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Abstract
On R

N equipped with a normalized root system R, a multiplicity function k(α) > 0, and
the associated measure

dw(x) =
∏

α∈R

|〈x, α〉|k(α) dx,

let ht (x, y) denote the heat kernel of the semigroup generated by the Dunkl Laplace operator
�k . Let d(x, y) = ming∈G ‖x−g(y)‖, whereG is the reflection group associated with R. We
derive the following upper and lower bounds for ht (x, y): for all cl > 1/4 and 0 < cu < 1/4
there are constants Cl ,Cu > 0 such that

Clw(B(x,
√
t))−1e−cl

d(x,y)2
t �(x, y, t) ≤ ht (x, y) ≤ Cuw(B(x,

√
t))−1e−cu

d(x,y)2
t �(x, y, t),

where �(x, y, t) can be expressed by means of some rational functions of ‖x − g(y)‖/√t .
An exact formula for �(x, y, t) is provided.

Mathematics Subject Classification 44A20 · 35K08 · 33C52 · 43A32 · 39A70

1 Introduction and statement of the results

On the Euclidean space R
N equipped with a normalized root system R and a multiplicity

function k(α) > 0, let �k denote the Dunkl Laplace operator (see Sect. 2). Let dw(x) =
w(x) dx be the associated measure, where
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w(x) =
∏

α∈R

|〈x, α〉|k(α) =
∏

α∈R+
|〈x, α〉|2k(α), (1.1)

where R+ is a fixed positive subsystem of R. It is well-known that�k generates a semigroup
{et�k }t≥0 of linear operators on L2(dw) which has the form

et�k f (x) =
∫

RN
ht (x, y) f (y) dw(y),

where 0 < ht (x, y) is a smooth function called the Dunkl heat kernel.
The main goal of this paper is to prove upper and lower bounds for ht (x, y). In order to

state the result we need to introduce some notation.
For α ∈ R, let

σα(x) = x − 2
〈x, α〉
‖α‖2 α (1.2)

stand for the reflection with respect to the subspace perpendicular to α. Let G denote the
Coxeter (reflection) group generated by the reflections σα , α ∈ R+. We define the distance
of the orbit of x to the orbit of y by

d(x, y) = min{‖x − g(y)‖ : g ∈ G}.
Obviously,

d(x, y) = d(x, g(y)) for all x, y ∈ R
N and g ∈ G.

It is well known that d(x, y) = ‖x − g(y)‖ if and only if x and g(y) belong to the same
(closed) Weyl chamber (see [6, Chapter VII, proof of Theorem 2.12]). Let

B(x, r) = {x′ ∈ R
N : ‖x − x′‖ ≤ r}

stand for the (closed) Euclidean ball centered at x and radius r . We denote by w(B(x, r)) the
dw-volume of the ball B(x, r).

For a finite sequence α = (α1, α2, . . . , αm) of elements of R+, x, y ∈ R
N and t > 0, let

�(α) := m (1.3)

be the length of α,
σα := σαm ◦ σαm−1 ◦ . . . ◦ σα1 , (1.4)

and

ρα(x, y, t)

:=
(
1 + ‖x − y‖√

t

)−2 (
1 + ‖x − σα1(y)‖√

t

)−2 (
1 + ‖x − σα2 ◦ σα1(y)‖√

t

)−2

· . . . ·

·
(
1 + ‖x − σαm−1 ◦ . . . ◦ σα1(y)‖√

t

)−2

.

(1.5)

For x, y ∈ R
N , let n(x, y) = 0 if d(x, y) = ‖x − y‖ and

n(x, y) = min{m ∈ Z : d(x, y) = ‖x − σαm ◦ . . . ◦ σα2 ◦ σα1(y)‖, α j ∈ R+} (1.6)

otherwise. In other words, n(x, y) is the smallest number of reflections σα which are needed
to move y to a (closed) Weyl chamber which contains x (see Sect. 2.3). We also allow α to
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be the empty sequence, denoted by α = ∅. Then for α = ∅, we set: σα = I (the identity
operator), �(α) = 0, and ρα(x, y, t) = 1 for all x, y ∈ R

N and t > 0.
We say that a finite sequence α = (α1, α2, . . . , αm) of positive roots is admissible for the

pair (x, y) ∈ R
N × R

N if n(x, σα(y)) = 0. In other words, the composition

σα = σαm ◦ σαm−1 ◦ . . . ◦ σα1

of the reflections σα j maps y to a Weyl chamber containing also x.
The set of the all admissible sequences α for the pair (x, y) will be denoted by A(x, y).

Note that if n(x, y) = 0, then α = ∅ ∈ A(x, y).
Let us define

�(x, y, t) :=
∑

α∈A(x,y), �(α)≤2|G|
ρα(x, y, t). (1.7)

Note that for any c > 1 and for all x, y ∈ R
N and t > 0 we have

c−2|G|�(x, y, ct) ≤ �(x, y, t) ≤ �(x, y, ct). (1.8)

We are now in a position to state our main result about upper and lower bounds for the
Dunkl heat kernel which are given by means of w-volumes of Euclidean balls, the function
�(x, y, t), and d(x, y). Recall that k(α) > 0 in the whole paper.

Theorem 1.1 Assume that 0 < cu < 1/4 and cl > 1/4. Then there are constants Cu,Cl > 0
such that for all x, y ∈ R

N and t > 0 we have

Clw(B(x,
√
t))−1e−cl

d(x,y)2
t �(x, y, t) ≤ ht (x, y), (1.9)

ht (x, y) ≤ Cuw(B(x,
√
t))−1e−cu

d(x,y)2
t �(x, y, t). (1.10)

Let us remark that this way of expressing estimates of the heat kernel is convenient
in handling real harmonic analysis problems, because it allows us to apply methods from
analysis on spaces of homogeneous type in the sense of Coifman and Weiss.

The proof of the theorem is based on an iteration procedure. In order to illustrate the
method we start by proving upper and lower bounds for ht (x, y) in the case where the root
system is associated with symmetries of a regular m-sided polygon in R

2, e.g. when G is
the dihedral group. In this case the formulation of the estimates and they proofs are much
simpler.

