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Abstract
Whereas in a coordinate-dependent setting the Euler–Lagrange equations establish neces-
sary conditions for solving variational problems in which both the integrands of functionals
and the resulting paths are assumed to be sufficiently smooth, uniqueness and global opti-
mality are generally hard to prove in the absence of convexity conditions, and often times
they may not even exist. This is also true for variational problems on Lie groups, with the
Euler–Poincaré equation establishing necessary conditions. The difficulties compound when
integrands and/or the optimal paths are not sufficiently regular, since in this case the classi-
cal necessary conditions no longer apply. This article therefore reviews several nonstandard
cases where unique globally optimal solutions can be guaranteed, and establishes a “boot-
strapping” process to build new globally optimal variational solutions on larger spaces from
existing ones on smaller spaces. Surprisingly, it is possible to prove global optimality in
some nonconvex cases where even the regularity conditions required for classical necessary
conditions do not hold. This general theory is then applied to several topics such as optimal
framing of curves in three-dimensional Euclidean space, optimal motion interpolation, and
optimal reparametrization of video sequences to compare salient actions.

Mathematics Subject Classification 49-XX · 22E70 · 53C22

1 Introduction

In classical variational calculus, the Euler–Lagrange (E–L) Equations provide necessary con-
ditions for local optimality for functionals that have integrands that are sufficiently regular,
under the assumption that the extremal solutions are also sufficiently regular. Stronger nec-
essary conditions for local optimality such as those due to Jacobi and Legendre are also well
known [1, 2]. But in many cases testable sufficient conditions for global optimality cannot
be established unless the integrand is convex. Otherwise, global optimality may not exist,
may not be unique, or may not be provable. A simple example of this is geodesics on the
sphere. The Euler–Lagrange equations yield great arcs as the solution, but for most pairs
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of points on the sphere there are two great arcs connecting them, one of which is globally
minimal, and one of which takes the long way around. When the points are antipodal, all
great arcs connecting them are globally optimal, hence there is a severe lack of uniqueness.
In negatively curved (hyperbolic) spaces it is well known that geodesics generated by solving
the Euler–Lagrange equations are globally optimal and unique [3, 4]. But this is a relatively
rare situation, and uses specific geometric arguments. In contrast, the formulation presented
here will rely minimally on geometry, yet will have implications for geometric problems.

A broad class of variational problems for which minimality of the solution can be guar-
anteed is when the functional is convex in both the generalized coordinates and their rates
[5, 6]. But this is a tall order, since even in mechanics where the Lagrangian is the integrand
of the action functional, joint convexity of the Lagrangian in coordinates and their rates is
rare. Hence, it is well known that the “Principle of Least Action” is a misnomer. It is really
the “Principal of Extremal Action” since the Euler–Lagrange equations are generated and
solved but little attention is given as to whether the resulting solution is globally minimal.

1.1 The Euler–Lagrange equations

Perhaps the most trivial variational integral for which the E–L equations provide unique
globally optimal solutions is that the arclength functional for curves in the Euclidean plane.
The general single-degree-of-freedom variational problem is that of finding a function y =
y(x) such that the functional

J [y] =
∫ x2

x1
f (y(x), y′(x), x)dx (1)

is extremized (where y′ = dy/dx) for a given integrand f (·) subject to boundary conditions
y(x1) = y1 and y(x2) = y2. For example, when

f (y(x), y′(x), x) =
√
1 + [y′(x)]2

the problem becomes that of finding the curve y = y(x) that extremizes arclength.
The E–L equation corresponding to (1) is

∂ f

∂ y
− d

dx

(
∂ f

∂ y′

)
= 0. (2)

In the case of the arclength functional, this becomes y′′ = 0, which when integrated twice
gives y(x) = ax +b, the equation of a line. Even without invoking Euclid’s elements, within
the class of problems with solutions of the form y = y(x), the line is optimal because any
perturbation added to it that observes the boundary conditions can only increase J . The
details as to why this is so will be addressed shortly, and have far reaching implications for
proving global optimality in other less trivial problems.

One might argue that the above is limiting because it does not allow for the possibility of
curves in the plane connecting the points (x1, y1) and (x2, y2) that are not functions of the
form y = y(x). To consider the more general case, we would need to seek parameterized
curves of the form x = y1(t) and y = y2(t), and solve a two-degree-of-freedom variational
problem. The theory for such problems is also classical. Given

J [y] =
∫ t2

t1
f (y1, ..., yN , ẏ1, ..., ẏN , t)dt
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where ẏi = dyi/dt , the set of E–L equations for i = 1, ..., N are

∂ f

∂ yi
− d

dt

(
∂ f

∂ ẏi

)
= 0. (3)

This assumes that f : R
N ×R

N ×[t1, t2] −→ R is sufficiently smooth for all derivatives to
exist and the existence of extremal trajectories that are smooth enough for their evaluation in
the E–L equations to make sense. Two special classes of problems will be considered later in
which: (1) f is not even differentiable, and hence the E–L equations do not apply, and (2) the
Lavrentiev phenomenon occurs in which f is regular but the resulting global minimizer is
not, and therefore does not satisfy the E–L equations. Yet global optimality can be guaranteed
in both cases.

Returning to the curve in the Euclidean plane connecting two points, the arclength func-
tional can be written as

f (y1, y2, ẏ1, ẏ2, t) =
√

[ẏ1]2 + [ẏ2]2,
and the resulting E–L equations are

ÿi = 0 for i = 1, 2,

thus resulting in the parameterized line y∗
i (t) = ai t +bi , or y∗(t) = at +bwhere a and b are

constant vectors that provide the freedom to match the boundary conditions. The strength of
this argument relative to the previous one, again without invoking Euclid, is that it considers
the possibility of curves in the plane that connect two points and are not necessarily plotted
as a function y = y(x).

More generally, given two points in a region of a manifold parameterized by coordinates
q = [q1, ..., qN ]T , and metric tensor M(q), the E–L equations (with qi taking the place of
yi ) and the functional

f (q, q̇, t) =
√
q̇T M(q) q̇ (4)

give necessary conditions for a geodesic. The square root is somewhat inconvenient when
performing computations, and justification for eliminating it will be given shortly.

Ametric tensor can arise in purely geometric contexts, e.g., for surfaces such asMinkowski
sums of elliposoids [7], or it can arise from the kinetic energy of a system of P particles
with positions xi ∈ R

3, masses mi , and generalized coordinates q ∈ R
N (with N ≤ 3P)

in which case it is well known from classical mechanics that the entries of the mass metric
tensor become

mi j (q) =
P∑

k=1

mk
∂xk

∂qi
· ∂xk

∂q j
.

Hence the followingwell-known results frommechanics and a simple theoremwill be helpful.
In Mechanics, the Lagrangian is defined to be the difference of kinetic and potential

energy1

L(q, q̇) = T (q, q̇) − V (q)

1 Explicit dependence of the functional on t is relatively rare in the mechanics of particles and rigid bodies
and in geometry, and henceforth is dropped from the discussion at this point. It will be reintroduced in the
discussion of the Lavrentiev phenomenon that follows later.
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and the total energy is

E(q, q̇) = T (q, q̇) + V (q).

The kinetic energy for a mechanical system always has the form

T (q, q̇) = 1

2
q̇T M(q) q̇. (5)

The mass matrix of a mechanical system, M(q), satisfies the required properties of a metric
tensor.

Lagrange’s equations of motion are the Euler–Lagrange equations (3) with L in place of
f , and qi in place of yi , and they describe the motion of conservative systems. That is, if
q∗(t) denotes the solution to Lagrange’s equations, it can be shown that energy is conserved:

E(q∗, q̇∗) = const . (6)

This classical fact will be used in the theorem presented below.

Lemma 1.1 Suppose T is known a priori to be limited to the range [x1, x2] where 0 < x1 <

x2 < ∞ and let � : [x1, x2] → R>0 be a twice differentiable monotonically increasing
function. Then the solution to the variational problems with a functional of the form f (q, q̇) =
�(T (q, q̇)) will be the same as the solution to Lagrange’s equations in the absence of a
potential energy term.2

Proof From the chain rule

∂ f

∂qi
= �′(T )

∂T

∂qi
and

∂ f

∂ q̇i
= �′(T )

∂T

∂ q̇i
,

and

d

dt

(
∂ f

∂ q̇i

)
= �′′(T )Ṫ

∂T

∂ q̇i
+ �′(T )

d

dt

(
∂T

∂ q̇i

)
.

But for a mechanical system with V = 0, T = const from (6), and so Ṫ = 0. Therefore

�′(T )

[
d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi

]
= d

dt

(
∂ f

∂ q̇i

)
− ∂ f

∂qi
= 0.

Since � is monotonically increasing on the interval over which it is defined and continuous
(since it is twice differentiable), it is also invertible. Moreover, �′(T ) > 0. Therefore the
variational problems for f and T are interchangeable.

In particular, restricting to when T0 > 0 and letting �(x) = √
2x , we can solve the geodesic

problem without the pesky square root, as if it were a mechanics problem.
The usefulness of this result is now illustrated with the line in the plane where it is

easier to prove the global optimality for the integrand T than the integrand f = �(T ) in
the original arclength functional. Starting with the variational solution y∗(t) = at + b and
letting y(t) = y∗(t) + ε(t), we see that the cost becomes
∫ t2

t1
‖ẏ‖2dt =

∫ t2

t1

{‖a‖2 + 2a · ε̇ + ‖ε̇‖2} dt = (t2−t1)‖a‖2+2a·
∫ t2

t1
ε̇dt +

∫ t2

t1
‖ε̇‖2 dt .

