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Abstract
We prove a general Li–Yau inequality for the Helfrich functional where the spontaneous
curvature enters with a singular volume type integral. In the physically relevant cases, this
term can be converted into an explicit energy threshold that guarantees embeddedness. We
then apply our result to the spherical case of the variational Canham–Helfrich model. If
the infimum energy is not too large, we show existence of smoothly embedded minimizers.
Previously, existence of minimizers was only known in the classes of immersed bubble trees
or curvature varifolds.

Mathematics Subject Classification 53C42 (primary) · 49Q10 · 92C10 (secondary)

1 Introduction

Lipid bilayers make up the cellular membranes of most organisms. These extremely
thin structures commonly form vesicles, so mathematically they are naturally modeled as
two-dimensional structures, i.e. closed surfaces. The Canham–Helfrich model [10, 19] char-
acterizes the equilibrium shapes of lipid bilayers as (constrained) minimizers of a curvature
dependent bending energy. For an oriented surface � and an immersion f : � → R

3, the
Helfrich energy is defined by

Hc0( f ) := 1

4

ˆ

�

|H − c0n|2 dμ.

Here, H = H f is the mean curvature vector of the immersion, i.e. the trace of the second
fundamental form, n = n f is the unit normal induced by the orientation of � (see (2.6)
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below) and μ = μ f denotes the Riemannian measure associated to the pullback metric
g = g f = f ∗〈·, ·〉 on�, where 〈·, ·〉 denotes the Euclidean inner product inR

3. The constant
c0 ∈ R is called spontaneous curvature. Since H is normal to the surface, the Helfrich energy
can also be written as

Hc0( f ) = 1

4

ˆ

�

(Hsc − c0)
2 dμ,

where Hsc := 〈H , n〉 is the scalar mean curvature with respect to n. We choose the inner unit
normal such that the standard embedding of the round sphere of radius r > 0 has positive
scalar mean curvature Hsc = 2

r > 0. In particular, if c0 > 0, the Helfrich energy is zero for
a round sphere of appropriately chosen radius. Reversing the orientation on � corresponds
precisely to replacing n by −n. Thus, we have

Hc0( f ) = H−c0( f̂ ), (1.1)

where �̂ is the surface � with reversed orientation and f̂ : �̂ → R
3, f̂ (p) = f (p). Clearly,

the Helfrich functional is not scale-invariant. However, we observe the following scaling
property involving both arguments:

Hc0( f ) = H c0
r
(r f ) for r > 0.

In particular, we see that

lim
r→0+Hc0(r f ) = lim

r→0+Hrc0( f ) = H0( f ) =: W( f ). (1.2)

The right hand side is well known as the Willmore energy. In contrast to the Helfrich func-
tional, the Willmore functionalW is scale-invariant and does not depend on the unit normal
field n or the orientation of the underlying surface �. One may also consider the L2-CMC-
deficit

H̄( f ) := inf
c0∈R

Hc0( f ) = 1

4

ˆ

�

(Hsc − H̄sc)
2 dμ, (1.3)

where H̄sc := ffl
�

Hsc dμ is the average scalar mean curvature. Also the functional H̄ is scale-
invariant and does not depend on the orientation of �. For more details and corresponding
results, see Sects. 5.2 and 6.4.

We are primarily interested in the following minimization problem suggested by Canham
[10] and Helfrich [19] in order to study the shape of red blood cells. Our main contribution
is stated in Theorem 1.6 below (see also Theorem 6.10).

Problem 1.1 Let c0 ∈ R and A0, V0 > 0 be given constants. Let the unit sphere S
2 ⊂ R

3

be oriented by the inner unit normal. Minimize the functional Hc0 in the class of smooth
embeddings f : S

2 → R
3 subject to the constraints

A( f ) :=
ˆ

S2

1 dμ = A0, V( f ) := −1

3

ˆ

S2

〈 f , n〉 dμ = V0.

We consider the following example of Problem 1.1 where the infimum cannot be attained
by a smooth embedding, cf. [31].

Example 1.2 Let ιS2 : S
2 → R

3 be the inclusion of the unit sphere. Let c0 := 2,
A0 := 2A(ιS2), and V0 := 2V(ιS2). There exists a sequence of smooth embeddings
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Fig. 1 Visualization of the construction

fk : S
2 → R

3 satisfying A( fk) = A0 and V( fk) = V0 which converges in the varifold
topology to the set T ⊂ R

3 given by two translations of the unit sphere that meet in exactly
one point (see Fig. 2a) such that

lim
k→∞Hc0( fk) = 2Hc0(ιS2) = 0. (1.4)

To see this, let ��,r be the spherical C1,1-regular surface that results by gluing two spherical
caps at the ends of a cylinder of length � ≥ 0 with radius r > 0. Denote with �0,�,r the
disjoint union of ��,1 with �0,r (a sphere with radius r ) and with �a,�,r the spherical C1,1-
regular surface that results by connecting ��,1 with �0,r through a catenoidal bridge of
small neck size a > 0, cf. Fig. 1. The sequence (�k−1,0,1)k∈N satisfies (1.4). However, the
gluing only gives C1,1-regularity and the conditions on area and volume are not met. We will
first adjust the isoperimetric ratio defined by I := A3/V2. A short computation reveals that
Ia,�,r := I(�a,�,r ) satisfies

I0,�,1 > I0,0,1 =: I0 = A3
0/V 2

0 > I0,0,r for � > 0 and 0 < r < 1.

Moreover, Ia,�,r depends continuously on a ≥ 0, � ≥ 0 and r > 0. Hence, if k ∈ N and
Ik−1,0,1 > I0, we can first choose 1 − k−1 < rk < 1 such that still Ik−1,0,rk

> I0 and then
0 < ak < k−1 with Iak ,�k ,rk = I0 where �k = 0. If on the other hand k ∈ N and Ik−1,0,1 < I0,
we can first choose 0 < �k < k−1 such that still Ik−1,�k ,1 < I0 and then 0 < ak < k−1

with Iak ,�k ,rk = I0 where rk = 1. Now, we let Sk = �ak ,�k ,rk and choose λk > 0 such that
A(λk Sk) = A0 and V(λk Sk) = V0. Then, since ak → 0, �k → 0, and rk → 1 as k → ∞,
there holds A(Sk) → A0, so V(Sk) → V0 and λk → 1. It follows that also the sequence
(λk Sk)k∈N satisfies (1.4).

In order to have C∞-regularity, one can apply mollifications near the patching regions
and subsequently compensate possible changes of area and volume using [32, Lemma 2.1]
supported on the catenoid away from the mollifiers.

Consequently, the infimum of Problem 1.1 is attained by the set T . Clearly, T cannot be
written as the image of a smooth immersion of S

2. If on the other hand f : S
2 → R

3 is a
smooth immersion withHc0( f ) = 0 then, by a result of Hopf [20, Chapter VI, Theorem 2.1],
the image of f must be a round sphere. In particular, if f : S

2 → R
3 is a smooth embedding

with Hc0( f ) = 0, then A( f ) 
= A0 and V( f ) 
= V0.
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In the terminology of [30, 31], the set T in Example 1.2 is the bubble tree consisting of
two unit spheres. Bubbling phenomena have also been observed in nature and are known
as budding transition [42]. Thus, the space of bubble trees appears to be a natural class in
which to minimize the Helfrich functional. Indeed, in [31, Theorem 1.7], the existence of
minimizers for theHelfrich functional in the class of immersed bubble trees was proven. Each
of the bubbles is given by a map S

2 → R
3 which outside of finitely many so called branch

points is a smooth immersion. For similar results, see [11, 15]. However, not all minimizers of
Problem 1.1 are necessarily bubble trees, consider for instance the case c0 = 2, A0 = A(ιS2),
V0 = V(ιS2). One may conjecture that bubbling can only occur if the parameters A0 and V0

are within a certain range depending on c0. Apart from the geometric relevance to obtain
such qualitative results for the minimizers of Problem 1.1, it is of great interest to confirm
mathematically that the Canham–Helfrich model is suitable for the study of red blood cells
which are actually embedded—rather than a bubble tree. As a first step in this direction it was
proven in [31] that there exists a constant ε = ε(A0, V0) > 0 such that the minimizers are
given by smooth embeddings provided |c0| < ε. However, apart from the fact that ε(A0, V0)

is implicitly small, one would rather want to have a criterion of the following type: For all
c0 ∈ R, the Problem 1.1 has a solution provided A0 and V0 are in a certain explicit range
depending on c0.

The proof of embeddedness of minimizers in [31] is based on the fact that for |c0| small,
the Helfrich functional is close to the Willmore functional, see (1.2), and minimizers for
c0 = 0 are given by smooth embeddings, see [41]. A crucial tool to prove smoothness and
embeddedness of the minimizers in [41] (i.e. solutions of Problem 1.1 for c0 = 0) is the
following inequality of Li and Yau [25, Theorem 6]. If � is closed (i.e. compact and without
boundary), for any x0 ∈ R

3 we have

H0( f −1{x0}) ≤ 1

4π
W( f ), (1.5)

where H0 denotes the counting measure. In particular, if W( f ) < 8π , then f must be an
embedding. This observation also played an essential role in the study of theWillmore energy
and related topics, cf. for instance [22–24, 33, 35, 41, 43].

In view of the fact that branch points have multiplicity at least 2, such a tool could be the
key to exclude bubbling in the Canham–Helfrich model. Apart from comparing the Helfrich
energy with the Willmore energy for small |c0| via (1.2), one might also try to make use of
the Li–Yau inequality (1.5) by estimating the Willmore energy from above in terms of the
Helfrich energy (see (2.5)):

W( f ) ≤ 2Hc0( f ) + 1

2
c20A( f ). (1.6)

Again, if the right hand side is strictly less than 8π , then the Li–Yau inequality (1.5) implies
that f is an embedding. However, as one of our results reveals (see Lemma 6.1), in the case
of red blood cells where c0 < 0 (see [13]), there holds Hc0( f ) > 4π . In particular, the
right hand side of (1.6) is already strictly larger than 8π and one cannot apply the Li–Yau
inequality (1.5) to deduce embeddedness of f .

Another naive attempt to apply (1.5) would be to show that W ≤ Hc0 for c0 < 0.
However, this is impossible by the following simple scaling argument. Let f : S

2 → R
3 be

an immersion such that
´
S2

Hsc dμ < 0 (such an f exists by [12, Theorem 1.2]). We find that

Hc0(r f ) − W(r f ) = −rc0
2

ˆ

S2

Hsc dμ + r2c20
4

A( f )
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which becomes negative if r > 0 is sufficiently small as c0 < 0.

1.1 Main results

Instead of applying (1.5) by comparing the Helfrich energy with the Willmore energy, the
aim of this article is to prove and apply a Li–Yau type inequality directly for the Helfrich
functional. In the smooth setting, our multiplicity inequality reads as follows.

Lemma 1.3 Let f : � → R
3 be a smooth proper immersion of an oriented surface � without

boundary. Let c0 ∈ R, x0 ∈ R
3, and suppose that the concentrated volume of f at x0 defined

by

Vc( f , x0) := −
ˆ

�

〈 f − x0, n〉
| f − x0|2 dμ (1.7)

exists. Then

H0( f −1{x0}) ≤ lim sup
ρ→∞

μ( f −1(Bρ(x0)))

πρ2 + 1

4π
Hc0( f ) + c0

2π
Vc( f , x0). (1.8)

In order to apply Eq. (1.8), it is of crucial interest to determine the sign of the concen-
trated volume. Despite singular, the integrand in (1.7) is subcritical and locally integrable,
see Lemma 3.2 and Remark 3.3 below. Moreover, the integrand is nonpositive if f [�]
parametrizes the boundary of an open set in R

3 which is star-shaped with respect to x0 and
n is the inner unit normal, cf. [16, 9.4.2]. However, such an immersion f must be embedded
a priori.

It turns out that the sign of the concentrated volume can be determined if we can find a
suitable notion of inner unit normal, resulting in an appropriate divergence theorem.

Definition 1.4 We call a smooth immersion f : � → R
3 of a closed surface� anAlexandrov

immersion, cf. [1], if there exist a smooth compact 3-manifold M with boundary ∂ M = �,
a smooth inner unit normal field ν to � and a smooth immersion F : M → R

3 such that
F |� = f . The surface � is then necessarily orientable. Moreover, we choose the orientation
on � such that the induced normal field along f (see (2.6) below) satisfies n = dF(ν).

Our orientation on � does not coincide with the usual Stokes orientation. The reason for
this is that we want to work with the inner unit normal such that the standard embedding of
a round sphere has positive scalar mean curvature.

In the setting of Definition 1.4, the Li–Yau inequality (1.8) can be put into the following
more convenient form.

Theorem 1.5 Let � be a closed surface and let f : � → R
3 be an Alexandrov immersion

with f = F |� , F : M → R
3 as in Definition 1.4. Then for all x0 ∈ R

3 we have

H0( f −1{x0}) ≤ 1

4π
Hc0( f ) + c0

2π

ˆ

F[M]

H0(F−1{x})
|x − x0|2 dL3(x).

In particular, in case c0 ≤ 0 we infer

H0( f −1{x0}) ≤ 1

4π
Hc0( f ).
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Due to round spheres, the above extension of (1.5) can only hold if c0 ≤ 0 and n is the
inner unit normal. Of course, in view of (1.1) we could simply reverse the orientation on �,
but this will generically make it impossible to find an Alexandrov immersion where M in
Definition 1.4 is compact.

As a key application of our Li–Yau inequalities, we prove the following contribution to
Problem 1.1 based on the previous result in [31].

Theorem 1.6 Let c0 ∈ R and suppose A0, V0 > 0 satisfy the isoperimetric inequality
36πV 2

0 ≤ A3
0. Set

η(c0, A0, V0) := inf{Hc0( f ) f ∈ C∞(S2; R
3) embedding, A( f )= A0,V( f )=V0}. (1.9)

There exists �(c0, A0, V0) ∈ R such that if

η(c0, A0, V0) < 8π + �(c0, A0, V0)

then the infimum in (1.9) is attained. Moreover, there holds

�(c0, A0, V0) ≥

⎧
⎪⎨

⎪⎩

4π

(√

1 + |c0|V0

2·92(A0+ 2
3 |c0|V0)

− 1

)

if c0 < 0,

−6c0(4π2V0)
1
3 if c0 ≥ 0.

In particular �(c0, A0, V0) > 0 for c0 < 0 and for any c0 ≤ 0 there exist A0, V0 > 0 with
η(c0, A0, V0) < 8π .

The explicit estimates of the constant �(c0, A0, V0) are due to further geometric appli-
cations of our Li–Yau inequality, see Lemma 6.4 and Remark 6.11. As a consequence of
Theorem 1.6, the only missing step to exclude bubbling in Problem 1.1 are estimates from
above for η(c0, A0, V0). This is an interesting problem to be addressed in future research.
One idea is to construct example surfaces that can be used to derive these bounds numerically.

