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Abstract
We find examples of cohomogeneity one metrics on S4 and CP2 with positive sectional
curvature that lose this property when evolved via Ricci flow. These metrics are arbitrarily
small perturbations of Grove–Ziller metrics with flat planes that become instantly negatively
curved under Ricci flow.

Mathematics Subject Classification 53C21

1 Introduction

The Ricci flow ∂
∂t g(t) = −2Ricg(t) of Riemannian metrics on a smooth manifold is an evo-

lution equation that continues to drive a wide range of breakthroughs in Geometric Analysis,
see e.g. [4] for a survey. One of the keys to using Ricci flow is to control how the curvature
of g(t) evolves; in particular, which curvature conditions of the original metric g(0) are pre-
served. Our main result establishes that, in dimension n = 4, positive sectional curvature
(sec > 0) is not among them:
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Theorem A There exist smooth Riemannian metrics with sec > 0 on S4 andCP2 that evolve
under the Ricci flow to metrics with sectional curvatures of mixed sign.

In contrast, sec > 0 is preserved on closed manifolds of dimension n ≤ 3, by the seminal
work of Hamilton [14]. Moreover, it was previously known [15] that Ric > 0 is not preserved
in dimension n = 4, even among Kähler metrics, but these examples do not have sec > 0.
AlthoughTheoremAdoes not readily extend to alln > 4, there are examples of homogeneous
metrics on flag manifolds of dimensions 6, 12, and 24 with sec > 0 that lose that property
when evolved viaRicci flow, see [1, 9, 10].A state-of-the-art discussion ofRicci flow invariant
curvature conditions can be found in [5], see also Remark 5.1.

Theorem A builds on our earlier result [6] that certain metrics with sec ≥ 0, introduced
by Grove and Ziller [12] in a much broader context (see Sect. 2.1.1), immediately acquire
negatively curved planes on S4 and CP2, when evolved under Ricci flow. In light of the
appropriate continuous dependence of Ricci flowon its initial data [3], themetrics in Theorem
A are obtained by means of:

Theorem B Every Grove–Ziller metric on S4 or CP2 is the limit (in C∞-topology) of coho-
mogeneity one metrics with sec > 0.

In full generality, the problem of perturbing sec ≥ 0 to sec > 0 is notoriously difficult, see
e.g. [20, Prob. 2]. Aside from clearly being unobstructed on S4 and CP2, the deformation
problem is facilitated here by the presence of natural directions for perturbation, given by
the round metric and the Fubini–Study metric, respectively. Indeed, we deform sec ≥ 0
into sec > 0 in Theorem B by linearly interpolating lengths of Killing vector fields for the
SO(3)-action which is isometric for both the Grove–Ziller metric g0 and the standard metric
g1 on these spaces. The resulting SO(3)-invariant metrics gs , s ∈ [0, 1], are smooth and have
sec > 0 for all sufficiently small s > 0. For a lower-dimensional illustration, consider the
T2-action on S3 ⊂ C2 via (eiθ1 , eiθ2) · (z, w) = (

eiθ1 z, eiθ2w
)
, and invariant metrics

g = dr2 + ϕ(r)2 dθ21 + ξ(r)2 dθ22 , 0 < r < π
2 ,

written along the geodesic segment γ (r) = (sin r , cos r). The functions ϕ and ξ encode the
g-lengths of the Killing fields ∂

∂θ1
and ∂

∂θ2
respectively, and must satisfy certain smoothness

conditions at the endpoints r = 0 and r = π
2 . The unit round metric g1 is given by setting ϕ

and ξ to be ϕ1(r) = sin r and ξ1(r) = cos r , while a Grove–Ziller metric g0 corresponds to
concave monotone functions ϕ0 and ξ0 that plateau at a constant value b > 0 for at least half
of

[
0, π

2

]
. The curvature operator of g is easily seen to be diagonal, with eigenvalues−ϕ′′/ϕ,

−ξ ′′/ξ , and −ϕ′ξ ′/ϕξ , see e.g. [16, Sect. 4.2.4], so it has sec ≥ 0 if and only if ϕ and ξ are
concave and monotone, and sec > 0 if and only if they are strictly concave and monotone.
Thus,

ϕs = (1 − s) ϕ0 + s ϕ1 and ξs = (1 − s) ξ0 + s ξ1

give rise to metrics gs deforming g0 to have sec > 0 for s > 0. It turns out that a similar
approach works for proving Theorem B, with the addition of a third (nowhere vanishing)
function ψ , to deal with SO(3)-invariant metrics on 4-manifolds. The biggest challenge is
verifying that these metrics have sec > 0, since that is no longer equivalent to positive-
definiteness of the curvature operator if n ≥ 4. To overcome this difficulty, we use a much
simpler algebraic characterization of sec > 0 in dimension n = 4, given by the Finsler–
Thorpe trick (Proposition 2.2).

Motivated by the above, it is natural to ask whether the set of cohomogeneity one metrics
with sec ≥ 0 on a given closed manifold coincides with the closure (say, in C2-topology)
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of the set of such metrics with sec > 0, if the latter is nonempty. In contrast to Theorem B,
there is some evidence to suggest that Grove–Ziller metrics on certain 7-manifolds cannot
be perturbed to have sec > 0, see [21, Sect. 4].

This paper is organized as follows. Backgroundmaterial on cohomogeneity onemanifolds
and theFinsler–Thorpe trick in dimension 4 is presented inSect. 2. The smoothness conditions
and curvature operator of SO(3)-invariant metrics on S4 and CP2 are discussed in Sect. 3.
Sect. 4 contains the proof of Theorem B, focusing mainly on the case of S4, since the proof
for CP2 is mostly analogous. Finally, Theorem A is proved in Sect. 5.

2 Preliminaries

2.1 Cohomogeneity one

We briefly discuss the geometry of cohomogeneity one manifolds to fix notations, see [2, 6,
12, 13, 19, 21] for details.

A cohomogeneity one manifold is a Riemannian manifold (M, g) endowed with an iso-
metric action by a Lie group G, such that the orbit space M/G is one-dimensional. Let
π : M → M/G be the projection map. Throughout, we assume M/G = [0, L] is a closed
interval, and the nonprincipal orbits B− = π−1(0) and B+ = π−1(L) are singular orbits.
In other words, B± are smooth submanifolds of dimension strictly smaller than the principal
orbitsπ−1(r), r ∈ (0, L), which are smooth hypersurfaces ofM . Fix x− ∈ B−, and consider a
minimal geodesic γ (r) inM joining x− to B+, meeting it at x+ = γ (L); that is, γ is a horizon-
tal lift of [0, L] toM . Denote by K± the isotropy group at x±, and byH the isotropy at γ (r), for
r ∈ (0, L). By the Slice Theorem, given r±

max > 0 so that r+
max+r−

max = L , the tubular neigh-
borhoods D(B−) = π−1

([
0, r−

max

])
and D(B+) = π−1

([
L − r+

max, L
])

of the singular
orbits are disk bundles over B− and B+. Let Dl±+1 be the normal disks to B± at x±. Then K±
acts transitively on the boundary ∂Dl±+1, with isotropyH, so ∂Dl±+1 = Sl± = K±/H, and the
K±-action on ∂Dl±+1 extends to a K±-action on all of Dl±+1. Moreover, there are equivariant
diffeomorphisms D(B±) ∼= G×K± D

l±+1, andM ∼= D(B−)∪D(B+),where the latter is given
by gluing these disk bundles along their common boundary ∂D(B±) ∼= G ×K± Sl± ∼= G/H.
In this situation, one associates to M the group diagram

H ⊂ {K−, K+} ⊂ G.

Conversely, given a group diagram as above, where K±/H are spheres, there exists a coho-
mogeneity one manifold M given as the union of the above disk bundles.

Fix a bi-invariant metric Q on the Lie algebra g of G, and set n = h⊥, where h ⊂ g

is the Lie algebra of H. Identifying n ∼= Tγ (r)(G/H) for each 0 < r < L via action fields
X �→ X∗

γ (r), any G-invariant metric on M can be written as

g = dr2 + gr , 0 < r < L, (2.1)

along the geodesicγ (r),where gr is a 1-parameter family of left-invariantmetrics onG/H, i.e.,
of Ad(H)-invariant metrics on n. As r ↘ 0 and r ↗ L , the metrics gr degenerate, according
to how G(γ (r)) ∼= G/H collapse to B± = G/K±. Namely, they satisfy smoothness conditions
that characterize when a tensor defined by means of (2.1) on M \ (B− ∪ B+) ∼= (0, L)×G/H
extends smoothly to all of M , see [19].
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2.1.1 Grove–Ziller metrics

If both singular orbits B± of a cohomogeneity onemanifoldM have codimension two, thenM
can be endowed with a new G-invariant metric gGZ with sec ≥ 0, as shown in the celebrated
work of Grove and Ziller [12, Thm. 2.6]. We now describe this construction, building metrics
with sec ≥ 0 on each disk bundle D(B±) that restrict to a fixed product metric dr2 + b2Q|n
near ∂D(B±) ∼= G/H, so that these two pieces can be isometrically glued together.