(7)

2 This result might be known, but the author could not find a clear statement of it other than in the case when
�(x) = c

√
x which is mentioned in several works including [8–10]
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But since the perturbed solution must satisfy the same boundary conditions,∫ t2

t1
ε̇ dt = ε(t2) − ε(t1) = 0 − 0 = 0.

From this it is clear that adding ε to y∗ can only increase cost in (7). The same argument
does not apply to the cost

∫ t2
t1

‖ẏ‖ dt because the square root prevents the integral from acting
directly on ε̇. That said, the Cauchy–Schwarz inequality provides the bound

∫ t2

t1
‖ẏ‖ dt ≤ √

t2 − t1

(∫ t2

t1
‖ẏ‖2 dt

) 1
2

.

Substituting the minimal solution for the problem with integrand ‖ẏ‖2 into the right hand
side then provides an upper bound for the minimal solution to the variational problem with
integrand ‖ẏ‖. And substituting the minimal solution for the problem with integrand ‖ẏ‖2
into the cost with integrand ‖ẏ‖ provides an upper bound on the cost of the global minimizer
for that problem. In Sect. 2, it will be shown that this second upper bound is in fact the global
minimum.

In other words, changing the original problem by an appropriate choice of � can preserve
the E–L necessary conditions while making it easy to guarantee global optimality of the
solution to the new problem. Though it is not obvious using elementary arguments that the
global optimality of the new problem guarantees it for the original problem, such statements
are made in differential geometric settings. This issue will be revisited without geometry in
Sect. 2. But first a small detour will be taken to discuss variational problems for which the
resulting optimal trajectories lack regularity (i.e., they are non-Lipschitz), and for which the
E–L equations are not necessary conditions.

1.2 The Lavrentiev phenomenon

Whereas the classical variational calculus of Euler, Lagrange, Jacobi, etc. assumes functionals
with sufficiently smooth integrand and well-behaved resulting extremal trajectories, over the
past 100 years variational problems with globally minimal solution have been investigated
in the absence of classical regularity conditions on the integrand and/or the globally minimal
trajectories that result.

The Lavrentiev phenomenon has been of particular interest [11–13]. As an example, con-
sider trajectories x(t) that minimize the functional

J [x] =
∫ 1

0
(x3 − t)2 ẋ6dt (8)

subject to boundary conditions x(0) = 0 and x(1) = 1. This is the Maniá example [12].
Though the integrand is smooth, it can be shown that the globally minimal solution is x∗(t) =
t1/3. As this is not Lipschitzian, but is absolutely continuous, this is an example where the
infimum of the functional taken over the set of absolutely continuous trajectories is lower
than that taken over Lipschitz trajectories. This is the essence of the Lavrentiev phenomenon.

Functionals such as (8) and others that demonstrate the Lavrentiev phenomenon, such as
those in [14] are remarkable in that their integrand is regular, and yet the resulting trajectories
are not [15] Consequently, the E–L equations need not be necessary conditions [16]. This
remains an active topic of research with more such examples continuing to emerge [17–19].

The following section examines an altogether different kind of variational problem with
globally minimal solution. Then in Sect. 3 all of these pieces from previous sections are
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assembled using a “bootstrapping” procedure in which globally minimal solutions on higher-
dimensional spaces are constructed.

2 Nonstandard case studies in global optimality

Though the Euler–Lagrange equations provide necessary conditions for local optimality
under the conditions that: (1) f is sufficiently smooth; and (2) a sufficiently smooth solution
exists, they provide no guarantee that such a solution will be globally optimal. So-called
second-order necessary conditions provide more confidence that the solution to the E–L
equations might be minimal, but also provide no guarantee. In the absence of specific a priori
knowledge of the properties of the functional, such as convexity, it is usually quite difficult
to say anything other than that the solution generated by the E–L equations are extremals
(rather than global minima or maxima), unless additional arguments can be employed as in
the case of the line in the previous section.

That said, in certain special situations, the structure of the function f (·) will guarantee
global optimality of the solution generated by the the Euler–Lagrange equations. Here spe-
cial cases are presented in which global optimality of solutions of variational problems are
guaranteed when satisfying the Euler–Lagrange necessary conditions. The emphasis here is
on this sense of the word ‘global’ in contrast to global descriptions of geometry or dynamics
which can be found elsewhere [3, 20].

2.1 Global optimality in 1D case

Consider the set of monotonically increasing bijective functions that map the closed interval
[0, 1] into itself and are twice differentiable on the open interval (0, 1) and satisfy the boundary
conditions y(0) = 0 and y(1) = 1. Such functions include but are not limited to y(x) = x p

for any positive power p ∈ R>0. The set of all such functions are closed under function
inversion and function composition (y1 ◦ y2)(x) = y1(y2(x)), and have an identity element,
yid(x) = x . The result is an infinite dimensional group. In this section a variational problem is
formulated that selects the one element of this group that globallyminimizes a cost functional.

There exists a very general functional in the one-dimensional case for which the global
minimality of the solution to the Euler–Lagrange equation is guaranteed. Specifically, let

f (y, y′, x) = m(y)(y′)2

where m : [0, 1] −→ R>0 is differentiable and let

J [y] =
∫ 1

0
m(y)(y′)2dx . (9)

Global minimization of this sort of functional has been examined informally in [21, 22]. A
more rigorous treatment is given below.

2.1.1 Globally minimal reparametrization

Lemma 2.1 Let m1 and m2 be real numbers with 0 < m1 < m2 < ∞ and let m : [0, 1] →
[m1, m2] be differentiable. Let m

1
2 (s) and m− 1

2 (s) respectively be shorthand for
√

m(s)
and 1/

√
m(s). The solution to the resulting Euler–Lagrange equations for (9) subject to the
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boundary conditions y(0) = 0 and y(1) = 1 satisfies the implicit equation

y∗(x) =
∫ x
0 m− 1

2 (y∗(s))ds∫ 1
0 m− 1

2 (y∗(s))ds
(10)

and y∗(x) can be obtained explicitly by inverting the function F : [0, 1] → [
0,

√
m2

]
defined by

F(y)
.=

∫ y

0
m

1
2 (s)ds

in the expression
F(y∗(x)) = F(1) x . (11)

Moreover ∫ 1

0
m− 1

2 (y∗(s)) ds = 1/F(1). (12)

Proof Recognizing that m′ = (dm/dy)y′, the E–L equation corresponding to (9) will be

my′′ + 1

2
m′y′ = 0.

Multiplying through by m− 1
2 (x) = 1/

√
m(x), the result then can be written as(

m
1
2 y′)′ = 0.

The solution is then of the form

m
1
2 (y∗)dy∗

dx
= c1 (13)

where c1 is a constant of integration, and so

y∗(x) = c2 + c1

∫ x

0
m− 1

2 (y∗(s))ds.

Since y(0) = 0 and y(1) = 1 this becomes (10).
Alternatively,

m
1
2 (y∗)dy∗ = c1dx

can be integrated to give

F(y∗) = c1x .

The condition F(y∗(1)) = c1 together with the boundary condition y∗(1) = 1 then gives
(11). That is, c1 = F(1) ∈ [√

m1,
√

m2
]
. But since the same c1 appears in the normalization

of the implicit expression, (12) results.

The following theorem proves that the result of the above lemma is not only a solution to
the E–L equations, but that it is globally optimal.Moreover, this global optimality generalizes
to cases where the E–L equations no longer apply due to a lack of sufficient regularity, i.e.,
the case when the function m is not differentiable.

Theorem 2.2 Let all of the conditions of Lemma 2.1 hold, except that the function m :
[0, 1] → [m1, m2] need only be continuous rather than differentiable. Then the implicit
solution (10) and explicit solution (11) globally minimize (9) among all differentiable func-
tions subject to the boundary conditions y(0) = 0 and y(1) = 1.
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Proof (10) and (11) both satisfy (13) without envoking the E–L equations. Substituting y∗(x)

into (9) and observing (13) gives

J [y∗] =
∫ 1

0

(
m

1
2 (y∗)dy∗

dx

)(
m

1
2 (y∗)dy∗

dx

)
dx = c21

where c1 = F(1). The continuity and boundedness of m ensures that F is bounded, differ-
entiable, and monotonically increasing. This together with the form of (10) or (11) ensures

differentiability of y∗. Since c21 =
(∫ 1

0 c1dx
)2
,

J [y∗] =
(∫ 1

0
m

1
2 (y∗(x))

dy∗

dx
dx

)2

=
(∫ 1

0
m

1
2 (y∗)dy∗

)2

.

The above is simply a change of variables of integration and has nothing to do with the details
of (10) other than the fact that y∗(0) = 0 and y∗(1) = 1 and dy∗/dx > 0, which is true even
though m may not be monotonic, convex, or differentiable. Consequently, the value of the
integral in the above expression for J [y∗] is independent of the path y∗(x). That is,

J [y∗] =
(∫ 1

0
m

1
2 (y)dy

)2

can be computed without reference to y∗(t) since the name of the variable of integration is
irrelevant. Using the Cauchy–Schwarz inequality

∫ 1

0
a(x)b(x)dx ≤

(∫ 1

0
|a(x)|2dx

) 1
2
(∫ 1

0
|b(x)|2dx

) 1
2

with a(x) = m
1
2 (y(x))dy/dx and b(x) = 1 then gives

J [y∗] ≤ J [y] (14)

for every possible differentiable y(x) that satisfies the boundary conditions.

What is remarkable about this simple example is that none of the classical conditions
stated in variational calculus regarding sufficient conditions for optimality apply. This is
not a hyperbolic space, the functional is not convex, etc. And in addition to all of this, the
regularity conditions on m needed for the E–L equations to hold can be relaxed. Moreover,
as will be seen later, from this simple example it is possible to bootstrap up to cases in which
y(t) is replaced by a path defined in a multi-dimensional space and where global optimality
is still guaranteed.