1.2 A suitable setup for the Li–Yau inequalities

We now discuss the different notions of (generalized) surfaces that we want to prove and
apply Li–Yau inequalities for. There are four key points to be considered.

(i) In order to even define the Helfrich energy, the surface needs to have a unit normal
vector field. In the smooth case, this naturally means that the surface is orientable.

(ii) One of the main applications of the classical Li–Yau inequality for the Willmore func-
tional is to deduce embeddedness of immersions whose energy lies strictly below 8π .
Therefore, the Li–Yau inequality should hold for surfaces that are not already embedded
a priori, i.e. we want to allow for multiplicity points.

(iii) In order to actually apply theLi–Yau inequality for theHelfrich energy (seeLemma1.3),
it is necessary to determine the sign of the concentrated volume (1.7). A sufficient tool
to do so would be a divergence theorem.

(iv) Another important application of the classical Li–Yau inequality is to infer regularity
and embeddedness of minimizers. It is therefore of interest to prove Li–Yau inequalities
for weak surfaces that have good compactness properties.

Oriented varifolds The most general notion of surface that comprises all shapes shown in
Fig. 2a–i and that naturally satisfies Items (i), (ii), and (iv) are oriented varifolds, cf. [21].
They generalize the idea of immersed submanifolds and allow for a generalized concept of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Profiles of surfaces with different types of multiplicity points. Dotted lines indicate rotationally sym-
metric surfaces

mean curvature. Since they also possess strong compactness properties, they have already
been applied in several variational settings for the Canham–Helfrich model, see [8, 14, 15].
Our most general version of the Li–Yau inequality for oriented varifolds, Theorem 4.2, is
also applicable if the first variation has a nontrivial singular part β (see Hypothesis 2.1). The
reason for this generality is that we would like the Li–Yau inequality to be applicable for
surfaces like the one shown in Fig. 2g, see also Example 4.7.Moreover, the Li–Yau inequality
can then also be applied in the context of boundary problems, see [14]. These are naturally
formulated using curvature varifolds with boundary, cf. [26].
Alexandrov immersions In nature, one expects the principle of noninterpenetration of mat-
ter to hold true. As for vesicles that means there is a clearly defined inside. Nevertheless,
membranes can be squeezed together as in Fig. 2b, d, e. In order to satisfy a divergence
theorem, a surface should possess a well defined inside. In the smooth case, the so called
Alexandrov immersions (see [1] and Definition 1.4 above) do satisfy a divergence theorem,
see Lemma 5.1 below. They allow for multiplicity points as shown in Fig. 2b, c. Moreover,
since the underlying 3-manifold of an Alexandrov immersion does not have to be connected,
they also allow for multiplicity points that arise from two touching surfaces as shown in
Fig. 2a or even two intersecting surfaces as shown in Fig. 2h. However, the rotationally
symmetric surface in Fig. 2d is not an Alexandrov immersion. The Li–Yau inequality for
Alexandrov immersions is stated in Theorem 1.5.

123
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Sets of finite perimeter A nonsmooth notion of surfaces that satisfy a divergence theorem
are the boundaries of sets of finite perimeter, cf. [17, Chapter 5]. As opposed to Alexandrov
immersions, they allow for multiplicity points as shown in Fig. 2d but they do not allow
for the multiplicity points in Fig. 2c. Sets of finite perimeter do have good compactness
properties. Moreover, they comprise nonsmooth objects as shown in Fig. 2g and discussed
in Example 4.7. In Sect. 4.3, we introduce a weak notion of Alexandrov immersions, the
varifolds with enclosed volume. Their underlying 3-dimensional structure is a sequence of
decreasing sets of finite perimeter. They allow for multiplicity points as in Fig. 2a–e and
Fig. 2h and still satisfy a divergence theorem. The corresponding Li–Yau inequality is stated
in Corollary 4.11.
Currents Another important class of surfaces that naturally satisfies Items (i) and (iv) above
are currents (see [18, Chapter 4]). A downside of this concept is that the current associated
with the immersion of Fig. 2e corresponds to the surface shown in Fig. 2f. More precisely,
a current induced by an immersion with a given unit normal field looses information about
multiplicity points that arise byoverlappingwhere the sumof the unit normal vectors vanishes,
cf. also (6.17). As a consequence, the varifold corresponding to the surface in Fig. 2f has a
nontrivial singular part while the varifold corresponding to the immersion of Fig. 2e has no
singular part.
Lipschitz quasi-embeddings In Sect. 6.3, we introduce a concept to model cellular mem-
branes as weak immersions that can only self intersect tangentially. This is a new concept
inspired by the previously developed Lipschitz immersions of Rivière [33]. The resulting
class of surfaces is termed Lipschitz quasi-embeddings and satisfies Items (i)–(iv) above.
They describe cellular shapes and comprise the surfaces in Fig. 2b, d, e, but do not allow
for interpenetration as in Fig. 2c. It turns out that this class is well-suited for the variational
discussion of the spherical Canham–Helfrich model which is why we rely on it for the proof
of Theorem 1.6.

The only kind of surface where the sign of the concentrated volume cannot be determined
in general are those surfaces where the unit normal vector field changes between inner and
outer, see Fig. 2i and Example 3.8. These are surfaces where interpenetration necessarily
happens.

1.3 Structure of this article

After a brief discussion of the geometric and measure theoretic background in Sect. 2, we
examine the concentrated volume and its properties in Sect. 3. This includesHölder continuity
in x0 ∈ R

3 and continuity with respect to varifold convergence. In Sect. 4, we then derive a
monotonicity formula for the Helfrich functional, from which we deduce our most general
Li–Yau inequality for varifolds, Theorem 4.2. After that, we review the notion of sets of
finite perimeter and introduce the concept of varifolds with enclosed volume. The Li–Yau
inequalities in the smooth setting, Lemma 1.3 and Theorem 1.5 are then a direct application,
see Sect. 5. Finally, in Sect. 6, we derive some geometric estimates and discuss implications
of our results. This includes a nonexistence result for the penalized version of Problem 1.1
(Sect. 6.2), diameter bounds (Sect. 6.2), the existence and regularity result for the Canham–
Helfrich model, Theorem 1.6 (Sect. 6.3), and a criterion for positive total mean curvature
(Sect. 6.4).
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2 Preliminaries

In this section, we will review some of the concepts and tools used throughout this article.

2.1 Notation and definitions

Let μ be a Radon measure over R
3 and define the closed balls

Bρ(x) := {y ∈ R
3 | |x − y| ≤ ρ}

for all x ∈ R
3 and ρ > 0. For each nonnegative integer m and x ∈ R

3, the m-dimensional
lower and upper density of μ at x are defined by

θm∗ (μ, x) := lim inf
ρ→0+

μ(Bρ(x))

ωmρm
, θ∗m(μ, x) := lim sup

ρ→0+
μ(Bρ(x))

ωmρm
,

where ωm = Lm(B1(0)) and Lm is the m-dimensional Lebesgue measure over R
m . The

m-dimensional density of μ at x is defined by

θm(μ, x) := lim
ρ→0+

μ(Bρ(x))

ωmρm
,

provided the limit exists. We define the support of μ by

sptμ := R
3\{x ∈ R

3 | ∃ρ > 0 such that μ(Bρ(x)) = 0}.
The m-dimensional Hausdorff measure in Euclidean space is denoted withHm . We say that
an integral exists if and only if it exists in the Lebesgue sense (i.e. its integrand is summable
in the terminology of [18, 2.4.2]).

2.2 Oriented 2-varifolds

LetGo(3, 2) be the set of oriented 2-dimensional subspaces of R
3. In view of [18, 3.2.28(2)],

we identify G
o(3, 2) with

{ξ ∈ ∧
2 R

3 | ξ is simple, |ξ | = 1}
which is a smooth submanifold of the 2nd exterior power

∧
2 R

3. In particular, Go(3, 2) is a
locally compact Hausdorff space.

Following Hutchinson [21], we say that V is an oriented 2-varifold on R
3, if and only

if V is a Radon measure over G
o
2(R

3) := R
3 × G

o(3, 2). The weight measure μV on R
3 is

defined by

μV (A) := V
({(x, ξ) ∈ G

o
2(R

3) | x ∈ A}) whenever A ⊂ R
3.

It is the push forward of V under the projection R
3 × G

o(3, 2) → R
3. The set of oriented

2-varifolds in R
3 is denoted by V

o
2(R

3).
For each ξ ∈ G

o(3, 2) we define the unoriented 2-dimensional subspace T (ξ) of R
3 by

T (ξ) := {v ∈ R
3 | v ∧ ξ = 0}.

Since ξ is simple, there exist v1, v2 ∈ R
3 such that ξ = v1 ∧ v2. Moreover, |ξ | = 1 implies

that v1 ∧ v2 = e1 ∧ e2 for e1 := v1/|v1| and e2 := ṽ2/|ṽ2| where ṽ2 := v2 − 〈e1, v2〉e1. In
other words, each ξ ∈ G

o(3, 2) corresponds to an oriented orthonormal basis (e1, e2) with

123
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ξ = e1 ∧ e2 and T (ξ) = span{e1, e2}. In particular, each oriented 2-varifold V ∈ V
o
2(R

3)

induces a general (unoriented) 2-varifold in the sense of [2, Definition 3.1], given by the push
forward of V under the map q(x, ξ) := (x, T (ξ)). Notice that the two weight measures of
V and q#V coincide.

For all compactly supported vector fields X ∈ C1
c (R3; R

3) and 2-dimensional subspaces
T of R

3 with orthonormal basis {e1, e2}, we define

divT X(x) :=
2∑

j=1

〈e j ,DX(x)e j 〉.

The first variation of an oriented 2-varifold V in R
3 is defined by

δV : C1
c (R3; R

3) → R, δV (X) :=
ˆ

G
o
2(R

3)

divT (ξ) X(x) dV (x, ξ). (2.1)

Notice that δV coincides with the first variation of the unoriented 2-varifold q#V as defined
in [2, Definition 4.2]. In other words, δV does not depend on the orientation.

For k = 0, . . . , 3 we may identify k-vectors in R
3 with (3 − k)-vectors by means of the

Hodge star operator

� : ∧
k R

3 → ∧
3−k R

3.

If v1, v2 ∈ R
3 � ∧

1 R
3, we have �(v1 ∧ v2) = v1 × v2, where × denotes the usual cross

product on R
3. In particular, for all ξ ∈ G

o(3, 2) there holds |�ξ | = 1. Moreover, we have
��v = v for all v ∈ R

3 � ∧
1 R

3.
If V has locally bounded first variation, that is the total variation of δV is a Radonmeasure,

then δV can be represented by integration as follows, where the singular part will be denoted
by βV (i.e. βV = ‖δV ‖sing, cf. [2, 4.3]).
Hypothesis 2.1 Let V ∈ V

o
2(R

3), η ∈ L∞(βV ; S
2), and H ∈ L1

loc(μV ; R
3). Suppose

δV (X) = −
ˆ

R3

〈X , H〉 dμV +
ˆ

R3

〈X , η〉 dβV (2.2)

and

H(x) ∧ �ξ = 0 forV -almost all(x, ξ). (2.3)

The map H is often referred to as generalized mean curvature and spt βV can be seen as
generalized boundary. Indeed, one can understand βV as the boundary measure. However,
two boundary parts can fall together as in Fig. 2g. Typically, one can determine H and βV

using Remark 4.4 and 4.7 in [2]. If V is rectifiable (i.e. q#V is rectifiable in the sense of [2,
3.5]) then the condition in (2.3) means that the generalized mean curvature is perpendicular.
It is satisfied provided V is an integral varifold, see [7, Section 5.8]. In the absence of the
singular part, Hypothesis 2.1 simplifies as follows.

Hypothesis 2.2 Let V ∈ V
o
2(R

3) and H ∈ L1
loc(μV ; R

3). Suppose

δV (X) = −
ˆ

R3

〈X , H〉 dμV (2.4)

and

H(x) ∧ �ξ = 0 for V -almost all (x, ξ).
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Let c0 be a real number, and assume V ∈ V
o
2(R

3) and H ∈ L1
loc(μV ; R

3) satisfy Hypoth-
esis 2.1 for some η ∈ L∞(βV ; S

2). Then we define the Helfrich energy

Hc0(V ) := 1

4

ˆ
|H(x) − c0(�ξ)|2 dV (x, ξ) = 1

4

ˆ
(〈H(x), �ξ 〉 − c0)

2 dV (x, ξ).

Notice that the Helfrich energy does not depend on the singular part of the first variation.
This is analogous to the definition in [14, Section 2]. For c0 = 0, we obtain the Willmore
functional W := H0.

Remark 2.3 Since μV and V are Radon measures, we have H ∈ L2
loc(μV ; R

3) if and only if
the function (x, ξ) �→ H(x) − c0(�ξ) is a member of L2

loc(V ; R
3). Indeed, given any Borel

set B in R
3, the Cauchy–Schwarz inequality implies
ˆ

B×Go(3,2)

|H(x) − c0(�ξ)|2 dV (x, ξ) ≤ 2
ˆ

B

|H |2 dμV + 2c20μV (B).

On the other hand,ˆ

B

|H |2 dμV ≤
ˆ

B×Go(3,2)

2|H(x) − c0(�ξ)|2 dV (x, ξ) + 2c20μV (B). (2.5)

In particular, Hc0(V ) < ∞ implies H ∈ L2
loc(μV ; R

3).

2.3 Oriented varifolds induced by immersions

A particular class of oriented varifolds will be given by immersions of oriented surfaces. Fol-
lowing [36], we term a surface � to be orientable, if there exists an atlas A = {(Uα, xα)}α∈I

such that the Jacobians det D(xα1 ◦ x−1
α2

) of all coordinate transformations are positive. The
members of A are called positive charts. If f : � → R

3 is a smooth immersion, then we
define the induced smooth normal field n along f (the Gauss map) by

n : � → S
2, n := ∂x1 f × ∂x2 f

|∂x1 f × ∂x2 f | , (2.6)

whenever x is a positive chart. Notice that since the Hodge star operator is an isometry,
�n = ∂x1 f ∧ ∂x2 f /|∂x1 f ∧ ∂x2 f | takes values in G

o(3, 2). Moreover, in the context of an
immersion f , we will always denote by μ = μ f the Riemannian measure induced by the
pullback metric g = g f := f ∗〈·, ·〉, and we define by

A( f ) :=
ˆ

�

1 dμ, V( f ) := −1

3

ˆ

�

〈 f , n〉 dμ

the area and the (algebraic) volume of f , provided the respective integral exists. If f is an
embedding and n is the inner unit normal, V( f ) yields the enclosed volume as a consequence
of the divergence theorem, see [34, Appendix A] for a more detailed discussion.

