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Abstract
We identify a class of non-local integro-differential operators K in R with Dirichlet-to-
Neumann maps in the half-plane R × (0,∞) for appropriate elliptic operators L . More
precisely, we prove a bijective correspondence between Lévy operators K with non-local
kernels of the form ν(y − x), where ν(x) and ν(−x) are completely monotone functions
on (0,∞), and elliptic operators L = a(y)∂xx + 2b(y)∂xy + ∂yy . This extends a number
of previous results in the area, where symmetric operators have been studied: the classical
identification of the Dirichlet-to-Neumann operator for the Laplace operator inR × (0,∞)

with−√−∂xx , the square root of one-dimensional Laplace operator; the Caffarelli–Silvestre
identification of the Dirichlet-to-Neumann operator for ∇ · (y1−α∇) with (−∂xx )

α/2 for
α ∈ (0, 2); and the identification of Dirichlet-to-Neumann maps for operators a(y)∂xx + ∂yy
with complete Bernstein functions of −∂xx due to Mucha and the author. Our results rely on
recent extension of Krein’s spectral theory of strings by Eckhardt and Kostenko.

Mathematics Subject Classification 35R11 (35J25 35J70 35S30 47G20 60J60 60J75)

1 Introduction

The purpose of this work is to characterise the class of non-local operators K that arise as
Dirichlet-to-Neumann maps for certain second-order elliptic operators L in the half-plane
R × (0,∞) (or in a strip R × (0, R), with the Dirichlet boundary condition at y = R).
We assume that L is translation-invariant with respect to the first variable x ; that is, the
coefficients of L only depend on the second variable y. Thus, we consider elliptic equations
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of the form

a(y)∂xxu(x, y) + 2b(y)∂xyu(x, y) + c(y)∂yyu(x, y)

+ d(y)∂xu(x, y) + e(y)∂yu(x, y) = 0. (1.1)

In general, the Dirichlet-to-Neumann operator associated to Eq. (1.1) is given by a somewhat
non-standard expression

K f (x) = lim
y→0+

u(x + τ(y), y) − u(x, 0)

σ−1(y)
, (1.2)

where u is a solution of (1.1) with boundary values u(x, 0) = f (x), σ is an appropriate scale
function, and τ is an appropriate shearing profile; we refer to Sects. 2.1 and 2.3 for further
details. Building upon recent extension of Krein’s spectral theory of strings due to Eckhardt
and Kostenko [13], we prove that such Dirichlet-to-Neumann maps are of the form

K f (x) = α f ′′(x) + β f ′(x) − γ f (x)

+
∫ ∞

−∞
( f (x + z) − f (x) − f ′(x)z1(−1,1)(z))ν(z)dz, (1.3)

where α � 0, β ∈ R, γ � 0 and ν(z) and ν(−z) are completely monotone functions of
z > 0. Conversely, if we allow for certain irregularities of the coefficients in (1.1), then every
operator K given by (1.3) is theDirichlet-to-Neumannmap for somegeneral elliptic Eq. (1.1).
Furthermore, the corresponding Eq. (1.1) is unique, up to some natural transformations.

In fact, we obtain a bijective identification of operators of the form (1.3) and Dirichlet-to-
Neumann operators corresponding to reduced elliptic equations of the form

a(dy)∂xxu(x, y) + 2b(y)∂xyu(x, y) + ∂yyu(x, y) = 0, (1.4)

where, for some R ∈ (0,∞], u is a sufficiently regular function on R × [0, R), a(dy) is a
non-negative, locally finite measure on [0, R), b(y) is a locally square integrable function on
[0, R), and a(dy)− (b(y))2dy is non-negative. If R < ∞, we impose the Dirichlet boundary
condition u(x, R) = 0 at y = R. In this case, the Dirichlet-to-Neumann operator takes the
usual form

K f (x) = ∂yu(x, 0) = lim
y→0+

u(x, y) − u(x, 0)

y
; (1.5)

that is, we have τ(y) = 0 and σ−1(y) = y in (1.2).
A rigorous statement of the above result is given in Theorem 2.7 below, after precise

notions of a solution of (1.4) (Definition 2.2) and the corresponding Dirichlet-to-Neumann
operator (1.5) (Definition 2.4) are introduced. Two variants of Theorem 2.7 are provided in
Theorem 2.10 and Proposition 2.12, where different classes of reduced equations are consid-
ered. A brief and rather informal explanation how the general Eq. (1.1) can be transformed
into the reduced form (1.4) is given in Sect. 2.1.

The operator K given by (1.3) is translation invariant, and hence it is a Fourier multiplier:
the Fourier transform of K f is the product of f̂ , the Fourier transform of f , and K̂ , the
symbol of K ; that is, K̂ f (ξ) = K̂ (ξ) f̂ (ξ). Operators K of the form (1.3) are generators
of Lévy processes with completely monotone jumps, introduced by L.C.G. Rogers in [38]
and revisited recently by the author in [28]. The corresponding symbols K̂ are called Rogers
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functions in [28], and they are closely related to Nevanlinna–Pick functions. For further
discussion, see Proposition 2.8 below, or [28].

Our main result has an appealing probabilistic interpretation: jump processes that arise
as boundary traces of two-dimensional diffusions in a half-plane are Lévy processes with
completely monotone jumps, and every Lévy process with completely monotone jumps can
be realised as a boundary trace in an essentially unique way, up to natural transformations.
Here we assume that diffusions are invariant under translations parallel to the boundary of
the half-plane. For a detailed discussion, we refer to a companion paper [29].

In the remaining part of the introduction, we briefly discuss the existing literature. The
classical Dirichlet-to-Neumann operator K in the half-planeR× (0,∞) (or, more generally,
in half-spaceRd × (0,∞)) is defined for the Laplace equation ∂xxu(x, y) + ∂yyu(x, y) = 0
(for the half-space,we understand that ∂xx denotes the usuald-dimensional Laplace operator).
This corresponds to a(y) = 1 and b(y) = 0 in our notation. For over a century it is well-
known that K is a non-positive definite unbounded operator onL 2(R) (orL 2(Rd)), which
satisfies K 2 = −∂xx . Thus, K = −(−∂xx )

1/2 in the sense of spectral theory.
A similar representation for an arbitrary fractional power K = −(−∂xx )

α/2 (with α ∈
(0, 2)) of the Laplace operator ∂xx is obtained by setting a(y) = Cα y2/α−2 and b(y) = 0 for
an appropriate constant Cα . That is, fractional powers of the Laplace operator are Dirichlet-
to-Neumann operators corresponding to the equation

Cα y
2/α−2∂xxu(x, y) + ∂yyu(x, y) = 0.

By a simple change of variable z = cα yα , one can transform this equation into an equation
in divergence form

∇x,z · (z1−α∇x,zu)(x, z) = 0,

more suitable for most application and thus more commonly found in literature. This repre-
sentation of fractional powers of the Laplace operator was studied already in 1960s (see [35,
36]), and was definitely stated in the above form by Caffarelli and Silvestre in [7]. We refer
to Sect. 10 in the survey article [16] for further discussion.

The Caffarelli–Silvestre extension technique has been extended in various directions,
which include, among others, replacing ∂xx with a more general operator and studying
solutions in more general function spaces (see, for example, [2, 5, 15, 16, 27, 32, 43]).
A different approach was taken in [30], where ∂yy was replaced by a general elliptic oper-
ator (a(dy))−1∂yy in the half-line. Using Krein’s spectral theory of strings, corresponding
Dirichlet-to-Neumann operators K have been identified with a certain class of Fourier multi-
pliers: the main result of [30] asserts that K = −ψ(−∂xx ) for a complete Bernstein function
ψ , and the correspondence between a and ψ is bijective. With our notation, this corresponds
to elliptic Eq. (1.4) with b(y) = 0, and symmetric Dirichlet-to-Neumann operators K given
by (1.3) with β = 0 and ν(−z) = ν(z) in (2.7).

Here we would like to mention that the result of [30] is a consequence of Krein’s spectral
theory of strings, developed in the middle of 20th century. In a similar way, as already
mentioned above, ourmain result builds upon the recent extensionofKrein’s theorydeveloped
by Eckhardt and Kostenko [13].

The relation between the coefficients a and b of the elliptic Eq. (1.4) and the coefficients
α, β, γ and ν of the corresponding Dirichlet-to-Neumann operator K given by (1.3) is,
unfortunately, very inexplicit, and the author is not aware of any results that would link
regularity or asymptotics of a and bwith similar properties of the parameters of the Dirichlet-
to-Neumann operator K . The picture is not much different in the symmetric case (b = β = 0
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and ν(−z) = ν(z)) studied in [30],where the rare examples of such results include asymptotic
relations between the parameter a and the symbol of K in [8, 22, 25]; see also [12] for a
detailed treatment of Krein’s theory, and [42] for a more recent overview and historical
remarks.

Within the probabilistic context, our results are closely related to (singular) integrals of the
local time of the Brownian motion. For further discussion, we refer to [29]; here we mention
the fundamental work of Biane and Yor [6], as well as more recent [9]. We also stress that the
elliptic operator L generates a diffusion in the half-plane, and the corresponding Dirichlet-to-
Neumann operator is the generator of the trace of this diffusion on the boundary. A detailed
discussion is again given in [29], and here we only refer to [4, 23, 24, 33, 34] for a sample of
related research.

Finally,we comment on themore general case,when the coefficients of the elliptic operator
L are allowed to depend on both x and y. Although a lot is known about the corresponding
Dirichlet-to-Neumann operators when the coefficients are sufficiently regular (see [18] and
the references therein for a sample of such results), to the best knowledge of the author, in
this generality, a complete description of the class of corresponding Dirichlet-to-Neumann
operators is an open problem.

This question for symmetric elliptic operators, that is, operators of the form Lu = ∇x,y ·
(A(x, y)∇x,yu), is closely related to the famousCalderón’s questionwhether the conductivity
A(x, y) can be reconstructed by measuring the resistance between different parts of the
boundary; this is also known as the electrical impedance tomography or electrical resistivity
tomography, and A(x, y) here can be either a scalar or a symmetric matrix. For a solution of
Calderón’s question in dimension two, we refer to [37]; see [3, 44] for a general overview and
further references.Nevertheless, even in this restricted setting of symmetric elliptic equations,
apparently no characterisation is known for the corresponding class of Dirichlet-to-Neumann
operators. A natural conjecture is given in [20] in terms of a condition on signs of certain
determinants, very similar to the concept of total positivity. In the same paper it is proved
that this condition is indeed satisfied, given appropriate regularity of the coefficients. We also
refer to [19] for a result closely related to the extension technique developed in [30].

Noteworthy, a similar question for symmetric elliptic operators on planar graphs with
boundaries has been answered by Colin de Verdière: a complete characterisation of the
corresponding discrete Dirichlet-to-Neumann maps is given in [10].

The remaining part of the article consists of four sections and an appendix. In Sect. 2 we
present the main result of the paper. This begins with a discussion of the relation between
general Eq. (1.1) with corresponding Dirichlet-to-Neumann operators (1.2), and reduced
Eq. (1.4)withDirichlet-to-Neumann operators given by (1.5); see Sect. 2.1. Then, in Sect. 2.2,
we state our main theorems, alongside with the necessary assumptions and definitions. Two
alternative forms of reduced equations are proposed in Sect. 2.3. Finally, Sect. 2.4 contains
auxiliary results.

The main tool used in the present paper is the result by Eckhardt and Kostenko from [13]
on spectral theory for a certain ordinary differential equation. In Sect. 3, we discuss a variant
of this ODE which is more suitable for our needs. The corresponding reformulation of the
main result of [13] is given in Theorem 3.1. After the statement of this result, we prove that it
is indeed equivalent with the version given in [13]. For readers’ benefit, a proof of the direct
part of Theorem 3.1 is provided in Appendix A. Although very close to the argument of [13],
the proof given here is more explicit and avoids certain technical issues.

Our main result is proved in Sect. 4. Finally, Sect. 5 lists several classes of more or less
explicit examples of elliptic problems and the corresponding Dirichlet-to-Neumann opera-
tors. In particular, we provide an extension problem for asymmetric fractional derivatives
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of order between 0 and 2. We stress that even in this simplest and most natural asymmetric
example, our results seem to be new. We hope this will stimulate the development of the
theory of asymmetric non-local operators, which has emerged recently; we refer to [11, 21,
39]. Lack of appropriate harmonic extension technique seems to have been a major obstacle
in this area.

2 Main results

2.1 Reduction

Before we rigorously state our main result, Theorem 2.7, we explain how a general elliptic
equation (1.1) can be transformed into a reduced elliptic equation of the form (1.4). In other
words, we show that with no loss of generality we may assume that in the general Eq. (1.1)
the linear term is missing (d(y) = e(y) = 0), and that the coefficient c(y) at ∂yy is equal to 1.
Within this class the correspondence between the associated Dirichlet-to-Neumann operators
K defined by (1.5) and operators given by (1.3) is bijective.

For simplicity, in this section we ignore completely all regularity issues. These are dis-
cussed in detail in Sect. 2.2 for the class of reduced elliptic Eq. (1.4), and only briefly in
Sect. 2.3 for other special cases of (1.1).

We begin with a general elliptic equation of the form (1.1). To be specific, we consider
the equation L0u0 = 0 for a function u0 defined on R × (0, R0), where the operator L0 is
given by

L0 = a0(y)∂xx + 2b0(y)∂xy + c0(y)∂yy + d0(y)∂x + e0(y)∂y .

The reduction is divided into three steps.
Step 1. Our first transformation is change of scale. Let σ(y) be an increasing solution

of the ordinary differential equation c0(y)σ ′′(y) + e0(y)σ ′(y) = 0 in (0, R0), satisfying
σ(0+) = 0; this function σ is unique up to multiplication by a positive constant. Setting
u0(x, y) = u1(x, σ (y)), we find that

L0u0(x, y) = a0(y)∂xxu1(x, σ (y)) + 2b0(y)σ
′(y)∂xyu1(x, σ (y))

+ c0(y)(σ
′(y))2∂yyu1(x, σ (y)) + d0(y)∂xu1(x, σ (y)).

The right-hand side is equal to L1u1(x, σ (y)), where

L1 = a1(y)∂xx + 2b1(y)∂xy + c1(y)∂yy + d1(y)∂x

and

a1(σ (y)) = a0(y), b1(σ (y)) = b0(y)σ
′(y),

c1(σ (y)) = c0(y)(σ
′(y))2, d1(σ (y)) = d0(y).

In particular, L0u0(x, y) = 0 for (x, y) ∈ R × (0, R0) if and only if L1u1(x, y) = 0 for
(x, y) ∈ R × (0, R1), where R1 = σ(R−

0 ).
Step 2. In the next stage, we replace L1 by

L2 = 1

c1(y)
L1.
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Clearly, these two operators correspond to the same class of harmonic functions: if we write
u2(x, y) = u1(x, y) and R2 = R1, then L1u1(x, y) = 0 for (x, y) ∈ R × (0, R1) if and
only if L2u2(x, y) = 0 for (x, y) ∈ R × (0, R2). We have

L2 = a2(y)∂xx + 2b2(y)∂xy + ∂yy + d2(y)∂x ,

where

a2(y) = a1(y)

c1(y)
, b2(y) = b1(y)

c1(y)
, d2(y) = d1(y)

c1(y)
.