Consider one such disk bundle D(B) at a time, say over a singular orbit B = G/K, and let
k be the Lie algebra of K. Setm = k⊥ and p = h⊥ ∩k, so that g = m⊕p⊕h is a Q-orthogonal
direct sum. Since p is 1-dimensional, the metric Qa,b on G, given by

Qa,b|m := b2 Q|m, Qa,b|p := ab2 Q|p, Qa,b|h := b2 Q|h,

has sec ≥ 0 whenever 0 < a ≤ 4
3 and b > 0, see [12, Prop. 2.4] or [8, Lemma 3.2]. Fix

1 < a ≤ 4
3 , and let rmax > 0 be such that

y := ρ
√
a√

a−1
satisfies y < rmax, (2.2)

where ρ = ρ(b) is the radius of the circle(s) K/H endowed with the metric b2 Q|p. Then, we
can find a smooth nondecreasing function f : [0, rmax] → R and some 0 < r0 < rmax, with
f (0) = 0, f ′(0) = 1, f (2n)(0) = 0 for alln ∈ N, f ′′(r) ≤ 0 for all r ∈ [0, rmax], f (3)(r) > 0
for all r ∈ [0, r0), and f (r) ≡ y for all r ∈ [r0, rmax]. The rotationally symmetric metric
gD2 = dr2 + f (r)2dθ2, 0 < r ≤ rmax, on the punctured disk D2 \ {0} extends to a smooth
metric gD2 on D2 with sec ≥ 0 that, near ∂D2 = {r = rmax}, is isometric to a round cylinder
[r0, rmax]× S1(y) of radius y. Thus, the product manifold (G×D2, Qa,b+gD2) has sec ≥ 0,
and so does the orbit space D(B) ∼= G×K D2 of the K-action on G×D2, when endowed with
the metric gGZ that makes the projection map 
 : (G× D2, Qa,b + gD2) → (G×K D2, gGZ)

a Riemannian submersion. Writing this metric gGZ in the form (2.1), we have

gGZ = dr2 + b2 Q|m + f (r)2a
f (r)2+aρ2 b

2 Q|p, 0 < r ≤ rmax, (2.3)

see e.g. [12, Lemma 2.1, Rem. 2.7] or [8, Lemma 3.1 (ii)]. In particular, gGZ = dr2 +b2 Q|n
for all r ∈ [r0, rmax], since

f (r)2a
f (r)2+aρ2 ≡ 1 for all such r ; hence (D(B), gGZ) is isometric to

the prescribed product metric near ∂D(B) ∼= G/H.
This construction can be performed on each disk bundle D(B±) with the same b > 0,

provided r±
max > 0 are chosen sufficiently large so that (2.2) holds for the corresponding radii

ρ±(b) of the circles K±/H endowed with the metric b2 Q|p± . Gluing these two disk bundles
together, we obtain the desiredG-invariantmetric gGZ with sec ≥ 0 onM ∼= D(B−)∪D(B+)

and M/G = [0, L], where L = r+
max + r−

max. Although it is natural to pick the same (largest)
value for r±

max, so that the gluing occurs at r = L
2 , it is convenient to not impose this restriction.

Note that

L = r+
max + r−

max >
√
a√

a−1

(
ρ+(b) + ρ−(b)

)
, (2.4)

if the gluing interface ∂D(B±) is isometric to (G/H, b2Q|n). Conversely, given 1 < a ≤ 4
3 ,

b > 0, and L satisfying (2.4), there exists a Grove–Ziller metric on M with gluing interface
(G/H, b2Q|n), induced by Qa,b + gD2 , and with M/G = [0, L].
Remark 2.1 Although this is not a requirement in the original Grove–Ziller construction,
we assume that f (3)(r) > 0 on [0, r0), hence the curvature of (D2, gD2) is monotonically
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decreasing for r ∈ [0, r0). As a consequence, for each 0 < r∗ < r0, there is a constant c > 0,
depending on r∗, so that secgD2 ≥ c for all r ∈ [0, r∗].

2.2 Finsler–Thorpe trick

In order to verify sec > 0 on Riemannian 4-manifolds, we shall use a result that became
known in the Geometric Analysis community as Thorpe’s trick, attributed to Thorpe [18],
but that actually follows from much earlier work of Finsler [11], and is often referred to as
Finsler’s Lemma inConvexAlgebraicGeometry. This rathermultifaceted result is also known
as the S-lemma, or S-procedure, in the mathematical optimization and control literature, see
e.g. [17]. Details and other geometric perspectives can be found in [7].

Let Sym2
b(∧2Rn) ⊂ Sym2(∧2Rn) be the subspace of symmetric endomorphisms

R : ∧2 Rn → ∧2Rn that satisfy the first Bianchi identity. These objects are called alge-
braic curvature operators, and serve as pointwise models for the curvature operators of
Riemannian n-manifolds. For instance, R ∈ Sym2

b(∧2Rn) is said to have sec ≥ 0, respec-
tively sec > 0, if the restriction of the quadratic form 〈R(σ ), σ 〉 to the oriented Grassmannian
Gr+2 (Rn) ⊂ ∧2Rn of 2-planes is nonnegative, respectively positive. A Riemannian manifold
(Mn, g) has sec ≥ 0, or sec > 0, if and only if its curvature operator Rp ∈ Sym2

b(∧2TpM)

has sec ≥ 0, or sec > 0, for all p ∈ M .
The orthogonal complement to Sym2

b(∧2Rn) is identified with∧4Rn ; so, if n = 4, it is 1-
dimensional, and spanned by theHodge star operator ∗. Sinceσ ∈ ∧2R4 satisfiesσ∧σ = 0 if
and only if 〈∗σ, σ 〉 = 0, the quadric defined by ∗ in∧2R4 is precisely the Plücker embedding
Gr+2 (R4) ⊂ ∧2R4. As shown by Finsler [11], a quadratic form 〈R(σ ), σ 〉 is nonnegative
when restricted to the quadric 〈∗σ, σ 〉 = 0 if and only if some linear combination of R and
∗ is positive-semidefinite, yielding:

Proposition 2.2 (Finsler–Thorpe trick) Let R ∈ Sym2
b(∧2R4) be an algebraic curvature

operator. Then R has sec ≥ 0, respectively sec > 0, if and only if there exists τ ∈ R such
that R + τ ∗ � 0, respectively R + τ ∗ � 0.

Remark 2.3 For a given R ∈ Sym2
b(∧2R4) with sec ≥ 0, the set of τ ∈ R such that

R + τ ∗ � 0 is a closed interval [τmin, τmax], which degenerates to a single point, i.e.,
τmin = τmax, if and only if R does not have sec > 0, see [7, Prop. 3.1]

The equivalences given by Finsler–Thorpe’s trick offer substantial computational advan-
tages to test for sec ≥ 0 or sec > 0, see the discussion in [7, Sect. 5.4].

3 Cohomogeneity one structure of S4 andCP2

Both S4 andCP2 admit a cohomogeneity one action by G = SO(3) as we now recall, see [6,
Sect. 3] and [21, Sect. 2] for details. The G-action on S4 is the restriction to the unit sphere of
the SO(3)-action by conjugation on the space of symmetric traceless 3×3 realmatrices, while
the G-action on CP2 is a subaction of the transitive SU(3)-action. The corresponding orbit
spaces are S4/G = [

0, π
3

]
and CP2/G = [

0, π
4

]
, endowing S4 with the round metric with

sec ≡ 1, and CP2 with the Fubini–Study metric with 1 ≤ sec ≤ 4. Their group diagrams
are as follows:

S4 : Z2 ⊕ Z2 ∼= S(O(1)O(1)O(1)) ⊂ {S(O(1)O(2)), S(O(2)O(1))} ⊂ SO(3),

CP2 : Z2 ∼= 〈diag(−1,−1, 1)〉 ⊂ {S(O(1)O(2)), SO(2)1,2} ⊂ SO(3),
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π
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√
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2

1

Fig. 1 Graphs of ϕ1, ψ1, ξ1, for S4 (left) and CP2 (right)

according to an appropriate choice of minimal geodesic γ (r), r ∈ [0, L], see [6, Sect. 3]. In
both cases, since H is discrete, n ∼= g = so(3). We henceforth fix Q to be the bi-invariant
metric such that {E23, E31, E12} is a Q-orthonormal basis of so(3), where Ei j is the skew-
symmetric 3×3 matrix with a +1 in the (i, j) entry, a −1 in the ( j, i) entry, and zeros in the
remaining entries. The 1-dimensional subspaces nk = span(Ei j ), where (i, j, k) is a cyclic
permutation of (1, 2, 3), are pairwise inequivalent for the adjoint action of H in the case of
S4, while n1 and n2 are equivalent in the case of CP2, but neither is equivalent to n3.