In the sequel, the immersion under consideration will usually be clear from the context,
so we will drop the dependence on f of the associated geometric quantities.

Example 2.4 (Oriented varifold associated with immersed surface) Let f : � → R
3 be a

smooth proper immersion of an oriented surface� without boundary. We define the oriented
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2-varifold V ∈ V
o
2(R

3) associated with (�, f ) by

V (A) := μ
({p ∈ � | ( f (p), �n(p)) ∈ A}) whenever A ⊂ G

o
2(R

3),

i.e. V is the push forward of μ under the map � → R
3 × G

o(3, 2), p �→ ( f (p), �n(p)).
Since this map is continuous and proper, V is indeed a Radon measure (see [18, 2.2.17]).
Notice that T (�n(p)) = d f p[Tp�] for p ∈ �. In view of [39, Lemma 2.3], there holds

μV (B) = ( f#μ)(B) =
ˆ

B

H0( f −1{x}) dH2(x) for all Borel sets B in R
3,

θ2(μV , x) = H0( f −1{x}) for all x ∈ R
3.

Moreover, by [18, 2.4.18] and the area formula (cf. [39, Lemma 2.3]), we have
ˆ

G
o
2(R

3)

k(x, ξ) dV (x, ξ) =
ˆ

�

k( f (p), �n(p)) dμ(p)

=
ˆ

R3

∑

p∈ f −1{x}
k(x, �n(p)) dH2(x) (2.7)

whenever k : G
o
2(R

3) → R is a nonnegative Borel function.
Let H f : � → R

3 be the classical mean curvature (vector) of f , i.e. the trace of the second
fundamental form, and define

H(x) :=
{

1
θ2(μV ,x)

∑
p∈ f −1{x} H f (p) if θ2(μV , x) > 0

0 if θ2(μV , x) = 0.
(2.8)

Then, H ∈ L∞
loc(μV ; R

3) and in view of [39, Example 2.4], H(x) ∧ �ξ = 0 for V -almost all
(x, ξ), and

δV (X) = −
ˆ

R3

〈X , H〉 dμV .

Thus, V , H satisfy Hypothesis 2.2.
In the sequel, we will always use the above notation to distinguish H f as the classical

mean curvature when f is an immersion and H defined by (2.8) as the generalized mean
curvature of the associated varifold. By [40, Theorem 4], there holds

H f (p) = H( f (p)) for μ-almost all p ∈ �.

Thus, by (2.7) we observe

Hc0(V ) = 1

4

ˆ

�

|H f − c0n|2 dμ. (2.9)

3 On the concentrated volume

In this section, we discuss the concentrated volume (1.7) in the context of varifolds.
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Definition 3.1 Suppose V ∈ V
o
2(R

3) and x0 ∈ R
3. Then we define the concentrated volume

of V at x0 by

Vc(V , x0) := −
ˆ

G
o
2(R

3)

〈x − x0, �ξ 〉
|x − x0|2 dV (x, ξ)

and the algebraic volume at x0

V(V , x0) := −1

3

ˆ

G
o
2(R

3)

〈x − x0, �ξ 〉 dV (x, ξ)

provided the respective integral exists.

If the varifold V is associated with an immersion f : � → R
3, then we also write

Vc( f , x0) instead of Vc(V , x0). By (2.7), this is consistent with (1.7). If � is closed, then
we have V(V , x0) = V( f ) for all x0 ∈ R

3 after integration by parts.
In general, the algebraic volume of an oriented varifold depends on the point x0. Indeed,

one may consider the varifold associated to the 2-dimensional unit sphere in R
3 where the

upper hemisphere is oppositely oriented to the lower hemisphere. Moreover, the algebraic
volume at x0 exists if and only if the concentrated volume at x0 exists, see Proposition 3.4.

Lemma 3.2 Suppose m, ρ0, D > 0, μ is a Radon measure over R
3, x0 ∈ R

3, and

μ(Bσ (x0)) ≤ Dσm

for all 0 < σ < ρ0. Then, for all 1 ≤ p < m, there exists C(p, m, D) < ∞ such that
ˆ

Bσ (x0)

1

|x − x0|p
dμ(x) ≤ C(p, m, D)σ m−p

for all 0 < σ < ρ0. Moreover, C(1, 2, D) = 2D, and if μ(R3) < ∞ then

ˆ

R3

1

|x − x0|p
dμ(x) ≤ C(p, m, D)ρ

m−p
0 + μ(R3)

ρ
p
0

< ∞.

Remark 3.3 (i) Assume V ∈ V
o
2(R

3), H ∈ L2
loc(μV ; R

3) satisfy Hypothesis 2.2. By [39,
Theorem 3.6], we find that the density θ2(μV , x0) exists and is finite for all x0 ∈ R

3.
Hence there exist ρ0 = ρ0(V , x0) > 0 and D = D(V , x0) < ∞ such that

μV (Bσ (x0)) ≤ Dσ 2 for all 0 < σ < ρ0, x0 ∈ R
3.

This immediately implies μV ({x0}) = 0 for all x0 ∈ R
3. By Remark 2.3, the condition

H ∈ L2
loc(μV ; R

3) is in particular satisfied if Hc0(V ) < ∞.
(ii) If V ∈ V

o
2(R

3), μV (R3) < ∞, and H ∈ L2(μV ; R
3) satisfies Hypothesis 2.2, then the

hypothesis of Lemma 3.2 is satisfied for m = 2, ρ0 = ∞, and all x0 ∈ R
3 with

D = CW(V ) for some universal constant 0 < C < ∞. Indeed, by [24,
Appendix (A.16)] there holds

μV (Bσ (x0)) ≤ CW(V )σ 2 for all σ > 0, x0 ∈ R
3.
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Proof of Lemma 3.2 Using Fubini’s theorem, we compute (cf. [27, Theorem 1.15])

ˆ

Bσ (x0)

1

|x − x0|p
dμ(x) =

∞̂

0

μ(Bσ (x0) ∩ Bt−1/p (x0)) dt

=
σ−pˆ

0

μ(Bσ (x0)) dt +
∞̂

σ−p

μ(Bt−1/p (x0)) dt

≤ D

⎛

⎜
⎝

σ−pˆ

0

σm dt +
∞̂

σ−p

t−m/p dt

⎞

⎟
⎠

= D

(

σm−p + pσm−p

m − p

)

= C(p, m, D)σm−p.

The last statement follows by splitting the integral into R
3 = Bρ0(x0) ∪ (R3\Bρ0(x0)).

Proposition 3.4 Suppose V ∈ V
o
2(R

3) and H ∈ L2
loc(μV ; R

3) satisfy Hypothesis 2.2 and
assume that V(V , x0) exists for some x0 ∈ R

3. Then also Vc(V , x0) exists.

Proof Splitting the integral, for ρ0 > 0 we findˆ

G
o
2(R

3)

|〈x − x0, �ξ〉|
|x − x0|2 dV (x, ξ) ≤

ˆ

Bρ0 (x0)

1

|x − x0| dμV (x) + 1

ρ2
0

ˆ

G
o
2(R

3)

|〈x − x0, �ξ〉| dV (x, ξ).

By Lemma 3.2 and Remark 3.3(i), on the right hand side the first integral is finite for ρ0 > 0
small, whereas the second integral is finite since V(V , x0) exists.

We recall the concept of convergence of oriented varifolds.

Definition 3.5 Suppose Vk is a sequence in V
o
2(R

3). Then we say that Vk converges to V in
V
o
2(R

3) and write

Vk → V in V
o
2(R

3) as k → ∞
if and only if V ∈ V

o
2(R

3) andˆ

G
o
2(R

3)

ϕ(x, ξ) dVk(x, ξ) →
ˆ

G
o
2(R

3)

ϕ(x, ξ) dV (x, ξ) as k → ∞

for all continuous functions ϕ : G
o
2(R

3) → R with compact support.

Lemma 3.6 Suppose Vk is a sequence in V
o
2(R

3), V ∈ V
o
2(R

3), Hk ∈ L2(μVk ; R
3) and

H ∈ L2(μV ; R
3) satisfy Hypothesis 2.2,

sup
k∈N

(
μVk (R

3) + W(Vk)
)

< ∞ (3.1)

and

Vk → V in V
o
2(R

3) as k → ∞. (3.2)

Then for all x0 ∈ R
3, the concentrated volume converges: limk→∞ Vc(Vk, x0) = Vc(V , x0).
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Proof Let x0 ∈ R
3, 0 < σ < ρ < ∞, and pick a continuous function χ : R

3 → R with
compact support in R

3\{x0} such that 0 ≤ χ ≤ 1 and χ(x) = 1 for σ ≤ |x − x0| ≤ ρ.
Define the function

ϕ : R
3 × G

o(3, 2) → R, ϕ(x, ξ) := χ(x)
〈x − x0, �ξ 〉
|x − x0|2 .

Then ϕ has compact support, ϕ is continuous, and thus, by (3.2),
ˆ

G
o
2(R

3)

ϕ dVk →
ˆ

G
o
2(R

3)

ϕ dV as k → ∞. (3.3)

Let

A := sup
k∈N

(
μVk (R

3) + μV (R3)
)
, D := sup

k∈N
(W(Vk) + W(V )

)
.

Then, by (3.1), Lemma 3.2, and Remark 3.3(ii), we have

sup
k∈N

⎛

⎜
⎝

ˆ

Bσ (x0)

1

|x − x0| dμVk (x) +
ˆ

Bσ (x0)

1

|x − x0| dμV (x)

⎞

⎟
⎠ ≤ C(D)σ

and

sup
k∈N

⎛

⎜
⎝

ˆ

R3\Bρ(x0)

1

|x − x0| dμVk (x) +
ˆ

R3\Bρ(x0)

1

|x − x0| dμV (x)

⎞

⎟
⎠ ≤ C(A)

ρ
.

Since |ϕ(x, ξ)| ≤ 1/|x − x0| for all (x, ξ) ∈ G
o
2(R

3), it follows

|Vc(V , x0) − Vc(Vk, x0)| ≤

∣
∣
∣
∣
∣
∣
∣

ˆ

G
o
2(R

3)

ϕ dVk −
ˆ

G
o
2(R

3)

ϕ dV

∣
∣
∣
∣
∣
∣
∣

+ C(D)σ + C(A)

ρ
.

Now, the conclusion follows from the convergence in (3.3).

Lemma 3.7 Suppose V ∈ V
o
2(R

3), sptμV is compact, and H ∈ L2(μV ; R
3) satisfies

Hypothesis 2.2. Then the concentrated volume Vc(V , ·) is Hölder continuous with exponent
α for any 0 < α < 1 and constant C = C(α, V ) depending monotonically nondecreasing
on μV (R3) and W(V ).

Proof Let 0 < α < 1, x0, x1 ∈ R
3 with 0 < |x0 − x1| ≤ 1, and abbreviate σ := |x0 − x1|,

A := μV (R3) and D := W(V ). By Lemma 3.2 and Remark 3.3(ii) there holds
ˆ

B2σ (x0)

1

|x − x0| dμV (x) ≤ 4D|x0 − x1| ≤ C(D)|x0 − x1|α

and, since B2σ (x0) ⊂ B3σ (x1),ˆ

B2σ (x0)

1

|x − x1| dμV (x) ≤
ˆ

B3σ (x1)

1

|x − x1| dμV (x) ≤ 6D|x0 − x1| ≤ C(D)|x0 − x1|α.
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Thus, we have

|Vc(V , x0) − Vc(V , x1)|
≤ C(D)|x0 − x1|α +

ˆ

π−1[R3\B2σ (x0)]

∣
∣
∣
∣
〈x − x0, �ξ 〉
|x − x0|2 − 〈x − x1, �ξ 〉

|x − x1|2
∣
∣
∣
∣ dV (x, ξ). (3.4)

where π : R
3 × G

o(3, 2) → R
3 is the projection. For all x ∈ R

3\B2σ (x0) we have

2|x0 − x1| = 2σ ≤ |x − x0|, |x − x0| ≤ 2|x − x0| − 2|x0 − x1| ≤ 2|x − x1|

and thus |x − x1| ≥ |x − x0|/2. Since also |x0 − x1| ≤ |x − x0|, we infer
∣
∣
∣
∣
〈x − x0, �ξ 〉
|x − x0|2 − 〈x − x1, �ξ 〉

|x − x1|2
∣
∣
∣
∣

≤
∣
∣
∣
∣
〈x − x0, �ξ 〉
|x − x0|2 − 〈x − x1, �ξ 〉

|x − x0|2
∣
∣
∣
∣ +

∣
∣
∣
∣
〈x − x1, �ξ 〉
|x − x0|2 − 〈x − x1, �ξ 〉

|x − x0||x − x1|
∣
∣
∣
∣

+
∣
∣
∣
∣

〈x − x1, �ξ 〉
|x − x0||x − x1| − 〈x − x1, �ξ 〉

|x − x1|2
∣
∣
∣
∣

≤ 2
|x0 − x1|
|x − x0|2 + |x0 − x1|

|x − x0||x − x1| ≤ 4
|x0 − x1|α
|x − x0|1+α

.

Integrating this inequality and applying Lemma 3.2 for p = 1+ α, m = 2 and ρ0 = 1, (3.4)
becomes

|Vc(V , x0) − Vc(V , x1)| ≤ C(D)|x0 − x1|α + 4|x0 − x1|α
ˆ

R3

1

|x − x0|1+α
dμV (x)

≤ [
C(D) + 4C(α, D) + 4A

]|x0 − x1|α = C(α, A, D)|x0 − x1|α.

For |x0 − x1| ≥ 1 we apply Lemma 3.2 to see

|Vc(V , x0) − Vc(V , x1)| ≤ 2(2D + A) ≤ C(A, D)|x0 − x1|α

which concludes the proof.

Example 3.8 Consider S := ∂ B1(0) ⊂ R
3, the round sphere with radius one centered at the

origin. Moreover, for r > 0 let Tr ⊂ R
3 be the torus which is obtained by revolving a circle

with radius r and center (1+r , 0) (in the xz-plane) around the z-axis. Note that if we revolve
the corresponding disk instead of the circle, we obtain a full torus T full

r with ∂T full
r = Tr . We

now define a smooth unit normal n on S ∪ Tr by taking n to be the outer unit normal on S
and the inner unit normal on Tr , cf. Fig. 2i. It is not difficult to see that S ∪ Tr is the image
of a C1,1-immersion f : S

2 → R
3.

By standard formulas in geometry, the algebraic volume can be computed as

V( f ) = −L3(B1(0)) + L3(T full
r ) = −4π

3
+ 2π2r2(1 + r). (3.5)
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Let x0 = 0 be the origin. Using that |x − x0| = 1 for x ∈ S and applying the divergence
theorem to T full

r , the concentrated volume is given by

Vc( f , x0) = −4π

3
+
ˆ

T full
r

1

|x − x0|2 dL3(x).