Step 3.Thefinal step of reduction is shearing. Let τ be a solution of the ordinary differential
equation τ ′′(y) + d2(y) = 0 for y ∈ (0, R2) satisfying τ(0+) = 0; this solution is unique up
to addition by a linear term. If we set u2(x, y) = u3(x + τ(y), y), then we find that

L2u2(x, y) = (a2(y) + 2b2(y)τ
′(y) + (τ ′(y))2)∂xxu3(x + τ(y), y)

+ 2(b2(y) + τ ′(y))∂xyu3(x + τ(y), y) + ∂yyu3(x + τ(y), y).

The right-hand side is now equal to L3u3(x + τ(y), y), where

L3 = a3(y)∂xx + 2b3(y)∂xy + ∂yy,

and

a3(y) = a2(y) + 2b2(y)τ
′(y) + (τ ′(y))2, b3(y) = b2(y) + τ ′(y).

Once again, L2u2(x, y) = 0 for (x, y) ∈ R × (0, R2) if and only if L3u3(x, y) = 0 for
(x, y) ∈ R × (0, R3), where R3 = R2.

By the above identification, we see that u0 is harmonic with respect to L0 if and only if
u3 is harmonic with respect to L3. Furthermore,

u0(x, y) = u1(x, σ (y)) = u2(x, σ (y)) = u3(x + τ(σ (y)), σ (y)).

Recall that we assume that σ(0+) = 0 and τ(0+) = 0. Thus,

∂yu3(x, 0) = lim
y→0+

u3(x, y) − u3(x, 0)

y

= lim
y→0+

u0(x + τ(σ (y)), σ (y)) − u0(x, 0)

y

= lim
z→0+

u0(x + τ(z), z) − u0(x, 0)

σ−1(z)
.

Therefore, the rather non-standard definition (1.2) of the Dirichlet-to-Neumann operator K0

associated to the equation L0u0 = 0 agrees with the Dirichlet-to-Neumann operator K3 that
corresponds to the equation L3u3 = 0 via the usual formula K3 f (x) = ∂yu3(x, 0); here
u0(x, 0) = u3(x, 0) = f (x).

We stress again that in the above reduction we did not discuss the question of regularity
of coefficients and solutions, and this is not merely a technicality. We come back briefly to
this question in Sect. 2.3.

2.2 Assumptions andmain result

In the following part we first give a rigorous definition of the class of reduced elliptic Eq. (1.4)
(Definition 2.1) and we carefully define the notion of a solution u of (1.4) (Definition 2.2).
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Then we prove that every boundary value f corresponds to a unique solution u (Proposi-
tion 2.3). This is used to define the Dirichlet-to-Neumann operator (Definition 2.4). Next, we
give a rigorous meaning to the non-local operator K given by (1.3) (Definitions 2.5 and 2.6).
Only then we are ready to state our main result, Theorem 2.7. Finally, in Proposition 2.8 we
list some equivalent definitions of the class of operators K given by (1.3).

We consider the following class L of operators L corresponding to reduced equations of
the form (1.4).

Definition 2.1 We say that L is an operator of class L if and only if, formally,

L = a(dy)∂xx + 2b(y)∂xy + ∂yy (2.1)

on R × [0, R), where

(a) R ∈ (0,∞];
(b) a(dy) is a non-negative, locally finite measure on [0, R);
(c) b(y) is a Borel, real-valued function on [0, R) such that (b(y))2 is locally integrable on

[0, R);
(d) a(dy) − (b(y))2dy is non-negative on [0, R).

We say that L is of class L
� if additionally a({0}) = 0.

We understand formula (2.1) purely formally: it does not define neither the domain, nor
the action of L . In Definition 2.2 below, a rigorous meaning is given to the equation Lu = 0
for L ∈ L.

Note that we do not assume strict ellipticity of L: when a(dy) = (b(y))2dy on some
interval, then L becomes degenerate in the corresponding strip.

As usual, in Definition 2.1 we identify coefficients b which agree almost everywhere.
Whenever we say that L is an operator of class L, we use a(dy), b(y) and R for the cor-
responding parameters described in Definition 2.1. We additionally denote the auxiliary
parameters

ã(dy) = a(dy) − (b(y))2dy and B(y) =
∫ y

0
b(t)dt

for y ∈ [0, R).
In this general setting the notion of a solution of the equation Lu = 0 (or, in other words,

a harmonic function for L) requires a careful formulation. Note that the value α = a({0}) has
no effect on the following definition, and that the definition automatically requires harmonic
functions to be sufficiently regular at infinity.

Definition 2.2 For an operator L of class L, a Borel function u(x, y) on R × [0, R) is said
to be harmonic with respect to L if:

(a) for every y ∈ [0, R) the function u(·, y) is inL 2(R), and it depends continuously (with
respect to theL 2(R) norm) on y ∈ [0, R); if R = ∞, then theL 2(R) norm of u(·, y) is
assumed to be a bounded function of y ∈ [0,∞), while if R < ∞, then we additionally
require that u(·, y) converges to zero in L 2(R) as y → R−;

(b) the function ũ(x, y) = u(x + B(y), y) is weakly differentiable with respect to y on
R×(0, R), with the weak derivative denoted by ∂y ũ(x, y), and (∂y ũ(x, y))2 is integrable
overR × (y1, y2) whenever 0 < y1 < y2 < R;

(c) the equation Lu(x, y) = 0 is satisfied in the weak sense inR × (0, R).
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The last item of the above definition requires clarification. If u is sufficiently regular, we
can use the usual weak (or distributional) formulation of the equation Lu = 0, namely, we
require that for every smooth, compactly supported function v(x, y) onR× (0, R) we have∫

(0,R)

(∫ ∞

−∞
u(x, y)∂xxv(x, y)dx

)
a(dy)

− 2
∫ R

0

(∫ ∞

−∞
∂yu(x, y)∂xv(x, y)dx

)
b(y)dy

−
∫ R

0

(∫ ∞

−∞
∂yu(x, y)∂yv(x, y)dx

)
dy = 0. (2.2)

However, in the general case, ∂yu may fail to exist: we only know that ∂y ũ is well-defined,
where ũ(x, y) = u(x + B(y), y). Therefore, in the general case we understand condition (c)
as ∫

(0,R)

(∫ ∞

−∞
u(x, y)∂xxv(x, y)dx

)
ã(dy)

− 2
∫ R

0

(∫ ∞

−∞
∂y ũ(x − B(y), y)∂xv(x, y)dx

)
b(y)dy

+
∫ R

0

(∫ ∞

−∞
u(x, y)∂yyv(x, y)dx

)
dy = 0 (2.3)

for every smooth, compactly supported function v(x, y) onR×(0, R). If u is regular enough,
it is straightforward to see that conditions (2.2) and (2.3) are equivalent.

We also clarify that theweak differentiability condition (b) for theL 2(R)-valued function
y �→ ũ(·, y) is understood in the usual way: there is a locally integrable Borel function
∂y ũ(x, y) on R × (0, R) such that for every smooth, compactly supported function v on
R × (0, R), we have

∫ R

0

∫ ∞

−∞
∂y ũ(x, y)v(x, y)dxdy = −

∫ R

0

∫ ∞

−∞
ũ(x, y)∂yv(x, y)dxdy. (2.4)

Again we identify all functions u which are equal almost everywhere; however, we always
require continuity of the L 2(R)-valued function y �→ u(·, y).

The following preliminary result is needed for the definition of the Dirichlet-to-Neumann
operator.

Proposition 2.3 Suppose that L is an operator of class L. Then for every f ∈ L 2(R) there
is a unique function u harmonic with respect to L (in the sense of Definition 2.2) such that
u(x, 0) = f (x) for almost all x ∈ R.

Proposition 2.3 is proved in Sect. 4.

Definition 2.4 For an operator L of classL
�, theDirichlet-to-Neumann operator K associated

to the equation Lu = 0 is an unbounded operator on L 2(R), defined by the formula

K f (x) = ∂yu(x, 0) = lim
y→0+

u(x, y) − u(x, 0)

y
, (2.5)

where u is a harmonic function for L described in Proposition 2.3, with boundary values
u(x, 0) = f (x). Here the limit in (2.5) is understood in the L 2(R) sense, and f is in the
domain D(K ) of the operator K if and only if f ∈ L 2(R) and the limit in (2.5) exists.
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If L is an operator of class L with α = a({0}) > 0, then we use the definition

K f (x) = α f ′′(x) + ∂yu(x, 0) = α f ′′(x) + lim
y→0+

u(x, y) − u(x, 0)

y
, (2.6)

and we say that f is in the domainD(K ) if and only if f , f ′, f ′′ ∈ L 2(R) (with the second
derivative understood in the weak sense) and the limit in (2.6) exists.

Our main result identifies Dirichlet-to-Neumann operators associated to elliptic equations
Lu = 0 for L ∈ L with the following class of non-local operators.

Definition 2.5 We say that an operator K is of class K if and only if

K f (x) = α f ′′(x) + β f ′(x) − γ f (x)

+
∫ ∞

−∞
( f (x + z) − f (x) − f ′(x)z1(−1,1)(z))ν(z)dz (2.7)

for every smooth, compactly supported function f (x) on R, where:

(a) α � 0, β ∈ R and γ � 0;
(b) ν(z) is a real-valued function onR\{0} such that ν(z) and ν(−z) are completely mono-

tone functions of z > 0, and
∫ ∞
−∞ min{1, z2}ν(z)dz < ∞.

We say that K is of class K
� if α = 0.

Whenever we consider an operator K of class K, we use the notation α, β, γ and ν(z)
introduced above. Additionally, we always extend K to a closed unbounded operator on
L 2(R), as described below.

It is well-known that every operator K of class K is a Fourier multiplier with symbol

K̂ (ξ) = −αξ2 + iβξ − γ +
∫
R

(eiξ z − 1 − iξ z1(−1,1)(z))ν(z)dz (2.8)

for ξ ∈ R; see, for example, [1, 41]. By this we mean that if f is a smooth, compactly
supported function on R, then the Fourier transform of K f is given by K̂ (ξ) f̂ (ξ).

Definition 2.6 Every operator K of class K is automatically extended to an unbounded oper-
ator on L 2(R), with domain

D(K ) = { f ∈ L 2(R) : K̂ · f̂ ∈ L 2(R)}, (2.9)

and defined by

K̂ f (ξ) = K̂ (ξ) f̂ (ξ). (2.10)

We are now ready to state our main result.

Theorem 2.7 (a) If L is an operator of class L, then the Dirichlet-to-Neumann operator K
associated to the equation Lu = 0 is an operator of class K.

(b) Every operator K of class K is the Dirichlet-to-Neumann operator associated to the
equation Lu = 0 for a unique operator L of class L.

Theorem 2.7 is proved in Sect. 4. Here we observe that it is sufficient to prove Theorem 2.7
for classes L

� and K
� rather than L and K. Indeed, suppose that L is an operator of class

L such that α = a({0}), and let L� be the corresponding operator of class L
�, obtained

by replacing a(dy) by a�(dy) = 1(0,∞)(y)a(dy). The operators L and L� share the same
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class of harmonic functions. Thus, if K and K � are the corresponding Dirichlet-to-Neumann
operators, then K f = K � f + α f ′′ (see Definition 2.4).

We note that very few explicit pairs of associated operators L and K are known; see Sect. 5
for examples and further discussion. We also remark that if f is in the domain of K and u is
the harmonic extension of f , then the weak derivative ∂yu is well-defined, and formula (2.5)
in the definition of the Dirichlet-to-Neumann operator (Definition 2.4) can be equivalently
written as

K f (x) = lim
y→0+ ∂yu(x, y), (2.11)

with the limit inL 2(R). This follows from Theorem 3.1(c) and Lemma 4.1 by an argument
used in the proof of Theorem 4.3 in [30]; we omit the details.

In [28], Fourier symbols K̂ of operators of class K are called Rogers functions, and a
number of equivalent characterisations of this class of functions is given therein. For com-
pleteness, we list them in the following statement.

Proposition 2.8 (Theorem 3.3 in [28]) Suppose that k(ξ) is a continuous function on R,
satisfying k(−ξ) = k(ξ) for all ξ ∈ R. The following conditions are equivalent:

(a) −k is the Fourier symbol of some operator K of class K, that is, k(ξ) = −K̂ (ξ) for all
ξ ∈ R, with K̂ given by (2.8);

(b) for all ξ ∈ R we have

k(ξ) = αξ2 − i β̌ξ + γ + 1

π

∫
R\{0}

(
ξ

ξ + is
+ iξ sign s

1 + |s|
)

μ(ds)

|s| (2.12)

for some β̌ ∈ R and some non-negative measure μ on R\{0} such that
∫
R\{0} min

{|s|−1, |s|−3}μ(ds) < ∞;
(c) either k(ξ) = 0 for all ξ ∈ R or for all ξ ∈ R we have

k(ξ) = c exp

(
1

π

∫ ∞

−∞

(
ξ

ξ + is
− 1

1 + |s|
)

ϑ(s)

|s| ds

)
(2.13)

for some c > 0 and some Borel function ϑ on R with values in [0, π];
(d) k extends to a holomorphic function in the right complex half-plane {ξ ∈ C : Re ξ > 0}

and Re(k(ξ)/ξ) � 0 whenever Re ξ > 0 (that is, k(ξ)/ξ is a Nevanlinna–Pick function
in the right complex half-plane).

2.3 Variants

Our main result is stated for the reduced elliptic equation Lu = 0, with operator L of the
form

L = a(dy)∂xx + 2b(y)∂xy + ∂yy (2.14)

in R × (0, R), where R ∈ (0,∞], a(dy) is a non-negative, locally finite measure, and b(y)
is a real-valued function such that (b(y))2 is locally integrable and a(dy) − (b(y))2dy � 0.
We choose this variant, because it leads to relatively few technical difficulties, and it is well-
suited for a probabilistic interpretation. However, various reformulations of our result are
possible, two of which are discussed below. More precisely, first we rephrase our main result
for the operators of the form

L̃ = ã(dy)∂xx + ∂yy + d̃(y)∂x , (2.15)
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and then we specialise our theorem to the class of operators

L̇ = ∂xx + (ȧ(y))−2(ȧ(y)∂y − ḃ(y)∂x )(ȧ(y)∂y + ḃ(y)∂x ), (2.16)

for appropriate coefficients ã, d̃ , ȧ and ḃ. We will refer to the operator L of the form (2.14),
or the corresponding reduced elliptic equation Lu = 0, as an operator or an equation in the
standard form. Similarly, the terms Eckhardt–Kostenko form, and divergence-like form, will
be used in reference to operators L̃ of the form (2.15), and operators L̇ of the form (2.16),
respectively.

Let us stress that, in principle, it is possible to reverse completely the reduction in Sect. 2.1
and state a result for general equations of the form (1.1). However, a complete description
of the class of coefficients a, b, c, d, e, for which the corresponding Dirichlet-to-Neumann
operator is well-defined, is somewhat problematic. Additionally, one loses the bijective cor-
respondence between coefficients and Dirichlet-to-Neumann operators. For these reasons,
we take a different perspective, and we focus on operators given by (2.15) and (2.16).

2.3.1 Eckhardt–Kostenko form

With L and L̃ defined by (2.14) and (2.15), the equations Lu = 0 and L̃ũ = 0 are found to
be equivalent by choosing another shearing in Step 3 of reduction. Indeed, let us define

ã(dy) = a(dy) − (b(y))2dy, d̃(y) = −b′(y), (2.17)

and let u and ũ be related one to the other by the formula

ũ(x, y) = u(x + B(y), y), with B(y) =
∫ y

0
b(s)ds.