Theorem 1.2 Assume that G is the group of symmetries of a regular m-sided polygon in R2

centered at the origin and let R be the associated root system. Fix a positive subsystem R+
of R and set

�D(x, y, t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n(x, y) = 0,(
1 + ‖x−y‖√

t

)−2
if n(x, y) = 1,

(
1 + ‖x−y‖√

t

)−2 ∑
α∈R+

(
1 + ‖x−σα(y)‖√

t

)−2
if n(x, y) = 2.

Let 0 < cu < 1/4 and cl > 1/4. There are constants Cu,Cl > 0 such that for all
x, y ∈ R

N and t > 0 we have

Clw(B(x,
√
t))−1e−cl

d(x,y)2
t �D(x, y, t) ≤ ht (x, y), (1.11)
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ht (x, y) ≤ Cuw(B(x,
√
t))−1e−cu

d(x,y)2
t �D(x, y, t). (1.12)

Theorems 1.1 and 1.2 can be consider as improvements of the following estimates

C−1w(B(x,
√
t))−1e−c−1‖x−y‖2/t ≤ ht (x, y) ≤ Cw(B(x,

√
t))−1e−cd(x,y)2/t (1.13)

obtained in [2, Theorems 3.1 and 4.4] (see Sect. 3 for more details).
A natural problem one can post is to define a positive function H(x, y, t) by means of

volumes of balls, reflections, and distances, such that C−1 ≤ ht (x, y)/H(x, y, t) ≤ C .

2 Preliminaries and notation

2.1 Basic definitions of Dunkl theory

In this section we present basic facts concerning the theory of the Dunkl operators. For more
details we refer the reader to [3, 8, 10, 11].

We consider the Euclidean space RN with the scalar product 〈x, y〉 = ∑N
j=1 x j y j , where

x = (x1, . . . , xN ), y = (y1, . . . , yN ), and the norm ‖x‖2 = 〈x, x〉.
A normalized root system in R

N is a finite set R ⊂ R
N \ {0} such that R ∩ αR = {±α},

σα(R) = R, and ‖α‖ = √
2 for all α ∈ R, where σα is defined by (1.2). Each root system

can be written as a disjoint union R = R+ ∪ −R+, where R+, −R+ are separated by a
hyperplane through the origin. Such a set R+ is called a positive subsystem. Its choice is not
unique. In this paper, we will work with a fixed positive subsystem R+.

The finite group G generated by the reflections σα , α ∈ R+ is called the Coxeter group
(reflection group) of the root system. Clearly, |G| > |R+|.

A multiplicity function is a G-invariant function k : R → C which will be fixed and > 0
throughout this paper.

Let N = N + ∑
α∈R+ 2k(α). Then,

w(B(tx, tr)) = tNw(B(x, r)) for all x ∈ R
N , t, r > 0,

where w is the associated measure defined in (1.1). Observe that there is a constant C > 0
such that for all x ∈ R

N and r > 0 we have

C−1w(B(x, r)) ≤ r N
∏

α∈R+
(|〈x, α〉| + r)2k(α) ≤ Cw(B(x, r)), (2.1)

so dw(x) is doubling, that is, there is a constant C > 0 such that

w(B(x, 2r)) ≤ Cw(B(x, r)) for all x ∈ R
N , r > 0. (2.2)

For ξ ∈ R
N , the Dunkl operators Tξ are the following k-deformations of the directional

derivatives ∂ξ by difference operators:

Tξ f (x) = ∂ξ f (x) +
∑

α∈R+
k(α)〈α, ξ 〉 f (x) − f (σα(x))

〈α, x〉 .

The Dunkl operators Tξ , which were introduced in [3], commute and are skew-symmetric
with respect to the G-invariant measure dw.

Let us denote Tj = Te j , where {e j }1≤ j≤N is a canonical orthonormal basis of RN .
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For fixed y ∈ R
N the Dunkl kernel E(x, y) is a unique analytic solution to the system

Tξ f = 〈ξ, y〉 f , f (0) = 1.

The function E(x, y), which generalizes the exponential function e〈x,y〉, has a unique
extension to a holomorphic function on C

N × C
N . Moreover, E(z,w) = E(w, z) for all

z,w ∈ C
N .

2.2 Dunkl Laplacian and Dunkl heat semigroup

The Dunkl Laplacian associated with R and k is the differential-difference operator �k =∑N
j=1 T

2
j , which acts on C2(RN )-functions by

�k f (x) = �eucl f (x) +
∑

α∈R+
2k(α)δα f (x),

δα f (x) = ∂α f (x)
〈α, x〉 − ‖α‖2

2

f (x) − f (σα(x))
〈α, x〉2 .

The operator �k is essentially self-adjoint on L2(dw) (see for instance [1, Theorem 3.1])
and generates a semigroup Ht of linear self-adjoint contractions on L2(dw). The semigroup
has the form

Ht f (x) =
∫

RN
ht (x, y) f (y) dw(y),

where the heat kernel

ht (x, y) = c−1
k (2t)−N/2E

(
x√
2t

,
y√
2t

)
e−(‖x‖2+‖y‖2)/(4t) (2.3)

is a C∞-function of all the variables x, y ∈ R
N , t > 0, and satisfies

0 < ht (x, y) = ht (y, x).

Here and subsequently,

ck =
∫

RN
e−‖x‖2/2 dw(x).

The following specific formula for the Dunkl heat kernel was obtained by Rösler [9]:

ht (x, y) = c−1
k 2−N/2t−N/2

∫

RN
exp(−A(x, y, η)2/4t) dμx(η) for all x, y ∈ R

N , t > 0.

(2.4)
Here

A(x, y, η) =
√

‖x‖2 + ‖y‖2 − 2〈y, η〉 =
√

‖x‖2 − ‖η‖2 + ‖y − η‖2 (2.5)

and μx is a probability measure, which is supported in the convex hull convO(x) of the orbit
O(x) = {g(x) : g ∈ G}.