Clearly |x − x0| > 1 for L3-almost every x ∈ T full
r , so that

Vc( f , x0) < −4π

3
+
ˆ

T full
r

dL3(x) = V( f ).

By means of (3.5), we thus find r > 0 such that V( f ) = 0 but Vc( f , x0) < 0. Slightly
increasing the radius, we have Vc( f , x0) < 0 < V( f ) by a continuity argument. Lastly, we
replace a small disk on S by a thin dent, such that the new surface S̃ satisfies x0 ∈ S̃ and such
that S̃ ∪ Tr is still the image of an immersion f̃ : S

2 → R
3. Making this dent sufficiently

thin and smoothing, we can achieve that Vc( f̃ , x0) < 0 < V( f̃ ) is still satisfied and f̃ is
smooth. Therefore, positive algebraic volume does not imply positive concentrated volume,
even at points in the support.

4 The Li–Yau inequality in the varifold setting

4.1 Amonotonicity formula

Our first essential observation is the following lemma, which can be seen as an extension
of the monotonicity formula due to Simon [43, (1.2)]. We follow the varifold approach in
[24, Appendix A] relying on the first variation identity and examine the additional terms
originating from the spontaneous curvature.

Lemma 4.1 Suppose V ∈ V
o
2(R

3), η ∈ L∞(βV ; S
2), and H ∈ L2

loc(μV ; R
3) satisfy Hypoth-

esis 2.1. Let x0 ∈ R
3 and abbreviate Br := Br (x0), Ar := Br × G

o(3, 2) for all r > 0.
Then, for c0 ∈ R and 0 < σ < ρ < ∞, there holds

μV (Bσ )

σ 2 +
ˆ

Aρ\Aσ

(
1

4
(〈H(x), �ξ 〉 − c0) + 〈x − x0, �ξ 〉

|x − x0|2
)2

dV (x, ξ)

= 1

16

ˆ

Aρ\Aσ

|H(x) − c0(�ξ)|2 dV (x, ξ) − c0
2

ˆ

Aρ\Aσ

〈x − x0, �ξ 〉
|x − x0|2 dV (x, ξ) + μV (Bρ)

ρ2

− 1

2σ 2

ˆ

Aσ

〈x − x0, H(x) − c0(�ξ)〉 dV (x, ξ) − c0
2σ 2

ˆ

Aσ

〈x − x0, �ξ 〉 dV (x, ξ)

+ 1

2ρ2

ˆ

Aρ

〈x − x0, H(x) − c0(�ξ)〉 dV (x, ξ) + c0
2ρ2

ˆ

Aρ

〈x − x0, �ξ 〉 dV (x, ξ)

123



45 Page 18 of 43 F. Rupp, C. Scharrer

+ 1

2σ 2

ˆ

Bσ

〈x − x0, η(x)〉 dβV (x) + 1

2

ˆ

Bρ\Bσ

〈x − x0, η(x)〉
|x − x0|2 dβV (x)

− 1

2ρ2

ˆ

Bρ

〈x − x0, η(x)〉 dβV (x). (4.1)

Proof of Lemma 4.1 Following the computations in [43, p. 284], we consider the smooth
vector field X(x) := x − x0 for x ∈ R

3 and the Lipschitz function

ϕ : R → R, ϕ(t) := (max{t, σ }−2 − ρ−2)+. (4.2)

Choose a sequence ϕk in C∞
c (−∞, ρ + 1) such that supk∈N ‖ϕk‖C1(R) < ∞,

ϕk → ϕ locally uniformly as k → ∞,

ϕ′
k(t) → ϕ′(t) as k → ∞ for all t ∈ R\{σ, ρ}

and such that for all k ∈ N, there holds ϕ′
k(σ ) = 0 and ϕ′

k(ρ) = −2ρ−3. Abbreviating
�k := ϕk ◦ |X | it follows

lim
k→∞ divT (ξ)(�k X)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2( 1
σ 2 − 1

ρ2 ) for (x, ξ) ∈ Aσ

2〈X(x),�ξ〉2
|X(x)|4 − 2

ρ2 for (x, ξ) ∈ Aρ\Aσ

0 for (x, ξ) ∈ G
o
2(R

3)\Aρ.

Denoting |X |σ := max{|X |, σ }, testing the first variation identity (see (2.2), and (2.1)) with
the vector fields �k X and passing to the limit as k → ∞, we obtain

2μV (Bσ )

σ 2 +
ˆ

Aρ\Aσ

2〈X(x), �ξ 〉2
|X(x)|4 dV (x, ξ)

= 2μV (Bρ)

ρ2 −
ˆ

Bρ

(|X |−2
σ − ρ−2)〈X , H〉 dμV +

ˆ

Bρ

(|X |−2
σ − ρ−2)〈X , η〉 dβV .

By (2.3) and since |�ξ | = 1 for ξ ∈ G
o(3, 2), we have the pointwise identity

∣
∣
∣
∣
1

4
(H − c0(�ξ)) + 〈X , �ξ 〉(�ξ)

|X |2
∣
∣
∣
∣

2

= 1

16
|H − c0(�ξ)|2 + 〈H − c0(�ξ), X〉

2|X |2 + 〈X , �ξ 〉2
|X |4

and consequently

μV (Bσ )

σ 2 +
ˆ

Aρ\Aσ

(
1

4
(〈H(x), �ξ 〉 − c0) + 〈X(x), �ξ 〉

|X(x)|2
)2

dV (x, ξ)

= 1

16

ˆ

Aρ\Aσ

|H(x) − c0(�ξ)|2 dV (x, ξ) + μV (Bρ)

ρ2

+ 1

2

ˆ

Aρ\Aσ

〈H(x) − c0(�ξ), X(x)〉
|X(x)|2 dV (x, ξ) − 1

2

ˆ

Bρ

(|X |−2
σ − ρ−2)〈X , H〉 dμV

+ 1

2

ˆ

Bρ

(|X |−2
σ − ρ−2)〈X , η〉 dβV . (4.3)
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Moreover, we have

1

2

ˆ

Aρ\Aσ

〈H(x) − c0(�ξ), X(x)〉
|X(x)|2 dV (x, ξ) − 1

2

ˆ

Bρ

(|X |−2
σ − ρ−2)〈X , H〉 dμV

= −c0
2

ˆ

Aρ\Aσ

〈X(x), �ξ 〉
|X(x)|2 dV (x, ξ) − 1

2σ 2

ˆ

Bσ

〈X , H〉 dμV + 1

2ρ2

ˆ

Bρ

〈X , H〉 dμV

= −c0
2

ˆ

Aρ\Aσ

〈X(x), �ξ 〉
|X(x)|2 dV (x, ξ)

− 1

2σ 2

ˆ

Aσ

〈X(x), H(x) − c0(�ξ)〉 dV (x, ξ) − c0
2σ 2

ˆ

Aσ

〈X(x), �ξ 〉 dV (x, ξ)

+ 1

2ρ2

ˆ

Aρ

〈X(x), H(x) − c0(�ξ)〉 dV (x, ξ) + c0
2ρ2

ˆ

Aρ

〈X(x), �ξ 〉 dV (x, ξ) (4.4)

as well as
1

2

ˆ

Bρ

(|X |−2
σ − ρ−2)〈X , η〉 dβV

= 1

2σ 2

ˆ

Bσ

〈X , η〉 dβV + 1

2

ˆ

Bρ\Bσ

〈X , η〉
|X |2 dβV − 1

2ρ2

ˆ

Bρ

〈X , η〉 dβV . (4.5)

Now, using X(x) = x − x0 and putting (4.4), (4.5) into (4.3), the conclusion follows.

4.2 The general varifold case

We now use the monotonicity formula (4.1) to prove our most general Li–Yau inequality.

Theorem 4.2 Suppose V ∈ V
o
2(R

3), η ∈ L∞(βV ; S
2) and H ∈ L1

loc(μV ; R
3) satisfy

Hypothesis 2.1. Let c0 ∈ R and suppose that

Hc0(V ) < ∞ (4.6)

and

θ∗2(μV ,∞) := lim sup
ρ→∞

μV (Bρ(0))

πρ2 < ∞. (4.7)

Then, for all x0 ∈ R
3\ spt βV we have

θ2(μV , x0) ≤ θ∗2(μV ,∞) + 1

4π
Hc0(V )

+ lim sup
ρ→∞

c0
2π

⎛

⎜
⎝

ˆ

Bρ(x0)×G
o
2(R

3)

(
ρ−2 − |x − x0|−2) 〈x − x0, �ξ 〉 dV (x, ξ)

⎞

⎟
⎠

+ lim sup
ρ→∞

1

2π

⎛

⎜
⎝

ˆ

Bρ(x0)

(|x − x0|−2 − ρ−2)〈x − x0, η(x)〉 dβV (x)

⎞

⎟
⎠ . (4.8)
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Remark 4.3 (i) We do not assume μV (R3) < ∞ in Theorem 4.2. Indeed, let r = 1/c0 for
c0 > 0, let f : R×S

1 → R
3, f (t, ϕ) = (r cosϕ, r sin ϕ, t) be the cylinder with radius

r , let V be the associated varifold, cf. Example 2.4, and let x0 = (r , 0, 0) ∈ sptμV . It
is not difficult to see that β = 0, Hc0(V ) = 0 and μV (Bρ(x0)) = O(ρ) as ρ → ∞,
so that θ∗2(μV ,∞) = 0 whereas μV (R3) = ∞. Moreover, the third term on the right
hand side of (4.8) is

− c0
2π

ˆ

R×S1

〈 f − x0, n〉
| f − x0|2 dμ = c0

2π

2πˆ

0

ˆ

R

a(ϕ)

2a(ϕ) + t2
dt dϕ,

where a(ϕ) := r2(1− cosϕ) ≥ 0. Hence, the inner integral can be evaluated using the
arctan, yielding

− c0
2π

ˆ

R×S1

〈 f − x0, n〉
| f − x0|2 dμ = c0

2π

2πˆ

0

π

√
a(ϕ)

2
dϕ = c0

2π
· 4πr .

In the last step, we used 1 − cosϕ = 2 sin2( ϕ
2 ) and the symmetry of the sine function.

(ii) We can reverse the orientation of the varifold V by considering V̂ , the push forwad
under the map (x, ξ) �→ (x,−ξ), which is continuous and proper so V̂ ∈ V

o
2(R

3) by
[18, 2.2.17]. In view of (1.1) it is not suprising that

Hc0(V ) = H−c0(V̂ ).

Similarly, the other term in (4.8) involving c0 remains unchanged if we replace V by
V̂ and c0 by −c0. The singular part does not change under reversing the orientation.

(iii) Equality holds for c0 = 0 if V corresponds to the unit sphere and x0 is any point on the
unit sphere. Equality also holds for c0 = 0 if V corresponds to the unit disk and x0 is
the center, and if V corresponds to a plane and x0 is any point on the plane.

(iv) If the singular part βV is regular enough, for instance if spt βV is given by a smooth
embedding γ : S

1 → R
3 and η ◦ γ is a unit normal field along γ , then the statement

remains valid even for x0 ∈ spt βV . Indeed, for x close to x0, the vectors x − x0 and
η(x) are nearly orthogonal. Thus, since θ1(βV , x0) = 1, a short argument using the
Taylor expansion of γ implies

x �→ |x − x0|−2〈x − x0, η(x)〉 ∈ L1
loc(βV ).

Proof of Theorem 4.2 For ρ > 0 let Bρ and Aρ be as in Lemma 4.1. By Remark 3.3(i), there
exist D < ∞ and ρ0 > 0 such that

μ(Bρ) ≤ Dρ2 for all 0 < ρ < ρ0. (4.9)

Consequently, Lemma 3.2 yieldsˆ

Bρ

1

|x − x0| dμV (x) ≤ Cρ for all 0 < ρ < ρ0, (4.10)

and thus x �→ |x − x0|−1 ∈ L1
loc(μV ). Moreover we have dist(x0, spt βV ) > 0, and conse-

quently

x �→ |x − x0|−2〈x − x0, η(x)〉 ∈ L1
loc(βV ). (4.11)
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Using (4.6), (4.10) and (4.11), we find that the function γ : (0,∞) → R with

γ (ρ) := μV (Bρ)

ρ2 + 1

16

ˆ

Aρ

|H(x) − c0(�ξ)|2 dV (x, ξ) − c0
2

ˆ

Aρ

〈x − x0, �ξ 〉
|x − x0|2 dV (x, ξ)

+ 1

2ρ2

ˆ

Aρ

〈x − x0, H(x) − c0(�ξ)〉 dV (x, ξ) + c0
2ρ2

ˆ

Aρ

〈x − x0, �ξ 〉 dV (x, ξ)

+ 1

2

ˆ

Bρ

(|x − x0|−2 − ρ−2)〈x − x0, η(x)〉 dβV (x) (4.12)

is well defined and, by Lemma 4.1, it is monotonically nondecreasing.
We now examine the limit limσ→0+ γ (σ ). By (4.6), the second term in γ (σ ) goes to

zero as σ → 0+ and so does the third term by (4.10). For the fourth term, we use the
Cauchy–Schwarz inequality to estimate

∣
∣
∣
∣
∣
∣
∣

σ−2
ˆ

Aσ

〈x − x0, H(x) − c0(�ξ)〉 dV (x, ξ)

∣
∣
∣
∣
∣
∣
∣

≤ (
σ−2μV (Bσ )

) 1
2

⎛

⎜
⎝

ˆ

Aσ

|H(x) − c0(�ξ)|2 dV (x, ξ)

⎞

⎟
⎠

1
2

, (4.13)

where the right hand side goes to zero by (4.6), (4.9) and sinceμV ({x0}) = 0byRemark3.3(i).
The fifth term in γ (σ ) also goes to zero as σ → 0+, since

σ−2

∣
∣
∣
∣
∣
∣
∣

ˆ

Aσ

〈x − x0, �ξ 〉 dV (x, ξ)

∣
∣
∣
∣
∣
∣
∣

≤ σ−1μV (Bσ ) ≤ Dσ, (4.14)

using (4.9). Since x0 /∈ spt βV , we have βV (Bσ ) = 0 for σ > 0 sufficiently small. Conse-
quently, using ω2 = π , we find limσ→0+ γ (σ ) = πθ2(μV , x0).

