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Abstract
A complete family of functional Steiner formulas is established. As applications, an explicit
representation of functional intrinsic volumes using special mixedMonge–Ampèremeasures
and a new version of the Hadwiger theorem on convex functions are obtained.
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1 Introduction and statement of results

The classical Steiner formula states that the volume of the outer parallel set of a convex
body (that is, a non-empty, compact, convex set) in R

n at distance r > 0 can be expressed
as a polynomial in r of degree at most n. Using that the outer parallel set of a convex body
K ⊂ R

n at distance r > 0 is just the Minkowski (or vector sum) of K and r Bn , the ball of
radius r , we get

Vn(K + r Bn) =
n∑

j=0

rn− jκn− j V j (K ) (1.1)

for every r > 0, where Vn is n-dimensional volume or Lebesgue measure and κ j is the j-
dimensional volume of the unit ball inR j (with the convention that κ0 := 1). The coefficients
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Vj (K ) are known as the intrinsic volumes of K . Up to normalization and numbering, they
coincide with the classical quermassintegrals. In particular, Vn−1(K ) is proportional to the
surface area of K and V0(K ) is the Euler characteristic of K (that is, V0(K ) := 1) for every
convex body K in R

n (cf. [43]).
A complete characterization of intrinsic volumes is due to Hadwiger, who in his celebrated

theorem classified all continuous, translation and rotation invariant valuations on the space,
Kn , of convex bodies in R

n . Here, we say that Z : Kn → R is a valuation if

Z(K ) + Z(L) = Z(K ∪ L) + Z(K ∩ L)

for every K , L ∈ Kn such that also K ∪ L ∈ Kn . It is translation invariant if Z(τ K ) = Z(K )

for every K ∈ Kn and translation τ onRn and rotation invariant if Z(ϑ K ) = Z(K ) for every
K ∈ Kn and ϑ ∈ SO(n). The topology of Kn is induced by the Hausdorff metric.

Theorem 1.1 (Hadwiger [25]) A functional Z : Kn → R is a continuous, translation and
rotation invariant valuation if and only if there exist constants ζ0, . . . , ζn ∈ R such that

Z(K ) =
n∑

j=0

ζ j V j (K )

for every K ∈ Kn.

In addition to its many applications in convex and integral geometry (see [25, 27]), the
Hadwiger theorem can be used to give a simple proof of (1.1).

We remark that the classification of valuations on convex bodies is a classical subject,
which is described in [43, Chapter 6]. Also see [10, 26] for some newly defined valuations
and [2, 3, 5, 7, 8, 23, 24, 30, 31, 34, 35] for some recent classification results.

Recently, the authors [16] introduced functional intrinsic volumes on convex functions.
Let

Convsc(R
n) :=

{
u : Rn → (−∞,+∞]: u �≡ +∞, lim|x |→+∞

u(x)

|x | = +∞, u is l.s.c. and convex
}

denote the space of all proper, super-coercive, lower semicontinuous, convex functions onRn ,
where | · | denotes the Euclidean norm. For ζ ∈ Cb((0,∞)), the set of continuous functions
with bounded support on (0,∞), and 0 ≤ j ≤ n, consider the functional

u �→
∫

Rn
ζ(|∇u(x)|)[D2u(x)

]
n− j dx (1.2)

onConvsc(Rn)∩C2+(Rn), whereC2+(Rn) denotes the set of u ∈ C2(Rn)with positive definite
Hessian matrix D2u and [A]k is the kth elementary symmetric function of the eigenvalues of
the symmetric n × n matrix A (with the convention that [A]0 := 1).

Under suitable conditions on the function ζ , the functional (1.2) continuously extends to
the whole space Convsc(Rn). Here, continuity is understood with respect to epi-convergence
(see Sect. 3.2). In case ζ can be identifiedwith an element ofCc([0,∞)), the set of continuous
functions with compact support on [0,∞), it was shown in [14] that (1.2) continuously
extends to Convsc(Rn) by using Hessian measures (see Sect. 5.2 for the definition).

More recently, the authors proved that (1.2) continuously extends for the following classes
of singular densities ζ . For 0 ≤ j ≤ n − 1, let

Dn
j :=

{
ζ ∈ Cb((0,∞)) : lim

s→0+ sn− jζ(s) = 0, lim
s→0+

∫ ∞

s
tn− j−1ζ(t) dt exists and is finite

}
.

123



The Hadwiger theorem on convex functions, III Page 3 of 37 181

In addition, let Dn
n be the set of all functions ζ ∈ Cb((0,∞)) such that lims→0+ ζ(s) exists

and is finite. For ζ ∈ Dn
n , we set ζ(0) := lims→0+ ζ(s) and identify ζ with the corresponding

element of Cc([0,∞)).

Theorem 1.2 ([16], Theorem 1.2) For 0 ≤ j ≤ n and ζ ∈ Dn
j , there exists a unique,

continuous, epi-translation and rotation invariant valuation V j,ζ : Convsc(Rn) → R such
that

V j,ζ (u) =
∫

Rn
ζ(|∇u(x)|)[D2u(x)

]
n− j dx (1.3)

for every u ∈ Convsc(Rn) ∩ C2+(Rn).