Given enough regularity of a, b and u, it is now straightforward to show that Lu = 0 in
R × (0, R) if and only if L̃ũ = 0 in R × (0, R). In the general case, however, some care
is needed, as it was the case with Definition 2.2: d̃ is the derivative of an arbitrary locally
square-integrable function.

Definition 2.9 Suppose that R ∈ (0,∞), ã is a locally finite, non-negativemeasure on [0, R),
and d̃ is the distributional derivative of a locally square-integrable function on [0, R). We
say that a function ũ(x, y) is harmonic with respect to the operator L̃ given by (2.15) if:

(a) for every y ∈ [0, R) the function ũ(·, y) is inL 2(R), and it depends continuously (with
respect to theL 2(R) norm) on y ∈ [0, R); if R = ∞, then theL 2(R) norm of ũ(·, y) is
assumed to be a bounded function of y ∈ [0,∞), while if R < ∞, then we additionally
require that ũ(·, y) converges to zero in L 2(R) as y → R−;

(b) the function ũ(x, y) is weakly differentiable on R × (0, R) with respect to y, and
(∂y ũ(·, y))2 is integrable overR × (y1, y2) whenever 0 < y1 < y2 < R;

(c) the equation L̃ũ = 0 is satisfied in the weak sense inR×(0, R), that is, for every smooth,
compactly supported function v onR × (0, R),∫

(0,R)

(∫ ∞

−∞
ũ(x, y)∂xxv(x, y)dx

)
ã(dy)

+
∫ R

0

(∫ ∞

−∞
ũ(x, y)∂yyv(x, y)dx

)
dy

−
∫ R

0

(∫ ∞

−∞
ũ(x, y)∂xv(x, y)dx

)
d̃(y)dy = 0. (2.18)
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We clarify that if d̃ = −b′, then the last integral in (2.18) should be understood as
∫ R

0

(∫ ∞

−∞
(
∂y ũ(x, y)∂xv(x, y) + ũ(x, y)∂xyv(x, y)

)
dx

)
b(y)dy,

and in particular this is why weak differentiability of ũ with respect to y is needed.
It is somewhat technical, but relatively straightforward to prove that u is harmonic with

respect to L in the sense of Definition 2.2 if and only if ũ is harmonic with respect to L̃ in
the sense of Definition 2.9. In fact, the only difficulty lies in the proof that conditions (2.3)
and (2.18) are equivalent. We omit the details.

If ũ(x, y) = u(x + B(y), y) is a harmonic function for L̃ with boundary values f (x) =
ũ(x, 0), then, according to Definition 2.4, the corresponding Dirichlet-to-Neumann operator
K is given by

K f (x) = α f ′′(x) + lim
y→0+

ũ(x − B(y), y) − ũ(x, 0)

y
, (2.19)

with α = ã({0}) and with the limit inL 2(R). Note that given only L̃ (that is, the coefficients
ã and d̃), there is some ambiguity in the above definition: the function B is defined up to
addition by a linear term only, and thus K f is only defined up to addition by a first-order
term C f ′ for some C ∈ R.

As an immediate corollary of Theorem 2.7, we obtain the following result.

Theorem 2.10 (a) Under the assumptions listed in Definition 2.9, the Dirichlet-to-Neumann
operator K associated to the equation L̃ũ = 0, with L̃ given by (2.15), is an operator of
class K.

(b) Every operator K of class K is the Dirichlet-to-Neumann operator associated to the
equation L̃ũ = 0 for a unique triplet of parameters R, ã and d̃ = −b′ satisfying the
conditions listed in Definition 2.9.

Compared to the equation Lu = 0 in standard form, studied in Sect. 2.2, the Eckhardt–
Kostenko form L̃ũ = 0 is much more closely related to the ODE studied in [13]; see Sect. 3
for further discussion.Additionally, the definition of a solution of the elliptic equation L̃ ũ = 0
is somewhat simpler. On the other hand, the Eckhardt–Kostenko form presents a number of
additional technical difficulties. First of all, one has to work with distributional derivatives
of square-integrable functions, that is, with elements of the Sobolev space H−1

loc ([0, R)) of
negative index; again see Sect. 3. Furthermore, the definition (2.19) of the Dirichlet-to-
Neumann operator is less natural for the Eckhardt–Kostenko form. In fact, as described
above, formula (2.19) is ambiguous: it depends on the function B, which is not uniquely
determined by the coefficient d̃ (this is the reason why we write d̃ = −b′ rather than simply
d̃ in Theorem 2.10). Finally, the equation in standard form turns out to be more convenient
than the Eckhardt–Kostenko variant in probabilistic applications, to be discussed in [29].

With the above arguments in mind, in this article we focus on the standard form (2.14)
considered in Sect. 2.2, and we limit our discussion of the Eq. (2.15) in Eckhardt–Kostenko
form to this section. Note, however, that finding an operator L which corresponds to a given
operator L̃ , or vice versa, presents no difficulties; see formula (2.17).

2.3.2 Divergence-like form

We nowmove to the variant given by (2.16). In the symmetric case (corresponding to b(y) =
0), discussed in detail in [30], it is often convenient toworkwith the equation in the divergence
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form: ∇x,y · (ȧ(y)∇x,y u̇) = 0, rather than the standard form: a(dy)∂xxu + ∂yyu = 0. Both
equations are equivalent by an appropriate change of scale, which corresponds to a different
choice of σ in Step 1 of the reduction. The equation in the divergence form, however, is less
general: not every measure a(dy) corresponds to some coefficient ȧ(y). We refer to [30] for
a detailed discussion.

Below we implement a similar strategy in the non-symmetric case, and again we need to
impose additional restrictions on the coefficientsa(dy) andb(y); in otherwords, this approach
leads to the representation as Dirichlet-to-Neumann operators for a class of operators K
strictly smaller than K.

We study the elliptic equation L̇u̇ = 0, where L̇ is given by (2.16). More precisely, we
consider the equation

(ȧ(y))2∂xx u̇(x, y) + (ȧ(y)∂y − ḃ(y)∂x )(ȧ(y)∂y + ḃ(y)∂x )u̇(x, y) = 0, (2.20)

which, strictly speaking, corresponds to the equation (ȧ(y))2 L̇u̇(x, y) = 0 with the notation
of (2.16). Given enough regularity of the coefficients, Eq. (2.20) takes form

(
(ȧ(y))2 − (ḃ(y))2

)
∂xx u̇(x, y) + (ȧ(y))2∂yy u̇(x, y)

+ ȧ(y)ḃ′(y)∂xu(x, y) + ȧ(y)ȧ′(y)∂yu(x, y) = 0.

This equation again corresponds to an equation Lu = 0 for an appropriate operator L in the
standard form (2.14). Before we discuss this relation in detail, however, let us first give a
rigorous meaning to (2.20).

Definition 2.11 Let Ṙ ∈ (0,∞), and suppose that ȧ and ḃ are functions on [0, Ṙ) such that
ȧ and 1/ȧ are locally integrable on [0, Ṙ), and |ḃ(y)| � ȧ(y) for all y ∈ [0, Ṙ). We say that
u̇ is a harmonic function for the operator L̇ given by (2.16) if:

(a) for every y ∈ [0, Ṙ) the function u̇(·, y) is inL 2(R), and it depends continuously (with
respect to the L 2(R) norm) on y ∈ [0, Ṙ); if 1/ȧ is not integrable over [0, Ṙ), then
the L 2(R) norm of u̇(·, y) is assumed to be a bounded function of y ∈ [0, Ṙ), while if
the integral of 1/ȧ is finite, then we additionally require that u̇(·, y) converges to zero in
L 2(R) as y → Ṙ−;

(b) the function u̇(x, y) is weakly differentiable on R × (0, Ṙ) with respect to y, and
ȧ(y)(∂y u̇(x, y))2 is integrable overR × (y1, y2) whenever 0 < y1 < y2 < Ṙ;

(c) the equation L̇u̇ = 0 is satisfied in the weak sense inR× (0, Ṙ), with weight (a(y))−1;
that is, for every suitable test function v̇ onR × (0, Ṙ), we have

∫ Ṙ

0

(∫ ∞

−∞
u̇(x, y)∂xx v̇(x, y)dx

)
ȧ(y)dy

+
∫ Ṙ

0

(∫ ∞

−∞
u̇(x, y)

(
ȧ(y)∂xy v̇(x, y) − ḃ(y)∂xx v̇(x, y)

)
dx

)
ḃ(y)

ȧ(y)
dy

−
∫ Ṙ

0

(∫ ∞

−∞
∂y u̇(x, y)

(
ȧ(y)∂y v̇(x, y) − ḃ(y)∂x v̇(x, y)

)
dx

)
dy = 0. (2.21)

By a suitable test function in item (c) we understand a compactly supported continuous
function v̇(x, y) onR× (0, Ṙ) which is twice continuously differentiable with respect to x ,
such that v̇ and ∂x v̇ are weakly differentiable with respect to y, and such that ȧ(y)∂y v̇(x, y)
and ȧ(y)∂xy v̇(x, y) are essentially bounded on R × (0, Ṙ). These conditions assert that the
integrals in (2.21)make sense. If ȧ and ḃ are sufficiently regular (for example, locally bounded
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on (0, Ṙ)), then every smooth, compactly supported function is a suitable test function. We
will shortly see that also under our more general assumptions on ȧ and ḃ, the class of suitable
test functions for (2.21) is sufficiently rich.

Given the parameters Ṙ, ȧ and ḃ of L̇ , we first construct the parameters R, ã and d̃ of the
corresponding equation L̃ũ = 0 in the Eckhardt–Kostenko form. This involves an appropriate
change of scale. Only later we switch to the standard form Lu = 0, with appropriately chosen
coefficients a and b.

The change of scale is determined by the function

σ̇ (y) =
∫ y

0

1

ȧ(r)
dr . (2.22)

We define

R = σ̇ (Ṙ−), ã(σ̇ (y)) = (ȧ(y))2 − (ḃ(y))2,

ũ(x, σ̇ (y)) = u̇(x, y), d̃(σ̇ (y)) = ḃ′(y), (2.23)

and we suppose that u̇ is a harmonic function for L̇ . Note that ã(s) � 0 for all s ∈ [0, R), and
that ã(s)ds is a locally finite measure on [0, R). As in [30], one shows that theL 2(R)-valued
function y �→ ũ(·, y) is weakly differentiable on (0, R), and

∂y ũ(·, σ̇ (y)) = ȧ(y)∂y u̇(·, y)
for almost all y ∈ [0, R). Let v be a smooth, compactly supported function on R × (0, R),
and define v̇ by the formula v̇(x, y) = v(x, σ̇ (y)). It is easy to see that v̇ is a suitable test
function for (2.21) (so that, in particular, the class of suitable test functions is rich: it is dense
in the space of compactly supported, continuous functions), and, with the above notation,
formula (2.21) reads

∫ Ṙ

0

(∫ ∞

−∞
ũ(x, σ̇ (y))∂xxv(x, σ̇ (y))dx

)
ȧ(y)dy

+
∫ Ṙ

0

(∫ ∞

−∞
ũ(x, σ̇ (y))

(
∂xyv(x, σ̇ (y)) − ḃ(y)∂xxv(x, σ̇ (y))

)
dx

)
ḃ(y)

ȧ(y)
dy

−
∫ Ṙ

0

(∫ ∞

−∞
∂y ũ(x, σ̇ (y))

(
∂yv(x, σ̇ (y)) − ḃ(y)∂xv(x, σ̇ (y))

)
dx

)
1

ȧ(y)
dy = 0.

Substituting s = σ̇ (y) and noting that ds = (1/ȧ(y))dy, we find that, with y = σ̇−1(s),
∫ R

0

(∫ ∞

−∞
ũ(x, s)∂xxv(x, s)dx

)
(ȧ(y))2ds

+
∫ R

0

(∫ ∞

−∞
ũ(x, s)

(
∂xyv(x, s) − ḃ(y)∂xxv(x, s)

)
dx

)
ḃ(y)ds

−
∫ R

0

(∫ ∞

−∞
∂y ũ(x, s)

(
∂yv(x, s) − ḃ(y)∂xv(x, s)

)
dx

)
ds = 0.

After rearrangement, we eventually obtain
∫ R

0

(∫ ∞

−∞
ũ(x, s)∂xxv(x, s)dx

)
ã(s)ds

+
∫ R

0

(∫ ∞

−∞
(
∂y ũ(x, s)∂xv(x, s) + ũ(x, s)∂xyv(x, s)

)
dx

)
ḃ(y)ds
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−
∫ R

0

(∫ ∞

−∞
∂y ũ(x, s)∂yv(x, s)dx

)
ds = 0,

which is precisely formula (2.18) in the definition of a function harmonic with respect to L̃ .
Thus, ũ is a harmonic function for L̃ , in the sense of Definition 2.9.

In order to find the corresponding operator L in standard form, we now use the result
obtained earlier in this section. We define the coefficients a and b via the formulae

a(σ̇ (y)) = (ȧ(y))2, b(σ̇ (y)) = −ḃ(y), (2.24)

we let, as usual,

B(σ̇ (y)) =
∫ σ̇ (y)

0
b(s)ds = −

∫ y

0

ḃ(r)

ȧ(r)
dr ,

and we define

u(x, σ̇ (y)) = ũ(x − B(σ̇ (y)), σ̇ (y)) = u̇(x − B(σ̇ (y)), y).

Note that the formula a(dy) = a(y)dy defines a locally finite measure on [0, R) with a
positive almost everywhere density function a(y). It follows that if u̇ is a harmonic function
for L̇ in the sense of Definition 2.11, then u is a harmonic function for L in the sense of
Definition 2.2.

Suppose now that u̇ is a harmonic function for L̇ with boundary values f (x) = u̇(x, 0).
According to Definition 2.4, the Dirichlet-to-Neumann operator K associated to u̇ is given
by

K f (x) = lim
y→0+

u̇(x − B(σ̇ (y)), y) − u̇(x, 0)

σ̇ (y)

= lim
y→0+

(
ȧ(y)∂y u̇(x, y) + ḃ(y)∂x u̇(x, y)

)
, (2.25)

with the limits inL 2(R); the second inequality is a consequence of (2.11). As an immediate
corollary of Theorem 2.7, we obtain the following result.

Proposition 2.12 (a) Under the assumptions listed in Definition 2.11, the Dirichlet-to-
Neumann operator K associated to the equation L̇u = 0, with L̇ given by (2.16), is
an operator of class K.

(b) Every operator K of class K is the Dirichlet-to-Neumann operator associated to the
equation L̇u̇ = 0 for at most one triplet of parameters Ṙ, ȧ and ḃ satisfying the conditions
listed in Definition 2.11.

Note that the counterpart of Theorem 2.7(b) is incomplete: not all operators of class K

can be realised as described above. This is the main reason for us to focus on the equation
Lu = 0 in standard form studied in Sect. 2.2. On the other hand, some examples take a
particularly simple form when written as in (2.20), and this form is also more suitable for
some constructions; further discussion can be found in Sect. 5.

It is easy to find an operator L (or L̃) which corresponds to a given operator L̇ , using (2.22)
and (2.24) (or (2.22) and (2.23)). The converse is slightly more complicated. Let L be an
operator in the standard form (2.14), with coefficients a and b, and suppose that a(dy) has a
positive almost everywhere density function, denoted by a(y). The coefficients ȧ and ḃ of the
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corresponding operator L̇ are clearly given again by (2.24), with the function σ̇ completely
determined by (2.22). More precisely, formula (2.22) implies that

∫ σ̇ (y)

0

√
a(s)ds = y,

and thus σ̇ is the inverse function of y �→ ∫ y
0

√
a(s)ds. It is now easy to check that ȧ and ḃ

satisfy all conditions listed in Definition 2.11; we omit the details.