One can easily check that

d(x, y) ≤ A(x, y, η) for all η ∈ convO(x). (2.6)
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2.3 Weyl chambers and their properties

The closures of connected components of

{x ∈ R
N : 〈x, α〉 �= 0 for all α ∈ R+}

are called (closed) Weyl chambers. Below we present some properties of the reflections and
the Weyl chambers, which will be used in next sections.

Lemma 2.1 Fix x, y ∈ R
N and g ∈ G. Then d(x, y) = ‖x − g(y)‖ if and only if g(y) and x

belong to the same Weyl chamber.

Proof See [6, Chapter VII, proof of Theorem 2.12]. ��
Lemma 2.2 Let x, y ∈ R

N and assume that n(x, y) ≥ 1. Then there is α ∈ R+ such that

‖x − y‖ > ‖x − σα(y)‖. (2.7)

Proof If for a fixed α ∈ R+, ‖x − y‖ ≤ ‖x − σα(y)‖, then x and y are situated in the same
half space with the boundary α⊥ [6, Chapter VII, proof of Theorem 2.12]. Now, suppose
towards a contradiction that ‖x − y‖ ≤ ‖x − σα(y)‖ for all α ∈ R+. Then x and y belong to
the same Weyl chamber, hence n(x, y) = 0. This contradicts our assumption. ��
Corollary 2.3 For any x, y ∈ R

N such that n(x, y) > 0 there are: 1 ≤ m ≤ |G| and
α = (α1, α2, . . . , αm) such that

‖x−y‖ > ‖x−σα1(y)‖ > ‖x−σα2◦σα1(y)‖ > · · · > ‖x−σαm◦σαm−1◦. . .◦ σα1(y)‖= d(x, y)
(2.8)

and
n(x, σα(y)) = 0. (2.9)

3 Auxiliary estimates for the heat kernel

In the present section we establish auxiliary estimates for the heat kernel which will be used
for proving Theorems 1.1 and 1.2. Our starting point is the following proposition which is
an improvement of the estimates (1.13).

Proposition 3.1 For any constants c̃� > 1/4 and 0 < c̃u < 1/4 there are positive constants
C̃�, C̃u , such that for all x, y ∈ R

N and t > 0 we have

C̃�w(B(x,
√
t))−1e−c̃�‖x−y‖2/t ≤ ht (x, y) ≤ C̃uw(B(x,

√
t))−1e−c̃ud(x,y)2/t . (3.1)

Proof To obtain the upper bound with any constant 0 < c̃u < 1/4 arbitrarily close to 1/4,
we apply (2.4) together with (2.6) and get

ht (x, y) ≤ c−1
k (2t)−N/2

∫

RN
exp

(
− (1 − 4̃cu)A(x, y, η)2

4t

)
exp

( − c̃ud(x, y)2/t
)
dμx(η)

= (1 − 4̃cu)
−N/2ht/(1−4̃cu)(x, y) exp

( − c̃ud(x, y)2/t
)

≤ C̃uw(B(x,
√
t))−1 exp

( − c̃ud(x, y)2/t
)
,

where in the last inequality we have used the second inequality in (1.13) and the doubling
property (2.2).

The lower bound in (3.1) with any constant c̃� > 1/4 is Corollary 2.3 of Jiu and Li [7]. ��
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We now turn to deriving estimates for the heat kernel which will be used for an iteration
procedure.

Proposition 3.2 Let c̃�, c̃u be the constants from Proposition 3.1 and let c1 < c̃u . There is
C1 ≥ 1 such that for all x, y ∈ R

N and t > 0 we have

C−1
1

(
w(B(x,

√
t))−1e−c̃�

‖x−y‖2
t +

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+
ht (x, σα(y))

)
≤ ht (x, y),

(3.2)

ht (x, y) ≤ C1

(
w(B(x,

√
t))−1e−c1

‖x−y‖2
t +

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+
ht (x, σα(y))

)
. (3.3)

Proof The following formula was proved in [4, formula (3.5)]: for all x, y ∈ R
N and t > 0,

we have

∂t ht (x, y) = ‖x − y‖2
(2t)2

ht (x, y) − N

2t
ht (x, y) − 1

t

∑

α∈R+
k(α)ht (x, σα(y)). (3.4)

On the other hand, by (2.4),

∂t ht (x, y) = −N
2
t−1ht (x, y) + c−1

k 2−N/2t−1t−N/2
∫

RN

A(x, y, η)2

4t
e−A(x,y,η)2/4t dμx(η)

=: I1(t, x, y) + I2(t, x, y).
(3.5)

Combining (3.4) with (3.5) we get

(
2N − 2N + ‖x − y‖2

t

)
ht (x, y) = 4t I2(t, x, y) + 4

∑

α∈R+
k(α)ht (x, σα(y)). (3.6)

Note that I2(t, x, y)≥0, and, thanks to our assumption on k(α) > 0, we have N > N . So,
by (3.6),

ht (x, y) ≥ 4(2N − 2N + 1)−1
(
1 + ‖x − y‖2

t

)−1 ∑

α∈R+
k(α)ht (x, σα(y)). (3.7)

Now, taking the arithmetic mean of the lower bound in (3.1) with (3.7) we obtain (3.2),
since there is a constant C > 0 such that for all x, y ∈ R

N and t > 0 we have

C−1
(
1 + ‖x − y‖2

t

)−1

≤
(
1 + ‖x − y‖√

t

)−2

≤ C

(
1 + ‖x − y‖2

t

)−1

.

In order to prove (3.3), set ε = (̃cu − c1)/(2̃cu). Clearly, by the assumption c1 < c̃u , we
have 0 < ε < 1

2 . To obtain (3.3), we split the integral for t I2(t, x, y) as follows:

t I2(t, x, y) = c−1
k 2−N/2t−N/2

∫

A(x,y,η)2≤(1−ε)‖x−y‖2
. . .

+ c−1
k 2−N/2t−N/2

∫

A(x,y,η)2>(1−ε)‖x−y‖2
. . .

=: t I2,1(t, x, y) + t I2,2(t, x, y).

