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Abstract
We study weak quasi-plurisubharmonic solutions to the Dirichlet problem for the com-
plex Monge–Ampère equation on a general Hermitian manifold with non-empty boundary.
We prove optimal subsolution theorems: for bounded and Hölder continuous quasi-
plurisubharmonic functions. The continuity of the solution is proved for measures that are
well dominated by capacity, for example measures with L p , p > 1 densities, or moderate
measures in the sense of Dinh–Nguyen–Sibony.

1 Introduction

Background. The complex Monge–Ampère equation in a strictly pseudoconvex bounded
domain has been extensively studied since 1970’s. Bedford and Taylor [1] proved the fun-
damental result on the existence of (weak) continuous plurisubharmonic solutions to the
Dirichlet problem with continuous datum. The classical solutions were obtained later by
Caffarelli et al. [8] for the smooth boundary condition and smooth positive right hand side.
The comprehensive book [27] contains results, theirs applications and references for both the
Dirichlet problem and the Monge–Ampère equation on compact Kähler manifolds without
boundary.

On the other hand, it was discovered independently by Semmes [45] and Donaldson [20]
that the geodesic equation in the space of Kähler potentials on a compact Kähler manifold
is equivalent to the homogeneous Monge–Ampère equation on a compact Kähler manifold
with boundary, the product of the Kähler manifold and an annulus in the complex plane.
In general the solution is at most C1,1-smooth, due to an example of Gamelin and Sibony
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[21]. Thus it leads to the study of weak solutions to the equation. The (unique) weak C1,1̄-
solution was obtained by Chen [12] (with a complement in [5]) via a sequence of solutions to
non degenerate equations—the so called ε-geodesic equations. To solve the non-degenerate
Monge–Ampère equation without pseudoconvexity assumption on the boundary one needs
to use ideas from Guan’s [22]. We refer to the expository paper of Boucksom [7] for more
detailed discussion of those developments.

Guan and Li [23] generalized the smooth subsolution theorem in [22] and [5] to the Her-
mitian setting. This work occurred amid renewed interest in the complex Monge–Ampère
equation on Hermitian manifolds which has been studied earlier by Cherrier [13]. It culmi-
nated in the resolution of the Monge–Ampère equation on compact Hermitian manifolds by
Tosatti and Weinkove [47]. Weak solutions theory have been developed in [18, 35–37, 39,
40], and recent advances for semi-positive Hermitian forms have been made in [24, 25].

Our goal is to study weak solutions to the Dirichlet problem on a smooth compact Her-
mitian manifold with non-empty boundary. We consider here very general right hand sides,
which are positive Radonmeasures well dominated by capacity considered in [31, 32]. Notice
the Käher case is included as a special one, not yet available in the literature.

Results. Let (M, ω) be a C∞ smooth compact Hermitian manifold of dimension n and
with non-empty boundary ∂ M . Thus M = M ∪ ∂ M . Let μ be a positive Radon measure
on M . Let us denote by P SH(M, ω) the set of all ω-plurisubharmonic (ω-psh for short)
functions on M . Consider ϕ ∈ C0(∂ M, R). We study the Dirichlet problem

⎧
⎪⎨

⎪⎩

u ∈ P SH(M, ω) ∩ L∞(M),

(ω + ddcu)n = μ,

limz→x u(z) = ϕ(x) ∀x ∈ ∂ M .

(1.1)

Since there is no convexity condition on the boundary, to solve the Dirichlet problem a
necessary condition is the existence of a subsolution.

Definition 1.1 (Subsolution) Let u ∈ P SH(M, ω) ∩ L∞(M) be such that

lim
z→x

u(z) = ϕ(x) for every x ∈ ∂ M .

(a) It is called a bounded subsolution for the measure μ if it satisfies:

(ω + ddcu)n ≥ μ on M .

(b) If a bounded subsolution is also continuous (resp. Hölder continuous) on M , then we call
it a continuous subsolution (resp. Hölder continuous subsolution) to μ.

Theorem 1.2 Suppose that there exists a bounded subsolution u ∈ P SH(M, ω) ∩ L∞(M)

for μ. Then, the Dirichlet problem (1.1) has a solution.

This result is a generalization of the bounded subsolution theorem in a bounded strictly
pseudoconvex domain due to the first author [29]. Furthermore, it can be considered as the
weak solution version of [5, 7, 22]. Note however that our proof does not use those smooth
solutions as approximants of the weak solution. For a Hermitian formω one needs to improve
the stability estimates in [29, 32] and apply them to get the statement.

Next we turn to the study of the continuity of solutions if we further assume that the right
hand side is also well dominated by capacity, as in the first author’s [31].

Recall the Bedford–Taylor capacity defined in our context as follows. For a Borel subset
E ⊂ M ,

capω(E) := sup

{∫

E
(ω + ddcw)n : w ∈ P SH(M, ω), 0 ≤ w ≤ 1

}

.
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Let h : R+ → (0,∞) be an increasing function such that
∫ ∞

1

1

x[h(x)] 1
n

dx < +∞. (1.2)

In particular, limx→∞ h(x) = +∞. Such a function h is called admissible. If h is admissible,
then so is A2 h(A1x) for every A1, A2 > 0. Define

Fh(x) = x

h
(

x− 1
n

) . (1.3)

Let μ be a positive Radon measure satisfying for some admissible h:

μ(E) ≤ Fh(capω(E)), (1.4)

for anyBorel set E ⊂ X . The set of allmeasures satisfying this inequality for some admissible
h is denoted by F(X , h). In what follows we often omit to mention that h is admissible.

Corollary 1.3 Consider the subsolution from Theorem 1.2. Assume that μ ∈ F(M, h) for an
admissible function h. Then, the solution is continuous on M.

An important class of such measures are the ones with L p-density with respect to the
Lebesgue measure (p > 1) (Lemma 5.7). Another class is the Monge–Ampère measures of
Hölder continuous quasi-plurisubharmonic functions on M (Theorem 5.9). It still remains an
open problem, even in a strictly pseudoconvex set in C

n , whether a continuous subsolution
leads to the continuous solution.

The best regularity of solutions of theDirichlet problem in our considerations is theHölder
one (see e.g. [26]). In the compact Kählermanifold case it was proved in [34] for L p, (p > 1)
right hand side. Then the Hölder continuous subsolution theorem was proved in [15]. We
prove here a significant generalization of [43, 44], which answered positively a question by
Zeriahi in the local setting. That is if the subsolution is Hölder continuous, then the solution
has this property too.

Theorem 1.4 Assume that the subsolution u ∈ P SH(M, ω) ∩ C0,α(M) for some α > 0.
Then, the solution u obtained in Theorem 1.2 is Hölder continuous on M.

Notice that the Hölder exponent of the solution depends only on the dimension and the
Hölder exponent of the subsolution, as in [15, 36] for compact complex manifolds without
boundary.

The uniqueness of aweak solution is still an openproblem in general on compactHermitian
manifolds without boundary (see [37] for a partial result). We are able to prove this property
under some extra assumption on either the metric ω or the manifold.

Corollary 1.5 (Uniqueness of bounded solution) Suppose that M is Stein or ω is Kähler.
Let u, v be bounded ω-psh on M such that lim inf z→∂ M (u − v)(z) ≥ 0. Assume that (ω +
ddcu)n ≤ (ω + ddcv)n in M. Then, u ≥ v on M. In particular, there is at most one bounded
solution to the Dirichlet problem (1.1) in this setting.

Organization. In Sect. 2 we prove various convergence theorems in the Cegrell class of
plurisubharmonic functions. These results combined with the Perron method allow to derive
the bounded subsolution theorem (Theorem 1.2) in Sect. 3. In Sect. 4 we prove the stability
estimates for Hermitian manifolds with boundary for measures that are well-dominated by
capacity. This is done by adopting the proofs of stability estimates from the setting of compact
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Hermitian manifold without boundary. Section 5 contains local estimates on interior and
boundary charts. The key technical result is the bound on volumes of sublevel sets of quasi-
plurisubharmonic functions in a certain Cegrell class in a boundary chart (Lemma 5.7).
In Sect. 6 we prove the Hölder continuous subsolution theorem. One needs to consider a
smoothing of the bounded solution obtained in Theorem 1.2, via the geodesic convolution,
due to Demailly. Then we obtain the global stability estimate to control the modulus of
continuity of the solution. For this we use a rather delicate construction choosing carefully
two exhaustive sequences Mε � Mδ of the manifold M , and keeping track of the dependence
of the modulus of continuity of the solution in collar sets on both parameters ε > δ > 0
(Proposition 6.11). Finally, we give the proof of the uniqueness of solution when either the
manifold is Stein or ω is Kähler.

Notation. The uniform constants C, C0, C1, ... may differ from line to line. For simplicity
we denote ‖ · ‖∞ to be the supremum norm of functions in the considered domain. We often
write ωv := ω + ddcv for a quasi-plurisubharmonic function v.

2 Convergence in the Cegrell class

Let � be a bounded strictly pseudoconvex domain in C
n . Let us recall the Cegrell class

introduced in [9]:

E0(�) =
{

u ∈ P SH(�) ∩ L∞(�) : lim
z→∂�

u(z) = 0,
∫

�

(ddcu)n < +∞
}

.

First we prove a bunch of convergence results to be used in the following sections. In what
follows, when the domain of integration � is fixed and no confusion arises we often write

∫

gdλ :=
∫

�

gdλ

for a Borel function g on �. For a Borel set E ⊂ �, we denote by cap(E) := cap(E,�) its
Bedford–Taylor capacity.

The following is implicitly contained in the last part of the proof of [9, Lemma 5.2].
Cegrell dealt with sequences from E0(�) but the proof works for sequences of negative
plurisubharmonic functions as well.

Lemma 2.1 Let dλ be a finite positive Radon measure on � which vanishes on pluripolar sets.
Suppose that u j ∈ E0(�) is a uniformly bounded sequence that converges a.e. with respect
to the Lebesgue measure dV2n to u ∈ E0(�). Then there exists a subsequence {u js } ⊂ {u j }
such that

lim
s→+∞

∫

�

u js dλ =
∫

�

udλ.

Proof Since dλ is a finite measure it follows that sup j

∫

�
|u j |2dλ < +∞. So there exists a

subsequence {u j } weakly converging to v ∈ L2(dλ). By the Banach-Saks theorem we can
find a subsequence u jk such that

Fk = 1

k
(u j1 + · · · + u jk ) → v in L2(dλ)

as k → +∞. Extracting a subsequence {Fks }s of {Fk}we get Fks → v a.e in dλ, and also that
Fks converges a.e to u with respect to the Lebesgue measure. Therefore, (sups>t Fks )

∗ ↘ u
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everywhere as t → +∞. It follows that there is a subsequence which we still denote by {u j }
such that

lim
j→∞

∫

u j dλ =
∫

vdλ = lim
s→∞

∫

Fks dλ = lim
t→∞

∫

sup
s>t

Fks dλ =
∫

udλ,

where the first identity used the decreasing convergence property; the second one used the
a.e-dλ convergence, and the last used the fact that dλ does not charge pluripolar sets. This
completes the proof. ��
Corollary 2.2 We keep the assumptions of Lemma 2.1. Assume moreover that dλ(E) ≤
C0cap(E) for every Borel set E ⊂ � with a uniform constant C0. Then there exists a
subsequence, which is still denoted by {u j }, such that

lim
j→∞

∫

|u j − u|dλ = 0.

Proof By Lemma 2.1 we know that

lim
j→∞

∫

u j dλ =
∫

udλ, lim
j→∞

∫

max{u j , u}dλ =
∫

�

udλ.

Fix a > 0. We have {|u − u j | > a} = {u − u j > a} ∪ {u − u j < −a}. Therefore
∫

{u−u j >a}
dλ =

∫

{max{u j ,u}−u j >a}
dλ ≤ 1

a

∫

�

(
max{u j , u} − u j

)
dλ → 0.

Next note that max{u, u j } → u in capacity, by the Hartogs lemma and the quasi-continuity
of u. It follows that after using the last assumption

∫

{u−u j <−a}
dλ ≤ C0cap(|max{u j , u} − u| > a) → 0.

In conclusionwe get that u j → u with respect to themeasure dλ and lim
∫ |u j |dλ = ∫ |u|dλ.

As a byproduct we also get that u j → u in L1(dλ). ��
Lemma 2.3 Still under the assumptions of Lemma2.1we also suppose that sup j

∫
(ddcu j )

n ≤
C1 for some C1 > 0. Let w j ∈ E0(�) be a uniformly bounded sequence of plurisubharmonic
functions in � satisfying sup j

∫
(ddcw j )

n ≤ C2 for some C2 > 0. Assume that w j converges
in capacity to w ∈ E0(�). Then,

lim
j→∞

∫

|u − u j |(ddcw j )
n = 0.