2.4 Notation and preliminaries

Throughout the article, all measures are assumed to be locally finite and complex-valued
measures. By ϕ(t+) and ϕ(t−) we denote one-sided limits of ϕ at t . As usual, we denote by
C∞
c (D) the class of smooth, compactly supported functions on D, and by L p(D) the class

of p-integrable Borel functions on D, with functions equal almost everywhere identified.
The Fourier transform of a function f is denoted by f̂ : if f ∈ L 1(R), then f̂ (ξ) =∫ ∞

−∞ e−iξ x f (x)dx , and the Fourier transformation f �→ f̂ is continuously extended to

L 2(R). Note that if g(x) = f (x + a) then ĝ(ξ) = eiξa f̂ (ξ), while if g(x) = f ′(x), then
ĝ(ξ) = iξ f̂ (ξ).

If ϕ is an absolutely continuous function on an interval, then ϕ is differentiable almost
everywhere, and the weak (or distributional) derivative of ϕ corresponds to a function equal
almost everywhere to the point-wise derivative. If ϕ is a function of bounded variation, then
the distributional derivative of ϕ corresponds to a measure. Here we take special care about
the endpoints of the domain of ϕ: if ϕ is defined on [0, R) and ϕ(0) 	= ϕ(0+), then we
understand that ϕ′ contains an atom at 0 of mass ϕ(0+) − ϕ(0), as if ϕ was extended to a
constant function ϕ(t) = ϕ(0) for t < 0. In particular, the value of ϕ at a single point 0 does
influence the distributional derivative of ϕ.

If ϕ1 and ϕ2 are functions of bounded variation with no common discontinuities, then
ϕ1ϕ2 is of bounded variation, too, and (ϕ1ϕ2)

′ = ϕ1ϕ
′
2 + ϕ2ϕ

′
1 (where all derivatives are

taken in the sense of distributions, and correspond to appropriate measures).
A locally integrable function u(x, y) is said to be weakly differentiable with respect to x

if there is a locally integrable function v(x, y) such that

−
∫ ∞

−∞

∫ ∞

−∞
u(x, y)∂xw(x, y)dxdy = −

∫ ∞

−∞

∫ ∞

−∞
v(x, y)w(x, y)dxdy

for every smooth, compactly supported (test) function w. As remarked above, a function u
of one variable is weakly differentiable if and only if it is (locally) absolutely continuous.
In higher dimensions, we will use the following characterisation of weak differentiability,
known as absolute continuity on lines (ACL): u(x, y) is weakly differentiable with respect to
x if and only if there is a function ũ(x, y)which is equal to u(x, y) almost everywhere, which
is absolutely continuous with respect to x for every y, and such that the point-wise derivative
∂x ũ(x, y) (which necessarily exists almost everywhere) is a locally integrable function. In
this case ∂x ũ(x, y) is the weak derivative of u(x, y).

We use the same notation ∂xu for both the usual (point-wise) and the weak derivative.
Whenever this convention may lead to ambiguities, we will explicitly state which derivative
we have in mind.
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3 Auxiliary ODE

As it will become apparent in the next section, Fourier transform reduces our problem to the
study of a second-order linear ordinary differential equation

ϕ′′(dt) = ξ2a(dt)ϕ(t) − 2iξb(t)ϕ′(t)dt . (3.1)

Hereϕ is a function on [0, R)with R ∈ (0,∞], ξ is a ‘spectral’ parameter, and the coefficients
a(dt) and b(t) are as in the definition of class L (Definition 2.1): a(dt) is a non-negative
measure on [0, R) (we allow for an atom at 0), the coefficient b(t) is locally square-integrable
on [0, R), and a(dt) − (b(t))2dt is assumed to be a non-negative measure on [0, R). For
our later needs it is enough to assume that ξ ∈ R; however, we stress that in the Proof of
Theorem 3.1 arbitrary complex ξ need to be considered. We understand (3.1) in the sense
of distributions; more precisely, we assume that ϕ is an absolutely continuous function such
that the first distributional derivative of ϕ corresponds to a left-continuous function (which
we denote ϕ′(t)), the second distributional derivative of ϕ is a complex-valued measure (that
we denote by ϕ′′(dt)), and we have equality of measures given by (3.1).

As already mentioned, for our purposes we only need to study the properties of solutions
of (3.1) when ξ is a real number. It is in fact sufficient to consider ξ > 0: if ϕ is a solution
of (3.1) for some ξ > 0, then ϕ satisfies (3.1) with ξ replaced by−ξ . Furthermore, for ξ = 0,
Eq. (3.1) requires ϕ to be an affine function. For this reason, we restrict our attention to ξ > 0
in the following statement. We refer to [13] and to Appendix A for results that cover general
complex ξ .

The following statement summarizes some of the main results of [13], which play a
crucial role in our development. The function k(ξ)/ξ introduced in item (b) is often called
the principal Weyl–Titchmarsh function for the Eq. (3.1).

Theorem 3.1 (a) Suppose that the coefficients a(dt) and b(t), defined on [0, R), satisfy the
conditions of Definition 2.1. For every ξ > 0 there is a unique solution ϕξ of (3.1) on
[0, R) which satisfies ϕξ (0) = 1 and such that ϕξ is bounded when R = ∞ (in this case
every other solution diverges to infinity at ∞), and ϕξ (R−) = 0 if R < ∞ (in this case
every other solution is bounded away from zero in some left neighbourhood of R).

(b) If ϕξ is the solution defined above and k(ξ) = −ϕ′
ξ (0), then k extends to a Rogers

function; that is, k has a holomorphic extension to the right complex half-plane, and this
extension satisfies Re(k(ξ)/ξ) � 0 whenever Re ξ > 0.

(c) If ϕξ is the solution defined above, then |ϕξ |2 is positive, non-increasing and convex on
[0, R), and |ϕ′

ξ | is non-increasing on [0, R); furthermore, if ã(dt) = a(dt) − (b(t))2dt,

B(t) = ∫ t
0 b(s)ds and ϕ̃ξ (t) = eiξ B(t)ϕξ (t), then for every t ∈ [0, R) we have

ξ2
∫

[t,R)

|ϕ̃ξ (s)|2ã(ds) +
∫ R

t
|ϕ̃′

ξ (s)|2ds � min

(
Re k(ξ),

2

t

)
.

In particular, |ϕ̃′
ξ |2 is integrable on [0, R).

(d) To every Rogers function k there corresponds exactly one pair of coefficients a(dt) and
b(t), defined on some [0, R) with R ∈ (0,∞].
In [13], Eckhardt and Kostenko study the Eq. (3.1) in a different form, for the function

ϕ̃ξ rather than ϕξ . For this reason, we include below a brief discussion of equivalence of
these two forms. The direct part of Theorem 3.1 (that is, items (a) through (c)) is proved
in Sects. 3–5 of [13]. For a less general class of coefficients a(dt) and b(t), this goes back
to [26, 31]. The inverse part of Theorem 3.1 (item (d)) is the main contribution of [13]; its
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proof involves deep ideas due to de Branges. For reader’s convenience, in Appendix A we
include an alternative, less abstract proof of parts (a) through (c) of Theorem 3.1, written in
the language of (3.1) rather than that of [13].
Proof of equivalence of Theorem3.1 and the results of [13]. We transform Eq. (3.1) in a
way that corresponds to shearing in Sect. 2.1: as usual, we denote B(t) = ∫ t

0 b(s)ds, and
whenever ϕ is a functon on [0, R), we write

ϕ̃(t) = eiξ B(t)ϕ(t).

On a formal level, ϕ is a solution of (3.1) if and only if ϕ̃ satisfies

ϕ̃′′ = eiξ B(ϕ′′ + 2iξbϕ′ − ξ2b2ϕ + iξb′ϕ)

= eiξ B(ξ2(a − b2)ϕ + iξb′ϕ) = (ξ2ã + iξ d̃)ϕ̃,

where we have denoted ã(dt) = a(dt) − (b(t))2dt and d̃(t) = b′(t). By assumption, ã is a
non-negative measure on [0, R). However, b is only assumed to be locally square-integrable,
and therefore the distributional derivative b′ need not correspond to a function or a measure:
it is an element of the Sobolev space H−1

loc ([0, R)) on [0, R) with negative index −1, that is,
the dual of the Sobolev space H1

c ([0, R)) of compactly supported and weakly differentiable
functions f on [0, R) such that f and f ′ are in L 2([0, R)).

Under the above assumptions (that is, ã a non-negative measure and d̃ an element of the
Sobolev space H−1

loc ([0, R))), the equation satisfied by ϕ̃:

ϕ̃′′ = (ξ2ã + iξ d̃)ϕ̃, (3.2)

is precisely the equation studied systematically by Eckhardt and Kostenko in [13], see equa-
tion (1.2) therein. With the notation used there, z, ν and ω in [13] correspond to iξ , ã and
−d̃ used here, respectively.

Equivalence of (3.1) and (3.2) can be rigorously proved by writing both equations in an
integral form. Indeed, suppose that ϕ̃ solves (3.2). In [13], this is understood as

−Cg(0) −
∫ R

0
ϕ̃′(t)g′(t)dt = ξ2

∫
[0,R)

ϕ̃(t)g(t)ã(dt) + iξ d̃(ϕ̃g)

for every test function g in H1
c ([0, R)) and some constantC ; see Definition 3.1 in [13]. Recall

that ã(dt) = a(dt) − (b(t))2dt , and d̃ = b′, that is, by definition,

d̃(ϕ̃g) = −
∫ R

0
(ϕ̃g)′(t)b(t)dt .

It follows that

− Cg(0) −
∫ R

0
ϕ̃′(t)g′(t)dt

= ξ2
∫

[0,R)

ϕ̃(t)g(t)a(dt) − ξ2
∫

[0,R)

ϕ̃(t)g(t)(b(t))2dt − iξ
∫ R

0
(ϕ̃g)′(t)b(t)dt .

We have ϕ̃(t) = eiξ B(t)ϕ(t), and we write g(t) = e−iξ B(t) g̃(t). Note that g ∈ H1
c ([0, R))

if and only if g̃ ∈ H1
c ([0, R)). Since ϕ̃′(t) = eiξ B(t)(ϕ′(t) + iξb(t)ϕ(t)) and g′(t) =

e−iξ B(t)(g̃′(t) − iξb(t)g̃(t)), we find that
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− Cg̃(0) −
∫ R

0
(ϕ′(t) + iξb(t)ϕ(t))(g̃′(t) − iξb(t)g̃(t))dt

= ξ2
∫

[0,R)

ϕ(t)g̃(t)a(dt) − ξ2
∫

[0,R)

ϕ(t)g̃(t)(b(t))2dt − iξ
∫ R

0
(ϕg̃)′(t)b(t)dt .

After simplification, we obtain

−Cg̃(0) −
∫ R

0
ϕ′(t)g̃′(t)dt = ξ2

∫
[0,R)

ϕ(t)g̃(t)a(dt) − 2iξ
∫ R

0
ϕ′(t)g̃(t)b(t)dt

for every g̃ ∈ H1
c ([0, R)). By taking g̃(s) = −(t − s)1[0,t)(s), we find that

∫ t

0
ϕ′(s)ds = Ct + ξ2

∫
[0,t)

(t − s)ϕ(s)a(ds) − 2iξ
∫ t

0
(t − s)ϕ′(s)b(s)ds

for every t ∈ [0, R). Finally, differentiation leads to

ϕ′(t) = C + ξ2
∫

[0,t)
ϕ(s)a(ds) − 2iξ

∫ t

0
ϕ′(s)b(s)ds,

which is clearly equivalent to (3.1). By essentially reversing the steps of the above argument,
we find that if ϕ satisfies (3.1), then ϕ̃ is a solution of (3.2) (we omit the details), and it
follows that (3.1) and (3.2) are indeed equivalent.

Part (a) of the theorem is now essentially Lemma 4.2 in [13], part (b) follows from
Lemma 5.1 in [13], and part (c) is essentially given in the proof of Lemma 5.1 in [13]
(see the last display in p. 954 therein). As mentioned above, alternative proofs are given in
Appendix A. Finally, part (d) is stated as Theorem 6.1 in [13]. 
�

In the remaining part of the article, we denote by ϕξ the solution of (3.1) described by
Theorem 3.1 if ξ > 0, a similar solution ϕξ (t) = ϕ−ξ (t) if ξ < 0, and the constant solution
ϕ0(t) = 1 if ξ = 0.

4 Harmonic extensions

In this section we describe the class of functions harmonic with respect to operators L of class
L in terms of Fourier transform and solutions ϕξ (t) of ODE (3.1), described in Theorem 3.1.

We assume, as in Definition 2.1, that a(dy) is a non-negative measure on [0, R), b(y) is
a locally square-integrable real-valued function on [0, R), and a(dy) − (b(y))2dy is non-
negative. We commonly use the auxiliary measure ã(dy) = a(dy)− (b(y))2dy and function
B(y) = ∫ y

0 b(t)dt .
We study functions u(x, y) onR× [0, R) which are harmonic with respect to the elliptic

operator L in the sense ofDefinition 2.2.Wedenote by û(ξ, y) theFourier transformofu(x, y)
in variable x , whenever well-defined. We equally often work with the function ũ(x, y) =
u(x + B(y), y). Observe that ˆ̃u(ξ, y) = eiξ B(y)û(ξ, y).

We begin with the Proof of Proposition 2.3, which asserts the existence and uniqueness of
harmonic extensions. The argument is divided into two steps, which correspond to uniqueness
and existence, respectively.

Lemma 4.1 Suppose that L is an operator of classL. For ξ ∈ R let ϕξ be the solution of (3.1)
discussed in Sect. 3. If u is harmonic with respect to L, then for all y ∈ [0, R) we have, for
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almost all ξ ∈ R,

û(ξ, y) = û(ξ, 0)ϕξ (y).

Proof By Definition 2.2 and Plancherel’s theorem, y �→ û(·, y) is again a bounded, con-
tinuous mapping from [0, R) to L 2(R), which vanishes at R− if R < ∞. Furthermore,
y �→ ˆ̃u(·, y) is weakly differentiable on (0, R), and ∂y ˆ̃u(·, y) is the Fourier transform of
∂y ũ(·, y) for almost all y ∈ (0, R) (here ũ(x, y) = u(x + B(y), y)). Our goal is to prove
that û(ξ, ·) is a solution to the ODE (3.1). The proof is rather straightforward, but it requires
some care due to possible irregularities of û.

Here is the philosophy of the proof: if u is sufficiently regular, then, by (2.2) and
Plancherel’s theorem, we have

−
∫

(0,R)

∫ ∞

−∞
ξ2û(ξ, y)v̂(ξ, y)dξa(dy)

+ 2
∫ R

0

∫ ∞

−∞
iξ∂y û(ξ, y)v̂(ξ, y)b(y)dξdy

−
∫ R

0

∫ ∞

−∞
∂y û(ξ, y)∂y v̂(ξ, y)dξdy = 0

for every v ∈ C∞
c (R× (0, R)). By a density argument, this implies that (after a modification

on a set of zero Lebesgue measure) for almost all ξ ∈ R the function û(ξ, ·) is a solution of
the ODE (3.1), and hence û(ξ, y) = û(ξ, 0)ϕξ (y), as desired. Our goal is to make the above
idea rigorous in the general case, where only minimal smoothness of u is assumed.

