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Abstract

For a finite set A C R”, consider a function u € BVIZOC(R”) such that Vu € A almost
everywhere. If A is convex independent, then it follows that u is piecewise affine away from
a closed, countably H"~!-rectifiable set. If A is affinely independent, then u is piecewise

affine away from a closed H"~!'-null set.

Mathematics Subject Classification 49Q20 - 46E35

1 Introduction

Forn € N, consider a finite set A € R”. We study continuous functions u: R” — R such that
the weak gradient Vu satisfies Vu € BV (R"; R") and Vu(x) € A foralmostevery x € R”.
This means that whenever 2 C R” is open and bounded, the sets {x € Q: Vu(x) = a}, for
a € A, form a Caccioppoli partition of €2 as discussed, e.g., by Ambrosio et al. [1, Sect. 4.4].
The theory of Caccioppoli partitions therefore applies and gives some information on the
structure of Vu and of u. The fact that we are dealing with a gradient, however, gives rise
to a better theory, especially under additional assumptions on the geometry of A. We work
with the following notions in this paper.

Definition 1 A set A C R" is called convex independent if any a € A does not belong to the
convex hull of A \ {a}. It is called affinely independent if any a € A does not belong to the
affine span of A \ {a}.

If either of these conditions is satisfied, then we can prove statements on the regularity
of u that finite Caccioppoli partitions do not share in general. In fact, we will see that u is
locally piecewise affine away from a closed, countably H"~!-rectifiable set (if A is convex
independent) or away from a closed 4" ~!-null set (if A is affinely independent).

In order to make this more precise, we introduce some notation. Given r > 0 and x € R",
we write B,(x) for the open ball of radius r centred at x. Given a € R”, the function
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Aq: R" — Ris defined by A,(x) = a - x for x € R". Given two functions v, w: R" — R,
we write v A w and v V w, respectively, for the functions with (v A w)(x) = min{v(x), w(x)}
and (v V w)(x) = max{v(x), w(x)} for x € R".

Definition 2 Given a function u: R" — R, the regular set of u, denoted by R(u), consists
of all x € R” such that there exista, b € R",c € R,andr > O withu(- —x) = Ay Adp +¢
in B,(0) or u(- — x) = Ay V Ap + c in B,(0). The singular set of u is its complement
S(u) =R"\ R(u).

The condition for R(u) allows the possibility that a = b, in which case u is affine near x.
If a # b, then it is still piecewise affine near x. Obviously R (u) is an open set and S(u) is
closed.

It would be reasonable to include functions consisting of more than two affine pieces in
the definition of R(u), for example (A4, A Agy) V Agy + ¢ foraj,az,a3 € R* and c € R.
For the results of this paper, however, this would make no difference, therefore we choose
the simpler definition.

For s > 0, we denote the s-dimensional Hausdorff measure in R” by H*. The notation
BV12OC (R™) is used for the space of functions with weak gradient in BVio. (R"”; R"™). Thus the
hypotheses of the following theorems are identical to the assumptions at the beginning of the
introduction.

Theorem 3 Suppose that A is a finite, affinely independent set. Let u € BV%OC(]R”) with
Vu(x) € A for almost every x € R". Then H"~1(S(u)) = 0.

Theorem 4 Suppose that A is a finite, convex independent set. Let u € BVIZOC(]R") with
Vu(x) € A for almost every x € R™. Then S(u) is countably H"~'-rectifiable.

For n = 2, Theorem 3 was proved in a previous paper [10]. For higher dimensions, the
result is new. Theorem 4 is new even for n = 2. For n = 1, both statements are easy to prove.

The results are optimal in terms of the Hausdorff measures involved. Furthermore, the
assumption of convex/affine independence is necessary. Indeed, there are examples of finite
sets A C R? and functions u € BV2 (R?) with Vu(x) € A almost everywhere such that

loc
o H2(S(u)) > 0; or
e H'(S(u)) > 0and A is convex independent; or
e H*(S(u)) = oo for any s < 1 and A is affinely independent.

All of these can be found in the author’s previous paper [10].
Our results are easily adapted to functions defined on an open set 2 € R” with the
corresponding properties. For the sake of simplicity, we do not discuss this case in detail.
Apart from being of obvious geometric interest, functions as described above appear in
problems from materials science. They naturally arise as limits in I'-convergence theories in
the spirit of Modica and Mortola [8, 9] for quantities such as

/ (6|V2u|2 + W(V”)) dx, (1
Q €

where 2 € R” is an open set and W: R" — [0, 00) is a function with A = w=L{op.
Functionals of this sort appear in certain models for the surface energy of nanocrystals [7,
13, 14]. For © C R2, functions u € BVZ(Q2) with Vu € {(£1, 0), (0, £1)} have also been
used by Cicalese et al. [3] for a different sort of I"-limit arising from a model for frustrated
spin systems.
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Functionals similar to (1), but for maps u: Q2 — R”, also appear in certain models for
phase transitions in elastic materials (see, e.g., the seminal paper of Ball and James [2] or the
introduction into the theory by Miiller [11]). In this context, due to the frame indifference
of the underlying models, the set W' ({0}) is typically not finite. Sometimes, however, the
frame indifference is disregarded (as in the paper by Conti et al. [4]), or the theory gives a
limit with Vu € BV(Q2; A) for a finite set A € R"*" anyway (such as in recent results of
Davoli and Friedrich [5, 6]). In such a case, Theorem 3 and Theorem 4 are potentially useful,
as they apply to the components (or other one-dimensional projections) of u.

In the proof of Theorem 3, we use some of the tools from the author’s previous paper [10].
In particular, we will analyse the intersections of the graph of u with certain hyperplanes in
R+ We will see that these intersections correspond to the graphs of functions with (n — 1)-
dimensional domains and with properties similar to «. The key ideas from the previous paper,
however, are specific to R?, so we eventually use different arguments. In this paper, we use
the theory of BVjo.(R"; R™) to a much greater extent. The central argument will consider
approximate jump points of Vu. Near such a point, we know that u is close to a piecewise
affine function in a measure theoretic sense by definition. We then use an induction argument
(with induction over ) to show that u is in fact piecewise affine near "~ !-almost every
approximate jump point.

We also need to analyse points where u has an approximate limit, and they are of interest
for the proofs of both Theorems 3 and 4. This part of the analysis is significantly simpler and
relies on the fact that for any a € A, the function v(x) = u(x) — a - x has some monotonicity
properties.

In the rest of the paper, we study a fixed function u € BVIZOC (R™) with Vu(x) € A for
almost every x € R”. Then u is automatically Lipschitz continuous. Since we are interested
only in the local properties of u, we may assume that it is also bounded. (Otherwise we can
modify it outside of a bounded set with the construction described in [10, Sect. 6].) We
define the function U : R" — R"*! by

Ux) = (uz;)>, x € R".

We use the notation graph(u) = U (R") for the graph of u.