2.1.2 Reparameterizing an extremal solution only makes things worse

Given T = 1
2 q̇

T M(q)q̇ and V = 0, with optimal solution q∗(t) that conserves kinetic energy
T (q∗, q̇∗) = T0, it is clear that arclength along such a trajectory is

s(t) =
∫ t

0

√
q̇∗(t ′)T M(q∗(t ′))q̇∗(t ′) dt ′ =

∫ t

0

√
2T0 dt ′ = √

2T0 t .

If we were to attempt to reparameterize by substituting q∗(t) → q∗(τ (t)), with τ being the
same sort of monotonically increasing function on [0, 1] discussed earlier, the resulting cost
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would be
∫ 1

0

√
q̇∗(τ (t))T M(q∗(τ (t)))q̇∗(τ (t))τ̇ 2(t)dt = √

2T0

∫ 1

0
τ̇ 2(t) dt .

The optimal τ(t) in this context is τ ∗(t) = t in which case
∫ 1
0 (τ̇ ∗)2(t) dt = 1. For any other

τ(t) = t + ε(t), the result will be
∫ 1

0
τ̇ 2(t) dt =

∫ 1

0
(1 + ε̇)2 dt = 1 +

∫ 1

0
ε̇2 dt,

which only can increase cost.

2.2 Implications for solving auxiliary variational problems

A result of combining Lemma 1.1 and Theorem 2.2 is

Corollary 2.3 Let T be as in (5). Then the trajectory q∗(t) that minimizes3

J2[q] .=
∫ 1

0
2T (q, q̇) dt

globally subject to the end constraints q(0) and q(1) will also minimize

J1[q] .=
∫ 1

0

√
2T (q, q̇) dt

globally subject to the same end constraints. That is, for any twice differentiable trajectory
q(t) satisfying the boundary conditions

J2[q∗] ≤ J2[q] �⇒ J1[q∗] ≤ J1[q]. (15)

Moreover
J2[q∗] = (J1[q∗])2. (16)

Proof If �(x) = √
x , then by Lemma 1.1 the E–L equations for both functionals are the

same and since the boundary conditions are the same, the resulting solutions will both be
q∗(t).

Let q = q(t) be an arbitrary differentiable trajectory on [0, 1] that satisfies the end
constraints, and let τ(t) be a reparameterization of time. Then (q ◦ τ)(t) = q(τ (t)) will also
be a feasible trajectory. Suppressing the temporal dependence on τ , this will be referred to
as q(τ ). Let

m(τ ) = dq
dτ

T

M(q)
dq
dτ

.

Then 2T (q(τ ),
dq
dτ

τ̇ ) = m(τ )τ̇ 2. If τ ∗ is the global minimizer of this one-dimensional func-
tional, and if q∗(t) is the global minimizer of the functional J2, then

J2[q∗] ≤ J2[q(τ ∗)] ≤ J2[q]. (17)

3 J1[q] and J2[q] are not functions of q, but rather are functionals, the value of which is completely specified
by the path q = q(t).
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Recall that the differentiable trajectory q(t) is arbitrary up to the same boundary conditions,
and q(τ ∗(t)) is the same path in configuration space parameterized differently by time from
q(t) = q(τ (t) = t).

From Theorem 2.2, we know that q(τ ∗(t)) will give

J2[q(τ ∗)] = (J1[q(τ ∗)])2. (18)

This is true for any differentiable q(τ ) satisfying the end constraints and evaluated at τ =
τ ∗(t). The significance of (18) is that since both J1 and J2 are positive, then for any given
q(τ ) they must both be minimized by the same q(τ ∗(t)).

In the case when q = q∗ (the postulated global minimal solution for J2), reparameterizing
the temporal variable results in τ ∗(t) = t since by definition there is noway to reparameterize
to improve the global minimum. Therefore, J2[q∗(τ ∗)] = J2[q∗].

On the other hand, the value of the integral

J1[q(τ )] =
∫ 1

0

√
m(τ ) τ̇ dt =

∫ 1

0

√
m(τ ) dτ

is independent of the choice of the differentiable monotonically increasing bijective function
τ : [0, 1] → [0, 1] regardless of which path q(t) is taken. That is, for any valid τ(t),

J1[q(τ )] = J1[q].
Therefore, J1[q∗(τ )] = J1[q∗] for every such τ , including τ ∗ and

J1[q∗] ≤ J1[q(τ ∗)] = J1[q]. (19)

Moreover, from (18), J1 is globally minimized on the same global minimizer of J2, namely
q∗(t) and the minimal values are related as (16).

2.3 The Poincaré half spacemodel

As an example where the E–L equations provide a globally minimal solution, consider the
Poincaré Half Space Model, which is a Riemannian space of constant negative curvature.

Given an N × N metric tensor M(q) = [mi j (q)] and its inverse using the raised index
notation [M(q)]−1 = [mi j (q)], the Christoffel symbols are computed as

�i
jk

.= 1

2

N∑
l=1

mil
(

∂ml j

∂qk
+ ∂mlk

∂q j
− ∂m jk

∂ql

)
, (20)

and from these the Riemannian curvature tensor is computed as

Ri
jkl

.= −∂�i
jk

∂ql
+ ∂�i

jl

∂qk
+

N∑
m=1

(−�m
jk�

i
ml + �m

jl�
i
mk). (21)

The notation of raising and lowering indicies gives

Rhjkl =
N∑

i=1

mhi Ri
jkl .

A space is said to have constant curvature if [23]

Rhjkl = K0
(
mhkm jl − mhlm jk

)
. (22)
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Hyperbolic space defined by constant negative curvature at every point is an example
where it is known that geodesics connecting any two points are unique and globally length
minimizing. The Poincaré half space model of hyperbolic space is the open half space

H
+ .= {x ∈ R

N , x · eN > 0}
endowed with the metric tensor

M(x) = (x · eN )−2
I.

For example, in the 2D case this consists of point (x1, x2 > 0) ∈ R
2 with

ẋT M(x)ẋ = ẋ21 + ẋ22
x22

.

In this case it can be shown that (22) holds with

K0 = −1. (23)

The family of geodesics in this case is parameterized by the group P SL(2, R)
.=

SL(2, R)/{I,−I} where

SL(2, R) =
{(

a b
c d

) ∣∣∣∣ ad − bc = 1

}
.

Let i = √−1 and let a, b, c, d be real numbers satisfying ad − bc = 1. Define the curve
in the complex plane

z∗(t) = b + iaet

d + icet
= x∗

1 (t) + i x∗
2 (t).

That is, x∗
1 (t) = Re(z∗(t)) and x∗

2 (t) = I m(z∗(t)). (Optimality properties of this curve will
be demonstrated shortly, and ∗ denotes this, i.e., it is not Hermitian conjugation). Explicitly,

x∗
1 (t) = (bd + ace2t )(d2 + c2e2t )−1 and x∗

2 (t) = et (d2 + c2e2t )−1. (24)

The signed curvature of these curves as viewed in the Euclidean plane, computed using the
general formula

k(t) = ẋ1 ẍ2 − ẋ2 ẍ1(
ẋ21 + ẋ22

)3/2 (25)

is k∗(t) = −2cd , which is constant, indicating a clockwise bending circular arc. Since these
are circles, they can be written as

(x∗
1 − x0)

2 + (x∗
2 )

2 = r2 (26)

where r = 1/|k∗| = 1/(2cd) and

x0 = 1

2

(
b

d
+ a

c

)
.

It can be shown that on these circles

(ẋ∗
1 )

2 + (ẋ∗
2 )

2

(x∗
2 )

2 = 1, (27)

and consequently t is arclength in the hyperbolic metric.

123
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Moreover, the Euler–Lagrange equations for the functional

J =
∫ t1

t0

ẋ21 + ẋ22
x22

dt (28)

can be written as

d

dt

(
ẋ1
x22

)
= 0 (29)

ẍ2 = x−1
2

(
ẋ22 − ẋ21

)
. (30)

x∗
i (t) given above satisfy these equations. Consequently (24) is an extremal of (28). In
particular, (29) gives

ẋ∗
1

(x∗
2 )

2 = 2cd.

From the fact that ẋ∗
1/(x∗

2 )
2 is constant, it is clear that if ε1(t) is a nonzero arbitrary

differentiable function that vanishes at t = t0 and t = t1, it must be that
∫ t1

t0

(ẋ∗
1 )

2 + (ẋ∗
2 )

2

(x∗
2 )

2 dt <

∫ t1

t0

(ẋ∗
1 + ε̇1)

2 + (ẋ∗
2 )

2

(x∗
2 )

2 dt

based on the same argument as for the line. That is, when expanding the term in parenthesis,
the resulting linear term in ε̇ integrates to zero.

Moreover, since these curves x∗(t) are already parameterized by arclength, replacing
them with y(t) = x∗(τ (t)) where τ(t) = t is monotonically increasing and τ(t0) = t0 and
τ(t1) = t1 can only increase the value of J . Consequently,

∫ t1

t0

(ẋ∗
1 )

2 + (ẋ∗
2 )

2

(x∗
2 )

2 dt <

∫ t1

t0

ẏ21 + ẏ22
y22

dt .

Writing y(t) = x∗(t) + ν(t) (where there is one degree of freedom in ν(t) following from
the freedom of the scalar function τ(t)) and combining the above two inequalities provides
evidence for the following statement.