(3.8)
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Clearly,

t I2,1(t, x, y) ≤ c−1
k 2−N/2(1 − ε)t−N/2

∫

RN

‖x − y‖2
4t

e−A(x,y,η)2/4t dμx(η)

= (1 − ε)
‖x − y‖2

4t
ht (x, y), (3.9)

where for the equality we have applied (2.4). In order to estimate I2,2(t, x, y), note that there
are Cε,C ′

ε,C
′′
ε > 0 such that

t I2,2(t, x, y) ≤ Cεt
−N/2

∫

A(x,y,η)2>(1−ε)‖x−y‖2
e−(1−2ε)A(x,y,η)2/(4t(1−ε))e−εA(x,y,η)2/(8t(1−ε)) dμx(η)

≤ Cεe
−(1−2ε)‖x−y‖2/4t t−N/2

∫

RN
e−εA(x,y,η)2/(8t(1−ε)) dμx(η)

= C ′
εe

−(1−2ε)‖x−y‖2/4t h2(1−ε)t/ε(x, y) ≤ C ′′
ε w(B(x,

√
t))−1e−(1−2ε)‖x−y‖2/4t .

(3.10)
In the last inequality we have used Proposition 3.1. Combining (3.6), (3.9), and (3.10) we

obtain
(
2N − 2N + ‖x − y‖2

t

)
ht (x, y) ≤ (1 − ε)

‖x − y‖2
t

ht (x, y)

+ 4C ′′
ε w(B(x,

√
t))−1e−(1−2ε)‖x−y‖2/4t

+ 4
∑

α∈R+
k(α)ht (x, σα(y)),

(3.11)

which finally leads to (3.3), because, by our assumption, N > N . ��
Observe that our basic upper and lower bounds [see (3.2) and (3.3)] are of the same type

and they differ by the constants in the exponent of the first component.
From now on the constants C1, c1 from Proposition 3.2 are fixed.

Remark 3.3 The estimate (3.3) together with (1.13) imply the known bounds

ht (x, y) ≤ Cw(B(x,
√
t))−1

(
1 + ‖x − y‖√

t

)−2
e−cd(x,y)2/t (3.12)

see [4, Theorem 3.1]. An alternative proof of (3.12) which uses a Poincaré inequality was
announced by W. Hebisch.

4 The case of the dihedral group: proof of Theorem 1.2

Let Dm be a regular m-polygon in R
2, m ≥ 3, such that the related root system R consists

of 2m vectors

α j = √
2

(
sin

(
π j

m

)
, cos

(
π j

m

))
, j ∈ {0, 1, . . . , 2m − 1},

and the reflection group G acts either by the symmetries σα j , or by the rotations σα j ◦ σαi ,
0 ≤ i, j ≤ 2m − 1. Consequently, maxx,y∈R2 n(x, y) = 2.

Proof of Theorem 1.2 Fix 0 < cu < c1, where c1 is a constant from Proposition 3.2. Let us
consider three cases depending on the value of n(x, y).
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Case n(x, y) = 0. By the definition of n(x, y) [see (1.6)], in this case ‖x − y‖ = d(x, y).
Hence Proposition 3.1 reads

C̃�w(B(x,
√
t))−1e−c̃�d(x,y)2/t ≤ ht (x, y) ≤ C̃uw(B(x,

√
t))−1e−c̃ud(x,y)2/t , (4.1)

which are the desired estimates, since �D(x, y, t) = 1 in this case.
Case n(x, y) = 1. Then, by the definition of n(x, y) [see (1.6)], there is α0 ∈ R+ such

that n(x, σα0(y)) = 0, that is, ‖x − σα0(y)‖ = d(x, y). Using (3.2), we get

ht (x, y) ≥ C−1
1

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+
ht (x, σα(y))

≥ C−1
1

(
1 + ‖x − y‖√

t

)−2

ht (x, σα0(y))

≥ C−1
1 C̃�w(B(x,

√
t))−1e−c̃�d(x,y)2/t

(
1 + ‖x − y‖√

t

)−2

,

(4.2)

where in the last inequality we have used (4.1).
In order to prove the upper bound,we use (3.3), Proposition 3.1 togetherwith the inequality

d(x, y) ≤ ‖x − y‖ and obtain

ht (x, y) ≤ Cuw(B(x,
√
t))−1e−cud(x,y)2/t

(
1 + ‖x − y‖√

t

)−2
. (4.3)

Case of n(x, y) = 2. In the proof of the upper and lower bounds we use the fact that, in
this case, n(x, σα(y)) = 1 for all α ∈ R+.

We start by proving the lower bound. Using (3.2) we have

ht (x, y) ≥ C−1
1

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+
ht (x, σα(y)))

≥ C−2
1 C̃�w(B(x,

√
t))−1e−c̃�

d(x,y)2
t

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+

(
1 + ‖x − σα(y)‖√

t

)−2

,

(4.4)
where in the last inequality we have used (4.2), since n(x, σα(y)) = 1 for all α ∈ R+.

In order to obtain the upper bound, we apply (3.3) and then (4.3), and get

ht (x, y) ≤ C1

⎛

⎝w(B(x,
√
t))−1e−c1

‖x−y‖2
t +

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+
ht (x, σα(y))

⎞

⎠

≤ C1w(B(x,
√
t))−1e−c1

‖x−y‖2
t

+ C1Cuw(B(x,
√
t))−1e−c1d(x,y)2/t

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+

(
1 + ‖x − σα(y)‖√

t

)−2

.

(4.5)
Let now α0 ∈ R+ be such that ‖x − σα0(y)‖ = minα∈R+ ‖x − σα(y)‖. Then

d(x, y) ≤ ‖x − σα0(y)‖ ≤ ‖x − y‖
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(see Lemma 2.2). Thus, from (4.5) we conclude that

ht (x, y) ≤C ′
uw(B(x,

√
t))−1e−cud(x,y)2/t

(
1 + ‖x − y‖√

t

)−2 (
1 + ‖x − σα0(y)‖√

t

)−2

,

(4.6)
which implies the desired estimate (1.12).

��

5 Proof of Theorem 1.1

5.1 Proof of the lower bound (1.9)

The proposition below combined with Corollary 2.3 imply (1.9).