Collectively denoting S4 and CP2 with the above cohomogeneity one structures by M4,
we consider diagonal G-invariant metrics g on M4, i.e., metrics of the form

g = dr2 + ϕ(r)2 Q|n1 + ψ(r)2 Q|n2 + ξ(r)2 Q|n3 , 0 < r < L, (3.1)

where L = π
3 or L = π

4 according to whether M4 = S4 or M4 = CP2, cf. (2.1). Note
that every G-invariant metric on S4 is of the above form, i.e., nk are pairwise orthogonal, but
n1 and n2 need not be orthogonal for all G-invariant metrics on CP2, i.e., the off-diagonal
term g(E∗

23, E
∗
31) need not vanish identically. The standard metric on M4, with curvatures

normalized as above, is obtained setting ϕ,ψ, ξ to

S4 : ϕ1(r) = 2 sin r , ψ1(r) = √
3 cos r + sin r , ξ1(r) = √

3 cos r − sin r ,

CP2 : ϕ1(r) = sin r , ψ1(r) = cos r , ξ1(r) = cos 2r ,
(3.2)

see Fig. 1 for their graphs.

3.1 Smoothness

The conditions required of ϕ,ψ, ξ for the metric g in (3.1), which is defined on the open
dense set M4 \ (B− ∪ B+) ∼= (0, L)×G/H, to extend smoothly to all of M4 can be extracted
from [19] as follows:

Proposition 3.1 Let ϕ,ψ, ξ be smooth positive functions on (0, L) which extend smoothly to
r = 0 and r = L. Then, the G-invariant metric (3.1) on M4 \ (B− ∪ B+) extends to a smooth
metric on M4 if and only if ϕ,ψ, ξ satisfy the following, where φk are smooth, z = L − r ,
and ε > 0 is small:
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M4 Smoothness conditions on ϕ, ψ, ξ

S4

L = π
3

(i) ϕ(0) = 0, ϕ′(0) = 2, ϕ(2n)(0) = 0, for all n ≥ 1,
(ii) ψ(r)2 + ξ(r)2 = φ1(r

2), for all r ∈ [0, ε),
(iii) ψ(r)2 − ξ(r)2 = r φ2(r

2), for all r ∈ [0, ε),
(iv) ξ(L) = 0, ξ ′(L) = −2, ξ (2n)(L) = 0, for all n ≥ 1,
(v) ψ(z)2 + ϕ(z)2 = φ3(z

2), for all z ∈ [0, ε),
(vi) ψ(z)2 − ϕ(z)2 = z φ4(z

2), for all z ∈ [0, ε).

CP2

L = π
4

(i) ϕ(0) = 0, ϕ′(0) = 1, ϕ(2n)(0) = 0, for all n ≥ 1,
(ii) ψ(r)2 + ξ(r)2 = φ5(r

2), for all r ∈ [0, ε),
(iii) ψ(r)2 − ξ(r)2 = r2 φ6(r

2), for all r ∈ [0, ε),
(iv) ξ(L) = 0, ξ ′(L) = −2, ξ (2n)(L) = 0, for all n ≥ 1,
(v) ψ(z)2 + ϕ(z)2 = φ7(z

2), for all z ∈ [0, ε),
(vi) ψ(z)2 − ϕ(z)2 = z φ8(z

2), for all z ∈ [0, ε).

Proof By [19, Thm. 2], the metric g in (3.1) extends smoothly to all of M4 if and only if its
components satisfy certain functional equations determined from the equivariant geometry
of M4. These equations can be obtained following the discussion in [19, Sect. 3.1, 3.2].

For simplicity, we only analyze the equations corresponding to smoothness at the singular
orbit B− in the case M4 = S4, i.e., conditions (i), (ii), and (iii). Equation (4) in [19] implies
that smoothness in the direction p = span(E23) is equivalent to ϕ(r)2 = a21r

2 + r4φ(r2),
r ∈ [0, ε), where φ is smooth and a1 = |L∩H|, for L = {exp(θE23) : 0 ≤ θ ≤ 2π}. A simple
computation shows that a1 = 2, so the above functional equation is equivalent to (i) by routine
Taylor series arguments. From [19, Lemma 5], smoothness of g on m = span(E12, E31) is
equivalent to

[
ψ(r)2 0
0 ξ(r)2

]
=

[
φ1(r2) 0

0 φ1(r2)

]
+ r2d/a1

[
φ2(r2) 0

0 −φ2(r2)

]
, r ∈ [0, ε),

where φ1, φ2 are smooth, and d is the speed with which L ∼= S1 acts by rotations on m.
Another simple computation gives d = 1, so the above yields (ii) and (iii). ��
Remark 3.2 Since the isotropy groups K± for the G-action on S4 are conjugate, the smooth-
ness conditions at the endpoints r = 0 and r = L can be obtained from one another by
interchanging the roles of ϕ and ξ . Furthermore, just as the round metric (3.2), all metrics
we consider on S4 have the following additional symmetries:

ϕ(r) = ξ (L − r) , and ψ(r) = ψ (L − r) , for all 0 ≤ r ≤ L. (3.3)

However, metrics on CP2 do not have any of these features or extra symmetries, as K± are
not conjugate, and, in general ϕ(r) �= ξ (L − r) and ψ(r) �= ψ (L − r).

3.2 Curvature

Computing the curvature operator of the G-invariant metric (3.1) on M4, with the formulae
in [13, Prop. 1.12], one obtains the following:

Proposition 3.3 Let {ei }3i=0 be the g-orthonormal frame along the geodesic γ (r), 0 < r < L,
given by e0 = γ ′(r), e1 = 1

ϕ(r) E
∗
23, e2 = 1

ψ(r) E
∗
31, e3 = 1

ξ(r) E
∗
12, i.e., e0 is the unit horizontal

direction and {e1, e2, e3} are unit Killing vector fields. In the basisB := {e2∧e3, e0∧e1, e3∧
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e1, e0 ∧ e2, e1 ∧ e2, e0 ∧ e3}, the curvature operator R : ∧2 Tγ (r)M4 → ∧2Tγ (r)M4,
0 < r < L, is block diagonal, that is, R = diag(R1, R2, R3), with 2 × 2 blocks given as
follows:

R1 =
⎡

⎣
ψ4+ξ4−ϕ4+2(ξ2−ϕ2)(ϕ2−ψ2)

4ϕ2ψ2ξ2
− ψ ′ξ ′

ψξ
ψ ′(ψ2+ϕ2−ξ2)

2ϕψ2ξ
+ ξ ′(ξ2+ϕ2−ψ2)

2ϕψξ2
− ϕ′

ψξ

ψ ′(ψ2+ϕ2−ξ2)

2ϕψ2ξ
+ ξ ′(ξ2+ϕ2−ψ2)

2ϕψξ2
− ϕ′

ψξ
−ϕ′′

ϕ

⎤

⎦ ,

R2 =
⎡

⎣
ϕ4+ξ4−ψ4+2(ϕ2−ψ2)(ψ2−ξ2)

4ϕ2ψ2ξ2
− ϕ′ξ ′

ϕξ
ϕ′(ϕ2+ψ2−ξ2)

2ϕ2ψξ
+ ξ ′(ξ2+ψ2−ϕ2)

2ϕψξ2
− ψ ′

ϕξ

ϕ′(ϕ2+ψ2−ξ2)

2ϕ2ψξ
+ ξ ′(ξ2+ψ2−ϕ2)

2ϕψξ2
− ψ ′

ϕξ
−ψ ′′

ψ

⎤

⎦ ,

R3 =
⎡

⎣
ϕ4+ψ4−ξ4+2(ψ2−ξ2)(ξ2−ϕ2)

4ϕ2ψ2ξ2
− ϕ′ψ ′

ϕψ
ϕ′(ϕ2+ξ2−ψ2)

2ϕ2ψξ
+ ψ ′(ψ2+ξ2−ϕ2)

2ϕψ2ξ
− ξ ′

ϕψ

ϕ′(ϕ2+ξ2−ψ2)

2ϕ2ψξ
+ ψ ′(ψ2+ξ2−ϕ2)

2ϕψ2ξ
− ξ ′

ϕψ
− ξ ′′

ξ

⎤

⎦ .

The Hodge star operator ∗ is also clearly block diagonal in the basis B, namely,

∗ = diag(H , H , H), where H =
[
0 1
1 0

]
. (3.4)

Thus, by the Finsler–Thorpe trick (Proposition 2.2), such R = diag(R1, R2, R3) as in Propo-
sition 3.3 has sec ≥ 0, respectively sec > 0, if and only if there exists τ(r) such that
Ri + τ H � 0 for i = 1, 2, 3, respectively Ri + τ H � 0 for i = 1, 2, 3.

