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Abstract
We study rotating wave solutions of the nonlinear wave equation

{
∂2t v − �v + mv = |v|p−2v in R × B
v = 0 on R × ∂B

where 2 < p < ∞, m ∈ R and B ⊂ R
2 denotes the unit disk. If the angular velocity

α of the rotation is larger than 1, this leads to a semilinear boundary value problem on B
involving a mixed-type operator, whose spectrum is related to the zeros of Bessel functions
and could generally be badly behaved. Based on new estimates for these zeros, we find values
of α such that the spectrum only consists of eigenvalues with finite multiplicity and has no
accumulation point. Combined with suitable spectral estimates, this allows us to formulate
an appropriate indefinite variational setting and find ground state solutions of the reduced
equation for p ∈ (2, 4). Using a minimax characterization of the ground state energy, we
ultimately show that these ground states are nonradial and thus yield nontrivial rotatingwaves,
provided m is sufficiently large.

Mathematics Subject Classification Primary 35M12; Secondary 35B06 · 35P15 · 47J30 ·
35P20.

1 Introduction

We consider time-periodic solutions of the nonlinear wave equation

{
∂2t v − �v + mv = |v|p−2v in R × B

v = 0 on R × ∂B
(1.1)
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where 2 < p < ∞, m ∈ R and B ⊂ R
2 denotes the unit disk. In the case m > 0, this

is also commonly referred to as a nonlinear Klein-Gordon equation. A well-known class of
such solutions is given by standing wave solutions, which reduce (1.1) either to a stationary
nonlinear Schrödinger or a nonlinear Helmholtz equation and have been studied extensively
on the whole space RN , see [17, 34]. Note that this yields complex-valued solutions whose
amplitude remains stationary, however, while other types of time-periodic solutions are sig-
nificantly less well understood. In particular, much less is known about the dynamics of
nonlinear wave equations in general bounded domains.

In the one-dimensional setting, which typically describes the forced vibrations of a non-
homogeneous string, the existence of time-periodic solutions satisfying either Dirichlet or
periodic boundary conditions has been treated in the seminal works of Rabinowitz [33] and
Brézis, Coron and Nirenberg [7] by variational methods, but the results in higher dimen-
sions are more sparse. On balls centered at the origin, the existence of radially symmetric
time-periodic solutions was first studied by Ben-Naoum and Mawhin [3] for sublinear non-
linearities and subsequently received further attention, see e.g. the recent works of Chen and
Zhang [9–11] and the references therein.

In this paper, we study rotating wave solutions as introduced in [19], which are time-
periodic real-valued solutions of (1.1) given by the ansatz

v(t, x) = u(Rαt (x)), (1.2)

where Rθ ∈ O(2) describes a rotation in R2 with angle θ > 0, i.e.,

Rθ (x) = (x1 cos θ + x2 sin θ,−x1 sin θ + x2 cos θ) for x ∈ R
2. (1.3)

In particular, the constant α > 0 in (1.2) is the angular velocity of the rotation. Consequently,
such solutions can be interpreted as rotating waves in a nonlinear medium. We note that a
related ansatz for generalized traveling waves on manifolds has also been considered in [27,
28, 37], while a class of spiral shaped solutions for a nonlinear Schrödinger equation on R

3

has been treated in [1].
In the following, we let θ denote the angular variable in two-dimensional polar coordinates

and note that the ansatz (1.2) reduces (1.1) to{
−�u + α2∂2θ u + mu = |u|p−2u in B

u = 0 on ∂B
(1.4)

where ∂θ = x1∂x2 − x2∂x1 then corresponds to the angular derivative. Note that this equation
has solutions which are independent of θ , but these correspond to stationary and therefore
non-rotating solutions of (1.1). In the following, our goal is to prove the existence of nonradial,
i.e., θ -dependent, solutions of (1.4).

In the case α ≤ 1, this question has been studied in great detail in [19], where a connection
to degenerate Sobolev inequalities is explored. In particular, it has been observed that the
ground states, i.e., minimizers of the associated Rayleigh quotient, are nonradial in certain
parameter regimes for p and α.

The main purpose of the present paper is the study of nonradial solutions of (1.4) for
α > 1. However, the direct variational methods employed in [19] cannot be extended to this
case since the operator

Lα := −� + α2∂2θ
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is neither elliptic nor degenerate elliptic, and the associated Rayleigh quotient becomes
unbounded from below, see [19, Remark 4.3]. Indeed, note that in polar coordinates (r , θ) ∈
(0, 1) × (−π, π) we have

Lαu = −∂2r u − 1

r
∂r u −

(
1

r2
− α2

)
∂2θ u

and hence the operator is in fact of mixed-type for α > 1: It is elliptic in the smaller ball
B1/α(0) of radius 1/α, parabolic on the sphere of radius 1/α and hyperbolic in the annulus
B \ B1/α(0). In general, such operators are difficult to deal with via variational methods, and
instead results often rely on separate treatments of the different regions of specific type and
then gluing the solutions together, see e.g. [26, 29] for more details.

From a functional analytic viewpoint, the quadratic form associated to Lα is strongly
indefinite, i.e., it is negative on an infinite-dimensional subspace.Classically, related problems
have been treated for operators of the form −� − E on R

N where E ∈ R lies in a spectral
gap of the Laplacian. In this direction, we mention the use of a dual variational framework
in order to prove the existence of nonzero solutions of a nonlinear stationary Schrödinger
equation in [2], aswell as abstract operator theoreticmethods used in [8] for a related problem.
However, both of these exemplary approaches require specific assumptions regarding spectral
properties of the associated operator. Moreover, the sole existence of nonzero solutions to
(1.4) is insufficient in our case since we are interested in nontrivial rotating wave solutions.

In the present case of problem (1.4), a main obstruction, in addition to the unboundedness
of the spectrum of the linear operator Lα from above and below, is the possible existence of
finite accumulation points of this spectrum. As a first step, we therefore analyze the spectrum
of Lα in detail, which is closely related to the spectrum of the Laplacian and thus the zeros
of Bessel functions. In fact, the Dirichlet eigenvalues of Lα are given by

j2�,k − α2�2,

where � ∈ N0, k ∈ N and j�,k denotes the k-th zero of the Bessel function of the first kind J�.
Here and in the following, N0 denotes the natural numbers extended by zero. In particular,
the structure of the spectrum therefore heavily depends on the asymptotic behavior of the
zeros of these Bessel functions. Despite this explicit characterization, it is not clear whether
the spectrum of Lα only consists of isolated points. Indeed, known results on the asymptotics
of the zeros of Bessel functions turn out to be insufficient to exclude accumulation points
or even density in R. In fact, similar spectral issues arise in the study of radially symmetric
time-periodic solutions of (1.1) on balls Ba(0), where the spectral properties of the radial
wave operator are intimately connected to the arithmetic properties of the ratio between the
radius a > 0 and the period length, see e.g. [4, 23] and the references therein for more details.

This turns out to be a serious obstruction for the use of variational methods and thus
necessitates a detailed analysis of the asymptotic behavior of different sequences of zeros.
Our first main result then characterizes the spectrum of Lα as follows.

Theorem 1.1 For any α > 1 the spectrum of Lα is unbounded from above and below.
Moreover, there exists an unbounded sequence (αn)n ⊂ (1,∞) such that the following
properties hold for n ∈ N:

(i) The spectrum of Lαn consists of eigenvalues with finite multiplicity.
(ii) There exists cn > 0 such that for each � ∈ N0, k ∈ N we either have j2�,k − α2

n�
2 = 0 or

| j2�,k − α2
n�

2| ≥ cn j�,k . (1.5)

123



50 Page 4 of 30 J. Kübler

(iii) The spectrum of Lαn has no finite accumulation points.

The proof of this result is based on the observation that the formula

j2�,k − α2�2 = ( j�,k + α�)�

(
j�,k
�

− α

)

implies that for any unbounded sequences (�i )i , (ki )i , the corresponding sequence of eigen-
values j2�i ,ki − α2�2i can only remain bounded if

j�i ,ki
�i

− α → 0 (1.6)

as i → ∞. It turns out that (1.6) can only hold if �i/ki → σ , where σ = σ(α) > 0 is uniquely
determined and can be characterized via a transcendental equation. This motivates a more
detailed investigation of jσk,k , k ∈ N which gives rise to a new estimate for j�,k , � ∈ N0,
k ∈ N, see Lemma 3.3 and Remark 3.4 below. In order to estimate arbitrary sequences in
(1.6), we are then forced to restrict the problem to velocities α = αn such that the associated
values σn = σ(αn) are suitable rational numbers. The fact that such a restriction is necessary
is not surprising when compared to similar properties observed for the radial wave operator
as mentioned above.