Now, we discuss the limit limρ→∞ γ (ρ). It is not too difficult to see that

lim sup
ρ→∞

μV (Bρ)

πρ2 = lim sup
ρ→∞

μV (Bρ(0))

πρ2 = θ∗2(μV ,∞). (4.15)

For the fourth term in (4.12), for any 0 < σ < ρ, we estimate by Cauchy–Schwarz
∣
∣
∣
∣
∣
∣
∣

ρ−2
ˆ

Aρ

〈x − x0, H(x) − c0(�ξ)〉 dV (x, ξ)

∣
∣
∣
∣
∣
∣
∣

≤ (
ρ−2μV (Bρ)

) 1
2

⎛

⎜
⎝

ˆ

G
o
2(R

3)\Aσ

|H(x) − c0(�ξ)|2 dV (x, ξ)

⎞

⎟
⎠

1
2

+ ρ−1
ˆ

Aσ

|H(x) − c0(�ξ)| dV (x, ξ).
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Sending first ρ → ∞ and then σ → ∞, this goes to zero by (4.6), (4.7) and (4.15). The
claim then follows from the monotonicity of γ .

If the singular part βV vanishes and Vc(V , x0) exists, using Lemma 3.2 we obtain the
following

Corollary 4.4 Suppose V ∈ V
o
2(R

3) and H ∈ L2
loc(μV ; R

3) satisfy Hypothesis 2.2. Let
c0 ∈ R, x0 ∈ R

3 and suppose that Vc(V , x0) exists. Then we have

θ2(μV , x0) ≤ θ∗2(μV ,∞) + 1

4π
Hc0(V ) + c0

2π
Vc(V , x0).

Proof Without loss of generality, we may assume Hc0(V ) < ∞, θ∗2(μV ,∞) < ∞. By
Theorem 4.2, we only need to discuss the third term on the right hand side of (4.8). To that
end, for 0 < σ < ρ we estimate

1

ρ2

ˆ

Aρ

|〈x − x0, �ξ 〉| dV (x, ξ)

≤
ˆ

G
o
2(R

3)\Aσ

|〈x − x0, �ξ 〉|
|x − x0|2 dV (x, ξ) + 1

ρ2

ˆ

Aσ

|〈x − x0, �ξ 〉| dV (x, ξ).

Sendingfirstρ → ∞ and thenσ → ∞ this goes to zero sinceVc(V , x0) exists by assumption.
The result follows.

4.3 Varifolds with enclosed volume

In this section we introduce a class of oriented varifolds that satisfy a divergence theorem,
see Hypothesis 4.5. These varifolds comprise the surfaces shown in Fig. 2a–e, h. We then
show that their concentrated volume is positive, see Lemma 4.9. We start with a short review
of sets of locally finite perimeter, cf. [17, Chapter 5], [18, Section 4.5].

Let E ⊂ R
3. We define the measure theoretic boundary of E by

∂∗E = {x ∈ R
3 | θ∗3(L3�E, x) > 0, θ∗3(L3�(R3\E), x) > 0}.

Moreover, we denote with nE : R
3 → R

3 the measure theoretic inner unit normal of E (see
the definition [18, 4.5.5]). In view of Federer’s criterion [18, 4.5.11, 2.10.6], we say that E
has locally finite perimeter, if and only if E is an L3-measurable set, andH2(K ∩∂∗E) < ∞
for all compact sets K ⊂ R

3.
Let E ⊂ R

3 be a set of locally finite perimeter and B = {x ∈ R
3 | |nE (x)| = 1}. We

collect the following properties (see [18, 4.5.6]).

• The sets B and ∂∗E are H2-almost equal.
• H2�∂∗E is a Radon measure over R

3 and nE is H2�∂∗E-measurable.
• The divergence theorem reads as

−
ˆ

∂∗ E

〈X , nE 〉 dH2 =
ˆ

E

div X dL3 (4.16)

for all Lipschitz maps X : R
3 → R

3 with compact support.
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In view of Riesz’s representation theorem, we define the oriented varifold V ∈ V
o
2(R

3)

associated with ∂∗E by

V (ϕ) :=
ˆ

R3

ϕ(x, �nE (x)) d(H2�∂∗E)(x) (4.17)

for all real valued continuous functions ϕ on G
o
2(R

3) with compact support. There holds
μV = H2�∂∗E and (4.16) readsˆ

G
o
2(R

3)

〈X(x), �ξ 〉 dV (x, ξ) = −
ˆ

E

div X dL3

for all Lipschitz maps X : R
3 → R

3 with compact support.
This divergence theorem is the main motivation for considering a particular class of

varifolds in the sequel.

Hypothesis 4.5 Suppose V ∈ V
o
2(R

3) and H ∈ L1
loc(μV ; R

3) satisfy Hypothesis 2.2,
E ⊂ R

3 is an L3-measurable set, � ∈ L1
loc(L3�E; N),

diam spt(L3�E) ≤ diam sptμV , (4.18)

and

−
ˆ

G
o
2(R

3)

〈X(x), �ξ 〉 dV (x, ξ) =
ˆ

E

(div X)� dL3 (4.19)

for all Lipschitz maps X : R
3 → R

3 with compact support. In this case, we term V a varifold
with enclosed volume.

Remark 4.6 (i) IfV ∈ V
o
2(R

3) is integralwith compact support and such that the associated
2-current has zero boundary, by [18, 4.5.17] we find that (4.19) is satisfied for some
measurable E ⊂ R

3 and� ∈ L1
loc(L3�E; Z), see also [15, Section 3]. InHypothesis 4.5

we additionally require � > 0 a.e. on E , the diameter bound (4.18) and that V satisfies
Hypothesis 2.2.

(ii) The sign in Eq. (4.19) is adapted to our convention that the unit normal points to the
interior.

(iii) Since the divergence theorem (4.16) remains true if we replace E with R
3\E and nE

with −nE , condition (4.18) ensures that we pick the correct orientation.
(iv) The function � has locally bounded variation (see the definition [17, Section 5.1]) and

the coarea formula [18, 4.5.9(13)] implies that

Ek := {x ∈ R
3 | �(x) ≥ k} for k ∈ N

defines a sequence of decreasing sets of locally finite perimeter.
(v) If � ≡ 1, then the varifold associated with ∂∗E does not necessarily coincide with V ,

compare Fig. 2e, f.
(vi) If V is associated with the reduced boundary of a set E of locally finite perimeter,

then q#V is an integral varifold (in the sense of [2, 3.5]). Hence, if additionally V has
generalized mean curvature H and vanishing singular part βV = 0, then there holds
H(x)∧�ξ = 0 for V -almost all (x, ξ) by [7, Section 5.8], V , H satisfy Hypothesis 2.2
and thus V , H , E and � ≡ 1 satisfy Hypothesis 4.5.
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As the following example shows, not all varifolds associated with sets of finite perimeter
satisfy Hypothesis 4.5.

Example 4.7 LetCα be the closed spherical cap of the unit spherewith opening angleα = π/3
(the hemisphere has opening angle π/2) whose boundary circle lies in the plane {z = 0}. Let
S = Cα ∪ (−Cα), i.e. S is the gluing of the spherical cap Cα with its reflection at the plane
{z = 0}. The surface S looks like a lens, see Fig. 2g. Its singular part is the circle �a of radius
a = √

3/2 centered at the origin and lying in the plane {z = 0}. Since H2(S) < 4π < ∞,
one can use Federer’s criterion to show that S is the boundary of a set E of finite perimeter.
However, the varifold V associatedwith S = ∂∗E (cf. (4.17)) does not satisfy Hypothesis 4.5.
In fact, V does not satisfy Hypothesis 2.2, but the more general Hypothesis 2.1.

Indeed, in view of [2, 4.4, 4.7], there holds μV = H2�S, βV = √
3H1��a , and

δV (X) = −
ˆ

S

〈X , H〉 dH2 + √
3
ˆ

�a

〈X(x), x〉
|x | dH1(x)

where H is the mean curvature of the spherical caps ±Cα . Notice that θ1(βV , x) = √
3 for

all x ∈ �a . In other words, βV does not have integer multiplicity even though θ2(μV , x) = 1
for all x ∈ S. Notice also that V satisfies the hypothesis of Theorem 4.2 for all c0 ∈ R.

The set E in Hypothesis 4.5 corresponds to an enclosed volume in the following sense,
where the algebraic volume does not depend on the point x0 ∈ R

3.

Proposition 4.8 Suppose V , H , E,� satisfy Hypothesis 4.5 with sptμV compact. Then

V(V , x0) =
ˆ

E

� dL3 =: V(V ) for all x0 ∈ R
3.

Proof Since sptμV is compact, so is spt(L3�E) byHypothesis 4.5.Wemay thus apply (4.19)
with X(x) = x − x0, suitably cutoff away from sptμV and spt(L3�E).

Under suitable assumptions, the concentrated volume can be computed by (4.19), too.

Lemma 4.9 Suppose V , H , E,� satisfy Hypothesis 4.5. Let x0 ∈ R
3 and assume

lim
ρ→∞

1

ρ2

ˆ

E∩Bρ(x0)

� dL3 = 0. (4.20)

Then we have

Vc(V , x0) =
ˆ

E

�(x)

|x − x0|2 dL3(x), (4.21)

provided both sides exist.

Remark 4.10 (i) By Proposition 3.4, if V ∈ V
o
2(R

3) and H ∈ L2
loc(μV ; R

3) satisfy
Hypothesis 2.2 and if V(V , x0) exists, then also Vc(V , x0) exists.

(ii) Suppose
´
E

� dL3 < ∞. By Lemma 3.2 applied to the measure �L3�E , the right hand

side of (4.21) exists if for some m > 2 we have

lim sup
σ→0+

1

σm

ˆ

E∩Bσ (x0)

� dL3 < ∞. (4.22)
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As a consequence of the Lebesgue differentiation theorem, this is true for m = 3
and L3-almost all x0 ∈ E (cf. [18, 2.9.8]). However, not all � ∈ L1

loc(L3�E; N) and
x0 ∈ R

3 satisfy (4.22). This can be seen by taking �(x) := �|x − x0|−2�.
Nevertheless, (4.22) is clearly satisfied if � ∈ L∞(L3�E; N).

Proof of Lemma 4.9 Since Vc(V , x0) exists, we haveˆ

G
o
2(R

3)

|〈x − x0, �ξ 〉|
|x − x0|2 dV (x, ξ) < ∞. (4.23)

Now, let 0 < σ < ρ and let Bρ, Aρ be as in Lemma 4.1. Moreover, let ϕ be as in (4.2),
X(x) := x − x0, �(x) := ϕ(|x − x0|) for x ∈ R

3. For L3-almost every x ∈ R
3 we find

div
(
�X

)
(x) =

⎧
⎨

⎩

3(σ−2 − ρ−2) for x ∈ Bσ

|X(x)|−2 − 3ρ−2 for x ∈ Bρ\Bσ

0 for x ∈ R
3\Bρ.

Thus (4.19) implies

− 1

σ 2

ˆ

Aσ

〈X(x), �ξ 〉 dV (x, ξ) + 1

ρ2

ˆ

Aρ

〈X(x), �ξ 〉 dV (x, ξ) −
ˆ

Aρ\Aσ

〈X(x), �ξ 〉
|X(x)|2 dV (x, ξ)

= 3

σ 2

ˆ

E∩Bσ

� dL3 − 3

ρ2

ˆ

E∩Bρ

� dL3 +
ˆ

E∩Bρ\Bσ

�(x)

|X(x)|2 dL3(x). (4.24)

We analyze each term in (4.24) separately. First, as σ → 0+, the first term on the left
vanishes, since (4.23) yields

1

σ 2

ˆ

Aσ

|〈X(x), �ξ 〉| dV (x, ξ) ≤
ˆ

Aσ

|〈X(x), �ξ 〉|
|X(x)|2 dV (x, ξ) → 0.

Here we used that μV ({x0}) = 0 by Remark 3.3(i). The first term on the right hand side of
(4.24) goes to zero as σ → 0, since the right hand side of (4.21) exists. For the second term
on the left, taking 0 < r < ρ and splitting the integral we obtain

1

ρ2

ˆ

Aρ

|〈X(x), �ξ 〉| dV (x, ξ)

≤
ˆ

G
o
2(R

3)\Ar

|〈X(x), �ξ 〉|
|X(x)|2 dV (x, ξ) + 1

ρ2

ˆ

Ar

|〈X(x), �ξ 〉| dV (x, ξ),

which goes to zero by (4.23), if we send first ρ → ∞ and then r → ∞. Taking ρ → ∞ the
second term on the right of (4.24) vanishes by (4.20). Thus, if we let first σ → 0 and then
ρ → ∞ in (4.24) and use that both sides of (4.21) exist, the claim follows.

By the preceding discussion, the statement of Corollary 4.4 can be simplified if V is a
varifold with enclosed volume. For simplicity, we only consider the case where sptμV is
compact.

Corollary 4.11 Suppose V , H , E,� satisfy Hypothesis 4.5 with sptμV compact. Then

θ2(μV , x0) ≤ Hc0(V ) + c0
2π

ˆ

E

�(x)

|x − x0|2 dL3(x)
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for all x0 ∈ R
3, provided the second term on the right hand side exists.

Proof By Hypothesis 4.5 we find that spt(L3�E) is compact, so that using Remark 2.3 and
Remark 4.10(i) we find that the assumptions of Corollary 4.4 and Lemma 4.9 are satisfied.
The result then directly follows using (4.21).

5 The smooth setting

In this section, we will transfer the general varifold Li–Yau inequalities to the setting of
smoothly immersed surfaces.

5.1 Proofs of the Li–Yau inequalities

Lemma 1.3 is an easy consequence of the varifold result.

Proof of Lemma 1.3 The claim follows directly from Corollary 4.4 if we consider the varifold
associated to the immersion f , cf. Example 2.4.

We now show that any Alexandrov immersion induces a varifold with enclosed volume.

Lemma 5.1 Let � be a closed surface and let f : � → R
3 be an Alexandrov immersion with

� = ∂ M, f = F |� and F : M → R
3 as in Definition 1.4. Let V be the oriented 2-varifold

on R
3 associated to (�, f ) as in Example 2.4. Then, there holds

−
ˆ

G
o
2(R

3)

〈X(x), �ξ 〉 dV (x, ξ) =
ˆ

F[M]
(div X)(x)H0(F−1{x}) dL3(x)

for all Lipschitz X : R
3 → R

3 with compact support. In particular, with E := F[M],
� := H0(F−1{·}) we see that V , H , E,� satisfy Hypothesis 4.5.

Proof By an approximation argument, it suffices to consider X ∈ C1
c (R3; R

3). Denote with
� the Riemannian measure on M induced by the pullback metric gF := F∗〈·, ·〉, let μ be
the induced measure on �, and let ν be the inner unit normal on �. Given any vector field
X ∈ C1(R3; R

3), we define the vector field X∗ on M by X∗(p) = (dFp)
−1(X(F(p))).

By (2.7) and since n = dF(ν), we compute

−
ˆ

G
o
2(R

3)

〈X(x), �ξ 〉 dV (x, ξ) = −
ˆ

�

〈X ◦ f , n〉 dμ =
ˆ

∂ M

gF (X∗,−ν) dμ.

