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Abstract
We consider equations involving a combination of local and nonlocal degenerate p-Laplace
operators. The main contribution of the paper is almost Lipschitz regularity for the homoge-
neous equation and Hölder continuity with an explicit Hölder exponent in the general case.
For certain parameters, our results also imply Hölder continuity of the gradient. In addition,
we establish existence, uniqueness and local boundedness. The approach is based on an
iteration in the spirit of Moser combined with an approximation method.
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1 Introduction

1.1 Overview

In this article, we study regularity properties ofweak solutions of themixed local and nonlocal
p-Laplace equation

− �pu + (−�p)
su = f in �, (1.1)

where� is an open and bounded set inRN , N ≥ 1. We assume that 0 < s < 1, 2 ≤ p < ∞
and f ∈ Lq

loc(�) for some q ≥ 1 (for the precise assumptions, see Sects. 1.2 and 2). Here

�pu = div(|∇u|p−2∇u), (1.2)

is the p-Laplace operator and

(−�p)
su(x) = P.V.

ˆ
RN

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy, (1.3)

is the fractional p-Laplace operator, where P.V. denotes the principal value.
The main objective of this article is to establish Hölder regularity of weak solutions of

Eq. (1.1), with an explicit Hölder exponent. This is done in Theorem 1.3 and Theorem 1.4.
From this, Hölder regularity of the gradient follows in the case when f = 0 and sp < (p−1).
We also establish existence and uniqueness inTheorem1.1 and local boundedness inTheorem
1.2. Our results are presented in detail in the next section.

1.2 Main results

Here we present the main results of this paper: existence, uniqueness and regularity of weak
solutions. For the notion of weak solutions and relevant notation such as Tailp−1,s p,s p , we
refer to Sect. 2. In the theorem below, p∗ refers to the Sobolev exponent, see (2.1).

Theorem 1.1 (Existence and uniqueness) Suppose 1 < p < ∞, 0 < s < 1 and A > 0. Let
� � �′ ⊂ R

N be two open and bounded sets where f ∈ Lq(�), with

q ≥ (p∗)′ if p 
= N or q > 1 if p = N ,

and g ∈ W 1,p(�′) ∩ L p−1
sp (RN ). Then there is a unique weak solution u ∈ W 1,p

g (�) of
{−�pu + A(−�p)

s u = f , in �,

u = g, in R
N \ �.

Theorem 1.2 (Local boundedness) Suppose 2 ≤ p < ∞, 0 < s < 1 and 0 ≤ A ≤ 1. Let
� ⊂ R

N be an open and bounded set and u ∈ W 1,p
loc (�) ∩ L p−1

s p (RN ) be a weak solution of

(−�p)u + A(−�p)
su = f in �,
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where f ∈ Lq
loc(�) with ⎧⎪⎪⎨

⎪⎪⎩
q >

N

p
, if p ≤ N ,

q ≥ 1, if p > N .

Then u+ = max{u, 0}, satisfies u+ ∈ L∞
loc(�) and for every 0 < R < 1 such that BR(x0) �

� and every 0 < σ < 1, there holds

‖u+‖L∞(Bσ R(x0))

≤ C

[( 
BR(x0)

(u+)p dx

) 1
p + Tailp−1,s p,s p(u

+; x0, R)

+
(
Rp− N

q ‖ f ‖Lq (BR(x0))

) 1
p−1

]
,

(1.4)

where C = C(N , s, p, q, σ ) > 0.

Theorem 1.3 (Almost Lipschitz regularity) Suppose 2 ≤ p < ∞, 0 < s < 1 and 0 ≤ A ≤ 1.
Let � ⊂ R

N be an open and bounded set and u ∈ W 1,p
loc (�)∩ L p−1

s p (RN ) be a weak solution
of

−�pu + A(−�p)
su = 0 in �.

Then u ∈ Cδ
loc(�) for every 0 < δ < 1.

More precisely, for every 0 < δ < 1 and every ball B2R(x0) � � with 0 < R < 1, there
exists a constant C = C(N , s, p, δ) > 0 such that

[u]Cδ(BR/2(x0)) ≤ C

Rδ

(‖u‖L∞(BR(x0)) + Tailp−1,s p,s p(u; x0, R)
)
. (1.5)

Theorem 1.4 (Higher Hölder regularity) Suppose 2 ≤ p < ∞, 0 < s < 1 and 0 ≤ A ≤ 1.
Let � ⊂ R

N be an open and bounded set, and f ∈ Lq
loc(�) where⎧⎪⎪⎨

⎪⎪⎩
q >

N

p
, if p ≤ N ,

q ≥ 1, if p > N .

Let� = min{(p−N/q)/(p−1), sp
p−1 , 1} and u ∈ W 1,p

loc (�)∩L p−1
s p (RN ) be a weak solution

of

−�pu + A(−�p)
su = f in �.

Then u ∈ Cδ
loc(�) for every 0 < δ < �.

More precisely, for every 0 < δ < � and every ball B4R(x0) � � such that R ∈ (0, 1),
there exists a constant C = C(N , s, p, q, δ) > 0 such that

[u]Cδ(BR/8(x0)) ≤ C

Rδ

(‖u‖L∞(BR(x0)) + Tailp−1,s p,s p(u; x0, R)

+
(
Rp− N

q ‖ f ‖Lq (BR)

) 1
p−1
)

.

123



67 Page 4 of 36 P. Garain , E. Lindgren

Corollary 1.5 Suppose 2 ≤ p < ∞, 0 < s < 1 and sp < (p − 1). Let � ⊂ R
N be an open

and bounded set, 0 ≤ A ≤ 1 and u ∈ W 1,p
loc (�) ∩ L p−1

s p (RN ) be a weak solution of

−�pu + A(−�p)
su = 0 in �.

Then u ∈ C1,α
loc (�) for some α ∈ (0, 1).

More precisely, for every ball B2R(x0) � � with 0 < R < 1, there exists a constant
C = C(N , s, p, q, δ) > 0 such that

[∇u]Cα(BR/8(x0)) ≤ C

R1+α

(‖u‖L∞(BR(x0)) + Tailp−1,s p,s p(u; x0, R)
)
,

where Tailp−1,s p,s p(u; x0, R) is defined in (2.2).

Remark 1.6 The reason for which we have included a constant A in the equation in the above
results, is that in the proofs we will consider rescaled solutions. For these, a constant appears
in front of the operator (−�p)

s .

1.3 Comments on the results

We first comment on the sharpness of our results, more specifically Theorem 1.4. In general,
the results are most likely not sharp. For instance, the results in [17] give C1,α-regularity
for solutions for all s ∈ (0, 1) and all p ∈ (1,∞), under the additional assumption that
u ∈ Ws,p(RN ).

However, our results are almost sharp when (p − N/q)/(p − 1) ≤ sp
p−1 ≤ 1. Indeed,

assume

(p − N/q)/(p − 1) ≤ sp

p − 1
≤ 1

and let

u(x) = |x |γ+ε, γ = (p − N/q)/(p − 1)

for some ε > 0. Then

(−�p)
su = f , f (x) = C(s, p, γ, ε)|x |(γ+ε−s)(p−1)−s

with f ∈ Lq
loc(RN )

if and only if γ + ε > (sp − N/q)/(p − 1). Moreover,

−�pu = g, g(x) = C(p, γ, ε)|x |(γ+ε−1)(p−1)−1

with g ∈ Lq
loc(RN )

if and only if γ + ε > (p− N/q)/(p− 1). It is clear that u /∈ Cα(B1) for
any α > γ + ε. This shows that in this regime of parameters, the results of Theorem 1.4 are
almost sharp.

Now we turn our attention to the Hölder exponents in Theorems 1.3 and 1.4. Note that
even in the case when f is smooth Theorem 1.4 only gives almost Hölder regularity of order
min{sp/(p − 1), 1}, while we for f = 0 reach almost Lipschitz regularity in Theorem 1.3.
The reason for this discrepancy is that we prove Theorem 1.4 by treating the inhomogeneous
equation as a perturbation of the homogeneous one. The restriction of the exponent arises
when we need a uniform control of the decay at infinity at different scales, see (5.17). It may
be possible to treat this as a perturbation of the homogeneous p-Laplace equation instead,
but we were not able to control the decay at infinity in such an approach.
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We also make a small comment regarding the assumption sp < (p − 1) in Corollary 1.5.
This assumption arises as a condition for when (−�p)

su is bounded for almost Lipschitz
functions u. The result is then obtained by treating (−�p)

su as a bounded term.

1.4 Known results

In the homogeneous setting f = 0 and for p = 2, Eq. (1.1) reads

− �u + (−�)su = 0. (1.6)

Based on the theory of probability and analysis, Eq. (1.6) has been intensely studied in
recent years. We mention the work of Foondun [27], where a Harnack inequality and local
Hölder continuity are established. We also refer to the Chen et al. [13–15], Athreya and
Ramachandran [2] and the references therein for related results. For the parabolic problem
associated with (1.6), Barlow et al. [3], Chen and Kumagai [16] proved a Harnack inequality
and local Hölder continuity.

Recently, the regularity theory has also been developed by a purely analytic approach.
For the linear case p = 2, existence, local boundedness, interior Sobolev regularity and a
strong maximum principle, along with other qualitative properties of solutions have been
established by Biagi et al. in [6]. Local boundedness is also established in Dipierro et al.
[20]. For existence and nonexistence results, we refer to Abatangelo and Cozzi [1]. We also
refer to Biagi et al. [4, 8], Dipierro et al. [22], Dipierro et al. [21], Dipierro and Valdinoci
[23] and the references therein.

In the nonlinear setting p 
= 2, for f = 0, regularity results of weak solutions in terms
of local boundedness, Harnack estimates, local Hölder continuity and semicontinuity results
have been obtained in Garain and Kinnunen [28]. In [7], Biagi et al. established boundedness
and strong maximum principle in the inhomogeneous case. In the case of a bounded function
f , Biagi et al. [5] has obtained local Hölder continuity for globally bounded solutions and
Garain-Ukhlov [31] studied existence, uniqueness, local boundedness and further qualitative
properties of solutions. Moreover, for more general inhomogeneites, local boundedness is
proved in Salort and Vecchi [34]. Very recently, Hölder and gradient regularity were proved
by De Filippis and Mingione in [17], where a general type of mixed nonlinear problems are
considered. Even a mix of different orders and different homogeneities of the operators is
allowed. The results therein that applies to (1.1) are proved under the global assumption that
u ∈ Ws,p(RN ). Under this assumption, their results contain ours as a special case.

We also seize the opportunity tomention that very recently, the regularity theory for mixed
parabolic equations has gained an increasing amount of attention. In the linear case, a weak
Harnack inequality is proved for the parabolic analogue of Eq. (1.6) in Garain and Kinnunen
[30]. For the nonlinear case, see Fang et al. [26, 35] and Garain and Kinnunen [29]. Among
other things, local boundedness and Hölder continuity have been established.

Finally, we wish to mention [24], where a similar approach using difference quotients has
been used to obtain improved regularity for quasilinear subelliptic equations in theHeisenberg
group.