Remark 3.4 Diagonal entries in Ri are sectional curvatures sec(ei ∧e j ) = Ri ji j of coordinate
planes, while off-diagonal entries are Ri jkl , with i, j, k, l all distinct, so the Finsler–Thorpe
trick states that sec ≥ 0 and sec > 0 are respectively equivalent to the existence of τ such
that all Ri ji j Rklkl − (Ri jkl + τ)2 are ≥ 0 and > 0.

To illustrate the above, note that setting ϕ,ψ, ξ to be the functions in (3.2) that correspond
to the standard metrics in S4 and CP2, the blocks Ri become constant:

S4 : R1 = R2 = R3 =
[
1 0
0 1

]
,

CP2 : R1 = R2 =
[
1 −1

−1 1

]
, R3 =

[
4 2
2 4

]
.

(3.5)

In particular, τ can be chosen constant, and R + τ ∗ � 0 if and only if τ ∈ [−1, 1] for S4,
and τ ∈ [0, 2] for CP2, and R + τ ∗ � 0 if and only if τ is in the open intervals.

Similarly, the curvature of a Grove–Ziller metric with gluing interface ∂D(B±) isometric
to (G/H, b2Q|n) and L = r+

max + r−
max can be computed by setting ϕ,ψ, ξ instead to be the

functions that make (3.1) match with (2.3), namely (see Fig. 2)

ϕ(r) =
⎧
⎨

⎩

f (r) b
√
a√

f (r)2+aρ2
, if r ∈ (

0, r−
max

]
, where ρ = ρ−(b), f = f−,

b, if r ∈ [
r−
max, L

)
,

ψ(r) ≡ b,

ξ(r) =
⎧
⎨

⎩

b, if r ∈ (
0, r−

max

]
,

f (L−r) b
√
a√

f (L−r)2+aρ2
, if r ∈ [

r−
max, L

)
, where ρ = ρ+(b), f = f+,

(3.6)

as m = n2 ⊕ n3 and p = n1 for the disk bundle D(B−), but ϕ and ξ switch roles on the disk

bundle D(B+), inwhichm = n1⊕n2 and p = n3. Recall that f (r) ≡
√
a ρ√
a−1

for r0 ≤ r ≤ rmax
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on each of D(B±), so, in a neighborhood of the gluing interface r = r−
max = L − r+

max, the
functions ϕ = ψ = ξ are all constant and equal to b.

In what follows, to simplify the exposition, we shall work with ϕ,ψ, ξ only on the interval(
0, r−

max

]
, which, at least on S4, determines their values for all 0 < r < L by setting

r+
max = r−

max and imposing the additional symmetries (3.3), see Remark 3.2.
Straightforward computations using Proposition 3.3 imply the following:

Proposition 3.5 The curvature operator of the Grove–Ziller metric (2.3); i.e., the metric (3.1)
with ϕ,ψ, ξ as in (3.6), for r ∈ (

0, r−
max

]
, is R = diag(R1, R2, R3), with:

R1 =
[
4b2−3ϕ2

4b4
− ϕ′

b2

− ϕ′
b2

−ϕ′′
ϕ

]

, R2 = R3 =
[

ϕ2

4b4
ϕ′
2b2

ϕ′
2b2

0

]

.

In particular, R + τ ∗ � 0 if and only if τ = − ϕ′
2b2

.

Indeed, it is easy to verify that τ = − ϕ′
2b2

is the only function τ(r), r ∈ (
0, r−

max

]
,

such that R + τ ∗ � 0. Namely, for such r , we have that [Ri + τH ]22 ≡ 0 for both

i = 2, 3, and hence det(R2 + τH) = −
(

ϕ′
2b2

+ τ
)2 ≥ 0. This pointwise uniqueness of τ

corresponds to the presence of flat planes for the Grove–Ziller metric at every point γ (r);
e.g., sec(e0 ∧ e2) ≡ 0 for all r . It is interesting to observe how this (forceful) choice of τ

stemming from Ri + τH � 0, i = 2, 3, also satisfies R1 + τH � 0, i.e., how the expression

for ϕ in (3.6) ensures det(R1 + τH) = ( 4b2−3ϕ2

4b4
)( − ϕ′′

ϕ

) − ( 3ϕ′
2b2

)2 ≥ 0.

Lemma 3.6 The function ϕ(r) in the Grove–Ziller metric (2.3), given by (3.6) for r ∈(
0, r−

max

]
, satisfies (4b2 − 3ϕ2)(−ϕ′′) − 9ϕϕ′2 ≥ 0 for all r ∈ (

0, r−
max

]
.

Proof Solving for f (r) in (3.6), we find f (r) = ϕ(r)ρ
√
a√

ab2−ϕ(r)2
; in particular, we have that

ϕ(r) <
√
a b. Differentiating twice, it follows that:

f ′′ = a3/2b2ρ

(ab2 − ϕ2)5/2

(
ϕ′′(ab2 − ϕ2) + 3ϕϕ′2). (3.7)

Since f ′′ ≤ 0, we have ϕ′′(ab2 − ϕ2) + 3ϕϕ′2 ≤ 0, so (3ab2 − 3ϕ2)(−ϕ′′) − 9ϕϕ′2 ≥ 0,
which implies the desired differential inequality since a ≤ 4

3 . ��

4 Positively curvedmetrics near Grove–Ziller metrics

In this section, we prove Theorem B in the Introduction, perturbing arbitrary Grove–Ziller
metrics with sec ≥ 0 on S4 and CP2 into cohomogeneity one metrics that we show have
sec > 0 via the Finsler–Thorpe trick (Proposition 2.2).

4.1 Metric perturbation

Let M4 be either S4 or CP2, with the cohomogeneity one action of G = SO(3) from the
previous section. Given a Grove–Ziller metric gGZ on M4 with gluing interface isometric
to (G/H, b2Q|n), we have that the length of the circle(s) K±/H endowed with the metric
b2 Q|p± is ρ±(b) = b/|(K±)0 ∩H|, where K0 is the identity component of K. From the group
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r−
max = π

6
L = π

3

b

π
6

r−
max = π

6
L = π

4

b

π
12

Fig. 2 Graphs of ϕ0, ψ0, ξ0, for S4 (left) and CP2 (right), cf. (3.6). The upper bound on b and r−
max = π

6
follow from (4.1)

diagrams, we compute |(K±)0 ∩ H| and obtain ρ±(b) = b/2 if M4 = S4, while ρ−(b) = b
and ρ+(b) = b/2 ifM4 = CP2. Thus, by (2.4), the length L of the orbit spaceM/G = [0, L]
satisfies L >

√
a√

a−1
b if M4 = S4, and L >

3
√
a

2
√
a−1

b if M4 = CP2. Rescaling (M4, gGZ)

so that L = π
3 if M4 = S4, and L = π

4 if M4 = CP2, we obtain a Grove–Ziller metric g0
homothetic to gGZ, with standardized L , and whose parameters a and b satisfy

b < π
3

√
a−1√
a

if M4 = S4, and b < π
6

√
a−1√
a

if M4 = CP2. (4.1)

Using (2.2), it follows that r±
max = π

6 for M4 = S4, while r−
max = π

6 and r+
max = π

12 for
M4 = CP2. Note that ϕ1(r) = ξ1(r) precisely at these values of r = r−

max.
Writing g0 in the form (3.1) we obtain the functions ϕ,ψ, ξ in (3.6), which we decorate

with the subindex 0, i.e., ϕ0, ψ0, ξ0. Similarly, let g1 be the standard metric on M4, and use
a subindex 1 to decorate the ϕ,ψ, ξ given in (3.2). Now, define:

ϕs(r) := (1 − s)ϕ0(r) + s ϕ1(r),

ψs(r) := (1 − s)ψ0(r) + s ψ1(r), r ∈ [0, L] ,

ξs(r) := (1 − s) ξ0(r) + s ξ1(r),

(4.2)

i.e., linearly interpolate from ϕ0, ψ0, ξ0 to ϕ1, ψ1, ξ1, and set gs , s ∈ [0, 1], to be

gs := dr2 + ϕs(r)
2 Q|n1 + ψs(r)

2 Q|n2 + ξs(r)
2 Q|n3 , 0 < r < L. (4.3)

The functions (4.2) can be visualized as affine homotopies between Figs. 1 and 2.
It is a straightforward consequence of Proposition 3.1 that gs are smooth metrics:

Lemma 4.1 The G-invariant metrics gs , s ∈ [0, 1], defined on M4 \ (B− ∪ B+) by (4.3),
extend to smooth metrics on M4, which we also denote by gs , s ∈ [0, 1].
Proof For simplicity, we focus on the case M4 = S4, and the case M4 = CP2 is left to the
reader. The metrics gs are clearly smooth away from the singular orbits, which correspond
to r = 0 and r = L . In light of Remark 3.2, it suffices to check the smoothness conditions
(i)–(iii) in Proposition 3.1, i.e., those regarding r = 0.

