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Abstract
We study a shape optimization problem involving a solid K ⊂ R

n that is maintained at
constant temperature and is enveloped by a layer of insulating material � which obeys
a generalized boundary heat transfer law. We minimize the energy of such configurations
among all (K ,�) with prescribed measure for K and �, and no topological or geometrical
constraints. In the convection case (corresponding to Robin boundary conditions on ∂�) we
obtain a full description of minimizers, while for general heat transfer conditions, we prove
the existence and regularity of solutions and give a partial description of minimizers.

Mathematics Subject Classification 35Q79 · 49Q10

1 Introduction

Given a measurable set K ⊆ R
n along with a Lipschitz open set � ⊃ K , we consider the

energy functional

E�(K , �) := min

{∫
�

|∇v|2dx +
∫

∂�

�(v)dH n−1, v ∈ H1(�, [0, 1]) : v = 1 a.e. on K

}

(1)

where � : [0, 1] → R+ is a rather general nondecreasing function that vanishes at 0. If all
data are smooth, meaning � is a smooth open set, K is a smooth compact set and � ∈ C1, a
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minimizer u satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u = 0 �\K ,

− ∂u
∂ν

= 1
2�

′(u) ∂� ∩ {u > 0}\∂K ,

− ∂u
∂ν

≤ 1
2�

′(u) ∂� ∩ {u = 0},
u ≡ 1 K .

(2)

A classical prototype, �(u) = βu2 for some β > 0, corresponds to the so called Robin
boundary conditions ∂u

∂ν
+ βu = 0 for the harmonic function u minimizing the energy, ν

being the outward normal at the boundary. The physical motivation which leads us to study
the functional E�(K ,�) and related shape optimization problems can be found in optimal
design in thermal insulation.
Consider a body K of given constant fixed temperature TK , surrounded by an insulator A. The
temperature distribution T inside the insulator satisfies the classical heat equation (Laplace
equation) with the condition that T is continuous across the boundary which separates A and
K . If we now assume that the body � = K ∪ A is immersed into an environment of fixed
temperature Te, the heat exchange rate across the surface of � (between the body and the
environment) has to be modeled according to the physical process governing the mechanism.
The most common assumption is to assume that the temperature at the boundary of � is kept
constant (Te), leading to the so-called Dirichlet boundary conditions, which corresponds to
conduction heat transfer. But if we assume that the environment is a fluid (gas or liquid) then,
convection heat transfer, radiation heat transfer or even more general laws, have to be taken
into account. If for instance, convection heat transfer is the leading mechanism, then the rate
of heat flux per unit of surface, across the solid fluid interface, is proportional to T |∂� − Te
(also known as Newton’s law of cooling), T |∂� being the temperature T at the solid surface.
While for radiation heat transfer (according to Stefan-Boltzmann law), the heat flux per unit
of surface, across the solid fluid interface, is proportional to T 4

∂� − T 4
e .

On the other hand, the heat flux across a solid surface is proportional (Fourier’s law) to
the normal derivative of the temperature − ∂T

∂ν
.

Assume that TK > Te and denote by u = T−Te
TK−Te

. One can easily check that, up to a
constant of proportionality, convection corresponds to

�(u) = u2.

Radiation, on the other hand, is modeled up to a multiplicative constant by

�(u) = u5

5
+ γ u4 + 2γ 2u3 + 2γ 3u2, (3)

where γ = Te
TK−Te

.
Both mechanisms can be taken into account simultaneously, upon considering a linear

combination of the previous functions. When considering a quadratic � (pure convection
heat transfer at the boundary), E� is proportional to the heat loss rate. In general, regardless
of the choice of �, the energy functional E� can be considered a measure of the goodness
of the thermal insulation; the less the energy the better the insulation.

In this article we are interested in the shape optimization problem of both K and � of
prescribed volume which lead to a minimal energy configuration. For a given set K , when
only the geometry of� is unknown, the problem has already been considered in the literature
in [9, 10, 14], with a different purpose, namely to obtain qualitative information on the free
boundary of�. Its analysis relies on the fine study of optimal configurations in the framework
of free discontinuity problems in SBV .
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We search to optimize both K and � and the purpose is to understand whether or not an
optimal configuration is given by two concentric balls (as common sense suggests). From
this perspective, our problem is more of isoperimetric type. As we shall prove, depending
on the dissipation law �, we can give either full description of the optimal sets as two
concentric balls (for instance in the convection case) or some partial answer leading to the
same geometric configuration for more general dissipation laws. A striking phenomenon,
which has been observed in some specific geometric configurations in [12], and that we have
to handle is the following: if only a small amount of insulator is available, then in some cases
it is better to not use it (� = K ).

Let us denote by ωn the volume of the unit ball and by M := Rnωn the volume of the ball
of radius R ≥ 1. Without restricting generality, we shall fix the measure of K to be ωn and
leave the other parameters free (the general case is obtained by rescaling). Given M ≥ ωn

and 
 > 0, we are interested in the following minimization problem: find an open set � and
a relatively closed set K , solutions of

inf
K⊂�, |K |=ωn , |�|≤M

E�(K ,�), (4)

or in its penalized version

inf
K⊂�, |K |=ωn

E�(K ,�) + 
|�|. (5)

Throughout the paper we assume that � : [0, 1] → R is a lower semicontinuous, nonde-
creasing function such that �(0) = 0. Here are our main results.

Theorem 1 (The convection case) For �(u) = βu2 and M = Rnωn, the solutions of prob-
lems (4) consist of two concentric balls. The radius of the outer ball equals either R or 1,
according to min{E�(B1, BR), E�(B1, B1)} and the associated state function u is radial.

Theorem 2 For any
 > 0 and any admissible�, the solution of problem (5) consists of two
concentric balls and the associated state function u is radial.

We introduce the following hypothesis

inf
0<s<1

�(s/3)

�(s)
> 0. (6)

Theorem 3 (The general case) There exists some dimensional constant cn, such that if �

satisfies hypothesis (6) and

M < ωn + cn

(
inf

0<s<1

�(s/3)

�(s)

)2n ∫ 1

0

t2n−1dt

�(t)n
, (7)

then problem (4) has a solution (K ,�). If |�| < M then (K ,�) are two concentric balls.
Otherwise,� is an open set with rectifiable topological boundary such thatH n−1(∂�) < ∞
and K is relatively closed in�with locally finite perimeter in�. The temperature u ∈ H1(�)

is C0,
2

n+2
loc (�). In two dimensions, ∂K ∩ � is analytic.
If moreover � is C1 in a neighbourhood of 1 and

�′(1)2

�(1)
< 4(n − 1),

then there exists M > ωn depending on n and � such that the solution of problem (4) is
K = � = B1.
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Remark 4 Notice that any homogenous functions�(u) = uα , α > 0 satisfies the assumption
(6). Moreover, if �(u) = O(u2) then in (7) any value M ∈ [ωn,+∞) is accepted. In
the convection case �(u) = βu2 the full picture of the solutions is understood. Other
interesting choices of � may be given by (3), corresponding to thermal radiation, or �(u) =
cu corresponding to a constant heat flux.Moreover, discontinuous functions�, with�(0+) >

0, are admissible. This means that one can consider functions like �(u) = c11u>0 + c2uα

on [0, 1] which models a cost of the highly insulating material on ∂(A ∪ K ), cost which is
proportional to its surface measure.

The function � may be extended to R as a nondecreasing and nonnegative function, and
the constraint 1K ≤ v ≤ 1 a.e. in (1) may be relaxed into v|K ≥ 1 a.e.Whatever the extension
of � is outside [0, 1], the new problem is equivalent to the original one, by truncation below
0 and above 1.

Clearly, we know many more things on the penalized problem (5) than on the constrained
problem (4), in particular that the solutions are always concentric balls. This stills leaves
open the following question:

Under reasonable hypotheses on �, is it true that the solution of (4) always consists
on two concentric balls?

The organisation of the paper is as follows.

• In Sect. 2 we discuss the convection case and we prove Theorem 1. The proof follows the
strategy of Bossel and Daners for the Faber-Krahn inequality for the Robin Laplacian and
is based on the construction of a so called H -function. Up to knowledge of the authors,
this is the only case (aside from Faber-Krahn) where this strategy works. However, we
point out that this strategy is fully working only in dimension 2, while for n ≥ 3 it
works only for β > n − 2. This section is mostly independent from the rest of the paper,
except for the case n ≥ 3, β ∈ (0, n − 2] which is a consequence of the analysis by free
discontinuity techniques, for which we refer to Corollary 21 and Remark 22.

• Section 3 is devoted to the analysis of the existence of relaxed solutions for the constrained
problem (4) in the context of a general dissipation functions �, and to the regularity of
the free boundaries. These results are rather technical and they prepare the Proofs of
Theorems 2 and 3. The key idea is that once we know that problem (4) has a sufficiently
smooth solution, we can extract qualitative information out of its optimality. We work in
the framework of free discontinuity problems, based on the analysis of special functions
with bounded variation.

• In Sect. 4 we prove Theorem 2 and in Sect. 5 we prove Theorem 3.

2 The convection case: Proof of Theorem 1

In this section we consider �(s) = βs2. In this case, the energy E� is simply denoted by
Eβ and takes the form

Eβ(K ,�) := inf
v∈H1(�),v≥1K

∫
�

|∇v|2dx + β

∫
∂�

v2dH n−1. (8)

For fixed K , minimizers of the functional � → Eβ(K ,�) + 
|�| have been studied in
[9, 10] and [14], in particular the existence of an optimal set � and its regularity.