As we sometimes work with points in R"*! (especially points on graph(u)) and their
projections onto R” simultaneously, we use the following notation. A generic point in R*+!
is denoted by x = (x1, ..., x,41)", and then we write x = (x1, ..., x,)7. Thusx = ().
We think of elements of R” and of R”*! as column vectors, and this is sometimes important,
as we use them as columns in certain matrices.

As our function satisfies in particular the condition Vu € BV (R"; R"), the theory
of this space will of course be helpful. In this context, we mostly follow the notation and
terminology of Ambrosio et al. [1]. We also use several of the results found in this book.

2 Approximate faces and edges of the graph

In this section, we decompose R” into three sets F, £, and V. These are defined such that we
expect regularity in F under the assumptions of either of the main theorems, and also in £
under the assumptions of Theorem 3. The third set, A/, will be an H"~_null set. The sets F
and & are characterised, up to 1"~ !-null sets, by the condition that Vi has an approximate
limit or an approximate jump, respectively. Since much of our analysis examines graph(u),
it is also convenient to think of F as the set of points where the graph behaves approximately
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like the (n-dimensional) faces of a polyhedral surface, whereas £ corresponds to approximate
((n — 1)-dimensional) edges.

First, however, we define three related sets 7', £, and N. The sets F, £, and N will be
derived from these later.

Consider the set 7/ C R", comprising all points x € R”" such that there exists a € R”
satisfying

lim][ |Vu —aldH" = 0.

™0/ B, (x)

In other words, this is the set of all points where Vu has an approximate limit a. It is then

clear thata € A. The complement R” \ F” is called the approximate discontinuity set of Vu.
Furthermore, let £ be the set of all x € R” such that there exist a_, ay € R”" with

a_ # a, and there exists n € "~ such that

lim |Vu —ay|dH" =0 )
™0 J{zeB, (x): (F—x)n>0}

and
lim |Vu —a_|dH" = 0. 3)
"™NO J(5eB, (x): (F—x)n<0}

This is the approximate jump set of Vu. Again, the points a_, a4 belong to A.
According to aresult by Federer and Vol’pert (which can be found in the book by Ambrosio
etal. [1, Theorem 3.78]), there exists an 1" '-null set A7 C R” such that

R'=F U&UN.

Furthermore, the set £’ is countably H"_rectifiable.
Given x € R" and p > 0, we define the function u, ,: R" — R with

1
Uy, p(X) = — (u(x + px) —u(x))
0

for X € R". For x fixed, the family of functions (i, ,),~0 is clearly bounded in C%1(K) for
any compact set K C R". Therefore, the theorem of Arzela—Ascoli implies that there exists
a sequence px \( O such that u, ,, converges locally uniformly. If we have in fact a limit for
o \{ 0, then we write

Teu = lim uy
P
PNO

and call this limit the tangent function of u at x.

If x € 7 and a € A is the approximate limit of Vu at x, then for any sequence px \ 0,
the limit of u, , can only be A,. Hence in this case, there exists a tangent function Tyu,
which is exactly this function. Similarly, if x € &', then T, u exists and

. ra (%) ifX-n <0,
ux) =
* A, (B) ifX -7 >0,

Because Ty u is a continuous function, this means that
n== )

Then we conclude that Tyu = A,_ A Ag, or Tyu = Ay V A4, , depending on the sign.

ays
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If we consider the functionsa_, a;: & — Aandn: & — $"—1 such that (2) and (3) are
satisfied on &', then the previously used result [1, Theorem 3.78] also implies that

DVul & =(ay —a_)@nH" L€ 5)
Let y = min {|la — b|: a, b € A}. Then for any Borel set 2 C R”, we conclude that
IDVu|(Q) = yH"" (€' N Q).
Hence & has locally finite H"~!-measure.
Now define

F= {x e F': lim p' " |DVu|(B,(x)) = 0} .
PN\O

Then standard results [1, Theorem 2.56 and Lemma 3.76] imply that #"~!(F' \ F) = 0.

Recall the map U : R" — R**! defined in the introduction. Set 7* = U(F) and &7 =
U(&). Then £ is a countably H"~!rectifiable subset of R"*!. Hence at H"~!'-almost
every x € ET, the measure H" ' &' has a tangent measure [1, Theorem 2.83] of the
form H" 'L T &T, where T E' is an (n — 1)-dimensional linear subspace of R"*! (the
approximate tangent space of £ at x). Let £* be the set of all x € £ where this is the case.
Furthermore, let & = U~1(£*). Then &’ \ £isan H"~-null set.

Thus if we define N = R \ (FUE), then A is an H"~!-null set and we have the disjoint
decomposition

R'=FUEUWN.
For later use, we also define N* = U(N).

3 Proof of Theorem 4

In this section we prove our second main result, Theorem 4. The proof is based on the
following proposition, which will also be useful for the Proof of Theorem 3 later on.

Proposition 5 Suppose that A C R" is finite and convex independent. Let u € BVIZOC (R™) be
a function with Vu(x) € A for almost all x € R". Then there existr > 0 and € > 0 with the
following property. Suppose that there exists a € A such that

H'({x € B1(0): Vu(x) #a}) <€ (6)
and
|IDVu|(B1(0)) <e.
Then Vu(x) = a for almost every x € B, (0).
Proof Because A is convex independent, there exists w € §”~! such that

a-w< min b-ow.
beA\{a)

(For example, we may choose a point by in the convex hull of A \ {a} that minimises the
distance to a. Then w = (bg — a)/|bo — a| has this property.) As A is finite, there also exists
8 € (0, 1) such that the inequality a - § < minpea\(q)(b - §) holds even for £ in the cone

C={tecR": £ 0= 5l}.
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Consider the function v: R” — R with v(x) = u(x) — a - x for x € R". Then for any
EeC,

E-Vox)=&-Vulx)—a-£>0

almost everywhere. Thus v is monotone along lines parallel to &. (This is true for every
such line by the continuity of v.) Furthermore, for almost every x € R”, we find that either
Vu(x) =aorw-Vu(x) > 0.

Suppose that Vi = a does not hold almost everywhere in B, (0). Then there exist x_, x4 €
B, (0) with v(x_) < v(xy). Define

C_=(x_—C)NB0) and C; = (x4 +C)N B;(0).
Then for any x” € C_ and x” € C, we conclude that
v(x') < v(xo) < vxg) < vx”).

We now foliate a part of By (0) by line segments parallel to w. For R € (0, 1], let Zg =
{x € BR(0): w - x = 0}. For every z € Zp, consider the line segment

1 1
L, = tw: — - <t=<—-¢.
z {Z+0) 5= _2}

Provided that r is chosen sufficiently small, we can find R € (0, 1] such that
w w
{z—z:zeZR] CC_ and {Z-}-E:ZEZR} C Cy.
Hence for any z € Zg,

v(z—l—%)—v(z—%)zv(x+)—v(x_)>0.