If ε1(t) and ε2(t) are two independent nonzero arbitrary differentiable functions that vanish
at t = t0 and t = t1, then∫ t1

t0

(ẋ∗
1 )

2 + (ẋ∗
2 )

2

(x∗
2 )

2 dt <

∫ t1

t0

(ẋ∗
1 + ε̇1)

2 + (ẋ∗
2 + ε̇2)

2

(x∗
2 + ε2)2

dt,

indicating that (24) are globally minimal geodesics.

2.4 Special higher dimensional vectorial cases

In the previous subsection, the Poincaré half-plane model was used. Another model of the
hyperbolic plane is the Poincaré disk model in which

f (x, ẋ) = ẋT M(x)ẋ where M(x) = 4

1 − ‖x‖2 I.

Extensions of the Poincaré half-plane and disk models to higher dimensions exist. For exam-
ple, the above expression for M(x) holds in n dimensions. The n-dimensional half-space
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model has M(x) = x−2
n I. From geometric considerations it is known that geodesics in these

spaces are global minimizers of length.
All of the above are of the form

f (x, ẋ) = m

(
N∑

i=1

ai x2i

)
N∑

j=1

b j ẋ2j

where b j = 1 and ai ∈ {0, 1}. That is, the mass matrix consists of a scalar mass function,
m(·), which depends on coordinates in a particular way, which multiplies the identity matrix.
Therefore, functions of the form above are a reasonable canididate for exploring wider con-
ditions on the parameters {ai } and {b j } such that global minimality of the variational problem
is guaranteed.

Another very special vectorial case is when there are coordinates {qi
′} such that

f (q′, q̇′, t) =
N∑

i=1

λi (qi
′)(q̇ ′

i )
2

where each λi is a continuous function on the interval [0, 1] that takes finite positive values.
Then global optimization in each coordinate can be performed independently as per Theorem
2.2. Likewise, if a coordinate transformation can reduce a coupled vectorial problem to this
form, then the global optimum can be found in each new coordinate, and the result can be
transformed back. Such cases are not the norm. That is, if the matrix

M(q) = ST �(Sq) S

for some invertible constant matrix S, then the variational problem for f (q, q̇, t)
.=

q̇T M(q) q̇ will have a globally minimal solution if it is defined on the region S · [0, 1]N

because then in the coordinates q′ = Sq, everything will reduce to f (q′, q̇′, t).

2.5 A suboptimal ansatz

For more complicated variational problems, employing numerical shooting methods to meet
boundary conditions can be computationally costly. Moreover, since globally optimal solu-
tions might not even exist, it can sometimes be useful to obtain a fast suboptimal solution to
a variational problem rather than an exact extremal.

Motivated by the splitting in Theorem 2.2, we can define a trajectory q◦(t) such that
for symmetric positive definite M(q) ∈ R

n×n (as in kinetic energy or metric tensor) and
R(q) ∈ SO(n),

RT (q◦) M
1
2 (q◦) q̇◦ = c

where c is a constant vector. Then the kinetic energy T = 1
2 q̇

T M(q)q̇ along this path will
remain constant and

q◦(t) = q(0) +
∫ t

0
M− 1

2 (q◦(τ ))R(q◦(τ ), τ ) c dτ. (31)

Here M
1
2 (q) is the matrix square root of M(q) such that M

1
2 (q)M

1
2 (q) = M(q) and

M− 1
2 (q) = [M

1
2 (q)]−1 and R(q, t) ∈ SO(n) is differentiable trajectorywith R(q(0), 0) = I

that can be used to steer the behavior of q◦(t) without adversely affecting the cost.
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The constant vector c provides sufficient freedom to match arbitrary q̇(0) or q(1), but not
both.4 For example, when specifying initial conditions,

q◦(t) = q(0) +
(∫ t

0
M− 1

2 (q◦(τ ))R(q◦(τ ), τ ) dτ

)
M

1
2 (q(0)) q̇(0). (32)

from this q̇(0) can be selected so as tomatch q(1)when thematrix in parenthesis is invertible.
Of course, it is not possible to specify both q̇(0) and q(1) independently.

In general this will not be a solution to the E–L equations for the variational problem with
integrand (5), unless M(q) = M0 is constant. And as such the solution will not be optimal
in general. But since the E–L solution has T = T0 = const), and

1

2
(q̇◦)T M(q◦)q̇◦ = 1

2
q̇(0)T M(q(0))q̇(0) = T0,

the cost of this ansatz appears not to be so bad. Moreover its structure lends itself to rapid
numerical shooting to match the distal boundary condition.

For example, consider the case of geodesics in the Poincaré half plane model. Suppose
that the solution were not known and we seek a reasonable approximation. Using this ansatz
with R = I, the result would be

ẋ◦
1 = c1x◦

2 and ẋ◦
2 = c2x◦

2 .

This means that

x◦
2 (t) = x2(0)e

c2t

which can be back substituted to give

x◦
1(t) = α + βec2t .

Now suppose we want to compare to the exact solution presented in the previous section.
One way to compare would be to examine how different the trajectory with the same initial
conditions is. However, a more telling comparison is to examine the true solution and ansatz
approximation for given boundary conditions. The above solutions are written in terms of
boundary conditions as

x2(t) = x2(0)e
t ln(x2(1)/x2(0)) (33)

which can be back substituted to give

x◦
1 (t) =

(
x1(0) − x2(0)

x1(1) − x1(0)

x2(1) − x2(0)

)
+ x2(0)

x1(1) − x1(0)

x2(1) − x2(0)
et ln(x2(1)/x2(0)). (34)

Consider the boundary conditions x(0) and x(1) from the solutions in the previous section:

x∗(0) =
(

(bd + ac)(d2 + c2)−1

(d2 + c2)−1

)
and x∗(1) =

(
(bd + ace2)(d2 + c2e2)−1

e(d2 + c2e2)−1

)
.

Though it meets the boundary condtions, the energy for the ansatz is a larger constant
than for the geodesics. Introducing the rotation R(x1, x2, t) provides freedom to reduce this

4 As is the case in solving the true variational problem, here too in the case of the ansatz it is not possible
to specify both q̇(0) and q(1) independently. But if a family of solutions parameterized by varying q̇(0) is
generated, then a solution within this family that matches the condition q(1) can be chosen.
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energy while still meeting the same boundary conditions. For example, suppose R = R(t)
defined by counterclockwise measured angle θ(t). Then

ẋ◦
2

x◦
2

= c1 sin θ(t) + c2 cos θ(t)

or

x◦
2 (t) = x◦

2 (0) exp

(
c1

∫ t

0
sin θ(τ )dτ + c2

∫ t

0
cos θ(τ )dτ

)
.

In the simplest case the rotation has one variable to use to steer the solution: θ(t) = ω0t , and
x◦
1 (t) can be obtained numerically.

3 Global optimality and bootstrapping

In the general vectorial case there aremany possible paths connecting the initial and final val-
ues q(0) and q(1). For this reason the argument used in the 1D case earlier cannot generalize
and the Euler–Lagrange equation does not in general provide a globally optimal solution. The
vectorial extension of the integrand in (9) is of the form q̇T M(q)q̇. Here M(q) might be the
metric tensor for a Riemannian manifold, in which case the solutions of the Euler–Lagrange
equations will be equivalent to the equations giving geodesic paths. As is clear even in the
simple cases such as the spheres S1 and S2, the geodesics connecting any two points are not
unique. Moreover, both the shorter or the longer of the two great arcs connecting two points
are solutions to the variational problem when the points are not antipodal. And when they
are, an infinite number of great arcs connect them, illustrating that shortest paths need not be
unique.

From these examples it is clear that global optimality is closely related to the statement
of the problem as a boundary value problem. If instead the problem is restated as that of
finding the path from q(0) with specified value of q̇(0) that minimizes the cost functional∫ 1
0 f (q, q̇, t)dt , then the nonuniqueness of solutions of the Euler–Lagrange equations disap-
pears. In the case of the sphere, even the longer great arc connecting two points then will be
globally optimal. In the one-dimensional case with cost of the form m(y)(y′)2 on a domain
that is an interval, the paths had only one possible direction to go and so the distinction
between the initial-value and boundary-value problems was not important. While this is not
true in general for functionals of multi-dimensional vectorial paths q(t) ∈ R

N , special cases
still do exist in which global optimality can be proved. For example, when M(q) = M0 is
constant, or when mi j (q) = mi (qi )δi j , then when the domain is a product of intervals so
that q ∈ [0, 1]n , then the resulting boundary value problem will be globally minimized by
the solution of the Euler–Lagrange equations. Global optimality is verified by evaluating the
cost of q(t) = q∗(t) + ε(t) where ε(0) = ε(1) = 0. As with the case of the line, the effect
of adding ε(t) is that the cost will only increase relative to that for q∗(t).

3.1 Bootstrapping globally optimal Euler–Lagrange solutions

Let

J0[θ ,q] =
∫ 1

0
f0(θ , θ̇ ,q, q̇, t)dt
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where

f0(θ , θ̇ ,q, q̇, t)
.= 1

2
‖θ̇ − A(q, t)q̇‖2W , (35)

q ∈ R
N , θ ∈ R

P , and ‖B‖2W = tr(BT W B) is the square of theweighted Frobenius normwith
the weighting defined by a given constant positive definite symmetric matrix W = W T > 0.

If q(t) is fixed in advance, then the globally minimal solution for θ(t) is obviously defined
by θ̇ = A(q, t)q̇. This is true regardless of whether E–L regularity conditions are imposed
on A or not.