Theorem 1.1 then plays a central role in the formulation of a variational framework for
(1.4) and allows us to recover sufficient regularity properties for Lαn . More specifically, for
α = αn we may then define a suitable Hilbert space Eα,m whose norm is related to the
quadratic form

u �→
∫
B

(|∇u|2 − α2|∂θu|2 + mu2
)
dx,

see Sect. 5 below for details. The space Eα,m admits a decomposition of the form

Eα,m = E+
α,m ⊕ Fα,m,

where the spaces E+
α,m and Fα,m essentially correspond to the eigenspaces of positive and

nonpositive eigenvalues of −� + α2∂2θ + m, respectively. Crucially, the estimate (1.5) and
fractional Sobolev embeddings allow us to deduce that Eα,m compactly embeds into L p(B)

for p ∈ (2, 4).
We may then find solutions of (1.4) as critical points of the associated energy functional

	α,m : Eα,m → R given by

	α,m(u) := 1

2

∫
B

(|∇u|2 − α2|∂θu|2 + mu2
)
dx − 1

p

∫
B

|u|p dx .

Due to the strongly indefinite nature of (1.4), 	α,m is unbounded from above and below
and does not possess a mountain pass structure so, in particular, the classical mountain pass
theorem and its variants are not applicable. Instead, we consider the generalized Nehari
manifold introduced by Pankov [31]

Nα,m := {
u ∈ Eα,m \ Fα,m : 	′

α,m(u)u = 0 and 	′
α,m(u)v = 0 for all v ∈ Fα,m

}
.

Using further abstract results due to Szulkin and Weth [36], we can then show that

cα,m = inf
u∈Nα,m

	α,m(u)
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is positive and attained by a critical point of 	α,m for α = αn as in Theorem 1.1 and m ∈ R.
In particular, such a minimizer then necessarily has minimal energy among all critical points
of 	α,m , and is therefore referred to as a ground state solution or ground state of (1.4).

In general, it is not clear whether such a ground state is nonradial. Our second main result
further states that (1.4) has nonradial ground state solutions for certain choices of parameters.

Theorem 1.2 Let p ∈ (2, 4) and let the sequence (αn)n ⊂ (1,∞) be given by Theorem 1.1.
Then the following properties hold:

(i) For any n ∈ N and m ∈ R there exists a ground state solution of (1.4) for α = αn.
(ii) For any n ∈ N there exists mn > 0 such that the ground state solutions of (1.4) are

nonradial for α = αn and m > mn.

In fact, we can prove a slightly more general result in the sense that the statement of Theo-
rem 1.2 holds whenever the kernel of Lα is finite-dimensional and an inequality of the form
(1.5) holds. The proof is essentially based on an energy comparison, noting that the minimal
energy of the unique positive radial solution can be estimated from below in terms of m.
Using a minimax characterization of cα,m , we can then show that this ground state energy
grows slower than the radial energy as m → ∞.

Throughout the paper, we only consider real-valued solutions and consequently let all
function spaces be real. Nonradial complex-valued solutions of (1.4), on the other hand,
can be found much more easily using constrained minimization over suitable eigenspaces.
This technique has been applied to a related problem in [37]. We point out, however, that
the modulus of such solutions is necessarily radial, while Theorem 1.2 yields solutions with
nonradial modulus. With our methods, by combining (1.2) with a standing wave ansatz,
we can also prove the existence of genuinely complex-valued ground states with nonradial
modulus, see the appendix of this paper.

The paper is organized as follows. In Sect. 2, we introduce Sobolev spaces via their spectral
characterization and collect several known results on the properties of the zeros of Bessel
functions. In Sect. 3 we then prove a crucial technical estimate for certain sequences of such
zeros. This result is subsequently used in Sect. 4 to investigate the asymptotics of the zeros
of Bessel functions in detail and, in particular, prove Theorem 1.1. Section 5 is then devoted
to the rigorous formulation of the variational framework outlined earlier and the proof of
Theorem 1.2. In Appendix A, we discuss the results for complex-valued solutions mentioned
above.

2 Preliminaries

We first collect some general facts on eigenvalues and eigenfunctions of the Laplacian on
B, we refer to [18] for a more comprehensive overview. Recall that the eigenvalues of the
problem {

−�u = λu in B

u = 0 on ∂B

are given by j2�,k , where j�,k denotes the k-th zero of theBessel function of thefirst kind J� with

� ∈ N0, k ∈ N. To each eigenvalue j2�,k correspond two linearly independent eigenfunctions
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ϕ�,k(r , θ) := A�,k cos(�θ)J�( j�,kr)

ψ�,k(r , θ) := B�,k sin(�θ)J�( j�,kr),
(2.1)

where the constants A�,k, B�,k > 0 are chosen such that ‖ϕ�,k‖2 = ‖ψ�,k‖2 = 1. These
functions constitute an orthonormal basis of L2(B) and we can then characterize Sobolev
spaces as follows:

H1
0 (B) :=

{
u ∈ L2(B) : ‖u‖2H1 :=

∞∑
�=0

∞∑
k=1

j2�,k
(|〈u, ϕ�,k〉|2 + |〈u, ψ�,k〉|2

)
< ∞

}
.

It can be shown that this is consistent with the usual definition of H1(B). By classical Sobolev
embeddings, H1

0 (B) compactly maps into L p(B) for any 1 ≤ p < ∞.
Similarly, we consider the fractional Sobolev spaces

Hs
0 (B) :=

{
u ∈ L2(B) : ‖u‖2Hs :=

∞∑
�=0

∞∑
k=1

j2s�,k

(|〈u, ϕ�,k〉|2 + |〈u, ψ�,k〉|2
)

< ∞
}

for s ∈ (0, 1). Using interpolation, it can be shown that this is equivalent to the classical
definition and Hs

0 (B) compactly maps into L p(B) for p < 2
1−s , i.e., there existsCs > 0 such

that

‖u‖p ≤ Cs‖u‖Hs
0 (B)

holds for u ∈ H1
0 (B).

Next, we collect several results on the properties of zeros Bessel functions, see e.g. [13]
for a more extensive overview. In the following, we let jν,k denote the k-th zero of the Bessel
function Jν , where ν ≥ 0, k ∈ N. By definition, jν,k < jν,k+1. In the following, we let
Ai : R → R denote the Airy function given by

Ai(x) = 1

π
lim
b→∞

∫ b

0
cos

(
t3

3
+ xt

)
dt .

Importantly, Ai is oscillating on (−∞, 0) and we let ak denote its k-th negative zero.

Proposition 2.1 For each fixed k ∈ N, jν,k is increasing with respect to ν. Moreover, the
following properties hold:

(i) [32]We have

ν + |ak |
2

1
3

ν
1
3 < jν,k < ν + |ak |

2
1
3

ν
1
3 + 3

20
|ak |2 2

1
3

ν
1
3

where ak denotes the k-th negative zero of the Airy function Ai(x).
(ii) [24] For each fixed k ∈ N the map

ν �→ jν,k

ν

is strictly decreasing on (0,∞).
(iii) [16] For k ∈ N it holds that

πk − π

4
< j0,k ≤ πk − π

4
+ 1

8π(k − 1
4 )

.
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(iv) [14] For each fixed k ∈ N the map ν �→ jν,k is differentiable on (0,∞) and

d jν,k

dν
∈
(
1,

π

2

)

for ν ≥ 0.

The zeros of the Airy function can in turn be estimated (see [6]) by

(
3π

8
(4k − 1.4)

) 2
3

< |ak | <

(
3π

8
(4k − 0.965)

) 2
3

for k ∈ N, which yields the following result:

Corollary 2.2 Let jν,k ∈ R be defined as above. Then

ν +
( 3π

8 (4k − 2)
) 2
3

2
1
3

ν
1
3 < jν,k < ν +

( 3π
2 k

) 2
3

2
1
3

ν
1
3 + 3

20

(
3π

2
k

) 4
3 2

1
3

ν
1
3

.

3 Asymptotics of the zeros of Bessel functions

In order to study Lα in Sect. 4, we will be particularly interested in the asymptotics of the
zeros jν,k when the ratio ν/k remains fixed. For this case, we note the following result by
Elbert and Laforgia:

Theorem 3.1 [15] Let x > −1 be fixed. Then

lim
k→∞

jxk,k
k

=: ι(x)

exists. Moreover, ι(x) is given by

ι(x) =
{

π, x = 0,
x

sin ϕ
x �= 0

where ϕ = ϕ(x) ∈ [−π
2 , π

2 ] denotes the unique solution of

sin ϕ

cosϕ − ( π
2 − ϕ) sin ϕ

= x

π
. (3.1)

Moreover, we note the following properties of a function associated to ι.

Lemma 3.2 The map

f : (0,∞) → R, f (x) = ι(x)

x

is strictly decreasing and satisfies

lim
x→0

f (x) = ∞, lim
x→∞ f (x) = 1.