Proposition 5.1 Assume that C̃�, c̃� are the constants from Proposition 3.1 and C1 is the
constant from Proposition 3.2. For all x, y ∈ R

N , t > 0, and α ∈ A(x, y) we have

ht (x, y) ≥ C−�(α)
1 ρα(x, y, t)ht (x, σα(y))

≥ C−�(α)
1 C̃�w(B(x,

√
t))−1e−c̃�

d(x,y)2
t ρα(x, y, t)

(5.1)

Proof The proof is by induction with respect to m = �(α). For m = 0 and m = 1 the claim
is a consequence of Proposition 3.1 and (3.2) [see also (4.2)]. Assume that (5.1) holds for all
x1, y1 ∈ R

N , t1 > 0, and α̃ ∈ A(x1, y1) such that �(̃α) = m. Let α = (α1, α2, . . . , αm+1) ∈
A(x, y) be such that �(α) = m + 1. By (3.2) we have

ht (x, y) ≥ C−1
1

(
1 + ‖x − y‖√

t

)−2

ht (x, σα1(y)).

Note thatα ∈ A(x, y) implies that the sequence α̃ = (α2, . . . , αm+1) belongs toA(x, σα1(y))
and, obviously, �(̃α) = m. Therefore, the claim is a consequence of the induction hypoth-
esis applied to x, σα1(y), and α̃, and the fact that, by the definition of ρα(x, y, t) and
ρα̃(x, σα1(y), t) (see (1.5)), we have

ρα(x, y, t) =
(
1 + ‖x − y‖√

t

)−2

ρα̃(x, σα1(y), t). ��

5.2 Proof of the upper bound (1.10)

Let us begin with a corollary which follows by Proposition 5.1.

Corollary 5.2 Assume that c̃� is the constant from Proposition 3.1. Then there is a constant
C2 > 0 such that for all x, y ∈ R

N and t > 0 we have

C−1
2 w(B(x,

√
t))−1e−c̃�

d(x,y)2
t

(
1 + ‖x − y‖√

t

)−2|G|
≤ ht (x, y). (5.2)

Proof If n(x, y) = 0, then (5.2) holds by Proposition 3.1, because d(x, y) = ‖x − y‖ in this
case. For fixed x, y ∈ R

N such that n(x, y) ≥ 1, let α = (α1, α2, . . . , αm), m ≤ |G|, be as
in Corollary 2.3. Then, thanks to (2.8), we have

ρα(x, y, t) ≥
(
1 + ‖x − y‖√

t

)−2|G|
,
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so the claim follows by Proposition 5.1. ��
From now on the constant C2 from Corollary 5.2 is fixed.

Proposition 5.3 Let C1≥ 1 and 0 < c1 < c̃u be the constants from Proposition 3.2. There is
a constant c2 > 4C1|G| such that for all x, y ∈ R

N and t > 0 satisfying

‖x − y‖ > c2d(x, y) and ‖x − y‖ > c2
√
t (5.3)

we have

ht (x, y) ≤ 2C1

(
1 + ‖x − y‖√

t

)−2 ∑

α∈R+
ht (x, σα(y)). (5.4)

Remark 5.4 The condition“c2 > 4C1|G|”occurs in the formulation of the proposition for
some technical reasons and it will be used later on in the proof of (1.10).

Proof Thanks to (3.3) and the fact that 0 < ht (x, y) < ∞ it is enough to show that

w(B(x,
√
t))−1e−c1

‖x−y‖2
t ≤ 1

2C1
ht (x, y). (5.5)

To this end, by Corollary 5.2, we get

ht (x, y) ≥ C−1
2 w(B(x,

√
t))−1e−c̃�

d(x,y)2
t

(
1 + ‖x − y‖√

t

)−2|G|
,

so (5.5) is a consequence of the fact that taking c2 > 0 large enough in (5.3), we have

C−1
2

(
1 + ‖x − y‖√

t

)−2|G|
e−c̃�

d(x,y)2
t ≥ 2C1e

−c1
‖x−y‖2

t .

��
From now on the constant c2 from Proposition 5.3 is fixed.

Proposition 5.5 Assume that c̃u is the constant from Proposition 3.1 and c2 is the same as in
Proposition 5.3. Let 0 <c3 < c̃u . Then there is a constant C3 > 0 such that for all x, y ∈ R

N

and t > 0 such that

‖x − y‖ ≤ c2
√
t or ‖x − y‖ ≤ c2d(x, y)

there is α ∈ A(x, y), �(α) ≤ |G|, such that

ht (x, y) ≤ C3w(B(x,
√
t))−1e−c3

d(x,y)2
t ρα(x, y, t). (5.6)

Proof If n(x, y) = 0, then one can take α = ∅ and the claim is a consequence of Proposi-
tion 3.1. Assume that n(x, y) > 0. For fixed x, y, let α = (α1, α2, . . . , αm), m ≤ |G|, be as
in Corollary 2.3. If ‖x − y‖ ≤ c2

√
t , then the claim is satisfied by Proposition 3.1 and (2.8),

and we may take even c3 = c̃u in the inequality (5.6). If ‖x − y‖ ≤ c2d(x, y), then by
Proposition 3.1 we get

ht (x, y) ≤ C̃uw(B(x,
√
t))−1e−c̃u

d(x,y)2
t = C̃uw(B(x,

√
t))−1e−c3

d(x,y)2
t e−(̃cu−c3)

d(x,y)2
t .

Moreover, the assumption ‖x − y‖ ≤ c2d(x, y) implies

e−(̃cu−c3)
d(x,y)2

t ≤ e
−(̃cu−c3)

‖x−y‖2
c22 t ,
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so the claim follows by the fact that there is C > 0 such that

e
−(̃cu−c3)

‖x−y‖2
c22 t ≤ C

(
1 + ‖x − y‖√

t

)−2|G|
≤ Cρα(x, y, t),

where the second inequality is a consequence of (2.8). ��
From now on the constants C3, c3 from Proposition 5.5 are fixed.