Alternatively, if boundary conditions on θ are imposed and if A does satisfy E–L regularity
conditions (e.g., A : R

N × [0, 1] −→ R
P×N is twice continuously differentiable), then the

E–L equations in θ give

d

dt

{
W

[
θ̇ − A(q, t)q̇

]} = 0

or
θ̇ − A(q, t)q̇ = a, (36)

where the vector a is constant. Integrating again gives another constant b and the solution is
θ(t) = θ∗[q](t | a,b) where

θ∗[q](t | a,b)
.= at + b +

∫ t

0
A(q(τ ), τ )q̇(τ )dτ. (37)

Here ∗ denotes that this is the extremal solution the functional J0[θ ,q], the subscript denotes
that this solution is a functional of q, and the solution is conditioned on boundary conditions
specified by a and b. When no boundary conditions are imposed, θ∗[q](t | 0,b)makes f0 = 0,
which is the global minimum value and is independent of how the differentiable differen-
tiable q(t) is chosen. When a = 0, θ∗[q](t | a,b) has sufficient freedom to match boundary
conditions and for any fixed given q(t) this choice of θ(t) is again the global minimum since
a perturbation of the form θ∗[q](t | a,b) −→ θ∗[q](t | a,b) + ε(t) with ε(0) = ε(1) = 0 will
only increase the value of the quadratic functional. But when a = 0, the choice of q(t) is not
completely free for reasons explained below.

Assuming sufficient regularity,

d

dt

(
∂ f0
∂ q̇i

)
− ∂ f0

∂qi

= −
(

d A

dt
ei

)T

W (θ̇ − Aq̇) − (Aei )
T W

d

dt
(θ̇ − Aq̇) +

(
∂ A

∂qi
q̇
)T

W (θ̇ − Aq̇).

(38)

Substituting in (36) gives

d

dt

(
∂ f0
∂ q̇i

)
− ∂ f0

∂qi

= −
(

d A

dt
ei

)T

Wa +
(

∂ A

∂qi
q̇
)T

Wa. (39)

Consequently, if a = 0, these equations vanish. Otherwise, equating the above expression to
zero provides a constraint on q(t).

That said, the goal in these computations is not to derive E–L Equations in q since J0[θ ,q]
is a degenerate variational problem (in the sense that the mass matrix is singular). Rather, the
above will be used in the “bootstrapping” procedure described below.
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Now suppose that

f1(q, q̇, t) = 1

2
q̇T M(q)q̇ (40)

is given for which the corresponding Euler–Lagrange equations globally solve a variational
problem with q(0) and q(1) specified. Here it is shown that this solution then can be used as
a seed to generate a globally optimal solution to a larger variational problem. This is referred
to here as “bootstrapping”. Define

f2(θ , θ̇ ,q, q̇, t) = f1(q, q̇, t) + f0(θ , θ̇ ,q, q̇, t) (41)

For example, f1 could correspond to the situation in Sect. 2.1. This scenario is akin to the
“warped product” defined in [24] and “Kaluza-Klein Lagrangian” described in [25], though
is more general and does not rely on underlying geometric properties, though the result has
geometric implications.

In the following let

J1[q] .=
∫ 1

0
f1(q, q̇, t)dt and J2[θ ,q] =

∫ 1

0
f2(θ , θ̇ ,q, q̇, t)dt . (42)

Theorem 3.1 If f1 is sufficiently regular such that the E–L equations provide extremals, and if
q∗ is the global minimizing extremal of J1, then when boundary conditions are not imposed on
θ , a family of global minimizers of J2 exists and is of the form (q∗, θ∗[q∗](t | 0,b)) where q∗(t)
is the global minimizer of J1 subject to specified q(0) and q(1) and b ∈ R

P parameterizes
the family.

Proof By definition, in component form

d

dt

(
∂ f1
∂ q̇i

)
− ∂ f1

∂qi
= 0, (43)

or explicitly when f1(q, q̇, t) = 1
2 q̇

T M(q)q̇,

eT
i M(q)q̈ +

∑
k

q̇keT
i

∂ M

∂qk
q̇ − 1

2
q̇T ∂ M

∂qi
q̇ = 0,

(though restricting to this form is not required in the proof).
Let the solution to the system of equations (43) subject to boundary conditions q(0) = q0

and q(1) = q1 be denoted as q∗(t).
On the other hand, evaluating

d

dt

(
∂ f2
∂θ̇i

)
− ∂ f2

∂θi
= 0

for all values of i simply results in (37).
The Euler–Lagrange equations for the new system corresponding to coordinates {qi },

written in component form, will be

d

dt

(
∂ f2
∂ q̇i

)
− ∂ f2

∂qi
= 0.

From this it is clear that all of the f1 terms disappear when evaluated at q = q∗, and if
a = 0, then (39) gives that θ∗[q∗](t | 0,b) causes all other terms to vanish. This means that
(q∗(t), θ∗[q∗](t | 0,b) is an E–L extremizer of J2.
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The globalminimality of the solutions (q∗(t), θ∗[q∗](t | 0,b) is guaranteed by the postulated
condition that q∗(t) is obtained a priori, and the global minimality of θ∗[q∗](t | 0,b) in (37)
as a solution to a quadratic cost problem. That is, if q∗(t) → q∗(t) + ε1(t) it will only
increase the cost of J1 without affecting the cost of J0, since θ∗(t) is keyed to changes in
q(t). Therefore, if θ(t) = θ∗[q∗+ε1](t | 0,b)+ ε2(t) is substituted into the cost function, ε1(t)
will have no effect on J0, which will remain zero, and the addition of ε2(t) only increases
the cost from zero to

∫ 1
0 ‖ε̇‖2W dt . This does not depend on ‖ε̇‖W being small. (This is the

same as the argument in (7) but with a = 0.) That is, the f0 term in f2 is uniquely zero when
a = 0, and there is no way to do better. ��

Note that when a = 0 it is only possibly to specify boundary conditions on θ ∗ at one end.
If a = 0more freedom is allowed, but in general q∗ will no longer satisfy the E–L equations
for J2 due to the nonzero terms contributed from J0. However, in some special cases those
J0 terms vanish, as described below.

Theorem 3.2 Two special cases for which global minimality is guaranteed without making
the restriction a = 0 are: (1) When A(q, t) = A0 is constant; (2) When N = 1 and
A(q, t) = a1(q) ∈ R

P×1 with q being scalar. The globally minimal solutions in these two
cases are respectively (q∗, θ∗

q∗(t | a,b)) and (q∗, θ∗[q∗](t | a,b)) where5

θ∗
q∗(t | a,b)

.= at + b + A0
(
q∗(t) − q∗(0)

)
(44)

and

θ∗[q∗](t | a,b)
.= at + b +

∫ t

0
a1(q∗(s))q̇∗(s)ds (45)

satisfies the expanded E–L equations corresponding to (41) and can satisfy all boundary
conditions θ(0) and θ(1) in addition to those in q or q.

Proof If a = 0 in (36) then the necessary conditions established by the E–L equations
become (39). If A(q) = A0 is constant, then the terms in (39) vanish and the case 1 solution
results. This condition also can be satisfied if the dimension of q is 1, wherein both terms in
parenthesis in (39) become the same and hence cancel. In this second case, denote A = a1,
since it consists of one column vector, gives (45).

Global optimality is ensured as before, by introducing a perturbation ε(t) of any size
satisifying the boundary conditions ε(0) = ε(1) = 0.

The class of problems addressed in this section can be viewed in a slightly different way
when (40) holds by rewriting (41) as

f (q, θ , q̇, θ̇ , t) = 1

2

[
q̇
θ̇

]T (
M(q) + AT (q, t)W A(q, t) AT (q, t)W

W A(q, t) W

)[
q̇
θ̇

]
. (46)

Consequently, a quadratic cost that can be decomposed in this way will have solutions that
inherit the global optimality from the original smaller problem under appropriate boundary
conditions. It also means that the above reasoning can be used recursively. If the matrix in
(46) is called M ′(q) and we define q′ .= [qT , θT ]T , then the problem can be expanded further
by adding an additional terms such as ‖φ̇ − A′(q′, t)q̇′‖2W ′ .

5 In (44) the subscript q∗ is used instead of [q∗] because in this case θ∗
q∗ depends on q∗ as a function rather

than as a functional.
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3.2 Bootstrapping globally optimal solutions that lack regularity

If the functional f1 or the resulting global optimizers lack sufficient regularity for the E–L
equations to be applicable, the bootstrapping process can nevertheless be used in some cases
to generate globally optimal solutions on higher dimensional spaces.

For example, if f1(q, q̇) = m(q)q̇2 and m is as in Theorem 2.2, then the globally minimal
solution of the variational problem with functional

f2(q, q̇, θ, θ̇ ) = m(q)q̇2 + [θ̇ − a(q, t)q̇]2

with t ∈ [0, 1] and a : R×[0, 1] → R continuous and bounded will be q∗(t) from Theorem
2.2, and θ∗(t) = a0t +b0+∫ t

0 a(q∗(s), s)q̇∗(s)ds. This is true even if m is not differentiable,
and hence lacks the regularity to use the E–L equations.Moreover, in cases such as this where
q and θ are both one-dimensional, when a = a(q) is autonomous, the integral defining θ∗
can be rewritten as

θ∗(t) = a0t + b0 +
∫ q∗(t)

q∗(0)
a(q)dq, (47)

making it an explicit function of q∗(t).
As a second example, we can bootstrap off of the Maniá example of the Lavrentiev

phenomenon in (8) and seek a global minimum of

J [x, θ ] =
∫ 1

0

{
(x3 − t)2 ẋ6 + (θ̇ − a(x, t)ẋ)2

}
dt (48)

subject to boundary conditions x(0) = 0 and x(1) = 1. We can simply write x∗(t) = t1/3

and θ∗(t) = a0t + b0 + ∫ t
0 a(x∗(s), s)ẋ∗(s)ds for a wide variety of functions a, as long as

the integral defining θ∗(t) exists and is finite.
That said, most of the applications that follow involve bootstrapping in the case when the

paths and functional are regular.