In particular, the restriction of v to the line segment L, is not constant. For z € Zg, define
A, ={x € L.: Vu(x) = a}. Then it follows that H'(A,) < 1 for H"~'-almost all z € Z.
On the other hand, because of (6), we also know that

H' " ([z € Zp: H' (M) =0)) < e
Thus if we define Z' = {z € Zg: 0 < H'(A;) < 1}, then
H'N(Z) =’ (Zg) — e

Set ¢ = minpey |a — b|. For H"~!-almost any z € Z/, the function ¢ +— Vu(z + tw)
belongs to BV((—%, %); R”) and its total variation is at least ¢. Hence [1, Theorem 3.103]
implies that

IDVu|(B1(0)) = cH" 1 (Z) = c(H"~"(Zg) — ¢).

If € is sufficiently small, then this means in particular that | DVu|(B1(0)) > €. Thus we have
proved the contrapositive of Proposition 5. O

Proof of Theorem 4 We show that 7 C R(u). To this end, fix x € F and consider the rescaled
functions uy , for p > 0. Since x € F, we know that Vu, , — a in LY(B1(0)) as p \( 0
for some a € A. Furthermore, since

IDVuy ,|(B1(0)) = p' " |DVu|(B,(x)) — 0
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as p \{ 0, the function u,_, satisfies the inequalities of Proposition 5 for p sufficiently small.
Hence Vu, ,(X) = a for almost every X € B, (0), which implies that

u(x) =ux)+a- (X —x)

forall x € B,,(x). Hence x € R(u).
We conclude that S(u) € EUN. As seenin Sect. 2, the set € is countably H" ~ L_rectifiable
and A is an H"~!-null set. Thus Theorem 4 follows. ]

4 Specialising to a regular n-simplex

The rest of the paper is devoted to the Proof of Theorem 3. This proof relies on the same general
strategy as the Proof of Theorem 4 to some extent: we use some monotonicity properties of
u again, together with the theory of BV-functions, to show that if u is close to A4, A Ag,
(for two points aj, ay € A) in a cube centred at 0, and if | DVu|(Q) is not much larger than
the corresponding quantity for A4, A A4,, then u actually coincides with A4, A A4, up to a
translation and addition of a constant in a smaller set. (The same applies to A4, V A4,.) The
details, however, are much more involved than in the Proof of Theorem 4.

Instead of considering any affinely independent set A, it is convenient in this analysis to
assume that ay, ..., a, € R" are the corners of a regular n-simplex of side length </2n + 2

centred at 0, and that A = {ay, . .., a,}. This means in particular that
n
> ai=0. (7
i=0
We further assume that the matrix with columns ag — ay, ..., ap — a, has a positive deter-

minant. Theorem 3 can then be reduced to this situation by composing u with an affine
transformation. The details are given on page 26 below.

As it is sometimes convenient to permute ag, . .., a, cyclically, we regard 0, ..., n as
members of Z, 11 = Z/(n + 1)Z in this context. Thus @; ,+1 = ;.

The condition that our simplex has side length «/2n + 2 means that |a;| = /i for every
i € Zyy1. Indeed, by the calculations of Parks and Wills [12], the dihedral angle of the

regular n-simplex is arccos % As each qg; is orthogonal to one of the faces, this means that

|2 _ 2n42
~ n

aj-aj = —%Iaillajl fori # j, and therefore 2n +2 = |a; —a;
we conclude that

|aj|la;|. From this

lail = v/n

fori € Z,41 and

a; - a j= —1
fori # j.
In the following arguments, we mostly study « in terms of graph(x). With A chosen as
above, we have a positively oriented, orthonormal basis (vy, ..., v,41) of Rr+1 (defined

shortly) consisting of vectors normal to the expected faces of graph(u). (This is the reason
why we choose this specific set A.) To facilitate our analysis, we will often represent graph (1)
with respect to this basis, or equivalently, apply the corresponding linear transformation in
SO(n + 1).
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The vectors v; are defined as follows. For i € Z, 1, let

-t (1)
' n+1 1 ’

Then
2
i 1
2= Ly

n—+1

whereas fori # j,
vi v = 4-aj+1 —0.

n+1

Hence (v1, ..., v,41) is indeed an orthonormal basis of R"*!, Furthermore,
—ap - —apy1\ _ ap—ai ---ap — ay —ap
det(l U >_d6t< 0 ... 0 1)

=det (ap —ay -+ ap — ay).
(In the first step, we have used the fact that a,, 1| = ao and subtracted the last column from
each of the other columns of the matrix.) Hence the above assumption guarantees that the
basis (v, ..., v,41) gives the standard orientation of R+,
We now use the notation A; = A, recalling that this is the linear function with A; (x) =
a; -x forx e R".Fori € Z,, we set

Fi={x€F: Teu=A}.

Thus we have the disjoint decomposition

Furthermore, we define 7 = U (F;).

Of course U: R" — graph(u) is a bi-Lipschitz map. Thus in order to understand F, &,
or F;, it suffices to study F*, £*, or ]-'l* and how U~ transforms them. In particular, the
following is true.

Lemma 6 For any Borel set Q C R",

n+1
2

HHE* N(Q xR) = HNENQ) = %|DVu|(Q).
Proof We use the area formula [1, Theorem 2.91]. Hence we need to calculate the Jacobian
of U restricted to the approximate tangent spaces of £.

More precisely, since £ is countably "~ !-rectifiable, there exists an approximate tangent
space T,& at H"~'-almost every x € £. Because U is Lipschitz continuous, the tangential
derivative d° U (x) (i.e., the derivative of the restriction of U to T, €) exists at H"~!-almost
every x € £ [1, Theorem 2.90]. We write L* for the adjoint of a linear operator L. Then

JeU(x) = \/det((ng(x))* 0d®U(x))

is the Jacobian of U at x with respect to 7, £. The area formula implies that

H’H(U(emsz)):/ JeU(x)dH" L.
ENQ
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Thus in order to prove the first identity, it suffices to show that

n—+1

JeU(x) = 2

for H"~!-almost every x € £.
To this end, consider x € £. Because of (4), we know that 7,& = (a; — a j)l for some
i,] € Zyyy withi # j at H"L_almost every such point. For & € (a; — a.,-)J-, we know that

1
E(u(x +p8) —u(x)) = ux p(§) — Teu(§)

as p N\ 0. The convergence is in fact uniform on compact subsets of (a; — a j)J-. Moreover,
since Txu = AjAAjorTxu = A;VAj,itsrestriction to (a; —aj)L islinear with T, u (&) = a; -£.
Hence d€u(x) exists, and so does d€ U (x). We calculate

d5U(x)“.§ = (aig- 5) .