First, since ϕ
(k)
s (r) = (1 − s)ϕ(k)

0 (r) + s ϕ
(k)
1 (r) for all k ≥ 0, it is clear that ϕs satisfies

(i), as both ϕ0 and ϕ1 do. Second, if r ∈ [
0, r−

max

]
, then ψ0(r) = ξ0(r) = b, cf. (3.6), so
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ψs(r) = (1 − s)b + s ψ1(r) and ξs(r) = (1 − s)b + s ξ1(r), and thus:

ψs(r)
2 + ξs(r)

2 = 2(1 − s)2b2 + 2s(1 − s)b(ψ1(r) + ξ1(r)) + s2
(
ψ1(r)

2 + ξ1(r)
2)

= 2(1 − s)2b2 + 4s(1 − s)b
√
3 cos r + s2φ1(r

2) = φ̃1(r
2),

ψs(r)
2 − ξs(r)

2 = 2s(1 − s)b (ψ1(r) − ξ1(r)) + s2
(
ψ1(r)

2 − ξ1(r)
2)

= 2s(1 − s)b (−2 sin r) + s2 r φ2(r
2) = r φ̃2(r

2),

where φ̃k , k = 1, 2, are smooth functions, hence (ii) and (iii) are also satisfied. ��
Let us introduce functions �ϕ,�ψ,�ξ of r so that (4.2) can be written as

ϕs = ϕ0 + s �ϕ, ψs = ψ0 + s �ψ, ξs = ξ0 + s �ξ , (4.4)

i.e., �ϕ(r) := ϕ1(r)−ϕ0(r), and similarly for �ψ and �ξ . Note that each of these functions
is smooth up to r = 0 and r = L; in particular, bounded on [0, L]. In the sequel, we take the
point of view (4.4) that ϕs, ψs, ξs are perturbations of ϕ0, ψ0, ξ0.

4.2 Regularity of perturbation

By (4.3), Lemma 4.1, and Proposition 3.3, each entry of the curvature operator matrix Rs of
gs along γ (r) is a smooth function

P(ϕs, ψs, ξs, ϕ′
s, ψ ′

s, ξ ′
s, ϕ′′

s , ψ ′′
s , ξ ′′

s )

ϕ2
s ψ2

s ξ2s
, (4.5)

where P is a polynomial. Note that the gs-orthonormal basis on which the matrix Rs is
being written varies smoothly with s. The singularities in (4.5) at r = 0 and r = L , due to
ϕs(0) = 0 and ξs(L) = 0, are removable as a consequence of Lemma 4.1. This corresponds
to the fact that also P vanishes to the appropriate order because ϕs, ψs, ξs satisfy the required
smoothness conditions. Moreover, these smoothness conditions imply that (4.5) equals

P(ϕs, ψs, ξs, ϕ′
s, ψ ′

s, ξ ′
s, ϕ′′

s , ψ ′′
s , ξ ′′

s )

ϕ2
0 ψ2

0 ξ20
+ Q(s, r) s, (4.6)

where Q is continuous. Furthermore, by (4.4), the numerator above can be written as a
polynomial P̃ in the parameter s, the functionsϕ0, ψ0, ξ0 and their first and secondderivatives,
and the functions�ϕ,�ψ,�ξ and their first and second derivatives (indicated as . . . below).
Thus, (4.6) and hence (4.5) are equal to

P̃(s, ϕ0, ψ0, ξ0, . . . ,�ϕ, �ψ, �ξ , . . . )

ϕ2
0 ψ2

0 ξ20
+ Q(s, r) s. (4.7)

In particular, the dependence of the above on s is polynomial in the first term, and smooth
on the second. Expanding in s, we have

P̃(s, ϕ0, ψ0, ξ0, . . . , �ϕ,�ψ,�ξ , . . . ) =
d∑

n=0

P̃n(ϕ0, ψ0, ξ0, . . . , �ϕ,�ψ,�ξ , . . . ) s
n,

where P̃n are polynomials. Each coefficient in this sum is a smooth function of r that vanishes
at r = 0 and r = L in such way that the limits of (4.7) as r ↘ 0 and r ↗ L are both finite, so
the corresponding coefficients in (4.7) extend to smooth (hence bounded) functions on [0, L].
Thus, P̃(s, ϕ0, ψ0, ξ0, . . . , �ϕ, �ψ, �ξ , . . . )/ϕ

2
0 ψ2

0 ξ20 can be regarded as a polynomial
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in the variable s whose coefficients are continuous functions of r . We will implicitly (and
repeatedly) use this fact in what follows.

Notation We use O(sn), respectively O(rm), to denote any functions of the form sn F(s, r),
respectively rm F(s, r), where F : [0, 1] × [0, L] → R is bounded.

4.3 Positive curvature on S4

To simplify the exposition, we shall focus primarily on the case M4 = S4, in which r±
max =

L
2 = π

6 and it suffices to verify sec > 0 along the geodesic segment γ (r) with r ∈ [
0, r−

max

]

due to the additional symmetries (3.3), cf. Remark 3.2.
Let Rs = diag

(
(Rs)1, (Rs)2, (Rs)3

)
be the curvature operator of (S4, gs) along γ (r),

given by Proposition 3.3, where ϕ,ψ, ξ are set to be ϕs, ψs, ξs defined in (4.2). As discussed
above, Rs , s ∈ [0, 1], extends smoothly to r = 0, and this extension (as well as its entries)
will be denoted by the same symbol(s). Clearly, R0 is the curvature operator of the Grove–

Ziller metric g0, so R0 + τ0 ∗ � 0 for all r ∈ [
0, r−

max

]
, where τ0 := − ϕ′

0
2b2

, see Proposition
3.5. The proof of Theorem B hinges on the next:

Claim 4.2 If s > 0 is sufficiently small, then Rs + τs ∗ � 0 for all r ∈ [
0, r−

max

]
, with

τs(r) := τ0(r) + 2(
√
3 − b)

b3
s = −ϕ′

0(r)

2b2
+ 2(

√
3 − b)

b3
s. (4.8)

We begin the journey towards Claim 4.2 observing that certain diagonal entries of Rs ,
which are sectional curvatures with respect to gs , are positive for all s ∈ (0, 1].
Proposition 4.3 For all s ∈ (0, 1] and r ∈ [

0, r−
max

]
, the following hold:

(i) [(Rs)i ]22 = secgs (e0 ∧ ei ) > 0 for 1 ≤ i ≤ 3;
(ii) [(Rs)1]11 = secgs (e2 ∧ e3) > 0.

Proof As the round metric g1 has sec ≡ 1, we have ϕ′′
1 (r) < 0, ψ ′′

1 (r) < 0, ξ ′′
1 (r) < 0 by

Proposition 3.3, cf. (3.2) and (3.5). Thus ϕ′′
s (r) < 0, ψ ′′

s (r) < 0, ξ ′′
s (r) < 0 for all s ∈ (0, 1]

and r ∈ [
0, r−

max

]
, which implies, by Proposition 3.3, that secgs (e0 ∧ ei ) > 0, for i = 2, 3.

In the case of secgs (e0 ∧ e1), a further argument is required at r = 0. Namely, using the
smoothness conditions, we see that if s ∈ (0, 1], then

lim
r↘0

secgs (e0 ∧ e1)(r) = (1 − s) secg0(e0 ∧ e1)(0) + s secg1(e0 ∧ e1)(0) > 0,

where (e0 ∧ e1)(r) denotes the 2-plane in Tγ (r)S4 spanned by e0 and e1, which concludes
the proof of (i). Regarding (ii), if s ∈ (0, 1] and r ∈ (

0, r−
max

]
, then

ϕs ≤ ξs < ψs, ξ ′
s < 0, ψ ′

s ≥ 0,

which implies that

secgs (e2 ∧ e3) = ψ4
s + ξ4s − ϕ4

s + 2(ξ2s − ϕ2
s )(ϕ

2
s − ψ2

s )

4ϕ2
s ψ2

s ξ2s
− ψ ′

sξ
′
s

ψsξs

= (ξ2s − ψ2
s )2

4ϕ2
s ψ2

s ξ2s
+ 2ψ2

s − ϕ2
s

4ψ2
s ξ2s

+ ξ2s − ϕ2
s

2ψ2
s ξ2s

− ψ ′
sξ

′
s

ψsξs
≥ b2

4ψ2
s ξ2s

,

since 2ψ2
s − ϕ2

s ≥ ψ2
s and ψs ≥ ψ0 ≡ b is uniformly bounded from below. ��
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Let us introduce functions ηi , μi , νi , i = 1, 2, 3, such that the blocks of the curvature
operator Rs = diag

(
(Rs)1, (Rs)2, (Rs)3

)
of gs can be written as a perturbation

(Rs)i = (R0)i +
[
ηi (s, r) μi (s, r)
μi (s, r) νi (s, r)

]
, i = 1, 2, 3, (4.9)

of the blocks of the curvature operator R0 = diag
(
(R0)1, (R0)2, (R0)3

)
of the Grove–Ziller

metric g0. Recall that, for r ∈ (
0, r−

max

]
, these blocks (R0)i are computed in Proposition 3.5,

setting ϕ = ϕ0, i.e., ϕ is given by (3.6). Clearly, each of ηi , μi , νi is O(sn) for some n ≥ 1.