Proof Note that |u − u j | = (max{u, u j } − u j ) + (max{u, u j } − u). First, as in the proof of
Corollary 2.2 we have φ j := max{u, u j } → u in capacity. Fix ε > 0. Then, when j is large,

∫

�

(max{u, u j } − u)(ddcw j )
n ≤

∫

{|φ j −u|>ε}
(ddcw j )

n + ε

∫

�

(ddcw j )
n

≤ C0cap(|φ j − u| > ε) + C2ε.

Therefore, lim j→∞
∫
(φ j − u)(ddcw j )

n = 0. Next, we consider for j > k,
∫

(φ j − u j )(ddcw j )
n −

∫

(φ j − u j )(ddcwk)
n =

∫

(φ j − u j )ddc(w j − wk) ∧ T ,
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where T = T ( j, k) =∑n−1
s=1 (ddcw j )

s ∧ (ddcwk)
n−1−s . By integration by parts

∫

(φ j − u j )ddc(w j − wk) ∧ T =
∫

(w j − wk)ddc(φ j − u j ) ∧ T

≤
∫

|w j − wk |ddc(φ j + u j ) ∧ T .

Since ‖w j‖∞, ‖u j‖∞ ≤ A in � it follows that
∫

�

|w j − wk |ddc(φ j + u j ) ∧ T ≤ A
∫

{|w j −wk |>ε}
ddc(φ j + u j ) ∧ T

+ ε

∫

{|w j −wk |≤ε}
ddc(φ j + u j ) ∧ T

≤ An+1cap(|w j − wk | > ε) + Cε,

where the uniform bound for the second integral on the right hand side followed from [10]
(see also Corollary 3.4 below). It means that the left hand side is less than 2Cε for some k0
and every j > k ≥ k0. Thus,

∫

(φ j − u j )(ddcw j )
n ≤

∫

(φ j − u j )(ddcwk)
n

+
∣
∣
∣
∣

∫

(φ j − u j )(ddcw j )
n −

∫

(φ j − u j )(ddcwk)
n
∣
∣
∣
∣

≤
∫

(φ j − u j )(ddcwk)
n + 2Cε

≤
∫

|u − u j |(ddcwk)
n + 2Cε.

Fix k = k0 and apply Corollary 2.2 for dλ = (ddcwk0)
n to get that for j ≥ k1 ≥ k0

∫

(φ j − u j )(ddcw j )
n ≤ (2C + 1)ε.

Since ε > 0 was arbitrary, the proof of the lemma is completed. ��

3 Bounded subsolution theorems

Our goal in this section is the proof of Theorem 1.2, but first we shall prove it in the special
case of M ≡ � ⊂ C

n—a strictly pseudoconvex bounded domain. Then the general statement
will follow from this and the balayage procedure. Let μ be a positive Radon measure in �

and let ϕ be a continuous function on the boundary ∂�. Assume that ω is a Hermitian form
in a neighborhood of �̄.

Theorem 3.1 Suppose that dμ ≤ (ddcv)n for some bounded plurisubharmonic function
v in � with limz→∂� v(z) = 0. Then exists a unique ω-plurisubharmonic function u ∈
P SH(�, ω) ∩ L∞(�) solving

(ω + ddcu)n = dμ,

lim
ζ→z

u(ζ ) = ϕ(z) for z ∈ ∂�.
(3.1)
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Webeginwith showing that it is enough to prove the statement under additional hypothesis
on ϕ, dμ and (ddcv)n . This reduction is done in three steps:

Step1:Onecan assume that supp μ is compact in�. Indeed, letu0 ∈ P SH(�, ω)∩C0(�̄)

be the solution satisfying u0 = ϕ on ∂� and (ω + ddcu0)
n = 0 in � (it exists thanks to [35,

Corollary 4.1]). Let η j be a non-decreasing sequence of cut-off functions such that η j ↑ 1 on
�. Then, the sequence of solution u j ’s corresponding to μ j = η jμ is uniformly bounded by
u0 + v ≤ u j ≤ u0. Hence, by the comparison principle and the convergence theorem ([18],
[35, Corollary 3.4]) they will decrease to the solution for μ.

Step 2:Wemay assume further that the boundary data is in C2(∂�). Indeed, suppose that
the problem is solvable for μ with compact support and let ϕk ∈ C2(∂�) be a sequence that
decreases to ϕ ∈ C0(∂�). Then the sequence of solutions uk to

(ω + ddcuk)
n = μ, uk = ϕk on ∂�

is decreasing and uniformly bounded. The limit u = lim uk is the required solution for the
continuous boundary data.

Step 3:Reduction to the case of v defined in a neighborhood of �̄with limz→∂� v(z) = 0,
and the support of (ddcv)n compact in �. We already suppose that μ has a compact support
in �. Then we can modify the subsolution v so that v is defined in a neighborhood of �̄ and
it satisfies for any z ∈ ∂�,

lim
ζ→z

v(ζ ) = 0. (3.2)

By the balayage procedure we may further assume that the support of (ddcv)n is compact in
�.

With the above additional assumptions we proceed to define the expected solution. For
v as in Step 3, we consider the standard regularizing sequence v j ↓ v. Then, we write
(ddcv j )

n = f j dV2n . By [30] there exists v̌ j ∈ P SH(�) ∩ C0(�̄) such that v̌ j = 0 on ∂�,
and

(ddcv̌ j )
n = f j dV2n in �. (3.3)

We observe that by the Dini theorem v j converges to v uniformly on compact sets, where the
restriction of v is continuous. Consequently, v̌ j converges to v on those compact sets because
by the stability estimate for the Monge–Ampère equation

sup
�

|v̌ j − v j | ≤ sup
∂�

|v̌ j − v j | = sup
∂�

|v j − v|.

Note also that ∫

�

(ddcv̌ j )
n ≤ C1. (3.4)

This follows from the compactness of the support of ν = (ddcv)n .

Let 0 ≤ h ≤ 1 be a continuous function with compact support in �. Notice that

h f j dV2n → h(ddcv)n weakly. (3.5)

We first show the existence of a solution for the measure h(ddcv)n obtained as the limit of
solutions of h f j dV2n for a certain subsequence of { f j }. Applying [35, Corollary 0.4] we
solve the Dirichlet problem

u j ∈ P SH(�, ω) ∩ C0(�̄),

(ω + ddcu j )
n = h f j dV2n,

u j (z) = ϕ(z) for z ∈ ∂�.

(3.6)
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We define

u = (lim sup
j→∞

u j )
∗ = lim

j→∞(sup
�≥ j

u�)
∗.

By passing to a subsequence we may assume that u j → u in L1(�) and u j → u a.e. with
respect to the Lebesgue measure. Note also that u ∈ P SH(�, ω) ∩ L∞(�) and

lim
z→ζ

u(z) = ϕ(ζ ) for all ζ ∈ ∂�.

This u will be shown to be the solution we are seeking. To do this we need to prove several
lemmas.

First observe that ϕ can be extended to a C2 smooth function in a neighborhood of �̄.
This allows to produce a strictly plurisubharmonic function g in a neighborhood of �̄ such
that ddcg ≥ ω and g = −ϕ on ∂�. Let us use the notation

û = u + g, û j = u j + g.

Using an idea of Cegrell [9, page 210] we first show that

Lemma 3.2 û j ∈ E0(�).

Proof By [23, Theorem 1.1] there exists � ∈ P SH(�, ω) a C2-smooth function on �̄ that
solves (ω + ddc�)n ≡ 1 and � = ϕ on ∂�. Then,

(ω + ddcu j )
n ≤ (ddcv̌ j )

n ≤ (ω + ddcv̌ j + ddc�)n .

By the comparison principle [35, Corollary 3.4] we have u j ≥ v̌ j + �. So, û j = u j + g ≥
v̌ j + � + g. Since � + g ∈ P SH(�) ∩ C2(�̄), and equals zero on ∂� it belongs to E0(�).
Thus v̌ j + � + g ∈ E0(�), and so the same is true about û j . ��
Lemma 3.3 There exists a uniform constant C0 such that

∫

�

(ddcû j )
n ≤ C0.

Proof Set γ := ddcg − ω. Then ω + ddcu j = ddcû j − γ . It follows that
∫

�

(ddcû j − γ )n =
∫

�

(ω + ddcu j )
n ≤

∫

�

(ddcv̌ j )
n ≤ C1. (3.7)

Using the Newton expansion for the integrand on the left hand side we get that
∫

�

(ddcû j )
n −

(
n

1

)∫

�

(ddcû j )
n−1 ∧ γ + · · · + (−1)n

(
n

n

)∫

�

γ n ≤ C1. (3.8)

We are going to show that for k = 1, ..., n,
∫

�

(ddcû j )
k ∧ γ n−k ≤ C2 (3.9)

for a uniform constant C2. Indeed, since γ is a smooth (1, 1) form in �̄, there is a defining
function ψ ∈ E0(�) of � such that ω + γ ≤ ddcψ on �̄. Using the Cegrell inequality [10,
Lemma 5.4] we get for every k ≥ 1

∫

�

(ddcû j )
k ∧ γ n−k ≤

∫

�

(ddcû j )
k ∧ (ddcψ)n−k

≤
(∫

�

(ddcû j )
n
) k

n
(∫

�

(ddcψ)n
) n−k

n

.

(3.10)
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If we write mn
j = ∫ (ddcû j )

n , it follows from (3.8) and (3.10) that

mn
j − const .

(
n

k

) ∑

n>k odd

mk
j ≤ C3 for all j .

Therefore, the total mass of (ddcû j )
n is bounded by a uniform constant independent of j .

Consequently, ∫

�

(ddcû j )
k ∧ γ n−k ≤ C4

follows by (3.10). ��
We have also a more general statement.

Corollary 3.4 There exists a uniform constant C such that
∫

�

T ≤ C (3.11)

where T are wedge products of ddcû j and ddcv̌k .

Proof By an application of Cegrell’s inequality [10] for every k ≥ 1,
∫

�

(ddcv̌ j )
k ∧ (ddcψ)n−k ≤ C4, (3.12)

where ψ is a strictly plurisubharmonic function defining function of � as in the proof of the
above lemma. Now using Cegrell’s inequality one more time,

∫

�

T =
∫

�

(ddcû j )
p ∧ (ddcv̌k)

q ∧ (ddcψ)n−p−q

≤ [I (̂u j )
] p

n
[
I (v̌k)

] q
n [I (ψ)]

n−p−q
n ,

where I (w) = ∫

�
(ddcw)n . Finally, all three factors on the right hand side are bounded by

(3.4), Lemma 3.3 and the smoothness of ψ on �̄. ��
Lemma 3.5 Let {u j } ⊂ P SH(�, ω) be a uniformly bounded subsequence of functions sat-
isfying u j (z) = ϕ(z) for z ∈ ∂� and u j → u in L1(�) and u j → u a.e. with respect to
the Lebesgue measure. Then one can pick a subsequence {u js } such that for

ws = max{u js , u − 1/s}. (3.13)

the following equalities hold

(a) lims→+∞
∫

�
|u js − u|(ω + ddcu)n = 0.

(b) lims→+∞
∫

�
|u js − u|(ω + ddcws)

n = 0.
(c) lims→+∞

∫

�
|u js − u|(ω + ddcu js )

n = 0.

Proof Since u j − u = û j − û, where û j , û and ωn
u satisfy the assumption of Corollary 2.2,

the proof of (a) follows.
By the Hartogs lemma ws converges to u uniformly on any compact set E such that u|E

is continuous. Combining this and the quasi-continuity of u it follows that ws converges to
u in capacity. Therefore, by the convergence theorems in [2, 18],

(ω + ddcu)n = lim
s→+∞(ω + ddcws)

n .
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We observe that ωn
u is a finite Radon measure in �. Recall the notation ŵs = ws + g and,

û = u+g, where g is a strictly plurisubharmonic defining function for� such that ddcg ≥ ω

in a neighborhood of �̄. Since ws = u js in a neighborhood of ∂�, it follows from Stokes’
theorem and Lemma 3.3 that

∫

�

(ω + ddcws)
n ≤

∫

�

(ddcŵs)
n =

∫

�

(ddcû js )
n ≤ C0.