For simplicity, we assume that i = n — 1 and j = n. The space (a; — a_/)J- is spanned
by the vectors ag, . . ., a,—2. Suppose that we choose an orthonormal basis (eg, .. ., €,—2) of
T.E. Let L: T,E — Ty & denote the linear operator that maps ¢; to a; fori =0, ...,n — 2.
Then d®U (x) o L is represented by the matrix

Ml . aop . an—» _ ap - ap—2
ap - dp—1 * - dp-2 - Ap—1 1. =1

with respect to the above basis. Hence

det(MT M)
JeU(x) = ————.
det(L*o L)
We write I; for the identity k x k-matrix. Then
ap-ap+1 - ap-ap_o+1
MIM = ; ; =+ Dl
ap—2-ap+1---a,2-a,2+1
and det(MI M) = (n + 1)" 1.
As L maps an (n — 1)-cube of side length 1 to the parallelepiped spanned by ao, . . ., a,—2,

we know that \/det(L* o L) is the (n — 1)-volume of the latter. Thus if M, isthe n x (n — 1)-
matrix with columns a, ..., a,_», then

det(L* o L) = det(M] My).
We further compute
ap-ap --- 4ap-dp-2 {
MIM, = L : ="

ap—2-4dg -+ dp-2 - dp-2
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In order to calculate the determinant, we first subtract the first row of this matrix from each
of the other rows. We obtain

n S, |
—-n+bHn+1 0 --- O

det(MI Mp) =det | —(n+1) 0 n+1

: : .0
—n+1 0 - 0n+1
n o—1 oo =1
-1 1 0O --- 0
=m+1D"2det| -1 0 1
Co 0
-1 0 --- 0 1

In the last matrix, we now add to the first row the sum of all the other rows. Thus

2 0----- 0

110 -0
det(MI M) = (n +1)""2det | =10 1 =2+

0

—10--- 01

Hence

U det(MT M) n+1
X) = = .
£ deeMIMy) V2

In order to prove the second identity, we recall that |a; —a ;| = /2n + 2 fori # j. Hence
IDVu|() = /20 + 2H" 1 (€N Q) = 2H"~1(£* N (Q x R)) according to (5). O

5 Slicing the graph

We still assume that A consists of the corners of the regular n-simplex from Sect. 4 and we
assume that u € BVlzOC (R™) is bounded and satisfies Vu(x) € A for almost every x € R". In
this section, we analyse the graph of u. In particular, we examine intersections of graph(u)
with hyperplanes perpendicular to one of the vectors v;. We will see that almost all such
intersections can be represented as the graphs of functions in BVIZOC( P), where

P={yeR":y+ 4y, =0},

and with gradient taking one of n different values almost everywhere. That is, we have a
function with properties similar to u, but with an (n — 1)-dimensional domain. This obser-
vation will eventually make it possible to prove Theorem 3 with the help of an induction
argument.
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We use some tools from the author’s previous paper [10] in this section. Given i € Z, 41,
let ®; : R"*! — R"*! be the linear map with
Vigl - X
Di(x) = : ,
Vign+l - X

so that ®; (v;4) is the k-th standard basis vector in R"*! Fort € R, let

i) = {y eR": <f) e q>,~(graph(u))} .

This corresponds to the intersection of graph(u) with a hyperplane orthogonal to v; after
rotation by ®;, or in other words, a slice of graph(u).
We further define the functions

t+y1+-~-+yn}
vn+1

&-(y) = Sup{t € R: u(tvi + yivig1 + -+ YuVign) >

and

_ : fH Y+

: =infi{t e R: u(tv; + yyvie1 +---+ yvi < —"——"— 1.
g { (tvi + y1vig1 YnVign) m }
Note that for a fixed y € R”, the set

I+yp+---+y
=l € Riu(tvi + yivig1 + - + YaVign) = —”}

vn+1

corresponds to the intersection of graph(u) with a line parallel to v;, so the functions 8; and
g; tell us something about the geometry of graph(u) as well.

The following properties of g. and g; have been proved elsewhere for 7 = 2 [10, Lemma
16]. The proof carries over to higher dimensions as well. We therefore do not repeat it here.

Lemma7 Foranyi € Zyy1, the following statements hold true.

(1) The function 8; is lower semicontinuous and g; is upper semicontinuous.
(ii) The identity 8, = g; holds almost everywhere in R".
(iii) For any y € R", the inequality 8; (y) < 8;(y) holds true and

v} x[g,(y), 8 ()] S @i(graph(u)).

(iv) Lett e Randy € R". Then y € T';(¢) if, and only if, 8, () =t=g .
(v) Forally € R" and all ¢ € (0, 00)", the inequality g;(y + ¢) < 8, (y) is satisfied; and if
equality holds, then

8 =g +s0) =80 +s0) =21 +0)

foralls € (0, 1).
(vi) Forall y € R" and all ¢ € [0, 00)", the inequalities g,(y) = g,(y +¢) and g;(y) =
g, (y + ¢) are satisfied.

Now consider the hyperplane P € R” given by

P={yeR”:y1+"'+yn=0}
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and its unit normal vector

. 1
o=—1]:]eR".
N
1
Letey, ..., e, be the standard basis vectors of R” and define
by =0 — ﬁei
fori =1,...,n. Then
bil> =n—1
and
bi - bj =—1
fori # j. Hence by, ..., b, are the corners of a regular (n — 1)-simplex in P centred at 0
with side length +/2n. (Indeed the construction is similar to the standard (n — 1)-simplex.)
Thus they are the (n — 1)-dimensional counterparts to ag, . . ., @y.

Given a function f: P xR — R, we write \Y% f for its gradient with respect to the variable
p € P. We want to show the following.

Proposition 8 Let i € Z,11. Then there exists a function fi: P x R — R such that for
almost every t € R,

e The function p +— fi(p,t) belongs to BVIZOC(P) and 6]‘,'([), t) € {b1,...,by} for
H"~-almost every p € P; and
o Its graph is T';(t), thatis, T;(t) = {p + fi(p,t)o: p € P}.

Before we can prove this result, we need a few lemmas.
Lemma9 Leti € Zy+1. Suppose thatt € Rand y_, yy € I';(t). Then
(y= +10,00)") N (y4 — [0, 00)") S T3 ().
Proof We first prove that
(y= + (0, 00)") N (y4 = (0,00)") S T ().
Let
y € (y= +(0,00)") N (y4 — (0, 00)").