4 Examples from the theory of framed space curves

In the classical theory of curves in three-dimensional space, the Frenet–Serret Apparatus is
used to frame arclength-parametrized curves. In the first subsection of this section, a brief
review of that classical theory is given, adapted from Chapter 5 of the author’s book [22].
This material is classical (dating back 150 years) and can be found stated using other notation
in [9, 26]. The material is presented here primarily because subtle differences in the notation
used here relative to the standard presentation will be convenient later.

4.1 The Frenet–Serret apparatus

Without loss of generality, every curve can be parameterized by its arclength, s. Associated
with every three-times-differentiable arclength-parameterized curve, x(s) ∈ R

3, are two
functions: curvature, κ(s), and torsion, τ(s). These functions completely describe the shape
of the curve up to arbitrary rigid-body motion.

As long as κ(s) = 0, a unique Frenet frame can be attached at every point on the curve.
The orientation of this frame relative to the world frame will be

RF S(s)
.= [t(s),n(s),b(s)] ∈ SO(3)
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where t(s), n(s), and b(s) are respectively the unit tangent, normal, and binormal. The Frenet
frames, the curvature, and the torsion, together are known as the Frenet–Serret apparatus.

The way that the orientation of a Frenet frame evolves along the curve is tied to the
curvature and torsion through the system of first order differential equations6

d RF S

ds
= −RF S�F S (49)

where �F S is a special skew-symmetric matrix with only two independent nonzero entries

�F S(s) =
⎛
⎝ 0 κ(s) 0

−κ(s) 0 τ(s)
0 −τ(s) 0

⎞
⎠ .

TheFrenet frameat eachvalueof arclength is then the rotation-translationpair (RF S(s), x(s)) ∈
SO(3) × R

3. No group law is defined. Later in this article several possibilities are explored.

4.2 Minimally varying frames

The classical Frenet frames are not the only way to attach reference frames to space curves,
as pointed out by Bishop [27]. Moroever, the Frenet frames are not optimal in the sense of
twisting as little as possible around the tangent as the curve is traversed. The word ‘twist’
is somewhat problematic, as it can be confused with torsion. Whereas torsion is a twisting
of the curve, the twisting of the frame attached to the curve does not affect the curve shape.
For this reason, the word “roll” can be used in place of “twist”, which is consistent with the
terminology used to describe motions of aircraft and ships.

Two ways to modify Frenet frames are described here, which demonstrate the variational
formulation from earlier in this paper. First the optimal amount of roll along the tangent
relative to the Frenet frames is established. Next, alternative parameterizations in place of
arclength of the curve that have optimality properties are examined. Finally, the optimal
set of frames and reparameterization are combined, which represents an example of the
bootstrapping described previously.

Prior to conceiving the general concept of bootstrapping globally optimal variational
problems, the author considered special cases that arose from the field of robotics [28, 29],
as reviewed in [21, 22], from which some of this presentation is adapted.

4.2.1 Minimally rolling frames

Consider the Frenet frames as a start, and allow freedom to roll around the tangent so that
the new frames have orientation

R = RF S R1(θ) where R1(θ) =
⎛
⎝ 1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠ .

The optimal θ(s) will minimize the functional

J = 1

2

∫ 1

0
tr

(
d R

ds

d R

ds

T
)

ds. (50)

6 In most presentations the vectors t, n, b are stacked rather than being written side-by side, resulting in an
equation deceptively similar in appearance to (49) but without introducing RF S .
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Computing the derivatives and expanding out gives the explicit expression

1

2
tr

(
d R

ds

d R

ds

T
)

= κ2 + τ 2 + 2
dθ

ds
e1 · ωF S +

(
dθ

ds

)2

(51)

where

ωF S
.=

⎛
⎝ τ

0
κ

⎞
⎠ .

This is obtained by using the properties of the trace. For example, tr
(

d R
ds

d R
ds

T
)

=
tr

(
RT d R

ds
d R
ds

T
R
)
which is the trace of the product of two skew-symmetric matrices. And

for skew-symmetric matrices �1 and �2

1

2
tr (�1�2) = ω1 · ω2

where ωi is the unique vector such that

ωi × v = �iv

for every v ∈ R
3. This relationship between ωi and �i is denoted as

ωi = (�i )
∨ and �i = ω̂i . (52)

From (51) and the expression for ωF S it is clear that

1

2
tr

(
d R

ds

d R

ds

T
)

= κ2 +
(

τ + dθ

ds

)2

, (53)

and the cost functional is minimized when

dθ

ds
= −τ.

Though this had been known formany decades as explained by Bishop [27], it became known
to the author as part of studies on snakelike robot arms [28, 29]. In that work the goal was to
use a “backbone curve” to capture the overall shape of a physical robot made from joints and
links, and since each section of the robot was commanded to adhere to a section of the curve,
by limiting the amount of change in position and orientation between reference frames at the
end of each section of curve it was easier for the robot to conform.

The above defines frames that have globally minimal roll. In some applications it is
required to satisfy conditions at the end points. Such solutions will be of the form

θ∗(s) = c1 + c2s −
∫ s

0
τ(σ ) dσ

where c1 and c2 are determined by the end conditions θ(0) = θ0 and θ(1) = θ1.
The fact that this is globally optimal follows from the same arguments as in the example

of the line (i.e., let θ(s) = θ∗(s) + ε(s) and show that this can only make things worse).
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4.2.2 Optimal reparameterization for least variation

Within the same motivating snakelike robot application, it was reasoned that if the spacing
along the curvewas relaxed from being arclength, then this would provide additional freedom
for the physical robot to conform to the backbone curve. In analogywith how theFrenet frames
are not the only (or perhaps not even the most desirable) orientations to attach to a curve,
arclength may not be the best parameter to use. In optimal reparameterization, the idea is to
no longer use the arclength, s, but instead use a new curve parameter t such that s(t) satisfies
s(0) = 0 and s(1) = 1 such that a cost functional of the form

J =
∫ 1

0

{
1

2
r2 tr

(
d R(s(t))

dt

d RT (s(t))

dt

)
+

(
ds

dt

)2
}

dt

is minimized. The constant r is used to introduce units of length because the units to evaluate
bending are measured in angular units whereas extension is measured in units of length. For
example, if a ball of radius r and unit mass is traversing this trajectory, J is a measure of
the total rotational and translational kinetic energy of the ball integrated over the trajectory.
If it speeds up or slows down more quickly than the optimal solution, this cost will increase.
This idea will be generalized later in the paper.

The integrand in the above functional is of the form m(s)(s′)2 where s′ = ds/dt and

m(s) = 1

2
r2 tr

(
d R

ds

d RT

ds

)
+ 1,

and therefore the 1D globally optimal solution discussed previously in Theorem 2.2 applies.
Call this solution s∗(t).

4.3 Simultaneous optimal reparameterization and roll modification

In the physical robotics problem discussed earlier, it was desirable to combine the optimal roll
and curve reparametrization results. This can be done by first solving for the optimal roll and
setting R(s), followed by performing the optimal curve reparametrization, resulting in the
frame (RF S(s∗(t))R1(θ

∗(s∗(t))), x(s∗(t)). A natural question to ask is if this composition of
optimal solutions to subproblems optimally solves the larger composite problem. In general
one would expect composition of optimal solutions to smaller problems to be suboptimal on
the larger space. But in the case of optimal curve reparametrization and rolling, the directions
are in a sense orthogonal and commuting (local rolling and extension about/along the same
vector).

Moreover, this problem of simultaneous curve reparameterization and optimal roll dis-
tribution serves as a concrete application of the class of bootstrapping problems discussed
earlier in this paper. Start with a curve initially parameterized by arclength, x(s) for s ∈ [0, 1],
and with the Frenet frames [x(s), RF S(s)]. We seek a new set of smoothly evolving reference
frames of the form [x(t), R(t)] = [x(s(t)), RF S(s(t))R1(θ(s(t)))], where R1(θ) is an added
roll, of the Frenet frames about the tangent together with a reparameterization s = s(t).

A cost function in the two variables (s(t), θ(t)) can be constructed of the form

C
.= 1

2

∫ 1

0

{
1

2
r2tr(Ṙ ṘT ) + ẋ · ẋ

}
dt (54)

= 1

2

∫ 1

0

{
(r2κ2(s) + 1)ṡ2 + r2(τ (s)ṡ + θ̇ )2

}
dt . (55)
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This functional is the same form as in (41) with θ taking the place of θ and s taking the place
of q. If the second term in the integral is zero, then the remaining term is a one-dimensional
variational problem with f (s, ṡ, t) = 1

2m(s)(ṡ)2 for which a globally minimal solution can
be obtained. From the previous discussion about bootstrapping, Theorem 3.2 guarantees the
global optimality of the composite problem.

What is also interesting here is that the two problems (optimal roll distribution for an
arclength-parameterized curve and optimal curve reparametrization) can be be considered
sequentially and then merged, and this merged solution will be the same as the joint globally
optimal one. Moreover, this example serves as a model for far more general problems with
these characteristics.