4.3.1 First block

We first analyze the block i = 1 of the matrices Rs and Rs + τs ∗.
Proposition 4.4 For all r ∈ [

0, r−
max

]
, the entries of (Rs)1 satisfy:

η1(s, r) =
(
3ϕ0

2b5
(ϕ0(�ψ + �ξ) − b�ϕ) − �ψ + �ξ

b3

)
s + O(s2),

μ1(s, r) =
(

ϕ0(ψ
′
1 + ξ ′

1)

2b3
− �′

ϕ

b2
+ ϕ′

0

b3
(�ψ + �ξ)

)

s + O(s2),

ν1(s, r) =
(

−ϕ′′
1ϕ0 + ϕ′′

0ϕ1

ϕ2
0

)

s + O(s2).

Proof First, let us consider η1. From Proposition 3.3,

[(Rs)1]11 = ψ4
s + ξ4s − ϕ4

s + 2(ξ2s − ϕ2
s )(ϕ

2
s − ψ2

s )

4ϕ2
s ψ2

s ξ2s
− ψ ′

sξ
′
s

ψsξs

= (ξ2s − ψ2
s )2

4ϕ2
s ψ2

s ξ2s
− 3ϕ2

s

4ψ2
s ξ2s

+ ξ2s + ψ2
s

2ψ2
s ξ2s

− ψ ′
sξ

′
s

ψsξs
.

We analyze these four terms separately using (4.4), as follows

− 3ϕ2
s

4ψ2
s ξ2s

= −3ϕ2
0

4b4
− 3ϕ0

2b5
(b�ϕ − ϕ0(�ψ + �ξ))s + O(s2),

ξ2s + ψ2
s

2ψ2
s ξ2s

= 1

b2
− �ψ + �ξ

b3
s + O(s2),

(ξ2s − ψ2
s )2

4ϕ2
s ψ2

s ξ2s
= O(s2), −ψ ′

sξ
′
s

ψsξs
= O(s2).

Therefore, adding the above together, we find:

[(Rs)1]11 = 4b2 − 3ϕ2
0

4b4
+

(
3ϕ0

2b5
(ϕ0(�ψ + �ξ) − b�ϕ) − �ψ + �ξ

b3

)
s + O(s2),

which establishes the claimed expansion of η1(s, r) = [(Rs)1]11 − 4b2−3ϕ2
0

4b4
, cf. (4.9).

Next, consider μ1. From Proposition 3.3,

[(Rs)1]12 = ξ ′
s(ξ

2
s + ϕ2

s − ψ2
s )

2ϕs ψs ξ2s
+ ψ ′

s(ϕ
2
s + ψ2

s − ξ2s )

2ϕs ψ2
s ξs

− ϕ′
s

ψs ξs

= (ξ2s − ψ2
s )(ξ ′

sψs − ψ ′
sξs)

2ϕs ψ2
s ξ2s

+ ϕs(ξ
′
sψs + ψ ′

sξs)

2ψ2
s ξ2s

− ϕ′
s

ψs ξs
.
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We analyze these three terms separately, using (4.4), as before:

(ξ2s − ψ2
s )(ξ ′

sψs − ψ ′
sξs)

2ϕs ψ2
s ξ2s

= O(s2),
ϕs(ξ

′
sψs + ψ ′

sξs)

2ψ2
s ξ2s

= ϕ0(ψ
′
1 + ξ ′

1)

2b3
s + O(s2),

− ϕ′
s

ψs ξs
= −ϕ′

0

b2
+

(
ϕ′
0(�ψ + �ξ)

b3
− �′

ϕ

b2

)

s + O(s2).

Thus, adding the above, we have:

[(Rs)1]12 = −ϕ′
0

b2
+

(
ϕ0(ψ

′
1 + ξ ′

1)

2b3
− �′

ϕ

b2
+ ϕ′

0(�ψ + �ξ)

b3

)

s + O(s2),

which establishes the claimed expansion of μ1(s, r) = [(Rs)1]12 + ϕ′
0

b2
, cf. (4.9).

Finally, let us consider ν1. From Proposition 3.3, we have:

[(Rs)1]22 = −ϕ′′
s

ϕs
= −ϕ′′

0

ϕ0
+

(
−ϕ′′

1ϕ0 + ϕ′′
0ϕ1

ϕ2
0

)

s + O(s2),

which establishes the claimed expansion of ν1(s, r) = [(Rs)1]22 + ϕ′′
0

ϕ0
, cf. (4.9). ��

Proposition 4.5 If s > 0 is sufficiently small, then the matrix

(Rs)1 + τs H =
⎡

⎣
4b2−3ϕ2

0
4b4

+ η1(s, r) − 3ϕ′
0

2b2
+ μ1(s, r) + 2(

√
3−b)
b3

s

− 3ϕ′
0

2b2
+ μ1(s, r) + 2(

√
3−b)
b3

s −ϕ′′
0

ϕ0
+ ν1(s, r)

⎤

⎦

is positive-definite for all r ∈ [
0, r−

max

]
.

Proof The expression above for (Rs)1 + τs H follows from Proposition 3.5, as well as (3.4),
(4.8), and (4.9). From Proposition 4.3 (ii), we know that [(Rs)1]11 > 0 for all s ∈ (0, 1] and
r ∈ [

0, r−
max

]
. So, by Sylvester’s criterion, it suffices to show that if s > 0 is sufficiently

small, then the following is positive:

det
(
(Rs)1 + τs H

) =
(
4b2 − 3ϕ2

0

4b4

) (
−ϕ′′

0

ϕ0

)
−

(
3ϕ′

0

2b2

)2

− ϕ′′
0

ϕ0
η1(s, r)

+ 4b2 − 3ϕ2
0

4b4
ν1(s, r) + 3ϕ′

0

b2

(

μ1(s, r) + 2(
√
3 − b)

b3
s

)

+ η1(s, r) ν1(s, r) −
(

μ1(s, r) + 2(
√
3 − b)

b3
s

)2

.
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By Proposition 4.4, we have det
(
(Rs)1 + τs H

) = A(r) + B(r) s + O(s2), where

A(r) :=
(
4b2 − 3ϕ2

0

4b4

) (
−ϕ′′

0

ϕ0

)
−

(
3ϕ′

0

2b2

)2

,

B(r) :=
(

−ϕ′′
0

ϕ0

) (
3ϕ0

2b5
(ϕ0(�ψ + �ξ) − b�ϕ) − �ψ + �ξ

b3

)

+
(
4b2 − 3ϕ2

0

4b4

) (
−ϕ′′

1ϕ0 + ϕ′′
0ϕ1

ϕ2
0

)

+ 3ϕ′
0

b2

(
ϕ0(ψ

′
1 + ξ ′

1)

2b3
− �′

ϕ

b2
+ ϕ′

0

b3
(�ψ + �ξ) + 2(

√
3 − b)

b3

)

.

Note that A(r) ≥ 0 if r ∈ [
0, r−

max

]
by Lemma 3.6, but A(r) ≡ 0 near r = r−

max. We claim
that there exist 0 < r∗ < r−

max and constants α > 0 and β > 0 such that

A(r) ≥ α > 0 for all 0 ≤ r ≤ r∗,
B(r) ≥ β > 0 for all r∗ ≤ r ≤ r−

max,
(4.10)

from which it clearly follows that det
(
(Rs)1+τs H

)
> 0 for all r ∈ [

0, r−
max

]
and sufficiently

small s > 0, as desired. Recall that there exists 0 < r0 < r−
max so that:

• for all r ∈ (0, r0), we have ϕ′
0(r) > 0 and ϕ′′

0 (r) < 0,
• for all r ∈ [

r0, r−
max

]
, we have ϕ0(r) = b, and hence ϕ′

0(r) = ϕ′′
0 (r) = 0,

cf. (3.6) and the Grove–Ziller construction (Section 2.1.1). Moreover, for all ε > 0, there
exists 0 < r∗ < r0, such that for r ∈ [

r∗, r−
max

]
, we have:

0 ≤ ϕ′
0(r) < ε, 0 ≤ −ϕ′′

0 (r) < ε, and b − ε < ϕ0(r) ≤ b, (4.11)

and these inequalities are strict on [r∗, r0). Thus, choosing ε > 0 sufficiently small, we have
that for all r ∈ [

r∗, r−
max

]
,

−ϕ′′
1ϕ0 + ϕ′′

0ϕ1

ϕ2
0

= (2 sin r)(ϕ0 + ϕ′′
0 )

ϕ2
0

≥ (2 sin r)(b − 2ε)

b2
>

1

4b
.