Define{_ = y—y_and ¢y = y; —y.Then {_, ¢4 € (0, 00)". According to Lemma 7, this
means that

1280y )=g(-+¢)=80 =g =80+ =) =gy =1
Hence y € T';(¢). By the semicontinuity of 8, and g;, we also conclude that
8,y =1=g(

forally € (y, + [0, oo)”) N (y+ — [0, oo)"). O
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Lemma 10 Leti € Z,41. Lett € R and p € P. Suppose that
{seR: p+soeli@)}=I[s—,s¢]
Then
Li)N (p+s—0 —(0,00)") =0
and
Ti() N (p+ 540 +(0,00)") =9

Proof Lety € p+s_o — (0, 00)". Choose s < s_ suchthaty € p+so — (0, 0c0)" as well.
Then Lemma 7 implies that

8 =gi(p+so)=g (p+so)=gi(p+s_o)=t. (®)

Moreover, since p + so ¢ I';(t), we know that 8, (p + so) # t. Therefore, we do not have
equality everywhere in (8). Hence y ¢ I';(¢). The proof of the second statement is similar. O

Lemma 11 There exists a constant C such that the following holds true. Suppose that
v: R" — Rissmooth and bounded with aj - Vv > —1 forall j € Z,11 and supg. [v] < M.
Leti € Zpy1. Let ¢: P x R — R be the unique function such that

(p +¢(p.1)o

. ) € ®;(graph(v))

for p € Pandt € R. Then

Vo (p,n| < /n )
forall p € P andt € R. Moreover, for any R > 0,

R
/ / V2p|dH™! dzgc/ |V2v] dx.
—R J PNBg(0) Be(m+r)(0)

Since the proof of this statement is lengthy, we postpone it to the next section. We now
prove Proposition 8.

Proof of Proposition 8 Lett € R and p € P. Since u is bounded, the line

n

{tvi + Z(pk + SoK)Viqfi: S € R}
k=1

(which is not horizontal) must intersect graph(u). Hence there exists s € R with p 4 so €

().

Ifthereare s_, sy € Rwiths_ < sy suchthat p+s_o € I';(t) and p+si0 € I[';(¢), then
Lemma 9 implies that T'; (f) has non-empty interior, denoted by I'; (7). Because of Lemma
7.(v), we know that 8; (y) =g;(y) =tforevery y I (t). Hence for t1 # 1, it follows that
(1)) N (1) = 0. Therefore, there can only be countably many ¢ € R such that (1) # 0.
For all other values, we see that I'; (¢) is a graph of a function over P. We denote this function
by fi(-.1).

We extend f; arbitrarily to the remaining values of 7.

If ¢ is such that le',- () = ¢, then Lemma 10 shows that for every y € I';(¢), the set I'; (¢)
is between the cones y + (0, 0c0)" and y — (0, 00)". Clearly there exists L > 0 such that

{p+so:peP,seRwith|s| > L|p|} C (0, 00)" U (—(0, c0)").
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It follows that f; (-, t) is Lipschitz continuous with Lipschitz constant at most L.

Next we employ an approximation argument in conjunction with Lemma 11. Using a
standard mollifier, we can find a sequence of smooth, uniformly bounded functions v : R” —
R such that vy — u locally uniformly as k — oo and [1, Proposition 3.7]

[DVu|(Q) = lim / V20| dx
k—o0 Jq

whenever 2 C R” is an open, bounded set with |[DVu[(9€2) = 0. It is then easy to modify
vk (e.g., replacing it with (1 — 1/k)vy) such that in addition, it satisfies a; - Vg > —1in R"
for every j € Z,11. Hence Lemma 11 applies to vy.

From the above convergence, it follows that for any sequence of points x; € graph(vy), if
x; — x as k — oo, then x € graph(u). If we define ¢ as in Lemma 11, then for any fixed
t € R, the functions ¢ (-, ¢) are uniformly bounded in C%!(P N Bg(0)) for any R > 0.
Hence there is a subsequence that converges locally uniformly. If 7 is such that I'; (¢) is the
graph of f;(-, 1), then it is clear that the limit of any such subsequence must coincide with
fi (-, t). Hence in this case, we have the locally uniform convergence ¢ (-, 1) — f;i(-,t) as
k — oo. The second inequality in Lemma 11 implies that

R
limsup/ / V2 ldH" ' dt < oo
k—oo J—R JPNBR(0)

for any R > 0. By Fatou’s lemma,

R
/ liminf/ V2 ldH" " dt < oo.
—R k=00 JpPnBR©0)

Therefore, for almost every ¢ € (—R, R), there exists a subsequence (¢, (-, t))¢eN converg-
ing to f;(-, t) locally uniformly and such that

lim sup / V2, |[dH" ™! < o0.
PNBR(0)

{—o00
We conclude that fi(-,t) € BV2(P N Bg(0)) for almost all + € (=R, R). Applying this

argument for a sequence Ry — 0o, we then see that f; (-, 1) € BV%OC(P) for almostallr € R.

We finally need to show that V f; (p, t) € {by, ..., b,} for almost every r € R and H"!-
almost every p € P.
Consider the function w; : R” — R with

ulx) —a; - x

, x eR"
vn+1

w;(x) =

Then for every ¢t € R,

T (1) x {t} = ®;({x € graph(u): x - v; =1})

= @ ({(u?x)) :x € R” with w; (x) = z}) _

Note further that ; coincides up to an " -null set with {x € R": Vw; (x) = 0}.Let Z C R”"
denote the set of all points where u is not differentiable. By Rademacher’s theorem, this is
an H"-null set. Hence the coarea formula gives

0= / [Vw;|dx = /oo H"‘l(wjl({t}) N(Fi U 2))dr.
FiUuz —00

@ Springer



Regularity of gradient vector fields. .. Page 150f26 183

In particular, for almost all # € R,
H' (w ({th N (F U 2)) = 0.

As the map U (defined in the introduction) is Lipschitz continuous, we conclude that
U (wi_l({t}) N(F U Z)) is an H"~'-null set, too. Therefore, for H" ! -almost ally € T (2),
the unique point x € R" with

(U (x)) = (f)

belongs to R" \ Z and satisfies Vu(x) € A \ {a;}.
To put it differently, for almost every ¢ € R, the following holds true: for " ~!-almost
every p € P the derivative of u exists at the point

Op, 1) = tvi + Y _(p + fi(p, DoVitk
k=1

and belongs to A \ {a;}. Furthermore, we know that f;(-, t) is differentiable at 4" ~!-almost
every p by Rademacher’s theorem. At a point p € P where both statements hold true, we
can differentiate the equation

t+nfi(p, 1)
vn+1 '

(The right-hand side is the (n + 1)-st component of

u(®(p, 1) =

n
i+ Y (pr+ fi(p, Dok = ;!
k=1

(p + fi(p, r)d)

t

because p € P and by the definition of ¢.) For any @ € P, we thus obtain

- (Z @itk + @ -V fi(p, 1) Zaka,-+k> Vu(@(p, 1) = nw -V fi(p, ).

k=1 k=1

If Vu(©(p, t)) = a; for some j # i, then this simplifies to

—n+ Doji - %w -V filp, 1) = Vnw -V fi(p, ).
Hence
- Vfilp.t)=—Vnwj i =bj .
We therefore conclude that V f; (p, 1) = b j—i at such a point. O

6 Proof of Lemma 11

In this section we give the postponed Proof of Lemma 11. To this end, we first need another
lemma.
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Lemma 12 Let A denote the (n x n)-matrix with columns

Z vikai, k=1,...,n.

i€t
Then
Y01+ Yon 1
det(A) = (—=1)"(n+ 1)'7 det | =
Yal *+* Van 1

Proof Let M denote the ((n + 1) x (n + 1))-matrix with columns

Z vikvi, k=1,...,n, and Z v;.