Moreover, its inverse is explicitly given by

f −1 : (1,∞) → R, f −1(y) = π√
y2 − 1 −

(
π
2 − arcsin 1

y

) .
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Proof Note that the left hand side of (3.1) is strictly increasing with respect to ϕ, and the
right hand side is strictly increasing with respect to x , so that ϕ is necessarily an increasing
function of x . In particular, we then have f (x) = ι(x)

x = 1
sin ϕ

which clearly implies the
monotonicity of f .

Next, we note that y = f (x) = 1
sin ϕ

implies ϕ = arcsin 1
y and hence

x

π
=

1
y

cos
(
arcsin 1

y

)
− ( π

2 − arcsin 1
y )

1
y

.

The identity cos(arcsin(t)) = √
1 − t2 then gives

x

π
=

1
y√

1 − 1
y2

− ( π
2 − arcsin 1

y )
1
y

= 1√
y2 − 1 −

(
π
2 − arcsin 1

y

)

and thus the claim follows. ��
In order to characterize the eigenvalues of Lα later on, we need more information on the
order of convergence in Theorem 3.1. To this end, we first recall some ingredients of the
proof of this result. By the Watson integral formula [38, p. 508], for fixed k ∈ N the function
ν �→ jν,k satisfies

d

dν
jν,k = 2 jν,k

∫ ∞

0
K0(2 jν,k sinh(t))e

−2νt dt,

where K0 denotes the modified Bessel function of the second kind of order zero. It then
follows that the function

ιk(x) := jkx,k
k

satisfies

d

dx
ιk(x) = 2ιk

∫ ∞

0
K0

(
t2ιk

sinh
( t
k

)
( t
k

)
)
e−2xt dt =: Fk(ιk, x) (3.2)

for k ∈ N and x ∈ (−1,∞). In [15] it is then shown that ιk converges pointwise to the
solution of ⎧⎨

⎩
d

dx
ι(x) = 2ι

∫ ∞

0
K0 (t2ι) e−2xt dt =: G(ι, x)

ι(0) = π,

(3.3)

which is precisely given by the function ι discussed in Theorem 3.1. Moreover, it is shown
that

ιk(x) < ι(x) (3.4)

holds for all k ∈ N.
We now give a more precise characterization of this convergence in the case x > 0.

Lemma 3.3 For any x > 0 and ε > 0 there exists k0 ∈ N such that

− exp

((
1

3
+ ε

)
x

)
π

4k
≤ jxk,k

k
− ι(x) ≤ −(1 − ε)

π

4k

holds for k ≥ k0.
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Proof Recall that we set ιk(x) = jxk,k
k and the functions satisfy

d

dx
ιk = Fk(ιk, x)

d

dx
ι = G(ι, x)

in (−1,∞) with Fk and G defined in (3.2) and (3.3), respectively. Now consider uk(x) :=
ιk(x) − ι(x) so that

d

dx
uk = Fk(ιk, x) − G(ι, x)

ιk(x) − ι(x)
uk(x) = βk(x)uk(x)

where we set

βk(x) := Fk(ιk, x) − G(ι, x)

ιk(x) − ι(x)
.

Note that βk is well-defined by (3.4). In particular, we find that

uk(x) = uk(0) exp

(∫ x

0
βk(t) dt

)
.

Next, we note that the monotonicity of K0 and the fact that sinh(t) > t holds for t > 0 imply

Fk(ιk, x) = 2ιk

∫ ∞

0
K0

(
t2ιk

sinh
( t
k

)
( t
k

)
)
e−2xt dt

< 2ι
∫ ∞

0
K0 (t2ι) e−2xt dt = G(ιk, x)

where [38, p. 388] implies

G(y, x) = 2y
∫ ∞

0
K0 (t2y) e−2xt dt = arccos x

y√
1 −

(
x
y

)2 if

∣∣∣∣ xy
∣∣∣∣ < 1. (3.5)

Importantly, the function

g : (1,∞) �→ R, t �→ arccos 1
t√

1 − 1
t2

is strictly increasing. Indeed, we have

g′(t) = 1

t2(1 − 1
t2

)
− arccos 1

t

t3(1 − 1
t2

)
3
2

= 1

t2(1 − 1
t2

)

⎛
⎝1 − arccos 1

t

t
√
1 − 1

t2

⎞
⎠

= 1

t2 − 1

(
1 − arccos 1

t√
t2 − 1

)

and [39, Theorem 2 for b = 1/2] gives

arccos s < 2

√
1 − s√
1 + s
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for s ∈ (0, 1) so that

arccos 1
t√

t2 − 1
= arccos 1

t

t
√
1 − 1

t

√
1 + 1

t

<
2

t
√
1 + 1

t

= 2√
t2 + t

< 1

holds for t > 1, which implies that g′ is a positive function.Moreover, g′ can be continuously
extended by g′(1) = 1

3 and is decreasing, which implies

g′(t) ≤ 1

3
(3.6)

for t > 1.
Noting that Lemma 3.2 and the convergence ιk(x) → ι(x) imply that

∣∣∣ x
ιk (x)

∣∣∣ < 1 holds for

sufficiently large k, wemay combine the identity (3.5)with ιk(x) < ι(x) and themonotonicity
properties stated above to deduce Fk(ιk, x) < G(ιk, x) < G(ι, x) and hence

0 ≤ βk(x). (3.7)

Next, we estimate uk(0): Recall that ι(0) = π and therefore

uk(0) = j0,k
k

− π,

so Proposition 2.1(iii) yields

− π

4k
≤ uk(0) ≤ − π

4k
+ 1

8πk(k − 1
4 )

. (3.8)

In particular, it follows that uk(0) is negative for k ∈ N so the fact that uk(x) =
uk(0) exp

(∫ x
0 βk(t) dt

)
and the estimate (3.7) yield

uk(x) ≤ uk(0)

for x > 0. This implies

uk(x) ≤ − π

4k
+ 1

8πk(k − 1
4 )

for x > 0 and hence the upper bound stated in the claim.
It remains to prove the lower bound. To this end, we employ arguments inspired by [5]

and first note that

sinh(x) ≤ x + x3

holds for x ∈ (0, 1), which implies

sin
( t
k

)
t
k

≤ 1 + 1

k
4
3

(3.9)

for k ∈ N and 0 < t ≤ tk := k
1
3 . In the following, we fix x > 0 and let y > x . Then the

monotonicity of K0 and (3.9) yield

Fk(y, x) ≥
∫ tk

0
K0

(
t

(
1 + 1

k
4
3

))
e− xt

y dt
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and therefore

Fk(y, x) − G(y, x)

≥
∫ tk

0

[
K0

(
t

(
1 + 1

k
4
3

))
− K0(t)

]
e− xt

y dt −
∫ ∞

tk
K0(t)e

− xt
y dt .

(3.10)

From

K0(t) ≤ K 1
2
(t) =

√
π

2t
e−t

we then find ∫ ∞

tk
K0(t)e

− xt
y dt ≤

√
π

2tk
e−tk

∫ ∞

0
e− xt

y dt =
√

π

2tk
e−tk y

x
.

For any y0 > x and δ ∈ (0, 1), we thus find k0 ∈ N such that∫ ∞

tk
K0(t)e

− xt
y dt ≤ δ

k
4
3

(3.11)

holds for |y − y0| < y0 − x and k ≥ k0.
In order to estimate the other term in (3.10), we note that for t ∈ R there exists ξk ∈(

t, t + t

k
4
3

)
such that

K0

(
t

(
1 + 1

k
4
3

))
− K0(t) = K ′

0(ξk)
1

k
4
3

= −K1(ξk)
t

k
4
3

≥ −K1(t)
t

k
4
3

.

This implies∫ tk

0

[
K0

(
t

(
1 + 1

k

))
− K0(t)

]
e− xt

y dt ≥ − 1

k
4
3

∫ tk

0
K1(t)te

− xt
y dt

≥ − 1

k
4
3

∫ ∞

0
K1(t)te

− xt
y dt,

where [38, p. 388] gives∫ ∞

0
K1(t)te

− xt
y dt ≤

∫ ∞

0
K1(t)t dt = �

(
1

2

)
�

(
3

2

)
= π

2
.