Furthermore, by continuity, the following are uniformly bounded on r ∈ [
r∗, r−

max

]
,

∣∣∣∣−
1

ϕ0

(
3ϕ0

2b5
(ϕ0(�ψ + �ξ) − b�ϕ) − �ψ + �ξ

b3

)∣∣∣∣ < C1,

∣∣∣∣∣
3

b2

(
ϕ0(ψ

′
1 + ξ ′

1)

2b3
− �′

ϕ

b2
+ ϕ′

0(�ψ + �ξ)

b3
+ 2(

√
3 − b)

b3

)∣∣∣∣∣
< C2,

where C1 and C2 are constants independent of r∗; and
(

4b2−3ϕ2
0

4b4

)
≥ 1

4b2
by (4.11). Putting

the above together, and making ε > 0 even smaller if needed, we conclude

B(r) > −εC1 + 1
16b3

− εC2 = 1
16b3

− ε (C1 + C2) > β > 0

for all r ∈ [
r∗, r−

max

]
, where, e.g., β = 1

32b3
. Finally, in order to prove the inequality regarding

A(r) in (4.10), recall there exists c > 0 such that secgD2 ≥ c > 0 for all r ∈ [0, r∗], by
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Remark 2.1. From (3.7), in the proof of Lemma 3.6, we have that

secgD2 = − f ′′

f
= ab2

(ab2 − ϕ2
0)

2

(−ϕ′′
0 )(ab2 − ϕ2

0) − 3ϕ0ϕ
′2
0

ϕ0
,

from which it follows that

3(ab2 − ϕ2
0)

2

ab2
secgD2 = 3

(
−ϕ′′

0

ϕ0

)
(ab2 − ϕ2

0) − 9ϕ′2
0 ≤

(
−ϕ′′

0

ϕ0

)
(4b2 − 3ϕ2

0) − 9ϕ′2
0 ,

because 1 < a ≤ 4
3 . Therefore, as ϕ0(r) <

√
a b for all r , there exists α > 0 so that

A(r) ≥ 3

4

(ab2 − ϕ2
0)

2

ab2
secgD2 ≥ 3

4

(ab2 − ϕ2
0)

2

ab2
c > α > 0, for all r ∈ [0, r∗].

��

4.3.2 Remaining blocks

We now handle the remaining blocks i = 2, 3.

Proposition 4.6 For all r ∈ [
0, r−

max

]
, the entries of (Rs)i , for i = 2, 3, satisfy:

ηi (s, r) =
(√

3
b + O(r)

)
s + O(s2), μi (s, r) =

(
− 2(

√
3−b)
b3

+ O(r)
)
s + O(s2),

νi (s, r) =
(√

3
b + O(r)

)
s + O(s2).

Proof First, let us consider η2. From Proposition 3.3,

[(Rs)2]11 = ϕ2
s

4ψ2
s ξ2s

+ ψ2
s − ξ2s

2ψ2
s ξ2s

+ ξ4s + 2ξ2s ψ2
s − 3ψ4

s − 4ϕsψ
2
s ξsϕ

′
sξ

′
s

4ϕ2
s ψ2

s ξ2s
.

We analyze these three terms separately using (4.4). The first two satisfy

ϕ2
s

4ψ2
s ξ2s

= ϕ2
0

4b4
+ s O(r2) + O(s2), and

ψ2
s − ξ2s

2ψ2
s ξ2s

= s O(r) + O(s2),

while the third satisfies

ξ4s + 2ψ2
s ξ2s − 3ψ4

s − 4ϕsψ
2
s ξsϕ

′
sξ

′
s

4ϕ2
s ψ2

s ξ2s
= 2(�ξ − �ψ) − ϕ0ϕ

′
0�

′
ξ

bϕ2
0

s + O(s2)

=
(√

3
b + O(r)

)
s + O(s2),

since lim
r↘0

2(�ξ −�ψ)−ϕ0ϕ
′
0�

′
ξ

ϕ2
0

= √
3, by L’Hôpital’s rule and Proposition 3.1 (i).

Altogether, the above yields [(Rs)2]11 = ϕ2
0

4b4
+

(√
3
b + O(r)

)
s + O(s2), and hence

establishes the claimed expansion of η2(s, r) = [(Rs)2]11 − ϕ2
0

4b4
, cf. (4.9).

Second, the proof that η3 has the same expansion as η2 is similar. Namely,

[(Rs)3]11 = ϕ2
s

4ψ2
s ξ2s

+ (ψ2
s − ξ2s )(ψ2

s + 3ξ2s − 2ϕ2
s ) − 4ϕsψsξ

2
s ϕ′

sψ
′
s

4ϕ2
s ψ2

s ξ2s
,
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where the first term was already considered above, and the second term satisfies

(ψ2
s − ξ2s )(ψ2

s + 3ξ2s − 2ϕ2
s ) − 4ϕsψsξ

2
s ϕ′

sψ
′
s

4ϕ2
s ψ2

s ξ2s
=

(√
3

b
+ O(r)

)

s + O(s2),

by similar considerations involving L’Hôpital’s rule and Proposition 3.1 (i). Thus, η3(s, r) =
[(Rs)3]11 − ϕ2

0
4b4

=
(√

3
b + O(r)

)
s + O(s2), cf. (4.9).

Next, consider μ2. From Proposition 3.3,

[(Rs)2]12 = ϕ′
s

2ψs ξs
+ ϕ′

sξs(ψ
2
s − ξ2s ) + ϕsξ

′
s(ξ

2
s + ψ2

s − ϕ2
s ) − 2ϕsψsξsψ

′
s

2ϕ2
s ψs ξ2s

The first term above satisfies

ϕ′
s

2ξsψs
= ϕ′

0

2b2
+

(

O(r2) − 2(
√
3 − b)

b3

)

s + O(s2),

while the second satisfies

ϕ′
sξs(ψ

2
s − ξ2s ) + ϕsξ

′
s(ξ

2
s + ψ2

s − ϕ2
s ) − 2ϕsψsξsψ

′
s

2ϕ2
s ψs ξ2s

= s O(r) + O(s2).

So, μ2(s, r) = [(Rs)2]12 − ϕ′
0

2b2
=

(
− 2(

√
3−b)
b3

+ O(r)
)
s + O(s2), cf. (4.9). The proof that

μ3 has the same expansion as μ2 is analogous, and left to the reader.
Finally, let us consider ν2 and ν3. From Proposition 3.3 and (4.9), we have

ν2(s, r) = [(Rs)2]22 = −ψ ′′
s

ψs
and ν3(s, r) = [(Rs)3]22 = − ξ ′′

s
ξs

.

By (4.4), we have ψ ′′
s = �′′

ψ s = ψ ′′
1 s and ξ ′′

s = �′′
ξ s = ξ ′′

1 s, so

ν2(s, r) =
(√

3
b + O(r)

)
s + O(s2), and ν3(s, r) =

(√
3
b + O(r)

)
s + O(s2).

��
Proposition 4.7 If s > 0 is sufficiently small, then the matrices

(Rs)i + τs H =
[

ϕ2
0

4b4
+ ηi (s, r) μi (s, r) + 2(

√
3−b)
b3

s

μi (s, r) + 2(
√
3−b)
b3

s νi (s, r)

]

, i = 2, 3, (4.12)

are positive-definite for all r ∈ [
0, r−

max

]
.

Proof The expression (4.12) for (Rs)i + τs H , i = 2, 3, follows from Proposition 3.5, as well
as (3.4), (4.8), and (4.9). First, consider the (1, 1)-entry of these matrices:

[(Rs)i ]11 = ϕ2
0

4b4
+

(√
3
b + O(r)

)
s + O(s2), for i = 2, 3,

cf. Proposition 4.6. Since ϕ0(r) > 0 away from r = 0, and the O(s) part of the above is
uniformly positive near r = 0, it follows that [(Rs)i ]11 > 0 for all r ∈ [

0, r−
max

]
and i = 2, 3,

provided s > 0 is sufficiently small.
Second, let us analyze the determinant of (4.12). By Proposition 4.6,

ηi (s, r)νi (s, r) =
(

3
b2

+ O(r)
)
s2 + O(s3),

μi (s, r) + 2(
√
3−b)
b3

s = s O(r) + O(s2).
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Thus, using that νi (s, r) = [(Rs)i ]22, for i = 2, 3, we have:

det
(
(Rs)i + τs H

) = νi (s, r)
ϕ2
0

4b4
+

(
3
b2

+ O(r)
)
s2 + O(s3)

= [(Rs)i ]22 ϕ2
0

4b4
+

(
3
b2

+ O(r)
)
s2 + O(s3).

By Proposition 4.3 (i), the O(s) part of the above is positive for r ∈ (
0, r−

max

]
, but vanishes

at r = 0, as ϕ0(0) = 0. Since the O(s2) part has a positive limit as r ↘ 0, we have that
det

(
(Rs)i + τs H

)
> 0 for all r ∈ [

0, r−
max

]
and i = 2, 3, if s > 0 is sufficiently small.