Proof of (1.10) Let c2 be the constant from Proposition 5.3. Fix x, y ∈ R
N and t > 0 and

consider

G0 := {g ∈ G : the assumption ( 5.3 ) is not satisfied for x, g(y), t}.
Note thatG0 �= ∅, because there is g0 ∈ G such that ‖x−g0(y)‖ = d(x, y) = d(x, g0(y)),

so the assumption (5.3) is not satisfied for x, g0(y), t . We will prove (1.10) for ht (x, g(y))
for all g ∈ G. Note that, by the definition of G0, if g ∈ G0, then by Proposition 5.5 we have

ht (x, g(y)) ≤ C3w(B(x,
√
t))−1e−c3

d(x,y)2
t

∑

α∈A(x,g(y)) : �(α)≤|G|
ρα(x, g(y), t). (5.7)

IfG = G0, the proof is complete.Assume thatG0 �= G. Consider all the valuesht (x, g(y))
for all g /∈ G0 and list them in a decreasing sequence, that is, G \ G0 = {g1, g2, . . . , gm}
and

ht (x, g1(y)) ≥ ht (x, g2(y)) ≥ · · · ≥ ht (x, gm(y)). (5.8)

For 1 ≤ j ≤ m let us denote

G j := G0 ∪ {g1, . . . , g j }. (5.9)

We will prove by induction on j that for all 1 ≤ j ≤ m we have

ht (x, g j (y)) ≤ C3(2C1|G|) jw(B(x,
√
t))−1e−c3

d(x,y)2
t

∑

α∈A(x,g j (y)) : �(α)≤|G|+ j

ρα(x, g j (y), t),

(5.10)
where C3, c3 are the constants from Proposition 5.5 and C1 is the constant from Proposition
3.2. We have already remarked that (5.10) is satisfied for g ∈ G0 with j = 0, [see (5.7)].

Fix 0 ≤ j ≤ m − 1 and suppose that the estimate (5.10) holds for all g ∈ G j . We will
prove (5.10) for g j+1. Since g j+1 /∈ G0,

‖x − g j+1(y)‖ > c2d(x, g j+1(y)) and ‖x − g j+1(y)‖ > c2
√
t (5.11)

[cf. (5.3)]. Hence, by Proposition 5.3, we get

ht (x, g j+1(y)) ≤ 2C1

(
1 + ‖x − g j+1(y)‖√

t

)−2 ∑

α∈R+
ht (x, σα ◦ g j+1(y)). (5.12)

Further, from (5.11) and the fact that c2 > 4C1|G|, we conclude that

2C1

(
1 + ‖x − g j+1(y)‖√

t

)−2

<
1

8C1|G|2 <
1

2|G| . (5.13)

Let α0 ∈ R+ be such that

ht (x, σα0 ◦ g j+1(y)) = max
α∈R+

ht (x, σα ◦ g j+1(y)). (5.14)
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It follows from (5.12) and (5.14) that

ht (x, g j+1(y)) ≤ 2C1

(
1 + ‖x − g j+1(y)‖√

t

)−2

|R+|ht (x, σα0 ◦ g j+1(y)). (5.15)

We claim that σα0 ◦ g j+1 ∈ G j . To prove the claim, aiming for a contradiction, suppose
that σα0 ◦ g j+1 ∈ G \ G j . Then σα0 ◦ g j+1 ∈ {g j+2, . . . , gm}, because σα0 ◦ g j+1 �= g j+1.
Consequently, by (5.8), ht (x, g j+1(y)) ≥ ht (x, σα0 ◦ g j+1(y)). Hence, using (5.15), we
obtain

ht (x, g j+1(y)) ≤ 2C1

(
1 + ‖x − g j+1(y)‖√

t

)−2

|R+|ht (x, g j+1(y)). (5.16)

Since ht > 0, applying (5.16) together with (5.13), we get

1 ≤ 2C1

(
1 + ‖x − g j+1(y)‖√

t

)−2

|R+| ≤ |R+|
2|G| ≤ 1/2

and we arrive at a contradiction. Thus the claim is established.
Thanks to the claim and by the induction hypothesis, the estimate (5.10) already holds

for σα0 ◦ g j+1, in particular, since 2C1|G| > 1, we have,

ht (x, σα0 ◦ g j+1(y))

≤ C3(2C1|G|) jw(B(x,
√
t))−1e−c3

d(x,y)2
t

∑

α∈A(x,σα0◦g j+1(y)) : �(α)≤|G|+ j

ρα(x, σα0 ◦ g j+1(y), t)

(5.17)
Hence, utilizing (5.15) combined with (5.17), we obtain

ht (x, g j+1(y)) ≤ 2C1

(
1 + ‖x − g j+1(y)‖√

t

)−2

|R+|C3(2C1|G|) jw(B(x,
√
t))−1

· e−c3
d(x,y)2

t
∑

α∈A(x,σα0◦g j+1(y)) : �(α)≤|G|+ j

ρα(x, σα0 ◦ g j+1(y), t).
(5.18)

For any sequence

α = (α1, α2, . . . , αn)

from A(x, σα0 ◦ g j+1(y)) with �(α) ≤ |G| + j , we define the new sequence

α̃ = (α0, α1, α2, . . . , αn)

from A(x, g j+1(y)) satisfying �(̃α) ≤ |G| + j + 1. Moreover,

(
1 + ‖x − g j+1(y)‖√

t

)−2

ρα(x, σα0 ◦ g j+1(y), t) = ρα̃(x, g j+1(y), t). (5.19)

So (5.10) for g j+1 follows from (5.18) and (5.19). The proof is complete. ��
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6 Applications of Theorem 1.1

6.1 Regularity of the heat kernel

The following theorem can be consider as an improvement of the estimates [2, Theorem 4.1
(b)].

Theorem 6.1 Let m be a non-negative integer. There are constants C4, c4 > 0 such that for

all x, y, y′ ∈ R
N and t > 0 satisfying ‖y − y′‖ <

√
t
2 we have

|∂mt ht (x, y) − ∂mt ht (x, y′)| ≤ C4t
−m ‖y − y′‖√

t
hc4t (x, y). (6.1)

The constant c4 does not depend on m.

In the proof of Theorem 6.1 we will need the following lemma (which is a Harnack type
inequality).