Here, we say that Z : Convsc(Rn) → R is a valuation if

Z(u) + Z(v) = Z(u ∨ v) + Z(u ∧ v)

for every u, v ∈ Convsc(Rn) such that also their pointwise maximum u ∨ v and minimum
u ∧ v belong to Convsc(Rn). A valuation Z : Convsc(Rn) → R is said to be epi-translation
invariant if Z(u ◦ τ−1 + γ ) = Z(u) for every translation τ on R

n , every γ ∈ R and every
u ∈ Convsc(Rn) and it is rotation invariant if Z(u ◦ ϑ−1) = Z(u) for every ϑ ∈ SO(n) and
u ∈ Convsc(Rn). We remark that these properties are natural extensions of the corresponding
properties of the classical intrinsic volumes.

A closed representation of the extensions of (1.3) to Convsc(Rn) was obtained for the
cases j = 0 and j = n. For ζ ∈ Dn

0 , the functional V0,ζ is a constant, independent of
u ∈ Convsc(Rn), and for ζ ∈ Dn

n , we have

Vn,ζ (u) =
∫

dom u
ζ(|∇u(x)|) dx (1.4)

for every u ∈ Convsc(Rn), where dom u := {x ∈ R
n : u(x) < ∞} is the domain of u (see

[14, Theorem 2]). However, apart from these extremal cases, the functionals V j,ζ were so
far only described as continuous extensions of (1.3) and by Cauchy–Kubota formulas, which
were recently established in [17, Theorem 1.6].

In [16], the following functional Hadwiger theorem was established.

Theorem 1.3 ([16], Theorem 1.3) A functional Z : Convsc(Rn) → R is a continuous, epi-
translation and rotation invariant valuation if and only if there exist functions ζ0 ∈ Dn

0 , …,
ζn ∈ Dn

n such that

Z(u) =
n∑

j=0

V j,ζ j (u)

for every u ∈ Convsc(Rn).

Using the notion of epi-homogeneity of degree j (see Sect. 3.2), we see that Theorems 1.1
and 1.3 imply that for 0 ≤ j ≤ n, the functionals V j,ζ for ζ ∈ Dn

j correspond to multiples
of the classical intrinsic volumes Vj . Hence, we call V j,ζ for 0 ≤ j ≤ n and ζ ∈ Dn

j a j th
functional intrinsic volume. Moreover, the family {V j,ζ : ζ ∈ Dn

j } describes all continuous,
epi-translation and rotation invariant valuations on Convsc(Rn) that are epi-homogeneous of
degree j and is, in this sense, canonical.

We remark that the classification of valuations on function spaces has only been started to
be studied recently. The first classification results for valuations on classical function spaces
were obtained for L p and Sobolev spaces, and for Lipschitz and continuous functions (see
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[18, 19, 32, 33, 48, 49]). Results on valuations on convex functions can be found in [4, 12–14,
28, 29, 37, 38].

In this articlewe present a new, complete family of Steiner formulas for functional intrinsic
volumes and its applications. For ζ ∈ Dn

n (or equivalently, ζ ∈ Cc([0,∞))), the functional
Steiner formula is the following result.

Theorem 1.4 If ζ ∈ Dn
n , then

Vn,ζ (u � (r IBn )) =
n∑

j=0

rn− jκn− j V j,ζ j (u) (1.5)

for every u ∈ Convsc(Rn) and r > 0, where ζ j ∈ Dn
j is given by

ζ j (s) := 1

κn− j

(
ζ(s)

sn− j
− (n − j)

∫ ∞

s

ζ(t)

tn− j+1 dt

)
(1.6)

for s > 0 and 0 ≤ j ≤ n.

Here, u � w is the infimal convolution of u, w ∈ Convsc(Rn) and r w is obtained by epi-
multiplication of w with r > 0 while IBn is the convex indicator function of the Euclidean
unit ball Bn (see Sect. 3.2 for the precise definitions). Note that

epi(u � (r IBn )) = epi u + r(Bn × R), (1.7)

where epiw := {(x, t) ∈ R
n ×R : t ≥ w(x)} is the epi-graph of w : Rn → (−∞,+∞] and

the addition on the right side of (1.7) is Minkowski addition in Rn × R.
We give two proofs of Theorem 1.4. In Sect. 7, we give a direct proof (not using the

functional Hadwiger theorem, Theorem 1.3) and in Sect. 8, we prove Theorem 1.4 using
Theorem 1.3. This corresponds to the fact that the classical Steiner formula can be proved
both directly and as a consequence of the Hadwiger theorem.