Since (M, gF ) is flat, we have divgF X∗ = (div X) ◦ F . Hence, by the divergence theorem
for Riemannian manifolds (see [36, Theorem 5.11(2)]) and the area formula,ˆ

∂ M

gF (X∗,−ν) dμ =
ˆ

M

(div X) ◦ F d� =
ˆ

F[M]
(div X)(x)H0(F−1{x}) dL3(x)

which implies the conclusion.

Equipped with this tool we can now prove Theorem 1.5.
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Proof of Theorem 1.5 By Lemma 5.1, V , H , E := F[M],� := H0(F−1{·}) satisfy Hypoth-
esis 4.5. Since M is compact and F is a local diffeomorphism, there exists k ∈ N such
that

�(x) = H0(F−1{x}) ≤ k for all x ∈ E = F[M],
and as a consequence of Lemma 4.9 and Remark 4.10(i) and (ii) we find

Vc( f , x0) =
ˆ

F[M]

H0(F−1{x})
|x − x0|2 dL3(x) for all x0 ∈ R

3. (5.1)

The statement then follows from Corollary 4.11.

Remark 5.2 The results of Lemma 1.3 and Theorem 1.5 are sharp in the sense that equality
can be achieved asymptotically for every c0 ∈ R. Indeed, let S2 ⊂ R

3 be the unit sphere, and
let f : S

2 → R
3, f (x) = r x denote the parametrization of the round sphere ∂ Br (0) ⊂ R

3

with radius r > 0 and the orientation given by the inner unit normal. This is clearly an
Alexandrov immersion (with M = B1(0), F(x) = r x) and hence by (5.1), we have

Vc( f , x0) =
ˆ

Br (0)

1

|x − x0|2 dL3(x) =
{
2πr if x0 ∈ ∂ Br (0),

4πr if x0 = 0.
(5.2)

To verify the last equality in (5.2) we use the original surface integral definition (1.7) for the
concentrated volume and that n = − f /r . The claim then follows from

Vc( f , x0) = 1

r

ˆ

S2

〈 f − x0, f 〉
| f − x0|2 dμ = 1

r

ˆ

S2

r2 − 〈x0, f 〉
r2 + |x0|2 − 2〈 f , x0〉 dμ.

If now x0 ∈ ∂ Br (0), Inequality (1.8) reads

1 = H0( f −1{x0}) ≤ 1

4π
Hc0( f ) + c0

2π
Vc( f , x0) = 1

4
(c0r − 2)2 + c0r for all r > 0,

where the right hand side converges to 1 as r → 0+. In the case c0 = 0, equality is achieved
by any round sphere.

5.2 A scale-invariant version

Clearly, for x0 = 0 the left hand sides of the Li–Yau inequalities in Lemma 1.3 and Theo-
rem 1.5 are invariant under rescalings of the immersion, whereas the right hand sides are not.
We will now prove a scale-invariant version of the inequality, involving the L2-CMC-deficit
of an immersion f : � → R

3 of an oriented surface �, given by

H̄( f ) = 1

4

ˆ

�

(Hsc − H̄sc)
2 dμ = inf

c0∈R
Hc0( f ),

cf. (1.3). Here H̄sc := A( f )−1
´
�

Hsc dμ denotes the average scalar mean curvature, provided

the latter integral exists. Note that H̄( f ) = 0 if and only if f is an immersion with constant
mean curvature, a CMC-immersion, justifying the terminology. We obtain the following Li–
Yau inequality which is invariant under rescaling and also under reversing the orientation on
�.
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Corollary 5.3 Let f : � → R
3 be an immersion of a compact oriented surface � without

boundary. Then for all x0 ∈ R
3 we have

H0( f −1{x0}) ≤ 1

4π
H̄( f ) + 1

2π
H̄sc Vc( f , x0) − 1

πA( f )
(Vc( f , x0))

2 . (5.3)

Proof By Proposition 3.4, we find that Vc( f , x0) exists. We may thus use Lemma 1.3 for
any c0 ∈ R. Expanding the right hand side of (1.8), we obtain a quadratic polynomial in c0.

By a direct computation, this polynomial is minimal for c0 =
´
� Hsc dμ−4Vc( f ,x0)

A( f )
and the

minimal value is precisely the right hand side of (5.3).

6 Applications

In this section, we discuss several applications of the Li–Yau inequalities. We first provide
a lower bound on the Helfrich energy resulting in nonexistence of minimizers for the penal-
ized Canham–Helfrich model in Sect. 6.1. In Sect. 6.2 we prove some important geometric
estimates involving the Helfrich energy. We then use these to prove Theorem 1.6. Lastly, we
discuss a criterion for positive total mean curvature in Sect. 6.4.

6.1 Nonexistence of minimizers for the penalized Canham–Helfrichmodel

Lemma 6.1 Suppose V ∈ V
o
2(R

3) and H ∈ L2
loc(μV ) satisfy Hypothesis 2.2, sptμV is

compact, c0 < 0, and x0 ∈ R
3 such that θ∗2(μV , x0) ≥ 1 and Vc(V , x0) > 0. Then there

holds

Hc0(V ) > 4π.

Proof This is a consequence of Corollary 4.4 in combination with [39, Theorem 3.6].

Remark 6.2 The proof of the above inequality for the Willmore functional (i.e. c0 = 0) [44,
Theorem 7.2.2] also works for the Helfrich functional provided V is given by an Alexandrov
immersion f : � → R

3 with inner unit normal field n. Indeed, denoting with K + the set of
points in � where both principal curvatures are nonnegative, we find

Hc0( f ) ≥ 1

4

ˆ

K +
|H f − c0n|2 dμ

≥ 1

4

ˆ

K +
|H f |2 dμ + c20

4
A( f ) >

1

4

ˆ

K +
|H f |2 dμ ≥

ˆ

K +
K dμ

where K denotes the Gauss curvature. Similarly to [44, Lemma 7.2.1] we see that if f is an
Alexandrov immersion, then ˆ

K +
K dμ ≥ 4π.

For all real numbers c0, λ, p we define the energy functional

Hλ,p
c0 ( f ) := Hc0( f ) + λA( f ) + p V( f )
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for all smooth immersions f : � → R
3 of a closed oriented surface �. The constants λ

and p are referred to as tensile stress and osmotic pressure. The energy was considered by
Zhong-Can and Helfrich [45, Equation (1)] in the study of spherical vesicles. Eachminimizer
of the constrained minimization Problem 1.1 is a critical point of the functional Hλ,p

c0 for
some λ, p by the method of Lagrange multipliers. This is one of the reasons why the energy
Hλ,p

c0 is subject of numerous works in mathematical physics, biology and mathematics, see
for instance [5] and the references therein.

Denote with S∞ the set of smoothly embedded spheres in R
3. In view of (1.2), we see

that

inf
f ∈S∞ Hλ,p

c0 ( f ) ≤ 4π. (6.1)

In [37, Theorem 3] (see also [31, Theorem 1.9]) the existence of spheres minimizing Hλ,p
c0

was shown, provided λ, c0 > 0 and p ≥ 0. However, in view of [13], c0 < 0 is empirically
more relevant in the study of red blood cells. Lemma 6.1 now reveals that the infimum in (6.1)
is not attained whenever c0 < 0 and λ, p ≥ 0. This is actually in accordance with the results
on the gradient flow in [6, 28]. Notice also the different behaviour of the constrained gradient
flow [35]. Examining the scaling behaviour of Hλ,p

c0 evaluated at round spheres, we see that
the energy functional is unbounded from below if p < 0; in particular, the infimum in (6.1)
is not attained. Similarly, if λ < 0 and c20 + λ < 0, one can use surfaces of degenerating
isoperimetric ratio found in [38, Theorem 1.5] to construct a sequence of embeddings fk in
S∞ such that Hλ,p

c0 ( fk) → −∞ as k → ∞.

Despite the nonexistence of minimizers explained above, the energy functional Hλ,p
c0

remains an important subject of study, since it is the critical points of Hλ,p
c0 that are of

interest.

6.2 Diameter estimates

In this section, we will show that the Helfrich energy can be used to obtain bounds on the
diameter.

Lemma 6.3 Suppose V ∈ V
o
2(R

3) and H ∈ L2
loc(μV ; R

3) satisfy Hypothesis 2.2, sptμV is
compact, and Hc0(V ) > 0. Then for all x0 ∈ sptμV we have

|2μV (R3) − 3c0 V(V , x0)|
2
√

μV (R3)Hc0(V )
≤ diam sptμV .

Proof. Using Hypothesis 2.2 for the vector field X(x) = x − x0 (multiplied with a suitable
cut-off function away from sptμV ), we have

ˆ

R3

2 dμV (x) − 3c0 V(V , x0) = −
ˆ

G
o
2(R

3)

〈H(x), x − x0〉 dV (x, ξ)

+ c0

ˆ

G
o
2(R

3)

〈�ξ, x − x0〉 dV (x, ξ).
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Thus, by the Cauchy–Schwarz inequality

∣
∣2μV (R3) − 3c0 V(V , x0)

∣
∣ ≤

ˆ

G
o
2(R

3)

|H(x) − c0(�ξ)||x − x0| dV (x, ξ)

≤
√

4Hc0(V )μV (R3) diam sptμV .

In the case c0 = 0, this is just Simon’s lower diameter estimate, cf. [43, Lemma 1.1].
Note that here we did not use the Li–Yau inequality but merely the first variation formula,
see (2.1) and (2.4).

Lemma 6.4 Suppose V , H , E,� satisfy Hypothesis 4.5, θ2(μV , x) ≥ 1 for μV -almost all x,
sptμV is connected, and c0 ≤ 0. If Hc0(V ) < ∞, μV (R3) < ∞, � ∈ L1(L3�E), and

ˆ

E

�(x)

|x − x0|2 dL3(x) < ∞ (6.2)

for μV -almost all x0, then sptμV is compact and

diam sptμV ≤ C

√

Hc0(V )
(
μV (R3) + 2

3
|c0|V(V )

)
(6.3)

where C = 9
2π and V(V ) = ´E � dL3 is the algebraic volume (see Proposition 4.8).

Remark 6.5 For c0 = 0, we recover the diameter bound in terms of area andWillmore energy
by Simon [43, Lemma 1.1]:

diam sptμV ≤ C
√
W(V )μV (R3).

This inequality holds true for all 2-varifolds in R
3 with generalized perpendicular mean

curvature, finite Willmore energy, and whose weight measure is finite and has connected
support (see [39, Theorem 1.5]). Hence, by (2.5) we obtain

diam sptμV ≤ C

√

μV (R3)
(
2Hc0(V ) + 1

2
c20μV (R3)

)

for all V satisfying Hypothesis 2.2 with W(V ) < ∞, μV (R3) < ∞, and such that sptμV

is connected. In view of Remark 6.11, our diameter bound (6.3) will be particularly useful
since it has the Helfrich functional rather than the weight measure as prefactor.

Proof of Lemma 6.4 We will follow the proof of [43, Lemma 1.1]. Suppose sptμV 
= ∅

(otherwise the statement is trivial), let x0 ∈ sptμV and define the Radon measure

Hc0(V , B) := 1

4

ˆ

B×Go(3,2)

|H(x) − c0(�ξ)|2 dV (x, ξ) for all Borel sets B in R
3.

Using the Cauchy–Schwarz inequality as in (4.13) and Young’s inequality, we estimate

1

2ρ2

ˆ

Bρ(x0)×Go(3,2)

|〈x − x0, H(x)−c0(�ξ)〉| dV (x, ξ) ≤ μV (Bρ(x0))

2ρ2 + 1

2
Hc0(V , Bρ(x0))
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for all ρ > 0. Hence, since θ2(μV , x0) ≥ 1 by [39, Theorem 3.6] in combination with
Remark 2.3, we can let σ go to zero in Lemma 4.1 and use (4.13), (4.14) to infer

π ≤ 3

4
Hc0(V , Bρ(x0)) + 3μV (Bρ(x0))

2ρ2 − c0
2

ˆ

Bρ(x0)×Go(3,2)

〈x − x0, �ξ 〉
|x − x0|2 dV (x, ξ)

+ c0
2ρ2

ˆ

Bρ(x0)×Go(3,2)

〈x − x0, �ξ 〉 dV (x, ξ). (6.4)

Multiplying (4.24) with c0
2 and using c0 ≤ 0, for any 0 < σ < ρ we have

− c0
2

ˆ

(Bρ\Bσ )(x0)×Go(3,2)

〈x − x0, �ξ 〉
|x − x0|2 dV (x, ξ) + c0

2ρ2

ˆ

Bρ(x0)×Go(3,2)

〈x − x0, �ξ 〉 dV (x, ξ)

= 3|c0|
2ρ2

ˆ

E∩Bρ(x0)

� dL3 − |c0|
2

ˆ

E∩Bρ(x0)\Bσ (x0)

�(x)

|x − x0|2 dL3(x)

− 3|c0|
2σ 2

ˆ

E∩Bσ (x0)

� dL3 − |c0|
2σ 2

ˆ

Bσ (x0)×Go(3,2)

〈x − x0, �ξ 〉 dV (x, ξ).

Sending σ → 0+ and using (6.2), Lemma 3.2 and Remark 3.3(i), we find that

− c0
2

ˆ

Bρ(x0)×Go(3,2)

〈x − x0, �ξ 〉
|x − x0|2 dV (x, ξ) + c0

2ρ2

ˆ

Bρ(x0)×Go(3,2)

〈x − x0, �ξ 〉 dV (x, ξ)

= |c0|
2

ˆ

E∩Bρ(x0)

(
3

ρ2 − 1

|x − x0|2
)

�(x) dL3(x) ≤ |c0|
ρ2

ˆ

E∩Bρ(x0)

�(x)L3(x). (6.5)

Combining (6.4) and (6.5), we thus obtain

π ≤ 3

4
Hc0(V , Bρ(x0)) + 3

2ρ2 μV (Bρ(x0)) + |c0|
ρ2

(
�L3�E

)
(Bρ(x0)). (6.6)

The right hand side of this inequality corresponds to the Radon measure

μc0,V ,E := 3

4
Hc0(V , ·) + 3

2ρ2 μV + |c0|
ρ2

(
�L3�E

)
.