The claim of Theorem 1 is that the solution of the constrained problem (4) consists of two
centered balls for every M > ωn , and the size of the balls is then given by the study of the
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function

R �→ Eβ(B1, BR).

Let us first describe this function in detail. We let

�n(ρ) =
{
log(ρ) if n = 2

− 1
(n−2)ρn−2 if n ≥ 3,

where the sign convention is taken such that �n is always increasing. Relying on the expres-
sion of radial harmonic functions (x �→ a+b�n(|x |)) and the boundary conditions we obtain
that the temperature associated to (B1, BR) is given by

u(x) = 1 − β(�n(|x |) − �n(1))+
�′

n(R) + β(�n(R) − �n(1))

and

Eβ(B1, BR) = βPer(B1)�
′
n(1)

�′
n(R) + β(�n(R) − �n(1))

.

Notice in particular that

d

dR
Eβ(B1, BR) ≤ 0 iff

d

dR
(�′

n(R) + β�n(R)) ≥ 0 iff R ≥ n − 1

β
.

Moreover the extremal values are

Eβ(B1, B1) = βnωn, lim
R→∞ Eβ(B1, BR) = (n − 2)nωn .

In two dimension there are two cases

• if β ≥ 1 then R ∈ [1,+∞[�→ Eβ(B1, BR) is decreasing.
• if β < 1 then R ∈ [1,+∞[�→ Eβ(B1, BR) increases on [1, β−1] and decreases

on [β−1,+∞[, with the existence of a unique Rβ > β−1 such that Eβ(B1, BRβ ) =
Eβ(B1, B1).

In higher dimension there are three cases

• if β ≥ n − 1 then R ∈ [1,+∞[�→ Eβ(B1, BR) is decreasing.
• if n−1 > β > n−2 then R ∈ [1,+∞[�→ Eβ(B1, BR) increases on [1, n−1

β
], decreases

on [ n−1
β

,+∞), with the existence of a unique Rβ > n−1
β

such that Eβ(B1, BRβ ) =
Eβ(B1, B1).

• if β ≤ n − 2 then R ∈ [1,+∞[�→ Eβ(B1, BR) reaches its minimum at R = 1.

We postpone the analysis of the last case, and start by proving the result for the first two
cases. For this we will need the following.

Lemma 5 Let R > 1, β > 0, and let u∗ be the (unique) minimizer in (8) on (B1, BR). Then
|∇u∗|
u∗ ≤ β on BR\B1 if and only if

∀ρ ∈ [1, R], Eβ(B1, Bρ) ≥ Eβ(B1, BR).

Proof We remind the expression

u∗(x) = 1 − β(�n(|x |) − �n(1))

�′
n(R) + β(�n(R) − �n(1))

,
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so by straightforward computations

|∇u∗|
u∗ ≤ β iff �′

n(ρ) + β�n(ρ) ≤ �′
n(R) + β�n(R) iff Eβ(B1, Bρ) ≥ Eβ(B1, BR).

��
We may now prove the result. The proof relies on the study of the so called H function

introduced by Bossel [3], see also [11] and [6], for the study of the Faber-Krahn inequality
involving the first eigenvalue of the Laplace operator with Robin boundary conditions.

Proof of Theorem 1 Let (K ,�) be smooth sets such that K ⊆ �, |K | = ωn , |�| ≤ M
(and R the radius defined by M = |BR |). Let u be the minimizer of Eβ(K ,�) and denote
�t = {u > t}. We decompose ∂�t into two disjoint (up to a H n−1-negligible set) sets;
∂ i�t = {u = t} ∩ �, and ∂e�t = ∂�t ∩ ∂�. Then for a.e. t ∈ [0, 1]

0 =
∫

{t<u<1}
�u

u
dx =

∫
{t<u<1}

(
∇ ·

(∇u

u

)
− ∇u · ∇ 1

u

)
dx

=
∫

∂{t<u<1}
ν�t · ∇u

u
dH n−1 +

∫
�t

|∇u|2
u2

dx

=
∫

∂K∩�

|∇u|dH n−1 −
∫

∂ i�t

|∇u|
u

dH n−1

− βH n−1(∂{t < u < 1} ∩ ∂�) +
∫

�t

|∇u|2
u2

dx .

Since

Eβ(K ,�) =
∫

�\K
∇ · (u∇u)dx + β

∫
∂�

u2dH n−1

=
∫

∂K∩�

|∇u|dH n−1 +
∫

∂�\∂K
(
βu2 + u∂νu

)
dH n−1 +

∫
∂K∩∂�

βu2

=
∫

∂K∩�

|∇u|dH n−1 + βH n−1(∂K ∩ ∂�)

then injecting this in the previous equation we obtain

Eβ(K ,�) = βH n−1(∂e�t ) +
∫

∂ i�t

|∇u|
u

dH n−1 −
∫

�t

|∇u|2
u2

dx .

Let us define, for all t ∈ [0, 1] and φ ≥ 0,

H(t, φ) = βH n−1(∂e�t ) +
∫

∂ i�t

φdH n−1 −
∫

�t

φ2dx .

Lemma 6 For any nonnegative L∞ function φ, there exists some t ∈]0, 1[ for which
H(t, φ) ≤ Eβ(K ,�).

Proof Let w = φ − |∇u|
u , then

H(t, φ) − Eβ(K ,�) = H(t, φ) − H

(
t,

|∇u|
u

)
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=
∫

∂ i�t

wdH n−1 +
∫

�t

(( |∇u|
u

)2

− φ2

)
dx

≤
∫

∂ i�t

wdH n−1 − 2
∫

�t

|∇u|
u

wdx

= −1

t

d

dt

(
t2
∫

�t

|∇u|
u

wdx

)
,

where the last line is obtained by coarea formula on the level sets of u. So in particular
∫ 1

0
t(H(t, φ) − Eβ(K ,�))dt ≤ −

[
t2
∫

�t

|∇u|
u

wdx

]t=1

t=0

= 0,

which proves the lemma. ��
Proof of Theorem 1, (continuation). Recall that u∗ is the solution on (B1, BR), which is
radially symmetric and decreasing. Let φ be the dearrangement of |∇u∗|

u∗ on � following the
level sets of u. To be more precise, for any x ∈ �\K , let r(x) > 0 be defined by the formula

|Br(x)| = |{u > u(x)}|,
then we let φ(x) be the value of |∇u∗|

u∗ on ∂Br(x).

Let t be chosen as in Lemma 6, so that H(t, φ) ≤ Eβ(K ,�). Assuming that |∇u∗|
u∗ ≤ β

on ∂Br(x), we have

H(t, φ) = βH n−1(∂e�t ) +
∫

∂ i�t

φdH n−1 −
∫

�t

φ2dx

≥
∫

∂�t

( |∇u∗|
u∗

)
|∂Br(x)

dH n−1 −
∫

�∗
t

|∇u∗|2
(u∗)2

dx

≥
∫

∂�∗
t

|∇u∗|
u∗ dH n−1 −

∫
�∗
t

|∇u∗|2
(u∗)2

dx

= H∗ (u∗|∂Br(x) , |∇u∗|/u∗)

= Eβ(B1, BR)

The inequalities above rely on the rearrangement properties, the isoperimetric inequality and
on the hypothesis β ≥ |∇u∗|

u∗ .

We conclude by discussing when the assumption |∇u∗|
u∗ ≤ β is verified. If β ≥ n − 1

the inequality |∇u∗|
u∗ ≤ β is verified since R �→ Eβ(B1, BR) is decreasing on [1,+∞), by

Lemma 5.
If instead n − 2 < β < n − 1, two situations occur. If M ≥ |BR(n,β)|, then Lemma 5 still

works and the previous computation applies, with the same result. If M ∈ [ωn, |BR(n,β)|]
then we may consider u∗ the solution on (B1, BR(n,β)) restricted to BR ; it verifies

|∇u∗|
u∗ ≤ β

and the same argument applies. We obtain that

Eβ(K ,�) ≥ Eβ(B1, BR(n,β)).

Since Eβ(B1, BR(n,β)) = Eβ(B1, B1), we conclude with the minimality of the couple
(B1, B1).

123



186 Page 8 of 29 D. Bucur, M. Nahon

The case n ≥ 3, β ≤ n − 2 can not be treated directly with the H function, but is a direct
consequence of Corollary 21. Indeed, it is enough to take 
 → 0 in Corollary 21, since
Eβ(B1, BR) ≥ Eβ(B1, B1) for all R ≥ 1 in this case. ��

Remark 7 Finally we have the following picture for problem (4) with M = Rnωn ; the
minimizer is (B1, Br ), where r is defined through the following case disjunction.

(a) If n − 1 ≤ β then r = R.
(b) If n − 2 < β < n − 1, then defining R(n, β) > n−1

β
as the unique non-trivial solution

of the equation E�

(
B1, BR(n,β)

) = nβωn we have

• if R(n, β) > R ≥ 1 then r = 1
• if R = R(n, β) then r = 1 or r = R
• if R > R(n, β) then r = R

(c) If β ≤ n − 2 then r = 1.

3 Preparatory results: existence and regularity of relaxed solutions

We analyze in this section the existence of a solution of problem (4) for general �. Precisely,
our purpose is to prove the following.

Proposition 8 Let M > ωn and � admissible, such that, for some dimensional constant cn
(that will be specified)

M < ωn + cn

(
inf

0<s<1

�(s/3)

�(s)

)2n ∫ 1

0

t2n−1dt

�(t)n
, (9)

Then problem (4) has a (sufficiently regular) solution (K ,�).