Equation (1.5) corresponds to the classical Steiner formula (1.1). Indeed, we will see that
(1.1) can be easily retrieved from (1.5). Furthermore, by properties of the transform (1.6),
every functional intrinsic volume V j,ζ j for 1 ≤ j ≤ n and ζ j ∈ Dn

j will appear exactly once
on the right side of (1.5) as ζ ranges in Dn

n . In this sense, Theorem 1.4 provides a complete
description of functional intrinsic volumes on Convsc(Rn). We remark that Steiner formulas
for convex functions are also obtained if we replace IBn in (1.5) by other radially symmetric,
super-coercive, convex functions. However, in general such formulas do not give rise to all
functional intrinsic volumes. For more details, see Sect. 8.4.

As an immediate consequence of Theorem 1.4, eq. (1.4) and properties of the transform
(1.6) (see Lemma 3.2), we obtain the following new representation of the functionals V j,ζ .

Corollary 1.5 If 0 ≤ j < n and ζ ∈ Dn
j , then

V j,ζ (u) = j !
n!

dn− j

drn− j

∣∣∣
r=0

Vn,α(u � (r IBn ))

= j !
n!

dn− j

drn− j

∣∣∣
r=0

∫

dom(u�(r IBn ))

α
(∣∣∇(

u � (r IBn )
)∣∣) dx

for every u ∈ Convsc(Rn), where α ∈ Cc([0,∞)) is given by

α(s) :=
(

n

j

)(
sn− jζ(s) + (n − j)

∫ ∞

s
tn− j−1ζ(t) dt

)

for s > 0.
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Using a new family of measures, we establish new closed representations of the functional
intrinsic volumes on the whole space Convsc(Rn) that do not require singular densities. For
u ∈ Convsc(Rn), let MA∗(u; ·) be the push-forward through ∇u of n-dimensional Lebesgue
measure restricted to the domain ofu. Equivalently,MA∗(u; ·) is theMonge–Ampèremeasure
of the convex conjugate of u (see Sect. 5 for details) and we call it the conjugate Monge–
Ampère measure of u. For functions u1, . . . , un ∈ Convsc(Rn), we write MA∗(u1, . . . , un; ·)
for the polarization of MA∗(u; ·) with respect to infimal convolution (see Sect. 5) and call
MA∗(u1, . . . , un; ·) the conjugate mixed Monge–Ampère measure of u1, . . . , un . For 0 ≤
j ≤ n and u ∈ Convsc(Rn), we set

MA∗
j (u; ·) := MA∗(u[ j], IBn [n − j]; ·), (1.8)

where the function u is repeated j times and the convex indicator function IBn is repeated
(n − j) times. We establish the following result.

Theorem 1.6 If 0 ≤ j ≤ n and ζ ∈ Dn
j , then

V j,ζ (u) =
∫

Rn
α(|y|) dMA∗

j (u; y)

for every u ∈ Convsc(Rn), where α ∈ Cc([0,∞)) is given by

α(s) :=
(

n

j

)(
sn− jζ(s) + (n − j)

∫ ∞

s
tn− j−1ζ(t) dt

)

for s > 0. Moreover, for 1 ≤ j ≤ n,

V j,ζ (u) = 1(n
j

)
∫

Rn
α(|∇u(x)|) τn− j (u, x) dx (1.9)

for u ∈ Convsc(Rn) ∩ C2+(Rn).

Here, for u ∈ Convsc(Rn)∩C2+(Rn) and 0 ≤ i ≤ n −1, we write τi (u, x) for the i th elemen-
tary symmetric function of the principal curvatures of the sublevel set {y ∈ R

n : u(y) ≤ t}
at x ∈ R

n with t = u(x) (and we use the convention τ0(u, x) := 1). Note that τi (u, x) is
well-defined for such u if u(x) > miny∈Rn u(y). Since such u attains its minimum at only
one point, the integral in (1.9) is also well-defined. We remark that a direct proof of (1.9) was
given in [17, Lemma 3.9]. Here it is a consequence of properties of the measures MA∗

j (u; ·)
(see Theorem 5.5).

Conjugate mixed Monge–Ampère measures generalize Hessian measures on Convsc(Rn)

(see Sect. 5.2) and the precise connection of integrals involving the measure MA∗
j (u; ·) and

Hessian measures for u ∈ Convsc(Rn) is established in Sect. 6. It is the basis of a new proof
of Theorem 1.2 presented in Sect. 7, where we also prove Theorem 1.6.

Combining Theorems 1.3 and 1.6, we obtain the following new version of the Hadwiger
theorem for convex functions.

Theorem 1.7 A functionalZ : Convsc(Rn) → R is a continuous, epi-translation and rotation
invariant valuation if and only if there exist functions α0, . . . , αn ∈ Cc([0,∞)) such that

Z(u) =
n∑

j=0

∫

Rn
α j (|y|) dMA∗

j (u; y)

for every u ∈ Convsc(Rn).
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By properties of the integral transform from Theorem 1.6 which maps ζ to α, this version is
equivalent to Theorem 1.3.