5 Global optimality in the Lie group setting

Let G be a real matrix Lie group. The dimension of G as a manifold is denoted as N , and
the constituent matrices, g ∈ G, are elements of R

n×n .
The variational calculus problem onmatrix Lie groups can be formulated as that of finding

paths g(t) ∈ G that extremize a functional

J =
∫ t2

t1
f (g; ξ ; t)dt (56)

where ξ = (g−1 ġ)∨ is a kind of velocity, which is computed simply as the matrix product of
g−1 and ġ, the latter of which is not an element of G. It can be shown that g−1ġ ∈ G, the Lie
algebra corresponding to G, which has N basis elements {Ei }, each of which are in R

n×n .
This means that

g−1 ġ =
N∑

i=1

ξi Ei

and a vector ξ = [ξ1, ..., ξN ]T ∈ R
N can be assigned to each element of G. The notation

∨ takes elements of G and returns vectors in R
N , and the opposite is the ˆ(·) which converts

ξ ∈ R
N into

∑N
i=1 ξi Ei ∈ G. An example of this was demonstrated for G = so(3) in (43).

The choice of {Ei } with the definition E∨
i = ei induces an inner product on G

(Ei , E j ) = ei · e j = δi j

and fixes the metric for G.
Each gi (t)

.= exp(t Ei ) is a curve in G defining one parameter subgroups, where exp(·) is
thematrix exponential. These curves are geodesics relative to themetric forwhich (Ei , E j ) =
δi j .

The necessary conditions for optimality in this setting are the Euler–Poincaré equations,
which can be written as [21, 30–32]

d

dt

(
∂ f

∂ξi

)
+

N∑
j,k=1

∂ f

∂ξk
Ck

i j ξ j = Ẽi f . (57)
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where Ck
i j are the structure constants for the Lie algebra G relating the Lie bracket of basis

elements as a linear combination of basis elements

[Ei , E j ] =
N∑

k=1

Ck
i j Ek .

For a function f : G → R,

(Ẽi f )(g)
.= d

ds
f (g ◦ exp(s Ei ))

∣∣∣∣
s=0

is a directional derivative in the direction of the i th one-dimensional subgroup. Throughout
this section, exp denotes the matrix exponential, which when applied to Lie algebra elements
produces Lie group elements. (In (57) f : G × G × R≥0 → R, but the Ẽi is essentially a
partial derivative, hence only the dependence on G is pertinent).

A version of the above Euler–Poincaré equation with additional end constraints imposed
with Lagrange multipliers can be found in [33, 34] in the context of modeling DNA loops
and thin steerable elastic tubes proposed for medical procedures.

5.1 Globally minimal solutions of the Euler–Poincaré equation

Consider the integrand of a cost functional

f (g, ξ , t) = 1

2
(ξ − c)T K (ξ − c) = 1

2

N∑
i, j=1

Ki j (ξi − ci )(ξ j − c j )

with constant K = K T > 0, the absolute minimal value is obtained when ξ = c. The
corresponding globally minimal trajectory on the group is then defined by

g−1 ġ =
N∑

i=1

ci Ei .

If c is a constant vector, then

g(t) = g(0) exp

(
t

N∑
i=1

ci Ei

)
.

However, this solution is not able to satisfy arbitrary distal end condtions, such as specifying
g(1). If the goal is to do that, then the Euler–Poincaré equations of the form

d

dt

⎛
⎝ N∑

j=1

Ki j (ξ j − c j )

⎞
⎠ +

N∑
j,k=1

(
N∑

l=1

Kkl(ξl − cl)

)
Ck

i jξ j = 0 (58)

need to be satisfied. In general, this requires numerical solution, but in some cases things
simplify. In particular, consider the case when c = 0 and let

Si
l j

.=
N∑

k=1

KklC
k
i j . (59)
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If Si
l j = −Si

jl then
∑N

j,l=1 Si
l jξlξ j = 0 and (58) reduces to

K ξ̇ = 0 �⇒ ξ(t) = ξ(0) �⇒ g(t) = g(0) ◦ et ξ̂(0). (60)

The shortest path connecting g(0) = g0 and g(1) = g1 is then

g∗(t) = g0 ◦ exp(t · log(g−1
0 ◦ g1)) (61)

where log is the matrix logarithm. However, if Si
l j = −Si

jl then the path generated by
solving the E–P variational equations is generally not this geometric one. For example, when
G = SO(3) and when the moment of inertia is not isotropic, the optimal path between
rotations can become very complicated. This is relevant to satellite attitude reorientation
problems, as discussed in [35, 36].

5.2 The rotation group SO(3) and the sphere S
2

5.2.1 Euler–Poincaré Equations for SO(3)

For the casewhenG = SO(3)group elements are 3×3 special orthogonal (rotation)matrices,
denoted as R, and the Lie algebra elements are skew symmetric matrices. In particular
RT Ṙ = � corresponds to the body-fixed description of angular velocity, ω, and the notation
in (52) is used, i.e., ω = �∨ and � = ω̂.

Minimizing a functional of the form

J = 1

2

∫ t2

t1
(ω − ω0)

T I(ω − ω0)dt (62)

arises in several applications. For example, when ω0 = 0 this corresponds to minimizing
kinetic energy due to rotation where I is the moment of inertia matrix. The Euler–Poincaré
equations corresponding to the above functional are

Iω̇ + ω × I(ω − ω0) = 0, (63)

and these become the classical Euler equations of motion without applied moments when
ω0 = 0.

Trajectory planning on SO(3) is both of fundamental importance as an example of more
general geometric methods as in [37–43], as well as practical and elegant engineering and
computer graphics applications such as motion interpolation [44, 45] and spacecraft atti-
tute reorientation [35, 36]. In the subsections that follow, specific variational solutions are
examined, and their minimality properties are queried.

5.2.2 Geodesics on SO(3)

The situation in (60) occurs for the functional in (62) in the special casewhenI = I andω = 0
and (61) applies. That is, the geodesic path connecting R0, R1 ∈ SO(3)with tr(RT

1 R2) > −1
(so that they are not rotations related by a rotation of angle π) is

R∗(t) = R0 ◦ exp(t · log(RT
0 R1)). (64)

Furthermore, this path can be shown to be globally optimal in this case because of the
structure of the cost function. To verify this statement, suppose that R∗(t) is replaced with
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R(t) = R∗(t)Q(t) where Q(t) is an arbitrary differentiable path in G with end points
Q(0) = Q(1) = e. Then

RT Ṙ = (R∗Q)T {Ṙ∗Q + R∗ Q̇} = QT
(
(R∗)T Ṙ∗) Q + QT Q̇.

With ω
.= (

RT Ṙ
)∨
, ω∗ = (

(R∗)T Ṙ∗)∨
, and ωQ

.= (
QT Q̇

)∨
we have

ω = QT ω∗ + ωQ .

Then

‖ω‖2 = ∥∥ω∗∥∥2 + 2(ω∗)T QωQ + ∥∥ωQ
∥∥2

Note that ω∗ is constant and QωQ = (Q̇ QT )∨ = ωs
Q (space-fixed description of angular

velocity corresponding to Q(t)). Therefore
∫ 1

0
(ω∗)T QωQdt = (ω∗)T

∫ 1

0
ωs

Qdt .

For small rotations Q(t) that do not move far from the identity for t ∈ [0, 1], the boundary
conditions Q(0) = Q(1) = I force

∫ 1

0
ωs

Qdt = 0.

Moreover, both ω∗ and any perturbation Q (whether small or large) must obey the invariance
of the problem. For example, if the start and end points are reversed, we getω∗ → −ω∗. And
since Q(0) = Q(1) = I, and since SO(3) is a symmetric space, then unless Q(t) executes a
full 2π rotation (which cannot help since the total angle traversed from R0 to R1 is less than
π), symmetry under swapping the roles of the end points indicate that the angular velocity
ωs

Q must integrate to zero. That is, there is no way to do better than R∗(t), and the argument
is essentially the same as for the line in the plane.

5.2.3 The case when!0 �= 0

The E–P equation in (63) when I = I and ω0 = 0 results in

ω̇ − ω × ω0 = 0. (65)

This is a linear system of equations with solution

ω(t) = exp(−tω̂0)ω(0) =
(

I − sin(‖ω0‖t)
ω̂0

‖ω0‖ + (1 − cos(‖ω0‖t)
ω̂
2
0

‖ω0‖2
)

ω(0) .

(66)
Since exp(tω̂0)ω0 = ω0 it follows that

‖ω(t) − ω0‖2 = ‖ω(0) − ω0‖2.
With initial conditions R(0) = I, the small-time solution for R(t) is then

R(t << 1) = I +
∫ t

0
ω̂(τ ) dτ = I + θ̂
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where

θ(t) =
∫ t

0
ω(τ ) dτ =

(
tI + [cos(‖ω0‖t) − 1] ω̂0

‖ω0‖2
+ (t |ω0‖ − sin(‖ω0‖t)

ω̂2
0

‖ω0‖3
)

ω(0).

A small perturbation of this will be R(t) exp(ε̂) with ε(0) = ε(1) = 0, or θ → θ + ε,
leading to the cost ‖ω(t) − ω0 + ε̇‖2. As with the case of the line in the plane, this reduces
to ‖ω(t) − ω0‖2 + ‖ε̇‖2 because the cross term integrates to zero.

5.2.4 Geodesics on the sphere

A convenient way to describe geodesics connecting two non-colinear points a,b ∈ S
2 is

via the rotation matrix R(a,b), which most directly transforms a unit vector a into the unit
vector b:

b = R(a,b)a.

If θab ∈ [0, π] denotes the angle of rotation measured counterclockwise from a to b around
the axis defined by a × b. Then again using the notation in (52) it can be shown that [22]

R(a,b) = exp

(
θab

sin θab
â × b

)
= I + â × b + (1 − a · b)

‖a × b‖2
(
â × b

)2
. (67)

Then the minimal length geodesic arc connecting a and b is

u(t) = exp(t log R(a,b))a = a + t
(
â × b

)
a + t2

(1 − a · b)

‖a × b‖2
(
â × b

)2
a

for t ∈ [0, 1]. In the above, the hat notation in (52) is used.