1.5 Plan of the paper

In Sect. 2, we introduce relevant notation and definitions and certain standard result in func-
tion spaces. In Sect. 3, we establish existence and uniqueness using standard methods from
functional analysis. The core of the paper is mainly in Sect. 4, where we prove almost Lips-
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chitz regularity for the homogeneous equation, using a Moser-type argument that results in
an improved differentiability that can be iterated. Here we also prove Corollary 1.5. This is
followed by Sect. 5, where the local boundedness and higher Hölder regularity for the inho-
mogeneous equation is established. This is based on approxmation with the homogenous
equation. Finally, in the “Appendix”, we include a list of pointwise inequalities that are used
throughout the paper.

2 Preliminaries

In this section, we present some auxiliary results needed in the rest of the paper. Throughout
the paper, we shall use the notation that follows. We denote by Br (x0), the ball of radius r
centered at x0. When x0 = 0, we will simply write Br . It will also be convenient to use the
notation u+ = max{u, 0}. The monotone and (p − 1)-homogeneous function

Jp(a) = |a|p−2a, a ∈ R,

is expedient when treating equations of p-Laplacian type. Discrete differences play an impor-
tant role. Therefore, for a measurable functionψ : RN → R and a vector h ∈ R

N , we define

ψh(x) = ψ(x + h), δhψ(x) = ψh(x) − ψ(x),

δ2hψ(x) = δh(δhψ(x)) = ψ2 h(x) + ψ(x) − 2ψh(x).

2.1 Function spaces

For p ∈ (1,∞) and u ∈ W 1,p(�), the W 1,p-seminorm is defined by

[u]p
W 1,p(�)

:=
ˆ

�

|∇u|p dx .
We also define the critical Sobolev exponent as

p∗ =

⎧⎪⎪⎨
⎪⎪⎩

N p

N − p
, if p < N ,

+∞, if p > N ,

and (p∗)′ =

⎧⎪⎪⎨
⎪⎪⎩

N p

N p − N + p
, if p < N ,

1, if p > N .

(2.1)

Moreover, for 0 < δ ≤ 1, we will employ the δ-Hölder seminorm, given by

[u]Cδ(�) := sup
x 
=y∈�

|u(x) − u(y)|
|x − y|δ .

For 1 ≤ q < ∞ and for 0 < β < 2, we introduce the Besov-type space

Bβ,q∞ (RN ) =
{
ψ ∈ Lq(RN ) : [ψ]Bβ,q∞ (RN )

< +∞
}

,

where

[ψ]Bβ,q∞ (RN )
:= sup

|h|>0

∥∥∥∥∥
δ2hψ

|h|β
∥∥∥∥∥
Lq (RN )

.

Similarly, the Sobolev–Slobodeckiı̆ space is defined by

Wβ,q(RN ) =
{
ψ ∈ Lq(RN ) : [ψ]Wβ,q (RN ) < +∞

}
, 0 < β < 1,

123
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where the seminorm [ · ]Wβ,q (RN ) reads

[ψ]Wβ,q (RN ) =
(¨

RN×RN

|ψ(x) − ψ(y)|q
|x − y|N+β q

dx dy

) 1
q

.

These spaces are endowed with their corresponding norms

‖ψ‖Bβ,q∞ (RN )
= ‖ψ‖Lq (RN ) + [ψ]Bβ,q∞ (RN )

,

and

‖ψ‖Wβ,q (RN ) = ‖ψ‖Lq (RN ) + [ψ]Wβ,q (RN ).

At times, we will also work with the space Wβ,q(�) for a subset � ⊂ R
N ,

Wβ,q(�) = {
ψ ∈ Lq(�) : [ψ]Wβ,q (�) < +∞}

, 0 < β < 1,

where we define

[ψ]Wβ,q (�) =
(¨

�×�

|ψ(x) − ψ(y)|q
|x − y|N+β q

dx dy

) 1
q

.

2.2 Tail spaces

In the study of nonlocal equations, the global behavior of solutions comes into play. This is
entailed by the tail space

Lq
α(RN ) =

{
u ∈ Lq

loc(R
N ) :

ˆ
RN

|u|q
1 + |x |N+α

dx < +∞
}

, q > 0 and α > 0,

and measured by the quantity

Tailq,α,β(u; x0, R) =
[
Rβ

ˆ
RN \BR(x0)

|u|q
|x − x0|N+α

dx

] 1
q

, (2.2)

defined for every x0 ∈ R
N , R > 0, β > 0 and u ∈ Lq

α(RN ). We observe that the quantity
above is always finite, for a function u ∈ Lq

α(RN ).

2.3 Auxiliary results for functions spaces

The next result asserts that the standard Sobolev space is continuously embedded in the frac-
tional Sobolev space, see [18, Proposition 2.2]. The argument uses the smoothness property
of � so that we can extend functions from W 1,p(�) to W 1,p(RN ) and that the extension
operator is bounded.

Lemma 2.1 Let � be a smooth bounded domain in R
N , 1 < p < ∞ and 0 < s < 1. There

exists a positive constant C = C(N , p, s,�) such that ‖u‖Ws,p(�) ≤ C‖u‖W 1,p(�) for every
u ∈ W 1,p(�).

The following result for the fractional Sobolev spaces with zero boundary value follows
from [12, Lemma 2.1]. The main difference compared to Lemma 2.1 is that the result holds
for any bounded domain, since for the Sobolev spaces with zero boundary value, we may
always extend by zero.
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Lemma 2.2 Let � be a bounded domain in R
N , 1 < p < ∞ and 0 < s < 1. Then there

exists a positive constant C = C(N , p, s,�) such that
ˆ
Rn

ˆ
Rn

|u(x) − u(y)|p
|x − y|N+ps

dx dy ≤ C
ˆ

�

|∇u(x)|p dx

for every u ∈ W 1,p
0 (�). Here we consider the zero extension of u to the complement of �.

The following result is a local version of [9, Lemma 2.3].

Lemma 2.3 Let β ∈ (0, 1), p ∈ (1,∞), x0 ∈ R
N , R > 0 and h1 > 0. Suppose

u ∈ L p(B
R+ 7h1

2
(x0)) and

sup
0<|h|<h1

∥∥∥∥∥
δ2hu

|h|β
∥∥∥∥∥
L p(B

R+ 5h1
2

(x0))

< ∞.
(2.3)

Then

sup
0<|h|<h1

∥∥∥∥ δhu

|h|β
∥∥∥∥
L p(BR(x0))

≤ C

1 − β

⎧⎪⎨
⎪⎩ sup

0<|h|<h1

∥∥∥∥∥
δ2hu

|h|β
∥∥∥∥∥
L p(B

R+ 5h1
2

(x0))

+ (h−β
1 + 1)‖u‖L p(B

R+ 7h1
2

(x0))

⎫⎪⎬
⎪⎭ .

(2.4)

Here C = C(N , p) > 0.

Proof Without loss of generality, we assume that x0 = 0. Let 0 < |h| < h1. Let η ∈
C∞
c (B

R+ h1
2

) be such that 0 ≤ η ≤ 1, |∇η| ≤ C
h1
,‖D2η‖ ≤ C

h21
in B

R+ h1
2
for some constant

C = C(N , p) > 0 and η ≡ 1 in BR . Then

‖η2h‖L∞(B
R̂+ 5h1

2
) ≤ 1, ‖δh(ηh)‖L∞(B

R̂+ 5h1
2

)

≤ C |h|
h1

, ‖δ2hη‖L∞(B
R̂+ 5h1

2
) ≤ C |h|2

h21
,

(2.5)

for some constantC = C(N , p) > 0. Note that the functions η2h, δhηh and δ2hη have support
inside B

R+ 5h1
2
. Moreover, we obtain

δ2h(uη) = η2hδ
2
hu + 2δhu δh(ηh) + uδ2hη. (2.6)

By the hypothesis (2.3) and η ∈ C∞
c (B

R+ h1
2

), it follows that uη ∈ Bβ,p∞ (RN ). Then by [9,

Lemma 2.3], we have

sup
0<|h|<h1

∥∥∥∥δh (uη)

|h|β
∥∥∥∥
L p(RN )

≤ C

1 − β

{
sup

0<|h|<h1

∥∥∥∥∥
δ2h (uη)

|h|β
∥∥∥∥∥
L p(RN )

+ (h−β
1 + 1)‖uη‖L p(RN )

}
.

(2.7)
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Using the above properties of η, (2.5)–(2.7) and the fact that 0 < β < 1, we have

sup
0<|h|<h1

∥∥∥∥δh(uη)

|h|β
∥∥∥∥
L p(BR)

≤ sup
0<|h|<h1

∥∥∥∥δh(uη)

|h|β
∥∥∥∥
L p(RN )

≤ C

1 − β

{
sup

0<|h|<h1

∥∥∥∥∥
δ2h (uη)

|h|β
∥∥∥∥∥
L p(RN )

+ (h−β
1 + 1)‖uη‖L p(RN )

}

≤ C

1 − β

⎧⎨
⎩
∥∥∥∥∥
δ2h(uη)

|h|β
∥∥∥∥∥
L p(RN )

+ (h−β
1 + 1)‖u‖L p(B

R+ h0
2

)

⎫⎬
⎭

≤ C

1 − β

{
sup

0<|h|<h1

∥∥∥∥∥
δ2hu

|h|β
∥∥∥∥∥
L p(B

R+ 5h1
2

)

+ sup
0<|h|<h1

∥∥∥∥ |h|1−β

h1
δhu

∥∥∥∥
L p(B

R+ 5h1
2

)

+ sup
0<|h|<h1

∥∥∥∥∥
|h|2−β

h21
u

∥∥∥∥∥
L p(B

R+ 5h1
2

)

+ (h−β
1 + 1)‖u‖L p(B

R+ h1
2

)

}

≤ C

1 − β

⎧⎪⎨
⎪⎩ sup

0<|h|<h1

∥∥∥∥∥
δ2hu

|h|β
∥∥∥∥∥
L p(B

R+ 5h1
2

)

+ (h−β
1 + 1)‖u‖L p(B

R+ 7h1
2

)

⎫⎪⎬
⎪⎭ ,

for some C = C(N , p). This proves the result. ��

Our next result is a local version of [9, Proposition 2.4].

Lemma 2.4 Let α ∈ (1, 2), p ∈ (1,∞), R > 0, x0 ∈ R
N and h1 > 0. Suppose

u ∈ L p(BR+6h1(x0)) and sup
0<|h|<h1

∥∥∥∥∥
δ2hu

|h|α
∥∥∥∥∥
L p(BR+5h1 (x0))

< ∞. (2.8)

Then

‖∇u‖L p(BR(x0)) ≤ C

{(
1 + h−α

1 + h−1
1

(α − 1)(2 − α)
+ h−α

1

α − 1

)
‖u‖L p(BR+6h1 (x0))

+ 3 − α

(α − 1)(2 − α)
sup

0<|h|<h1

∥∥∥∥∥
δ2hu

|h|α
∥∥∥∥∥
L p(BR+5h1 (x0))

} (2.9)

where C = C(N , p) > 0.

Proof Without loss of generality, we assume that x0 = 0. Let η ∈ C∞
c (B

R+ h1
2

) be as

defined in (2.5). Using the assumption (2.8) and η ∈ C∞
c (B

R+ h1
2

), we have uη ∈ Bα,p∞ (RN ).