Using the Legendre–Fenchel transform or convex conjugate, we can translate the new
results on Convsc(Rn) to results on Conv(Rn;R) := {v : Rn → R : v is convex}, the space
of finite-valued convex functions onRn . In fact, most results will be proved on Conv(Rn;R)

and then transferred to Convsc(Rn) using convex conjugation. Results on Conv(Rn;R) are
presented in Sect. 2. The next section is devoted to notation and preliminaries. In Sect. 4,
results on Monge–Ampère measures and mixed Monge–Ampère measures on Conv(Rn;R)

are collected and the new measures MA j (v; ·) for v ∈ Conv(Rn;R) and 0 ≤ j ≤ n are dis-
cussed. In Sect. 5, the corresponding results are presented on Convsc(Rn). Results connecting
the measure MA j (v; ·) to the j th Hessian measure of v ∈ Conv(Rn;R) are established in
Sect. 6. In the following section, the proofs of the main results are presented. In the final
section, an alternate proof of the functional Steiner formula, results on the explicit represen-
tation of functional intrinsic volumes and on the retrieval of classical intrinsic volumes are
presented. Moreover, general functional Steiner formulas are discussed.

2 Results for valuations on finite-valued convex functions

A functional Z : Conv(Rn;R) → R is dually epi-translation invariant if and only if Z(v +
� + γ ) = Z(v) for every v ∈ Conv(Rn;R), every linear functional � : Rn → R and every
γ ∈ R, or equivalently, if the map u �→ Z(u∗), defined on Convsc(Rn), is epi-translation
invariant. It was shown in [15] that Z : Conv(Rn;R) → R is a continuous valuation if and
only if u �→ Z(u∗) is a continuous valuation on Convsc(Rn) (see Proposition 3.1).

The following result is equivalent to Theorem 1.2 by duality.

Theorem 2.1 ([16], Theorem 1.4) For 0 ≤ j ≤ n and ζ ∈ Dn
j , there exists a unique,

continuous, dually epi-translation and rotation invariant valuationV∗
j,ζ : Conv(Rn;R) → R

such that

V∗
j,ζ (v) =

∫

Rn
ζ(|x |)[D2v(x)

]
j dx (2.1)

for every v ∈ Conv(Rn;R) ∩ C2+(Rn).

Here, for 0 ≤ j ≤ n and ζ ∈ Dn
j , the valuationV

∗
j,ζ is dual toV j,ζ in the sense thatV∗

j,ζ (v) =
V j,ζ (v

∗) for every v ∈ Conv(Rn;R). We remark that the new proof of Theorem 2.1 that we
present in Sect. 7 actually shows that the representation (2.1) holds onConv(Rn;R)∩C2(Rn).

The Hadwiger Theorem on Conv(Rn;R) is the following result, which is equivalent to
Theorem 1.3 by duality.

Theorem 2.2 ([16], Theorem 1.5)A functionalZ : Conv(Rn;R) → R is a continuous, dually
epi-translation and rotation invariant valuation if and only if there exist functions ζ0 ∈ Dn

0 ,
…, ζn ∈ Dn

n such that

Z(v) =
n∑

j=0

V∗
j,ζ j

(v)

for every v ∈ Conv(Rn;R).

Weobtain the following dual version of the functional Steiner formulas fromTheorem 1.4.
We use the support function of the unit ball, h Bn (x) = |x | for x ∈ R

n , and the fact that
(u � (r IBn ))∗ = u∗ + r h Bn for u ∈ Convsc(Rn) and r > 0.
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Theorem 2.3 If ζ ∈ Dn
n , then

V∗
n,ζ (v + r h Bn ) =

n∑

j=0

rn− jκn− j V
∗
j,ζ j

(v)

for every v ∈ Conv(Rn;R) and r > 0, where ζ j ∈ Dn
j is given by

ζ j (s) := 1

κn− j

(
ζ(s)

sn− j
− (n − j)

∫ ∞

s

ζ(t)

tn− j+1 dt

)
(2.2)

for s > 0 and 0 ≤ j ≤ n.

An immediate consequence is the following result.

Corollary 2.4 Let 0 ≤ j < n. If ζ ∈ Dn
j , then

V∗
j,ζ (v) = j !

n!
dn− j

drn− j

∣∣∣
r=0

V∗
n,α(v + r h Bn )

for every v ∈ Conv(Rn;R), where α ∈ Cc([0,∞)) is given by

α(s) :=
(

n

j

)(
sn− jζ(s) + (n − j)

∫ ∞

s
tn− j−1ζ(t) dt

)

for s > 0.

Let MA(v; ·) be the Monge–Ampère measure of v ∈ Conv(Rn;R) and write
MA(v1, . . . , vn; ·) for its polarization, the mixed Monge–Ampère measure of v1, . . . , vn ∈
Conv(Rn;R). For 0 ≤ j ≤ n and v ∈ Conv(Rn;R), we set

MA j (v; ·) := MA(v[ j], h Bn [n − j]; ·)
(see Sect. 4 for results on Monge–Ampère measures, mixed Monge–Ampère measures and
this new family of measures).

The following result corresponds to Theorem 1.6.