Combined with (3.11), it thus follows that for any x > 0, y0 > x and δ ∈ (0, 1) there exists
k0 ∈ N such that

Fk(y, x) − G(y, x) ≥ −
(π

2
+ δ

) 1

k
4
3

holds for k ≥ k0 and |y − y0| < y0 − x .
We now proceed by taking y0 = ι(x) and note that there exists k′

0 ∈ N such that |ιk(x) −
ι(x)| < ι(x) − x holds for k ≥ k′

0. Combined with (3.6), we then conclude that for given
δ ∈ (0, 1) we can find k0 ∈ N such that

Fk(ιk, x) − G(ι, x) = Fk(ιk, x) − G(ιk, x) + G(ιk, x) − G(ι, x)

≥ −
(π

2
+ δ

) 1

k
4
3

− max
ξ∈(ιk (x),ι(x))

dG

dy
(ξ, x)|ιk(x) − ι(x)|

≥ −
(π

2
+ δ

) 1

k
4
3

− 1

3
|ιk(x) − ι(x)|
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holds for k ≥ k0. It follows that

βk(x) = Fk(ιk, x) − G(ι, x)

ιk(x) − ι(x)
≤ 1

3
+
(π

2
+ δ

) 1

k
4
3

1

|ιk(x) − ι(x)|
and since |ιk(x) − ι(x)| = |uk(x)| ≥ ( π

4 − δ) 1k holds for sufficiently large k we therefore
have

βk(x) ≤ 1

3
+

π
2 + δ
π
4 − δ

1

k
1
3

.

Consequently, we may choose k0 such that

βk(x) ≤ 1

3
+ ε

holds for k ≥ k0. Overall, this yields

1 ≤ exp

(∫ x

0
βk(t) dt

)
≤ exp

((
1

3
+ ε

)
x

)

for k ≥ k0. Recalling (3.8) and

uk(x) = uk(0) exp

(∫ x

0
βk(t) dt

)
,

the claim thus follows.
��

Remark 3.4 Lemma 3.3 improves the bound obtained in [15, Theorem 2.1] as follows:
For any ε, ν > 0 there exists k0 ∈ N such that

jν,k < k ι
(ν

k

)
− (1 − ε)

π

4

holds for k ≥ k0.

4 Spectral characterization

For α > 1 recall the operator

Lα = −� + α2∂2θ .

If ϕ ∈ H1
0 (B) is an eigenfunction of−� corresponding to the eigenvalue j2�,k , then it follows

from the representation (2.1) that ϕ is also an eigenfunction of Lα with

Lαϕ = ( j2�,k − α2�2)ϕ.

Since the eigenfunctions of −� constitute an orthonormal basis of L2(B), we find that the
Dirichlet eigenvalues of Lα are given by{

j2�,k − α2�2 : � ∈ N0, k ∈ N
}
.

In the following, we wish to study this set in more detail. The following result already shows
a stark contrast to the case α ∈ [0, 1].
Proposition 4.1 Letα > 1. Then the spectrumof the operator Lα = −�+α2∂2θ is unbounded
from above and below.
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Proof For � ∈ N0, k ∈ N we write

j2�,k − α2�2 = ( j�,k + α�)�

(
j�,k
�

− α

)

and note that Corollary 2.2 implies

1 − α +
( 3π

8 (4k − 2)
) 2
3

2
1
3

�− 2
3 <

j�,k
�

− α < 1 − α +
( 3π

2 k
) 2
3

2
1
3

�− 2
3 + 3

20

(
3π

2
k

) 4
3 2

1
3

�
4
3

.

(4.1)

If we choose sequences (�i )i , (ki )i , such that
�i
ki

→ ∞, this readily implies j2�i ,ki − α2�2i →
−∞, whereas sequences such that �i

ki
→ 0 yield j2�i ,ki − α2�2i → ∞ and thus the claim. ��

In particular, this proves the first part of Theorem 1.1. As noted in the introduction, it is not
clearwhether the spectrumof Lα only consists of isolated points. Indeed, note that Lemma3.3
suggests that certain subsequences of j�,k − α� may converge and it is unclear if there exists
a subsequence that even converges to zero. In particular, the spectrum of the operator could
even be dense in R.

This is excluded by the second part of Theorem 1.1 which we restate as follows.

Theorem 4.2 There exists a sequence (αn)n ⊂ (1,∞) such that the following properties
hold for n ∈ N:

(i) The spectrum of Lαn consists of eigenvalues with finite multiplicity.
(ii) There exists cn > 0 such that for each � ∈ N0, k ∈ N we either have j2�,k − α2

n�
2 = 0 or

| j2�,k − α2
n�

2| ≥ cn j�,k . (4.2)

(iii) The spectrum of Lαn has no finite accumulation points.

Proof We set σn := 1
n and αn := ι(σn)

σn
, where the function ι is given by Theorem 3.1. It then

suffices to show that there exists n0 ∈ N such that properties (i)-(iii) hold for n ≥ n0. In
the following, we fix n ∈ N and assume that there exists � ∈ R and increasing sequences
(�i )i , (ki )i such that j2�i ,ki − α2

n�
2
i → � as i → ∞. Note that the case of an eigenvalue

with infinite multiplicity, i.e., j2�i ,ki − α2
n�

2
i = � for all i , is included here. The identity

j2�,k − α2
n�

2 = ( j�,k + αn�)�
(

j�,k
�

− αn

)
then implies that we must have

j�i ,ki
�i

→ αn . (4.3)

Our goal is to show that such sequences can only converge of order 1
li
, which will allow us

to derive a suitable contradiction.
Firstly, the estimate (4.1) implies that there must exist σ ∈ (0,∞) such that �i

ki
→ σ . We

now claim that for any ε > 0, there exists i0 ∈ N such that

(1 − ε)
jσki ,ki
σki

<
j�i ,ki
�i

< (1 + ε)
jσki ,ki
σki

for i ≥ i0. (4.4)

To this end, we first assume that �i < σki holds. Then Proposition 2.1(ii) implies

j�i ,ki
�i

>
jσki ,ki
σki
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50 Page 14 of 30 J. Kübler

and, in particular, the lower bound.Moreover, the fact that the function ν �→ jν,k is increasing
for fixed k yields

j�i ,ki
�i

≤ jσki ,ki
�i

= σki
�i

jσki ,ki
σki

.

Noting that σki
�i

→ 1 as i → ∞, we conclude that for any ε > 0, there exists i0 ∈ N such
that

j�i ,ki
�i

< (1 + ε)
jσki ,ki
σki

holds for i ≥ i0 with �i < σki . The case �i ≥ σki can be treated analogously.
Overall, (4.4) implies

(1 − ε)
ι(σ )

σ
≤ lim inf

n→∞
j�i ,ki
�i

≤ lim sup
n→∞

j�i ,ki
�i

≤ (1 + ε)
ι(σ )

σ
(4.5)

for arbitrary ε > 0, with the function ι given by Theorem 3.1. In particular, (4.3) then yields

ι(σ )

σ
= lim

i→∞
j�i ,ki
�i

= αn

and Lemma 3.2 thus implies that we must have σ = σn due to our choice of αn . In particular,
it follows that �i

ki
→ σn .

We now distinguish two cases:
Case 1 There exists i0 ∈ N such that �i

ki
≥ σn holds for i ≥ i0.

In this case, Proposition 2.1(ii) implies

j�i ,ki
�i

− αn ≤ jσnki ,ki
σnki

− αn = 1

σn

(
jσnki ,ki
ki

− ι(σn)

)
,

so that Lemma 3.3 yields

j�i ,ki
�i

− αn ≤ − π

8σnki

for i ≥ i0, after possibly enlarging i0. In particular, this implies

| j�i ,ki − αn�i | = �i

∣∣∣∣ j�i ,ki�i
− αn

∣∣∣∣ ≥ π�i

8σnki
≥ π

8

for i ≥ i0 and therefore lim inf i→∞ | j�,k − αn�i | ≥ π
8 .

Case 2 There exists i0 ∈ N such that �i
ki

< σn holds for i ≥ i0.

We may write �i = σnki − δi with δi > 0 satisfying δi
ki

→ 0 as i → ∞. Then

j�i ,ki − αn�i = j(σnki−δi ),ki − αn(σnki − δi )

= ( jσnki ,ki − αnσnki ) + ( j(σnki−δi ),ki − jσnki ,ki ) + αnδi

= ( jσnki ,ki − αnσnki ) + Rn,iδi ,

where we have set

Rn,i := αn − jσnki ,ki − jσnki−δi ,ki

δi
.

123
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By Lemma 3.3 we may further enlarge i0 to ensure that

jσnki ,ki − αnσnki ≥ −π

4
eσn/3

holds for i ≥ i0.
Next, Proposition 2.1(iv) gives

jσnki ,ki − jσnki−δi ,ki

δi
∈
(
1,

π

2

)

and hence

lim inf
i→∞ Rn,i ≥ αn − π

2
.

Since αn = ι(σn)
σn

→ ∞ as n → ∞ by Lemma 3.2, this term is positive for sufficiently large
n, and it therefore follows that

lim inf
i→∞ ( j�i ,ki − αn�i ) ≥ −π

4
eσn/3 +

(
αn − π

2

)
inf
i∈N δi .