Letting s → +∞ we get that
∫

ωn
u is finite, and thus û ∈ E0(�). Summarizing, (ω +

ddcws)
n ≤ (ddcŵs)

n and ŵs → û ∈ E0(�) in capacity. Hence (b) follows fromLemma 2.3.
Similarly, with the notation from Lemma 3.2, (ω+ddcu j )

n ≤ (ddcv̌ j )
n and v̌ j converges

to v in capacity, thus the proof of (c) follows. ��
Lemma 3.6 Consider {u j } from the previous lemma. Then for a suitably chosen subsequence
{u js } ⊂ {u j } we have

(ω + ddcu js )
n → (ω + ddcu)n weakly.

Proof By Lemma 3.5 we can choose a subsequence {u js } ⊂ {u j } so that
∫

|u − u js |(ω + ddcu js )
n +

∫

|u − u js |(ω + ddcws)
n < 1/s2.

Recall from (3.13) that ws = max{u js , u − 1/s}. Then
1{u js >u−1/s}(ω + ddcws)

n = 1{u js >u−1/s}(ω + ddcu js )
n .

Therefore, for η ∈ C∞
c (�),

∣
∣
∣
∣

∫

ηωn
u −

∫

ηωn
u js

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

ηωn
u −

∫

ηωn
ws

∣
∣
∣
∣+
∣
∣
∣
∣

∫

ηωn
ws

−
∫

ηωn
u js

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

ηωn
u −

∫

ηωn
ws

∣
∣
∣
∣+
∣
∣
∣
∣
∣

∫

{u js ≤u−1/s}
ηωn

ws
− ηωn

u js

∣
∣
∣
∣
∣
.

The first term on the right hand side goes to zero as ωn
ws

→ ωn
u . It remains to estimate the

second term. Firstly, by the choice of {u js } at the begining of this proof,
∣
∣
∣
∣
∣

∫

{u js ≤u−1/s}
ηωn

u js

∣
∣
∣
∣
∣
≤ ‖η‖L∞

∫

{u js ≤u−1/s}
ωn

u js

≤ s‖η‖L∞
∫

|u − u js |ωn
u js

≤ 1

s
‖η‖L∞ → 0 as s → +∞.

Similarly,
∣
∣
∣
∣
∣

∫

{u js ≤u−1/s}
ηωn

ws

∣
∣
∣
∣
∣
≤ ‖η‖L∞

∣
∣
∣
∣
∣

∫

{u js ≤u−1/s}
ηωn

ws

∣
∣
∣
∣
∣

≤ s‖η‖L∞
∫

|u − u js |ωn
ws

→ 0 as s → +∞.

The last two estimates complete the proof. ��
End of proof of Theorem 3.1 Now we come back to the sequence defined in (3.6) and its limit
u. Let {u js } be a subsequence of {u j } whose L1-limit and pointwise almost everywhere limit
is equal u.
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Let 0 ≤ h ≤ 1 be a continuous function with compact support in �. Then, applying the
last lemma and (3.5), there exists a unique solution u ∈ P SH(�, ω) ∩ L∞(�̄) to

(ω + ddcu)n = h(ddcv)n, u = ϕ on ∂�.

By the Radon–Nikodym theorem dμ = hdν for some Borel function 0 ≤ h ≤ 1. Since
h ∈ L1(dν) and Cc(�) is dense in L1(dν), there exists a sequence of continuous functions
0 ≤ hk ≤ 1, whose supports are compact in �, such that

lim
k→+∞

∫

|hk − h|dν = 0.

In particular, hkdν → hdν weakly. Applying the argument above for continuous h, we can
find uk ∈ P SH(�, ω) ∩ L∞(�) such that limz→ζ uk(z) = ϕ(ζ ) for every ζ ∈ ∂� and

(ω + ddcuk)
n = hk(ddcv)n = hkdν.

Define

u = (lim sup uk)
∗.

Passing to a subsequence we may assume that uk → u in L1(�) and converging a.e to u
with respect to the Lebesgue measure. Again by Lemma 3.6 there exists a subsequence {uks }
of {uk} such that

(ω + ddcuks )
n → (ω + ddcu)n weakly.

Hence,

(ω + ddcu)n = lim
ks→+∞ hks (ddcv)n = hdν.

The proof is completed. ��
Proof of Theorem 1.2 Let us proceedwith the proof of the subsolution theoremon M a smooth
compact Hermitian manifold with boundary. Consider the following set of functions

B(ϕ, μ) :=
{
w ∈ P SH(M, ω) ∩ L∞(M) : (ω + ddcw)n ≥ μ,w∗|∂ M

≤ ϕ
}

, (3.14)

where w∗(x) = lim supM�z→x w(z) for every x ∈ ∂ M . Clearly, u ∈ B(ϕ, μ). Let us solve
the linear PDE finding h1 ∈ C0(M, R) such that

(ω + ddch1) ∧ ωn−1 = 0,

h1 = ϕ on ∂ M .
(3.15)

Since (ω+ddcw)∧ωn−1 ≥ 0 forw ∈ P SH(M, ω), the maximum principle for the Laplace
operator with respect to ω gives

w ≤ h1 for all w ∈ B(ϕ, μ).

Set
u(z) = sup

w∈B(ϕ,μ)

w(z) for every z ∈ M . (3.16)

Then, by Choquet’s lemma and the fact that B(ϕ, μ) satisfies the lattice property, u = u∗ ∈
B(ϕ, μ). Again by the definition of u, we have u ≤ u ≤ h1. It follows that

lim
z→x

u(z) = ϕ(x) for every x ∈ ∂ M . (3.17)
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Lemma 3.7 (Lift) Let v ∈ B(ϕ, μ). Let B ⊂⊂ M be a small coordinate ball (a chart
biholomorphic to a ball in C

n). Then, there exists ṽ ∈ B(ϕ, μ) such that v ≤ ṽ and (ω +
ddcṽ)n = μ on B.

Proof We implicitly identify B ′ ⊂⊂ B with a small ball in C
n , with B ′ also fixed. Note that

on B we have 1B′dμ ≤ (ω + ddcv)n . Since B ′ is compact in B, we can easily get a bounded
plurisubharmonic subsolution with zero boundary value on ∂ B for 1B′dμ. Let φ j ↘ v on ∂ B
be a uniformly bounded sequence of continuous functions. Theorem 3.1 gives the existence
of solutions:

⎧
⎪⎨

⎪⎩

v j ∈ P SH(B, ω) ∩ L∞(B),

(ω + ddcv j )
n = 1B′dμ,

limz→x∈∂ B v j (z) = φ j (x), ∀x ∈ ∂ B.

By the comparison principle v j is a decreasing sequence as j → +∞ and v j ≥ v on B.
Set w = lim j v j . Then, w ∈ P SH(B, ω) and w ≥ v. By the convergence theorem (ω +
ddcw)n = 1B′dμ.Note that lim j v j (x) = v(x) for every x ∈ ∂ B.Hence, lim supz→x w(z) ≤
φ j (x). Letting j → +∞ we get that

lim sup
z→x

w(z) ≤ v(x)

for every x ∈ ∂ B
Now we define

w̃ =
{
max{w, v} on B,

v on M \ B.

Then, w̃ ∈ P SH(M, ω) ∩ L∞(M) and it satisfies w̃∗ ≤ ϕ on ∂ M . Moreover,

(ω + ddcw̃)n ≥ dμ on (M \ B) ∪ B ′.

Finally, let B j ↗ B be a sequence of open balls increasing to B, then by the above
construction we get a decreasing sequence w̃ j ∈ P SH(M, ω) ∩ L∞(M) such that w̃∗

j ≤ ϕ

on ∂ M and

(ω + ddcw j )
n ≥ dμ on (M \ B) ∪ B j .

Set ṽ = limw j ≥ v. Then, ṽ is the required lift function. ��
End of Proof of the bounded subsolution theorem. By (3.17) it remains to show that the
function u above satisfies (ω + ddcu)n = μ. Let B ⊂⊂ M be a small coordinate ball. It is
enough to check (ω + ddcu)n = μ on B. Let ũ be the lift of u as in Lemma 3.7. It follows
that ũ ≥ u and (ω+ddcũ)n = μ on B. However, by the definition ũ ≤ u on M . Thus, ũ = u
on B, in particular on B we have (ω + ddcũ)n = (ω + ddcu)n = μ. ��

4 Continuity of the solution

First we recall some facts in pluripotential theory for a Hermitian background form. The
proofs from [35–37] can be easily adapted to our setting.

Let B > 0 be a constant such that on M we have

−Bω2 ≤ 2nddcω ≤ Bω2, −Bω3 ≤ 4n2dω ∧ dcω ≤ Bω3.
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Then we have the following version (see [35, Theorem 0.2]) of the classical comparison
principle [2].

Lemma 4.1 Let u, v ∈ P SH(M, ω) ∩ L∞(M) be such that u, v ≤ 0. Assume
lim inf z→∂ M (u − v)(z) ≥ 0 and −s0 = supM (v − u) > 0. Fix 0 < θ < 1 and set

m(θ) = infM [u − (1 − θ)v]. Then for any 0 < s < min{ θ3

16B , |s0|},
∫

{u<(1−θ)v+m(θ)+s}
ωn

(1−θ)v ≤
(

1 + sB
θn

C

)∫

{u<(1−θ)v+m(θ)+s}
ωn

u , (4.1)

where C is a uniform constant depending only on n.

Corollary 4.2 (Domination principle) Let u, v ∈ P SH(M, ω) ∩ L∞(M) be such that
lim inf z→∂ M (u − v)(z) ≥ 0. Suppose that u ≥ v almost everywhere with respect to ωn

u .
Then u ≥ v in M.

Proof See [42, Lemma 2.3] and [40, Proposition 2.2]. ��
The next one is a generalization of [35, Theorem 5.3] to Hermitian manifolds with bound-

ary.

Theorem 4.3 Fix 0 < θ < 1. Let u, v ∈ P SH(M, ω) ∩ L∞(M) be such that u ≤ 0 and
−1 ≤ v ≤ 0. Assume that lim inf z→∂ M (u −v)(z) ≥ 0 and −s0 = supM (v −u) > 0. Denote
by m(θ) = infM [u − (1 − θ)v], and put

θ0 := 1

3
min

{

θn,
θ3

16B
, 4(1 − θ)θn, 4(1 − θ)

θ3

16B
, |s0|

}

.

Suppose that ωn
u ∈ F(M, h). Then, for 0 < t < θ0,

t ≤ κ [capω(U (θ, t))] , (4.2)

where U (θ, t) = {u < (1 − θ)v + m(θ) + t}, and the function κ is defined on the interval
(0, 1) by the formula

κ
(
s−n) = 4Cn

{
1

[h(s)]
1
n

+
∫ ∞

s

dx

x [h(x)]
1
n

}

, (4.3)

with a dimensional constant Cn.

We use it to to generalize the stability estimate for manifolds with boundary. Let �(s) be
the inverse function of κ(s) and

�(s) the inverse function of sn(n+2)+1
�(sn+2). (4.4)

Notice that �(s) → 0 as s → 0+.

Proposition 4.4 (Stability of solutions) Let u, v ∈ P SH(M, ω) ∩ L∞(M) be such that
u, v ≤ 0. Let μ ∈ F(M, h). Assume that lim inf z→∂ M (u − v)(z) ≥ 0 and

(ω + ddcu)n = μ.

Then, there exists a constant C > 0 depending only on ω and ‖v‖∞ such that

sup
M

(v − u) ≤ C �
(‖(v − u)+‖L1(dμ)

)
.
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Proof It is identical to the one in [36, Proposition 2.4]. ��
Now we are going to prove Corollary 1.3. So we assume the existence of a subsolution

for the measure μ and the boundary data ϕ as in Theorem 1.2 and on top of that suppose
μ ∈ F(M, h) for an admissible function h. Then we claim that the solution is continuous.

We argue by contradiction. Suppose u were not continuous. Then the discontinuity of u
would occur at an interior point of M . Hence

d = sup
M

(u − u∗) > 0,

where u∗(z) = limε→0 infw∈B(z,ε) u(w) is the lower-semicontinuous regularization of u.
Consider the closed nonempty set

F = {u − u∗ = d} ⊂⊂ M .

The inclusion follows from the boundary condition. One can extend the boundary data ϕ

to a continuous function on M . Then one can use the boundary condition again and the
compactness of ∂ M to choose M ′ ⊂⊂ M ′′ ⊂⊂ M with M ′ so close to M (in the sense of
the distance induced by the metric ω) that

|u − ϕ| < d/4 on M \ M ′.