Theorem 2.5 If 0 ≤ j ≤ n and ζ ∈ Dn
j , then

V∗
j,ζ (v) =

∫

Rn
α(|x |) dMA j (v; x)

for every v ∈ Conv(Rn;R), where α ∈ Cc([0,∞)) is given by

α(s) :=
(

n

j

)(
sn− jζ(s) + (n − j)

∫ ∞

s
tn− j−1ζ(t) dt

)

for s > 0. Moreover, for 1 ≤ j ≤ n,

V∗
j,ζ (v) =

∫

Rn
α(|x |) det(D2v(x)[ j],D2h Bn (x)[n − j]) dx (2.3)

for v ∈ Conv(Rn;R) ∩ C2(Rn).

Here, det(A1, . . . , An) denotes the mixed discriminant of the symmetric n × n matrices
A1, . . . , An . Note that D2h Bn (x) exists for every x �= 0 and that (2.3) is well-defined as a
Lebesgue integral. Combining Theorems 2.2 and 2.5, we obtain the following new version
of the Hadwiger theorem for finite-valued convex functions.

123
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Theorem 2.6 A functional Z : Conv(Rn;R) → R is a continuous, dually epi-translation
and rotation invariant valuation if and only if there exist functions α0, . . . , αn ∈ Cc([0,∞))

such that

Z(v) =
n∑

j=0

∫

Rn
α j (|x |) dMA j (v; x)

for every v ∈ Conv(Rn;R).

By properties of the integral transform from Theorem 2.5 which maps ζ to α, this version is
equivalent to Theorem 2.2.

3 Preliminaries

We work in n-dimensional Euclidean space R
n , with n ≥ 1, endowed with the Euclidean

norm | · | and the usual scalar product 〈·, ·〉. We also use coordinates, x = (x1, . . . , xn), for
x ∈ R

n . Let Bn := {x ∈ R
n : |x | ≤ 1} be the Euclidean unit ball and Sn−1 the unit sphere in

R
n . A basic reference on convex bodies is the book by Schneider [43].

3.1 Mixed discriminants

We will need some basic definitions and properties which can be found in Sect. 5.5 of the
book by Schneider [43]. Given symmetric n × n matrices Ak = (ak

i j ) for 1 ≤ k ≤ n, their
mixed discriminant is defined as

det(A1, . . . , An) := 1

n!
∑

σ

det

⎛

⎜⎜⎝

aσ(1)
11 · · · aσ(n)

1n
...

...

aσ(1)
n1 · · · aσ(n)

nn

⎞

⎟⎟⎠

where we sum over all permutations σ of {1, . . . , n}. As a consequence of this definition, the
mixed discriminant det is multilinear and symmetric in its entries. Alternatively, the mixed
discriminant is uniquely determined as the symmetric functional that satisfies

det(λ1A1 + · · · + λm Am) =
m∑

i1,...,in=1

λi1 · · · λin det(Ai1 , . . . , Ain ) (3.1)

for all λ1, . . . , λm ∈ R, symmetric n×n matrices A1, . . . , Am andm ≥ 1. By the polarization
formula, the mixed determinant can also be written as

det(A1, . . . , An) = 1

n!
n∑

k=1

∑

1≤ j1<···< jk≤n

(−1)n−k det(A j1 + · · · + A jk ) (3.2)

for symmetric n × n matrices A1, . . . , An (see, for example, [6, Theorem 4]). In addition,
there exist maps Di j : (Rn×n)n−1 → R for 1 ≤ i, j ≤ n such that

det(A1, . . . , An) =
n∑

i, j=1

Di j (A1, . . . , An−1) an
i j (3.3)

123
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for all symmetric n × n matrices A1, . . . , An . We remark that it follows from (3.1) that

[A] j =
(

n

j

)
det(A[ j], In[n − j]) (3.4)

for every symmetric n × n matrix A, where In is the n × n identity matrix. If the symmetric
matrix A is, in addition, invertible, then

[A] j = det(A) [A−1]n− j (3.5)

for 0 ≤ j ≤ n.

3.2 Convex functions

We collect some basic results and properties of convex functions. Standard references are
the books by Rockafellar [41] and Rockafellar & Wets [42].

Let Conv(Rn) be the set of proper, lower semicontinuous, convex functions u : Rn →
(−∞,∞], where u is proper if u �≡ +∞. For t ∈ R, we write

{u ≤ t} := {x ∈ R
n : u(x) ≤ t}

for the sublevel sets of u. If u ∈ Convsc(Rn), then u attains its minimum and we set

argmin u := {x ∈ R
n : u(x) = minz∈Rn u(z)}.

This is a convex body which, if in addition u ∈ C2+(Rn), consists of a single point.
The standard topology on Conv(Rn) and its subsets is induced by epi-convergence. A

sequence of functions uk ∈ Conv(Rn) is epi-convergent to u ∈ Conv(Rn) if for every
x ∈ R

n :

(i) u(x) ≤ lim infk→∞ uk(xk) for every sequence xk ∈ R
n that converges to x ;

(ii) u(x) = limk→∞ uk(xk) for at least one sequence xk ∈ R
n that converges to x .

Note that the limit of an epi-convergent sequence of functions from Conv(Rn) is always
lower semicontinuous.