In order to show that the right hand side is positive, we recall that σn = 1
n and therefore the

fact that �i = σnki − δi must be a natural number implies δi = n′
n for some n′ ∈ N and,

in particular, inf i δi = 1
n . Moreover, by Lemma 3.2 the associated αn = ι(σn)

σn
is uniquely

determined by the equation

πn = π

σn
=
√

α2
n − 1 −

(
π

2
− arcsin

1

αn

)
.

Since the right hand side is strictly increasing in αn and we have
√
n2 − 1 − (

π
2 − arcsin 1

n

)
n

=
√
1 − 1

n2
+ 1

n
arcsin

1

n
− π

2n
→ 1 < π

as n → ∞, there must exist n0 ∈ N such that αn > n holds for n ≥ n0. We thus have

−π

4
eσn/3 +

(
αn − π

2

)
inf
i

δi ≥ −π

4
eσn/3 + 1

n

(
n − π

2

)

= 1 − π

(
1

2n
+ e

1
3n

4

)
→ 1 − π

4
> 0

as n → ∞. We conclude that after possibly further enlarging n0,

κn := −π

4
eσn/3 +

(
αn − π

2

)
inf
i

δi > 0

holds for n ≥ n0.

Since we may always pass to a subsequence such that one of these two cases holds, we
overall find that

lim inf
i→∞ | j�,k − αn�i | ≥ min

{
κn,

π

4

}
> 0 (4.6)

for any sequences (�i )i , (ki )i such that �i
ki

→ σn = 1
n , provided n ≥ n0. In particular, it

follows that j2�,k − α2
n�

2 = ( j�,k − αn�)( j�,k + αn�) cannot converge to �, which implies (i)
and (iii).
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In order to complete the proof, we now consider an arbitrary pair of increasing sequences
(�i )i , (ki )i and distinguish different cases: If �i

ki
→ 0 or �i

ki
→ ∞, (4.1) implies

lim inf
i→∞ | j�i ,ki − αn�i | ≥ αn − 1 > 0.

If �i
ki

→ σn = 1
n , we find that (4.6) holds as shown above. In the remaining case, we may pass

to a subsequence such that �i
ki

→ σ ∗ for some σ ∗ > 0, σ ∗ �= σn . Repeating the arguments
used to obtain (4.4) and (4.5), it then easily follows that

lim
i→∞

j�i ,ki
�i

= ι(σ ∗)
σ ∗ �= αn

and therefore

lim inf
i→∞ | j�i ,ki − αn�i | ≥ lim inf

i→∞ �i

∣∣∣∣ j�i ,ki�i
− αn

∣∣∣∣ = ∞.

Overall, this implies

γn := lim
N→∞ inf

�,k≥N
| j�,k − αn�| > 0

for n ≥ n0. Consequently, taking N0 ∈ N such that inf�,k≥N | j�,k − αn�| >
γn
2 holds for

N ≥ N0 and setting

cn := min

⎧⎨
⎩

γn

2
, inf

�,k≤N0
j�,k �=αn�

| j�,k − αn�|
⎫⎬
⎭ > 0

yields

| j2�,k − α2
n�

2| = | j�,k − αn�|| j�,k + αn�| ≥ cn j�,k

as claimed in (ii). This completes the proof. ��
Remark 4.3 (i) The sequence (αn)n can be characterized further by noting that

πn =
√

α2
n − 1 −

(
π

2
− arcsin

1

αn

)

implies

α2
n = 1 +

(
πn + π

2
− arcsin

1

αn

)2

.

Since arcsin 1
αn

= O(n−2), this implies

α2
n ≈ 1 +

(
πn + π

2

)2
.

(ii) The methods used above can be further extended to include some additional values of α.
If we let σ = m

n with m, n ∈ N, we find that inf i δi = 1
n and similar arguments as above

then lead to the condition

0 <

√
1

n2
+ π2

m2 − π

(
1

2n
+ e

m
3n

4

)
.

As n → ∞, we find that this holds for m = 1, 2, 3.
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Moreover, we note that numerical computations imply that the result should also hold
for σ = 1, 2, 3.

5 Variational characterization of ground states

We now return to solutions of (1.4). Setting

Lα,m := −� + α2∂2θ + m

for α > 1, m ∈ R, our first goal is to find a suitable domain for the quadratic form

u �→ 〈Lα,mu, u〉L2(B) =
∫
B
(Lα,mu)u dx =

∫
B

(|∇u|2 − α2|∂θu|2 + mu2
)
dx .

In order to simplify the notation, we set

I+
α,m := {

(�, k) ∈ N0 × N : j2�,k − α2�2 + m > 0
}

I0
α,m := {

(�, k) ∈ N0 × N : j2�,k − α2�2 + m = 0
}

I−
α,m := {

(�, k) ∈ N0 × N : j2�,k − α2�2 + m < 0
}

for α > 1,m ∈ R, i.e., the index sets of positive, zero and negative eigenvalues, respectively.
Instead of restricting ourselves to the sequence (αn)n given by Theorem 1.1, we consider

A :=
{

α > 1 : |I0
α,0| < ∞ and min

(�,k)/∈I0
α,0

| j�,k − α�| > 0

}
.

In particular, A contains the sequence (αn)n and is therefore nonempty and unbounded.
Moreover, writing j2�,k − α2�2 = ( j�,k + α�)( j�,k − α�) we find that for any α ∈ A there
exists cα > 0 such that

| j2�,k − α2�2| ≥ cα j�,k

holds for (�, k) /∈ I0
α,0.

Lemma 5.1 Let α ∈ A and m ∈ R. Then I0
α,m is finite and there exists cm > 0 such that any

(�, k) /∈ I0
α,m satisfy

| j2�,k − α2�2 + m| ≥ cm j�,k .

In particular, the spectrum of Lα,m has no finite accumulation points.

Proof Let cα > 0 be given as above. We first note that

| j2�,k − α2�2 + m| = ( j�,k + α�)

∣∣∣∣ j�,k − α� + m

j�,k + α�

∣∣∣∣ ,
so the fact that I0

α,0 is finite by assumption implies that I0
α,m is finite as well. Moreover, there

exist �0, k0 ∈ N such that

| j2�,k − α2
n�

2 + m| ≥ ( j�,k + α�)
cα

2
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holds for all (�, k) /∈ I0
α,m with � ≥ �0, k ≥ k0. Setting

cm := min

⎧⎪⎨
⎪⎩
cα

2
, min
(�,k)/∈I0

α,m
�≤�0,k≤k0

∣∣∣∣ j�,k − α� + m

j�,k + α�

∣∣∣∣
⎫⎪⎬
⎪⎭ > 0

then completes the proof. ��
Next, we recall the eigenfunctions ϕ�,k, ψ�,k given in (2.1) and set

Eα,m :=
{
u ∈ L2(B) :

∞∑
�=0

∞∑
k=1

∣∣ j2�,k − α2�2 + m
∣∣ (|〈u, ϕ�,k〉|2 + |〈u, ψ�,k〉|2

)
< ∞

}

for α ∈ A, m ∈ R and endow Eα,m with the scalar product

〈u, v〉α,m :=
∞∑

�=0

∞∑
k=1

∣∣ j2�,k − α2�2 + m
∣∣ (〈u, ϕ�,k〉〈v, ϕ�,k〉 + 〈u, ψ�,k〉〈v,ψ�,k〉

)

+
∑

(�,k)∈I0
α,m

(〈u, ϕ�,k〉〈v, ϕ�,k〉 + 〈u, ψ�,k〉〈v,ψ�,k〉
)
.

In the following, ‖ · ‖α,m denotes the norm induced by 〈·, ·〉α,m .

Remark 5.2 For fixed α ∈ A, the norm ‖ · ‖α,m is equivalent to ‖ · ‖α,0 and Eα,m = Eα,0, i.e.,
the spaces are equal as sets. Nonetheless, the use of an m-dependent scalar product is useful
for the variational methods we will employ below.

We now consider the following decomposition associated to the eigenspaces of positive, zero
and negative eigenvalues of Lα,m , respectively:

E+
α,m :=

{
u ∈ Eα,m :

∫
B
u ϕ�,k dx =

∫
B
u ψ�,k dx = 0 for (�, k) ∈ I0

α,m ∪ I−
α,m

}

E0
α,m :=

{
u ∈ Eα,m :

∫
B
u ϕ�,k dx =

∫
B
u ψ�,k dx = 0 for (�, k) ∈ I+

α,m ∪ I−
α,m

}

E−
α,m :=

{
u ∈ Eα,m :

∫
B
u ϕ�,k dx =

∫
B
u ψ�,k dx = 0 for (�, k) ∈ I+

α,m ∪ I0
α,m

}

so that, in particular,

Eα,m = E+
α,m ⊕ E0

α,m ⊕ E−
α,m = E+

α,m ⊕ Fα,m,

where we have set Fα,m := E0
α,m ⊕ E−

α,m . In the following, we will routinely write

u = u+ + u0 + u−

where u+ ∈ E+
α,m , u

0 ∈ E0
α,m , u

− ∈ E−
α,m are uniquely determined. The use of the norm

‖ · ‖α,m allows us to write

〈Lα,mu, u〉L2(B) =
∫
B

(|∇u|2 − α2|∂θu|2 + mu2
)
dx = ‖u+‖2α,m − ‖u−‖2α,m .