Therefore, by [9, Propsotion 2.4], we get

‖∇(uη)‖L p(RN ) ≤ C‖uη‖L p(RN ) + C

α − 1
sup
|h|>0

∥∥∥∥∥
δ2h(uη)

|h|α
∥∥∥∥∥
L p(RN )

, (2.10)
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for some C = C(N , p) > 0. Next, using the properties of η from (2.5) and (2.6), we observe
that

sup
|h|>0

∥∥∥∥∥
δ2h(uη)

|h|α
∥∥∥∥∥
L p(RN )

= sup
|h|>0

∥∥∥∥∥
η2hδ

2
hu + 2δhuδh(ηh) + uδ2hη

|h|α
∥∥∥∥∥
L p(RN )

≤ C sup
0<|h|<h1

{∥∥∥∥∥η2h
δ2hu

|h|α
∥∥∥∥∥
L p(B

R+ 5h1
2

)

+
∥∥∥∥δh(ηh) δh u

|h|α
∥∥∥∥
L p(B

R+ 5h1
2

)

+
∥∥∥∥δ2h(η)

u

|h|α
∥∥∥∥
L p(B

R+ 5h1
2

)

}

≤ C sup
0<|h|<h1

{∥∥∥∥∥
δ2hu

|h|α
∥∥∥∥∥
L p(B

R+ 5h1
2

)

+ 1

h1

∥∥∥∥ δh u

|h|α−1

∥∥∥∥
L p(B

R+ 5h1
2

)

+ h−α
1 ‖u‖L p(B

R+ 5h1
2

)

}
,

(2.11)

for some positive constant C = C(N , p) > 0. Now we estimate the second integral in the
RHS of (2.11). To this end, using (2.8), we get

u ∈ L p(BR+6h1) and sup
0<|h|<h1

∥∥∥∥∥
δ2h u

|h|α−1

∥∥∥∥∥
L p(BR+5h1 )

< ∞. (2.12)

Since 0 < α − 1 < 1, by Lemma 2.3, it follows that

sup
0<|h|<h1

∥∥∥∥ δh u

|h|α−1

∥∥∥∥
L p

(
B
R+ 5h1

2

)

≤ C

2 − α

{
sup

0<|h|<h1

∥∥∥∥∥
δ2h u

|h|α−1

∥∥∥∥∥
L p(BR+5h1 )

+ (h−α−1
1 + 1)‖u‖L p(BR+6h1 )

}

≤ C

2 − α

{
h1 sup

0<|h|<h1

∥∥∥∥∥
δ2h u

|h|α
∥∥∥∥∥
L p(BR+5h1 )

+ (h−α−1
1 + 1)‖u‖L p(BR+6h1 )

}
,

(2.13)

for some C = C(N , p). Combining the estimates (2.13) and (2.11) in (2.10) and noting that
η ≡ 1 in BR , the result follows. ��

Lemma 2.5 Suppose u ∈ W 1,p(RN ), where p ∈ (1,∞). Then

sup
|h|>0

∥∥∥δhu

h

∥∥∥
L p(RN )

≤ ‖∇u‖L p(RN ).

Proof We have

u(x + h) − u(x) =
ˆ 1

0
∇u(x + th) · hdt .

Therefore, by Hölder’s inequality

∣∣∣u(x + h) − u(x)

|h|
∣∣∣p ≤

ˆ 1

0
|∇u(x + th)|pdt .
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Upon integrating, we obtain
ˆ
RN

∣∣∣u(x + h) − u(x)

|h|
∣∣∣pdx ≤

ˆ
RN

ˆ 1

0
|∇u(x + th)|pdtdx

≤
ˆ 1

0

ˆ
RN

|∇u(x + th)|pdxdt
≤ ‖∇u‖p

L p(RN )
.

��
We seize the opportunity to mention that a local version of the above lemma can be found

in Theorem 3 on page 277 in [25].

2.4 Weak solutions

Below, we define weak solutions of (1.1), allowing also for a factor A that will be needed in
the sequel, when treating rescaled solutions.

Definition 2.6 Let 1 < p < ∞, 0 < s < 1 and A ≥ 0. Suppose f ∈ Lq(�), with

q ≥ (p∗)′ if p 
= N or q > 1 if p = N .

We say that u ∈ W 1,p
loc (�) ∩ L p−1

sp (RN ) is a weak subsolution (or supersolution) of

−�pu + A(−�p)
su = f in �,

if for every K � � and for every nonnegative φ ∈ W 1,p
0 (K ), we have

ˆ
K

|∇u|p−2∇u · ∇φ dx + A
ˆ
RN

ˆ
RN

Jp((u(x) − u(y))(φ(x) − φ(y)) dμ

≤
ˆ
K

f φ dx (or ≥),

(2.14)

where

Jp(a) = |a|p−2a, a ∈ R, dμ = |x − y|−N−sp dx dy. (2.15)

We say that u is a weak solution of (1.1), if equality holds in (2.14) for every φ ∈ W 1,p
0 (K ).

Remark 2.7 By Lemma 2.1 and Lemma 2.2, Definition 2.14 makes sense.

We now detail the notion of weak solutions to the Dirichlet boundary value problem. For
that purpose, given � ⊂ R

N an open and bounded set, consider a bounded domain �
′
such

that � � �
′ ⊂ R

N . Then for g ∈ W 1,p(�′), we define

W 1,p
g (�) = {v ∈ W 1,p(�) ∩ L p−1

sp (RN ) : v − g ∈ W 1,p
0 (�)}. (2.16)

When u ∈ W 1,p
g (�) we will repeatedly identify u as being extended by g outside of �.

Definition 2.8 (Dirichlet problem) Let 1 < p < ∞, 0 < s < 1 and A ≥ 0. Suppose
� � �′ ⊂ R

N be two open and bounded sets, f ∈ Lq(�), with

q ≥ (p∗)′ if p 
= N or q > 1 if p = N ,
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and g ∈ W 1,p(�′)∩L p−1
sp (RN ). We say that u ∈ W 1,p

g (�) is aweak solution of the boundary
value problem {−�pu + A(−�p)

s u = f , in �,

u = g, in R
N \ �,

(2.17)

if for every φ ∈ W 1,p
0 (�), we haveˆ

�

|∇u|p−2∇u · ∇φ dx + A
ˆ
RN

ˆ
RN

Jp((u(x) − u(y))(φ(x) − φ(y)) dμ

=
ˆ

�

f φ dx,
(2.18)

where Jp and dμ are defined in (2.15) above.

Remark 2.9 Note that Definition 2.18 makes sense by Lemma 2.1 and Lemma 2.2, since we
may choose a smooth set K such that � � K � �′.

3 Existence and uniqueness

Here we prove existence and uniqueness of solutions of the Dirichlet problem (2.17).

Proof of Theorem 1.1 In what follows, whenever X is a normed vector space, we denote by
X∗ its topological dual.

We first note that W 1,p
0 (�) is a separable reflexive Banach space. We now introduce the

operator A : W 1,p
g (�) → (W 1,p

0 (�))∗ defined by

〈A(v), ϕ〉 =
ˆ

�′
|∇v|p−2∇v∇φ dx + A

¨
�′×�′

Jp(v(x) − v(y))
(
ϕ(x) − ϕ(y)

)
dμ

+ 2A
¨

�×(RN \�′
)

Jp(v(x) − g(y)) ϕ(x) dμ, v ∈ W 1,p
g (�), ϕ ∈ W 1,p

0 (�),

where 〈·, ·〉 denotes the relevant duality product. We observe that A(v) ∈ (W 1,p
0 (�))∗ for

every v ∈ W 1,p
g (�) (by Lemma 2.1 and [32, Remark 1]). Moreover, as in the proof of [32,

Lemma 3], we have that A has the following properties:

1. for every v, u ∈ W 1,p
g (�), we have

〈A(u) − A(v), u − v〉 ≥ 0,

with equality if and only if u = v; This follows from applying Lemma A.1 to the nonlocal
part and noting that for the local term we have the following inequalities (see [37, Page
11]):

〈A(u) − A(v), u − v〉 ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C1

( ˆ
�

|∇(u − v)|p dx
) 1

p
, if p ≥ 2,

C2
(ˆ

�

|∇(u − v)|p dx) 2
p

((ˆ
�

|∇u|p dx
) 1

p +
(ˆ

�

|∇v|p dx
) 1

p
)2−p , if 1 < p < 2,

(3.1)
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for some positive constants C1, C2.
2. if {un}n∈N ⊂ W 1,p

g (�) converges in W 1,p(�) to u ∈ W 1,p
g (�), then

lim
n→∞〈A(un) − A(u), v〉 = 0 for all v ∈ W 1,p

0 (�);

This follows from the application of Lemma 2.1 together with Hölder’s inequality and
the coupling of weak and strong convergence.

3. From (3.1), it follows that

lim‖u‖W1,p (�)
→+∞

〈A(u) − A(g), u − g〉
‖u − g‖W 1,p(�)

= +∞.

Finally, we introduce the modified functional

A0(v) := A(v + g), for every v ∈ W 1,p
0 (�).

We observe that A0 : W 1,p
0 (�) → (W 1,p

0 (�))∗. Moreover, properties (1), (2) and (3) above
imply thatA0 is monotone, coercive and hemicontinuous (see [36, Chapter II, Section 2] for
the relevant definitions). It is only left to observe that under the standing assumptions, the
linear functional

T f : v �→
ˆ

�

f v dx, v ∈ W 1,p
0 (�),

belongs to the topological dual of W 1,p
0 (�). Notice that for every v ∈ W 1,p

0 (�) we have1

|T f (v)| =
∣∣∣∣
ˆ

�

f v dx

∣∣∣∣ ≤ ‖ f ‖Lq (�) ‖v‖Lq′
(�)

≤ |�| 1
q′ − 1

p∗ ‖ f ‖Lq (�) ‖v‖L p∗ (�),

and the last term can be controlled using the Sobolev embedding W 1,p(RN ) → L p∗
(RN )

(see [25]). Then by [36, Corollary 2.2], we obtain the existence of v ∈ W 1,p
0 (�) such that

〈A0(v), ϕ〉 = 〈T f , ϕ〉, for every ϕ ∈ W 1,p
0 (�).

By definition, this is equivalent to

〈A(v + g), ϕ〉 = 〈T f , ϕ〉, for every ϕ ∈ W 1,p
0 (�),

i.e.
ˆ

�′
|∇(v + g)|p−2∇(v + g)∇φ dx

+ A
¨

�′×�′
Jp(v(x) + g(x) − v(y) − g(y))

(
ϕ(x) − ϕ(y)

)
dμ

+ 2A
¨

�×(RN \�′)
Jp(v(x) + g(x) − g(y)) ϕ(x) dμ =

ˆ
�

f ϕ dx,

1 We assume for simplicity that 1 < p < N . The cases p ≥ N can be treated in the same manner, we leave
the details to the reader.
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which is the same as (2.18), since v = 0 in R
N \ � and that

2
¨

�×(RN \�′)
Jp(v(x) + g(x) − g(y)) ϕ(x) dμ

=
¨

�×(RN \�′)
Jp(v(x) + g(x) − v(y) − g(y)) ϕ(x) dμ

−
¨

(RN \�′)×�

Jp(v(x) + g(x) − v(y) − g(y)) ϕ(y) dμ.