By the approximation property of quasi-plurisubharmonic functions [6], one can find a
sequence

P SH(M ′′, ω) ∩ C∞(M ′′) � u j ↘ u in M ′′. (4.5)

By the Hartogs lemma there exists j0 > 0 such that for j > j0

u j ≤ ϕ + d/2 on M ′′ \ M ′.

Then the sets {u < u j − d/4} are nonempty and relatively compact in M ′ for j > j0.
Moreover, by subtracting a uniform constant we may assume that

−C0 ≤ u, u j ≤ 0 on M .

Note that for a Borel set E ⊂ M ′, capω(E, M) ≤ capω(E, M ′). It follows that ωn
u ∈

F(M ′, h). Now we apply Theorem 4.3 for u and v := u j on M ′ to get a contradiction. In
fact, −m j = supM ′(u j − u) ≥ d/4 for j > j0. Let 0 < ε < d/12(1+ A0) and take θ0 from
Theorem 4.3. For 0 < s < θ0 we have

U j (ε, s) :=
{

u < (1 − ε)u j + inf
M ′ (u − (1 − ε)u j )

}

⊂ {u < u j + m j + ε‖u j‖∞ + s
}

⊂ {u < u j },
where for the last inclusionwe used the fact ‖u j‖ ≤ A0 and 0 < s ≤ −m j/3. Fix 0 < s < θ0.
Then that theorem gives

s ≤ κ [capω (U (ε, s))] ≤ κ[capω(u < u j )].
This leads to a contradiction since capω(u < u j ) → 0 as j → +∞.

Remark 4.5 We only need to assume that for any M ′ ⊂⊂ M , there exists an admissible
function h′ (itmay depend on M ′) such thatμ ∈ F(M ′, h′). Then, the solution u is continuous
on M . Therefore, if μ is locally dominated by the Monge–Ampère measure of a Hölder
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continuous plurisubharmonic functions, then we have for a fixed compact set M ′ ⊂⊂ M ,
μ ∈ F(M ′, h) for some admissible function h. This is a simple consequence of a result due
to Dinh–Nguyen–Sibony [19] (Remark 5.10). More generally, if the modulus of continuity
of u satisfies a Dini-type condition then we also get the same conclusion (see [38]).

We have an immediate consequence of this remark.

Corollary 4.6 The bounded solution obtained in Theorem 1.2 is continuous if the subsolution
u is Hölder continuous.

5 Estimates on boundary charts

For the proof of the subsolution theorem in the Hölder continuous class we need rather
delicate estimates close to the boundary of M . In this section we prove estimates in local
boundary charts of M . The estimates on interior charts are easier and they are only mentioned
as remarks after the corresponding estimates for boundary charts.

Let q ∈ ∂ M be a point on the boundary. Let � be a boundary chart centered at q . Fix ρ a
defining function for ∂ M in �. Identifying this chart with a subset of C

n , we can take as �

the coordinate "half-ball" of radius 2R > 0 centered at q . More precisely let Br ⊂ C
n for

r > 0 denote the ball of radius r centered at 0. Let ρ : B2R → R be a smooth function, with
ρ(0) = 0 and dρ �= 0 along {ρ = 0}. Then,

� = {z ∈ B2R : ρ(z) < 0}, ∂ M ∩ � = {z : B2R : ρ(z) = 0}.
The Hermitian form ω is smooth up to the boundary ∂ M , so we can extend it to a smooth
Hermitian form on B2R . Multiplying ρ by a small positive constant we assume also that

ω + ddcρ > 0 and − 1 ≤ ρ ≤ 0 on B2R .

Moreover, the estimates are local, so we can fix a Kähler form � = ddcg0, where g0 =
C(|z|2 − (3R)2) and C > 0 is large enough so that

� ≥ ω on B2R .

Suppose that
ψ ∈ P SH(�) ∩ C0,α(�) and ψ ≤ 0, (5.1)

where 0 < α ≤ 1. Our goal is to get the stability estimates for ω-psh functions with respect
to the Monge–Ampère measure of ψ . This will provide the stability estimates on boundary
charts under the assumption that a Hölder continuous subsolution exists.

Let us recall the following class of domains defined in [11, Definition 3.2]: A domain
D ⊂ C

n is called quasi-hyperconvex if D admits a continuous negative ω-psh exhaustion
function ρ : D → [−1, 0).

We now give several estimates on the quasi-hyperconvex domain

�R = � ∩ BR .

The first observation is that the continuous exhaustion function for �R ,

ρR = max{ρ, |z|2 − R2} ∈ P SH(�R, ω) (5.2)

has finite Monge–Ampère mass on �R , i.e.,
∫

�R

(� + ddcρR)n ≤ C0.
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In fact, it follows from smoothness of ρ and |z|2 on B2R and the Chern-Levin-Nirenberg
inequality (see e.g. [33, page 8]) that ρR has finite Monge–Ampère mass. More generally,
for 1 ≤ k ≤ n, ∫

�R

(� + ddcρR)k ∧ �n−k ≤ C0‖g0 + ρR‖k
L∞(B2R). (5.3)

Let us consider a class corresponding to the Cegrell class E0 in Sect. 2.

P0(�) =
{

v ∈ P SH(�R,�) : v ≤ 0, lim
z→∂�R

v(z) = 0,
∫

�R

�n
v < +∞

}

, (5.4)

where P SH(�R,�) denotes the set of all�-psh functions in�R .We first adopt an inequality
due to Błocki [4] to our setting.

Lemma 5.1 Let v ∈ P0(�) and 1 ≤ k ≤ n an integer. Let φi ≤ 0, i = 1, ..., k, be
plurisubharmonic functions in �R. Then

∫

�R

(−v)kddcφ1 ∧ · · · ∧ ddcφk ∧ �n−k ≤ k!‖φ1‖∞ · · · ‖φk‖∞
∫

�R

�k
v ∧ �n−k .

Proof We give the proof in a particular case (which is used below) φ1 = · · · = φk . The
general case is similar. Denote by wε the function max{v,−ε} for ε > 0. Then, wε ↗ 0 as
ε ↘ 0. By the Lebesgue convergence theorem

lim
ε→0

∫

�R

(wε − v)k(ddcφ)k ∧ �n−k =
∫

�R

(−v)k(ddcφ)k ∧ �n−k .

Fix small ε > 0 and write w instead of wε . Then v ≤ w ∈ P SH(�R,�) and w = v in a
neighborhood of ∂�R . We first show that
∫

�R

(w − v)k(ddcφ)k ∧ �n−k ≤ k‖φ‖∞
∫

�R

(w − v)k−1(� + ddcv) ∧ (ddcφ)k−1 ∧ �n−k .

We have

−ddc(w − v)k = −k(k − 1)d(w − v) ∧ dc(w − v) − k(w − v)k−1ddc(w − v)

= −k(k − 1)d(w − v) ∧ dc(w − v) + k(w − v)k−1(�v − �w)

≤ k(w − v)k−1�v.

By integration by parts
∫

�R

(w − v)k(ddcφ)k ∧ �n−k =
∫

�R

φddc(w − v)k ∧ (ddcφ)k−1 ∧ �n−k .

Since φ is negative in �R , it follows from the previous inequality that
∫

�R

(−φ)[−ddc(w − v)k] ∧ (ddcφ)k−1 ∧ �n−k

≤ k
∫

�R

(−φ)(w − v)k−1�v ∧ (ddcφ)k−1 ∧ �n−k

≤ k‖φ‖∞
∫

�R

(w − v)k−1(ddcφ)k−1 ∧ �v ∧ �n−k .

So the claim above follows.
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Repeating this process k-times we obtain
∫

�R

(w − v)k(ddcφ)k ∧ �n−k ≤ k!‖φ‖k∞
∫

�R

�k
v ∧ �n−k .

The lemma follows by letting ε → 0. ��

Thanks to this lemma and the quasi-hyperconvexity of�R (every bounded smooth domain
in C

n is quasi-hyperconvex) we are able to estimate the Monge–Ampère mass of a bounded
plurisubharmonic function on

Dε(R) = {z ∈ �R : ρR(z) < −ε}, ε > 0. (5.5)

Corollary 5.2 Let 1 ≤ k ≤ n be an integer. Let φ ∈ P SH(�R) ∩ L∞(�R) be such that
φ ≤ 0. Then,

∫

Dε(R)

(ddcφ)k ∧ �n−k ≤ C‖φ‖k∞
εk

,

where C is a uniform constant independent of ε.

Proof On Dε(R) we have max{ρR,−ε/2} − ρR ≥ ε/2. It follows from Lemma 5.1 that

∫

Dε(R)

(ddcφ)k ∧ �n−k ≤
(
2

ε

)k ∫

�R

(max{ρR,−ε/2}) − ρR)k(ddcφ)k ∧ �n−k

≤
(
2

ε

)k

‖φ‖k∞
∫

�R

�k
ρR

∧ �n−k .

The last integral is bounded thanks to (5.3). ��

Remark 5.3 We observe that for a bounded plurisubharmonic function

2dw ∧ dcw = ddcw2 − 2wddcw.

Then applying the above corollary to both terms on the right hand side one obtains

∫

Dε(R)

dw ∧ dcw ∧ (ddcφ)k−1 ∧ �n−k ≤ C‖w‖2∞‖φ‖k−1∞
εk

. (5.6)

The Hölder continuity of a function can be detected by checking the speed of conver-
gence of regularizing sequences which we now define. Let us use the following the standard
smoothing kernel χ̃ (z) = χ(|z|2) in C

n , where

χ(t) =
{

cn
(1−t)2

exp( 1
t−1 ) if 0 ≤ t ≤ 1,

0 if t > 1
(5.7)

with the constant cn chosen so that
∫

Cn
χ(‖z‖2) dV2n(z) = 1, (5.8)

and dV2n denoting the Lebesgue measure in C
n .
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Let u ∈ P SH(�) ∩ L∞(�) and δ > 0. For z ∈ �δ := {z ∈ � : dist(z, ∂�) > δ} define
u ∗ χδ(z) =

∫

|x |<1
u(z + δx)χ̃(x)dV2n(x), (5.9)

ǔδ(z) = 1

v2nδn

∫

Bδ(z)
u(x)dV2n(x), (5.10)

where Bδ(z) = {x ∈ C
n : |z − x | < δ}. Let us denote by σ the surface measure on a sphere

S(z, r) and by σ 2n−1 the area of the unit sphere. Consider the averages

μS(u; z, δ) = 1

σ 2n−1δ2n−1

∫

S(z,δ)
u(x)dσ2n−1,

which is are increasing in δ. Therefore, for any z ∈ �δ ,

u ∗ χδ(z) − u(z) = σ 2n−1

∫ 1

0
[μS(u; z, δt) − u(z)]χ(t2)t2n−1dt

≤ ‖χ‖L∞
∫ 1

0
[μS(u; z, δt) − u(z)]t2n−1dt

= ‖χ‖L∞
(ǔδ − u)(z)

2n
.

On the other hand, since χ ≥ 1/C on [0, 1/2],
∫ 1

0
[μS(u; z, δt) − u(z)]χ(t2)t2n−1dt ≥ 1

C

∫ 1/2

0
[μS(u; z, δt) − u(z)]t2n−1dt

= 1

2nC

∫ 1

0
[μS(u; z,

δs

2
) − u(z)]s2n−1ds

= 1

2nC

(ǔδ/2 − u)(z)

2n
.

We conclude that there exist a uniform constant C > 0 such that in �δ

u ∗ χδ − u ≤ C(ǔδ − u), (5.11)

ǔδ/2 − u ≤ C(u ∗ χδ − u). (5.12)

Lemma 5.4 Let u ∈ P SH(�) ∩ L∞(�). For 0 < δ < δ0 ≤ R/4,
∫

BR/2∩�2δ

(ǔδ(z) − u(z))dV2n ≤ Cδ2
∫

B3R/4∩�δ

�u(z)dV2n .

Consequently,
∫

BR/2∩�δ

(ǔδ(z) − u(z))dV2n ≤ Cδ.

Proof Thefirst inequality follows from the classical Jensen formula (see e.g. [26, Lemma4.3].
For the second one we observe

∫

BR/2∩�δ

(ǔδ(z) − u(z))dV2n ≤
∫

BR/2∩�2δ

(ǔδ(z) − u(z))dV2n

+
∫

�δ\�2δ

(ǔδ(z) − u(z))dV2n

≤ Cδ2
∫

B3R/4∩�δ

�u(z)dV2n + Cδ.