i€Zn+1 1€Zn+1
Then, since (v, ..., v,41) is a positively oriented orthonormal basis of R"t! we conclude
that
Yor -+ Yon 1
det(M) = det Do
Yl = Van 1
On the other hand,
0
M = ; —A ,
vn+1 0
mp - myn+1
wheremy = ; Znsy Vik- Here we use the properties of ay, . . ., a,, including Eq. (7). Hence

det(M) = (—1)"(n + 1) 2" det(A).
The claim follows immediately. O

Proof of Lemma 11 Suppose that x = (,(y)) € graph(v). Then
N 1 <—Vv(x))
J1+ Vo2 1
is a normal vector to graph(v) at x. We compute

1
Vo + D+ [Vu]?)

I +ait1 - Vo(x)
®;(N) = :

L+ aijynt1 - Vo(x)

Under the assumptions of Lemma 11, all the components of this vector are positive. Hence it
is not parallel to (O, ..., 0, I)T and not perpendicularto (1, ..., 1, O)T. The implicit function
theorem therefore implies that

®; (graph(v)) N {y € R**': y, 1y =1}
is a smooth (n — 1)-dimensional manifold for every ¢ € R and that the function ¢ from the

statement of the lemma is smooth.
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If we define E: P x R? — R"*! such that
n
E(p,s, 1) =1vi + Y _(Pk +$01)vitx
k=1
for p € P and s, t € R, then ¢ is characterised by the condition that
E(p.¢(p,1),1) € graph(v)
forallt € R and p € P. Hence

V(E(p, (P, 1), 1) = But1(p, ¢(p, 1), 1). (10)
We now differentiate this equation.
We compute
0B a; 0841 1
N e N S
Forw € P,
| |

o - VE=—— a1k, w - VE 1= oy = 0.
,;n—i—l]; kAi+k n+ /;n—i—l];

Finally,

0B io’ v 1 ia a; 85;14,_1 n
= kVi+k = — i+k = ’ =4/ .
as k=1 «/nz_{-n k=1 «/nz-}-n as n 1

We define ©(p, t) = E(p, ¢(p, t), t). Differentiating (10), we now conclude that

( L0 (p. 1) = 1) ai - Vo(©(p, 1)) = ﬁ%(f(p, n+1

Jn ot
and
1 . " .
(w -Vé(p,a; — Zwkai+k> -Vu(®(p, 1) = /nw - Vé(p,1). (1)
v poe
Hence
3¢ ai V@, )+ 1
o PO =Vr o O(p.1) —n 12
and

- =2k @raivk - Vu(O(p, 1))
@ -Vé(p.t) =/n 4 V@ 1) —n

Fixt € Rand p € P. Since Vu(®(p, t)) is in the interior of the convex hull of the set
{aj: j e Zn+1}, there exist 7; € (0, 1) for j € Z, such that

2, %=1
J€ZLnt1

and

Vu@(p.n) = Y tja;.

J€ZLn+1
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Then
ai - Vo(@(p, 1) —n=nt =Y T —n=(+ D5~ 1),
J#i
while
n n n
Y @disk - V@©((p,0) =Y @ [ntix— Y T | =0+ DY @t
k=1 k=1 JAi+k k=1

We further note that

ot T < @ T) = (- )

The Cauchy—Schwarz inequality therefore implies that

> mraipk - Vo@(p, )| < (n+ (1 — ).
k=1

It follows that
[ -V (p. )| < Vnlw|,

and inequality (9) is proved.

In order to prove the second statement of Lemma 11, we need to differentiate (11) again
with respect to p. We write A : M for the Frobenius inner product between two matrices
A and M. We also drop the arguments (p, ¢) in the derivatives of ¢ and in ®. Then for all
w,Ee€P,

1
" ww): V2
(5'%41- =Y i &btk ) ® LA P > i Tra
_ N k=1 Skdi+k N k=1 Pkli+k

.2
a4 Vu(©) 1 Vau(0).

As we have already seen that W(/)I < /n, it follows that there is a constant C; = C(n) such
that

- C1|V20(®
20| < 11V-u(0)] .
n—a;-Vo(®)
Choose an orthonormal basis (11, ..., 7,—1) of P. Next we examine the derivative d©®,

and more specifically, its determinant.
Define yix, . .., Yuk such that ny = (y1x, ..., y,,k)T. Fort € Rand p € P, we also define

1 -
Ytk (p, 1) = —ﬁnk -Vé(p,t), k=1,...,n—1,

and
d¢
Yatin(p 1) =1— ﬁg([)» f).
Finally, we set ¢, = 0 for £ =1, ..., n. We compute

- 1 1 - "
VO(p. 1) = A e — "
- VO(p, 1) m<ﬁﬁk o(p, D ;V@k ,+z>
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and

8@( 0= 1 a¢( D1 a;
o VT ma NIES Y
Hence we can represent d® by the matrix with columns

+1

ka+l
Z ! =1,...,n,

=1

with respect to the basis of P x R induced by n; ..., n,—1. Lemma 12 now tells us that

| yir 0 Y |
det(d®) = + det : o
vn+1 : )
Yn+1,1 = Vn+l,n 1
Yir o Yin-l 0 1
1 . . . .
— :|: det . . . .
'n+1 Ynl *° Vnn-—1 0 1

YLl 0 Vatln—1 Ya+lan 1

Vi1 - Y1in—1 O1
n
=F,/— det : :
+ n+an+1.n

As (1, ..., nu—1, o) form an orthonormal basis of R”, we find that

n 1
det(d®)| = [ —— = —— |Jn—
| det(d©)| ,/n+1|)/n+1,n| m‘f

Recalling (12), we now obtain

Ynl *** Yn,n—1 On

Jn? +n

We also note that the map © is injective. Given R > 0, we therefore compute

R
/ / V2| dH" " dr
PNBR(0)

V2u(®
<C1/ / _ VO dH" ' dr
PNBg(0) M — aj - V'U(())

|V20(0)|] det(dO©)| dH" " dt

13)

h \/n2 +n ./—R /PmBR(O)

|V2v| dx.

1
Jn?+n /@)((PGBR(O))X(—R,R))

It remains to examine the set ® (PN Br(0)) x (—R, R)). Recall that we have the assump-
tion supg. |v| < M in Lemma 11. Thus (10) implies that

|En+1(pv¢(p7t)9t)| S M~
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Since

- _t+/ne(p, 1)
*—‘n+l(p7¢(pat)7t)_ m s

ool <my "L B
n NGO

when ¢t € (—R, R). Hence there exists a constant Cy; = C(n) such that

this means that

©(p, )] = C2(M + R)

for all p € PN Br(0) and all + € (—R, R). Thus (13) implies the second inequality of
Lemma 11. O

7 Proof of Theorem 3

In this section we combine the previous results to prove the second main theorem. We first
consider a function u € BVIZOC(R”) N L°(R") such that graph(u) is close to the graph of
Ai AAjorA; VAjinacube in R"*+! with edges parallel to vy, ..., v,41. We will give a
condition which implies that such a function actually coincides with A; A A; or A; V A; up
to a constant in part of the domain.