For u ∈ Conv(Rn), we denote by u∗ ∈ Conv(Rn) its Legendre–Fenchel transform or
convex conjugate, which is defined by

u∗(y) := supx∈Rn

(〈x, y〉 − u(x)
)

for y ∈ R
n . Since u is lower semicontinuous, we have u∗∗ = u. For a convex body K ∈ Kn ,

we denote by IK ∈ Convsc(Rn) its convex indicator function, which is defined as

IK (x) :=
{
0 for x ∈ K ,

+∞ for x /∈ K .

We have

I∗K = hK ,

where hK : Rn → R is the support function of K , defined as

hK (x) := maxy∈K 〈x, y〉.
For u1, u2 ∈ Convsc(Rn), we denote by u1 � u2 ∈ Convsc(Rn) their infimal convolution

or epi-sum which is defined as

(u1 � u2)(x) := inf x1+x2=x u1(x1) + u2(x2)
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for x ∈ R
n . The epi-multiplication of u ∈ Convsc(Rn) by λ > 0 is defined in the following

way. We set

λ u(x) := λ u
( x

λ

)

for x ∈ R
n and note that λ u ∈ Convsc(Rn). This corresponds to rescaling the epi-graph of

u by the factor λ, that is, epi λ u = λ epi u.

Proposition 3.1 The following properties hold.

(a) The function u ∈ Convsc(Rn) if and only if u∗ ∈ Conv(Rn;R).
(b) The function u ∈ Convsc(Rn) ∩ C2+(Rn) if and only if u∗ ∈ Convsc(Rn) ∩ C2+(Rn).
(c) If u1, u2 ∈ Convsc(Rn) are such that u1∨u2 and u1∧u2 are in Convsc(Rn), then u∗

1∨u∗
2

and u∗
1 ∧ u∗

2 are in Conv(Rn;R) and

(u1 ∨ u2)
∗ = u∗

1 ∧ u∗
2, (u1 ∧ u2)

∗ = u∗
1 ∨ u∗

2.

(d) For u1, u2 ∈ Convsc(Rn) and λ1, λ2 > 0,

(λ1 u1 � λ2 u2)
∗ = λ1u∗

1 + λ2u∗
2.

(e) The sequence uk in Convsc(Rn) epi-converges to u ∈ Convsc(Rn), if and only if the
sequence u∗

k in Conv(Rn;R) epi-converges to u∗ ∈ Conv(Rn;R).

We say that a functional Z : Convsc(Rn) → R is epi-homogeneous of degree j if

Z(λ u) = λ j Z(u)

for every λ > 0 and u ∈ Convsc(Rn). A functional Z : Conv(Rn;R) → R is homogeneous
of degree j if

Z(λv) = λ j Z(v)

for every λ > 0 and v ∈ Conv(Rn;R). It is a consequence of Proposition 3.1 that a map
Z : Convsc(Rn) → R is a continuous valuation that is epi-homogeneous of degree j if and
only if v �→ Z(v∗) is a continuous valuation on Conv(Rn;R) that is homogeneous of degree
j . We say that Z : Convsc(Rn) → R is epi-additive if

Z(u1 � u2) = Z(u1) + Z(u2)

for every u1, u2 ∈ Convsc(Rn). The dual notion is additivity on Conv(Rn;R), where a
functional Z : Conv(Rn;R) → R is additive if

Z(v1 + v2) = Z(v1) + Z(v2)

for every v1, v2 ∈ Conv(Rn;R).

3.3 The integral transformR

In [17], the integral transform R and its inverse R−1 were introduced. For ζ ∈ Cb((0,∞))

and s > 0, let

Rζ(s) := s ζ(s) +
∫ ∞

s
ζ(t) dt .

It is easy to see that also Rζ ∈ Cb((0,∞)).
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For l ≥ 1, we write

Rlζ := (R ◦ · · · ◦ R)︸ ︷︷ ︸
l

ζ

and set R0ζ := ζ . We set R−l = (R−1)l for l ≥ 1. We require the following result.

Lemma 3.2 ([17], Lemmas 3.5 and 3.7) For 0 ≤ k ≤ n and 0 ≤ l ≤ n − k, the map
Rl : Dn

k → Dn−l
k is a bijection. Furthermore,

Rlζ(s) = slζ(s) + l
∫ ∞

s
tl−1ζ(t) dt

for every ζ ∈ Dn
k and s > 0, while

R−lρ(s) = ρ(s)

sl
− l

∫ ∞

s

ρ(t)

t l+1 dt

for every ρ ∈ Dn−l
k and s > 0.

For t ≥ 0, let ut ∈ Convsc(Rn) be given by

ut (x) := t |x | + IBn (x)

for x ∈ R
n . The next result shows that the transform R naturally occurs when studying

functional intrinsic volumes.

Lemma 3.3 ([16], Lemmas 2.15 and 3.24) If 1 ≤ j ≤ n and ζ ∈ Dn
j , then

V j,ζ (ut ) = κn

(
n

j

)
Rn− jζ(t)

for t ≥ 0.