The set of x0 ∈ R
3 that satisfy (6.2) is dense in sptμV . Hence, given any x0 ∈ sptμV and any

ε > 0 we can always find x1 ∈ sptμV which satisfies (6.6) such that Bρ(x1) ⊂ Bρ+ε(x0).
Thus, letting ε → 0+, we see that (6.6) remains valid for all x0 ∈ sptμV . By Remark 3.3(i),
we see μV (N ) = 0 whenever N is finite and consequently μc0,V ,E (N ) = 0 whenever N
is finite. Let d := diam sptμV (possibly d = ∞), 0 < ρ < d , and N be a positive integer
such that 2(N − 1)ρ < d . By the connectedness of sptμV , we can choose points
x0, . . . , xN−1 ∈ sptμV such that xi ∈ ∂ B2iρ(x0) for i = 1, . . . , N − 1. The balls
Bρ(x0), . . . , Bρ(xN−1) intersect in at most N − 1 points. Applying the inequality (6.6)
for each xi and summing over i yields

Nπ ≤ μc0,V ,E (R3). (6.7)
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Since the right hand side is finite, it follows that the diameter d is finite. Hence, we can choose
N such that 2(N − 1)ρ < d ≤ 2Nρ. Then (6.7) and Proposition 4.8 imply

d ≤ 3

2π

(

ρHc0(V ) + 2

ρ
μV (R3) + 4|c0|

3ρ
V(V )

)

. (6.8)

Now, in view of Lemma 6.1, we may take

ρ =
√
2μV (R3) + 4

3 |c0|V(V )

2Hc0(V )
=

√
μV (R3) + 2

3 |c0|V(V )

Hc0(V )
.

Then, by Lemma 6.3, ρ < d and thus, (6.8) becomes

d ≤ 9

2π

√

Hc0(V )
(
μV (R3) + 2

3
|c0|V(V )

)

which concludes the proof.

6.3 Regularity and embeddedness of Canham–Helfrichminimizers

We start with a survey of the variational setting in [33] (see also [22, 23, 31]). This includes
the definition of Lipschitz immersions. Then we introduce the space Q� of Lipschitz quasi-
embeddings which consists of those Lipschitz immersions whose associated varifolds are
varifolds with enclosed volume, cf. Hypothesis 4.5. We show that each injective Lips-
chitz immersion (in particular each smooth embedding) is a Lipschitz quasi-embedding
(see Lemma 6.6). Moreover, we prove a weak closure Lemma 6.8 which leads to our main
regularity Theorem 6.10.

Let � be a closed oriented surface and let g0 be a reference Riemannian metric on �. A
map f : � → R

3 is called weak branched immersion if and only if

f ∈ W 1,∞(�; R
3) ∩ W 2,2(�; R

3), (6.9)

there exists a constant 1 < C < ∞ such that

C−1|d f |g0 ≤ |d f ∧ d f |g0 ≤ C |d f |g0 (6.10)

where in local coordinates

d f ∧ d f := (dx1 ∧ dx2)∂x1 f ∧ ∂x2 f ,

there exist finitely many so called branch points b1, . . . , bN ∈ � such that the conformal
factor satisfies

log |d f |g0 ∈ L∞
loc(�\{b1, . . . , bN }),

and the Gauss map n defined as in (2.6) satisfies

n ∈ W 1,2(�; R
3). (6.11)

If in addition

|∂x1 f | = |∂x2 f | and 〈∂x1 f , ∂x2 f 〉 = 0 (6.12)

for all conformal charts x of (�, g0), then f is called conformal. A chart x = (x1, x2) that
satisfies (6.12) is referred to as isothermal coordinates. Notice that (6.12) implies (6.10) and,
since� is closed, the conditions (6.9)–(6.11) do not depend on the choice of the Riemannian
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metric g0. The space of weak branched immersions is denoted by F� . The subspace E� of
Lipschitz immersions is defined to consist of all f ∈ F� such that there exists a constant
0 < C < ∞ with

|d f ∧ d f |g0 ≥ C . (6.13)

Notice that (6.9) and (6.13) imply log |d f |g0 ∈ L∞(�).
Let f ∈ F� . Analogously to Example 2.4, we infer a (possibly degenerated) L∞-metric

g := f ∗〈·, ·〉, the induced Radon measure μ over �, the oriented varifold V := ( f , �n)#μ,
the classical mean curvature H f of f (in the Sobolev sense), and the induced generalized
mean curvature H . If f is conformal, we have by [23, Theorem 3.1] that

H0( f −1{x}) = θ2(μV , x) for all x ∈ R
3.

In view of [31, Equation (2.11)] there holds

δV (X) = −
ˆ

R3

〈X , H〉 dμV

for all X ∈ C1
c (R3; R

3). Moreover, by the definition of H and (6.11) we have that
ˆ

R3

|H |2 dμV ≤
ˆ

�

|H f |2 dμ < ∞.

In particular, H ∈ L2(μV ; R
3) and V , H satisfy Hypothesis 2.2. Now, we can combine [17,

Section 6.1, Theorem 4] and [40, Theorem 4.1] to infer

H( f (p)) = H f (p) for μ-almost all p ∈ �.

As in (2.9), it follows that for all c0 ∈ R we have

Hc0(V ) = 1

4

ˆ

R3

|H(x) − c0(�ξ)|2 dV (x, ξ) = 1

4

ˆ

�

|H f − c0n|2 dμ = Hc0( f ). (6.14)

The spaceQ� is defined to consist of all f ∈ E� such that there exists an L3-measurable
set E with

diam spt(L3�E) ≤ diam f [�] (6.15)

and ˆ

E

div X dL3 = −
ˆ

�

〈X ◦ f , n〉 dμ (6.16)

for any Lipschitz map X : R
3 → R

3 with compact support, i.e. the triple E, V , H satis-
fies Hypothesis 4.5 for � ≡ 1. The divergence theorem for sets of finite perimeter (4.16),
Eq. (6.16), and the area formula (see [18, 3.2.22(3)]) imply

nE (x) =
∑

p∈ f −1{x}
n(p) for H2-almost all x ∈ R

3. (6.17)

Notice that x /∈ spt(H2�∂∗E) does not imply f −1{x} = ∅. In particular, in view of Fig. 2e,
f, the two oriented varifolds associated with ∂∗E and f do not necessarily coincide. Hence,
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by Proposition 3.4, Proposition 4.8, Lemma 4.9 and Remark 4.10 there holds

V(V , x0) = V( f ) = L3(E), Vc(V , x0) = Vc( f , x0) =
ˆ

E

1

|x − x0|2 dL3(x) (6.18)

for all x0 ∈ R
3. IfH0( f −1{x}) ≤ 1 forH2-almost all x ∈ R

3 then (6.17) implies nE ◦ f = n,
∂∗E = f [�] up to a set ofH2-measure zero, the two oriented varifolds associated with ∂∗E
and f coincide, and since spt(H2�∂∗E) ⊂ spt(L3�E), equality holds in (6.15). Inspired
by the terminology in the smooth case of [4], we refer to Q� as the space of Lipschitz
quasi-embeddings. By definition, there holds

Q� ⊂ E� ⊂ F�.

Lemma 6.6 Let � be a closed oriented surface and f ∈ E� be injective. Then, possibly after
changing the orientation of �, there exists a connected open bounded set U ⊂ R

3 of finite
perimeter such that ∂∗U = f [�] up a to a set of H2-measure zero, andˆ

U

div X dL3 = −
ˆ

�

〈X ◦ f , n〉 dμ (6.19)

for any Lipschitz map X : R
3 → R

3. In particular, f ∈ Q� and Q� contains all smooth
embeddings f : � → R

3 (up to orientation). However, not all f ∈ Q� are injective.

Remark 6.7 Notice that changing the orientation on � is equivalent to changing the sign of
the (nonzero) algebraic volume. Hence, if additionally V( f ) > 0, no change of orientation
is necessary in Lemma 6.6.

Proof of Lemma 6.6 We may assume that (�, g0) ⊂ R
3 is embedded and g0 is the metric

induced by the inclusion map. Since f is injective, we can apply the Jordan–Brouwer sepa-
ration theorem [9] to obtain a connected open bounded set U ⊂ R

3 such that ∂U = f [�]
and R

3\Ū is connected. Since ∂∗U ⊂ ∂U = f [�] andH2( f [�]) < ∞, Federer’s criterion
implies that U is a set of finite perimeter. Moreover, for p ∈ �, one can show that if f is
differentiable at p, then f (p) ∈ ∂∗U . Hence, by Rademacher’s theorem, the sets ∂∗U and
f [�] are H2-almost equal. We still need to show thatˆ

∂∗U

〈X , nU 〉 dH2 =
ˆ

�

〈X ◦ f , n〉 dμ

for all Lipschitz maps X : R
3 → R

3, where nU is the measure theoretic inner unit normal of
U (see Sect. 4.3), and n is the Gauss map of f , cf. (2.6). Let ν be the unit normal induced by
the orientation of � ⊂ R

3. We define the 2-current T on R
3 by

T (ω) := −
ˆ

�

ωp(�ν(p)) dH2(p)

for all differential forms ω of degree 2 on R
3. Since � is closed, we have

∂T = 0 (6.20)

(see for instance [18, 4.1.31(1)]). Given any positive chart x of �, there holds

ν = ∂x1 × ∂x2

|∂x1 × ∂x2 |
, (

∧
2d f )(�ν) = |∂x1 f ∧ ∂x2 f |

|∂x1 × ∂x2 |
(�n)
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where forH2-almost all p ∈ �, the linear map
∧

2d f p : ∧
2Tp� → ∧

2d f p[Tp�] is defined
as in [18, 1.3.1]. Recalling that in any local chart x , the area elements of the immersion f
and the inclusion � ⊂ R

3 are given by |∂x1 f ∧ ∂x2 f | and |∂x1 × ∂x2 |, respectively, we have
by [18, 4.1.30] that

R(ω) := ( f#T )(ω) = −
ˆ

�

ω f (p)(�n(p)) dμ(p)

for all differential forms ω of degree 2 on R
3. Thus, by [18, 4.1.14] and (6.20)

∂ R = ∂( f#T ) = f#(∂T ) = 0.

Therefore, we can combine [18, 4.5.17] and [18, 4.5.6] to deduce the existence of sets of
finite perimeter E j ⊂ E j−1 ⊂ R

3, j ∈ Z such that

R =
∑

j∈Z
R j , μV =

∑

j∈Z
(H2�∂∗E j ) (6.21)

where

R j (ω) := −
ˆ

∂∗ E j

ωx (�nE j (x)) dH2(x)

are the currents induced by ∂∗E j . Since U is open and connected, we see from [3, Proposi-
tion 2] that U is indecomposable. Given any set of finite perimeter E ⊂ R

3 with ∂∗E ⊂ ∂∗U
up to a set ofH2-measure zero, we see that ∂∗(U ∩ E) ⊂ ∂∗U up to a set ofH2-measure zero
and thus, by [3, Proposition 4], either L3(U ∩ E) = 0 or L3(U\E) = 0. The same holds
true for U replaced by R

3\Ū . By (6.21) we have for all j ∈ Z that ∂∗E j ⊂ sptμV = ∂∗U
up to a set of H2-measure zero and therefore either E j = R

3 or E j = U or E j = R
3\Ū or

E j = ∅ up to a set of L3-measure zero. Since f is injective, we have that θ2(μV , ·) ≤ 1. We
thus deduce the existence of j0 ∈ Z such that (up to a set of L3-measure zero and possibly
after changing the orientation on �)

E j =

⎧
⎪⎨

⎪⎩

R
3 for j < j0,

U for j = j0,

∅ for j > j0.

In particular, R = R j0 and (6.19) follows. To see that not all f ∈ Q� are injective, one may
consider surfaces like in Fig. 2b, d, e.

In the following, we abbreviate F := FS2 , E := ES2 , and Q := QS2 .

Lemma 6.8 Suppose fk is a sequence in Q, 0 ∈ fk[S2] for all k ∈ N, c0 ∈ R,

A0 := sup
k∈N

A( fk) < ∞, inf
k∈N diam fk[S2] > 0, (6.22)

and
{
lim infk→∞

(Hc0( fk) + 2c0 inf x∈ fk [S2] Vc( fk, x)
)

< 8π if c0 < 0,

lim infk→∞
(Hc0( fk) + 2c0 supx∈ fk [S2] Vc( fk, x)

)
< 8π if c0 ≥ 0.

(6.23)

Then, after passing to a subsequence, there exists f ∈ Q injective such that

Vk → V in V
o
2(R

3) as k → ∞, (6.24)
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where Vk, V are the oriented 2-varifolds in R
3 associated with fk, f (cf. Example 2.4) and

Hc0( f ) ≤ lim inf
k→∞ Hc0( fk). (6.25)

Proof Let g0 be the standard metric on S
2. By [33, Theorem 1.4], after reparametrization,

we may assume that all fk are conformal. After passing to a subsequence, we may further
assume that for all k ∈ N,

{
Hc0( fk) + 2c0 infx∈ fk [S2] Vc( fk, x) < 8π if c0 < 0,

Hc0( fk) + 2c0 supx∈ fk [S2] Vc( fk, x) < 8π if c0 ≥ 0.

Let Ek be the sequence of sets of finite perimeter corresponding to fk according to (6.16).
Using (6.18), for all x0 ∈ R

3 and k ∈ N there holds

Vc( fk, x0) ≤
ˆ

B1(x0)

1

|x − x0|2 dL3(x) + L3(Ek) = 4π + V( fk)

and thus, by (6.15) we can apply the isoperimetric inequality for sets of finite perimeter (see
[18, Corollary 4.5.3]) to deduce from the uniform area bound (6.22) that

V0 := sup
k∈N

V( fk) < ∞, sup
k∈N

sup
x∈R3

Vc( fk, x) < C(V0) < ∞. (6.26)

Hence, by [31, Equation (2.8)] and (2.5), there holdsˆ

S2

1 + |dn fk |2g0 dμ fk ≤ A0 + 4W( fk) ≤ A0 + 8Hc0( fk) + 2c20 A0

≤ A0 + 8
(
8π + 2|c0|C(V0) + c20 A0

)
(6.27)

for all k ∈ N. Therefore, we can apply [31, Theorem 3.3] (see also Theorem 1.5 and
Lemma 4.1 in [30]) to infer that after passing to a subsequence, there exist a positive integer
N and sequences φ1

k , . . . , φN
k of positive conformal C∞-diffeomorphisms of S

2 such that
for each i ∈ {1, . . . , N }, there exist f i ∈ FS2 conformal, Ni ∈ N, and finitely many points
bi,1, . . . , bi,Ni ∈ S

2 with

f i
k := fk ◦ φi

k⇀ f i weakly in W 2,2
loc (S2\{bi,1, . . . , bi,Ni }; R

3) as k → ∞, (6.28)

sup
k∈N

‖ log |d f i
k |g0‖L∞

loc(S
2\{bi,1,...,bi,Ni }) < ∞. (6.29)

Moreover, there exist a sequence ψk of C∞-diffeomorphisms of S
2 and f ∈ W 1,∞(S2; R

3)

such that

fk ◦ ψk → f in C0(S2; R
3) as k → ∞, f [S2] =

N⋃

i=1

f i [S2]. (6.30)

Furthermore, there holds

N∑

i=1

W( f i ) ≤ lim inf
k→∞ W( fk),

N∑

i=1

Hc0( f i ) ≤ lim inf
k→∞ Hc0( fk). (6.31)