Fori, j € Z,41 withi # j and for », R > 0, we define
Qij(r.,R)=1{ > cavi:cicje(-r.r)andci € (—R, R) fork ¢ {i,j}}.
kleHrl

Again we consider the map U: R — R*"t! with U(x) = (ufx)) for x € R". Recall that
E* = U(E). The following is the key statement for the Proof of Theorem 3.

Proposition 13 Let n € N. For any 6 > 0 there exist € > 0 with the following properties.
Leti, j € Zps1 withi # j. Suppose that |u(0)| < € and either

lu—ri Arjl < e inU(Qi(1, 1)) (14)
or
lu— 2 vajl<e inU(Qi(1, D). (15)
Then
H'HEF N Q4. D) = 2711 - §). (16)
1If, in addition,
HHEF N Q1L D) =2 1 + ), (17)
then there exist o, B € R such that
u=0i+a)AGg+p) inU Qi1 5)) (18)
or
u= M +a)Vv o +p) inU Q3. D). (19)
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Before we can prove Proposition 13, we need a few more lemmas. First we need some
more information on the functions f; from Proposition 8. Recall that f;(-, 1) € BVIZOC(P)
for almost all r € R.

Given i € Z,1 and given t € R such that f;(-,1) € BVIZOC(P), let th(t) C P denote

the approximate jump set of \Y fi(+, t). Thus this set is defined analogously to &', but for the
function f; (-, t) instead of u. Furthermore, we set

D](1) = {p+ fip.0)o: p € D)},
in analogy to £T.
Lemma 14 Leti € Zyy1. For almostany t € R,
D (1) x {1} C @;(E* UN™).

Hence for any t1, ty € R and any Borel set Q@ € R",
K f I
/ H2DL (1) N Q)dt < HHE N @71 (Q x (11, 0)).
n

Proof Let p € P andt € R. Set
x=o! <P+fi(l’,f)f7>.

t

If x € F*, then Proposition 5 implies that graph(u) coincides with a hyperplane in a neigh-
bourhood of x. If that hyperplane is perpendicular to v;, then p + f;(p,t)o € I (t) and t
belongs to the null set identified in Proposition 8. Otherwise, the function f;(-, t) is affine
near p, and hence ®;(x) cannot belong to DIT (t) x {t}. This implies the first claim.

The second claim is now a consequence of the coarea formula [1, Theorem 2.93], applied to
the functions y — y,41 and to the countably H" ! -rectifiable set ®; (E*UN*)N(2x [t1, 12]).

O
Lemma15 Let k € {1,...,n}). Suppose that s,5 € R withs < 5. For z € R*™!, define
L(8) = (Z1s vy Zhe1sSs Thr -+ > z,,_l)Tfors € [s,s], and L, = {Ez(s): s <5< E}. Fix

i € Zpy1. Then for H""'-almost every z € R"~!, either
g =80 =g0"=80"
forall y,y € L,, orthereexist y € L; x R such that
8i(lz(5)) = ynt1 = g, (£:(5))
andy € ®;(EY).

Proof Consider the projection IT: R"*! — R” given by IT1(y) = y for y € R*t!, Set
W; = ITo ®;. Then for j € Z, 1 with j # i and for x € _7-";‘, it is clear that Jr+W;(x) =
0. (Indeed, the vectors v;1,...,V i, provide an orthonormal basis of 7y F*, and we
compute dW¥;(v;) = 0.) Hence the area formula gives H" (\¥; (]-';‘)) = 0. Using the coarea

formula, we conclude that for "~ !-almost every z € R
H'(L: NW(F}) =0 (20)

for all j # i. Furthermore, since £* is an H"~!-rectifiable set and H"~! (N*) = 0, we also
know that for H"~!-almost every z € R

HY L, N (%) =0 1)
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and
L, NY;(N*) = 0. (22)

Consider a point z € R” ~1 such that (20), (21), and (22) hold true. Recall that by Lemma
7,apointy € RrH! belongs to ®; (graph(u)) if, and only if, 8, ) < yn+1 < g;(y). Also
recall that

__ % * %
graph(u) = EF UN* U U Fi.
J€ZLp+1

From (20)—(22) we therefore infer that for H!-almost all y € L.,
(f ) € ®i(F)) forallt € [g,(0). & (1. (23)

Consider y € ®;(F;) with y € L. Then, setting x = q);l(y), we have the locally
uniform convergence uy , — A; as p N\ 0. Hence for any compact set K C R"*+! and any
€ > 0 there exists pg > 0 such that

1
—(graph(u) —x) N K C {¥ e R"': dist(¥, graph(1;)) < €/2}
P

for all p € (0, po]. Equivalently,
®; (graph(u) — x) N p®;(K) S R" x (—pe/2, pe/2).

Recall thatey, .. ., e, are the standard basis vectors in R”. Also recall that for any y € R", the
points (7, 8, (y)) and (y, g;(y)) belong to ®; (graph(u)). It follows that there exists ry > 0
such that for all r € (0, rol,

|5i(yirek)_§i(y)| <re and |g;(ytrex) —gi(y)| <re
and [g.(y) — g;(y)| < re. Thus
a 9
—g.(»=0 and —g;(y) =0
Oy~ 0 Yk
and g (y) = g;(y). Note that this is true for '-almost all y € L. We now claim that
8, (L:(9) = g (y) = g.(y) = 8 (£:(5)) (24)

forall y € L;\ {£;(s), £;(5)}. Indeed, given y = £,(s) with s € (s,5), we may choose
s € (s.s)and sy € (5,5) such that g (£:(s-)) = g, (€(s-)) and g (£:(51)) = Z; (€ (54)).
Then (24) follows from Lemma 7.(vi).

If (23) holds for all y € L, then we immediately conclude that 8; and g; are constant and
coincide on L., i.e., we have the first alternative from the statement of the lemma. If there
exists y € L, such that (23) does not hold true, then by the above observations, we know

that
(f ) ¢ @i(F)

holds in fact for all ¢ € [g (y), &; (»]. (Otherwise, we would conclude that 8; ) =gy,
which would give an 1mmed1ate contradiction.) Moreover, because (23) still holds true almost
everywhere on L, there exists a sequence (¥ )meN in L, such that y = lim,,—« ¥, and
such that (23) holds for every y,,. Hence 8, Gm) =8 GOm)- We set £, = 8, (Jm). Extracting
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a subsequence if necessary, we may assume that y, | = lim,,_, o0 7, €xists. Set y = (y,;v+1 ).