We also require the dual form of the previous result. For t ≥ 0, we set vt := u∗
t . Note that

vt (x) =
{
0 for |x | ≤ t,

|x | − t for |x | > t,
(3.6)

for x ∈ R
n and t ≥ 0 and that vt ∈ Conv(Rn;R) for t ≥ 0.

Lemma 3.4 ([16]) If 1 ≤ j ≤ n and ζ ∈ Dn
j , then

V∗
j,ζ (vt ) = κn

(
n

j

)
Rn− jζ(t)

for t ≥ 0.

4 Monge–Ampère andmixedMonge–Ampèremeasures

For w ∈ Conv(Rn), the subdifferential of w at x ∈ R
n is defined by

∂w(x) := {y ∈ R
n : w(z) ≥ w(x) + 〈y, z − x〉 for all z ∈ R

n}.
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Each element of ∂w(x) is called a subgradient of w at x . If w is differentiable at x , then
∂w(x) = {∇w(x)}. Given a subset A of Rn , we define the image of A through the subdiffer-
ential of w as

∂w(A) :=
⋃

x∈A

∂w(x).

We write | · | for n-dimensional Lebesgue measure in R
n and remark that |∂w(C)| can be

infinite for compact setsC ⊂ R
n andw ∈ Conv(Rn). An example is given byw ∈ Conv(Rn)

defined as

w := I{0},

as we have

∂w({0}) = R
n .

However, on Conv(Rn;R) we obtain a Radon measure, where a Borel measure M is called
a Radon measure if M(C) < +∞ for every compact set C ⊂ R

n . This is the content of the
following result, which is due to Aleksandrov [1] (see [21, Theorem 2.3] or [22, Theorem
1.1.13]). Let B(Rn) be the class of Borel sets in Rn .

Lemma 4.1 Letv ∈ Conv(Rn;R). If B ∈ B(Rn), then the set ∂v(B) is measurable. Moreover,
MA(v; ·) : B(Rn) → [0,∞], defined by

MA(v; B) := |∂v(B)|,
is a Radon measure on R

n.

We will refer to MA(v; ·) as the Monge–Ampère measure of v. The notion of Monge–
Ampère measure is fundamental in the definition of weak or generalized solutions of the
Monge–Ampère equation (see, for instance, [21, 22, 47]).

The following statement gathers properties ofMonge–Ampèremeasures. Items (a) and (b)
are due to Aleksandrov [1] (or see [21, Proposition 2.6 and Theorem A.31]) while the
valuation property (c) was deduced by Alesker [4] from Błocki [9] (or see [15, Theorem
9.2]). Recall that for a sequence Mk of Radon measures in R

n , we say that Mk converges
weakly to a Radon measure M in R

n if

lim
k→+∞

∫

Rn
β(x) dMk(x) =

∫

Rn
β(x) dM(x)

for every β ∈ Cc(R
n) (see, for instance, [20]).

Theorem 4.2 The following properties hold.

(a) If v ∈ Conv(Rn;R) and v ∈ C2(V ) on an open set V ⊂ R
n, then MA(v; ·) is absolutely

continuous on V with respect to n-dimensional Lebesgue measure and

dMA(v; x) = det(D2v(x)) dx

for x ∈ V .
(b) If v j is a sequence in Conv(Rn;R) that is epi-convergent to v ∈ Conv(Rn;R), then the

sequence of measures MA(v j ; ·) converges weakly to MA(v; ·).
(c) For every v1, v2 ∈ Conv(Rn;R) such that v1 ∧ v2 ∈ Conv(Rn;R),

MA(v1; ·) + MA(v2; ·) = MA(v1 ∧ v2; ·) + MA(v1 ∨ v2; ·),
that is, MA is a (measure-valued) valuation on Conv(Rn;R).
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Let M(Rn) denote the space of Radon measures on R
n . According to Theorem 4.2 (b),

the map MA : Conv(Rn;R) → M(Rn) is continuous, when Conv(Rn;R) is equipped with
the topology induced by epi-convergence and M(Rn) with the topology induced by weak
convergence.

4.1 MixedMonge–Ampèremeasures

We use polarization of the Monge–Ampère measure with respect to the standard addition
of functions to obtain mixed Monge–Ampère measures. They were called mixed n-Hessian
measures in [46] and were used, for example, in [39].

We say that a map Z : (Conv(Rn;R))n → M(Rn) is symmetric, if the measure
Z(v1, . . . , vn; ·) is invariant with respect to every permutation of n-tuples of functions
in Conv(Rn;R). For 0 ≤ j ≤ n and v, v1, . . . , vn− j ∈ Conv(Rn;R), we write
Z(v[ j], v1, . . . , vn− j ; ·) when the entry v is repeated j times.

Theorem 4.3 There exists a symmetric map MA : (Conv(Rn;R))n → M(Rn) which
assigns to every n-tuple of functions v1, . . . , vn ∈ Conv(Rn;R) a Radon measure
MA(v1, . . . , vn; ·) with the following properties.