5.3 Globally optimal solutions on direct and semi-direct products

Here the concept of (θ∗, s∗) from optimal curve rolling and reparameterization is general-
ized where each variational subproblem is in a subgroup of a larger group, which then are
bootstrapped to obtain solutions on the larger space.

5.3.1 Direct products

Let G and H be a matrix Lie groups with respective Lie algebra basis elements {Ei } and let
{E j }. Given a direct product with elements (g, h) ∈ G × H and the direct product group law

(g1, h1)(g2, h2) = (g1g2, h1h2).

Let ω = (g−1 ġ)∨ and v = (h−1ḣ)∨ denote the velocities. (The reason for this choice of
names will become clear soon.) As an example, the so-called pose change group [46] is the
direct product SO(3) × R

3. This can be described as a matrix Lie group with elements of
the form of a direct sum

(R, t) = R ⊕
(

I t
0T 1

)
∈ R

7×7.

In this context

h−1ḣ =
(

I −t
0T 1

) (
O ṫ
0T 0

)
=

(
O ṫ
0T 0

)
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and v = (h−1ḣ)∨ = ṫ.
SO(3) × R

3 is not the group of handedness preserving Euclidean motions, but it still is
relevant in describing changes in pose. For example, if an aerial vehicle is moving, then it
can be convenient to track its relative orientation and absolute position as described in [47].
Similarly, for protein-protein docking this direct product approach is often taken [48–50].

Moreover, if (R, t) ∈ SO(3) × R
3, it is convenient to define body-fixed angular velocity

ω = (RT Ṙ)∨ and the space fixed view of translational velocity v = ṫ. Indeed, in the classical
expression for kinetic energy

T = 1

2
ωT Iω + 1

2
mv · v

this is exactly what is done.
It is clear that if the globally minimal solutions to

J1 =
∫ t2

t1
f1(g,ω, t)dt and J2 =

∫ t2

t1
f2(h, v, t)dt

are obtained separately, then the globally minimal solution for J1 + J2 on the product group
will be obtained by pairing the solutions for each independently as (g∗(t), h∗(t)). In the case
of the direct product SO(3) × R

3

(R∗(τ ), t∗(τ )) =
(

R0 ◦ exp(τ · log(RT
0 R1)) , t0 + (t1 − t0)τ

)
. (68)

Slightly more interesting than that is when the cost is of the form7

f (g, h,ω, v) = f1(g,ω) + 1

2
‖v − A(g)ω‖2W (69)

in analogy with the coordinate-dependent discussion of bootstrapping earlier in the paper.
Assuming that f1 satisfies the E–P equation, then the E–P equation for g will reduce to

· d

dt
eT AT W (Aω − v) − ω × (Aω − v) = (Aω − v)Ẽi Aω.

and the E–P equation for h will reduce to

d

dt
(Aω − v) = 0.

The condition for global minimality

v = A(g)ω

is obtained when ω(0) = 0.

5.3.2 Semidirect products

Sometimes cost functions such as those in (69) arise naturally in the context of semi-direct
products rather than direct. The group of special Euclidean motions

SE(3) = R
3

� SO(3)

7 The case f (g, h, ω, v) = f1(h, v) + ‖ω − A(h)v‖2W can be handled analogously.
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is such semi-direct product. Its elements reside in the same underlying space as the pose
change group, gi = (Ri , ti ), but the group law is different:

g1g2 = (R1R2, R1t2 + t1).

The standard way to describe SE(3) as a matrix Lie group is to write its elements as

g =
(

R t
0T 1

)
∈ R

4×4.

The corresponding velocities can be written as

ξ = (g−1ġ)∨ =
(

ξ i
ξ2

)
=

(
(RT Ṙ)∨

RT v

)

For example, in modeling the minimal energy shapes of DNAmolecules treated as elastic
filaments, a common model to describe the strain energy at the point s along a backbone
curve is of the form

f (g, ξ) = 1

2
‖ξ − ξ0‖K .

For special cases of K , the theory in (5.1) can be applied. The resulting geodesics will be
different than in the direct product case, with the translational parts taking helical paths. In
principle, similar expressions can be used whenmodeling large elastic deformations in sheets
and solids comprised of elastic filaments in multiple directions. Then such a formulation may
be applied to robots powered by transparent elastic actuators, as in [51].

For special cases of A(g) it is also possible to capture a cost function such as (69) in the
form of 1

2‖ξ‖K . In particular, writing

‖ξ‖K = ξ T
1 K11ξ1 + ‖ξ2 − A0ξ1‖2W

we recognize that ξ2 = RT v, and when W = cI, then

‖ξ1 − A0ξ2‖2W = c2‖ξ2 − R A−1
0 ξ1‖2.

Then (69) can be written as a homogenous problem on SE(3) rather than as a bootstrapped
problem from SO(3) to SO(3) × R

3. In other words, we can minimize the bootstrapped
problem on SO(3) × R

3 as a homogeneous one on SE(3) with f (ξ) = 1
2‖ξ‖K and where

K =
(

K11 cA0

cAT
0 cI

)
.

5.4 Application: extraction of salient actions from a video sequence

An M × N black-and-white image consists of M · N pixels, each with fixed location and
pixel intensity (grayscale) values. When there is color, instead of a scalar, each pixel has a
vector of RGB (red, green, blue) values. A black-and-white video can be viewed as a curve
inR

M×N parameterized by time, and an individual image in the video is a point in this space.
Similarly, a color video can be thought of as a curve in R

M×N×3.
Given a video sequence, a problem of importance is activity recognition. For example, if a

humanoid robot is charged with taking care of grandma, the robot should decode grandma’s
actions and gestures such as waving, walking, and summoning. As such, salient actions need
to be extracted from video sequences and matched with stored representatives of such action
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classes in a database. A first step in comparing two video sequences X1(τ ) and X2(τ ) for
τ ∈ [0, 1] is to put the salient actions on a common timescale. Suppose that each video
illustrates a human hand waving from left to right and back. One person may wave faster at
the beginning and slower at the end, and the other person may wave slower at the beginning
and faster at the end. This means that computing a quantity such as

∫ 1
0 ‖X1(τ )− X2(τ )‖2dτ

to measure the differences between the videos will give a large value, and miss the fact that
both videos describe essentially the same waving simply because they are out of sync. A way
to reconcile the differences in the trajectories described by the videos is to assign a different
timescale for one relative to the other. This is one of the goals of dynamic time warping. The
literature on this topic is immense, and some well known articles include [52–54].

An alternative to dynamic time warping is to optimally reparameterize both of the videos
as Xi (τi (t)). Since d Xi/dt = X ′

i (τ )τ̇ , a measure of the amount of change in video i at
any instant is ‖Ẋi (τ )‖2 = ‖X ′

i (τ )‖2τ̇ 2. An optimal timescale τ ∗
i (t) for each video can be

defined as one that expands time when there is a lot of change in the video (i.e., large value of
derivative), and compresses time when nothing is happening (i.e., small value of derivative).
In other words, we seek Xi (τ

∗
i (t)) where τ ∗

i minimizes the functional

J =
∫ 1

0
‖X ′

i (τ )‖2τ̇ 2dt .

This is analogous to the curve reparametrization problem reviewed earlier in this paper, and
normalizes the timescale of both videos according to how much is changing in each. This is
the approach taken in [55, 56].

The curvature of such an arclength parameterized curve in pixel space can be described
using a higher-dimensional version of the Frenet–Serret apparatus, and the analogs of cur-
vature and torsion can be used to identify motion features as explained in [57].

Moreover, rather than considering only the raw images in the video sequence, it is common
to use image processing techniques to detect edges or extract other features that are tracked
from frame to frame. These features undergo motions within the image plane, which can be
thought of as being orthogonal to the temporal direction. Motions can be intrinsic to the the
action being observed by the camera, or they can be a result of nuisances, as would be the case
if the camera is shaking when the video is taken, or one person is waving from a stationary
location and another is waving while riding a horse. When the goal is to isolate actions,
the contribution of these nuisance motions should be eliminated as much as possible before
comparing videos. It therefore makes sense to seek the optimal path gi (τ ) ∈ G (a group
of nuisance motions) such that Yi (τ ) = gi (τ ) · Xi (τ ) is minimally varying. Minimizing∫ 1
0 ‖dYi/dτ‖2dτ results in an Euler–Poincaré problem on G. After nuisance motions are
removed, the resulting Y ∗

i (τ ) = g∗
i (τ ) · Xi (τ ) can be optimally reparameterized as described

above. The resulting motion-corrected and temporally reparameterized videos Y ∗
i (τ ∗

i (t)) can
then be compared.

In this way a problem reduces to something analogous to the joint θ -s problem in curve
framing (with motion in the image plane being like θ(t), and compression or expansion of
the temporal variable being like s(t)). This joint problem was addressed in [58].

6 Conclusions

A number of variational calculus problems with globally optimal solutions are reviewed and
used to construct new globally optimal solutions to variational problems on larger spaces.
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This “bootstrapping” approach is demonstrated in the context of simultaneous twist adjust-
ment relative to the Frenet frames of a space curve to give the Bishop frames, together with
the reparametrization of the framed curve starting with arclength to result in a framing that
evolves more gradually. These ideas are then generalized to classes of coordinate-dependent
variational problems and coordinate-free Lie-group problems with globally minimal solu-
tions. In many cases of interest one underlying space can be endowed with multiple different
group operations (e.g., direct product or semidirect product), and it is shown how differ-
ent globally minimal trajectories result from bootstrapping from subgroups to these larger
product groups.
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