Lemma 6.2 There are constants C5, c5 > 0 such that for all x, y, y′ ∈ R
N and t > 0

satisfying ‖y − y′‖ <
√
t
2 we have

ht (x, y) ≤ C5hc5t (x, y
′). (6.2)

Proof Fix x, y, y′ ∈ R
N and t > 0 such that ‖y − y′‖ <

√
t
2 . By Theorem 1.1 we have

ht (x, y) ≤ Cuw(B(x,
√
t))−1e−cu

d(x,y)2
t �(x, y, t), (6.3)

where
�(x, y, t) =

∑

α∈A(x,y), �(α)≤2|G|
ρα(x, y, t). (6.4)

Let us consider a sequence α ∈ A(x, y) such that �(α) ≤ 2|G|. We shall prove that

ρα(x, y, t) ≤ 22�(α)ρα(x, y′, t). (6.5)

If �(α) = 0, then (6.5) is trivial. If α = (α1, α2, . . . , αm) ∈ A(x, y) and ‖y − y′‖ <
√
t
2 ,

then for any 1 ≤ j ≤ �(α), we have

‖x − σα j ◦ σα j−1 ◦ . . . ◦ σα1 (y
′)‖√

t
+ 1

≤ ‖x − σα j ◦ σα j−1 ◦ . . . ◦ σα1 (y)‖ + ‖σα j ◦ σα j−1 ◦ . . . ◦ σα1 (y) − σα j ◦ σα j−1 ◦ . . . ◦ σα1 (y
′)‖√

t
+ 1

= ‖x − σα j ◦ σα j−1 ◦ . . . ◦ σα1 (y)‖ + ‖y − y′‖√
t

+ 1 ≤ 2

(‖x − σα j ◦ σα j−1 ◦ . . . ◦ σα1 (y)‖√
t

+ 1

)
.

Hence, by the definition of ρα(x, y, t) [see (1.5)], we obtain (6.5).
Now, for α ∈ A(x, y), �(α) ≤ 2|G|, we are going to define a new sequence α̃ of elements

of R+ such that α̃ ∈ A(x, y′), �(̃α) ≤ 4|G|, and

ρα(x, y′, t) ≤ 22|G|
(
1 + d(x, y)√

t

)2|G|
ρα̃(x, y′, t). (6.6)

To this end, let us consider two cases.
Case 1. α ∈ A(x, y′). Then we set α̃ := α. Clearly, in this case (6.6) is satisfied.
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Case 2. α /∈ A(x, y′). Let β = (β1, β2, . . . , βm1) be a sequence from Corollary 2.3
chosen for the points x and σα(y′). In particular, by (2.8), then by the fact that α ∈ A(x, y)
and ‖y − y′‖ ≤

√
t
2 , for any 1 ≤ j ≤ �(β), we have

‖x − σβ j ◦ σβ j−1 ◦ . . . ◦ σβ1 ◦ σα(y′)‖ ≤ ‖x − σα(y′)‖
≤ ‖x − σα(y)‖ + ‖σα(y) − σα(y′)‖
= ‖x − σα(y)‖ + ‖y − y′‖

≤ d(x, y) +
√
t

2
.

Consequently,

1 ≥ ρβ(x, σα(y′), t) ≥ 2−2|G|(1 + d(x, y)√
t

)−2|G|
. (6.7)

We set

α̃ := (β1, β2, . . . , βm1) if �(α) = 0,

α̃ := (α1, α2, . . . , αm, β1, β2, . . . , βm1) if α = (α1, α2, . . . , αm).

Then, by the choice of β, we have α̃ ∈ A(x, y′), �(̃α) ≤ 4|G|. Moreover, by the definition
of ρα(x, y′, t) and ρα̃(x, y′, t), and (6.7) we have

ρα̃(x, y′, t) = ρα(x, y′, t)ρβ(x, σα(y′), t) ≥ 2−2|G|(1 + d(x, y)√
t

)−2|G|
ρα(x, y′, t),

which implies (6.6).
Applying (6.5) and (6.6), we have

�(x, y, t) =
∑

α∈A(x,y), �(α)≤2|G|
ρα(x, y, t)

≤ 26|G|(1 + d(x, y)√
t

)2|G| ∑

α∈A(x,y′), �(α)≤4|G|
ρα(x, y′, t),

which, together with (6.3), gives

ht (x, y) ≤ 26|G|Cu

(
1 + d(x, y)√

t

)2|G|
w(B(x,

√
t))−1e−cu

d(x,y)2
t

∑

α∈A(x,y′), �(α)≤4|G|
ρα(x, y′, t)

≤ C ′
uw(B(x,

√
t))−1e−c′

u
d(x,y)2

t
∑

α∈A(x,y′), �(α)≤4|G|
ρα(x, y′, t).

(6.8)

Note that ‖y − y′‖ <
√
t
2 implies

2d(x, y)2 ≥ d(x, y′)2 − 2‖y − y′‖2 ≥ d(x, y′)2 − t

2
.

Therefore, by (6.8) we get

ht (x, y) ≤ C ′′
uw(B(x,

√
t))−1e−c′

u
d(x,y′)2

2t
∑

α∈A(x,y′), �(α)≤4|G|
ρα(x, y′, t). (6.9)

Finally, (6.2) is a consequence of Proposition 5.1, (6.9), and (1.8). ��
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Proof of Theorem 6.1 For x ∈ R and t > 0 let us denote

h̃t (x) := c−1
k 2−N/2t−N/2 exp

(
− x2

4t

)
.

Then the formula (2.4) reads

ht (x, y) =
∫

RN
h̃t (A(x, y, η)) dμx(η). (6.10)

Observe that h̃t (x) := ∂x ∂mt h̃t (x) is equal to x
tm+1 h̃t (x) times a polynomial in x2

t . Hence,
for any non-negative integer m there is a constant Cm > 0 such that for all x ∈ R and t > 0
we have ∣∣h̃t (x)

∣∣ ≤ Cm t−m−1/2 h̃2t (x) . (6.11)

Further, by (6.10) and (6.11) we get

|∂mt ht (x, y) − ∂mt ht (x, y′)| =
∣∣∣
∫

RN

{
∂mt h̃t (A(x, y, η)) − ∂mt h̃t (A(x, y′, η))

}
dμx(η)

∣∣∣

=
∣∣∣
∫

RN

∫ 1

0

∂

∂s
∂mt h̃t (A(x, y′+s(y−y′)︸ ︷︷ ︸

ys

, η)) ds dμx(η)

∣∣∣

≤ ‖y−y′‖
∫ 1

0

∫

RN

∣∣h̃t (A(x, ys, η))
∣∣ dμx(η) ds

≤ Cm t−m ‖y−y′‖√
t

∫ 1

0
h2t (x, ys) ds.