123



Monge–Ampère equations on Hermitian manifolds with boundary Page 19 of 39 1

Since ∂� is a smooth manifold defined by ρ in B2R , there exists a uniform constant c0 > 0
such that |ρ(z)| ≥ c0dist(z, ∂�) for every z ∈ BR ∩�. Hence, there exists a uniform constant
c1 = c1(c0, R) > 0 such that B3R/4 ∩ �δ ⊂ {ρR < −c1δ} for every 0 < δ < δ0. Now, we
apply Corollary 5.2 with ε = c1δ and k = 1 for the first term on the right and the proof is
completed. ��
Remark 5.5 In the interior chart the corresponding (stronger) inequality is given by [26,
Lemma 4.3]. Let u ∈ P SH ∩ L∞(B2R). Then, for 0 < δ < R/2,

∫

BR

(ǔδ − u)dV2n ≤ cn

(∫

B3R/2

�udV2n

)

δ2. (5.13)

We also need various capacities in the estimates. Consider the local �-capacity:

cap�(E,�R) = sup

{∫

E
(� + ddcv)n : v ∈ P SH(�R,�), −1 ≤ v ≤ 0

}

.

This capacity is equivalent to the Bedford–Taylor capacity.

Lemma 5.6 There exists a constant A1 > 0 such that for every Borel set E ⊂ �,

1

A1
cap(E,�R) ≤ cap�(E,�R) ≤ A1cap(E,�R).

Proof The first inequality is straightforward while the second inequality follows from the
fact that � = ddcg0 = ddc[C(|z|2 − (3R)2] on � for some C > 0 large enough depending
only on ω and �. ��

The following estimate of volumes of sublevel sets (comp. [33, Lemma 4.1]) will be
crucial for proving the volume-capacity inequality on a smoothly bounded domain (without
any pseudoconvexity assumption).

Lemma 5.7 There exist constants C0, τ0 > 0 such that for every v ∈ P0(�) with an :=∫

�R
�n

v and s ≥ 0,

V2n(v < −s) ≤ C0e−τ0s/a .

Proof Since the domain�R is fixed, for anyBorel set E ⊂ �R wewill onlywrite cap�(E) =
cap�(E,�R) and cap(E) = cap(E,�R) in the proofs.

First we show that there exists a uniform constant C > 0 independent of v such that for
s ≥ 0,

cap�(v < −s) ≤ Can

sn
. (5.14)

In fact, let h ∈ P SH(�R,�) be such that −1 ≤ h ≤ 0. Note that � = ddcg0 for a
strictly smooth plurisubharmonic function g0 in a neighborhood of � and g0 ≤ 0. Then for
φ = h + g0,

∫

�R

(−v)n(ω + ddch)n ≤
∫

�R

(−v)n(ddcφ)n .

By Lemma 5.1 it follows that
∫

�R

(−v)n(ddcφ)n ≤ n!‖φ‖n∞
∫

�R

�n
v .
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Since ‖φ‖∞ ≤ 1 + ‖g0‖∞,
∫

{v<−s}
(� + ddch)n ≤ 1

sn

∫

�R

(−v)n(� + ddch)n ≤ Can

sn
.

Taking supremum on the left hand side over h we get the desired inequality.
Next, denoting �s := {v < −s} ⊂ �R by an observation in [41, Proposition 3.5] we

know that

V2n(�s) ≤ C1 exp

(
−τ1

[cap(�s)] 1
n

)

for uniformconstantsC1, τ1 > 0. From this and the equivalence between cap(•) and cap�(•)

(Lemma 5.6) we have

V2n(�s) ≤ C1 exp

(
−τ1

[A1cap�(�s)] 1
n

)

.

Combining this and (5.14) we get V2n(�s) ≤ C1e−τ0s/a with τ0 = τ1/(C A1)
1
n . ��

By comparing the Monge–Ampère measure of a Hölder continuous plurisubharmonic
function and the one of its convolution we show that the estimate of measures of sublevel
sets also holds.

Proposition 5.8 Denote by μ = (ddcψ)n, where ψ ∈ P SH(�) ∩ C0,α(�) as in (5.1). Let
τ0 > 0 be the uniform exponent in Lemma 5.7. There exists τ̃0 = τ̃0(n, α, τ0) > 0 such that
for v ∈ P0(�) with an = ∫

�R
�n

v ≤ 1 and for every s > 0,

μ(v < −s) ≤ C0e−τ̃0s/a

sn+1 .

Proof Let vs = max{v,−s}. Then, vs ∈ P0(�), and by [11, Lemma 3.4] we also know that∫

�R
�n

vs
≤ ∫

�R
�n

v = an . We are going to show that there are uniform constant 0 < αn ≤ 1
and C independent of s and v such that

∫

�R

(vs − v)(ddcψ)n ≤ C

sn

(∫

�R

(vs − v)dV2n

)αn

. (5.15)

Suppose this is true for a moment, and let us finish the proof of the proposition. By the
inequality 0 ≤ vs − v ≤ 1{v<−s}|v| ≤ 1{v<−s}e−τv/τ for every τ > 0 (to be determined
later), it follows that

∫

�R

|vs − v|dV2n ≤ 1

τ

∫

{v<−s}
e−τvdV2n

≤ 1

τ

∫

�R

e−τv−τ(v+s)dV2n

≤ e−τ s

τ

∫

�R

e−2τvdV2n .

(5.16)

Using Lemma 5.7, for τ = τ0/(4a), the last integral can be bounded by a uniform constant
which is independent of v. Moreover, vs/2 − v ≥ s

2 on {v < −s} ⊂⊂ �R for every s > 0.
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Therefore,

μ(v < −s) ≤ 2

s

∫

�R

(vs/2 − v)(ddcψ)n

≤ 2C

sn+1

(∫

�R

(vs/2 − v)dV2n

)αn

,

where we used (5.15) for the second inequality. Combining this and (5.16) we get for every
s > 0,

μ(v < −s) ≤ C

sn+1

(
ae−τ0s/(8a)

τ0

)αn

.

Let τ̃0 = τ0αn/8. Using 0 < a, αn ≤ 1, we get

μ(v < −s) ≤ Ce−τ̃0s/a

sn+1 .

This is the desired estimate.
Now let us prove the promised inequality (5.15). For 0 ≤ k ≤ n wewrite Sk := (ddcψ)k ∧

�n−k . We show by induction over k that
∫

�R

(vs − v)(ddcψ)k ∧ �n−k ≤ C

sk

(∫

�R

(vs − v)dV2n

)αk

. (5.17)

For k = 0, the inequality is obviously true. Suppose it is true for 0 ≤ k < n. Denote
T = (ddcψ)k ∧ �n−k−1. This means that

∫

�R

(vs − v)T ∧ � ≤ C

sk
‖vs − v‖αk

L1(�R)

for some 0 < αk ≤ 1. We need to show that the inequality holds for k + 1 ≤ n with possibly
smaller αk+1 > 0 and larger C . Write ψε = ψ ∗ χε on B2R (where we still write ψ for
its α-Hölder continuous extension onto B2R) and take χε(z) = χ(|z|2/ε2)/ε2n the standard
smoothing family defined in (5.7).

Firstly,
∫

�R

(vs − v)ddcψ ∧ T ≤
∣
∣
∣
∣

∫

�R

(vs − v)ddcψε ∧ T

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

�R

(vs − v)ddc(ψε − ψ) ∧ T

∣
∣
∣
∣

=:|I1| + |I2|.

(5.18)

Since ‖ψ‖∞ ≤ 1,

ddcψε ≤ C‖ψ‖∞
ε2

� ≤ C�

ε2
on B2R .

Using this and the induction hypothesis we get

|I1| ≤ C‖ψ‖∞
ε2

∫

�R

(vs − v)T ∧ � ≤
C‖vs − v‖τk

L1(�R)

skε2
. (5.19)
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Next, we estimate I2. By integration by parts we rewrite it as

I2 =
∫

�R

(ψε − ψ)ddc(vs − v) ∧ T

=
∫

{v≤−s}
(ψε − ψ)(�vs − �v) ∧ T

≤
∫

{v≤−s}
|ψε − ψ |(�vs + �v) ∧ T .

Notice that vs −v = 0 outside {v ≤ −s}. By the Hölder continuity ofψ we have |ψε −ψ | ≤
Cεα . Hence,

|I2| ≤ Cεα

∫

{v≤−s}
(�vs + �v) ∧ T . (5.20)

It follows from Lemma 5.1 that
∫

{v≤−s}
�vs ∧ T =

∫

{v≤−s}
(ddcψ)k ∧ �vs ∧ �n−k−1

≤ 1

sk

∫

�R

(−v)k(ddcψ)k ∧ �vs ∧ �n−k−1

≤ k!‖ψ‖k∞
sk

∫

�R

�k
v ∧ �vs ∧ �n−k−1.

(5.21)

Similarly,
∫

{v≤−s}
�v ∧ T ≤ k!‖ψ‖k∞

sk

∫

�R

�k+1
v ∧ �n−k−1. (5.22)

Using [11, Corollary 3.5-(3)] we obtain
∫

�R

�k
v ∧ �vs ∧ �n−k−1

≤ 2n−1
(

k
∫

�R

�n
vs

+
∫

�R

�n
v + (n − k − 1)

∫

�R

�n
)

≤ 2n−1n(a + C0),

(5.23)

where C0 = ∫
�R

�n . Similarly
∫

�R

�k+1
v ∧ �n−k−1 ≤ 2n−1n(a + C0). (5.24)

Combining (5.21), (5.22), (5.23) (5.24) and the assumption 0 < a ≤ 1 we get that

|I2| ≤ Cεα

sk
.

It follows from the estimates for I1 and I2 that
∫

�R

(vs − v)(ddcψ)k+1 ∧ �n−k−1

=
∫

�R

(vs − v)ddcψ ∧ T

≤ |I1| + |I2| ≤
C‖vs − v‖αk

L1(�R)

skε2
+ Cεα

sk
.
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Finally, we can choose

ε = ‖vs − v‖αk/3
L1(�R)

> 0, αk+1 = ααk/3

(otherwise vs = v and the inequality is obvious). Then
∫

�R

(vs − v)Sk+1 =
∫

�R

(vs − v)(ddcψ)k+1 ∧ �n−k−1

≤ C

sk
‖vs − v‖αk+1

L1(�R)
.

The proof of the step (k + 1) is finished, and so is the proof of the proposition. ��
We state a volume-capacity inequality between the Monge–Ampère measure of a

Hölder continuous plurisubharmonic function and the Bedford–Taylor capacity on quasi-
hyperconvex domains, where subsets are of ε-distance from the boundary.

Theorem 5.9 Let ψ ∈ P SH(�) ∩ C0,α(�) as in (5.1). Suppose 0 < ε < R/4. Then there
exist uniform constants C, τ0 > 0 such that for every compact set K ⊂ Dε(R) ∩ BR/2,

∫

K
(ddcψ)n ≤ C

εn+1 exp

(
−τ0ε

[cap(K ,�R)] 1
n

)

. (5.25)

In particular, for any τ > 0,
∫

K
(ddcψ)n ≤ Cτ

εn+1(τ0ε)n(1+τ)
[cap(K ,�R)]1+τ .

Proof Our first observation is that we only need to consider subsets satisfying cap�(K ) ≤ 1.
Otherwise, if cap�(K ) > 1, then by Lemma 5.6, it follows that cap(K ,�R) ≥ 1/A1. This
implies that for 0 < τ0 ≤ 2n,

exp

(
−τ0ε

[cap(K ,�R)] 1
n

)

≥ exp

⎛

⎝
−τ0ε

A
1
n
1

⎞

⎠ ≥ exp

⎛

⎝
−n R/2

A
1
n
1

⎞

⎠ .

Then, the inequality follows from Corollary 5.2 with some uniform constant C . In what
follows we work with a subset E ⊂ �R satisfying

cap�(E,�R) ≤ 1.

Since the domain �R is fixed, we omit it in capacities formulae. We consider yet another
capacity which takes into account the geometry of the domain. Let E ⊂ �R be a Borel
subset,

capρ(E) := sup

{∫

E
�n

w : w ∈ P SH(�R,�), ρR ≤ w ≤ 0

}

. (5.26)

Recall that −1 ≤ ρ ≤ 0 is the defining function for ∂ M on B2R . By Definition (5.2) we have
−1 ≤ ρR ≤ 0 in �. Hence,

capρ(E) ≤ cap�(E). (5.27)

So capρ(•) does not charge pluripolar sets. Thus, without loss of generality we may assume
K is a compact regular subset, in the sense that hρ,K is continuous in �R . The relative
extremal function of this ρ-capacity is given by

hρ,K (x) = sup
{
w(x) : w ∈ P SH(�R,�), w|K ≤ ρR, w ≤ 0

}
.
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The desired property of hρ,K is that ρR ≤ hρ,K ≤ 0, which implies that hρ,K has zero
boundary value and hρ,K ∈ P0(�). Moreover, for every compact set K ⊂ �R the balayage
argument shows (� + ddchρ,K )n ≡ 0 on �R\K . Therefore,

capρ(K ) ≥
∫

K
(� + ddchρ,K )n =

∫

�R

(� + ddchρ,K )n . (5.28)

(This inequality is indeed an identity, we refer the readers to [2, Proposition 6.5] and its
generalization in [16, 17]). Note that

K ⊂ {hρ,K = ρR} = {hρ,K ≤ ρR}.
Hence

K ⊂ {hρ,K ≤ sup
K

ρR =: δK }.