Then v + g is the desired solution. Uniqueness now follows from the strict monotonicity of
the operator A0. ��

Remark 3.1 (Variational solutions) Under the slightly stronger assumption g ∈ W 1,p(�′) ∩
L p
s p(R

N ), existence of the solution to (2.17) can be obtained by solving the following strictly
convex variational problem

min
{
F(v) : v ∈ W 1,p

g (�) ∩ L p
s p(R

N )
}

,

where the functional F is defined by

F(v) = 1

p

ˆ
�

|∇v|p dx + A

p

¨
�′×�′

|v(x) − v(y)|p dμ

+ 2A

p

¨
�×(RN \�′)

|v(x) − g(y)|p dμ −
ˆ

�

f v dx .

Existence of a minimizer can be obtained using the Direct Methods in the Calculus of Vari-
ations.

4 Almost Lipschitz regularity for the homogeneous equation

In this section, we prove the almost Lipschitz regularity for the homogeneous equation. We
first start with the result below, where we differentiate the equation discretely and test with
powers of δhu. This yields an iteration scheme of Moser-type. This is the core of the paper.

Proposition 4.1 Let 2 ≤ p < ∞, 0 < s < 1 and 0 ≤ A ≤ 1. Suppose that
u ∈ W 1,p

loc (B2(x0)) ∩ L p−1
sp (RN ) is a weak solution of −�pu + A(−�p)

su = 0 in B2(x0).
Assume that

‖u‖L∞(B1(x0)) ≤ 1,
ˆ
RN \B1(x0)

|u(y)|p−1

|y|N+sp
dy ≤ 1. (4.1)

Let 0 < h0 < 1
10 and R be such that 4h0 < R ≤ 1 − 5h0 and ∇u ∈ Lq(BR+4h0(x0)) for

some q ≥ p. Then

sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|1+ 1
q+1

∥∥∥∥∥
q+1

Lq+1(BR−4h0 (x0))

≤ C(1 + A)

(ˆ
BR+4h0 (x0)

|∇u|q dx + 1

)
, (4.2)

for some constant C = C(N , h0, p, q, s) > 0.
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Proof Without loss of generality, we assume that x0 = 0. We divide the proof into five steps.
Step 1: Discrete differentiation of the equation. Let r = R − 4h0 and φ ∈ W 1,p(BR)

vanish outside B R+r
2
. Since u is a weak solution of −�pu + A(−�p)

su = 0 in B2, from
Definition 2.6, we have

ˆ
BR

|∇u|p−2∇u∇φ dx + A
ˆ
Rn

ˆ
Rn

(Jp(u(x) − u(y)))(φ(x) − φ(y)) dμ = 0. (4.3)

Let h ∈ R
n \ {0} be such that |h| < h0. Choosing φ = φ−h in (4.3) and using a change of

variables, we have

ˆ
BR

|∇uh |p−2∇uh∇φ dx

+A
ˆ
RN

ˆ
RN

(Jp(uh(x) − uh(y)))(φ(x) − φ(y)) dμ = 0. (4.4)

Subtracting (4.3) with (4.4) and dividing the resulting equation by |h|, we obtain
ˆ
BR

(|∇uh |p−2∇uh − |∇u|p−2∇u)

|h| ∇φ dx

+ A
ˆ
RN

ˆ
RN

(Jp(uh(x) − uh(y)) − (Jp(u(x) − u(y)))

|h| (φ(x) − φ(y)) dμ = 0,

(4.5)

for every φ ∈ W 1,p(BR) vanishing outside B R+r
2
. Let η be a nonnegative Lipschitz cut-off

function such that

η ≡ 1 on Br , η ≡ 0 on R
N \ B R+r

2
, |∇η| ≤ C

R − r
= C

4h0
,

for some constant C = C(N ) > 0. Suppose α ≥ 1, θ > 0 and testing (4.5) with

φ = Jα+1

(uh − u

|h|θ
)
ηp, 0 < |h| < h0,

we get

I + AJ = 0, (4.6)

where

I =
ˆ
BR

(|∇uh |p−2∇uh − |∇u|p−2∇u)

|h|1+θα
∇(Jα+1(uh − u)ηp) dx (4.7)

and

J =
ˆ
Rn

ˆ
Rn

(Jp(uh(x) − uh(y)) − (Jp(u(x) − u(y)))

|h|1+θα

× (Jα+1(uh(x) − u(x))ηp(x) − Jα+1(uh(y) − u(y))ηp(y)) dμ.

(4.8)
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Step 2: Estimate of the local integral I . We observe that

I12 = (|∇uh |p−2∇uh − |∇u|p−2∇u)∇(Jα+1(uh − u)ηp)

= (|∇uh |p−2∇uh − |∇u|p−2∇u)ηp∇(Jα+1(uh − u))

+ (|∇uh |p−2∇uh − |∇u|p−2∇u)Jα+1(uh − u)∇(ηp)

≥ (|∇uh |p−2∇uh − |∇u|p−2∇u)ηp∇(Jα+1(uh − u))

− ∣∣|∇uh |p−2∇uh − |∇u|p−2∇u|∣∣|uh − u|α|∇(ηp)|
:= I1 − I2.

(4.9)

Estimate of I1: Since p ≥ 2, using Lemma A.2 and that α ≥ 1, we get

I1 = (|∇uh |p−2∇uh − |∇u|p−2∇u)ηp∇(Jα+1(uh − u))

= α(|∇uh |p−2∇uh − |∇u|p−2∇u)∇(uh − u)|uh − u|α−1ηp

≥ 4

p2
(|∇uh | p−2

2 ∇uh − |∇u| p−2
2 ∇u

∣∣2|uh − u|α−1ηp.

(4.10)

Moreover, for p ≥ 2, using Lemma A.1, we have

I1 = α(|∇uh |p−2∇uh − |∇u|p−2∇u)∇(uh − u)|uh − u|α−1ηp

≥ p22−p|∇(uh − u)|p|uh − u|α−1ηp

= p22−p
( p

α + p − 1

)p∣∣∣∇(|uh − u| α−1
p (uh − u)

)∣∣∣pηp

≥ p22−p
( p

α + p − 1

)p{
2−p

∣∣∣∇(|uh − u| α−1
p (uh − u)η

)∣∣∣p

−
∣∣∣|uh − u| α−1

p (uh − u)
)∣∣∣p|∇η|p

}
.

(4.11)

Estimate of I2: Since p ≥ 2, using Lemma A.3 and Young’s inequality with exponents 2
and 2, we obtain

I2 = ∣∣|∇uh |p−2∇uh − |∇u|p−2∇u|∣∣|uh − u|α|∇(ηp)|
≤ (p − 1)(|∇uh |

p−2
2 + |∇u| p−2

2 )
∣∣|∇uh |

p−2
2 ∇uh − |∇u| p−2

2 ∇u
∣∣|uh − u|α2η p

2 |∇(η
p
2 )|

=
(
(p − 1)(|∇uh |

p−2
2 + |∇u| p−2

2 )
∣∣|uh − u| α+1

2 |∇(η
p
2 )|
)

(
|∇uh | p−2

2 ∇uh − |∇u| p−2
2 ∇u

∣∣|uh − u| α−1
2 2η

p
2

)

≤ C(p, ε)
(|∇uh |

p−2
2 + |∇u| p−2

2
)2∣∣|uh − u|α+1|∇(η

p
2 )|2

+ ε(|∇uh | p−2
2 ∇uh − |∇u| p−2

2 ∇u
∣∣2|uh − u|α−1ηp

≤ C(p, ε)
(|∇uh |

p−2
2 + |∇u| p−2

2
)2∣∣|uh − u|α+1|∇(η

p
2 )|2 + ε p2

4
I1,

(4.12)
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for some ε ∈ (0, 4
p2

), where to obtain the last inequality above, we have used the estimate
(4.10). Thus, using the estimate (4.12) in (4.9), it follows that

I12 ≥ cI1 − C
(|∇uh |

p−2
2 + |∇u| p−2

2
)2∣∣|uh − u|α+1|∇(η

p
2 )|2

≥ cp22−p
( p

α + p − 1

)p{
2−p

∣∣∣∇(|uh − u| α−1
p (uh − u)η

)∣∣∣p

−
∣∣∣|uh − u| α−1

p (uh − u)
)∣∣∣p|∇η|p

}

− C
(|∇uh |

p−2
2 + |∇u| p−2

2
)2∣∣|uh − u|α+1|∇(η

p
2 )|2,

(4.13)

for some positive constants c, C depending on p. Therefore, using the estimate (4.13) in
(4.7), we have

I =
ˆ
BR

I12
|h|1+θα

dx

≥ c
ˆ
BR

∣∣∣∇( |uh − u| α−1
p (uh − u)η

|h| 1+θα
p

)∣∣∣p dx − c
ˆ
BR

∣∣∣|uh − u| α−1
p (uh − u)

∣∣∣p|∇η|p
|h|1+θα

dx

− C
ˆ
BR

(|∇uh | p−2
2 + |∇u| p−2

2
)2∣∣|uh − u|α+1|∇(η

p
2 )|2

|h|1+θα
dx

:= cI13 − cI14 − C I15,

(4.14)

for some positive constants c, C depending on p, α.
Estimate of I14 : Let p > 2, then using the properties of η and Young’s inequality with

exponents q
p−2 and q

q−p+2 , using that ‖u‖L∞(B1) ≤ 1 from (4.1), we have

I14 =
ˆ
BR

∣∣∣|uh − u| α−1
p (uh − u)

∣∣∣p|∇η|p
|h|1+θα

dx

≤
ˆ
BR

|δhu|α+p−1

|h|1+θα
|∇η|p dx

≤
( C

4h0

)p( ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx +
ˆ
BR

|δhu| (p−1)q
p−2 dx

)

≤ C
( ˆ

BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx + 1
)
,

(4.15)

for some constant C = C(N , h0, p, q) > 0. Note that when p = 2, again using that
‖u‖L∞(B1) ≤ 1 from (4.1), we have

|δhu|α+1 ≤ 2‖u‖L∞(BR+h0 )|δhu|α ≤ 2|δhu|α,

which gives the estimate (4.15) for p = 2.
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Estimate of I15: We observe that

I15 =
ˆ
BR

(|∇uh | p−2
2 + |∇u| p−2

2
)2∣∣|uh − u|α+1|∇(η

p
2 )|2

|h|1+θα
dx

≤ 4
ˆ
BR

(|∇uh |p−2 + |∇u|p−2
)∣∣|uh − u|α+1|∇(η

p
2 )|2

|h|1+θα
dx

= 4
ˆ
BR

|∇uh |p−2
∣∣|uh − u|α+1|∇(η

p
2 )|2

|h|1+θα
dx

+ 4
ˆ
BR

|∇u|p−2
∣∣|uh − u|α+1|∇(η

p
2 )|2

|h|1+θα
dx

:= 4(I16 + I17).