The word “sufficiently” above will be described later, and refers to the regularity that we
need in the Proofs of Theorems 2 and 3. The proof of this proposition relies on ideas inspired
from the the relaxation strategy in the SBV framework (defined below) as introduced in [6]
and from [15, Chapter 29] on the existence proof of minimal clusters for the perimeter. The
main difficulty in our case comes from both the generality of the function � and from the
fact that two measure constraints have to be satisfied simultaneously.

As mentioned previously, the functional space used for our relaxation procedure is the
SBV space, on which more information may be found in the books [1, 4]. In few words, for
an open set � ⊂ R

n , SBV (�) is defined as the set of functions u ∈ L1(�) such that Du
(the differential of u in the sense of distribution) is a Radon measure that decomposes as

Du = ∇uL n + (u+ − u−)νuH
n−1�Ju,

where ∇u ∈ L1(�) and Ju is the set of jump points, meaning points x ∈ R
n such that

y �→ u(x + ry) converges in L1
loc(R

n) as r goes to 0 to

u+1y:y·νu>0 + u−1y:y·νu<0

for some u+ �= u− ∈ R, νu ∈ S
n−1. The set Ju turns out to be rectifiable. We will make use

of the following compactness result, which can be obtained by combination of [4, Th. 2.3]
and [4, Th. 2.12] applied to φ(z, w) = �(z) + �(w).
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Proposition 9 Let (ui )i∈N be a sequence in SBVloc(Rn) with values in [0, 1] such that for
any R > 0,

sup
i∈N

(∫
BR

|∇ui |2 + H n−1(Jui ∩ BR)

)
< ∞

then up to the extraction of a subsequence, there is a function u ∈ SBVloc(Rn) such that

ui −→
a.e.

u

∇ui ⇀
L2
loc

∇u

∀R > 0,
∫
Ju∩BR

[
�(u+) + �(u−)

]
dH n−1

≤ lim inf
i→∞

∫
Jui ∩BR

[
�((ui )+) + �((ui )−)

]
dH n−1

Here is the main strategy.

Step 1. (Relaxation) We change the problem into finding a minimizer for the following
problem

inf
u∈SBV (Rn),|{u=1}|≥ωn ,|{u>0}|≤M

E�(u), (10)

where

E�(u) =
∫
Rn

|∇u|2dx +
∫
Ju

(�(u+) + �(u−))dH n−1. (11)

This means that we will need afterward to prove that such a relaxed minimizer
(meaning a minimizer of the relaxed problem) corresponds to a classical minimizer.

Step 2. (A priori regularity) We prove that we may restrict to considering functions that
verify an a priori estimate of the form u ≥ δ1{u>0} for some explicit δ; for Robin
boundary conditions this kind of estimate is a cornerstone of the regularity theory.
This is the only place where we use the hypothesis (9). Similar estimates may be
found in [7, 9] and [10] (see also [2] for a related problem). Moreover, we prove
a concentration lemma that says all the support of u - up to a set of measure ε - is
contained in a union ofCε−n unit cubes for some explicit constantC , and we prove
a cut-off lemma that says that one may replace u by 0 outside a large enough cube
and lower its energy by a controlled amount.

Step 3. (Existence of a relaxed solution) We rely on Step 2 to prove the existence of a
minimizer. This is done by the direct method, considering a minimizing sequence,
applying the concentration lemma a first time to translate the minimizing sequence
such that it converges to a non-trivial solution, and then applying again the concen-
tration lemma and cut-off lemma for an appropriately small ε.

Step 4. (Regularity of the relaxed solution) Finally we prove the regularity of such a relaxed
minimizer by using the theory of almost quasiminimizers of the Mumford-Shah
functionnal to handle the support of u, and the theory of the regularity of Alt-
Caffarelli problem inside �.

As mentioned above, we are first interested in the relaxed problem (10). Notice that the
generalized energy (11) takes into account “cracks”, meaning part of the jump set where u

123
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may be nonzero on both sides. The general energy (11) may also be used to define E�(K ,�)

in a more general setting ; for any open set �, and any measurable K ⊂ �, we let

E�(K ,�) = inf
{
E�(u), u ∈ SBV (Rn, [0, 1]) : |K\{u = 1}|

= |{u �= 0}\�| = H n−1(Ju\∂�) = 0
}

When � is a smooth open set, this is coherent with the first definition.

Lemma 10 Assume that (9) is verified. There is a constant δ = δn,�,M > 0 such that for any
admissible u in (10), there is some t > δ verifying E�(u1{u>t}) ≤ E�(u).

Proof We actually show the stronger result; there is some t > s > e−cn,�M such that

E�(u1{s<u<t}c ) ≤ E�(u).

Let ε > 0, suppose E�(u1{s<u<t}c ) > E�(u) for every ε < s < t < 1. We write

• �(s, t) = {s < u ≤ t}.
• γ (s, t) = ∫

Ju

(
1s<u+≤t + 1s<u−≤t

)
dH n−1.

• h(t) = H n−1({u = t}\Ju).
Our hypothesis becomes that for every η ∈]2ε, 2

3 [, t ∈]0, η
2 [, E�(u1{η−t<u<η+t}c ) > E�(u)

so∫
�(η−t,η+t)

|∇u|2dx + �

(
1

2
η

)
γ (η − t, η + t) ≤ �

(
3

2
η

)
(h (η − t) + h (η + t)) .

(12)

The proof is based on a lower bound of
∫
�(η−t,η+t) |∇u|dx and an upper bound of∫

�(η−t,η+t) |∇u|2dx that are in contradiction when ε is small enough.

• For all t ∈]0, 1
2η[ we let:

fη(t) =
∫ η+t

η−t
h(s)ds =

∫
�(η−t,η+t)

|∇u|dx .

fη is absolutely continuous and

′
η(t) = h (η − t) + h (η + t) .

Moreover,

Then, fη(t) ≤ |�(η − t, η + t) | 12
(∫

�(η−t,η+t)
|∇u|2dx

) 1
2

≤ CnPer(� (η − t, η + t))
n

2(n−1)

(
�

(
3

2
η

)
(h (η − t) + h (η + t))

) 1
2

by isoperimetric inequality

≤ Cn (h (η − t) + γ (η − t, η + t)

+h (η + t))
n

2(n−1)

(
�

(
3

2
η

)
(h (η − t) + h (η + t))

) 1
2

≤ Cn�

(
3

2
η

) 2n−1
2n−2

�

(
1

2
η

)− n
2n−2

f ′
η(t)

2n−1
2n−2 .
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Raising to power 2n−2
2n−1 , after summation on [0, t]

(∫
�
(
1
2 η, 32 η

) |∇u|dx
) 1

2n−1

≥ cnt�

(
3

2
η

)−1

�

(
1

2
η

) n
2n−1

.

And so ∫
�
(
1
2 η, 32 η

) |∇u|dx ≥ cnη
2n−1�

(
3

2
η

)−(2n−1)

�

(
1

2
η

)n

.

• We let

gη(t) =
∫

�(η−t,η+t)
|∇u|2dx, Gη(t) =

∫ t

0
gη.

We begin by finding a upper bound for Gη. We take t in [0, η/2], then:

Gη(t) ≤
∫ t

0
�

(
3

2
η

)
(h(η − s) + h(η + s))ds

≤ �

(
3

2
η

)
|�(η − t, η + t) | 12 G ′

η(t)
1
2 .

Thus:

G ′
η(t)Gη(t)

−2 ≥ �

(
3

2
η

)−2 ∣∣∣∣�
(
1

2
η,

3

2
η

)∣∣∣∣
−1

.

We integrate from t to 2t (up to supposing t < η/4)

Gη(t)
−1 ≥ t�

(
3

2
η

)−2 ∣∣∣∣�
(
1

2
η,

3

2
η

)∣∣∣∣
−1

.

Thus:

Gη(t) ≤ t−1�

(
3

2
η

)2 ∣∣∣∣�
(
1

2
η,

3

2
η

)∣∣∣∣ .
Since gη is increasing, then up to supposing t < η/8

gη(t) ≤ 1

t

∫ 2t

t
gη ≤ Gη(2t)

t
≤ t−2�

(
3

2
η

)2 ∣∣∣∣�
(
1

2
η,

3

2
η

)∣∣∣∣ .
Combining the previous inequalities, that are valid for t ∈ [0, η/8], we get

cnη
2n−1�

(
3

2
η

)−(2n−1)

�

(
1

2
η

)n

≤
∫

�(η−t,η+t)
|∇u|dx

≤ |�(η − t, η + t) | 12
(∫

�(η−t,η+t)
|∇u|2dx

) 1
2

≤ t−1�

(
3

2
η

) ∣∣∣∣�
(
1

2
η,

3

2
η

)∣∣∣∣ .
Taking t = η/8, we get: ∣∣∣∣�

(
1

2
η,

3

2
η

)∣∣∣∣ ≥ cnη2n

�
( 3
2η
)2n

�
( 1
2η
)−n ,
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for a constant cn that may be made explicit. Now, suppose that the quantity ε chosen at the
start was of the form 3−K for some K ∈ N

∗, and then by taking η = 2
3k

for k = 1, . . . , K ,
we get

M − ωn ≥ |{u > 3−K }| ≥
K∑

k=1

∣∣∣∣�
(

1

3p
,

1

3p−1

)∣∣∣∣

≥ cn

K∑
k=1

3−2nk

�
(
3−(k−1)

)2n
�
(
3−k

)−n

≥ cn

(
inf

0<s<1

�(s/3)

�(s)

)2n ∫ 1

3−K

t2n−1dt

�(t)n
.