Write μ := (ddcψ)n . Applying Proposition 5.8 for hρ,K ∈ P0(�) we get

μ(K ) ≤ μ(hρ,K ≤ δK ) ≤ C

|δK |n+1 exp

(−τ̃0|δK |
a

)

,

where

an =
∫

�R

(� + ddchρ,K )n ≤ capρ(K ) ≤ cap�(K ) ≤ 1.

Thus

μ(K ) ≤ C

|δK |n+1 exp

(
−τ̃0|δK |

[cap�(K )] 1
n

)

.

If K ⊂ {z ∈ �R : ρR(z) < −ε} ∩ BR/2, then |δK | = | supK ρR | ≥ ε; hence for such
compact sets

μ(K ) ≤ C

εn+1 exp

(
−τ̃0ε

[cap�(K )] 1
n

)

. (5.29)

By the equivalence of the capacities in Lemma 5.6 the proof of the theorem follows with

τ0 = τ̃0/A
1
n
1 . ��

Remark 5.10 In an interior coordinate chart of M we have the corresponding inequality
due to Dinh–Nguyen–Sibony [19]. Let us identify a fixed holomorphic coordinate ball with
B2R ⊂ C

n . Suppose that
ψ ∈ P SH(B2R) ∩ C0,α(B2R)

with 0 < α ≤ 1. Then, there exist uniform constants C = C(R, ψ) and τ0 = τ0(n, α) > 0
such that for every compact subset K ⊂ BR/2,

∫

K
(ddcψ)n ≤ C exp

(
−τ0

[cap(K , BR)] 1
n

)

. (5.30)

We are in the position to state the main stability estimate of this section.
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Proposition 5.11 Take ψ ∈ P SH(�)∩ C0,α(�) as in (5.1). Assume that u, v ∈ P SH(�)∩
L∞(�) and u = v on {z ∈ � : ρ(z) ≥ −ε}. Then,

∫

�∩BR/2

|u − v|(ddcψ)n ≤ C

εn
‖u − v‖α1

L1(�R)
,

where C = C(�, R, ψ, ‖u‖∞, ‖v‖∞) > 0 and α1 = α1(n, α) > 0 are uniform constants.

Proof Note that

∂(� ∩ BR/2) = (∂� ∩ BR/2) ∪ (� ∩ ∂ BR/2)

= ({ρ = 0} ∩ BR/2) ∪ (� ∩ ∂ BR/2).

By the assumption u = v on {z ∈ � : ρ(z) ≥ −ε} the integrand on the left hand side is zero
near the first portion of the boundary. Furthermoreψ is Hölder continuous plurisubharmonic
function on� a neighborhood of the second boundary portion, so it has finiteMonge–Ampère
mass by the Chern–Levine–Nirenberg inequality.

By subtracting from u, v a constant we may assume that u, v ≤ 0. Also dividing both
sides by (1 + ‖u‖∞)(1 + ‖v‖∞)(1 + ‖ψ‖∞)n we may assume that

−1 ≤ u, v, ψ ≤ 0 on �.

First we suppose v ≥ u. Let 0 ≤ η ≤ 1 be a cut-off function in � such that η ≡ 1 on
� ∩ BR/2 and supp η ⊂ � ∩ B3R/4. Then

supp (η(v − u)) ⊂ Dε(R) ⊂⊂ �R .

Thus it is enough to estimate
∫

�R

η(v − u)(ddcψ)n .

Let us still write ψ for its Hölder continuous extension of ψ ∈ C0,α onto B2R . We are going
to prove, by induction over 0 ≤ k ≤ n, the inequalities

∫

�R

η(v − u)(ddcψ)k ∧ �n−k ≤ C

εk
‖u − v‖τk

L1(�R)
. (5.31)

For k = n it is our statement, for k = 0 the inequality holds with α1 = τ0 = 1. Assume
that the inequality is true for k ∈ [0, n). We need to show it for k + 1 with possibly smaller
τk+1 > 0 and larger C .

Consider the standard regularizing family χt (z) = χ(|z|2/t2) for 0 < t < R/4. Define

Tk = (ddcψ)k ∧ �n−k .

Write ψt = ψ ∗ χt on B2R . Then, for T = (ddcψ)k ∧ �n−k−1 we have
∫

�R

η(v − u)ddcψ ∧ T ≤
∣
∣
∣
∣

∫

�R

η(v − u)ddcψt ∧ T

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

�R

η(v − u)ddc(ψt − ψ) ∧ T

∣
∣
∣
∣

=:|I1| + |I2|.

(5.32)

Since ‖ψ‖∞ ≤ 1,

ddcψt ≤ C‖ψ‖∞
t2

� ≤ C�

t2
on B2R .
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Using this and the induction hypothesis we get

|I1| ≤ C‖ψ‖∞
t2

∫

�R

η(v − u)T ∧ � ≤
C‖v − u‖τk

L1(�R)

t2
. (5.33)

Next, by integration by parts we rewrite the second integral in (5.32) as

I2 =
∫

�R

(ψt − ψ)ddc(η(v − u)) ∧ T .

Compute

ddc[η(v − u)] ∧ T = (v − u)ddcη ∧ T + 2dη ∧ dc(v − u) ∧ T

+ ηddc(v − u) ∧ T .
(5.34)

Note that η is smooth on �, so ddcη ≤ C�. By the Cauchy-Schwarz inequality
∣
∣
∣
∣

∫

(ψt − ψ)dη ∧ dc(v − u) ∧ T

∣
∣
∣
∣

2

≤
∫

Dε(R)

(ψt − ψ)2dη ∧ dcη ∧ T
∫

Dε(R)

d(v − u) ∧ dc(v − u) ∧ T .

Observe that

|ψt (z) − ψ(z)| ≤
∫

B(0,1)
|ψ(z − tw) − ψ(z)|χ(|w|2)dV2n(w)

≤ Cαtα

with Cα the Hölder norm of ψ on �, and dη ∧ dcη ≤ C1�,
∫

Dε(R)

(ψt − ψ)2dη ∧ dcη ∧ T ≤ CαC1t2α
∫

Dε(R)

T ∧ � ≤ Ct2α‖ψ‖k∞
εk

,

where we used Corollary 5.2 for the last inequality. Similarly by Remark 5.3,
∫

Dε(R)

d(v − u) ∧ dc(v − u) ∧ T ≤ C‖ψ‖k∞‖u‖2∞‖v‖2∞
εk+1 .

For the last term in (5.34) using Corollary 5.2 again and the Hölder continuity of ψ we have
∣
∣
∣
∣

∫

Dε(R)

(ψt − ψ)ηddc(v − u) ∧ T

∣
∣
∣
∣ ≤

∫

Dε(R)

|ψt − ψ |η(ddcu + ddcv) ∧ T

≤ Ctα(‖u‖∞ + ‖v‖∞)‖ψ‖k∞
εk+1 .

Combining the above estimates we conclude

|I2| ≤ Ctα

εk+1 . (5.35)

From (5.33) and (5.35) we get

∫

�R

η(v − u)(ddcψ)k+1 ≤ |I1| + |I2| ≤
C‖u − v‖τk

L1(�R)

t2
+ Ctα

εk+1 .
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If ‖u − v‖τk/4
L1(�R)

≥ R/4, then the inequality of step (k + 1) holds for a fixed t = R/8

and τk+1 = ατk/4. On the other hand, we can choose t = ‖u − v‖τk/4
L1(�R)

and this implies
for τk+1 = ατk/4 > 0,

∫

�R

η(v − u)(ddcψ)k+1 ≤ C‖u − v‖τk+1

L1(�R)
.

The induction proof is completed under extra hypothesis v ≥ u. For the general case use the
identity

|u − v| = (max{u, v} − u) + (max{u, v} − v),

and apply the above proof for the pairs (max{u, v}, u) and (max{u, v}, v). ��
By a similar (easier) argument for an interior chart of M , which we identify with the ball

B2R of radius 2R > 0 centered at 0 in C
n , we get the following stability estimate.

Lemma 5.12 Suppose that ψ ∈ P SH(B2R) ∩ C0,α(B2R) with 0 < α ≤ 1. Assume that
u, v ∈ P SH(B2R) ∩ L∞(B2R). Then,

∫

BR/2

|v − u|(ddcψ)n ≤ C‖u − v‖α1
L1(BR)

,

where C = C(R, ψ, ‖u‖∞, ‖v‖∞) and α1 = α1(n, α) > 0 are uniform constants.

Proof Let T = (ddcu)k ∧ (ddcv)� ∧ (ddcψ)m ∧ �n−k−�−m . Since these functions are
plurisubharmonic on B2R , the Chern–Levine–Nirenberg inequality gives

∫

BR

T ≤ C(R)‖u‖k∞‖v‖�∞‖ψ‖m∞.

Then, the proof goes exactly along the lines of the proof of Proposition 5.11. ��

6 Hölder continuous subsolution theorems

In this section we prove Theorem 1.4. We first show that the global capacity is equivalent
to the Bedford–Taylor capacity defined via a finite covering. We fix a finite covering of M
- {Bi (s)}i∈I ∪ {U j (s)} j∈J , where Bi (s) = Bi (xi , s) and U j (s) = U j (y j , s) are coordinate
balls and coordinate half-balls centered at xi and y j respectively, and of radius 0 < s < 1.
We choose s > 0 so small that Bi (2 s) and U j (2 s) are still contained in holomorphic charts.
For any Borel set E ⊂ M we can define another capacity

cap′(E) =
∑

i∈I

cap(E ∩ Bi (s), Bi (2s)) +
∑

j∈J

cap(E ∩ U j (s), U j (2s)), (6.1)

where cap(•, •) on the right hand side is just the Bedford–Taylor capacity.

Proposition 6.1 Two capacities capω and cap′ are equivalent. More precisely, there exists a
uniform constant A0 > 0 such that for any Borel set E ⊂ M,

1

A0
cap′(E) ≤ capω(E) ≤ A0cap′(E). (6.2)
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Proof The proof is an adaptation from [32]. We first prove for a uniform C > 0,

capω(E) ≤ Ccap′(E). (6.3)

Let i ∈ I ∪ J , and let U (s) be either Bi (s) or Ui (s). Assume that ω ≤ ddcg for a strictly
plurisubharmonic function g ≤ 0 on a neighborhood of U (2s). Consider v ∈ P SH(M, ω)

with −1 ≤ v ≤ 0.
∫

E∩U (s)
(ω + ddcv)n ≤

∫

E∩U (s)
(ddc(g + v))n

≤ (‖g‖∞ + 1)ncap(E ∩ U (s), U (2s)).

Since |I ∪ J | is finite, the first inequality follows from the sub-additivity of capω(·). The
inverse inequality will follow if one can show that for a fixed i ∈ I ∪ J and U (s) as above
there is a uniform C > 0 such that

cap(E ∩ U (s), U (2s)) ≤ Ccapω(E). (6.4)

In fact, let v ∈ P SH(U (2 s)) and −1 ≤ v ≤ 0 in U (2 s). We wish to find ṽ such that
ṽ = av − a on U (s), −1 ≤ ṽ ≤ 0 and ṽ ∈ P SH(M, ω), where 0 < a < 1/2 is a uniform
constant depending only on M, ω.

First we take a smooth function η such that η = 0 on M\U (2 s) and η < 0 in U (2 s).
Consider the function εη for ε > 0 small. Sinceω is a Hermitian metric on M , we can choose
ε > 0 depending on η and ω such that εη ∈ P SH(M, ω). Choose 0 < a < 1/2 so that
εη ≤ −3a on U (s). Writing η for εη, we conclude that there exists a smooth ω-psh function
η = 0 on M\U (2 s) and η ≤ −3a on Ū (s) for 0 < a < 1/2.