(4.16)

Estimates of I16 and I17: If p = 2, using the boundedness assumption ‖u‖L∞(B1) ≤ 1
from (4.1) and the properties of η, we have

ˆ
BR

|uh − u|α+1|∇η|2
|h|1+θα

dx ≤ ‖u‖L∞(BR+h0 )

ˆ
BR

|∇η|2|δhu|α
|h|1+θα

dx

≤
( C

4h0

)2 ˆ
BR

|δhu|α
|h|1+θα

dx,

(4.17)

for some C = C(N , p) > 0. For p > 2, using Young’s inequality with exponents q
p−2 and

q
q−p+2 , we get

ˆ
BR

|∇uh |p−2|uh − u|α+1|∇η|2
|h|1+θα

dx≤C
ˆ
BR

|∇uh |q dx+
( C
h0

) 2q
q−p+2

ˆ
BR

|δhu| (α+1)q
q−p+2

|h| (1+θα)q
q−p+2

dx

≤ C
ˆ
BR

|∇uh |q dx + C
ˆ
BR

‖u‖
q

q−p+2
L∞(BR+h0 )

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx

≤ C
ˆ
BR

|∇uh |q dx + C
ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx

(4.18)

for C = C(N , h0, p, q) > 0, where we have again used using the boundedness assumption
‖u‖L∞(B1) ≤ 1 from (4.1). Therefore, using (4.17) and (4.18), for any p ≥ 2, we obtain

I16 ≤ C
ˆ
BR

|∇uh |q dx + C
ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx, (4.19)

for C = C(N , h0, p, q) > 0. Similarly, we obtain

I17 ≤ C
ˆ
BR

|∇u|q dx + C
ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx (4.20)

for C = C(N , h0, p, q) > 0. Combining the estimates (4.19) and (4.20) in (4.16), we have

I15 ≤ C
ˆ
BR

|∇uh |q dx + C
ˆ
BR

|∇u|q dx + C
ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx (4.21)
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for C = C(N , h0, p, q) > 0. Using the estimates (4.15) and (4.21) in (4.14) we have

I ≥ cI13 − C
ˆ
BR

|∇uh |q dx − C
ˆ
BR

|∇u|q dx − C
ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx − C

= c
ˆ
BR

∣∣∣∇( |uh − u| α−1
p (uh − u)η

|h| 1+θα
p

)∣∣∣p dx − C
ˆ
BR

|∇uh |q dx

− C
ˆ
BR

|∇u|q dx − C
ˆ
BR

|δhu| αq
q−p+2

|h| (1+θα)q
q−p+2

dx − C

(4.22)

for c = c(p, α) > 0 and C = C(N , h0, p, q, α) > 0.
Step 3: Estimate of the nonlocal integral J . First, we notice that

J = J1 + J2 − J3, (4.23)

where

J1 =
ˆ
BR

ˆ
BR

(Jp(uh(x) − uh(y)) − (Jp(u(x) − u(y)))

|h|1+θα

× (Jα+1(uh(x) − u(x))ηp(x) − Jα+1(uh(y) − u(y))ηp(y)) dμ,

J2 =
ˆ
B R+r

2

ˆ
RN \BR

(Jp(uh(x) − uh(y)) − (Jp(u(x) − u(y)))

|h|1+θα
Jα+1(uh(x) − u(x))ηp(x) dμ

and

J3 = −
ˆ
RN \BR

ˆ
B R+r

2

(Jp(uh(x) − uh(y)) − (Jp(u(x) − u(y)))

|h|1+θα
Jα+1(uh(y) − u(y))ηp(y) dμ.

Estimate of J1: Proceeding exactly as in the proof of the estimate of I1 in [10, Step 1,
pages 813-817], we get

J1 =
ˆ
BR

ˆ
BR

(Jp(uh(x) − uh(y)) − (Jp(u(x) − u(y)))

|h|1+θα

× (Jα+1(uh(x) − u(x))ηp(x) − Jα+1(uh(y) − u(y))ηp(y)) dμ

≥ c

[
|uh − u| α−1

p (uh − u)

|h|1+θα
η

]p

Ws,p(BR)

− C J11 − C J12,

(4.24)

for some constants c = c(p, α) > 0 and C = C(p, α) > 0, where

J11 =
ˆ
BR

ˆ
BR

(
|uh(x) − uh(y)| p−2

2 + |u(x) − u(y)| p−2
2

)2|η(x)
p
2 − η(y)

p
2 |2

× |uh(x) − u(x)|α+1 + |uh(y) − u(y)|α+1

|h|1+θα
dμ

and

J12 =
ˆ
BR

ˆ
BR

( |uh(x) − u(x)|α−1+p

|h|1+θα
+ |uh(y) − u(y)|α−1+p

|h|1+θα

)
|η(x) − η(y)|p dμ.
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Proceeding along the lines of the proof of the estimates of I112 and I12 in [10, Step 2, pages
817-819], we get

|J11| ≤ C

(ˆ
BR

|δhu| αq
q−p+2

|h|(1+θα)
q

q−p+2
dx +

ˆ
BR+4h0

|∇u|q dx + 1

)
, (4.25)

and

|J12| ≤ C

(ˆ
BR

|δhu| αq
q−p+2

|h|(1+θα)
q

q−p+2
dx + 1

)
, (4.26)

whereC = C(N , h0, p, s, q) > 0. Therefore, using the estimates (4.25) and (4.26) in (4.24),
we have

J1 ≥ c

[
|uh − u| α−1

p (uh − u)

|h|1+θα
η

]p

Ws,p(BR)

− C

(ˆ
BR

|δhu| αq
q−p+2

|h|(1+θα)
q

q−p+2
dx +

ˆ
BR+4h0

|∇u|q dx + 1

)
,

(4.27)

for some constants c = c(p, α) > 0 and C = C(N , h0, p, s, q, α) > 0.
Estimates of J2 and J3: Noting the assumptions in (4.1) and then proceeding along the lines
of the proof of the estimates of I2 and I3 in [10, Step 3, pages 819-820], it follows that

|J2| + |J3| ≤ C

(
1 +

ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx

)
, (4.28)

where C = C(N , h0, s, p) > 0. Combining the estimates (4.27) and (4.28) in (4.23), we
have

J ≥ c

[
|uh − u| α−1

p (uh − u)

|h|1+θα
η

]p

Ws,p(BR)

− C

(ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx +

ˆ
BR+4h0

|∇u|q dx + 1

)
,

(4.29)

for some constants c = c(p, α) > 0 and C = C(N , h0, p, s, q, α) > 0.
Step 4: Going back to the equation. Inserting the estimates (4.22) and (4.29) in (4.6), it
follows that

ˆ
BR

∣∣∣∇( |uh − u| α−1
p (uh − u)η

|h| 1+θα
p

)∣∣∣p dx

≤ C
(ˆ

BR

|∇uh |q dx +
ˆ
BR

|∇u|q dx +
ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx + 1

)
,

+ CA
(ˆ

BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx +

ˆ
BR+4h0

|∇u|q dx + 1
)
.

(4.30)

2 We remark that to estimate J11 above in (4.24), we also used Lemma 2.1 to estimate the fractional seminorm
[u]q

W
s(p−2−ε)

p−2 ,q
(BR+h0 )

on page 818 in [10].
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for some constant C = C(N , h0, p, s, q, α) > 0. Next, we estimate the integral in the left
hand side of the above inequality (4.30). Indeed, we observe that following the lines of the
proof of the estimate (4.12) in [10, page 821] (one can run the same argument with s = 1
there), we have the following estimate

∥∥∥∥ δξ δhu

|ξ | p
α−1+p |h| 1+θα

α−1+p

∥∥∥∥
α−1+p

Lα−1+p(Br )

≤ C

∥∥∥∥ δξ

|ξ |
( |δhu| α−1

p (δhu)η

|h| 1+θα
p

)∥∥∥∥
p

L p(RN )

+ C

∥∥∥∥δξ η

|ξ |

(
|δhu| α−1

p (δhu)
)

ξ

|h| 1+θα
p

∥∥∥∥
p

L p(RN )

,

(4.31)

where C = C(p, α) > 0. Next, by Lemma 2.5 combined with the fact that η is supported
only in BR

sup
|ξ |>0

∥∥∥∥ δξ

|ξ |
( |δhu| α−1

p (δhu)η

|h| 1+θα
p

)∥∥∥∥
p

L p(Rn)

≤ C
ˆ
BR

∣∣∣∇( |δhu| α−1
p (δhu)η

|h| 1+θα
p

)∣∣∣p dx, (4.32)

where C = C(N , h0, p) > 0. Noting the properties of η, the fact that ‖u‖L∞(B1) ≤ 1
from (4.1) and using Young’s inequality as in the proof of the estimate (4.14) in [10, pages
821-822], for any 0 < |ξ | < h0, we get

∥∥∥∥δξ η

|ξ |

(
|δhu| α−1

p (δhu)
)

ξ

|h| 1+θα
p

∥∥∥∥
p

L p(RN )

≤ C
(ˆ

BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
qα

q−p+2
dx + 1

)
, (4.33)

whereC = C(N , h0, p) > 0. Combining (4.32) and (4.33) in (4.31), for every 0 < |ξ | < h0,
we have

∥∥∥∥ δξ δhu

|ξ | p
α−1+p |h| 1+θα

α−1+p

∥∥∥∥
α−1+p

Lα−1+p(Br )

≤ C
ˆ
BR

∣∣∣∇( |δhu| α−1
p (δhu)η

|h| 1+θα
p

)∣∣∣p dx

+ C
(ˆ

BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
qα

q−p+2
dx + 1

)
,

(4.34)

where C = C(N , h0, p, α) > 0. Choosing ξ = h and taking supremum over h for 0 <

|h| < h0 and then using (4.34) in (4.30), it follows that

sup
0<|h|<h0

ˆ
Br

∣∣∣ δ2hu

|h| 1+p+θα
α−1+p

∣∣∣α−1+p
dx

≤ C
(

sup
0<|h|<h0

ˆ
BR

|∇uh |q dx +
ˆ
BR

|∇u|q dx + sup
0<|h|<h0

ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx + 1

)
,

+ CA
(

sup
0<|h|<h0

ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx +

ˆ
BR+4h0

|∇u|q dx + 1
)

≤ C
(ˆ

BR+h0

|∇u|q dx + sup
0<|h|<h0

ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx + 1

)

+ CA
(

sup
0<|h|<h0

ˆ
BR

∣∣∣ δhu

|h| 1+θα
α

∣∣∣
αq

q−p+2
dx +

ˆ
BR+4h0

|∇u|q dx + 1
)
,

(4.35)

where C = C(N , h0, p, q, s, α) > 0.
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Step 5: Conclusion. Now we set,

α = q − p + 2, θ = q − p + 1

q − p + 2
.

Therefore, we obtain

1 + p + θα

α − 1 + p
= 1

q + 1
+ 1, α − 1 + p = q + 1,

qα

q − p + 2
= q,

1 + θα

α
= 1.

Plugging these values in (4.35), we finally deduce that

sup
0<|h|<h0

∥∥∥∥ δ2hu

|h| 1
q+1+1

∥∥∥∥
q+1

Lq+1(Br )

≤ C
( ˆ

BR+h0

|∇u|q dx + sup
0<|h|<h0

∥∥∥∥δhu

|h|
∥∥∥∥
q

Lq (BR)

+ 1
)

+ CA
(

sup
0<|h|<h0

∥∥∥∥δhu

|h|
∥∥∥∥
q

Lq (BR)

+
ˆ
BR+4h0

|∇u|q dx + 1
)
,

(4.36)

where C = C(N , h0, p, q, s) > 0. In particular, recalling that r = R − 4h0 and using
Theorem 3 on page 277 in [25] to estimate the difference quotients, (4.36) gives

sup
0<|h|<h0

∥∥∥∥ δ2hu

|h|1+ 1
q+1

∥∥∥∥
q+1

Lq+1(BR−4h0 )

≤ C(1 + A)

(ˆ
BR+4h0

|∇u|q dx + 1

)
, (4.37)

where C = C(N , h0, p, q, s) > 0. ��
Lemma 4.2 (Estimate of the local seminorm) Let 2 ≤ p < ∞, 0 < s < 1 and 0 ≤ A ≤ 1.
Suppose u ∈ W 1,p

loc (B2(x0)) ∩ L p−1
sp (RN ) is a weak solution of

−�pu + A(−�p)
su = 0 in B2(x0)

satisfying

‖u‖L∞(B1(x0)) ≤ 1,
ˆ
RN \B1(x0)

|u|p−1

|x |N+s p
dx ≤ 1.