Thus if the hypothesis (9) in the result is verified, this gives an upper bound on K . ��
With this, we may replace any minimizing sequence (ui ) by a minimising sequence

(ui1{ui>ti }) such that

inf{ui>0}(ui ) ≥ δ

so we will now suppose that all the functions we consider verify this property.
For any p ∈ Z

n , let us write Kp = p + [0, 1]n .
Lemma 11 Let u be admissible for (10) and δ > 0 such that u ≥ δ1{u>0}. Let ε > 0. Then
there exists a set F = ∪i∈I Ki where I � Z

n is such that

|I | ≤ CnM

(
�(δ)−1E�(u) + M

ε

)n

, |{u > 0}\F | ≤ ε.

Proof We first prove the following technical result. Let (Ki )i∈I be a finite family of unit
cubes, F = ∪i∈I Ki , then

max
p/∈I

∣∣{u > 0} ∩ Kp
∣∣ ≥ cn

( |{u > 0}\ ∪p/∈I K p|
|{u > 0}| + �(δ)−1E�(u)

)n

.

For any p /∈ I , we may write

|{u > 0} ∩ Kp| = |{u > 0} ∩ Kp| 1n |{u > 0} ∩ Kp|1− 1
n

≤ Cn

(
max
q /∈I |{u > 0} ∩ Kp|

) 1
n (|{u > 0} ∩ Kp| + H n−1(Ju ∩ Kp)

)

by the embedding BV(Kp) ↪→ L
n

n−1 (Kp)

≤ Cn

(
max
q /∈I |{u > 0} ∩ Kp|

) 1
n (|{u > 0} ∩ Kp| + �(δ)−1E�(u|Kp)

)
.

where the last term is defined as

E�(u|�) :=
∫

�

|∇u|2dx +
∫
Ju

(�((u1�)+) + �((u1�)−)) dH n−1

And so, by summing in p ∈ Z
n\I :

|{u > 0}\ ∪q /∈I Kq | ≤ Cn

(
max
q /∈I |{u > 0} ∩ Kp|

) 1
n (|{u > 0}| + �(δ)−1E�(u)

)
,
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which is the result.
We now construct F by induction starting with F0 = ∅ and as long as |{u > 0}\Fk | ≥ ε,

we take Ik+1 = Ik ∪ {p} where p /∈ Fk is chosen with the previous lemma such that∣∣{u > 0} ∩ Kp
∣∣ ≥ cn

(
ε

|{u>0}|+�(δ)−1E�(u)

)n
. Suppose that this goes on until a rank N , then

M ≥ |{u > 0}| ≥
∑
i∈IN

|{u > 0} ∩ Ki | ≥ cnN

(
ε

|{u > 0}| + �(δ)−1E�(u)

)n

,

so N is bounded uniformly and conclude the proof of the lemma. ��

For a closed set F , we shall write dF (x) = inf y∈F |x − y|.

Lemma 12 Let u be admissible for (10) and δ > 0 such that u ≥ δ1{u>0}. Then
there exist constants τn,�,δ , Cn,�,δ such that for any closed set F there exists some

r ∈
[
0,Cn,�,δ|{u > 0}\F | 1n

]
such that

E�(u1{dF<r}) ≤ E�(u) − τn,�,δ|{u > 0} ∩ {dF > r}|1− 1
n .

Proof Let �r = {u > 0} ∩ {dF ≥ r}, and m(r) = |�r |. Suppose that the result we want to
prove is not true for r ∈ [0, r1] for some r1 > 0, meaning that for a constant τ > 0 that will
be chosen later and for any r ∈]0, r1[,

E�(u|�r ) ≤
∫

∂∗�r \Ju
�(u)dH n−1 + τ |�r |1− 1

n ,

where we remind E�(u|�) := ∫
�

|∇u|2dx+∫
Ju

(�((u1�)+) + �((u1�)−)) dH n−1. Now,
for any r ∈]0, r1[,
m(r)

n−1
n ≤ CnPer(�r ) (by isoperimetry)

≤ Cn�(δ)−1
(∫

∂∗�r \Ju
�(u)dH n−1 +

∫
∂∗�r∩Ju

(�((u1�r )−) + �((u1�r )+))dH n−1
)

≤ Cn�(δ)−1
(∫

∂∗�r \Ju
�(u)dH n−1 + E�(u|�r )

)

≤ Cn�(δ)−1
(
2
∫

∂∗�r \Ju
�(u)dH n−1 + τ |�r |1− 1

n

)
,

so for τ := �(δ)
2Cn

this implies

m(r)
n−1
n ≤ 4Cn�(δ)−1

∫
∂∗�r \Ju

�(u)dH n−1 ≤ 4Cn
�(1)

�(δ)
H n−1(∂∗�r\Ju).

Moreover H n−1(∂∗�r\Ju) ≤ −m′(r). So by integrating this for every r ∈]0, r1[, we get

m(r1)
1
n ≤ m(0)

1
n − �(δ)

4Cn�(1)
r1.

Since m(r1) ≥ 0 this means that necessarily

r1 ≤ 4Cn
�(δ)

�(1)
|{u > 0}\F | 1n .
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Thus, there is always some r ∈
[
0, 8Cn

�(δ)
�(1) |{u > 0}\F | 1n

]
such that

E�(u1{dF<r}) ≤ E�(u) − τ |{u > 0} ∩ {dF > r}|1− 1
n ,

where τ = �(δ)
2Cn

as defined earlier. ��

In all that follows we will need the following lemma for controlled infinitesimal volume
exchange between measurable set, that may be found for instance in [15, Lemma 29.13].

Lemma 13 Let U be a connected open set, E1, . . . , EN be a measurable partition of U such
that, for every i , |Ei ∩ U | > 0. Then there are vector fields Xi j with disjoint support such
that for any i, j, k,

∫
Ek

div(Xi j ) =

⎧⎪⎨
⎪⎩

+1 if k = i,

−1 if k = j,

0 else.

Proof Consider the linear application

L :
⎧⎨
⎩
C∞
c (U ) → R

N ,

X �→
(∫

Ei
div(X)

)
i=1,...,N

.

The range of L is included in {(m1, . . . ,mN ) : ∑N
i=1 mi = 0}. If it were not equal to this

subspace, there would be a non trivial vector (a1, . . . , aN ) independant of (1, . . . , 1) such

that, for any X ,
∑N

i=1 ai
∫
Ei
div(X) = 0, meaning that ∇

(∑N
i=1 ai1Ei

)
= 0 in D′(U ),

which is a contradiction by the connectedness of U . ��

Proposition 14 Under the hypotheses of Proposition 8, there exists a minimizer of E� in
Problem (10).

Proof Consider a minimizing sequence (ui ); up to truncation we may suppose that
inf{ui>0}(ui ) ≥ δn,�,m,M . We may apply Lemma 11 with ε = m/2 to find sequences
(pki )1≤k≤N ,i≥0 such that |{ui > 0}\ ∪k K pki

| ≤ ωn
2 . In particular, |{ui = 1} ∩ ∪k K pki

| ≥ ωn
2

so for each i there is some ki such that |K
p
ki
i

∩ {u = 1}| ≥ ωn
2N . Up to a translation we will

suppose that pkii = 0, such that K
p
ki
i

= [0, 1]n .
Now, by compactness arguments in SBV , see Theorem 9, we know that up to an extraction

(ui ) converges almost everywhere (with lower semicontinuity on the energy) to a non-trivial
limit u ∈ SBV , in particular such that |{u = 1}| > 0 and Fatou’s lemma tells us that for any
cube K , |{u = 1} ∩ K | ≥ lim supi→∞ |{ui = 1} ∩ K |. We also denote R := (2M)1/n to be
such that |[0, R]n ∩ {u = 0}| ≥ M .

Lemma 15 Up to extraction, either |{u > 0} ∩ [0, R]n | > lim supi→∞ |{ui > 0} ∩ [0, R]n |,
which we call the loose case, or

1{ui=1}∩[0,R]n → 1{u=1}∩[0,R]n

in the weak-∗ sense, which we call the saturated case.
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Proof Suppose that |{u > 0} ∩ [0, R]n | = lim supi→∞ |{ui > 0} ∩ [0, R]n |. We denote
ν a weak limit of the sequence of measures given by the density 1{ui=1}; by hypothesis
ν([0, R]n) = |{u = 1} ∩ [0, R]n |. Moreover for any nonnegative continuous function ϕ ∈
C0([0, R]n,R), by Fatou’s lemma,

ν(ϕ) = lim
i→∞

∫
[0,R]n

ϕ1{ui=1}dx ≤
∫

[0,R]n
ϕ lim sup

i→∞
1{ui=1}dx ≤

∫
[0,R]n

ϕ1{u=1}dx,

which concludes the lemma. ��
We now let ε > 0 to be a small number (it will be fixed later), and we find a union of

N (= Nn,�,m,M,ε) cube (we also include cubes to cover [0, R]n), denoted Fi , such that |{ui >

0}\Fi | ≤ ε; by applying Lemma 12 to (ui , Fi ), we find a radius ri ≤ Cn,�,M |{ui > 0}\Fi | 1n
such that

E�(ui1{dFi <ri }) ≤ E�(ui ) − τn,�,M |{ui > 0} ∩ {dFi > ri }|1− 1
n .

We let vi = ui1{dF<ri }, and we now differentiate between the loose and the saturated case.