By Definition 2.2 (or, more precisely, by (2.3)) and Plancherel’s theorem, for every v ∈
C∞
c (R × (0, R)) we have

−
∫

(0,R)

∫ ∞

−∞
ξ2û(ξ, y)v̂(ξ, y)dξ ã(dy)

+ 2
∫ R

0

∫ ∞

−∞
iξe−iξ B(y)∂y ˆ̃u(ξ, y)v̂(ξ, y)b(y)dξdy

+
∫ R

0

∫ ∞

−∞
û(ξ, y)∂yy v̂(ξ, y)dξdy = 0. (4.1)

The ACL characterisation of weak differentiability implies that, after modifying ˆ̃u(ξ, y) and
∂y ˆ̃u(ξ, y) on a set of zero Lebesgue measure, we may assume that for every ξ ∈ R the

function ˆ̃u(ξ, ·) is absolutely continuous on [0, R), and the point-wise derivative of this uni-
variate function agrees almost everywhere on [0, R)with the weak derivative ∂y ˆ̃u(ξ, ·) of the
bi-variate function. We temporarily work with this modification, and a similar modification
of û(ξ, y) = eiξ B(y) ˆ̃u(ξ, y).

For every ξ ∈ R, the function ϕ̃(y) = ˆ̃u(ξ, y) is absolutely continuous on [0, R). It
follows that alsoϕ(y) = û(ξ, y) = e−iξ B(y) ˆ̃u(ξ, y) = e−iξ B(y)ϕ̃(y) is absolutely continuous
on [0, R), and ϕ̃′(y) = eiξ B(y)(ϕ′(y)+ iξb(y)ϕ(y)) for almost all y ∈ [0, R) (we stress that
u(x, y) need not be weakly differentiable with respect to y; nevertheless, it turns out that
û(ξ, y) is necessarily weakly differentiable with respect to y). Applying this identity to (4.1),
we find that
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−
∫

(0,R)

∫ ∞

−∞
ξ2û(ξ, y)v̂(ξ, y)dξa(dy)

+ 2
∫ R

0

∫ ∞

−∞
iξ∂y û(ξ, y)v̂(ξ, y)b(y)dξdy

+
∫ R

0

∫ ∞

−∞
û(ξ, y)∂yy v̂(ξ, y)dξdy = 0.

We choose v(x, y) = v1(x)v2(y)with v1 ∈ C∞
c (R) and v2 ∈ C∞

c ((0, R)), so that v̂(ξ, y) =
v̂1(ξ)v2(y). Using Fubini’s theorem, we find that

∫ ∞

−∞
v̂1(ξ)

(
−

∫
(0,R)

ξ2û(ξ, y)v2(y)a(dy)

+ 2
∫ R

0
iξ∂y û(ξ, y)v2(y)b(y)dy

+
∫ R

0
û(ξ, y)v′′

2 (y)dy

)
dξ = 0.

The class of Fourier transforms v̂1 of functions v1 ∈ C∞
c (R) is dense inL 2(R). Therefore,

if v2 ∈ C∞
c ((0, R)), then for almost all ξ ∈ R we have

−
∫

(0,R)

ξ2û(ξ, y)v2(y)a(dy) + 2
∫ R

0
iξ∂y û(ξ, y)v2(y)b(y)dy

+
∫ R

0
û(ξ, y)v′′

2 (y)dy = 0. (4.2)

By choosing a countable, dense set of v2 ∈ C∞
c ((0, R)), we conclude that for almost all

ξ ∈ R, the above equality is satisfied for a dense set of v2 ∈ C∞
c ((0, R)), and therefore for

all v2 ∈ C∞
c ((0, R)).

For a fixed ξ ∈ R with the above property, we let ϕ(y) = û(ξ, ·). Identity (4.2) reads

−
∫

(0,R)

ξ2ϕ(y)v2(y)a(dy) + 2
∫ R

0
iξϕ′(y)v2(y)b(y)dy +

∫ R

0
ϕ(y)v′′

2 (y)dy = 0

for all v2 ∈ C∞
c ((0, R)), which is the distributional formulation of the ODE

ξ2ϕ(y)a(dy) − 2iξb(y)ϕ′(y)dy − ϕ′′(dy) = 0, (4.3)

identical to (3.1), studied in the previous section.
Suppose that R = ∞. By Theorem 3.1, in this case any solution of (4.3) is either a

multiple of ϕξ or it diverges to infinity at R−. Since the L 2(R) norm of û(·, y) is bounded
uniformly with respect to y in [0,∞) except a set of zero Lebesgue measure (recall that we
have modified û on a set of zero Lebesgue measure!), |û(ξ, y)| cannot diverge to infinity as
y → ∞ for all ξ in a set of positive Lebesgue measure (otherwise, by Fatou’s lemma, the
L 2(R) norm of û(·, y) would diverge to infinity as y → ∞). It follows that for almost all
ξ ∈ R there is a number cξ ∈ C such that for all y ∈ (0, R) we have

û(ξ, y) = cξ ϕξ (y).

The same equality necessarily holds almost everywhere for the original version of û, before
modification on a set of zero Lebesgue measure. Since y �→ û(·, y) is a continuous map from
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[0, R) to L 2(R), and ϕξ (0) = 1 for all ξ ∈ R, we have cξ = û(0, ξ) for almost all ξ ∈ R,
and the assertion of the lemma follows.

When R < ∞, the proof is very similar. In this case we know that the L 2(R) norm of
û(·, y) converges to zero as y → R− except for a set of y of zero Lebesgue measure, and
by Theorem 3.1, any solution ϕ of (4.3) is either a multiple of ϕξ or |ϕ| has a positive lower
limit at R−. Fatou’s lemma again implies that for almost every ξ ∈ R the function û(ξ, ·) is
a multiple of ϕξ , and the remaining part of the argument is the same as in the case R = ∞. 
�
Lemma 4.2 Suppose that L is an operator of classL. For ξ ∈ R let ϕξ be the solution of (3.1)
discussed in Sect. 3. If f ∈ L 2(R), then the formula

û(ξ, y) = f̂ (ξ)ϕξ (y)

defines a function u onR × [0, R) harmonic with respect to L.

Proof We need to verify the conditions listed in Definition 2.2. By Theorem 3.1, for every
ξ ∈ R the function ϕξ is continuous and bounded by 1. In particular, for every y ∈ [0, R),
û(·, y) is in L 2(R) with norm bounded by the L 2(R) norm of f̂ , and so it is the Fourier
transform of some function u(·, y) withL 2(R) norm no greater than theL 2(R) norm of f .
Since ϕξ is continuous on [0, R) for every ξ ∈ R, by the dominated convergence theorem,
y �→ û(·, y) is a continuous map from [0, R) into L 2(R); thus y �→ u(·, y) has the same
property. A similar argument implies that if R < ∞, then u(·, y) converges in L 2(R) to
zero as y → R−. This proves that condition (a) of Definition 2.2 is satisfied.

As usual, let B(y) = ∫ y
0 b(t)dt and ũ(x, y) = u(x + B(y), y), so that

ˆ̃u(ξ, y) = eiξ B(y)û(ξ, y) = f̂ (ξ)ϕ̃ξ (y),

where ϕ̃ξ (y) = eiξ B(y)ϕξ (y). By Theorem 3.1, for every ξ ∈ R and y ∈ (0, R), the function
ϕ̃ξ is weakly differentiable, and ϕ̃′

ξ is square integrable on [y, R), with L 2((y, R)) norm

bounded by 1/
√
2y. Therefore, if we define

∂y ˆ̃u(ξ, y) = f̂ (ξ)ϕ̃′
ξ (y),

then ∂y ˆ̃u is square integrable on R × [y, R) for every y ∈ (0, R). Fubini’s theorem asserts
that for every v ∈ C∞

c (R × (0, R)) we have
∫ R

0

∫ ∞

−∞
∂y ˆ̃u(ξ, y)v̂(ξ, y)dξdy = −

∫ R

0

∫ ∞

−∞
ˆ̃u(ξ, y)∂y v̂(ξ, y)dξdy,

and by Plancherel’s theorem we find that formula (2.4) is satisfied with ∂y ũ(x, y) defined

as the inverse Fourier transform of ∂y ˆ̃u(ξ, y). We have already observed that ∂y ũ(x, y) is
square integrable in every stripR× (y1, y2) with 0 < y1 < y2 < R, and hence condition (b)
of Definition 2.2 is satisfied.

Finally, condition (c) of Definition 2.2 reduces to an application of Plancherel’s theorem
and Fubini’s theorem. Indeed, by Plancherel’s theorem, up to a factor (2π)−1, the left-hand
side of (2.3) is equal to

−
∫

(0,R)

(∫ ∞

−∞
ξ2û(ξ, y)v̂(ξ, y)dξ

)
ã(dy)

+ 2
∫ R

0

(∫ ∞

−∞
iξe−iξ B(y)∂y ˆ̃u(ξ, y)v̂(ξ, y)dξ

)
b(y)dy
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+
∫ R

0

(∫ ∞

−∞
û(ξ, y)∂yy v̂(ξ, y)dξ

)
dy,

which, by Fubini’s theorem, is equal to

∫ ∞

−∞

(
−

∫
(0,R)

ξ2û(ξ, y)v̂(ξ, y)ã(dy) + 2
∫ R

0
iξe−iξ B(y)∂y ˆ̃u(ξ, y)v̂(ξ, y)b(y)dy

+
∫ R

0
û(ξ, y)∂yy v̂(ξ, y)dy

)
dξ.

Using the definitions û(ξ, y) = f̂ (ξ)ϕξ (y) and ˆ̃u(ξ, y) = eiξ B(y) f̂ (ξ)ϕξ (y), together with
the fact that ϕξ is a solution of (3.1), we find that the expression under the outer integral is
zero for every ξ ∈ R, and hence condition (c) of Definition 2.2 is satisfied. 
�

The above two lemmas prove Proposition 2.3.

Lemma 4.3 Suppose that L is an operator of class L
�. For ξ ∈ R let ϕξ be the solution

of (3.1) discussed in Sect. 3, and let k(ξ) = −ϕ′
ξ (0) be the associated Rogers function. If u is

a harmonic function for L (in the sense of Definition 2.2) with boundary values f ∈ L 2(R),
then the L 2(R) limit in the definition of the Dirichlet-to-Neumann operator

K f = ∂yu(·, 0) = lim
y→0+

u(·, y) − u(·, 0)
y

(4.4)

exists if and only if k(ξ) f̂ (ξ) is square integrable, and in this case

K̂ f (ξ) = −k(ξ) f̂ (ξ). (4.5)

Proof By Lemma 4.1, for every y � 0 and ξ ∈ R we have û(ξ, y) = f̂ (ξ)ϕξ (y) (after
choosing the right representative of û(·, y)); and conversely, by Lemma 4.2, for every f ∈
L 2(R) there is a corresponding function u harmonic with respect to L . By Theorem 3.1,
|ϕ′

ξ | is non-increasing, so that |ϕ′
ξ (y)| � |ϕ′

ξ (0)| = |k(ξ)| for all y ∈ [0, R). It follows that

lim
y→0+

û(ξ, y) − û(ξ, 0)

y
= f̂ (ξ)ϕ′

ξ (0) = − f̂ (ξ)k(ξ) (4.6)

for every ξ ∈ R, and
∣∣∣∣ û(ξ, y) − û(ξ, 0)

y

∣∣∣∣ � |k(ξ) f̂ (ξ)|

for every ξ ∈ R and y ∈ (0, R). If k f̂ ∈ L 2(R), then, by dominated convergence, the
limit in (4.6) exists in L 2(R). By Plancherel’s theorem, the limit in (4.4) exists in L 2(R),
and (4.5) holds. Conversely, if the limit in (4.4) exists inL 2(R), then, again by Plancherel’s
theorem, the limit in (4.6) exists in L 2(R), and it is necessarily equal to k f̂ . Consequently,
k f̂ ∈ L 2(R), as desired. 
�

The above lemma proves the first statement of Theorem 2.7 for operators L of class L
�.

As explained after the statement of Theorem 2.7, extension to the class L is immediate. The
other part of Theorem 2.7 is a consequence of item (d) of Theorem 3.1.
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5 Examples

In this section we discuss a number of non-local operators and corresponding extension
problems.More precisely,weprescribe the coefficientsa andb of the reduced elliptic equation
Lu = 0, and evaluate, often omitting the technical details, the corresponding solutionϕξ (t) of
the ODE (3.1). This allows us to identify the corresponding Fourier symbol −k(ξ) = ϕ′

ξ (0),
and eventually leads to the explicit form of the Dirichlet-to-Neumann operator K . Whenever
possible, we discuss all three variants: the standard form L , the Eckhardt–Kostenko form L̃
and the divergence-like form L̇ , discussed in Sect. 2.3. For the convenience of the reader, we
recall that

Lu = a(dy)∂xxu + 2b(y)∂xyu + ∂yyu,

L̃ũ = ã(dy)∂xx ũ + ∂yy ũ + d̃(y)∂x ũ,

L̇u̇ = ∇x,y · (ȧ(y)∇x,y u̇) + 2ḃ(y)∂xy u̇.

We begin with two rather trivial examples, then we discuss three general constructions, and
finally we discuss the representation of non-symmetric fractional derivatives.

5.1 Zero operator

If a(dy) = 0 dy and b(y) = 0 for all y ∈ [0,∞), then the solution of the ODE (3.1) is given
by

ϕξ (y) = 1,

and consequently

k(ξ) = −ϕ′
ξ (0) = 0 and K f (x) = 0.

Therefore, the equation Lu = 0 (or L̃ũ = 0 with ã(dy) = 0 dy and b(y) = 0) inR×[0,∞)

corresponds to the Dirichlet-to-Neumann operator K f = 0.
Note, however, that the same coefficients a(dy) = 0 dy and b(y) = 0 on a finite interval

[0, R) lead to a non-zero Dirichlet-to-Neumann operator K . Indeed, if we set γ = 1/R, then
we easily find that

ϕξ (y) = 1 − γ y, k(ξ) = −ϕ′
ξ (0) = γ, K f (x) = −γ f (x).

Therefore, the equation Lu = 0 (or L̃ũ = 0) in R × [0, 1/γ ) corresponds to the Dirichlet-
to-Neumann operator K f = −γ f .

5.2 Constant coefficients

Let p � 0, q ∈ R, and consider a(dy) = (p2 +q2)dy and b(y) = −q for y ∈ [0,∞). Then

ϕξ (y) = e(−p|ξ |+iqξ)y, k(ξ) = −ϕ′
ξ (0) = p|ξ | − iqξ.

Thus, unsurprisingly, Lu = (p2 + q2)∂xxu − 2q∂xyu + ∂yyu corresponds to the Dirichlet-
to-Neumann operator

K f (x) = −p(−∂xx )
1/2 f (x) + q f ′(x).
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Here ∂xx is the second derivative operator (the one-dimensional Laplace operator), and
(−∂xx )

1/2 is the usual Dirichlet-to-Neumann operator for the Laplace equation in the half-
plane. In other words, K corresponds to α = 0, β = q , γ = 0 and ν(z) = pπ−1|z|−2 in
Definition 2.5.