Then ˆ
B 7
8
(x0)

|∇u|pdx ≤ C(N , p, s).

Proof Without loss of generality, we assume x0 = 0. We only provide the proof for w = u+,
the proof of u− is similar. We apply [28, Lemma 3.1] with r = 1, x0 = 0 and with ψ ∈
C∞
0 (B 8

9
) such that ψ = 1 on B 7

8
, 0 ≤ ψ ≤ 1 and |∇ψ | ≤ C for some C = C(N ) > 0. By

using the properties of ψ and A ∈ [0, 1] this yieldsˆ
B 7
8

|∇w|pdx ≤ C(N , p)

(ˆ
B1

|w|pdx +
ˆ
B1

ˆ
B1

(|w(x)|p + |w(y)|p) |x − y|1−sp−Ndxdy

)

+ C(N , p)
ˆ
RN \B1

|w(y)|p−1

|y|N+sp
dy

ˆ
B1

|w(x)|dx

≤ C(N , p)(1 + C(p, s) + 1).

Hence the result follows. ��

123



Higher Hölder regularity for mixed local and nonlocal… Page 23 of 36 67

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 We first observe that u ∈ L∞
loc(�), by [28, Theorem 4.2]. We assume

for simplicity that x0 = 0, then we set

MR = ‖u‖L∞(BR) + Tailp−1,s p,s p(u; 0, R) > 0.

We point out that it is sufficient to prove that the rescaled function

uR(x) := 1

MR
u(R x), for x ∈ B2, (4.38)

satisfy the estimate

[uR]Cδ(B1/2) ≤ C .

By scaling back, we would get the desired estimate. Observe that by definition, the function
uR is a local weak solution of −�pu + A Rp−ps(−�p)

su = 0 in B2 and satisfies

‖uR‖L∞(B1) ≤ 1,
ˆ
RN \B1

|uR(y)|p−1

|y|N+s p
dy ≤ 1, [uR]W 1,p(B 7

8
) ≤ C(N , p, s).

(4.39)

The last estimate follows from Lemma 4.2. In what follows, we will omit the subscript R
and simply write u in place of uR , in order not to overburden the presentation.
We fix 0 < δ < 1 and choose i∞ ∈ N \ {0} such that

1 − δ >
N

p + i∞
.

Then we define the sequence of exponents

qi = p + i, i = 0, . . . , i∞.

We define also

h0 = 1

112 i∞
, Ri = 7

8
− 4 h0 − 14 h0i, for i = 0, . . . , i∞.

We note that

R0 + 4 h0 = 7

8
and Ri∞ + 4 h0 = 3

4
.

By applying Proposition 4.1 with3

R = Ri and q = qi = p + i, for i = 0, . . . , i∞,

and by (4.39) along with A ∈ [0, 1] and R ∈ (0, 1), we obtain

sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|1+ 1
q1

∥∥∥∥∥
q1

Lq1 (BR0−4h0 )

≤ C

(
[u]p

W 1,p(B 7
8
)
+ 1

)
≤ C(N , p, s, δ). (4.40)

3 We observe that by construction we have

4 h0 < Ri ≤ 1 − 5 h0, for i = 0, . . . , i∞.

Thus these choices are admissible in Proposition 4.1.
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Noting that Ri − 10h0 = Ri+1 + 4h0 for every i = 0, 1, . . . , i∞ − 1 and using Lemma 2.4
in (4.40), we get

[u]q1
W 1,q1 (BR1+4h0 )

≤ C(N , p, s, δ). (4.41)

Again, by Proposition 4.1 and applying (4.41), we obtain

sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|1+ 1
q2

∥∥∥∥∥
q2

Lq2 (BR1−4h0 )

≤ C

(
[u]q1

W 1,q1 (BR1+4h0 )
+ 1

)
≤ C(N , p, s, δ). (4.42)

Further, using Lemma 2.4 in (4.42), we get

[u]q2
W 1,q2 (BR2+4h0 )

≤ C(N , p, s, δ). (4.43)

Repeating this procedure, we obtain the iteration scheme

[u]qi+1

W 1,qi+1 (BRi+1+4h0 )
≤ C(N , p, s, δ), (4.44)

for all i = 0, 1, . . . , i∞ − 1. Choosing i = i∞ − 1 in (4.44) and using the facts that
‖u‖L∞(B1) ≤ 1, [u]W 1,p(B1) ≤ 1, we obtain

‖u‖W 1,qi∞ (BRi∞ +4h0 )
≤ C

for C = C(N , p, s, δ) > 0. Since qi∞ > N and Ri∞ + 4h0 = 3
4 , by Morrey’s embedding

theorem, we get u ∈ Cδ
loc(B 3

4
) and

[u]Cδ(B 1
2
) ≤ C‖u‖W 1,qi∞ (BRi∞ +4h0 )

≤ C

for C = C(N , p, s, δ) > 0. Since δ ∈ (0, 1) is arbitrary, the result follows. ��
Since the result above implies that the nonlocal term is bounded when sp < (p− 1), we can
finally give the proof of Corollary 1.5.

Proof of Corollary 1.5 Upon rescaling as in the proof of Theorem 1.3, it is sufficient to prove
that ‖uR‖C1,α(B 1

8
) ≤ C with uR as defined in (4.38) satisfying

‖uR‖L∞(B1) ≤ 1,
ˆ
RN \B1

|uR(y)|p−1

|y|N+s p
dy ≤ 1. (4.45)

Theorem 1.3 implies that there is δ > sp/(p − 1) such that

[uR]Cδ(B1/2) ≤ C(N , s, p, δ).

Now take any x0 ∈ B1/4. Then
ˆ
B 1
4
(x0)

|uR(x0) − uR(y)|p−1

|x0 − y|N+sp
dy ≤ C

ˆ
B 1
4
(x0)

|x0 − y|N+sp−δ(p−1)dy = C(N , s, p, δ),

by the choice of δ. Moreover,
ˆ
RN \B 1

4
(x0)

|uR(x0) − uR(y)|p−1

|x0 − y|N+sp
dy ≤ C(N , s, p),
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by (4.45).Hence,‖(−�p)
suR‖L∞(B1/4) ≤ C(N , s, p, δ) and therefore also‖�puR‖L∞(B1/4) ≤

C(N , s, p, δ) which together with (4.45) and the well known C1,α-estimates for the p-
Laplacian (see for instance the corollary on page 830 in [19]) imply

‖uR‖C1,α(B 1
8
) ≤ C(N , s, p, δ).

��

5 Regularity for the inhomogeneous equation

In this section, we prove the boundedness and the regularity for the inhomogeneous equation.

5.1 Boundedness

We now address the boundedness, by comparing with the homogeneous equation. The first
one is a consequence of Sobolev’s inequality.

Lemma 5.1 Let 2 ≤ p < ∞, 0 < s < 1 and A ≥ 0. Suppose f ∈ Lq(�) for q > N/p if
p ≤ N and q ≥ 1 otherwise. Assume that u ∈ W 1,p

loc (�) ∩ L p−1
sp (RN ) is a weak subsolution

of

−�pu + A(−�p)
su = f in �

such that Br (x0) � � and that v ∈ W 1,p
u (Br (x0)) solves{

−�pv + A(−�p)
sv = 0 in Br (x0),

v = u in R
N \ Br (x0).

Then

‖(u − v)+‖Lq′
(Br (x0))

≤ 2
p−2
p−1
(‖ f ‖Lq (Br (x0))SN ,p

) 1
(p−1) |Br (x0)|

p
p−1 ( 1

q′ − 1
p + 1

N )
, (5.1)

‖∇(u − v)+‖L p(Br (x0)) ≤ 2
p−2
p−1 ‖ f ‖

1
p−1
Lq (Br (x0))

S
1

p(p−1)
N ,p |Br (x0)|

1
p−1 ( 1

q′ − 1
p + 1

N )
, (5.2)

and

‖(u − v)+‖L p(Br (x0)) ≤ 2
p−2
p−1C(N , p)‖ f ‖

1
p−1
Lq (Br (x0))

S
1

p(p−1)
N ,p |Br (x0)|

1
p−1 ( 1

q′ − 1
p + 1

N )+ 1
N .

(5.3)

Here, SN ,p is the constant in the Sobolev embedding in W 1,p.

Proof By Sobolev’s inequality and Hölder’s inequality we have

‖(u − v)+‖Lq′
(Br (x0))

≤ (
SN ,p

) 1
p ‖∇(u − v)‖L p(Br (x0))|Br (x0)|

1
q′ − 1

p + 1
N . (5.4)

We test the difference of the equations for u and v with (u−v)+ and observe that by Lemma
A.1 and some manipulations, we have
ˆ
RN

ˆ
RN

(Jp(u(x) − u(y)) − Jp(v(x) − v(y)))((u − v)+(x) − (u − v)+(y)) dμ ≥ 0.

123



67 Page 26 of 36 P. Garain , E. Lindgren

Therefore, we may throw away the nonlocal term. We obtain from Hölder’s inequality and
Lemma A.1

22−p
ˆ
Br (x0)

|∇(u − v)+|pdx ≤ ‖ f ‖Lq (Br (x0))‖(u − v)+‖Lq′
(Br (x0))

. (5.5)

The two inequalities (5.4) and (5.5) together imply (5.1) and (5.2). Finally, using Poincaré’s
inequality and (5.2), we obtain (5.3). ��

We now perform a Moser iteration to obtain the boundedness.

Proposition 5.2 (L∞-estimate)Let 2 ≤ p < ∞, 0 < s < 1 and A ≥ 0. Suppose f ∈ Lq(�)

for q > N/p if p ≤ N and q ≥ 1 otherwise. Assume that u ∈ W 1,p
loc (�) ∩ L p−1

sp (RN ) is a
weak subsolution of

− �pu + A(−�p)
su = f in � (5.6)

such that Br (x0) � � and that v solves{
−�pv + A(−�p)

sv = 0 in Br (x0),

v = u in R
N \ Br (x0).

(5.7)

Then (u − v)+ ∈ L∞(Br (x0)), with the following estimate

‖(u − v)+‖L∞(Br (x0)) ≤ C(N , p, q)
(
|Br (x0)|

p
N − 1

q ‖ f ‖Lq (Br (x0))

) 1
p−1

.

Proof For simplicity, we assume that x0 = 0. We follow closely the proof of Theorem 3.1 in
[11]. We first note that if p > N then by Morrey’s inequality

‖(u − v)+‖L∞(Br ) ≤ C(N , p)|Br |
1
N − 1

p ‖∇(u − v)+‖L p(Br ).