• Loose case: here we may choose ε < |{u = 1} ∩ [0, R]n | − lim supi→∞ |{ui = 1} ∩
[0, R]n |. Since the support of vi is on a finite (not depending on i) number of cubes,
they may be moved around so that vi is supported in a compact set. Then by SBV
compactness Theorem 9we obtain that vi → v, such that E�(v) ≤ lim inf i→∞ E�(vi ) =
inf |{u=1}|≥ωn ,|{u>0}|≤M E�(u). Moreover, |{v > 0}| = limi→∞ |{vi > 0}| ≤ M and

|{v = 1}| ≥ |{u = 1} ∩ [0, R]n | − lim sup
i→∞

|{ui = 1} ∩ [0, R]n | + lim sup
i→∞

|{vi = 1}|
≥ |{u = 1} ∩ [0, R]n | − lim sup

i→∞
|{ui = 1} ∩ [0, R]n | − ε + ωn

≥ ωn,

so v is admissible and this proves the result.
• Saturated case: based on the partition {u = 0}, {0 < u < 1}, {u = 1} of [0, R]n , where

the first and last set have positivemeasure, there exists a vector field ξ ∈ C∞
c ((0, R)n,Rn)

such that∫
{u=1}

div(ξ)dx = 1,
∫

{0<u<1}
div(ξ)dx = 0,

∫
{u=0}

div(ξ)dx = −1.

Moreover notice that φt (x) := x + tξ(x) is a diffeomorphism with compact support for
any small enough t ; φt will be used to regulate the measure of {ui = 1} after truncation.
Using the weak convergence of the measure of the supports of the (ui ), we may suppose
that for any large enough i and any small enough t (not depending on i)

|{ui ◦ φ−1
t = 1}| =

∫
{ui=1}

det(Dφt )dx =
∫

{ui=1}
(
1 + tdiv(ξ) + t2Pξ (t)

)
dx

≥ |{ui = 1}| + t

2
,

|{0 < ui ◦ φ−1
t < 1}| =

∫
{0<ui<1}

det(Dφt )dx =
∫

{0<ui<1}
(
1 + tdiv(ξ) + t2Pξ (t)

)
dx

≤ |{0 < ui < 1}| + Ct2.

where Pξ is a polynomial of degree n − 2 that depends on ξ .
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Now, let ti = 8(ωn − {vi = 1}). We know that ti = 8|{ui > 0}\{dFi > ri }| ≤ 8ε; when ε

is small enough, for any |t | < 8ε we know φt is a diffeomorphism and the estimates above
hold for any large enough i . Consider

wi (x) = vi ◦ φ−1
ti

⎛
⎝
[

ωn

ωn − 1
4 ti

]1/n
x

⎞
⎠ .

Then

|{wi = 1}| = ωn − 1
4 ti

ωn
|{vi ◦ φ−1

ti = 1}| ≥ ωn − 1
4 ti

ωn

(
|{vi = 1}| + 1

2
ti

)
,

≥ |{vi = 1}| + ti
8

= ωn

|{0 < wi < 1}| = ωn − 1
4 ti

ωn
|{0 < vi ◦ φ−1

ti < 1}| ≤ ωn − 1
4 ti

ωn

(|{0 < vi < 1}| + Ct2i
)

≤ |{0 < vi < 1}| ≤ |{0 < ui < 1}|,
where in both lines we use that ti is taken arbitrarily small (less than 8ε > 0, not depending
on i). Thus (wi ) is admissible. Then it may be computed with a similar method that

E�(wi ) − E�(vi ) =
∫

{ξ �=0}

(∣∣∣((I + ti Dξ)∗
)−1 ∇ui

∣∣∣2 det(In + ti Dξ) − |∇u|2
)
dx

+
∫
Ju∩{ξ �=0}

(
�(u+

i ) + �(u−
i )
) (

ν∗
Jui

(In + ti Dξ)νJui − 1
)
dH n−1

≤ C0ti where C0 does not depend on i .

And then, due to Lemma 12,

E�(wi ) ≤ E�(ui ) + 8C0|{ui > 0}\{dFi > ri }|
−τn,�,M |{ui > 0} ∩ {dFi > ri }|1− 1

n ≤ E�(ui ),

where the last inequality is due to |{ui > 0} ∩ {dFi > ri }| ≤ ε and ε is chosen small enough
(depending on the flow, which was defined before ε). So (wi ) is an admissible minimizing
sequence that is confined in a disjoint union of N unit cubes, and up to moving these cubes
we may suppose that wi has support in a certain ball B not depending on i . So with the
compactness result 9, it converges to a minimizer. ��
Lemma 16 Let u be a relaxed minimizer of (10). Then Ju is H n−1-essentially closed, and
there exists a bounded open set � with ∂� = Ju and a relatively closed set K ⊂ � such that

(K ,�) is a solution of (4), associated to the function u, with u ∈ H1(�) ∩ C0,
2

n+2
loc (�) and

K = {u = 1}.
Proof We assumewithout loss of generality that |{0 < u < 1}| > 0; otherwise the minimizer
is directly identified by the isoperimetric inequality.

• We first prove that u is an almost quasiminimizer of the Mumford-Shah functionnal,
meaning that there are constants cu, ru > 0 such that for any ball Bx,r with r < ru and
any function v ∈ SBV (Rn) that differs from u on Bx,r only,∫

Bx,r

|∇u|2dx + �(δ)H n−1(Bx,r ∩ Ju)
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≤
∫
Bx,r

|∇v|2dx + 2�(1)H n−1(Bx,r ∩ Jv) + cu |{u �= v}|. (13)

Let U be the union of two balls of arbitrarily small radius δ such that

|U ∩ {u = 1}|, |U ∩ {0 < u < 1}|, |U ∩ {u = 0}| > 0 (14)

|Uc ∩ {u = 1}|, |Uc ∩ {0 < u < 1}|, |Uc ∩ {u = 0}| > 0. (15)

The second condition (15) is automatic as soon as δ is small enough, and the first condition
(14) may be obtained by continuity of x �→ |Bx,δ ∩ A| for A = {u = 1}, {0 < u <

1}, {u = 0}. We may apply Lemma 13 for these three sets in U , thus obtaining three
smooth vector fields (X , Y , Z) with support in U that transfer measure between ({u =
0}, {0 < u < 1}, {u = 1}), in particular∫

{u=1}
div(X) = −

∫
{u=0}

div(X) = 1,
∫

{0<u<1}
div(X) = 0

∫
{u=1}

div(Y ) = −
∫

{u=0}
div(Y ) = 1,

∫
{0<u<1}

div(Y ) = 0

Write φt (x) = x + t X(x), ψt (x) = x + tY (x), and �s,t = φs ◦ ψt . Consider the
application

G :
{
R
2 → R

2

(s, t) �→ (∣∣�s,t ({u = 1})∣∣− |{u = 1}| , ∣∣�s,t ({0 < u < 1})∣∣− |{0 < u < 1}|) .
ThenG is smooth and DG(0, 0) = I2; there exists ε0 > 0 such thatG is invertible on Bε0

with 1
2 | (s, t) | ≤ |G (s, t) | ≤ 2| (s, t) | and G(Bε0) ⊃ Bε0/2. Let r > 0 and x ∈ R

n be
such that |Bx,r ∩U | = 0 and |Bx,r | < ε0/4, and v ∈ SBV be such that {u �= v} � Bx,r .
Up to truncating v from above (by 1, that can only decrease the energy) and from below
(by some t ≥ δ, by Lemma 10) we assume that δ1{v>0} ≤ v ≤ 1.

Let (a, b) = (|{u = 1}| − |{v = 1}|, |{0 < u < 1}| − |{0 < v < 1}|)(∈ Bε0/2), and
(s, t) = G−1

|Bε0
(a, b). Then v ◦ �−1

s,t satisfies the measure constraints (ωn, M), so

E�(u) ≤ E�(v ◦ �−1
s,t ).

So∫
Bx,r

|∇u|2dx + �(δ)H n−1(Bx,r ∩ Ju) ≤
∫
Bx,r

|∇v|2dx + 2�(1)H n−1(Bx,r ∩ Jv) + R,

where

R =
∫
U

(∣∣(D�∗
s,t )

−1∇u
∣∣2 det(D�s,t ) − |∇u|2

)
dx

+
∫
U∩Ju

(
ν⊥
u D�s,tν

⊥
u − 1

)
(�(u−) + �(u+)) dH n−1

≤ C(|s| + |t |) ≤ 2C(|a| + |b|).
This proves that u is an almost quasiminimizer at any positive distance of U . Now by
our choice of U , the condition (15) allows us to choose similarly a set U ′ ⊂ R

n\U that
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is a union of two balls of arbitrarily small radii such that

|U ′ ∩ {u = 1}|, |U ′ ∩ {0 < u < 1}|, |U ′ ∩ {u = 0}| > 0

and by choosing similarly vector fields X ′, Y ′, Z ′ with support inU ′ that transit measure
between these three sets, u is an almost quasiminimizer at any positive distance of U ′.
Thus u is an almost quasiminimizer, and this concludes the proof of the estimate (13).

• By [9, Theorem 3.1], u being an almost quasiminimizer of Mumford-Shah implies that
Ju is essentially closed, meaning H n−1(Ju\Ju) = 0. We now let � be the union of the
bounded connected components of Rn\Ju , then u ∈ H1(�) and ∂� = Ju .

• Let us prove � is bounded by proving an explicit lower density estimate; indeed, we let
r := ru as defined in the first point and considering v = u1Rn\Bx,ρ for any x ∈ R

n and
ρ ∈]0, r [ in (13) we get∫

Bx,ρ

|∇u|2dx + �(δ)H n−1(Bx,ρ ∩ Ju)

≤ 2�(1)H n−1(∂Bx,ρ ∩ {u > 0}\Ju) + cu |Bx,ρ ∩ {u > 0}|.
Let m(ρ) = |� ∩ Bx,ρ |, then by the isoperimetric inequality

cnm(ρ)1−
1
n ≤ H n−1(∂� ∩ Bρ) + H n−1(� ∩ ∂Bρ) ≤

(
1 + 2

�(1)

�(δ)

)
m′(ρ) + cum(ρ).