The corresponding operator L̃ in Eckhardt–Kostenko form is simply L̃ũ = p2∂xx ũ+∂yy ũ,
with coefficients ã(dy) = p2dy and d̃(y) = 0 that do not depend on q . The first-order term
q f ′ in the expression for K f (x) comes from the somewhat artificial definition (2.19) of the
Dirichlet-to-Neumann operator: the function B is defined by d̃ up to a linear term only, and
we choose B(y) = −qy in order that B ′(y) = −q = b(y).

5.3 Degenerate equations corresponding to one-sided operators without first-order
term

As explained in the introduction, there is a one-to-one correspondence between measures
a0(dy) on [0, R) and complete Bernstein functions ψ . Namely, the Dirichlet-to-Neumann
operator associated to the equation Lu = 0 with coefficients a(dy) = a0(dy) and b(y) = 0
is K = −ψ(−∂xx ). By this we mean that the corresponding symbol is equal to −k(ξ) =
−ψ(ξ2). We refer to [30] for a detailed discussion.

It is known that ∂xx can be replaced by a more general non-positive definite operator Dx

acting in variable x : every operator of the form−ψ(−Dx ) arises as theDirichlet-to-Neumann
map for the equation a0(dy)Dxu + ∂yyu = 0. In particular, we can set Dx = −∂x . We refer
to [15] for a related discussion.

The above observation indicates that the operator K f = −ψ(∂x ) f , corresponding to the
symbol−k(ξ) = −ψ(iξ), is the Dirichlet-to-Neumann operator associatedwith the equation
L̃ũ = 0, where L̃ũ = ∂yy ũ − a0(dy)∂x ũ. Note that here it is more convenient to work with
the operator L̃ in the Eckhardt–Kostenko form (2.15), with coefficients

ã(dy) = 0 dy, d̃(y) = −a0(dy).

If we denote A0(y) = a0([0, y)), then the corresponding operator L in the standard form (2.1)
is easily found to have coefficients

a(dy) = (A0(y))
2dy, b(y) = A0(y).

In a similar way, we can find the corresponding operator L̇ in the divergence-like form (2.16),
as long as A0(y) = a0([0, y)) is strictly positive for y > 0. Let

B(y) =
∫ y

0
b(s)ds =

∫ y

0
A0(s)ds =

∫
[0,y)

(y − s)a0(ds).

Then B(y) = ∫ y
0

√
a(s)ds, so that σ̇ (y) = B−1(y) (see Sect. 2.3 for the notation), and

consequently

Ṙ = B(R−), ȧ(y) = −ḃ(y) = b(B−1(y))

for y ∈ [0, R). In other words,

Ṙ =
∫

[0,R)

(R − s)a0(ds), ȧ

(∫
[0,y)

(y − s)a0(ds)

)
= a0([0, y))

for y ∈ [0, R), and ḃ(y) = −ȧ(y) for y ∈ [0, Ṙ).
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It is not difficult to verify that the Dirichlet-to-Neumann operator K associated to the
equation Lu = 0 (with L as above) is indeed the operator −ψ(∂x ). As usual, let B(y) =∫ y
0 b(s)ds, and let ϕ0,ξ be the solution of the ODE (3.1) with coefficients a0(dy) and b0(y) =
0, for an arbitrary complex parameter ξ . Then, for ξ > 0, the formula

ϕ̃ξ (y) = ϕ0,
√
iξ (y)

defines a solution of the ODE ϕ̃′′ = (iξ)a0(dy)ϕ̃, and thus [by equivalence of (3.1) and (3.2)]

ϕξ (y) = e−iξ B(y)ϕ̃ξ (y) = e−iξ B(y)ϕ0,
√
iξ (y)

is a solution of (3.1) with coefficients a(dy) and b(y) defined above. It is more complicated
to show that this is the solution discussed in Sect. 3, that is, that ϕξ is bounded if R = ∞,
and ϕξ has a zero left limit at R when R < ∞; we omit the details. Since B ′(0) = b(0) = 0,
we find that the symbol −k(ξ) of the corresponding Dirichlet-to-Neuman operator is given
by

k(ξ) = −ϕ′
ξ (0) = −ϕ′

0,
√
iξ (0) = ψ(iξ),

and consequently

K f (x) = −ψ(∂x ) f (x).

With the notation of Definition 2.5, this operator corresponds to α = 0, γ � 0, ν such that
ν(z) = 0 for all z < 0, and β �

∫ 1
0 zν(z)dz. In other words,

K f (x) = β̌ f ′(x) − γ f (x) +
∫ ∞

0
( f (x + z) − f (x))ν(z)dz,

where β̌, γ � 0, ν is a completely monotone function on (0,∞), and min{1, z}ν(z) is
integrable over (0,∞). The operator −K = ψ(∂x ) can be though of as a (right) generalised
fractional derivative of order between 0 and 1.

We remark that the condition a0([0, y)) > 0 for every y > 0 (required in order to properly
define the operator L̇ in divergence-like form) is equivalent toψ being unbounded on (0,∞).
This follows, for example, from formula (2.14) in [25]; we omit the details.

5.4 Complementary equations and operators

Following Sect. 5.7 in [30], where symmetric operators are studied, we say that the operators
K and K � of class K are complementary, if their composition KK � is equal to −∂xx , the
one-dimensional Laplace operator. In terms of the corresponding symbols −k and −k�, we
require that k(ξ)k�(ξ) = ξ2 for all ξ ∈ R. We note that if k is a Rogers function, then the
formula k�(ξ) = ξ2/k(ξ) also defines a Rogers function (see Proposition 2.8); therefore,
every operator K of class K has a unique complementary operator K � of class K.

In this part it is convenient to work with the equation in a divergence-like form L̇u̇ = 0,
where L̇ is given by (2.16). Below we argue that if K is the corresponding Dirichlet-to-
Neumann operator and K � is an operator complementary to K , then K � is the Dirichlet-to-
Neumann operator associated to the complementary equation L̇�u̇� = 0, with coefficients

ȧ�(y) = 1/ȧ(y), ḃ�(y) = − ḃ(y)

(ȧ(y))2
,

The proof of this claim consists of two steps.
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First, we observe that if u̇ is a harmonic function for L̇ , then

u̇�(x, y) = ȧ(y)∂y u̇(x, y) + ḃ(y)∂x u̇(x, y)

is a harmonic function for L̇�. If the coefficients are smooth, this is almost immediately
verified using the expression (2.16) for L̇ , because the operator ȧ(y)∂y + ḃ(y)∂x commutes
with ∂xx . A rigorous proof in the general case is more involved, and we omit the details.

In the second step, we evaluate the Dirichlet-to-Neumann operator K � associated to the
equation L̇�u̇ = 0. We already know that K � is an operator of class K. Let f be a smooth,
compactly supported function, let u̇ be the harmonic function for L̇ with boundary values f ,
and let u̇� be defined as above. Then, by (2.25),

u̇�(x, 0) = lim
y→0+ u̇�(x, y) = lim

y→0+(ȧ(y)∂y + ḃ(y)∂x )u̇(x, y) = K f (x)

(with all limits understood in the sense ofL 2(R)). Therefore, u̇� is a harmonic extension of
K f for L̇�. Again using (2.25), we find that

K �K f (x) = lim
y→0+

(
1

ȧ(y)
∂y − ḃ(y)

(ȧ(y))2
∂x

)
u̇�(x, y)

(with the limit again understood in the sense of L 2(R)). Using the definitions of u̇� and L̇ ,
we conclude that

K �K f (x) = lim
y→0+

(
1

ȧ(y)
∂y − ḃ(y)

(ȧ(y))2
∂x

)
(ȧ(y)∂y + ḃ(y)∂x )u̇(x, y)

= lim
y→0+(L̇� − ∂xx )u̇(x, y) = −∂xx f (x),

as desired (once again with all limits in L 2(R)). As in the first step, we omit the technical
details related to regularity of u and u�.

It is instructive to evaluate the corresponding coefficients a, b, a� and b� of the comple-
mentary equations Lu = 0 and L�u = 0 in standard form. If

σ̇ (y) =
∫ y

0

1

ȧ(s)
ds, σ̇ �(y) =

∫ y

0

1

ȧ�(s)
ds =

∫ y

0
ȧ(s)ds,

then

R = σ̇ (Ṙ−) =
∫ Ṙ

0

1

ȧ(y)
dy, R� = σ̇ �(Ṙ−) =

∫ Ṙ

0
ȧ(y)dy,

and

a(σ̇ (y)) = (ȧ(y))2, a�(σ̇ �(y)) = (ȧ�(y))2 = 1

(ȧ(y))2
,

b(σ̇ (y)) = −ḃ(y), b�(σ̇ �(y)) = −ḃ�(y) = ḃ(y)

(ȧ(y))2
.

Here we understand that a(dy) = a(y)dy and a�(dy) = a�(y)dy.
Note that the functions σ̇ and σ̇ � (describing appropriate change of variables) and coeffi-

cients a and a� only depend on the ‘symmetric’ coefficient ȧ, and not on the ‘non-symmetric’
coefficient ḃ. Therefore, just as it was the case for symmetric operators (see Sect. 5.7 in [30]),
we have
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a([0, σ̇ (y))) =
∫ σ̇ (y)

0
a(s)ds =

∫ y

0
a(σ̇ (r))(σ̇ )′(r)dr =

∫ y

0
ȧ(r)dr = σ̇ �(y),

a�([0, σ̇ �(y))) =
∫ σ̇ �(y)

0
a�(s)ds =

∫ y

0
a�(σ̇ �(r))(σ̇ �)′(r)dr =

∫ y

0

1

ȧ(r)
dr = σ̇ (y),

so that y �→ a([0, y)) and y �→ a�([0, y)) is a pair of inverse functions.With the terminology
ofKrein’s spectral theory of strings, thismeans thata(dy) anda�(dy) are a pair ofdual strings.

The above argument only covers a limited class of operators K , namely those operators
which are Dirichlet-to-Neumann maps for equations in the divergence-like form L̇u̇ = 0.
However, the corresponding result in the standard form (2.1) (involving dual Krein’s strings)
is fully general. A detailed proof is based on the theory of dual Krein’s strings and it falls
beyond the scope of the present article.

5.5 Degenerate equations corresponding to one-sided operators with first-order
term

By combining the results of the previous two subsections, we obtain a representation of
generalised (left) fractional derivatives of orders between 1 and 2. These operators correspond
to symbols −k(ξ) = −ξ2/ψ(iξ) = iξψ�(iξ), where ψ and ψ� are complete Bernstein
functions satisfying ψ(ξ)ψ�(ξ) = ξ . In other words, we formally have L = ∂xψ

�(∂x ).
Let a0(dy) be the coefficient associated toψ , and let ȧ and ḃ be the coefficients of the equa-

tion L̇u̇ = 0 associated to ψ(∂x ), as in Sect. 5.3. According to Sect. 5.4, the complementary
equation L̇�u̇ = 0 has coefficients

ȧ�(y) = ḃ�(y) = 1

ȧ(y)
= 1

b(B−1(y))
,

where b(y) = a0([0, y)) and B(y) = ∫ y
0 b(s)ds = ∫

[0,y)(y − s)a0(ds). In the previous

section we have seen that the associated Dirichlet-to-Neumann operator K � has symbol
−k�(ξ) = −ξ2/ψ(iξ) = iξψ�(iξ), as desired.

We remark that with the notation of Definition 2.5, the operator K � corresponds to α� � 0,
γ � = 0, ν� such that ν�(z) = 0 for all z < 0, and β� �

∫ ∞
1 zν(z)dz; that is,

K f (x) = α� f ′′(x) − β̌� f ′(x) +
∫ ∞

0
( f (x + z) − f (x) − z f ′(x))ν�(z)dz,

where α�, β̌� � 0, ν� is a completely monotone function on (0,∞), and min{z, z2}ν�(z) is
integrable over (0,∞). A detailed discussion of this construction would take us too far from
the main scope of this article, and thus we omit the details.

5.6 Fractional Laplace operator and non-symmetric fractional derivatives

As discussed in the introduction, ifμ ∈ (0, 2), R = ∞, a(y) = Cμy2/μ−2 for an appropriate
Cμ and b(y) = 0, then the corresponding Dirichlet-to-Neumann operator K is the fractional
Laplace operator K = −(−∂xx )

μ/2; this is the Caffarelli–Silvestre extension technique; see
[7]. A similar representation for one-sided fractional derivatives of order μ ∈ (0, 1) was
studied in detail in [5]. Here we extend these results to arbitrary (two-sided, non-symmetric)
fractional derivatives of order μ.
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We first discuss the standard form (2.1). Letμ ∈ (0, 2) be fixed, and suppose that R = ∞,

a(y) = (p2 + q2)y2/μ−2, b(y) = −qy1/μ−1

for some p � 0 and q ∈ R. The ODE (3.1) takes form

ϕ′′
ξ (y) = (p2 + q2)ξ2y2/μ−2ϕξ (y) + 2iqξ y1/μ−1ϕ′

ξ (y). (5.1)

Our goal is to show that the corresponding symbol is k(ξ) = (A+ i B sign ξ)|ξ |μ for ξ ∈ R,
where A � 0 and B ∈ R are constants to be determined. Recall that the symbol k(ξ) =
−ϕ′

ξ (0) satisfies k(−ξ) = k(ξ). Thus, with no loss of generality, we assume that ξ > 0, and
we will show that k(ξ) = (A + i B)ξμ.

We first consider μ 	= 1 and p > 0, and we write

w = (1 − μ)(p − iq)

2p
, z(y) = 2μpξ y1/μ.

In this case, with some effort, one verifies that the solution of (5.1) is given by

ϕξ (y) = �(μ + w)

�(μ)
exp(−(1 − μ)−1wz(y))U (w, 1 − μ, z(y)),

where U denotes the confluent hypergeometric function of the second kind (often denoted
by �; see Sect. 9.21 in [17] and Sect. 6.5 in [14]). Using the asymptotic expansion

U (w, 1 − μ, z) = �(μ)

�(μ + w)
+ w �(μ)

(1 − μ)�(μ + w)
z + �(−μ)

�(w)
zμ + O(zmin{μ+1,2})

as z → 0+ (see formulae 9.210.1–2 in [17]), we find that

ϕξ (y) =
(
1 − wz(y)

1 − μ

)(
1 + wz(y)

1 − μ
+ �(−μ)�(μ + w)(z(y))μ

�(μ)�(w)

)
+ O((z(y))min{μ+1,2})

= 1 + �(−μ)�(μ + w)

�(μ)�(w)
(2μpξ)μy + O(ymin{1+1/μ,2/μ}).

Thus, indeed ϕξ (0) = 1, and

k(ξ) = −ϕ′
ξ (0) = −�(−μ)�(μ + w)

�(μ)�(w)
(2μpξ)μ.

Using the definition of w, we eventually find that

k(ξ) = −�(−μ)�(μ + (1−μ)(p−iq)
2p )

�(μ)�(
(1−μ)(p−iq)

2p )
(2μp)μξμ

for ξ > 0.
We now move to the case μ 	= 1, p = 0 and q 	= 0. Let us denote

ϑ = −π
2 sign(q(1 − μ)), z(y) = |qμ(1 − μ)|ξ y1/μ.