Importantly, Eα,m has the following embedding properties:
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Proposition 5.3 Let p ∈ (2, 4), α ∈ A and m ∈ R. Then Eα,m ⊂ L p(B) and the embedding

Eα,m ↪→ L p(B)

is compact.

Proof Because of the compact embedding H
1
2 (B) ↪→ L p(B) it is enough to show that the

embedding

Eα,m ↪→ H
1
2 (B)

iswell-defined and continuous.Wefirst note that it suffices to consider u ∈ E+
α,m⊕E−

α,m , since
the space E0

α,m is finite–dimensional and only contains smooth functions. By Lemma 5.1,
there exists c > 0 such that

| j2�,k − α2�2 + m| ≥ cj�,k

holds for (�, k) /∈ I0
α,m . This implies

‖u‖2
H

1
2

=
∞∑

�=0

∞∑
k=1

j�,k
(|〈u, ϕ�,k〉|2 + |〈u, ψ�,k〉|2

)

≤ 1

c

∞∑
�=0

∞∑
k=1

| j2�,k − α2�2 + m| (|〈u, ϕ�,k〉|2 + |〈u, ψ�,k〉|2
)

= 1

c
‖u‖2α,m

and thus the claim. ��
Remark 5.4 It is natural to ask for the optimal q > 2 such that the preceding proposition
holds for p ∈ (2, q). We conjecture that q = 10 due to two observations:

Firstly, q = 10 appears in the degenerate elliptic case α = 1 treated in [19] as the critical
exponent for Sobolev-type embeddings for the associated degenerate operator. Secondly, this
exponent also appears in a Pohožaev-type identity in [22] with respect to related semilinear
problems involving the Tricomi operator.

In particular, the map

Ip : Eα,m → R, Ip(u) := 1

p

∫
B

|u|p dx = 1

p
‖u‖p

p

iswell-defined and continuous for p ∈ (2, 4).We note the following properties corresponding
to the conditions of Theorem 35 in [36].

Lemma 5.5 Let α ∈ A, m ∈ R and p ∈ (2, 4). Then the following properties hold:

(i) 1
2 I

′
p(u)u > Ip(u) > 0 for all u �≡ 0 and Ip is weakly lower semicontinuous.

(ii) I ′
p(u) = o(‖u‖α,m) as u → 0.

(iii) Ip(su)

s2
→ ∞ uniformly in u on weakly compact subsets of Eα,m \ {0} as s → ∞.

(iv) I ′
p is a compact map.

Proof The properties (i),(ii) and (iv) follow from routine computations and Proposition 5.3,
while (iii) has essentially been proved in [36, Theorem 16], though we can give a slightly
simpler argument in this case:
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Let W ⊂ Eα,m \ {0} be a weakly compact subset. We claim that there exists c > 0 such
that ‖u‖p ≥ c holds for u ∈ W . Indeed, if this was false, there would exist a sequence
(un)n ⊂ W such that un → 0 in L p(B). The weak compactness of W and Proposition 5.3
would then imply un⇀0, contradicting the fact that 0 /∈ W . We thus have

Ip(su)

s2
= s p−2

p
‖u‖p

p ≥ cp

p
s p−2

and clearly the right hand side goes to infinity uniformly as s → ∞. ��
In the following, we always assume that p ∈ (2, 4) is fixed and consider the energy functional
	α,m : Eα,m → R given by

	α,m(u) := 1

2
‖u+‖2α,m − 1

2
‖u−‖α,m − Ip(u)

= 1

2

∫
B

(|∇u|2 − α2|∂θu|2 + mu2
)
dx − 1

p

∫
B

|u|p dx .

In particular, any critical point u ∈ Eα,m of 	α,m satisfies∫
B

|u|p−2u ϕ dx = 〈u+, ϕ〉α,m − 〈u−, ϕ〉α,m =
∫
B
u Lα,mϕ dx

and can thus be interpreted as a weak solution of (1.4). As outlined in the introduction, we
will now characterize ground states of	α,m by considering the generalized Nehari manifold

Nα,m := {
u ∈ Eα,m \ Fα,m : 	′

α,m(u)u = 0 and 	′
α,m(u)v = 0 for all v ∈ Fα,m

}
.

In particular, Nα,m contains all nontrivial critical points of 	. Consequently, the value

cα,m := inf
u∈Nα,m

	α,m(u)

is the ground state energy in the sense that any critical point u ∈ Eα,m \ {0} of 	α,m satisfies
	α,m(u) ≥ cα,m . This motivates the following definition.

Definition 5.6 Let α ∈ A, m ∈ R and p ∈ (2, 4). We call a function u ∈ Eα,m a ground
state solution of (1.4), if u is a critical point of 	α,m and satisfies 	α,m(u) = cα,m .

In order to show that ground state solutions exist, we wish to verify that 	α,m satisfies
condition (B2) from [36]. To this end, we let u ∈ Eα,m \ Fα,m and consider

Êα,m(u) := {tu + w : t ≥ 0, w ∈ Fα,m} = R
+u ⊕ Fα,m .

Importantly, u ∈ Nα,m if and only if u is a critical point of 	α,m
∣∣
Êα,m (u)

. Moreover, we have

Êα,m(u) = Êα,m(tu+) for all t ≥ 0, u ∈ Eα,m \ Fα,m , hence when considering Êα,m(u) we
may always assume u ∈ E+

α,m . This will be useful in the following.

Lemma 5.7 For each u ∈ Eα,m \ Fα,m there exists a unique nontrivial critical point m̂(u) of
	α,m

∣∣
Êα,m

. Moreover, m̂(u) is the unique global maximum of 	α,m
∣∣
Êα,m

.

Proof The following argument is essentially taken from [36, Proposition 39]. Without loss
of generality we may assume u ∈ E+

α,m and ‖u‖α,m = 1.
Claim 1: There exists R > 0 such that	α,m(v) ≤ 0 holds for v ∈ Êα,m and ‖v‖α,m ≥ R.

Indeed, if this was false there would exist a sequence (vn)n ⊂ Êα,m(u) such that ‖vn‖α,m →
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∞ and 	α,m(vn) > 0. Setting wn := vn‖vn‖α,m
we may pass to a weakly convergent subse-

quence and note that

0 <
	α,m(vn)

‖vn‖2α,m
= 1

2
‖w+

n ‖2α,m − 1

2
‖w−

n ‖2α,m − 1

p

∥∥‖vn‖α,mwn
∥∥p
p

‖vn‖2α,m

≤ ‖wn‖2α,m − I (|‖vn‖α,mwn)

‖vn‖2α,m

so that Lemma 5.5(iii) implies 0 <
	α,m (vn)

‖vn‖2α,m
→ −∞ if the weak limit is nonzero. Hence

we must have wn⇀0. Moreover, the inequality above also implies ‖w+
n ‖α,m ≥ ‖w−

n ‖α,m . If
w+
n → 0, the latter also implies w−

n → 0 and therefore

‖w0
n‖2α,m = 1 − ‖w+

n ‖α,m − ‖w−
n ‖2α,m → 1.

The fact that E0
α,m is finite-dimensional then implies thatw0

n converges to a nontrivial function,
which contradicts wn⇀0. Hence w+

n cannot converge to zero and we may therefore pass to
a subsequence such that ‖w+

n ‖α,m ≥ γ holds from some γ > 0 and all n. However, by
definition of Êα,m(u) we must have w+

n = u‖w+
n ‖α,m and therefore there exists c > 0 such

thatw+
n → cu holds after passing to a subsequence, contradictingwn⇀0. This proves Claim

1.
Next, we note that Lemma 5.5 yields 	α,m(tu) = t2

2 + o(t2) as t → 0 and therefore

sup
Êα,m (u)

	α,m > 0.

NowClaim 1 implies that any maximizing sequence (vn)n ⊂ Êα,m(u)must remain bounded,
so we may assume vn⇀v after passing to a subsequence. Moreover, recalling that

	α,m(vn) = ‖v+
n ‖2α,m

2
− ‖v−

n ‖2α,m

2
− Ip(vn),

we can use that v+
n is a multiple of u, while the norm ‖ · ‖α,m and Ip are weakly lower

semicontinuous on Eα,m , making 	α,m weakly upper semicontinuous on Êα,m(u). It thus
follows that supÊα,m (u) 	α,m is attained by a critical point u0 of 	α,m

∣∣
Êα,m (u)

. Noting that

supt≥0 	α,m(tu) > 0 since u ∈ E+
α,m , it follows that u0 ∈ Nα,m .