So if |Bx,r/2 ∩ �| > 0 then by integrating this estimate, |Bx,r ∩ �| ≥ crn for a constant
c that does not depend on x . Since |�| ≤ M then there are at most N ≤ M

crn points
(xi )i=1,...,N such that |xi − x j | ≥ r for all i �= j and |�∩ B(xi , r/2)| > 0, meaning that
� is bounded.

• We prove that u is locally Hölder, which implies the relative closedness of K with
K = {u = 1}. Indeed let K = {u = 1} and B � � be a small ball inside � such that
|B ∩ K | and |B\K | are positive (such a ball exists as soon as |�| > |K |, otherwise
K and �\K would be disconnected, and (K , K ) would have strictly lower energy than
(K ,�)). Let ξ ∈ C∞

c (B,Rn) be such that
∫
B∩K

div(ξ)dx = 1,
∫
B\K

div(ξ)dx = −1,

and let φt (x) = x + tξ(x) be the associated diffeomorphism for a small enough t .
Consider then any ball Bx,r � � such that

B
x,r

n
n+2

� �\B,

we prove that provided r is small enough (depending only on the choice of the flow and
the parameters of the problem and not on x) there is a constant C > 0 not depending on
x and r such that ∫

Bx,r

|∇u|2dx ≤ Cr
n2
n+2 .

This directly implies the local Hölder continuity in �\B and the relative closedness of
K using classical integral growth argument (see for instance [13, cor. 3.2]), and the same
may be done for another small ball B ′ that has positive distance from B which conclude
the result. Let us now focus on this estimate.
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Let R = r
n

n+2 and h be the harmonic extension of u|∂Bx,R on Bx,R (that we extend simply
by u outside Bx,R). We suppose that r is small enough such that r < R

2 . Notice that h might
not be admissible, however |{h = 1}| ≥ ωn −|BR |; we let t = 2|BR | and for a small enough
R, we have

|{h ◦ φ−1
t = 1}| ≥ ωn,

so h ◦ φ−1
t is admissible. By comparison with the minimizer u we get∫

Bx,R

|∇(u − h)|2dx ≤
∫
B

(∣∣∣((I + t Dξ)∗
)−1 ∇u

∣∣∣2 det(I + t Dξ) − |∇u|2
)
dx ≤ CRn .

for some constantC that depends on n, u|B and on the flow ξ . Now, using the subharmonicity
of |∇h|2 on Bx,R ,∫

Bx,r

|∇u|2dx ≤ 2
∫
Bx,r

|∇(u − h)|2dx + 2
∫
Bx,r

|∇h|2dx

≤ CRn + 2

(
r

R/2

)n ∫
Bx,R/2

|∇h|2dx

≤ CRn + C ′ rn

R2 by Cacciopoli inequality on the second term.

This ends the proof. ��
Remark 17 Summarizing our results, we know that � is an open set with rectifiable topolog-

ical boundary such thatH n−1(∂�) < ∞ and that the temperature u ∈ H1(�) is C0,
2

n+2
loc (�).

4 The penalized problem: Proof of Theorem 2

In this section we prove Theorem 2. For any 
 > 0, we denote

E�,
(K ,�) = E�(K ,�) + 
|�\K |, E�,
(u) = E�(u) + 
|{0 < u < 1}|.
We claim that it is enough to prove the result in the case for a function � which satisfies

(6) and such that �(u) = Ou→0(u2). Indeed, for any small ε > 0 one may replace � on
[0, 1] with a perturbation that verifies (6), namely

�ε(u) = min

(
(�(1) + ε)

(u
ε

)2
,�(u) + ε1(0,1]

)

and define E�ε , E�ε,
, accordingly. Then we know E�ε,
 is minimal on some (B1, BRε ),
and that the associated state function has the form

uε(x) =

⎧⎪⎨
⎪⎩
1 if |x | ≤ 1,

1 − (1 − uε(Rε))
�n(|x |)−�n(1)
�n(Rε )−�n(1)

if 1 ≤ |x | ≤ Rε,

0 if |x | > Rε,

due to the general form of radial harmonic functions (x �→ a + b�n(|x |)). The associated
energy takes the form

E�ε,
(B1, BRε ) = (
1 − uε(Rε)

)2 Per(Br )�′
n(1)

�n(Rε) − �n(1)
+ Per(BRε )�ε

(
uε(Rε)

)
.
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Rε is bounded uniformly in ε; indeed, due to the penalization term,

|BRε | ≤ 
−1E�ε (B1, BRε ) ≤ 
−1E�ε (B1, B1) = 
−1(�(1) + ε)Per(B1)

so we may suppose without loss of generality that Rε −→
ε→0

R and uε(Rε) −→
ε→0

l ∈ [0, 1],
and define

u(x) =

⎧⎪⎨
⎪⎩
1 if |x | ≤ 1,

1 − (1 − l) �n(|x |)−�n(1)
�n(R)−�n(1)

if 1 < |x | < R,

0 if |x | > R,

Then by lower semicontinuity of � and the fact that �(0) = 0 we get

E�,
(B1, BR) ≤ E�,
(u) ≤ lim inf
ε→0

E�ε,
(B1, BRε )

and then for any admissible v we get by dominated convergence

E�,
(v) = lim
ε→0

E�ε,
(v) ≥ lim inf
ε→0

E�ε,
(B1, BRε ) ≥ E�,
(B1, BR)

This is a similar method as what was used in [8] to handle a similar function with �(v) ∼
2βcv near 0 for some constants c, β > 0.

Lemma 18 Problem (5) has a solution.

Proof We let �ε(u) defined above. Notice that

inf
0<s<1

�ε(s/3)

�ε(s)
≥ min

(
1

9
, inf
0<s<1

�(s/3) + ε

�(s) + ε

)
≥ min

(
1

9
,

ε

�(1) + ε

)
> 0

and �ε(v) = Os→0(s2) so the hypothesis (7) is automatically verified. For what comes next
we drop the ε to lighten the notations.
The results of Sect. 3 apply; for any M ≥ ωn , there exists a minimizer (KM ,�M ) of problem
(4). M �→ E�(KM ,�M ) is nonincreasing, and we prove that it is lower semicontinuous.
Indeed, consider Mi −→

i→∞ M , and consider the sequence of minimizers (KMi ,�Mi ), with

their state function (ui ). Then proceeding as in the Proof of Proposition 14, we find amodified
sequence (wi ) obtained from (ui ) through truncation with uniformly bounded support, such
that its limit w verifies |{w = 1}| ≥ ωn , |{w > 0}| ≤ M , and E�(w) ≤ lim inf i→∞ E�(ui );
this prove the lower semi-continuity. Since

E�,
(KM ,�M ) ≥ 
(M − ωn) −→
M→+∞ +∞,

then there is a (non-necessarily unique) M
 > 0 such that [ωn,+∞) � M �→
E�,
(KM ,�M ) is minimal at M = M
 and (KM
,�M
) is a minimum of E�,
 with
|�| ≤ M . ��

Wemaynowprove themain result of this section.Wewill say a set A has the center property
if any hyperplane that goes through the origin divides A in two parts of same measure. This
is in particular the case if A has central symmetry. We will also call a minimizer (K ,�)

“centered” if K has the center property.
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Proof of Theorem 2 Consider u a minimizer of E�,
 with the associated sets � = {u > 0},
K = {u = 1}. We remind that we know � to be open and u ∈ H1(�). When e is a unit
vector and λ ∈ R, we will write

u+
e,λ(x) =

{
u(x) if x · e ≥ λ

u(Se,λ(x)) if x · e < λ
, u−

e,λ(x) =
{
u(Se,λ(x)) if x · e ≥ λ

u(x) if x · e < λ
,

where Se,λ is the reflexion relative to the hyperplane {x : x · e = λ}.
• We first show that there exists a minimizer with the center property by building a min-

imizer with central symmetry. Indeed, consider u a minimizer associated to (K ,�),
λ1 ∈ R such that {x : x1 = λ1} cuts K in half. Then u+

e1,λ1
and u−

e1,λ1
are also minimiz-

ers; we may in particular replace u with u+
e1,λ1

or u−
e1,λ1

(the choice does not matter here)
to suppose u has a symmetry along {x : x1 = λ1}. We do the same for {x : xi = λi }
successively for i = 2, . . . , n; in the end we arrive to a minimizer

ũ =
(

. . .
(
u±
e1,λ1

)±
e2,λ2

)
. . .

)±

en ,λn

,

that is symmetric relative to every Sei ,λi . Up to a translation of λ, ũ is invariant for every
Sei ,0, and so it is invariant by their composition which is the central symmetry x �→ −x .

• Suppose that u is a minimizer (with K = {u = 1}, � = {u > 0}) where K has the center
property (we know such a minimizer exists from the previous point). We prove that the
free boundary ∂K ∩ � is a union of spherical arcs centered at the origin.

If {0 < u < 1} is empty then the problem is equivalent to the isoperimetric inequality
and we are done, so we suppose that it is not. Consider A a connected component of
{0 < u < 1}, which is open by the regularity of minimizers. The set ∂A ∩ ∂K is not
empty, since it would otherwise mean that E�(u1Rn\A) < E�(u).