(6.12)
Finally, note that for any s ∈ [0, 1], we have

‖y − ys‖ ≤ ‖y − y′‖ <

√
t

2
,

so, by Lemma 6.2, we get

h2t (x, ys) ≤ C5h2c5t (x, y). (6.13)

Now (6.12) together with (6.13) imply the desired estimate (6.1). ��
Remark 6.3 In the proof of Theorem 6.1, we partially repeat the argument from [2, Theorem
4.1 (b)]. The novelty of the approach is using Lemma 6.2 instead of Proposition 3.1 in
estimating the last integral of (6.12).

6.2 Remark on a theorem of Gallardo and Rejeb

In [5], the authors proved that the points g(x), g ∈ G, belong to the support of the measure
μx (see [5, Theorem A 3)]). Below, as an application of the estimates (1.9) and (1.10), we
provide another proof of this theorem. The proof, at the same time, gives a more precise
behavior of the measure μx around these points.

For y ∈ R
N and t > 0 we set

U (y, t) := {η ∈ convO(y) : ‖y‖2 − 〈y, η〉 ≤ t}, (6.14)

V (y, t) := (convO(y)) \U (y, t) = {η ∈ convO(y) : ‖y‖2 − 〈y, η〉 > t}. (6.15)
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Theorem 6.4 There is a constant C6 > 0 such that for all x ∈ R
N , t > 0, and g ∈ G we

have

C−1
6

tN/2�(x, g(x), t)

w(B(x,
√
t))

≤ μx(U (g(x), t)) ≤ C6
tN/2�(x, g(x), t)

w(B(x,
√
t))

. (6.16)

Proof Let y = g(x). Then d(x, y) = 0. Moreover, by the definition of A(x, y, η) [see (2.5)]
and the fact that ‖y‖ = ‖x‖ we have

A(x, y, η)2 = ‖x‖2 + ‖y‖2 − 2〈y, η〉 = 2‖y‖2 − 2〈y, η〉.

We first prove the upper bound in (6.16). Observe that (‖x‖2 +‖y‖2 − 2〈y, η〉)/4t ≤ 1/2
for all η ∈ U (y, t). Thus, applying (2.4), we get

μx(U (y, t)) =
∫

U (y,t)
dμx(η) ≤ e1/2

∫

U (y,t)
e−(‖x‖2+‖y‖2−2〈y,η〉)/4t dμx(η)

≤ e1/2
∫

RN
e−(‖x‖2+‖y‖2−2〈y,η〉)/4t dμx(η)

≤ CtN/2ht (x, y) ≤ C ′ tN/2�(x, y, t)

w(B(x,
√
t))

,

(6.17)

where in the last inequality we have used (1.10).
We now turn to prove the lower bound in (6.16). FromTheorem 1.1, the fact that d(x, y) =

0, (1.8), and the doubling property (2.2), we deduce that there is a constant C > 0 being
independent of x, g ∈ G, and t > 0 such that

h2t (x, g(x)) ≤ Cuw(B(x,
√
2t))−1�(x, g(x), 2t)

≤ C ′
uw(B(x,

√
t))−1�(x, g(x), t) ≤ Cht (x, g(x)).

Hence, using (2.4) applied to h2t (x, g(x)) and ht (x, g(x)) togetherwith (1.8) and the doubling
property (2.2), we conclude that there is a constant c̃ ≥ 0 independent of x, g ∈ G, and t > 0
such that

∫

RN
e−(2‖y‖2−2〈y,η〉)/8t dμx(η) ≤ ec̃

∫

RN
e−(2‖y‖2−2〈y,η〉)/4t dμx(η). (6.18)

Let M = 4(̃c + 1). We rewrite (6.18) by splitting the areas of the integration:

IU + IV : =
∫

U (y,Mt)
e−(‖y‖2−〈y,η〉)/4t dμx(η) +

∫

V (y,Mt)
e−(‖y‖2−〈y,η〉)/4t dμx(η)

≤ ec̃
∫

U (y,Mt)
e−(‖y‖2−〈y,η〉)/2t dμx(η) + ec̃

∫

V (y,Mt)
e−(‖y‖2−〈y,η〉)/2t dμx(η)

=: JU + JV .

(6.19)
Observe that, by the definition of V (y, Mt) [see (6.15)], and the fact that M = 4(̃c + 1), for
all η ∈ V (y, Mt) we have

1

2
e−(‖y‖2−〈y,η〉)/4t = 1

2
e−(‖y‖2−〈y,η〉)/2t e(‖y‖2−〈y,η〉)/4t ≥ 1

2
e−(‖y‖2−〈y,η〉)/2t eM/4

= 1

2
e−(‖y‖2−〈y,η〉)/2t ec̃+1 ≥ ec̃e−(‖y‖2−〈y,η〉)/2t .

(6.20)
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Consequently, (6.20) implies JV ≤ 1
2 IV . Therefore, by (6.19), we get

IU + 1

2
IV ≤ JU .

Applying Theorem 1.1, we deduce that

Cl

2

�(x, y, 2t)

w(B(x,
√
2t))

≤ 1

2
h2t (x, y) = 1

2
c−1
k (4t)−N/2(IU + IV ) ≤ c−1

k (4t)−N/2 JU

≤ c−1
k (4t)−N/2ec̃μx(U (y, Mt)).

(6.21)

Now the claim follows from (1.8) and the doubling property (2.2). ��
We want to remark that Theorem 6.4 extends the result of Jiu and Li [7, Theorem 2.1],

where the behavior of μx around x is studied.
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