Denote with V i the varifolds associated to f i and set V := ∑N
i=1 V i . In order to show (6.24),

let ϕ : R
3 × G

o(3, 2) → R be any continuous function with compact support. Fix an
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integer i ∈ {1, . . . , N }, choose a conformal chart x : S
2\{bi,1, . . . , bi,Ni } → R

2, and let
K ⊂ S

2\{bi,1, . . . , bi,Ni } be a compact set. Denote by

λi
k := log |∂x1 f i

k |, λi := log |∂x1 f i |

the conformal factors and recall that the area elements of f i
k and f i are given by e2λ

i
k

and e2λ
i
. Let ni

k , nk , and ni be the Gauss maps of f i
k , fk , and f i . Following the proof of

[31, Lemma 3.1], we infer that by the weak convergence (6.28), the Rellich–Kondrachov
compactness theorem, and the uniform bounds on the conformal factors (6.29), after passing
to a subsequence,

e2λ
i
k ◦ x−1 → e2λ

i ◦ x−1 in L p(x[K ]) as k → ∞ for all 1 ≤ p < ∞,

f i
k ◦ x−1 → f i ◦ x−1 pointwise almost everywhere on x[K ] as k → ∞,

ni
k ◦ x−1 → ni ◦ x−1 pointwise almost everywhere on x[K ] as k → ∞. (6.32)

Hence, since ϕ is continuous, and also the Hodge star operator � is continuous,

ϕ( f i
k , �ni

k) ◦ x−1 → ϕ( f i , �ni ) ◦ x−1 pointwise almost everywhere on x[K ]
as k → ∞. Thus, since ϕ is bounded, the dominated convergence theorem and (6.32) imply

(
ϕ( f i

k , �ni
k)e

2λi
k

)
◦ x−1 →

(
ϕ( f i , �ni )e2λ

i
)

◦ x−1 in L p(x[K ]) as k → ∞
for any 1 ≤ p < ∞. Therefore, inductively passing to a subsequence, we can achieve that
for all k0 ∈ N and all k0 ≤ k ∈ N, there holds

ˆ

x
[
S2\ ⋃Ni

j=1 B 1
k0

(bi, j )
]

∣
∣
∣ϕ( f i

k , �ni
k)e

2λi
k − ϕ( f i , �ni )e2λ

i
∣
∣
∣ ◦ x−1 dL2 ≤ 1

k0
. (6.33)

Successively passing to a subsequence, we infer that (6.33) holds true simultaneously for all
i ∈ {1, . . . , N }. (Notice however that the chart x actually depends on i .) Moreover, since ϕ is
bounded and by the fact that finite sets have μ fi -measure zero by Remark 3.3(i), there holds

lim
k0→∞

ˆ
⋃Ni

j=1 B 1
k0

(bi, j )

ϕ( f i , �ni ) dμ f i = 0,

for all i ∈ {1, . . . , N }. Writing sk := 1/k, by (2.7) it follows
ˆ

G
o
2(R

3)

ϕ dV i =
ˆ

S2

ϕ( f i , �ni ) dμ f i = lim
k→∞

ˆ

S2\ ⋃Ni
j=1 Bsk (bi, j )

ϕ( f i
k , �ni

k) dμ f i
k
. (6.34)

By the proof of [31, Theorem 3.3] (see also the proof of [30, Theorem 1.5]), there exist Borel
sets Si, j

k ⊂ S
2 such that (see Equations (3.19) and (3.20) in [31])

lim
k→∞

ˆ

Si, j
k

1 dμ f i
k

= 0 for all i ∈ {1, . . . , N } and j ∈ {1, . . . , N i } (6.35)

123



45 Page 38 of 43 F. Rupp, C. Scharrer

and

ˆ

G
o
2(R

3)

ϕ dVk =
ˆ

S2

ϕ( fk, �nk) dμ fk =
N∑

i=1

ˆ

S2\ ⋃Ni
j=1 Bsk (bi, j )

ϕ( f i
k , �ni

k) dμ f i
k

+
N∑

i=1

Ni −1∑

j=1

ˆ

Si, j
k

ϕ( f i
k , �ni

k) dμ f i
k
. (6.36)

By (6.35) and the boundedness of ϕ, there holds
∣
∣
∣
∣
∣
∣
∣
∣

ˆ

Si, j
k

ϕ( f i
k , �ni

k) dμ f i
k

∣
∣
∣
∣
∣
∣
∣
∣

≤ ‖ϕ‖C0(Go
2(R

3))

ˆ

Si, j
k

1 dμ f i
k

→ 0 as k → ∞.

Thus, (6.36) and (6.34) imply

lim
k→∞

ˆ

G
o
2(R

3)

ϕ dVk =
N∑

i=1

ˆ

G
o
2(R

3)

ϕ dV i =
ˆ

G
o
2(R

3)

ϕ dV

which proves (6.24).
By (6.27) there holds

D0 := sup
k∈N

W( fk) < ∞.

Thus, by Lemma 3.7, there exists a constant C(A0, D0) depending only on the energy bound
D0 and the area bound A0 in (6.22) such that

|Vc( fk, x) − Vc( fk, y)| ≤ C(A0, D0)|x − y|1/2 for all k ∈ N and all x, y ∈ R
3. (6.37)

Hence, by the varifold convergence (6.24), we can apply Lemma 3.6 and (6.30) to deduce
first

lim
k→∞Vc(Vk, fk(p)) = Vc(V , f (p)) for all p ∈ S

2 (6.38)

and secondly, by (6.23), the lower semi-continuity (6.31), and (6.14)

Hc0(V ) + 2c0 Vc(V , x0) < 8π for all x0 ∈ sptμV .

Therefore, we can apply the Li–Yau inequality for general varifolds Corollary 4.4 to infer
θ2(μV , ·) < 2. Now, it follows from (6.30) that f = f 1 ∈ F and f is injective. In particular,
(6.25) follows from (6.31). Moreover, by [23, Theorem 3.1], f has no branch points. That
is log |d f |g0 ∈ L∞(S2) and thus f ∈ E . It remains to show that f ∈ Q. Recalling that
{x ∈ R

3 | nEk (x) 
= 0} = ∂∗Ek up to a set of H2-measure zero, we see from (6.17) that
∂∗Ek ⊂ fk[S2] up to a set of H2-measure zero, and thus H2(∂∗Ek) ≤ A( fk). Hence, the
uniform area bound (6.22) and the uniform volume bound (6.26) imply that the sequence χEk

is bounded in BV (R3). Therefore, by compactness (see [17, Section 5.2, Theorem 4]), there
exists anL3-measurable set E of of finite perimeter such that, after passing to a subsequence,
χEk → χE in L1(R3) and pointwise almost everywhere as k → ∞. In particular, the left
hand side in (6.16) converges as k → ∞. Moreover, the right hand side of (6.16) converges
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by (2.7) as a consequence of the varifold convergence (6.24). Noting that L3�Ek → L3�E
as Radon measures for k → ∞, we see that by (6.15) and the C0-convergence (6.30)

diam spt(L3�E) ≤ lim inf
k→∞ diam fk[S2] ≤ diam f [S2].

Thus, f ∈ Q and the proof is concluded.

Remark 6.9 The minimizer in [31, Theorem 1.7] has positive algebraic volume V0. However,
in view of Example 3.8 this is in general not enough to deduce that also the concentrated
volume is nonnegative. Thus, we could not apply the Li–Yau inequality Corollary 4.4 directly
to the minimizer in [31, Theorem 1.7].

Theorem 6.10 Suppose c0 ∈ R, the numbers A0, V0 > 0 satisfy the isoperimetric inequality
36πV 2

0 ≤ A3
0, and there exists a minimizing sequence fk of

η̄(c0, A0, V0) := inf{Hc0( f ) | f ∈ Q, A( f ) = A0, V( f ) = V0} (6.39)

such that
{
lim infk→∞

(Hc0( fk) + 2c0 inf x∈ fk [S2] Vc( fk, x)
)

< 8π if c0 < 0,

lim infk→∞
(Hc0( fk) + 2c0 supx∈ fk [S2] Vc( fk, x)

)
< 8π if c0 ≥ 0.

(6.40)

Then the infimum is attained by a smooth embedding f : S
2 → R

3.

Remark 6.11 (i) In view of (6.15), (6.18) and Lemma 6.4, we see that if c0 ≤ 0, then

inf
x0∈ f [S2]

Vc( f , x0) ≥ (2π)2 V( f )

92(A( f ) + 2
3 |c0|V( f ))

1

Hc0( f )

for all f ∈ Q. Thus, an elementary computation shows that (6.40) is satisfied provided

η̄(c0, A0, V0) < 4π
(
1 + √

1 + L(c0, A0, V0)
)

for

L(c0, A0, V0) := |c0|V0

2 · 92(A0 + 2
3 |c0|V0)

> 0.

(ii) Using (6.16), (5.2) and (6.18), for all r > 0 and f ∈ Q we have

sup
x0∈ f [S2]

Vc( f , x0) = sup
x0∈ f [S2]

ˆ

E

|x − x0|−2 dL3(x) ≤ 4πr + r−2 V( f ).

Minimizing over r > 0 yields the estimate Vc( f , x0) ≤ 3(4π2 V( f ))
1
3 . Thus, (6.40)

is satisfied for c0 > 0 provided

η̄(c0, A0, V0) < 8π − 6c0(4π
2V0)

1
3 .

(iii) For all c0 ≤ 0 and σ ≥ 36π , there exists Ā0, V̄0 > 0 such that Ā3
0/V̄ 2

0 = σ and
η̄(c0, A0, V0) < 8π for all 0 < A0 < Ā0, 0 < V0 < V̄0 with A3

0/V 2
0 = σ . Indeed, in

view of (1.2), this is a consequence of [41, Lemma 1].
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Proof of Theorem 6.10 By (6.27), we have that

sup
k∈N

W( fk) ≤ C(c0, A0, V0) < ∞.

Hence, by Lemma 6.3 applied for c0 = 0, there holds infk∈N diam fk[S2] > 0. Moreover,
after translations, we may assume 0 ∈ fk[S2] for all k. Therefore, we can apply Lemma 6.8
to obtain f ∈ Q injective such that, after passing to a subsequence,

Vk → V in V
o
2(R

3) as k → ∞,

where Vk, V are the oriented 2-varifolds in R
3 associated with fk, f . The varifold conver-

gence implies A( f ) = A0 and V( f ) = V0. Thus, by (6.25), f attains the infimum (6.39).
Let ω ∈ C∞(S2, R

3) and define ft := f + tω for t ∈ R. By (6.9) and (6.13) we have

ft → f in W 1,∞(S2; R
3) ∩ W 2,2(S2; R

3) as t → 0,

d ft ∧ d ft → d f ∧ d f in L∞(S2; (
∧

2T ∗
S
2) ⊗ ∧

2R
3) as t → 0,

nt → n in L∞(S2; R
3) as t → 0

and the associated varifolds converge in V
o
2(R

3). Moreover, it follows that ft ∈ E for |t |
small and W( ft ) → W( f ), Hc0( ft ) → Hc0( f ), and A( ft ) → A( f ) as t → 0. Hence,
similarly as in (6.37) and (6.38), we can combine Lemma 3.6 and Lemma 3.7 to deduce that
for some ε > 0 there holds

Hc0( ft ) + 2c0 Vc( ft , x0) < 8π for all |t | < ε and x0 ∈ ft [S2].
It follows by Corollary 4.4 that ft is injective for |t | < ε and thus, by Lemma 6.6 and
Remark 6.7, ft ∈ Q. Therefore, we can proceed as in [31] and [33] to deduce that f satisfies
the Euler–Lagrange equation given in [31, Lemma 4.1]. Now,we can apply [31, Theorem 4.3]
to conclude that f is smooth.

Theorem 1.6 is now a direct consequence.

Proof of Theorem 1.6 We will prove the theorem in the case where

�(c0, A0, V0) =
{
4π

(√
1 + L(c0, A0, V0) − 1

)
if c0 < 0,

−6c0
(
4π2V0

) 1
3 if c0 ≥ 0,

with L(c0, A0, V0) as in Remark 6.11(i).
Let fk ∈ Q be a minimizing sequence for (6.39). By Remark 6.11(i) and (ii), the choice

of �, and since η̄(c0, A0, V0) ≤ η(c0, A0, V0) as a consequence of Lemma 6.6, we find
that (6.40) is satisfied and hence the infimum (6.39) is attained by a smooth embedding
f : S

2 → R
3, which implies that f is also a minimizer for (1.9) and thus η̄(c0, A0, V0) =

η(c0, A0, V0). The last part of Theorem 1.6 follows from Remark 6.11(iii).

6.4 Positive total mean curvature

We recall the following inequality due to Minkowski [29]. If � ⊂ R
3 is a bounded convex

open subset with C2-boundary ∂�, then

1

2

ˆ

∂�

Hsc dH2 ≥
√
4πH2(∂�), (6.41)

123



Li–Yau inequalities for the Helfrich functional… Page 41 of 43 45

with equality if and only if � is a ball. The quantity on the left hand side of (6.41) is called
total (scalar) mean curvature. With the help of Corollary 5.3, we can generalize (6.41) to a
class of nonconvex surfaces.

Theorem 6.12 Let f : � → R
3 be an immersion of an oriented closed surface �. If there

exists x0 ∈ R
3 with Vc( f , x0) > 0 and H̄( f ) ≤ 4πH0( f −1{x0}), then we have

1

2

ˆ
Hsc dμ ≥

√(
4πH0( f −1{x0}) − H̄( f )

)A( f ). (6.42)

The assumption Vc( f , x0) > 0 is especially satisfied if f is an Alexandrov immersion
and x0 ∈ R

3 is arbitrary, see (5.1).
We would like to point out that it is possible to deduce (6.42) with the absolute value on

the left hand side from the classical Li–Yau inequality for the Willmore energy. However,
the question whether the total mean curvature is positive remains. In general, this has to be
answered in the negative; however, under certain convexity or symmetry assumptions on the
surface, the total mean curvature can be shown to be positive, cf. [12, Table 1]. In the case of
Alexandrov immersions, Theorem 6.12 provides a sufficient criterion for positive total mean
curvature if the CMC-deficit is not too large, depending on the concentrated volume and the
multiplicity at a point.

Proof of Theorem 6.12 Set δ := 4πH0( f −1{x0}) − H̄( f ) ≥ 0. By Corollary 5.3 we have

δA( f ) ≤ 2
ˆ

�

Hsc dμ Vc( f , x0) − 4Vc( f , x0)
2,

and therefore, using Young’s inequality and Vc( f , x0) > 0, we find´
Hsc dμ

2
≥ δA( f )

4Vc( f , x0)
+ Vc( f , x0) ≥ √

δA( f ).
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