Let He = {x : x · e = 0} be a hyperplane going through the origin such that He ∩ A �= ∅,
then u+

e,0 is also a minimizer; in particular this means by analyticity of u in A that ∇u|He

is colinear to He. Since this is true for every e, then u|A is a radial function (restricted to
a set A that may not be radial), and since it is harmonic it has an expression of the form

u|A(x) = aA − bA�n(|x |),
where �n is the fundamental solution of the Laplacian (taken with the sign convention
that it is increasing). Moreover, since u is 1 on ∂K ∩ ∂A, we know this set is an arc of
circle around 0, and we call its radius rA. While rA might depend on the component A,
notice that the optimality condition for the Alt-Caffarelli problem near ∂K ∩� is exactly
that for a certain constant λ > 0 that does not depend on A,

∀x ∈ ∂K ∩ ∂{0 < u < 1}, |∇u(x)| = λ,

where ∇u(x) refers in this case to the limit of ∇u(y) as y(∈ A) → x . With u(x) = 1
this exactly reduces to {

aA − bA�n(rA) = 1,

−bA�′
n(rA) = λ,

so (aA, bA) are fully determined by rA.
• We prove a reflexion lemma that will be useful for successive reflections.
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Lemma 19 Let u be a centered minimizer. Then for any vector e, u+
e,0 is also a centered

minimizer.

Proof We let v = u+
e,0. If {0 < v < 1} has zeromeasure then as a solution of the isoperimetric

problem we know v is the indicator of a ball so we are done; we suppose it is not the case.
We may consider A a connected component of {0 < v < 1} as previously and Z � ∂A∩ ∂K
a small spherical cap that is open with respect to ∂BrA . Consider another vector f that is
completed in an orthogonal basis f = f1, f2, . . . , fn of Rn . As previously we may reflect v
successively as

ṽ =
(

. . .
(
v±
f1,λ1

)±
f2,λ2

)
. . .

)±

fn ,λn

,

Where the signs are chosen such that v and ṽ coincide on a quadrant that has non-empty inter-
section with Z . By construction ṽ is centrally symmetric around the point λ = (λ1, . . . , λn),
so Z is a spherical cap both around the origin and λ; this implies that λ = 0 so in particular
λ1 = 0, which means that H f ,0 cuts {u+

e,0 = 1} in half; this is what we wanted to prove. ��
• Consider a centeredminimizer u (it exists due to the first step, since there exists a centrally

symmetric minimizer), such that |{0 < u < 1}| > 0. We construct another centered
minimizer v such that for some connected component A of {0 < v < 1}, ∂A∩ ∂{v = 1}
contains a centered sphere. We do this by iteration of the following lemma.

Lemma 20 Let u be a centered minimizer, let A be a connected component of {0 < u < 1}
and let λ ∈]1, 2[ and D∂Br

x,ρ � ∂A ∩ ∂K be a small spherical disk in the sphere of radius
r := rA. Then there exists another centered minimizer v obtained by a finite number of
reflexions on u, associated to the sets (K ′,�′) = ({v = 1}, {v > 0}), such that for some
connected component A′ of {0 < v < 1}, D∂Br

x,λρ ⊂ ∂K ′ ∩ ∂A′.

Proof We will denote D(x, ρ) the ball relative the the unit sphere. If ρ > π
2 r then one

reflexion along the hyperplane x⊥ is enough; we suppose that ρ ≤ π
2 r .

Let ε = 1 − λ
2 . For every y ∈ ∂D(x, (1 − ε)ρ), the reflexion by the hyperplane going

through y and tangent to ∂D(x, (1− ε)ρ) reflects a neighbourhood of [x, y] on a neighbour-
hood N (y) of [x ′, y] for some point x ′ in the continuation of the geodesic [xy) at distance
λρ from x . By compactness there is some finite set (yi )i∈I in ∂D(x, (1 − ε)ρ) such that
∪i∈I N (yi ) ⊃ D(x, λρ). By iterating the associated reflexions we obtain the result. ��
• There exists a centered minimizer u such that {u = 1} is a ball. Indeed, consider a

minimizer (K ,�) with a function u as previously, such that there is some r > 0 for
which ∂Br ⊂ ∂K . For every such r , the function ur = max(u, 1Br ) is also a minimizer
associated to (K∪Br ,�∪Br ) that has the sameenergy asu, thusu = 1on Br . In particular
this means that u is radially decreasing on the whole component of � that contains a
small neighbourhood of Br ; let us denote �1 this component and �2 = �\�1, as well
as ui = u1�i . Then u = u1 + u2 where u1, u2 have disjoint support and Ju1 ∪ Ju2 ⊂ Ju .
If u2 is not zero this means that u is a disconnected minimizer; let us prove that this is
not possible.

Indeed, let mi = |{ui = 1}| and vi (·) = ui

((
mi
ωn

)1/n ·
)
. Then |{vi = 1}| = ωn and

E�,
(ui ) =
(
mi

ωn

)1− 2
n
∫
Rn

|∇vi |2dx +
(
mi

ωn

)1− 1
n
∫
Jvi

�(vi )dH
n−1
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+mi

ωn

|{vi > 0}| >

mi

ωn
E�,
(vi ),

where the inequality is strict because E�(vi ) > 0 and mi < ωn (or else one of the vi is zero,
which we supposed is not the case). Now,

E�,
(u) = E�,
(u1) + E�,
(u2) >
m1

ωn
E�,
(v1) + m2

ωn
E�,
(v2) ≥ inf E�,
.

This contradicts the fact that u is a minimizer. Thus u2 = 0 and u = u1 with {u1 = 1} = Br ,
which turns out to be the ball of volume ωn , this determines r to be 1 and in turns means that
u is of the form

u(x) = ϕ(|x |)1�,

for some radial function ϕ that takes the value 1 on [0, r ] and some set A that contains B1,
and takes the value 1 − c(�n(|x |) − �n(1)) on � for some c > 0.

• Consider such a minimizer u associated with the sets (K ,�), such that {u = 1} is the
ball B1, {u > 0} contains a neighbourhood of B1 and u(x) is a radial function ϕ(|x |)
restricted to a non-necessarily radial set �. Then we prove that for some R > 0, ϕ1BR is
also a minimizer.

First replace � with its spherical cap rearrangement �s around the axis {te1, t > 0},
meaning that for every t > 0,�s∩∂Bt is a spherical cap centered in te1 with the sameH n−1-
measure as�∩∂Bt . Said differently this means thatH n−1(�∩∂Bt ) = H n−1(�s∩∂Bt ) for
all t > 0 with ∂�s = { f (e ·e1)e, e ∈ S

n−1} for some nondecreasing f : [−1, 1] → (r ,+∞)

that is continuous in 1 by openness of �s (it may also be checked afterward that in our case,
f is continuous at −1 by minimality although we will not need it). A property of spherical
cap rearrangement (see for instance [16, Prop. 3 and Rem. 4]) is that∫

∂∗�s
ϕ(|x |)dH n−1 ≤

∫
∂∗�

ϕ(|x |)dH n−1

and |�s | = |�|, ∫
�s |ϕ′(|x |)|2dx = ∫

�
|ϕ′(|x |)|2dx . As a consequence, ϕ(| · |)1�s is still a

minimizer. Write R := f (1), for any small ε > 0, there is a small enough ρ > 0 such that

f ([1 − ρ, 1]) ⊂ [R − ε, R].
We may iterate Lemma 20 again to obtain a minimizer (uε, Kε,�ε) such that uε is still

given by the same radial function ϕ on a non-necessarily radial set, and such that

Kε = Br , BR−ε ⊂ �ε ⊂ BR .

Since this may be done for any arbitrarily small ε, by lower semi-continuity as ε → 0 we
obtain that (ϕ(| · |)1BR , Br , BR) is a minimizer.

Notice we could have done the same for (B1, BF(−e1)); if F(−e1) < F(e1) it means we
are in a case in which argmin{R ≥ 1 �→ E�,
(B1, BR)} is not uniquely defined. ��
Corollary 21 If, additionally to the hypotheses of Theorem 2, � is such that [1,+∞[� R →
E�(B1, BR) is minimal at 1, then for any (K ,�)

E�(K ,�) ≥ E�(B1, B1).

Proof (B1, B1) is always the minimizer of E�,
 as 
 → 0, hence the result. ��
Remark 22 This covers the case β ≤ n − 2 for �(u) = βu2.
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5 Proof of Theorem 3

Part of the assertions of the Theorem 3, namely the existence of a solution to problem (4)
and its regularity, have already been proved in the preparatory Sect. 3 (see Proposition 8 and
Remark 17).

Proof of Theorem 3 In order to complete the Proof of Theorem 3, we give the following.

Lemma 23 Let (K ,�) a solution of (4). Then K has locally finite perimeter in� and ∂K ∩�

is analytic when n = 2.

Proof We refer to [5] where a closely related problem is treated. The same arguments apply
in our case. ��
Lemma 24 Let� be l.s.c. and nondecreasing. Let (K ,�) be a solution of (4) for M = Rnωn.
Then either |�| = M or E�(K ,�) = infr∈[1,R] E�(B1, Br ).

Proof Suppose there is a minimizer with measure strictly less than M . Roughly speaking,
in this case the measure constraint is not saturated so that the problem behaves under many
aspects an unconstrained one.

By compactness, there exists (K ,�) that is the minimizer with the lowest volume, asso-
ciated to a function u. Indeed, consider (Ki ,�i ) a sequence of such minimizers, associated
with functions (ui ), then reproducing the existence proof in Sect. 3 on the sequence (ui ), we
obtain a new minimizer with minimal volume, still denoted (K ,�).

If |�| = ωn then we are done, so we suppose that this is not the case.
Let H be the set of every hyperplane that cuts K in half. It is not quite identified with

RP
n−1 since theremay be several parallel hyperplanes that cut K in half if K is not connected.