It remains to prove that this is the only critical point of 	α,m
∣∣
Êα,m (u)

. To this end, we let

w ∈ Eα,m such that u0 + w ∈ Êα,m(u). Since Êα,m(u) = Êα,m(u0), there exists s ≥ −1
such that u0 + w = (1 + s)u0 + v for some v ∈ Fα,m . Setting

B(v1, v2) :=
∫
B

(∇v1 · ∇v2 − α2(∂θv1)(∂θv2) + mv1v2
)
dx

= 〈v+
1 , v+

2 〉α,m − 〈v−
1 , v−

2 〉α,m

we then have

	α,m(u0 + w) − 	α,m(u0) = 1

2
(B((1 + s)u0 + v, (1 + s)u0 + v) − B(u0, u0))

− Ip((1 + s)u0 + v) + Ip(u0)

= −‖v−‖2α,m

2
+ B

(
u0, s

( s
2

− 1
)
u0 + (1 + s)v

)

− Ip((1 + s)u0 + v) + Ip(u0),
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where the fact that 	′
α,m(u0)(·) = B(u0, ·) − I ′

p(u0)(·) = 0 then implies

B
(
u0, s

( s
2

− 1
)
u0 + (1 + s)v

)
− Ip((1 + s)u0 + v) + Ip(u0)

= I ′
p(u0)

(
s
( s
2

− 1
)
u0 + (1 + s)v

)
− Ip((1 + s)u0 + v) + Ip(u0)

=
∫
B

(
|u0|p−2u0

(
s
( s
2

− 1
)
u0 + (1 + s)v

)
− 1

p
|(1 + s)u0 + v|p + 1

p
|u0|p

)
dx

< 0

by [35, Lemma 2.2]. ��
We can then give the following existence result.

Proposition 5.8 Let α ∈ A, m ∈ R and p ∈ (2, 4). Then cα,m is positive and attained by a
critical point of 	α,m. In particular, (1.4) thus has a ground state solution.

Moreover,

cα,m = inf
w∈Eα,m\Fα,m

max
w∈Êα,m (u)

	α,m(w)

holds.

Proof Note that Lemma 5.5 and Lemma 5.7 imply that 	α,m satisfies the conditions of [36,
Theorem 35]. ��
In particular, this implies Theorem 1.2(i). Notably, this minimax characterization of cα,m will
allow us to compare the ground state energy to the minimal energy among radial solutions,
which we estimate in the following.

Lemma 5.9 Let p > 2 and m > −λ1, where λ1 > 0 denotes the first Dirichlet eigenvalue of
−� on B. Then there exists a unique positive radial solution um ∈ H1

0,rad(B) of (1.4), i.e.,
satisfying {

−�u + mu = |u|p−2u in B

u = 0 on ∂B.

Moreover, there exists c > 0 such that

βrad
m := 	α,m(um) ≥ cm

2
p−2

holds for all α > 1 and m ≥ 0.

Proof We consider the functional

Jm : H1
0,rad(B) → R

Jm(u) := 1

2

∫
B

(|∇u|2 + mu2
)
dx − 1

p

∫
B

|u|p dx

which satisfies Jm(u) = 	α,m(u) for every u ∈ H1
0,rad(B) and α > 1. We then consider the

classical Nehari manifold

N rad
m := {

u ∈ H1
0,rad(B) \ {0} : J ′

m(u)u = 0
}
.
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Clearly, any nontrivial radial critical point u of 	α,m is contained in N rad
m . Moreover, the

map

(0,∞) → R, t �→ Jm(tu)

attains a unique maximum tu > 0 for each u ∈ H1
0,rad(B) \ {0} and simple computations

yield

Jm(tuu) = sup
t≥0

Jm(tu) =
(
1

2
− 1

p

)⎛
⎝
∫
B

(|∇u|2 + mu2
)
dx(∫

B |u|p dx) 2
p

⎞
⎠

p
p−2

and tu is the unique value t > 0 such that tu ∈ Nm . It can be shown that

βrad
m := inf

u∈N rad
m

Jm(u)

is a critical value of Jm , see e.g. [36]. Moreover, the principle of symmetric criticality (see
e.g. [30]) shows that βrad

m is in fact a critical value of 	α,m and attained by a unique positive
radial function um . We note that the uniqueness of um is a classical result due to McLeod and
Serrin [25], Kwong [20], and Kwong and Li [21] (see also references in [12]). This proves
the first part of the lemma.

Next, we note that the characterization above gives

βrad
m = inf

u∈H1
0,rad (B)\{0}

sup
t≥0

Jm(tu)

= inf
u∈H1

0,rad (B)\{0}

(
1

2
− 1

p

)⎛
⎝
∫
B

(|∇u|2 + mu2
)
dx(∫

B |u|p dx) 2
p

⎞
⎠

p
p−2

.

(5.1)

In the following, we assume m > 0 and let B√
m denote the ball of radius

√
m centered at

the origin. We then consider the function vm ∈ H1
0 (B√

m) given by

vm(x) = m− 1
p−2 um

(
x√
m

)
.

Then
∫
B

(|∇um |2 + mu2m
)
dx(∫

B |u2m |p dx) 2
p

= m
2
p

∫
B√

m

(|∇vm |2 + v2m
)
dx

(∫
B√

m
|vm |p dx

) 2
p

≥ m
2
p inf

v∈H1(RN )\{0}

∫
RN

(|∇v|2 + v2
)
dx(∫

RN |v|p dx) 2
p

.

Setting

Cp := inf
v∈H1(RN )\{0}

∫
RN

(|∇v|2 + v2
)
dx(∫

RN |v|p dx) 2
p

> 0

we thus have ∫
B

(|∇um |2 + mu2m
)
dx(∫

B |um |p dx) 2
p

≥ Cpm
2
p .
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Therefore (5.1) implies

βrad
m ≥

(
1

2
− 1

p

)(
Cpm

2
p

) p
p−2

and hence the claim. ��
We will compare the previous estimate for the radial energy with suitable estimates for cα,m ,
starting with the following result.

Lemma 5.10 Let p ∈ (2, 4) and α ∈ A. Then

cα,m ≤
(
1

2
− 1

p

)
|B| inf

(�,k)∈I+
α,m

(
j2�,k − α2�2 + m

) p
p−2

holds for m ∈ R.

Proof By Lemma 5.1, there exist �0, k0 ∈ N such that(
j2�0,k0 − α2�20 + m

) = inf
(�,k)∈I+

α,m

(
j2�,k − α2�2 + m

)

and we set

u0 := ϕ�0,k0 ∈ E+
α,m .

For any t ≥ 0 and v ∈ Fα,m it then holds that
∫
B u0v dx = 0 and therefore

‖tu0 + v‖p
p ≥ |B|1− p

2 ‖tu0 + v‖p
2 = |B|1− p

2
(‖tu0‖22 + ‖v‖22

) p
2

≥ t p|B|1− p
2 ‖u0‖p

2 = t p|B|1− p
2 .

This yields

	α,m(tu0 + v) ≤ t2

2

(
j2�0,k0 − α2�20 + m

) − 1

p
‖tu0 + v‖p

p

≤ t2

2

(
j2�0,k0 − α2�20 + m

) − t p

p
|B|1− p

2 .

A straightforward computation shows that the right hand side attains a unique global maxi-
mum in

t∗ = (
j2�0,k0 − α2�20 + m

) 1
p−2 |B| 12

and therefore

	α,m(tu0 + v) ≤
(
1

2
− 1

p

)
|B| ( j2�0,k0 − α2�20 + m

) p
p−2 .

In particular, this gives

max
w∈Êα,m (u0)

	α,m(w) ≤
(
1

2
− 1

p

)
|B| ( j2�0,k0 − α2�20 + m

) p
p−2

and Proposition 5.8 then finally implies

cα,m = inf
w∈Eα,m\Fα,m

max
w∈Êα,m (u)

	α,m(w) ≤
(
1

2
− 1

p

)
|B| ( j2�0,k0 − α2�20 + m

) p
p−2

as claimed. ��
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The previous results allow us to deduce the existence of nonradial ground states whenever
(
1

2
− 1

p

)
|B| inf

(�,k)∈I+
α,m

(
j2�,k − α2�2 + m

) p
p−2 < βrad

m

holds. To this end, we estimate the growth of the left hand side as m → ∞.

Proposition 5.11 Let α ∈ A. Then there exist constants C > 0, m0 > 0 such that

inf
(�,k)∈I+

α,m

(
j2�,k − α2�2 + m

) ≤ Cm
1
2

holds for m > m0.