The function ṽ is defined as follows:

ṽ :=
{
max{av − a, η} on U (2s),

0 on M \ U (2s).
(6.5)

As lim supz→ζ v(z) ≤ −a < η(ζ ) = 0 for ζ ∈ ∂U (2 s) ∩ M , ṽ ∈ P SH(M, ω). It is easy to
see that ṽ satisfies all requirements. Thus,

∫

E
(ω + ddcṽ)n ≥

∫

E∩U (s)
(ω + addcv)n

≥ an
∫

E∩U (s)
(ddcv)n .

By taking supremum over v it implies that cap(E ∩ U (s), U (2 s)) ≤ a−ncapω(E). ��

Using the equivalence of capacities above and local volume-capacity inequalities on
boundary and interior charts (Theorem 5.9 and Remark 5.10) we derive the global measure-
capacity estimate on M . For ε > 0 small let us denote

Mε = {z ∈ M : distω(z, ∂ M) > ε}, (6.6)

where distω(•, ∂ M) is the distance function on M with respect to the Riemannian metric
induced by ω.

Lemma 6.2 Let u ∈ P SH(M, ω) ∩ C0,α(M) for some 0 < α ≤ 1. Let μ be a positive
Borel measure on M. Suppose μ ≤ (ω + ddcu)n in M. Then there exist uniform constants
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C, α0 > 0 (also independent of ε) such that for every compact set K ⊂ Mε ,

μ(K ) ≤ C

εn+1 exp

(

− α0ε

[capω(K )] 1
n

)

.

In particular, for any τ > 0,

μ(K ) ≤ Cτ

εn+1(α0ε)n(1+τ)
[capω(K )]1+τ ,

where Cτ depends additionally on τ.

Proof Cover M by finitelymany coordinate balls Bi (R/2) and coordinate half-ballsU j (R/2)
with R > 0 (fixed) so that Bi (2R) and U j (2R) are still contained in holomorphic charts of
M . Let K ⊂ Mε be a compact set.

Consider its part Ki = K ∩ Bi (R/2) which is contained in an interior chart Bi (2R). On
this chart we can choose a strictly plurisubharmonic function g such that ddcg ≥ ω. Set
ψ = g + u. Then, μ ≤ (ddcψ)n on Bi (2R). Subtracting a constant we may assume that
ψ ≤ 0 on Bi (2R). Applying Remark 5.10 and Proposition 6.1 we get

μ(Ki ) ≤ C exp

(
−τ0

[cap(Ki , BR)] 1
n

)

≤ C exp

(
−τ0

[A0capω(Ki )] 1
n

)

≤ C exp

(
−α0

[capω(K )] 1
n

)

,

where α0 = τ0/A
1
n
0 is a uniform constant and we used capω(Ki ) ≤ capω(K ) in the last

inequality.
Next consider K j = K ∩ U j (R/2) which is contained in a boundary chart � = U j (2R).

Similarly as above μ ≤ (ddcψ)n on � for a negative Hölder continuous ψ on � which is
plurisubharmonic in �. Now Theorem 5.9 and Proposition 6.1 give

μ(K j ) ≤ C

εn+1 exp

(
−τ0ε

[cap(K j ,�R)] 1
n

)

≤ C

εn+1 exp

(
−τ0ε

[cap′(K )] 1
n

)

≤ C

εn+1 exp

⎛

⎝
−τ0ε

A
1
n
0 [capω(K )] 1

n

⎞

⎠ .
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Since |I ∪ J | is finite, we conclude
μ(K ) ≤

∑

i∈I

μ(Ki ) +
∑

j∈J

μ(K j )

≤ C1 exp

(
−α0

[capω(K )] 1
n

)

+ C2

εn+1 exp

(
−α0ε

[capω(K )] 1
n

)

≤ C

εn+1 exp

(
−α0ε

[capω(K )] 1
n

)

.

This is the desired estimate. ��
We now fix the notation to finish the proof of Theorem 1.4. Let μ be a positive Borel

measure on M . Suppose that there exists u ∈ P SH(M, ω) ∩ C0,α(M) with 0 < α ≤ 1, a
Hölder continuous subsolution for μ on M , satisfying

u|∂ M
= ϕ ∈ C0,α(∂ M).

By Theorem 1.2 and Corollary 4.6 there exists a solution u ∈ P SH(M, ω)∩C0(M) solving

(ω + ddcu)n = μ, lim
z→q

u(z) = ϕ(q) for every q ∈ ∂ M . (6.7)

Proposition 6.3 Let u ∈ P SH(M, ω) ∩ L∞(M) be the solution to (6.7). Let v ∈
P SH(M, ω) ∩ L∞(M) be such that v = u on M\Mε. Then there is 0 < α2 ≤ 1 such
that

sup
M

(v − u) ≤ C

ε3n+1

(∫

M
max{v − u, 0}dμ

)α2

,

where C = C(M, ω, u, ‖u‖∞, ‖v‖∞) and α2 = α2(n, α) > 0 are uniform constants.

Proof Subtracting a constant and then dividing both sides of the inequality by (1+ ‖u‖∞ +
‖v‖∞) we may assume that

−1 ≤ u, v ≤ 0 on M .

Let us assume also that −s0 = supM (v − u) > 0, otherwise the statement trivially follows.
We will make use of Theorem 4.3. There for a given number 0 < θ < 1 we defined

θ0 := 1

3
min

{

θn,
θ3

16B
, 4(1 − θ)θn, 4(1 − θ)

θ3

16B
, |s0|

}

,

m(θ) = infM [u − (1 − θ)v] and U (θ, t) := {u < (1 − θ)v + m(θ) + t} for 0 < t < θ0.
Then, for 0 < θ < |s0|/3 and 0 < t < θ0 we have

s0 + θ + 2t ≤ 0.

Since −1 ≤ u, v ≤ 0, it is clear that

s0 − θ ≤ m(θ) ≤ s0.

It follows that

U (θ, 2t) ⊂ {u < v + s0 + θ + 2t} ⊂ Mε,

where in the last inclusion the assumption v = u on M\Mε is used.
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Now the proof is identical to the one in [36, Proposition 2.4] except that we need to replace
[36, Lemma 2.6] there by Lemma 6.2 at the cost of extra factor ε−n(2+τ)−1 in the uniform
constants. If we fix τ = 1 in that lemma then

μ(K ) ≤ Cα[cap(K ,�)]2
(α0ε)3n+1 .

Therefore as in [36, Proposition 2.4] we can now take

α2 = 1

1 + (n + 2)(n + 1)
. ��

The next step is to estimate L1(dμ)-norm in terms of L1(dV2n)-norm. Again this estimate
is obtained for functions that are equal outside Mε.

Lemma 6.4 Let u be the solution to the Eq. (6.7). Let v ∈ P SH(M, ω) ∩ L∞(M) be such
that v = u on M\Mε. Then there is 0 < α3 ≤ 1 such that

∫

M
|u − v|dμ ≤ C

εn

(∫

M
|u − v|dV2n

)α3

,

where C = C(M, ω, u, ‖u‖∞, ‖v‖∞) and α3 = α3(n, α) > 0 are uniform constants.

Proof As usual we cover M by a finite number of coordinate balls and half-balls of radius
R/2 so that the ones with radius 2R are still contained in holomorphic charts. On a local
coordinate chart V consider a strictly plurisubharmonic function g ≤ 0 such that

ddcg ≥ ω.

Then we write u′ = u + g, v′ = v + g and ψ = u + g. They are plurisubharmonic functions
on V . Moreover,

μ ≤ (ω + ddcu)n ≤ (ddcψ)n on V ,

where ψ ∈ C0,α(V ) is a Hölder continuous plurisubharmonic function on V .
On an interior chart B2R of M by Lemma 5.12 we have

∫

BR/2

|u − v|dμ ≤
∫

BR/2

|u′ − v′|(ddcψ)n ≤ C

(∫

BR

|u′ − v′|dV2n

)α′

.

This is bounded by C
(∫

M |u − v|dV2n
)α′

.

We now consider the case of a boundary chart �. Let ρ be is the defining function of ∂ M
on � as in Sect. 5. Then, there exists a uniform constant c0 > 0 such that

|ρ(z)| ≥ c0distω(z, ∂ M) for all z ∈ �

(shrinking � if necessary so that distω is a smooth function in �). Hence u = v on {|ρ(z)| ≤
c0ε} by the assumption. Without loss of generality we may assume c0 = 1. The conclusion
follows from Proposition 5.11.

Since the covering is finite, the proof of the lemma follows. ��
We now proceed to find the Hölder exponent of the solution u of the Eq. (6.7) over M .

By subtracting a uniform constant we may assume that

u ≤ 0 on M .
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Let δ > 0 be small. For z ∈ Mδ we define

ûδ(z) = sup{u(x) : x ∈ M and distω(x, z) ≤ δ}. (6.8)

where distω is the Riemannian distance induced by the metric ω. We wish to show that there
exist constants c0 > 0, δ0 > 0 and an exponent 0 < τ ≤ 1 such that for every 0 < δ ≤ δ0,

sup
Mδ

(̂uδ − u) = sup
Mδ

(̂uδ − u) ≤ c0δ
τ . (6.9)

To do it let us fix a small constant δ0 > 0 such that for every 0 < δ < δ0, supMδ
(uδ −

u) ≤ Cδα (for which we use Hölder continuity of the subsolution). Now we consider two
parameters δ, ε such that

0 < δ ≤ ε < δ0. (6.10)

By a classical argument we obtain the following estimate on the (ε, δ)-collars near the
boundary ∂ M .

Lemma 6.5 Consider 0 < δ ≤ ε < δ0. There is 0 < τ1 ≤ 1 such that for z ∈ Mδ \ Mε,

ûδ(z) ≤ u(z) + c1ε
τ1 ,

where τ1 depends only on M, ω and α the Hölder exponent of u. Moreover, for z ∈ M and
q ∈ ∂ M with distω(z, q) ≤ δ we have

|u(z) − u(q)| ≤ c1δ
τ1 .

Proof Let h1 ∈ C0(M, R) be the unique solution to the linear PDE:

(ω + ddch1) ∧ ωn−1 = 0,

h1 = ϕ on ∂ M .
(6.11)

Note that (ω + ddcu) ∧ ωn−1 ≥ 0. The maximum principle for the Laplace operator with
respect toω gives u ≤ h1. It is classical fact from [28, Theorem6] (see also [46, Theorem5.3])
that h1 is also Hölder continuous on M :

h1 ∈ C0,τ1(M),

with 0 < τ1 ≤ α (decreasing τ1 if necessary). Fix z ∈ Mδ\Mε. Since u is continuous, there
exists a point zδ ∈ M with distω(zδ, z) ≤ δ such that u(zδ) = ûδ(z). Let q ∈ ∂ M be the
point that is closest to z, i.e., distω(z, q) ≤ ε. By the fact that u ≤ u ≤ h1 on M we have

ûδ(z) − u(z) = u(zδ) − u(z) ≤ h1(zδ) − u(z).

Since h1(q) = ϕ(q) = u(q), it follows that

h1(zδ) − u(z) = (h1(zδ) − h1(q)) + (u(q) − u(z))

≤ (h1(zδ) − h1(z)) + (h1(z) − h1(q)) + (u(q) − u(z))

≤ C(δτ1 + ετ1),

where C is maximum of the Hölder norms of h1 and u on M . Because δ ≤ ε, the proof of
the first inequality is completed. The remaining inequality follows from a similar argument.

��
Remark 6.6 The constants c1, τ1 in the last lemma are independent of parameters δ, ε. This
applies also to all uniform constants appearing in the estimates that follow.
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Corollary 6.7 The Hölder continuity of u over M will follow once we prove (6.9).

Proof We need to justify that for every x, y ∈ M ,

|u(x) − u(y)| ≤ Cdistω(x, y)τ ,

where τ = τ1 in Lemma 6.5. We may assume that 0 < distω(x, y) = δ ≤ δ0, and
distω(x, ∂ M) = δx ≤ δy = distω(y, ∂ M).

Case 1: δy ≤ δ. Then there exist qx , qy ∈ ∂ M such that distω(x, qx ) ≤ δ and
distω(y, qy) ≤ δ. Since distω(qx , qy) ≤ 3δ, by the Hölder continuity of u we have
|u(qx ) − u(qy)| = |u(qx ) − u(qy)| ≤ Cδτ . It follows from Lemma 6.5 that

|u(x) − u(y)| ≤ |u(x) − u(qx )| + |u(y) − u(qy)| + |u(qx ) − u(qy)|
≤ Cdistω(x, y)τ .