Then <1>i_1 (¥) belongs to the boundary of 7} relative to graph(u).
Proposition 5 implies that " is an open set relative to graph(u), and its relative boundary

is contained in £* U N*. Because of (22), it follows that <I>l._1(y) € &£*. Moreover, (24)
implies that

8i(lz(5)) < ynt1 = g, (£:(5)).
Thus y has the properties from the second alternative in the statement. O

Lemma 16 Leti € Zyy1. Suppose that G C R" is a connected set such that G N T (t) = ¢
forallt € (—1,1). Then eithergi(y) > 1forally e Gorg;(y) <—1forally € G.

Proof Assume that there exists yo € G such that 8, (yo) < 1. Since G NT;(¢t) = ¢ for all
t € (—1, 1), this implies that
—1=g;(v) = g,0)

by Lemma 7.(iv).

Givent € (—1, 1), define

H ={yeG:g;(y) =1}.
Because g; is upper semicontinuous by Lemma 7, this is a closed set relative to G. Moreover,
if y € Hy, it follows that
&y =g (=1,

because G N T'; (') = ¢ for all ¥/ € (—1, 1). By the lower semicontinuity of 8, this means
that there exists p > 0 such that g; > 8 =t in B, (y). Hence H, is also open  relative to G.
Since G is connected and yy ¢ H;, it follows that H; = (. This is true forall r € (—1, 1), so
g;(y) < —lforally € G. O

We now have everything in place for the Proof of Proposition 13.

Proof of Proposition 13 We use induction over n. The statement is clear for n = 1. We now
assume that n > 2 and the statement holds true for n — 1.

For simplicity, we assume that i = 1 and j = 2. We also assume that (14) holds true; the
proof is similar under the assumption (15).

Let

A = ((—00,0] x {0} x R"2) U ({0} x (—o00, 0] x R"2).

The graph of A1 A A3 is the union of two half-hyperplanes meeting at a right angle. In fact,
it is easy to see that

®g(graph(h1 A X2)) = A x R.
Let

n
n+1

€ =€

Under the assumptions of the proposition, the set ®g(graph(u)) N (—1, D™t is between
(A —€o)xRand (A +€'0) xR, ie.,

®o(graph() N (~1, "' < (] (A +50) xR,

—e'<s<¢’
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Set 59 = /n”?u(O). Then |sg| < €’ by the assumption that |#(0)| < €. Moreover, we
compute

1
<I><0>— u® ), (°
BUC/ARNVZES | B 7))

Assuming that € < +/n + 1, we infer that g¢(soo) > —1 and 50(500) < 1. Using Lemmas
7.(v) and 16, we conclude that

g =1 forye(=1,10"n | (A+s0)
s<—¢'
and
8 =1 forye (11" 0 [ J(A +50).
s>e’

Now consider the function fy: P x R — R from Proposition 8. For almost every ¢t €
(—1, 1), the graph of fy(-, t), which is given by ['g(z), is between A — €’c and A + €’o in
the hypercube (—1, 1)".

Define 1, up: P — Rby u1(p) = by pand ux(p) = by - p for p € P (where by and by
are the vectors defined on page 12). Let F;: P — R” be the map with F;(p) = p+ fo(p, t)o
for p € P. Then the preceding statements amount to the inequality

Ifo(-.t) =i Apal <€ in F7H((=1, D).

Moreover, the condition | f (0, 7)| < € is clearly satisfied. Hence we may apply the induction
hypothesis to the function fp(-, t). We thereby obtain the inequality

H (D50 N (= 1) x (—1, 1" 2)) = 27721 =) =

foralmostallz € (—1, 1), provided that € is sufficiently small. Using Lemma 14, we therefore
obtain inequality (16). This proves the first statement of Proposition 13.
In order to prove the second statement, assume now that (17) holds true. Then

1
/ H'2(Dy() N (—1, 1)") dr <2" 711 + €).
1

Recall that we also have inequality (25), and we may now assume that § is arbitrarily small.
Hence there existz_ € (—1, —%) and 14 € (%, 1) such that

H'2 (D) N (=1, D) < 2"72(1 + 36 + 4e).
By the induction hypothesis, if § and € are sufficiently small, then
P 1 1\"
folst4) = Gur + ) A Gz + ) in B ((=3.4)")

for certain numbers «_, oy, B, B4+ € R. Therefore, there exist y_, y4 € R? x {0}*~2 such
that

Totx) N (=3, 5)" = e + M) N (=3, 3)".

Clearly, by the above observations on ®g(graph(u)), this implies that y;+ € B (0). We
assume that €’ < %.
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If y_ = y4, then
Fo® N (=3.5)" = 0+ )N (=3 3)"

for every ¢ € (t_, ty) as well (because any other point y € (—%, %)" \ (y+ + A) satisfies
either 8, (y) >ty orgo(y) <t_ by Lemma 7). In this case, we conclude that (18) holds true.
Thus it now suffices to show that y_ = y,.

We argue by contradiction here. Suppose that y_ # y,. We assume that in fact the first
components y;_ and y;4 are different. The arguments are similar if y,_ # yo4.

If yi— # y14, then forany z € (—%, —%) X (—%, %)"’2, it follows that

and

Sincet_ < t,itistherefore not true that 8 and g are constant with g 0= goon[yi4, yi-Ix

{z}. Lemma 15 now implies that for H"~!-almost every z € (—%, —%) X (—%, %)"‘2, the
set [y14, y1—] x {z} x [t_, 14 ] intersects P (E™). It follows that

HH (@oEH N (-1, D) x (=3, =) x (=1, )" 1)) = %.
Furthermore, because of (16), we obtain the estimate
H'HE* N QA D) =211 -8 + %.
If § + € < 27"~ then this contradicts the hypothesis. O

Finally we can prove the second main result with the help of Propositions 5 and 13.

Proof of Theorem 3 Suppose that A € R” is affinely independent. Then A contains at most
n + 1 elements. If there are fewer, then we can add additional elements to A such that it
remains affinely independent. Thus we may assume without loss of generality that the size
of A is exactly n + 1.

Now suppose that A = {ay, ..., a,}. Consider M € R"*" and ¢ € R" suchthat Ma; +c =
a; fori = 0, ..., n. Then the function v: R” — R with v(x) = u(M7Tx) + ¢ - x has the
property that Vu(x) € {ao, ...a,} for almost all x € R". Hence we may assume that A
consists of the vectors ag, ..., a,.

Now for the sets F, £, and AV as defined in Sect. 2, Proposition 5 implies that 7 C R («)
with the same arguments as in the Proof of Theorem 4.

For x € &, the functions u, , converge locally uniformly to A; ALj ortoA; VAjasp N\ 0
for some i, j € Z,+1 with i # j. Moreover, the approximate tangent space of £* exists at
the point U (x). Clearly this approximate tangent space is graph(A;) N graph(2 ;). Hence for
p sufficiently small, the function u, , satisfies the hypotheses of Proposition 13, including
(17). It follows that uy , satisfies (18) or (19). In particular, it is regular near 0, and hence
x € R(u).

Thus S(u) C A, which is an H"~!-null set. O

Data Availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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