Proof By Proposition 2.1 we have

� + |a1|
2

1
3

�
1
3 < j�,1 < � + |a1|

2
1
3

�
1
3 + 3

20
|a1|2 2

1
3

�
1
3

, (5.2)

where a1 denotes the first negative zero of the Airy function Ai(x). In particular, noting that

j2�,1 − α2�2 = ( j�,1 + α�)( j�,1 − α�) and j�,1 − α� < (1 − α)� + |a1|
2
1
3

�
1
3 + 3

20 |a1|2 2
1
3

�
1
3
we

find that there exists �0 ∈ N such that the map

� �→ j2�,1 − α2�2

is strictly decreasing for � ≥ �0.
Taking m0 > α2�20 − j2�0,1 we thus find that for any m > m0 there exists � ≥ �0 such that

m ∈ (
α2�2 − j2�,1, α

2(� + 1)2 − j2�+1,1

]
.

In the following, we fix such m and � and note that since j�,1 < j�+1,1, we have

0 < j2�,1 − α2�2 − ( j2�+1,1 − α2(� + 1)2) = j2�,1 − j2�+1,1 + α2 ((� + 1)2 − �2
)

≤ 2α2� + α2

for � ≥ �0, and therefore

0 < j2�,1 − α2�2 + m ≤ 2α2� + α2.

Importantly, (5.2) implies that there exists C = C(α) > 0 independent of m such that

2α2� + α2 ≤ C
(
α2�2 − j2�,1

) 1
2

holds for � ≥ �0, after possibly enlarging �0. Ultimately, we thus find that

0 < j2�,1 − α2�2 + m ≤ C
(
α2�2 − j2�,1

) 1
2 ≤ Cm

1
2

holds. Since C was independent of m, this completes the proof. ��
Theorem 1.2(ii) is now a direct consequence of the following more general result.

Theorem 5.12 Let α ∈ A and p ∈ (2, 4) be fixed. Then there exists m0 > 0 such that the
ground states of (1.4) are nonradial for m > m0.
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Proof Lemma 5.10 and Proposition 5.11 imply that there exist C > 0, m0 > 0 such that

cα,m ≤
(
1

2
− 1

p

)
|B|Cm

p
2(p−2)

holds for m > m0. On the other hand, Lemma 5.9 gives

βrad
m ≥ cm

2
p−2

with a constant c > 0 independent ofm. Noting that the assumption p < 4 implies p
2(p−2) <

2
p−2 , it follows that

cα,m < βrad
m

holds for m > m0, after possibly enlarging m0. ��
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Appendix A: Complex-valued solutions

Throughout this section we consider complex-valued function spaces and assume that p > 2
is fixed. In this case, the eigenspaces

Vk := {
u ∈ H1

0 (B,C) : ∂θu = iku
}

are nonempty for k ∈ N. This observation can be used to find complex-valued solutions of
(1.4) as stated in the following.

Theorem A.1 Let α > 1, m > 0 and k ∈ N be chosen such that

m − α2k2 > −λ1, (A.1)

where λ1 > 0 denotes the first Dirichlet eigenvalue of −� on B. Then there exists a weak
solution u ∈ Vk of (1.4). In particular, this solution is nonradial.

We point out that the solutions found in the preceding theorem cannot be real-valued and are
thus distinct from the solutions found in Theorem 1.2.

Proof Inspired by [37], the proof is based on a constrained minimization argument for the
functional

Jα,m : H1
0 (B,C) → R,

Jα,m(u) := 1

2

∫
|∇u|2 − α2|∂θu|2 + mu2 dx .
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Importantly, for u ∈ Vk we have

Jα,m(u) = 1

2

∫
|∇u|2 + (m − α2k2)u2 dx

and our goal is to minimize Jα,m on Vk subject to the constraint

I (u) := ‖u‖p
p = 1.

To this end, we let (un)n ⊂ Vk be a constrained minimizing sequence, i.e., I (un) = 1 for all
n and

lim
n→∞ Jα,m(un) = min

u∈Vk
I (u)=1

Jα,m(u).

Note that Vk is a closed subspace of H1
0 (B,C) and, by assumption, there exist c,C > 0 such

that

c‖u‖2
H1
0 (B)

≤ Jα,m(u) ≤ C‖u‖2H1(B)

holds for u ∈ Vk , which implies that the sequence (un)n remains bounded in H1
0 (B,C)

and we may pass to a weakly convergent subsequence with a weak limit u0 ∈ Vk . The
compact embedding H1

0 (B,C) ↪→ L p(B,C) then implies I (u0) = 1 whereas weak lower
semicontinuity yields Jα,m(u0) ≤ lim inf Jα,m(un), i.e., u0 is a minimizer of Jα,m subject to
the constraint I (u0) = 1.

The minimization property then implies that there exists a Lagrange multiplier K0 ∈ R

such that ∫
∇u0 · ∇ϕ + (m − α2k2)u0ϕ dx = K0

∫
|u0|p−2u0ϕ dx (A.2)

holds for ϕ ∈ Vk . Taking ϕ = u0, the condition (A.1) then implies that K0 must be positive.
We now set

E : H1
0 (B,C) → R, E(u) := Jα,m(u) − K0 I (u),

so that, in particular, u0 is a nontrivial critical point of E
∣∣
Vk
.

For t ∈ R we then consider the action

gt : H1
0 (B,C) → H1

0 (B,C), [gtu](x) = e−ikt u(Rt (x)),

where Rt was defined in (1.3). Note that gt is an isometry on H1
0 (B,C) and L p(B) so that

E is invariant with respect to gt . Moreover, this defines a group action on H1
0 (B,C) and we

have

Vk = {u ∈ H1
0 (B,C) : gtu = u}.

The principle of symmetric criticality (see e.g. [30]) then implies that u0 is also a critical
point of E on H1

0 (B,C) or, equivalently, (A.2) holds for all ϕ ∈ H1
0 (B,C). But this means

that K
1

p−2
0 u0 is a weak solution of (1.4). ��

By construction, the solutions found above are contained in the eigenspaces of the operator
∂θ , i.e., for any such solution u there exists k ∈ N such that u ∈ Vk and therefore ∂θu = iku.
However, this implies that |u| is radial.

In the following, we briefly sketch how our methods can be used to find complex-valued
solutions u of (1.1) (which are not real-valued) such that the modulus |u| is also nonradial.
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To this end, we combine the ansatz (1.2) for rotating solutions with a standing wave ansatz,
i.e.,

v(t, x) = eiμt u(Rt (x))

with Rt given by (1.3) and μ > 0. This reduces (1.1) to the modified problem{
−�u + α2∂2θ u + 2iμ∂θu + (m − μ2)u = |u|p−2u in B

u = 0 on ∂B.
(A.3)

Here, the eigenvalues of the operator

Lα,m,μu := −�u + α2∂2θ u + 2iμ∂θu + (m − μ2)u

are given by

j2�,k − α2�2 ± 2μ� + (m − μ2)

and the associated eigenfunctions are given by

ϕ±
�,k(r , θ) := e±i�θ J�( j�,kr), � ∈ N0, k ∈ N.

This readily implies the following analogue to Lemma 5.1:

Lemma A.2 Let the sequence (αn)n ⊂ (1,∞) be given by Theorem 4.2. Then for any n ∈ N

and m ≥ 0 there exist cn,m, μn > 0 with the following property:
If |μ| ≤ μn and �, k are such that j2�,k − α2�2 − 2μ� + (m − μ2) �= 0 holds, we have

| j2�,k − α2�2 ± 2μ� + (m − μ2)| ≥ cn,m j�,k .

Proof Note that

j2�,k − α2�2 ± 2μ� = ( j�,k + α�)

(
j�,k − α� ± 2μ�

j�,k + α�

)

and for α = αn Theorem 4.2 then implies∣∣∣∣ j�,k − αn� ± 2μ�

j�,k + αn�

∣∣∣∣ ≥ cn − μ
2l

j�,k + αn�
≥ cn − 2μ

1 + αn

for sufficiently large �, k. Setting

μn := 1 + αn

2
cn,

we thus find that

lim
N→∞ inf

�,k≥N

∣∣∣∣ j�,k − αn� ± 2μ�

j�,k + αn�

∣∣∣∣ > 0

for μ < μn . ��
Repeating the arguments of Sect. 5 ultimately gives the following result:

Theorem A.3 Let p ∈ (2, 4). Then there exists a sequence (αn)n ⊂ (1,∞)with the following
properties:

(i) For each n ∈ N the problem (A.3) has a ground state solution.
(ii) For each n ∈ N there exists mn > 0 such that any ground state u (A.3) with α = αn and

m > mn has a nonradial modulus, i.e., |u| is nonradial.
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