Case 2: δx ≥ δ. Then, u(y) ≤ ûδ(x) and u(x) ≤ ûδ(y). Therefore, u(x) − u(y) ≤
ûδ(y) − u(y) ≤ Cδτ by (6.9). Similarly, u(y) − u(x) ≤ Cδτ .

Case 3: δx < δ < δy . Without loss of generality we may assume that δ is a regular value
of distω(•, ∂ M); that means: there exists a point p ∈ ∂ Mδ , which is the intersection of the
shortest path joining x, y and ∂ Mδ , such that

max{distω(x, p), distω(y, p)} ≤ δ.

Hence,

|u(x) − u(y)| ≤ |u(x) − u(p)| + |u(y) − u(p)| ≤ Cdistω(x, y)τ ,

where we used Case 1 and Case 2 for the last inequality. ��
Now we use the global regularization of a quasi-plurisubharmonic function due to

Demailly [14] which provides a lower bound on the complex Hessian.
Let u be the continuous solution to the Eq. (6.7). Consider

ρδu(z) = 1

δ2n

∫

ζ∈Tz M
u(exphz(ζ ))χ

( |ζ |2ω
δ2

)
dVω(ζ ), z ∈ Mδ, δ > 0; (6.12)

where ζ → exphz(ζ ) is the (formal) holomorphic part of the Taylor expansion of the expo-
nential map of the Chern connection on the tangent bundle of M associated to ω, and the
mollifier χ : R+ → R+ is given by (5.7) above.

By [14, Remark 4.6] we have for 0 < t < δ0 small

ρt u(z) =
∫

|x |<1
u(z + t x)χ(|x |2)dV2n(x) + O(t2)

= u ∗ χt (z) + O(t2)

(6.13)

in the normal coordinate system centered at z (see [14, Proposition 2.9]). Since the metric ω

is smooth on M , the distance function satisfies

distω(z, x) = |z − x | + O(|z − x |2)
as x → z. It follows that for 0 < δ ≤ δ0 (δ0 small enough)

ρδu(z) ≤ sup
|z−x |≤δ

u(x) + Cδ2 ≤ û2δ(z) + c2δ for every z ∈ Mδ. (6.14)

We observe that to prove the Hölder continuity it is enough to work with this geodesic
convolution.
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Lemma 6.8 Suppose that there exist constants 0 < τ ≤ 1 and C > 0 such that for 0 < δ ≤
δ0,

ρδu(z) − u(z) ≤ Cδτ for every z ∈ Mδ. (6.15)

Then u is Hölder continuous on M.

Proof By Corollary 6.7 it is enough to verify the inequality (6.9), i.e,

sup
Mδ

(̂uδ − u) ≤ C ′δτ .

First, it follows from (6.13) that in normal coordinates containing ball of radius δ we have
u ∗ χδ − u ≤ Cδτ . Therefore, (5.12) implies ǔδ/2 − u ≤ Cδτ . Now, the proof of the
required inequality follows the lines of argument given in [26, Lemma 4.2] (see also [48,
Theorem 3.2]). ��

Now let us state the important estimate for the complex Hessian of ρδu. The proof of
the following variation of [14, Proposition 3.8] and [3, Lemma 1.12] was given in [37,
Lemma 4.1].

Lemma 6.9 Let 0 < δ < δ0 and ρt u be as in (6.12). Define the Kiselman-Legendre transform
with level b > 0 by

uδ,b(z) = inf
t∈[0,δ]

(

ρt u(z) + K t2 + K t − b log
t

δ

)

, (6.16)

Then for some positive constant K depending on the curvature, the function ρt u + K t2 is
increasing in t and the following estimate holds:

ω + ddcuδ,b ≥ −(Ab + 2K δ) ω on Mδ. (6.17)

where A is a lower bound of the negative part of the Chern curvature of ω.

Thanks to this lemma we construct anω-psh functionUδ which approximates the solution
u.

Lemma 6.10 Let 0 < τ ≤ 1 and b = (δτ −2K δ)/A = O(δτ ), where K , A, δ are parameters
in Lemma 6.9. Define Uδ := (1 − δτ )uδ,b. Then, Uδ ∈ P SH(Mδ, ω) satisfies

Uδ ≤ u + c3δ
τ + c1ε

τ1 on ∂ Mε.

Moreover,

Uδ ≤ ρδu + c3δ
τ on Mδ,

where c1, c3 are uniform constants independent of ε and δ.

Proof By Lemma 6.9 we have ω + ddcUδ ≥ δ2τω. The monotonicity of ρt u + K t2 implies

u ≤ uδ,b ≤ ρδu + 2K δ on Mδ. (6.18)

On the boundary ∂ Mε, using (6.14) and Lemma 6.5 (with δ′ = 2δ < ε), we have

ρδu ≤ û2δ + c2δ ≤ u + c1ε
τ1 + c2δ. (6.19)

Since uδ,b ≤ 0 is uniformly bounded, it is easy to see that

(1 − δτ )uδ,b ≤ uδ,b + Cδτ . (6.20)
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By (6.18), (6.19) and (6.20) we have on ∂ Mε,

Uδ ≤ ρδu + 2K δ + Cδτ

≤ u + c1ε
τ1 + (2K + c2)δ + Cδτ .

(6.21)

The proof of on the boundary part is completed by taking c3 = 2K + c2 + C . Furthermore,
combining (6.18) and (6.20) we get Uδ ≤ ρδu + c3δτ on Mδ. ��

By this lemma and the stability estimates we get the following bound.

Proposition 6.11 Let 0 < δ ≤ ε ≤ δ0. Let Uδ be the function defined in Lemma 6.10. Then,

sup
Mδ

(Uδ − u) ≤ Cδα2α3

ε4n+1 + c1ε
τ1 ,

where the exponents α2, α3 > 0 and τ1 are from Proposition 6.3, Lemmas 6.4, and 6.5,
respectively.

Proof Using Lemma 6.10 we can produce:

Ũδ =
{
max{Uδ − c1ετ1 − c3δτ , u} on Mε,

u on M \ Mε,
(6.22)

which is an ω-psh function on M . Next we apply Proposition 6.3 to get that for some
0 < α2 ≤ 1,

sup
M

(Ũδ − u) ≤ C

ε3n+1

∥
∥(Ũδ − u)+

∥
∥α2

L1(dμ)
. (6.23)

Note that 0 < δ ≤ ε, so Mε ⊂ Mδ . Then,

(Ũδ − u)+ = max{Uδ − c1ε
τ1 − c3δ

τ − u, 0} · 1Mε

≤ max{ρδu − u, 0} · 1Mε ,

where we used Uδ − c3δτ − u ≤ ρδu − u on Mδ (Lemma 6.10) for the second inequality.
Hence,

(Ũδ − u)+ = 1Mδ · (Ũδ − u)+ ≤ 1Mδ · (ρδ − u)+.

This combined with Lemma 6.4 gives for some 0 < α3 ≤ 1,

‖(Ũδ − u)+‖L1(dμ) ≤ C

εn
‖(Ũδ − u)+‖α3

L1(dV2n)

≤ C

εn
‖1Mδ · (ρδ − u)+‖α3

L1(dV2n)
.

(6.24)

The next step is to show that L1-norm on the right hand side has a desired bound. Covering
M2δ be finitely many normal charts (contained in coordinates balls or coordinate half-balls)
and invoking the inequalities (6.13), (5.11) and Lemma 5.4 one obtains that for 0 < δ < δ0,

∫

M2δ

(ρδu − u)+dV2n ≤ Cδ2 + Cδ.

This implies
∫

Mδ

(ρδ − u)+dV2n ≤ C
∫

Mδ\M2δ

dV2n +
∫

M2δ

(ρδ − u)+dV2n ≤ Cδ, (6.25)
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where we used the compactness of M to get V2n(Mδ\M2δ) ≤ Cδ.
We conclude from (6.23), (6.24), (6.25) and 0 < α2, α3 ≤ 1 that

sup
M

(Ũδ − u) ≤ Cδα2α3

ε4n+1 . (6.26)

Notice that

sup
Mδ

(Uδ − u) ≤ max

{

sup
Mε

(Uδ − u), sup
Mδ\Mε

(Uδ − u)

}

≤ max

{

sup
M

(Ũδ − u), sup
Mδ\Mε

(Uδ − u)

}

.

Combining this with (6.26) and Lemma 6.5 we get

sup
Mδ

(Uδ − u) ≤ sup
M

(Ũδ − u) + c1ε
τ1

≤ Cδα2α3

ε4n+1 + c1ε
τ1 .

This is the desired inequality. ��
We are ready to verify the hypothesis of Lemma 6.8.

End of the proof of the Hölder continuity of u Let us choose α4 = α2α3/2(4n + 1) > 0 and
ε = δα4 , then Proposition 6.11 implies

sup
Mδ

(Uδ − u) ≤ Cδα4 + c1δ
τ1α4 on Mδ.

Therefore it follows from uδ,b ≤ 0 and 0 < τ1, α4 ≤ 1 that

uδ,b − u ≤ Uδ − u ≤ Cδτ1α4 on Mδ. (6.27)

Let us fix a point z ∈ Mδ . The minimum in the definition of uδ,b is realized at t0 = t0(z).
So, at this point we have

ρt0u + K t20 + K t0 − b log(t0/δ) − u ≤ Cδτ1α4 .

Since ρt u + K t2 + K t − u ≥ 0, we have b log(t0/δ) ≥ −Cδτ1α4 . Hence,

t0 ≥ e−Cδτ1α4/b δ,

where

δτ1α4

b
= Aδτ1α4

δτ − 2K δ
.

Now we choose τ = τ1α4 > 0, so b ≥ δα1α4/2A, which implies

t0 ≥ c4δ

with c4 = e−2C A as a uniform constant.
Since t �→ ρt u + K t2 is increasing in t ,

ρc4δu(z) + K (c4δ)
2 + K (c4δ) − u(z)

≤ ρt0u(z) + K t20 + K t0 − b log(t0/δ) − u(z)

= uδ,b(z) − u(z)

≤ Cδτ ,
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where we used the definition of t0 and (6.27) for the third identity and the last inequality,
respectively. Hence, ρc4δu(z) − u(z) ≤ Cδτ ≤ Cδτ . The desired estimate is obtained by
rescaling δ := c4δ. ��

Let us give the proof of uniqueness of solutions on Stein manifolds or when ω is Kähler.
We will need a variation of Lemma 4.1 for the proof of uniqueness on Stein manifolds. In
this setting there exists a strictly plurisubharmonic function on the whole manifold. This is
a straightforward generalization of [35, Theorem 3.1].

Lemma 6.12 Fix θ > 0 small. Let u, v ∈ P SH(M, ω) ∩ L∞(M) be such that
lim inf z→∂ M (u − v) ≥ 0. Suppose that −s0 = supM (v − u) > 0 and ω + ddcv ≥ θω

in M. Then for any 0 < s < θ0 = min{ θn

16B , |s0|},
∫

{u<v+s0+s}
ωn

v ≤
(

1 + CnB s

θn

)∫

{u<v+s0+s}
ωn

u .

Proof of Corollary 1.5 We first assume that ω is Kähler. Let ε > 0 and define uε = max{u +
ε, v}. Then, uε ≥ u +ε on M and by the assumption we have uε = u +ε near ∂ M . Moreover,
since ωn

v ≥ ωn
u , it follows from a well-known inequality of Demailly that
(
ω + ddc max{u + ε, v})n ≥ 1{u+ε≥v}ωn

u + 1{u+ε<v}ωn
v ≥ ωn

u .

Applying a result of Błocki [5, Theorem 2.3] for uε and u + ε we get uε = u + ε on M
(strictly speaking he only stated for continuous functions, but the proof works for bounded
functions). Thus, u + ε ≥ v on M . Letting ε to zero we get the proof of the corollary in the
first case.

Next, suppose that M is a Stein manifold and ω is a Hermitian metric on M . Let ρ ∈
C∞(M) be a strictly plurisubharmonic exhaustive function for M . As in the previous case
we only need to prove u + ε ≥ v on M for a fixed ε > 0, then let ε to zero. Hence we may
assume that lim inf z→∂ M (u − v)(z) ≥ ε.

Let M ′ ⊂⊂ M be such that u ≥ v + ε on M\M ′. By subtracting a uniform constant we
may assume that u, v ≤ 0 and −C0 ≤ ρ ≤ 0 on M ′ for some constant C0 > 0. Under these
assumptions the proof follows the lines of the one in [35, Corollary 3.4] after replacing � by
M ′ and the comparison principle by Lemma 6.12. ��
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