/2 and observe that (111) imply that∫
Brδ (x2)

|u − (u)B2rδ (x1)| dx ≤ 2n
∫
B2rδ (x1)

|u − (u)B2rδ (x1)| dx ≤ δ

16
.

In turn A2 ≤ δ
16 . By Theorem 2.1 and (111) we get that x1 and x2 are Lebesgue’s points and

A1 + A3 = |u(x1)− (u)B2rδ (x1)| + |(u)Brδ (x2) − u(x2)| ≤ δ

4
.

Applying these observation we get from (112) that

|u(x1)− u(x2)| ≤ δ

2
.

Since x2 was an arbitrary point of Brδ (x1), we have (110) justified, which completes the
proof. ��

We are in the position to prove the Hölder continuity criterion.

Proof of Theorem 2.9 Notice that assumption (15) implies that there exists c = c(data) > 0,
such that for all sufficiently small r we have

Wμ
G(x, r) ≤ cr θ .

Applying assumption (15) to Proposition 5.3 with αV = θ+1
2 , we have

∫
Bρ

|u − (u)Bρ | dx ≤ c
(ρ
r

) θ+1
2

∫
Br

|u − (u)Br | dx + cr θ
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for any 0 < ρ < r ≤ R0. Now we apply Lemma 3.8 to see∫
Bρ

|u − (u)Bρ | dx ≤ c
(ρ
r

)θ∫
Br

|u − (u)Br | dx + cρθ

By Campanato’s characterization [48, Theorem 2.9], we complete the proof. ��
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Appendix

Proof of Lemma 2.5 Set x ∈ �0, Rk = 21−k R and Bk = BRk (x) for k = 0, 1, . . . . As F
is taken in a place of a measure with a slight abuse of notation we write |F|(BRk (x)) =∫
Bk

|F(y)| dy.We notice that we have

W |F|
G (x, R) =

∞∑
k=1

∫ Rk

Rk+1

g−1
( |F|(Br (x))

rn−1

)
dr �

∞∑
k=1

Rkg
−1

(
|F|(BRk (x))

Rn−1
k

)
.

To estimate the series we employ the decreasing rearrangement |F|� of |F| and its maximal
rearrangement |F|��. When wn is the volume of the unit ball, we have that

|F|(BRk (x))

Rn−1
k

= 1

Rn−1
k

∫
BRk (x)

|F(y)| dy

≤ wn Rk

∫ wn Rn
k

0
|F|�(t) dt = wn Rk |F|��(wn R

n
k ) .

Then we have

Rkg
−1

(
|F|(BRk (x))

Rn−1
k

)
� Rkg

−1 (
wn Rk |F|��(wn R

n
k )

)

�
∫ wn Rn

k−1

wn Rn
k

ρ
1
n g−1

(
ρ

1
n |F|��(ρ)

) dρ

ρ
(113)

with implicit constants independent of k. Therefore

sup
x∈�0

W |F|
G (x, R) �

∞∑
k=1

∫ wn Rn
k−1

wn Rn
k

ρ
1
n −1g−1

(
ρ

1
n |F|��(ρ)

) dρ

ρ

=
∫ wn Rn

0
ρ

1
n g−1

(
ρ

1
n |F|��(ρ)

) dρ

ρ
.

��
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