This together with Lemma 5.1 implies

‖(u − v)+‖L∞(Br ) ≤ C(N , p)‖ f ‖
1

p−1
Lq (Br )

|Br |
1

p−1 ( 1
q′ − 1

p + 1
N )|Br |

1
N − 1

p

which is the desired result.
We now prove the result for the positive part of u−v in the case p < N and then comment

on how the proof would be changed if p = N . Let w = (u − v)+, δ > 0 and β > 1. We
observe that u + δ is again a weak subsolution of (5.6). Insert the test function4

ϕ = (w + δ)β − δβ

in the difference of the equations for u + δ and v. The part coming from the nonlocal part
will be non-negative. Indeed, this part is given byˆ

RN

ˆ
RN

(
Jp(u(x) + δ − (u(y) + δ))

−Jp(v(x) − v(y)))
)
((w + δ)β(x) − (w + δ)β(y)) dμ ≥ 0.

by Lemma A.4 and some manipulations. For the local term we will apply Lemma A.1. This
gives

22−p β pp

(β + p − 1)p

ˆ
Br

∣∣∣∣∇(w + δ)
β+p−1

p

∣∣∣∣
p
dx ≤

ˆ
Br

f ϕ dx ≤ ‖ f ‖Lq (Br )‖(w + δ)β‖Lq′
(Br )

.

4 This function is not really admissible but it can be made rigorous by instead taking min(w, M) for some
M > 0 and then letting M → ∞.
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By observing that for every β ≥ 1 we have
(

β + p − 1

p

)p 1

β
≤ (β)p−1 ,

we can rewrite the previous estimate as
ˆ
Br

∣∣∣∣∇(w + δ)
β+p−1

p

∣∣∣∣
p

dx ≤ 2p−2 (β)p−1 ‖ f ‖Lq (Br )‖(w + δ)β‖Lq′
(Br )

.

With ϑ = (β + p − 1)/p, the previous inequality is equivalent to
ˆ
Br

∣∣∇(w + δ)ϑ
∣∣p dx ≤ 2p−2β p−1 ‖ f ‖Lq (Br )‖(w + δ)β‖Lq′

(Br )
. (5.8)

We now proceed using the Sobolev inequality:

(ˆ
�

|ϕ|p∗
dx

) p
p∗ ≤ SN ,p

ˆ
�

|∇ϕ|p dx, for every ϕ ∈ W 1,p
0 (�),

where p∗ = (N p)/(N − p). By using this inequality in the left-hand side of (5.8), we get

(ˆ
Br

∣∣(w + δ)ϑ − δϑ
∣∣p∗

dx

) p
p∗ ≤ SN ,p2

p−2β p−1‖ f ‖Lq (Br )‖(w + δ)β‖Lq′
(Br )

and thus

‖(w + δ)ϑ − δϑ‖L p∗ (Br )
≤ (

2p−2β p−1‖ f ‖Lq (Br )SN ,p
) 1
p ‖(w + δ)β‖

1
p

Lq′
(Br )

.

By the triangle inequality

‖(w + δ)β − δϑ‖L p∗ (Br )
≥ ‖δ p−1

p ((w + δ)
β
p − δ

β
p )‖L p∗ (Br )

≥ δ
p−1
p ‖((w + δ)

β
p ‖L p∗ (Br )

− δϑ |Br |
1
p∗ .

Therefore, since ϑ = (β + p − 1)/p, we obtain

‖(w + δ)
β
p ‖L p∗ (Br )

≤ 1

δ
p−1
p

(
2p−2β p−1‖ f ‖Lq (Br )SN ,p

) 1
p ‖(w + δ)β‖

1
p

Lq′
(Br )

+ δ
β
p |Br |

1
p∗ .

Using that β ≥ 1 we also have

δβ = ‖δβ‖Lq′
(Br )

|Br |−
1
q′ ≤ β(p−1)‖(w + δ)β‖Lq′

(Br )
|Br |−

1
q′ .

Therefore,

δ
β
p |Br |

1
p∗ ≤ β

p−1
p ‖(w + δ)β‖

1
p

Lq′
(Br )

|Br |−
1
pq′ + 1

p∗

so that

‖(w + δ)
β
p ‖L p∗ (Br )

≤ 2(p−2)/pβ(p−1)/p‖(w + δ)β‖
1
p

Lq′
(Br )

(
1

δ
p−1
p

(‖ f ‖Lq (Br )SN ,p
) 1
p + 2

2−p
p |Br |−

1
pq′ + 1

p∗
)

.

123



67 Page 28 of 36 P. Garain , E. Lindgren

Now we make the choice

δ = (
2p−2‖ f ‖Lq (Br )SN ,p

) 1
p−1 |Br |−

p
p−1 (− 1

pq′ + 1
p∗ )

.

Then we obtain the estimate

‖(w + δ)
β
p ‖L p∗ (Br )

≤ |Br |
1
p∗ − 1

pq′ β(p−1)/p‖(w + δ)β‖
1
p

Lq′
(Br )

or with the notation γ = βq ′ and χ = p∗/(pq ′) > 1

‖w + δ‖Lχγ (Br ) ≤
(

|Br |(
p
p∗ − 1

q′ )
) q′

γ
(

γ

q ′

) q′(p−1)
γ ‖(w + δ)‖Lγ (Br )

=
(

|Br |(1−
p
N − 1

q′ )
) q′

γ
(

γ

q ′

) q′(p−1)
γ ‖(w + δ)‖Lγ (Br ).

Now it is just a matter of following the exact same steps as in the proof of Theorem 3.1 in
Brasco-Parini [11] with s = 1. Here we make the choices

γ0 = q ′, γn = χnq ′.

Then
∞∑
n=0

q ′

γn
=

∞∑
n=0

χn = χ

χ − 1
= N

N − q ′ + pq ′

and

∞∏
n=0

(
γn

q ′

) q′
γn = χ

χ

(χ−1)2 .

The final estimate becomes

‖w + δ‖L∞(Br ) ≤ (C)
χ

χ−1 (χ p−1)
χ

(χ−1)2

(
|Br |(1−

p
N − 1

q′ )
) χ

χ−1 ‖w + δ‖Lq′
(Br )

,

for some constant C = C(p) > 0. Therefore

‖w‖L∞(Br ) ≤ (C)
χ

χ−1 (χ p−1)
χ

(χ−1)2

(
|Br |(1−

p
N − 1

q′ )
) χ

χ−1
(

‖w‖Lq′
(Br )

+ δ|Br |
1
q′
)

.

By the choice of δ this becomes

‖w‖L∞(Br ) ≤ (C)
χ

χ−1 (χ p−1)
χ

(χ−1)2(
|Br |−

1
q′ ‖w‖Lq′

(Br )
+
(
2p−2|Br |

p
N − 1

q ‖ f ‖Lq (Br )SN ,p

) 1
p−1

)
.

By the estimate (5.1) in Lemma 5.1 we obtain

‖w‖L∞(Br ) ≤ (C)
χ

χ−1 (χ p−1)
χ

(χ−1)2

(
2

p−2
p−1 ‖ f ‖

1
p−2
Lq (Br )

S
1

(p−1)
N ,p |Br |

p
p−1 ( 1

q′ − 1
p + 1

N )− 1
q′

+
(
|Br |

p
N − 1

q ‖ f ‖Lq (Br )SN ,p

) 1
p−1

)

≤ C(N , p, q)
(
|Br |

p
N − 1

q ‖ f ‖Lq (Br )SN ,p

) 1
p−1

.
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Comment on the case p = N . For the case p = N , we simply replace the Sobolev
embedding with the embedding inequality of W 1,N

0 (Br ) into Lq for q large. ��

Proof of Theorem 1.2 We may assume x0 = 0. Upon using the rescaling x �→ Rx it is also
enough to prove the estimate

‖u+‖L∞(Bσ ) ≤ C(N , p, s, σ )

[( 
B1

|u+|p dx
) 1

p + Tailp−1,s p,s p(u
+; 0, 1) + ‖ fR‖

1
p−1
Lq (B1)

]
,

for a solution of

−�pu + ARp−sp(−�p)
s u = fR(x) := Rp f (Rx)

in B1. Take ρ = (1 − σ)/2 + σ and let v be the solution of
{−�pv + ARp−sp(−�p)

s v = 0, in Bρ,

v = u, in R
N \ Bρ.

By Proposition 5.2

‖(u − v)+‖L∞(Bρ) ≤ C(N , p, q)

(
|Bρ |

p
N − 1

q ‖ fR‖Lq (Bρ))

) 1
p−1 = C(N , p, q, σ )‖ fR‖

1
p−1
Lq (Bρ)

.

Moreover, by [28, Theorem 4.2] (note that Rp−sp < 1, since R < 1)

‖v+‖L∞(Bσ ) ≤ C(N , p, s)

[( 
B2σ

|v+|p dx
) 1

p + Tailp−1,s p,s p(v
+; 0, σ )

]
,

Therefore,

‖u+‖L∞(Bσ ) ≤ ‖v+‖L∞(Bσ ) + ‖(u − v)+‖L∞(Bσ )

≤ C(N , p, s)

[( 
B2σ

|v+|p dx
) 1

p + Tailp−1,s p,s p(v
+; 0, σ )

]

+ C(N , p, q, σ )‖ fR‖
1

p−1
Lq (Bρ)

≤ C(N , p, q, s, σ )

⎡
⎣
( 

Bρ

|v+|p dx
) 1

p

+ Tailp−1,s p,s p(v
+; 0, ρ) + ‖ fR‖

1
p−1
Lq (Bρ)

⎤
⎦

≤ C(N , p, q, s, σ )

[( 
B1

|u+|p dx
) 1

p + Tailp−1,s p,s p(u
+; 0, 1) + ‖ fR‖

1
p−1
Lq (B1)

]
,

where we used Lemma 5.1 to estimate the L p-norm of v+ in terms of the L p-norm of u+
and the fact that u = v outside Bρ to estimate the tail term. This is the desired result. ��

5.2 Higher Hölder regularity

Here we turn our attention to the regularity of the inhomogenous equation. We first establish
the regularity when f is small and then extend this to the desired result.
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Proposition 5.3 Let 2 ≤ p < ∞, 0 < s < 1 and q be such that⎧⎪⎪⎨
⎪⎪⎩
q >

N

p
, if p ≤ N ,

q ≥ 1, if p > N ,

We consider � = �(N , p, q) the exponent defined as

� = min
{
1,

p − N/q

p − 1
,

sp

p − 1

}
.

For every 0 < ε < � there exists η(N , p, q, s, ε) > 0 such that if f ∈ Lq
loc(B4(x0)) and

‖ f ‖Lq (B1(x0)) ≤ η, 0 ≤ A ≤ 1,

then every weak solution u ∈ W 1,p
loc (B4(x0)) ∩ L p−1

s p (RN ) of the equation

−�pu + A(−�p)
su = f , in B4(x0),

that satisfy

‖u‖L∞(B1(x0)) ≤ 1,
ˆ
RN \B1(x0)

|u|p−1

|x |N+s p
dx ≤ 1 (5.9)

belongs to C�−ε(B1/8(x0)) with the estimate

[u]C�−ε(B1/8(x0))
≤ C(N , s, p, q, ε).

Proof Without loss of generality, we may assume that x0 = 0. We divide the proof in two
parts.
Part 1: Regularity at the origin. Here we prove that for every 0 < ε < � and every
0 < r < 1/2, there exists η and a constant C = C(N , p, q, s, ε) > 0 such that if f and u
are as above, then we have

sup
x∈Br

|u(x) − u(0)| ≤ C r�−ε.