By a direct calculation, it can be checked that the solution of (5.1) is equal to

ϕξ (y) = 2

�(μ)
eiμϑ/2(z(y))μ/2 exp(−eiϑ(1 − μ)−1z(y))Kμ(2eiϑ/2(z(y))1/2),
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where Kμ is the modified Bessel function of the second kind (see Sect. 8.43 in [17] and
Sect. 6.9.1 in [14]). The asymptotic expansion

2zμ/2Kμ(2z1/2) = �(μ) + �(μ)

1 − μ
z + �(−μ)zμ + O(|z|min{μ+1,2})

as |z| → 0+, | arg z| � π
2 (see formulae 8.445 and 8.485 in [17]), leads to

ϕξ (y) =
(
1 − eiϑ z(y)

1 − μ

)(
1 + eiϑ z(y)

1 − μ
+ �(−μ)eiμϑ(z(y))μ

�(μ)

)
+ O((z(y))min{μ+1,2})

= 1 + �(−μ)

�(μ)
eiμϑ(|qμ(1 − μ)|ξ)μy + O(ymin{1+1/μ,2/μ}).

Again, we find that ϕξ (0) = 1, and

k(ξ) = −ϕ′
ξ (0) = −�(−μ)

�(μ)
eiμϑ(|qμ(1 − μ)|ξ)μ.

We conclude that, for arbitrary q 	= 0,

k(ξ) = −�(−μ)

�(μ)
e−(iπμ/2) sign(q(1−μ))|qμ(1 − μ)|μξμ

for ξ > 0.
Finally, the case μ = 1 was already dealt with in Sect. 5.2. In this case we simply have

ϕξ (y) = e−(p−iq)ξ y,

so that

k(ξ) = −ϕ′
ξ (0) = (p − iq)ξ

for ξ > 0.
In each case we have k(ξ) = (A + i B)ξμ for ξ > 0, for some constants A � 0 and

B ∈ R, and consequently

k(ξ) = (A + i B sign ξ)|ξ |μ

for ξ ∈ R. When μ = 1, we obtain k(ξ) = A|ξ | + i Bξ , which easily leads to

K f (x) = A

π

∫ ∞

−∞
f (x + z) − f (x) − z f ′(x)1(−1,1)(z)

|z|2 dz − B f ′(x).

If μ 	= 1, we have

k(ξ) = C+(−iξ)μ + C−(iξ)μ,

where both powers are understood as principal branches, and C+e−iμπ/2 + C−eiμπ/2 =
A + Bi , that is,

C+ = A

2 cos μπ
2

− B

2 sin μπ
2

, C− = A

2 cos μπ
2

+ B

2 sin μπ
2

.

If μ < 1, it follows that

K f (x) = − 1

�(−μ)

∫ ∞

−∞
f (x + z) − f (x)

|z|1+μ
(C+1(0,∞)(z) + C−1(−∞,0)(z))dz,
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while for μ > 1 we find that

K f (x) = 1

�(−μ)

∫ ∞

−∞
f (x + z) − f (x) − z f ′(x)

|z|1+μ
(−C+1(0,∞)(z) − C−1(−∞,0)(z))dz;

see, for example, Sect. 7.1 in [40] or Sect. 31 in [41].
It is immediate to see that the coefficients a and b of the equation Lu = 0 in standard

form (2.1) correspond to the coefficients

ã(y) = p2y2/μ−2, d̃(y) = q(1 − μ)

μ
y1/μ−2

of the equation L̃ũ = 0 in Eckhardt–Kostenko form (2.15). This leads to a certain simplifi-
cation of the above expressions for A and B (see below). Similarly, one easily finds that the
coefficients of the equation L̇u̇ = 0 in the divergence-like form are given by

ȧ(y) = μμ−1(p2 + q2)μ/2y1−μ, ḃ(y) = μμ−1q(p2 + q2)−1/2+μ/2y1−μ;

indeed, σ̇ is the inverse function of y �→ ∫ y
0

√
a(s)ds = μ

√
p2 + q2y1/μ, that is, σ̇ (y) =

μ−μ(p2 + q2)−μ/2yμ.
The results of this section can be summarised as follows, with a slightly changed notation:

we replace C± by |C±|. Dirichlet-to-Neumann operators related to the following elliptic
equations:

(p2 + q2)y2/μ−2∂xxu − 2qy1/μ−1∂xyu + ∂yyu = 0,

p̃2y2/μ−2∂xx ũ + ∂yy ũ + q̃ y1/μ−2∂x ũ = 0,

∂xx u̇ + yμ−1( ṗ∂y − q̇∂y)
(
y1−μ( ṗ∂y + q̇∂y)u̇

) = 0,

where p, p̃, ṗ � 0 and q, q̃, q̇ ∈ R, and |q̇| � ṗ, are Fourier multipliers with symbol

−k(ξ) = −(A + i B sign ξ)|ξ |μ,

where A � 0, B ∈ R and | arg(A + i B)| � min{μ, 2 − μ}, and can be represented as

K f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|�(−μ)|
∫ ∞

−∞
f (x + z) − f (x)

|z|1+μ
(C+1(0,∞)(z) + C−1(−∞,0)(z))dz

if μ ∈ (0, 1),
A

π

∫ ∞

−∞
f (x + z) − f (x) − z f ′(x)1(−1,1)(z)

|z|2 dz − B f ′(x)
if μ = 1,

1

�(−μ)

∫ ∞

−∞
f (x + z) − f (x) − z f ′(x)

|z|1+μ
(C+1(0,∞)(z) + C−1(−∞,0)(z))dz

if μ ∈ (1, 2),

where C+,C− � 0. More precisely, the elliptic equations are all equivalent if

p̃ = p, q̃ = 1 − μ

μ
q,

ṗ = μμ−1(p2 + q2)μ/2, q̇ = μμ−1q(p2 + q2)−1/2+μ/2 = q√
p2 + q2

ṗ;
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note that when μ = 1, then q̃ is always 0, see Sect. 5.2 for further discussion. The corre-
sponding coefficients A and B are given by

A + i B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−�(−μ))�(μ + (1−μ)(p−iq)
2p )

�(μ)�(
(1−μ)(p−iq)

2p )
(2μp)μ if μ 	= 1 and p > 0,

−�(−μ)

�(μ)
e−(iπμ/2) sign(q(1−μ))|qμ(1 − μ)|μ if μ 	= 1 and p = 0,

p − iq if μ = 1.

Finally, when μ 	= 1, the relation between (A, B) and (C+,C−) is determined by

A + i B = (C+e−iμπ/2 + C−eiμπ/2) sign(1 − μ),

C+ =
∣∣∣∣ A

2 cos μπ
2

− B

2 sin μπ
2

∣∣∣∣ , C− =
∣∣∣∣ A

2 cos μπ
2

+ B

2 sin μπ
2

∣∣∣∣ .
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Appendix A: Proof of the direct part of the representation theorem

In Sect. 3 we discussed the properties of solutions of the second-order ordinary differential
equation

ϕ′′ = ξ2aϕ − 2iξbϕ′ (A.1)

[see (3.1)]. Here ϕ is assumed to be a continuous function on [0, R) such that the second
distributional derivative ϕ′′ corresponds to a measure. In this case necessarily ϕ is absolutely
continuous, and the distributional derivativeϕ′ corresponds to a functionof boundedvariation,
equal almost everywhere to the pointwise derivative of ϕ. Throughout this section, we denote
by ϕ′(t) the left-continuous version of the point-wise derivative of ϕ. Note that with this
convention, if ϕ is a solution of (A.1), then ϕ′(0+) − ϕ′(0) = ξ2a({0})ϕ(0).

Unlike in Sect. 3, here we omit the arguments of functions and measures whenever this
causes no confusion. For example, we write equations as in (A.1) rather than as in (3.1).

For a given ξ > 0, our goal is to construct a solution ϕ of (3.1) such that ϕ(0) = 1 and
either ϕ is a bounded function on [0, R) (if R = ∞) or ϕ(R−) = 0 (if R < ∞). We also
need to prove various properties of this solution; most notably, that the mapping ξ �→ −ϕ′(0)
extends to a Rogers function of ξ .

We divide the argument into a number of lemmas. The first one is a completely standard
application of Picard’s iteration. For the convenience of the reader, we provide full details.
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Lemma A.1 The space of solutions of (A.1) is spanned by two linearly independent solutions
ϕD and ϕN , satisfying the initial conditions ϕD(0) = ϕ′

N (0) = 0, ϕ′
D(0) = ϕN (0) = 1.

Furthermore, for every t ∈ [0, R) the values ϕD(t), ϕ′
D(t), ϕN (t) and ϕ′

N (t) are entire
functions of ξ .

Proof Clearly, ϕ is a solution of (A.1) with initial conditions ϕ(0) = α, ϕ′(0) = β if and
only if for t ∈ [0, R) we have

ϕ′(t) = β + ξ2
∫

[0,t)
ϕ(s)a(ds) − 2iξ

∫ t

0
b(s)ϕ′(s)ds,

ϕ(t) = α +
∫ t

0
ϕ′(s)ds. (A.2)

Existence of the solution of (A.2) on [0, R) follows by Banach’s fixed point theorem. In order
to define an appropriate Banach space, we choose C � |ξ | and we introduce an auxiliary
function M , defined by

M(t) = exp

(
2t + 4C2a([0, t)) + 8C

∫ t

0
|b(s)|ds

)
.

It is easy to see that

M(t) � M(0) = 1,
∫ t

0
M(s)a(ds) � M(t)

8C
,

M(0) +
∫ t

0
M(s)ds � M(t)

2
,

∫ t

0
M(s)|b(s)|ds � M(t)

4C2 .

We now consider the Banach space X of absolutely continuous functions ϕ such that the
second distributional derivative ϕ′′ corresponds to a measure, and the norm in X , defined by

‖ϕ‖X = |ϕ(0)| + sup

{ |ϕ′(t)|
M(t)

: t ∈ [0, R]
}

,

is finite. Here, as usual, ϕ′ corresponds to the left-continuous version of the derivative of ϕ.
Observe that if ϕ ∈ X , then

|ϕ(t)| � |ϕ(0)| +
∫ t

0
|ϕ′(t)|dt

� |ϕ(0)| +
(
sup

{ |ϕ′(s)|
M(s)

: s ∈ [0, t]
}) ∫ t

0
M(s)ds � ‖ϕ‖X M(t)

for t ∈ [0, R). In other words, both |ϕ|/M and |ϕ′|/M are bounded by ‖ϕ‖X on [0, R).
Finally, we introduce an integral operator I defined by

(Iϕ)′(t) = β + ξ2
∫

[0,t)
ϕ(s)a(ds) − 2iξ

∫ t

0
b(s)ϕ′(s)ds,

Iϕ(t) = α +
∫ t

0
(Iϕ)′(s)ds.

First of all, I is a well-defined operator on X : if ϕ ∈ X , then |ϕ|/M and |ϕ′|/M are bounded
by ‖ϕ‖X , and hence

|(Iϕ)′(t)| � |β| + C2‖ϕ‖X
∫

[0,t)
M(s)a(ds) + 2C‖ϕ‖X

∫ t

0
|b(s)|M(s)ds
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� |β|M(t) + M(t)‖ϕ‖X
4

+ M(t)‖ϕ‖X
4

,

and consequently ‖Iϕ‖X � |α| + |β| + 1
2‖ϕ‖X . In particular, indeed Iϕ belongs to X . In a

similar way, if ϕ1, ϕ2 ∈ X , then

|(Iϕ1)
′(t) − (Iϕ2)

′(t)|
‖ϕ1 − ϕ2‖X � C2

∫
[0,t)

M(s)a(ds) + 2C
∫ t

0
|b(s)|M(s)ds � M(t)

4
+ M(t)

4
,

and therefore

‖Iϕ1 − Iϕ2‖X � ‖ϕ1 − ϕ2‖X
2

.

It follows that I is a contraction on X , and thus, by Banach’s fixed point theorem, I has a
unique fixed point ϕ in X . By definition, ϕ(0) = Iϕ(0) = α and ϕ′(0) = (Iϕ)′(0) = β, and
since ϕ = Iϕ, we conclude that ϕ is a solution of (A.2) with the desired initial conditions.

In addition, ϕ is the limit in X of the iterates ϕn = I nϕ0 of I applied to ϕ0(t) = 0. Observe
that

‖ϕ − ϕn‖X �
∞∑
j=n

‖ϕ j+1 − ϕ j‖X � ‖ϕ1 − ϕ0‖X
∞∑
j=n

2− j

= 21−n‖ϕ1 − ϕ0‖X = 2−n‖Iϕ1‖X = 21−n(|α| + |β|).
Therefore, ‖ϕ‖X is uniformly bounded with respect to ξ such that |ξ | � C , and the conver-
gence of ϕn to ϕ in X is uniform in this region. It follows that for every r ∈ [0, R), ϕn(t)
and ϕ′

n(t) are uniformly bounded with respect to t ∈ [0, r) and ξ such that |ξ | � C , and in
this region ϕn(t) and ϕ′

n(t) converge uniformly to ϕ(t) and ϕ′(t). By Morera’s theorem and
induction, for every t ∈ [0, r), ϕn(t) and ϕ′

n(t) are holomorphic functions of ξ in the region
|ξ | < C , and by Morera’s theorem and the dominated convergence theorem, ϕ(t) and ϕ′(t)
have a similar property. Since C > 0 and r ∈ [0, R) are arbitrary, we conclude that ϕ(t) and
ϕ′(t) are entire functions of ξ for every t ∈ [0, R).

By setting α = 1 and β = 0, we obtain existence of ϕN . Similarly, α = 0 and β = 1
lead to existence of ϕD . Clearly, these functions are linearly independent, and their linear
combinations are solutions to (A.1). Furthermore, for every t ∈ [0, R), ϕD(t), ϕ′

D(t), ϕN (t)
and ϕ′

N (t) are entire functions of ξ .
Banach’s fixed point theorem asserts that ϕD and ϕN are unique in X . To prove uniqueness

ofϕD andϕN in the general class of admissible functionsϕ, one observes that ifϕ is a solution
of (A.1), then ϕ′ is a function with bounded variation, so that |ϕ′|/M is bounded on every
interval [0, r), where r ∈ [0, R). Repeating the above proof with X replaced by the Banach
space Xr defined in a similar way, but with R replaced by r , one obtains uniqueness of
solutions on every interval [0, r), with r ∈ [0, R). Of course this implies that ϕD and ϕN are
unique solutions on [0, R), and every solution is a linear combination of ϕD and ϕN . 
�

The next lemma is a key technical result. Recall that we write ã(dt) = a(dt) − (b(t))2dt
and B(t) = ∫ t

0 b(s)ds.

Lemma A.2 Suppose that Re ξ > 0 and ϕ is a solution of (A.1). Then

e−2B Im ξ Re(ξϕϕ′)

is a non-decreasing function on [0, R).
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Proof For t ∈ [0, R), denote

f (t) = ξϕ(t)ϕ′(t).

Since ϕ is a solution of (A.1), the distributional derivative f ′ corresponds to ameasure, which
satisfies

f ′ = ξ(|ϕ′|2 + ϕϕ′′)
= ξ(|ϕ′|2 + ξ2a|ϕ|2 − 2iξbϕϕ′)
= ξ |ϕ′|2 + ξ |ξ |2a|ϕ|2 − 2iξb f .

After elementary manipulations, we find that

Re f ′ = (|ξ |2a|ϕ|2 + |ϕ′|2)Re ξ − 2Re(iξb f )

= (|ξ |2ã|ϕ|2 + |ϕ′ + iξbϕ|2 + 2bRe(iξϕϕ′))Re ξ − 2bRe(iξ f )

= (|ξ |2ã|ϕ|2 + |ϕ′ + iξbϕ|2)Re ξ + 2bRe(i f )Re ξ − 2bRe(iξ f )

= (|ξ |2ã|ϕ|2 + |ϕ′ + iξbϕ|2)Re ξ + 2bRe f Im ξ.