It is, however, straightforward that H is a connected set for the natural topology given by
{(H , v) ∈ RP

n−1 × R
n s.t. v ∈ H⊥}. For every hyperplane H , we write

m(H) = sup
{∣∣H+ ∩ �

∣∣ , ∣∣H− ∩ �
∣∣}

and we let

H< =
{
H ∈ H : m(H) <

M

2

}
,

H= =
{
H ∈ H : m(H) = M

2

}
,

H> =
{
H ∈ H : m(H) >

M

2

}
.

Then H< and H> are open relatively to H by the continuity of m. The minimality of the
volume of � and the fact that |�| < M implies that H= is empty (otherwise we could
construct a minimizer with stricly lower volume by reflection around an element of H=).

Finally,H< is not empty, as may be seen by considering, for each θ ∈ R

πZ
, an hyperplane

orthogonal to cos(θ)e1 + sin(θ)e2 and using intermediate value theorem after making a full
turn. By connectedness, this directly implies thatH> = ∅ and soH< = H. Now, let H ∈ H,
then � may be reflected on both sides of H : since the measure of � is minimal among
minimizers, then ∣∣H− ∩ �

∣∣ = ∣∣H+ ∩ �
∣∣ .
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Thus, for every hyperplane that cuts K in half, � is also cut in half; this means that we
can use the same arguments than for the penalized problem in Theorem 2: by successive
reflections, we find a solution with minimal volume such that the free boundary of u is ∂B1.
By spherical rearrangement around {te1, t > 0} we obtain a new minimizer (K ,�). Now, if
� is not a ball, then

∣∣H+
e1 ∩ �

∣∣ >
∣∣H−

e1 ∩ �
∣∣, which is a contradiction. ��

We prove now the last assertion of Theorem 3. We begin with an a priori estimate that
is similar to Lemma 10, only that it is done with in mind the idea to find a lower bound
arbitrarily close to 1.

Proposition 25 Let � be l.s.c and nondecreasing. There exists a constant Cn > 0 such that,
if δ ∈]0, 1[ verifies

δ + Cn
�(1)√
�(δ)

(M − ωn)
1
2n < 1,

then for all u such that |{u ≥ 1}| ≥ ωn, |{u > 0}| ≤ M, there is some t > δ such that
E�(u1{u>t}) ≤ E�(u).

This lemma is applicable in particular when δ is close to 1 and M − ωn is small.

Proof This proof is very similar to Lemma 10, so some steps are only briefly described. We
actually show the stronger result; there is some t > s > δ such that

E�

(
u1{s<u<t}c

) ≤ E�(u).

Let ε = 1 − δ > 0, suppose E�(u1{s<u<t}c ) > E�(u) for every 1 − ε < s < t < 1. We
write

• �(s, t) = {s < u ≤ t}.
• γ (s, t) = ∫

Ju

(
1s<u+≤t + 1s<u−≤t

)
dH n−1.

• h(t) = H n−1({u = t}\Ju).
Let η := 1 − ε

2 , our hypothesis becomes that for every, t ∈]0, ε
2 [, E�(u1{η−t<u<η+t}c ) >

E�(u) so∫
�(η−t,η+t)

|∇u|2dx + �(1 − ε)γ (η − t, η + t) ≤ �(1) (h (η − t) + h (η + t)) . (16)

The proof is, as previously, based on a lower bound of
∫
�(η−t,η+t) |∇u|dx and an upper

bound of
∫
�(η−t,η+t) |∇u|2dx that are in contradiction when ε is too large.

• For all t ∈]0, 1
2ε[ we let:

f (t) =
∫ η+t

η−t
h =

∫
�(η−t,η+t)

|∇u|dx .

f is absolutely continuous and

f ′(t) = h (η − t) + h (η + t) .

Moreover,

f (t) ≤ |�(η − t, η + t) | 12
(∫

�(η−t,η+t)
|∇u|2dx

) 1
2
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≤ CnPer(� (η − t, η + t))
n

2(n−1) (�(1)(h (η − t) + h (η + t)))
1
2

by isoperimetric inequality

≤ Cn�(1)
1
2 (h (η − t) + γ (η − t, η + t) + h (η + t))

n
2(n−1) (h (η − t) + h (η + t))

1
2

≤ Cn

(
�(1)

�(1 − ε)

) n
2(n−1)

�(1)
1
2 f ′(t)

2n−1
2n−2 ,

so:

f ′(t) f (t)−
2n−2
2n−1 ≥ cn�(1)−

n−1
2n−1

(
�(1)

�(1 − ε)

)− n
2n−1

.

We integrate on [0, t]:
(∫

�(η−t,η+t)
|∇u|dx

) 1
2n−1 ≥ cn�(1)−

n−1
2n−1

(
�(1)

�(1 − ε)

)−n

t .

And so: ∫
�(η−t,η+t)

|∇u|dx ≥ cn�(1)−(n−1)t2n−1.

• We let:

g(t) =
∫

�(η−t,η+t)
|∇u|2dx, G(t) =

∫ t

0
g

We begin by finding a upper bound for G. We take t in [0, ε/2], then:

G(t) ≤
∫ t

0
�(1)(h(η − s) + h(η + s))ds

≤ cn�(1)|�(η − t, η + t) | 12 G ′(t)
1
2 .

Thus:

G ′(t)G(t)−2 ≥ cn�(1)−2|�(1 − ε, 1) |−1.

We integrate from t to 2t (up to supposing t < ε/4):

G(t)−1 ≥ cnt�(1)−2|�(1 − ε, 1) |−1.

Thus:

G(t) ≤ Cn�(1)2t−1|�(1 − ε, 1) |.
Since g is increasing, then up to supposing t < ε/8:

g(t) ≤ 1

t

∫ 2t

t
g ≤ G(2t)

t
≤ cn�(1)2t−2|�(1 − ε, 1) |.

Combining the previous inequalities, that are valid for t ∈ [0, ε/8], we get:

cn�(1)−(n−1)
(

�(1)

�(1 − ε)

)−n

t2n−1 ≤
∫

�(η−t,η+t)
|∇u|dx

≤ |�(η − t, η + t) | 12
(∫

�(η−t,η+t)
|∇u|2dx

) 1
2
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≤ Cn�(1)t−1|�(1 − ε, 1) |.
Taking t = ε/8, and with |�(1 − ε, 1)| ≤ M − ωn , we get:

ε ≤ Cn�(1)�(1 − ε)−
1
2 (M − ωn)

1
2n ,

for a constant Cn > 0 that only depends on n; this proves the result. ��
Proof of Theorem 3 (continuation). Let � be l.s.c. and nondecreasing. Suppose moreover
that it is of class C1 near 1 and

�′(1)2

�(1)
< 4(n − 1).

Then there is some M0 > ωn depending on n,� such that, for any M ∈ [ωn, M0] and for
any admissible u with |{u ≥ 1}| ≥ ωn , |{u > 0}| ≤ M ,

E�(u) ≥ E�(B1, B1) (= �(1)nωn) .

Denote for simplicity � = {u > 0}, K = {u = 1}, and let δ be defined as in the previous
result (it is always possible when M − ωn is small enough), and suppose that it is close
enough to 1 such that � in C1 on [δ, 1]. Using the previous lemma, we lose no generality in
supposing u|� ≥ δ, and |�| = M . Then∫

∂�

�(u)dH n−1 +
∫

�

�′(u)|∇u|dx

=
∫

∂�

�(u)dH n−1 +
∫ 1

δ

�′(t)Per({u > t};�)dt

=
∫

∂�

�(u)dH n−1 −
∫ 1

δ

�′(t)Per({u > t}; ∂�)dt

+
∫ 1

δ

�′(t)Per({u > t})dt

= �(δ)Per(�) +
∫ 1

δ

�′(t)Per({u > t})dt

≥ �(δ)

(
M

ωn

)1− 1
n

Per(B1) +
∫ 1

δ

�′(t)Per(B1)dt

= �(1)Per(B1) + �(δ)Per(B1)

((
M

ωn

) n−1
n − 1

)
.

Now,
∫

�

�′(u)|∇u|dx ≤
∫

�

‖�′‖∞,[δ,1]|∇u|dx ≤
∫

�

|∇u|2dx + ‖�′‖2∞,[δ,1]
4

(M − ωn),

Thus, ∫
�

|∇u|2dx +
∫

∂�

�(u)dH n−1 − �(1)Per(B1)

≥ �(δ)Per(B1)

((
M

ωn

) n−1
n − 1

)
− ‖�′‖2∞,[δ,1]

4
(M − ωn).
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So we obtain the result as soon as

‖�′‖2∞,[δ,1]
�(δ)

≤ 4Per(B1)

(
M
ωn

) n−1
n − 1

M − ωn
.

As M → ωn , we may take δ → 1, and this gives the result. ��
Remark 26 Conversely, suppose that

�′(1)2

�(1)
> 4(n − 1),

then for every R > 1 close enough to 1, E�(B1, BR) < E�(B1, B1). Indeed, let ε > 0 and

uε(x) =
{
1 (B1),

1 − |x |−r
2 �′(1) (B1+ε\B1).

Then

E�(B1, B1+ε) ≤ E�(uε) = nωn(1 + ε)n−1�

(
1 − 1

2
�′(1)ε

)
+ ωn

(
(1 + ε)n − rn)

) �′(1)2

4

= E�(B1, B1) +
(

(n − 1)�(1) − 1

4
�′(1)2

)
εPer(B1) + oε→0 (ε) .

The first-order term is negative and this proves the converse for a small enough ε.
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