Positive-definiteness now follows from Sylvester’s criterion. ��
The above Proposition 4.5 and 4.7 imply Claim 4.2, since Rs +τs ∗ is block diagonal with

blocks (Rs)i + τs H , i = 1, 2, 3, see Proposition 3.3 and (3.4). In turn, Claim 4.2 and the
Finsler–Thorpe trick (Proposition 2.2) imply that secgs > 0 for sufficiently small s > 0. This
proves Theorem B for M4 = S4; since, if the original Grove–Ziller metric gGZ was rescaled
as g0 = λ2 gGZ to standardize L = π

3 , then λ−2 gs has sec > 0 and is arbitrarily C∞-close
to gGZ for s > 0 sufficiently small.

4.4 Positive curvature onCP2

We now briefly discuss the proof of Theorem B for M4 = CP2. Recall that, in this case,
L = π

4 , with r−
max = π

6 and r+
max = π

12 . Differently from S4, for M4 = CP2, the situation
on the intervals [0, r−

max] = [
0, π

6

]
and [r−

max, L] = [
π
6 , π

4

]
has to be analyzed separately,

cf. Remark 3.2.
Denoting by R0 the curvature operator of the Grove–Ziller metric g0 onCP2, the function

τ0 : [0, L] → R so that R0 + τ0 ∗ � 0 for all r ∈ [0, L] is given by

τ0(r) =
{

−ϕ′
0(r)
2b2

, if r ∈ [
0, r−

max

]
,

− ξ ′
0(r)
2b2

, if r ∈ [
r−
max, L

]
,

cf. Proposition 3.5. Note that ϕ′
0 = ξ ′

0 = 0 near r = r−
max. The proof of Theorem B follows

in the same way as in the case M4 = S4 above, replacing Claim 4.2 with:

Claim 4.8 If s > 0 is sufficiently small, then Rs + τs ∗ � 0 for all r ∈ [0, L], where

τs(r) :=
⎧
⎨

⎩
−ϕ′

0(r)
2b2

+
(

3
2b + 1−b

b3

)
s, if r ∈ [

0, r−
max

]
,

− ξ ′
0(r)
2b2

+
√
2− 2b
b3

s, if r ∈ (
r−
max, L

]
.

Remark 4.9 Similarly to (4.8) in Claim 4.2, the above function τs is obtained from τ0 by
adding a locally constant multiple of s. This O(s) perturbation is not constant as in the case
of M4 = S4, and, as a result, τs(r) is discontinuous at r = r−

max for all s > 0. Nevertheless,
the application of the Finsler–Thorpe trick (Proposition 2.2) is pointwise and no regularity is
needed. A posteriori, a continuous function τ̃s(r) such that Rs + τ̃s ∗ � 0 for all sufficiently
small s > 0 can be chosen, e.g., as the midpoint τ̃s(r) = 1

2 (τmin + τmax) of [τmin, τmax] for
each r ∈ [0, L], see Remark 2.3.

The proof of Claim 4.8 follows the same template from Claim 4.2, relying on expansions
in s of the functions ηi , μi , νi , cf. (4.9). The statement of Proposition 4.4, regarding i = 1
and r ∈ [0, r−

max], holds tout court for CP2, since the smoothness conditions of ϕ,ψ, ξ at
r = 0 are not used in the proof. The case of i = 3 and r ∈ [r−

max, L] is analogous. The
replacement for Proposition 4.6 is the following:
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Proposition 4.10 For r ∈ [
0, r−

max

]
, the entries of (Rs)i , i = 2, 3, satisfy:

η2(s, r) = ( 1
b + O(r)

)
s + O(s2), μ2(s, r) =

(
− 3

2b − 1−b
b3

+ O(r)
)
s + O(s2),

ν3(s, r) = ( 4
b + O(r)

)
s + O(s2),

η3(s, r) = ( 4
b + O(r)

)
s + O(s2), μ3(s, r) =

(
3
2b − 1−b

b3
+ O(r)

)
s + O(s2),

ν2(s, r) = ( 1
b + O(r)

)
s + O(s2).

For r ∈ [
r−
max, L

]
, setting z = L − r , the entries of (Rs)i , i = 1, 2, satisfy:

ηi (s, z) =
(

1
b
√
2

+ O(z)
)
s + O(s2), μi (s, z) =

(
−

√
2−2b
b3

+ O(z)
)
s + O(s2),

νi (s, z) =
(

1
b
√
2

+ O(z)
)
s + O(s2).

The proof of Proposition 4.10 is totally analogous to that of Proposition 4.6; noting that,
in terms of z = L − r ∈ [

0, r+
max

]
, the functions ϕ1, ψ1, ξ1 are:

ϕ1(z) = 1√
2

(cos z − sin z) , ψ1(z) = 1√
2

(cos z + sin z) , ξ1(z) = sin 2z.

Finally, similarly to Proposition 4.5 and 4.7, it can be shown that (Rs)i + τs H , i = 1, 2, 3,
are positive-definite for all r ∈ [0, L] and s > 0 sufficiently small, which proves Claim 4.8
(and hence Theorem B) for CP2. Details are left to the reader.

5 Positive turns negative

In this section, we prove Theorem A, using the fact that Grove–Ziller metrics on S4 andCP2

immediately acquire negatively curved planes under Ricci flow [6], together with Theorem
B, and continuous dependence on initial data [3].

Proof of Theorem A Let M4 be either S4 or CP2, and consider the 1-parameter family of
metrics gs on M4, defined in (4.3), such that g0 is a Grove–Ziller metric and g1 is either the
round metric or the Fubini–Study metric, accordingly. From Lemma 4.1, the metrics gs are
smooth, and it is evident from (4.2) and (4.3) that, for all k ≥ 0 and 0 < α < 1, there exists
a constant λk,α > 0 such that

‖gs − g0‖Ck,α ≤ λk,α s, for all 0 ≤ s ≤ 1, (5.1)

where ‖ · ‖Ck,α denotes the Hölder norm on sections of the bundle E = Sym2 T M4 with
respect to a fixed background metric. For 0 ≤ s ≤ 1, let gs(t), 0 ≤ t < T (gs), be the
maximal solution to Ricci flow starting at gs(0) = gs , where 0 < T (gs) ≤ +∞ denotes the
maximal (smooth) existence time of the flow. For all 0 ≤ s ≤ 1 and 0 ≤ t < T (gs), we have
that gs(t) ∈ C∞(E), so gs(t) is in the proper closed subspace hk,α(E) ⊂ Ck,α(E) for all
k ≥ 0 and 0 < α < 1, in the notation of [3].

From the main theorem in [6], there exist a 2-plane σ tangent to M4 and t0 > 0 such
that secg0(σ ) = 0 and secg0(t)(σ ) < 0 for all 0 < t < t0. Fix 0 < t∗ < t0, and let
δ > 0 be such that secg(σ ) < 0 for all metrics g with ‖g − g0(t∗)‖C2,α < δ. By the
continuous dependence of Ricci flow on initial data [3, Thm A], there exist constants r > 0
and C > 0, depending only on t0 and g0, such that, if ‖gs − g0‖C4,α ≤ r, then T (gs) ≥ t0
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and ‖gs(t) − g0(t)‖C2,α ≤ C‖gs − g0‖C4,α for all t ∈ [0, t0]. Together with (5.1), this yields
that if 0 ≤ s ≤ r/λ4,α , then

‖gs(t) − g0(t)‖C2,α ≤ C ‖gs − g0‖C4,α ≤ C λ4,α s, for all 0 ≤ t ≤ t0.

Thus, ‖gs(t∗) − g0(t∗)‖C2,α < δ and so secgs (t∗)(σ ) < 0, for all 0 ≤ s < δ/(C λ4,α), while
gs = gs(0) has sec > 0 if s > 0 is sufficiently small, by Theorem B. ��
Remark 5.1 The curvature operators R(t) : ∧2T M → ∧2T M ofmetrics g(t)onMn evolving
under Ricci flow satisfy the PDE ∂

∂t R = �R + 2Q(R), where Q(R) depends quadratically
on R. By Hamilton’s Maximum Principle, if an O(n)-invariant cone C ⊂ Sym2

b(∧2T M) is
preserved by the ODE d

dt R = 2Q(R), then it is also preserved by the above PDE. It was
previously known that the cone Csec>0 of curvature operators with sec > 0 is not preserved
under the above ODE on R in dimensions n ≥ 4, since it is easy to find R0 ∈ ∂Csec>0

with Q(R0) pointing outside of Csec>0. Nevertheless, this observation alone does not imply
the existence of metrics realizing such a family of curvature operators on some closed n-
manifold, thus evolving under Ricci flow and losing sec > 0, as the above metrics gs(t)
do.
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