Since (e−2B Im ξ Re f )′ = e−2B Im ξ (−2bRe f Im ξ + Re f ′), we find that

(e−2B Im ξ Re f )′ = e−2B Im ξ (|ξ |2ã|ϕ|2 + |ϕ′ + iξbϕ|2)Re ξ � 0, (A.3)

that is, e−2B Im ξ Re f is a non-decreasing function, as desired. 
�
It is convenient to re-write the assertion of Lemma A.2 in terms of the function

ϕ̃(t) = eiξ B(t)ϕ(t),

introduced in Sect. 3, and used frequently below. Since ϕ̃′ = eiξ B(ϕ′ + iξbϕ), we have

|ϕ̃|2 = e−2B Im ξ |ϕ|2, |ϕ̃′|2 = e−2B Im ξ |ϕ′ + iξbϕ|2, Re(ξ ϕ̃ϕ̃′) = e−2B Im ξ Re(ξϕϕ′).

Therefore, formula (A.3) reads

(Re(ξ ϕ̃ϕ̃′))′ = (|ξ |2ã|ϕ̃|2 + |ϕ̃′|2)Re ξ � 0. (A.4)

Note that although the left-hand side is always a measure, the distributional derivative of
ξ ϕ̃ϕ̃′ (rather than the real part of this function) need not correspond to a measure.

When ξ > 0, formulae (A.3) and (A.4) simplify as described in the next result.

Lemma A.3 If ξ > 0,ϕ is a solution of (A.1) and ϕ̃(t) = eiξ B(t)ϕ(t) (with B(t) = ∫ t
0 b(s)ds),

then |ϕ|2 = |ϕ̃|2 is a convex function on [0, R), and

1
2 (|ϕ|2)′ = Re(ϕϕ′)′ = ξ2ã|ϕ|2 + |ϕ′ + iξbϕ|2 = ξ2ã|ϕ̃|2 + |ϕ̃′|2 � 0. (A.5)

Furthermore, if |ϕ|2 is non-decreasing, then also |ϕ′|2 is non-decreasing, while if |ϕ|2 is
non-increasing, then also |ϕ′|2 is non-increasing.
Proof The first assertion follows directly from (A.3) and (A.4). Furthermore, by a direct
calculation,

(|ϕ′|2)′ = 2Re(ϕ′′ϕ′) = 2Re(ξ2aϕϕ′ − 2iξb|ϕ′|2) = 2ξ2a Re(ϕϕ′)

has the same sign as (|ϕ|2)′. 
�
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Lemma A.4 If ξ > 0 and ϕD, ϕN are defined as in Lemma A.1, then |ϕD|2 is convex and
increasing, while |ϕN |2 is convex and non-decreasing. If R = ∞, then ϕD is unbounded,
and ϕN is either unbounded or constant.

Proof Convexity of |ϕD|2 and |ϕN |2 is granted by Lemma A.3. Since ϕ′
D(0+) = 1 > 0, we

have |ϕD(t)|2 > 0 = |ϕD(0)|2 for t ∈ (0, R) small enough. This property and convexity
imply that (|ϕD|2)′ > 0 on (0, R), and thus |ϕD|2 is increasing on [0, R). Furthermore,
ϕN (0) = 1 and ϕ′

N (0+) = ξ2a({0})ϕN (0) � 0, so that (|ϕN |2)′(0+) � 0. By convexity,
|ϕN |2 is non-decreasing on [0, R). Finally, a non-decreasing convex function in [0,∞) is
either constant or unbounded. 
�

We now come to the main results of this section, which we split into the following two
lemmas.

Lemma A.5 If R = ∞ and ξ > 0, then there is a unique bounded solution ϕ of (A.1) such
that ϕ(0) = 1, and every other solution diverges to infinity at ∞. If R < ∞ and ξ > 0, then
there is a unique solution ϕ of (A.1) such that ϕ(0) = 1 and ϕ(R−) = 0, and every other
solution is bounded away from zero in some left neighbourhood of R.

Proof Let ϕD and ϕN be the solutions described in Lemma A.1. For r ∈ (0, R) we define

βr = −ϕN (r)

ϕD(r)
and ϕr = ϕN + βrϕD,

so that ϕr is a solution of (A.1) satisfying ϕr (0) = 1 and ϕr (r) = 0. Note that ϕD(r) 	= 0,
so that βr and ϕr are well-defined. Our goal is to prove that ϕ = limr→R− ϕr is the desired
solution of (3.1).

Suppose that R = ∞. Since |ϕr |2 is convex by Lemma A.3, we have |ϕr (t)| �
max{|ϕr (0)|, |ϕr (r)|} = 1 for t ∈ [0, r ]. It follows that if 0 < t < r , then

|βt − βr | = |ϕt (t) − ϕr (t)|
|ϕD(t)| � 2

|ϕD(t)| .

By Lemma A.4, limt→∞ |ϕD(t)| = ∞, so that |βt − βr | → 0 as t, r → ∞. It follows that a
finite limit β = limr→∞ βr exists, and if we let

ϕ(t) = lim
r→∞ ϕr (t) = ϕD(t) + βϕN (t),

then ϕ is a bounded solution of (A.1) satisfying ϕ(0) = 1. Every other solution of (A.1)
which takes value 1 at 0 is given by ϕ + γ ϕD for some γ ∈ C. Since ϕD diverges to infinity
at ∞, ϕ is the unique bounded solution of (3.1) satisfying ϕ(0) = 1 follows, and every other
solution diverges to infinity at ∞.

If R < ∞, the argument is very similar. By convexity, |ϕr (t)|2 � 1 − t/r � 1 − t/R for
t ∈ [0, r ], so that if 0 < t < r < R, then

|βt − βr | = |ϕt (t) − ϕr (t)|
|ϕD(t)| � 2

√
1 − t/R

|ϕD(t)| .

Since |ϕD(t)| is increasing, again |βt − βr | → 0 as t, r → R−, and thus a finite limit
β = limr→R− βr exists. We let

ϕ(t) = lim
r→R− ϕr (t) = ϕD(t) + βϕN (t).
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Clearly, ϕ is a solution of (A.1) satisfying ϕ(0) = 1, and since |ϕ(t)|2 � 1 − t/R for
t ∈ [0, R), we also have ϕ(R−) = 0. Finally, since |ϕD| is increasing, ϕD is bounded away
from zero in some left neighbourhood of R. Thus, ϕ is the unique solution of (A.1) such that
ϕ(0) = 1 and ϕ(R−) = 0, and every other solution is bounded away from zero near R−. 
�

Lemma A.6 The solution ϕ of (A.1) described in Lemma A.5 has the following properties:

(a) for every ξ > 0, |ϕ|2 is positive, non-increasing and convex on [0, R), and |ϕ′| is non-
increasing on [0, R);

(b) the function ξ �→ −ϕ′(0) extends to a Rogers function k (that is, to a holomorphic
function k in the right complex half-plane, satisfying Re(k(ξ)/ξ) � 0 for every ξ ∈ C

such that Re ξ > 0);
(c) if ξ > 0 and ϕD and ϕN are the solutions of (A.1) described in Lemma A.1, then

k(ξ) = lim
t→R−

ϕN (t)

ϕD(t)
=

(∫ R

0

e−2iξ B(t)

(ϕN (t))2
dt

)−1

,

where B(t) = ∫ t
0 b(s)ds;

(d) if Re ξ > 0, ã(dt) = a(dt) − (b(t))2dt, B(t) = ∫ t
0 b(s)ds and ϕ̃(t) = eiξ B(t)ϕ(t), then

|ξ |2
∫

[0,R)

|ϕ̃(t)|2ã(dt) +
∫ R

0
|ϕ̃′(t)|2dt = |ξ |2

Re ξ
Re

k(ξ)

ξ
, (A.6)

and if ξ > 0 and t ∈ (0, R), then additionally

ξ2
∫

[t,R)

|ϕ̃(s)|2ã(ds) +
∫ R

t
|ϕ̃′(s)|2ds � 1

2t
.

In item (d), for a fixed t ∈ [0, R), ϕ(t) and ϕ′(t) denote the holomorphic extensions of
functions ξ �→ ϕ(t) and ξ �→ ϕ′(t), initially defined for ξ > 0.

Proof The function |ϕ|2 is convex by Lemma A.3. A convex function on [0,∞) is either
non-increasing or unbounded. If R = ∞, then |ϕ|2 is bounded, and hence it is non-increasing.
When R < ∞, then |ϕ|2 is non-negative, convex, and it converges to zero at R−. Again, this
implies that |ϕ|2 is non-increasing. By Lemma A.3, also |ϕ′|2 is non-increasing.

In order to complete the proof of part (a), observe that if ϕ(r) = 0 for some r ∈ [0, R),
then monotonicity of |ϕ|2 implies that ϕ(t) = 0 for all t ∈ [r , R), and hence, by uniqueness
of solutions, ϕ(t) = 0 for all t ∈ [0, R), a contradiction. Thus indeed ϕ 	= 0 on [0, R).

For the proof of part (b), we use the notation ϕD and ϕN introduced in Lemma A.1, and
we define ϕr = ϕN + βrϕD , where βr = −ϕN (r)/ϕD(r), as in the Proof of Lemma A.5,
but for a general ξ ∈ C such that Re ξ > 0. By Lemma A.2, Re(ξϕr (0)ϕ′

r (0)) � 0. Since
ϕr (0) = 1 and ϕ′

r (0) = βr , we have Re(βr/ξ) = |ξ |−2 Re(ξϕ′
r (0)) � 0. It follows that the

mapping ξ �→ −βr is a Rogers function. It remains to note limr→R− ϕ′
r (0) = limr→R− βr =

β = ϕ′(0)whenever ξ > 0, and a point-wise limit of Rogers functions on (0,∞) necessarily
extends to a Rogers function (see Remark 3.16 in [28]).

We proceed to the proof of part (c). If R = ∞ and ξ > 0, then ϕ is bounded and
limt→∞ |ϕD(t)| = ∞ by Lemma A.4. Therefore,

lim
t→∞

ϕN (t)

ϕD(t)
+ ϕ′(0) = lim

t→∞
ϕ(t)

ϕD(t)
= 0.
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Similarly, if R < ∞, then

lim
t→R−

ϕN (t)

ϕD(t)
+ ϕ′(0) = lim

t→R−
ϕ(t)

ϕD(t)
= 0,

because ϕ(R−) = 0 and |ϕD(t)| is increasing by Lemma A.4. Furthermore, the Wrońskian
W = ϕ′

DϕN − ϕDϕ′
N satisfiesW (0) = 1 andW ′ = −2iξbW , so thatW (t) = e−2iξ B . Thus,

∫ R

0

e−2iξ B(t)

(ϕN (t))2
dt =

∫ R

0

(
ϕD

ϕN

)′
(t)dt = lim

t→R−
ϕD(t)

ϕN (t)
− ϕD(0)

ϕN (0)
= 1

−ϕ′(0)
= 1

k(ξ)
,

as desired (here we understand that 1/0 = ∞ if ϕ′(0) = 0).
In order to prove part (d), we fix ξ such that Re ξ > 0, and we again use the notation

ϕr already introduced above. We also write ϕ̃ = eiξ Bϕ, and similarly we let ϕ̃r = eiξ Bϕr .
By Lemma A.2, Re(ξ ϕ̃r ϕ̃

′
r ) is non-decreasing [see (A.4)], and clearly ϕ̃r (r) = 0, so that

Re(ξ ϕ̃r ϕ̃
′
r ) � 0 on [0, r ]. Passing to the limit as r → R−, we find that Re(ξ ϕ̃ϕ̃′) is non-

decreasing and non-positive on [0, R). Furthermore, by (A.4),

lim
t→R− Re(ξ ϕ̃(t)ϕ̃′(t)) − Re(ξ ϕ̃(0)ϕ̃′(0)) =

∫
[0,R)

(Re(ξ ϕ̃ϕ̃′))′

= |ξ |2 Re ξ

∫
[0,R)

ã|ϕ̃|2 + Re ξ

∫ R

0
|ϕ̃′|2 (A.7)

(where for simplicitywe omit the argument in the integrands). SinceRe(ξ ϕ̃ϕ̃′) = Re(ξϕ(ϕ′+
iξbϕ)) = Re(ξϕϕ′), we have

Re(ξ ϕ̃(0)ϕ̃′(0)) = Re(ξϕ(0)ϕ′(0)) = −Re(ξk(ξ)).

We claim that the limit in the left-hand side of (A.7) is equal to zero. Together with the above
equality and (A.7), this will lead to (A.6).

In order to prove our claim, observe that the non-decreasing, non-positive function
Re(ξ ϕ̃ϕ̃′) necessarily has a finite limit at R−. Suppose, contrary to our claim, that this limit
is non-zero. Then there is C1 > 0 such that |ϕ̃ϕ̃′| � C1 in some left neighbourhood of R. We
now consider two cases. If R = ∞, then, by Schwarz inequality, |ϕ̃(t)| � 1+ √

C2t , where
C2 is the integral of |ϕ̃′|2. Therefore, |ϕ̃′|2 � C2

1 (1 + √
C2t)−2 in some neighbourhood of

∞, and hence |ϕ̃′|2 is not integrable. This is a contradiction: by (A.6), |ϕ̃′|2 is integrable. It
follows that Re(ξ ϕ̃ϕ̃′) indeed converges to zero at ∞, as desired.

If R < ∞, the argument slightlymore involved. Recall that ϕ̃ is the limit of ϕ̃r as r → R−,
and by (A.4), for every r ∈ (0, R) we have

−Re(ξ ϕ̃r (0)ϕ̃
′
r (0)) =

∫
[0,r)

(Re(ξ ϕ̃r ϕ̃
′
r ))

′ = |ξ |2 Re ξ

∫
[0,r)

ã|ϕ̃r |2 + Re ξ

∫ r

0
|ϕ̃′

r |2,

just as in (A.7). Since ξ ϕ̃r (0)ϕ̃′
r (0) converges to a finite limit ξ ϕ̃(0)ϕ̃′(0) as r → R−, it

follows that
∫ r
0 |ϕ̃′

r |2 � C3 for every r ∈ (R/2, R) and someC3 > 0. By Schwarz inequality,
we have |ϕ̃r (t)| �

√
C3(r − t) �

√
C3(R − t) for t ∈ [0, r ]. Passing to the limit as r → R−,

we find that |ϕ̃(t)| �
√
C3(R − t) for t ∈ [0, R], and therefore |ϕ̃′|2 � C2

1C
−1
3 (R − t)−1.

This again contradicts integrability of |ϕ̃′|2 asserted by (A.6), and our claim follows.
It remains to prove the other part of item (d) of the lemma. Observe that if ξ > 0, then

|ϕ̃|2 = |ϕ|2 is convex by Lemma A.3, and hence

(|ϕ̃|2)′(t) � |ϕ̃(t)|2 − |ϕ̃(0)|2
t

� −1

t
.
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Thus, as in formula (A.7), we have

|ξ |2
∫

[t,R)

ã|ϕ̃|2 +
∫ R

t
|ϕ̃′|2 =

∫
[t,R)

(Re(ϕ̃ϕ̃′))′ = −Re(ϕ̃(t)ϕ̃′(t)) = − (|ϕ̃|2)′(t)
2

� 1

2t
,

as desired. 
�

Part (a) of Theorem 3.1 is now a consequence of Lemma A.5, while parts (b) and (c)
follow from Lemma A.6.
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