Without loss of generality, we assume u(0) = 0. Fix 0 < ε < � and observe that it is
sufficient to prove that there exists λ < 1/2 and η > 0 (depending on N , p, q, s and ε) such
that if f and u are as above, then

sup
B

λk

|u| ≤ λk (�−ε),

ˆ
RN \B1

∣∣∣∣ u(λk x)

λk (�−ε)

∣∣∣∣
p−1

|x |−N−s p dx ≤ 1, (5.10)

for every k ∈ N. Indeed, assume this is true. Then for every 0 < r < 1/2, there exists k ∈ N

such that λk+1 < r ≤ λk . From the first property in (5.10), we obtain

sup
Br

|u| ≤ sup
B

λk

|u| ≤ λk (�−ε) = 1

λ�−ε
λ(k+1) (�−ε) ≤ C r�−ε,

as desired.
We prove (5.10) by induction. For k = 0, (5.10) holds true by the assumptions in (5.9).
Suppose (5.10) holds up to k, we now show that it also holds for k + 1, provided that

‖ f ‖Lq (B1) ≤ η,
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with η small enough, but independent of k. Define

wk = u(λk x)

λk (�−ε)
.

By the hypotheses

‖wk‖L∞(B1) ≤ 1 and
ˆ
RN \B1

|wk |p−1

|x |N+s p
dx ≤ 1. (5.11)

Moreover

−�pwk(x) + A λkp(1−s)(−�p)
swk(x) = λk [p−(�−ε)(p−1)] f (λk x) =: fk(x),

so that

‖ fk‖Lq (B1) = λk(p−(�−ε)(p−1))λ
− N

q k

(ˆ
B

λk

| f |q dx
) 1

q

≤ ‖ f ‖Lq (B1) ≤ η.

Here we used the hypotheses on f and the definition of �, and again the fact that λ < 1/2.
By Theorem 1.1, we may take hk to be the weak solution of{−�ph + A λkp(1−s)(−�p)

sh = 0, in B1,

h = wk, in R
N \ B1.

By Proposition 5.2, we have

‖wk − hk‖L∞(B3/4) < Cη
1

p−1 , C = C(N , p, q).

Then, we have the following estimate

|wk(x)| ≤ |wk(x) − hk(x)| + |hk(x) − hk(0)| + |hk(0) − wk(0)|
≤ 2Cη

1
p−1 + [hk]C�−ε/2(B1/2) |x |�− ε

2 , for x ∈ B1/2,
(5.12)

We also used that hk is C�−ε/2 in (B1/2) thanks to Theorem 1.3, that implies5

[hk]C�−ε/2(B1/2) ≤ C
(‖hk‖L∞(B1) + Tailp−1,sp,sp(hk, 0, 1)

) ≤ C1, C1 = C1(N , p, q, s, ε).

Here we have observed that the quantities in the right-hand side are uniformly bounded,
independently of k. Indeed, by the triangle inequality, Proposition 5.2 and (5.11) we have

‖hk‖L∞(B1) ≤ ‖hk − wk‖L∞(B1) + ‖wk‖L∞(B1) ≤ Cη
1

p−1 + 1.

Let

wk+1(x) = u(λk+1 x)

λ(k+1) (�−ε)
= wk(λ x)

λ�−ε
.

By choosing η so that 2Cη
1

p−1 < λ� and λ small enough, we can transfer estimate (5.12) to
wk+1. Indeed, we have

|wk+1(x)| ≤ 2Cη
1

p−1 λε/2−� + C1 λε/2|x |�−ε/2 ≤ (1 + C1 |x |�−ε/2) λε/2, x ∈ B 1
2λ

.

5 Note that Theorem 1.3 gives an estimate in B 1
4
, but by covering B 1

2
with balls of radius 1/4 this yields an

estimate in B 1
2
.
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The previous estimate implies in particular that ‖wk+1‖L∞(B1) ≤ 1 for λ satisfying

λ < min

{
1

2
, (1 + C1)

− 2
ε

}
. (5.13)

This information, rescaled back to u, is exactly the first part of (5.10) for k + 1. As for the
second part of (5.10), the upper bound for |wk+1| and the fact that � <

sp
p−1 imply

ˆ
B 1
2λ

\B1
|wk+1|p−1

|x |N+s p
dx ≤ λε (p−1)/2

ˆ
B 1
2λ

\B1
(1 + C1 |x |�−ε/2)p−1

|x |N+s p
dx

≤ (1 + C1)
p−1 λε (p−1)/2

ˆ
B 1
2λ

\B1
1

|x |N+sp+(ε/2−�) (p−1)
dx

≤ C2

s p − (� − ε/2) (p − 1)
λε (p−1)/2.

(5.14)

By a change of variables and using that |wk | ≤ 1 in B1, we also see that
ˆ
B 1

λ
\B 1

2λ

|wk+1|p−1

|x |N+s p
dx

= λ(ε−�) (p−1)+s p
ˆ
B1\B 1

2

|wk(x)|p−1

|x |N+s p
dx ≤ C3 λε (p−1)/2. (5.15)

In addition, by the integral bound on wk in (5.11)
ˆ
RN \B 1

λ

|wk+1(x)|p−1

|x |N+s p
dx

= λ(ε−�) (p−1)+s p
ˆ
RN \B1

|wk(x)|p−1

|x |N+s p
dx ≤ λε (p−1)/2. (5.16)

In both estimates, we have also used that λ < 1/2 and the fact that

(ε − �) (p − 1) + s p ≥ ε
p − 1

2
. (5.17)

We observe that the constantsC2 andC3 depend on N , p, q, s and ε only. From (5.14), (5.15)
and (5.16), we get that the second part of (5.10) holds, provided that(

C2

ε (p − 1)
+ C3 + 1

)
λε (p−1)/2 ≤ 1.

By taking (5.13) into account, we finally obtain that (5.10) holds true at step k + 1 as well,
provided that λ and η (depending on N , p, q, s and ε) are chosen so that

λ < min

{
1

2
, (1 + C1)

− 2
ε ,

(
C2

ε (p − 1)
+ C3 + 1

) 2
ε (p−1)

}
and 2Cη

1
p−1 <

λ�

2
.

The induction is complete.
Part 2: We now show the desired regularity in the whole ball B1/8. We choose 0 < ε < �

and take the corresponding η, obtained in Part 1. Take z0 ∈ B1/2, let L = 2N+1 (1 + |B1|)
and define

v(x) := L− 1
p−1 u

( x
2

+ z0
)

, x ∈ R
N .
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We observe that v ∈ W 1,p
loc (B4) ∩ L p−1

s p (RN ) and that v is a weak solution in B4 of

−�pv(x) + A 2sp−p(−�p)
sv(x) = 2−p

L
f
( x
2

+ z0
)

=: f̃ (x),

with

∥∥ f̃ ∥∥Lq (B1)
= 2N/q−p

L
‖ f ‖Lq (B 1

2
(z0)) ≤ 2N/q−p

L
η < η.

By construction, we also have

‖v‖L∞(B1) ≤ 1,

and since B1/2(z0) ⊂ B1, it follows that
ˆ
RN \B1

|v(x)|p−1

|x |N+s p
dx = 2−s p

L

ˆ
RN \B1/2(z0)

|u(y)|p−1

|y − z0|N+s p
dy

≤ 1

L

(
1

2

)s p ( 1

1 − |z0|
)N+s p ˆ

RN \B1
|u(y)|p−1

|y|N+s p
dy + 2N

L
‖u‖p−1

L p−1(B1)

≤ 2N

L

ˆ
RN \B1

|u(y)|p−1

|y|N+s p
dy + 2N |B1|

L
‖u‖p−1

L∞(B1)
≤ 1,

by the definition of L and the hypotheses in (5.9). Here we have used Lemma 2.3 in [10]
with the balls B1/2(z0) ⊂ B1. We may therefore apply Part 1 to v and obtain

sup
x∈Br

|v(x) − v(0)| ≤ C r�−ε, 0 < r <
1

2
.

In terms of u this is the same as

sup
x∈Br (z0)

|u(x) − u(z0)| ≤ C L
1

p−1 r�−ε, 0 < r <
1

4
. (5.18)

We note that this holds for any z0 ∈ B1/2. Now take any pair x, y ∈ B1/8 and set |x − y| = r .
We observe that r < 1/4 and we set z = (x + y)/2. Then we apply (5.18) with z0 = z and
obtain

|u(x) − u(y)| ≤ |u(x) − u(z)| + |u(y) − u(z)| ≤ 2 sup
w∈Br (z)

|u(w) − u(z)|

≤ 2C L
1

p−1 r�−ε = 2C L
1

p−1 |x − y|�−ε,

which is the desired result. ��
We are now in the position to prove Theorem 1.4.

Proof of Theorem 1.4 Wemay assume x0 = 0 without loss of generality. We modify u so that
it fits into the setting of Proposition 5.3. We choose 0 < δ < �, take η as in Proposition 5.3
with the choice ε = � − δ and set

AR = ‖u‖L∞(BR) +
(
Rs p

ˆ
RN \BR

|u(y)|p−1

|y|N+s p
dy

) 1
p−1

+
(
Rp−N/q‖ f ‖Lq (BR)

η

) 1
p−1

.

By scaling arguments, it is sufficient to prove that the rescaled function

uR(x) := 1

AR
u(R x), for x ∈ B4,
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satisfies the estimate

[uR]Cδ(B1/8) ≤ C .

It is easily seen that the choice of AR implies

‖uR‖L∞(B1) ≤ 1,
ˆ
RN \B1

|uR |p−1

|x |N+s p
dx ≤ 1.

In addition, uR is a weak solution of

−�puR (x) + A Rp−spuR(−�p)
suR (x) = Rp

Ap−1
R

f (R x) := fR(x), x ∈ B4,

with ‖ fR‖Lq (B1) ≤ η and Rp−sp < 1.Wemay therefore apply Proposition 5.3with ε = �−δ

to uR and obtain

[uR]Cδ(B1/8) ≤ C .

This concludes the proof. ��
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A Pointwise inequalities

In this section, we list the pointwise inequalities used throughout the whole paper.
The following result can be found in [33, page 97, Inequality (I)].

Lemma A.1 For a, b ∈ R
N and p ≥ 2, we have

〈|a|p−2a − |b|p−2, a − b〉 ≥ 22−p|a − b|p.
For the following result, see [33, page 99, Inequality (V)].

Lemma A.2 Let a, b ∈ R
N . Then for any p ≥ 2, we have

〈|b|p−2b − |a|p−2a, b − a〉 ≥ 4

p2

∣∣∣|b| p−2
2 b − |a| p−2

2 a
∣∣∣2. (1.1)

For the following inequality, see [33, page 100, Inequality (VI)].
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Lemma A.3 Let a, b ∈ R
N . Then, for any p ≥ 2, we have∣∣∣|b|p−2b − |a|p−2a

∣∣∣ ≤ (p − 1)
(
|b| p−2

2 + |a| p−2
2

)∣∣∣|b| p−2
2 b − |a| p−2

2 a
∣∣∣. (1.2)

The following is Lemma A.5 in [10].

Lemma A.4 Let p ≥ 2, γ ≥ 1 and a, b, c, d ∈ R. Then we have(
Jp(a − c) − Jp(b − d)

)(
Jγ+1(a − b) − Jγ+1(c − d)

)

≥ 1

C

∣∣∣|a − b| γ−1
p (a − b) − |c − d| γ−1

p (c − d)

∣∣∣p,
(1.3)

for some C = C(p, γ ) > 0.
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