(a) For every m ∈ N, every m-tuple of functions v1, . . . , vm ∈ Conv(Rn;R), and
λ1, . . . , λm ≥ 0,

MA(λ1v1 + · · · + λmvm; ·) =
m∑

i1,...,in=1

λi1 · · · λinMA(vi1 , . . . , vin ; ·).

(b) For every v ∈ Conv(Rn;R),

MA(v, . . . , v; ·) = MA(v; ·).
(c) If v1, . . . , vn ∈ Conv(Rn;R) and v1, . . . , vn ∈ C2(V ) on an open set V ⊂ R

n, then
MA(v1, . . . , vn; ·) is absolutely continuous on V with respect to n-dimensional Lebesgue
measure and

dMA(v1, . . . , vn; x) = det(D2v1(x), . . . ,D2vn(x)) dx

for x ∈ V .
(d) The map MA : (Conv(Rn;R))n → M(Rn) is continuous, when (Conv(Rn;R))n is

equipped with the product topology and every factor has the topology induced by epi-
convergence, while M(Rn) is equipped with the topology induced by weak convergence.

(e) The map MA : (Conv(Rn;R))n → M(Rn) is dually epi-translation invariant with
respect to every entry, that is,

MA(v + � + γ, v1, . . . , vn−1; ·) = MA(v, v1, . . . , vn−1; ·)
for every v, v1, . . . , vn−1 ∈ Conv(Rn;R), every linear function � : Rn → R and γ ∈ R.

(f) The map MA : (Conv(Rn;R))n → M(Rn) is additive and positively homogeneous of
degree 1 with respect to every entry, that is,

MA(λv + μw, v1, . . . , vn−1; ·) = λMA(v, v1, . . . , vn−1; ·)
+μMA(w, v1, . . . , vn−1; ·)

for every v,w, v1, . . . , vn−1 ∈ Conv(Rn;R) and λ,μ ≥ 0.
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(g) For 0 ≤ j ≤ n and v1, . . . , vn− j ∈ Conv(Rn;R), the map

v �→ MA(v[ j], v1, . . . , vn− j ; ·)
is a (measure-valued) valuation on Conv(Rn;R).

Proof For v1, . . . , vn ∈ Conv(Rn;R) ∩ C2(Rn) and B ∈ B(Rn), we set

MA(v1, . . . , vn; B) :=
∫

B
det(D2v1(x), . . . ,D2vn(x)) dx .

Note that this measure is non-negative and symmetric. If all functions are in Conv(Rn;R) ∩
C2(Rn), it verifies (a) by Theorem 4.2 (a) and by the fact that the mixed discriminant polar-
izes the determinant. Properties (b) and (f) for functions in Conv(Rn;R) ∩ C2(Rn) also
follow from corresponding properties of the mixed discriminant. Property (e) for functions
in Conv(Rn;R) ∩ C2(Rn) follows directly from the fact that adding an affine function to v

does not change the Hessian matrix of v.
By (3.2), we have

MA(v1, . . . , vn; ·) = 1

n!
n∑

k=1

∑

1≤i1<···<ik≤n

(−1)n−kMA(vi1 + · · · + vik ; ·) (4.1)

for every v1, . . . , vn ∈ Conv(Rn;R)∩C2(Rn). This identity, combinedwith Theorem 4.2 (b)
and the denseness of C2(Rn) functions in Conv(Rn;R), shows that the definition of MA
extends continuously to (Conv(Rn;R))n . Hence, we get properties (c) and (d). The extension
inherits properties (a), (b), (e) and (f) by continuity. Property (g) follows from (4.1) and
Theorem 4.2 (c). ��

Concerning (c), note that we use different notation for the Lebesgue integral over the mixed
discriminant, which we only consider for functions that are of class C2 almost everywhere,
and the mixedMonge–Ampère measure. This distinction is not always made in the literature.

As a consequence of Theorem 4.3 we obtain the following result, which for the special
case j = n was previously established in [14, Proposition 19].

Proposition 4.4 Let β ∈ Cc(R
n) and 0 ≤ j ≤ n. If v1, . . . , vn− j ∈ Conv(Rn;R), then the

map Z : Conv(Rn;R) → R defined by

Z(v) :=
∫

Rn
β(x) dMA(v[ j], v1, . . . , vn− j ; x), (4.2)

is a continuous, dually epi-translation invariant valuation that is homogeneous of degree j .

Proof Note that the integral in (4.2) is well-defined and finite as β ∈ Cc(R
n) and mixed

Monge–Ampère measures are Radonmeasures. Continuity follows from the weak continuity
of mixed Monge–Ampère measures. The invariance, homogeneity and valuation properties
are consequences of items (e), (f) and (g) of Theorem 4.3, respectively. ��

We remark that valuations defined in a way similar to (4.2) have been considered by Alesker
[4] and by Knoerr [29].
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4.2 Hessianmeasures as a special case

For a function v ∈ Conv(Rn;R)∩C2(Rn) and 0 ≤ j ≤ n, the j th Hessianmeasure� j (v; B)

is defined for B ∈ B(Rn) as

� j (v; B) =
∫

B
[D2v(x)] j dx .

Trudinger and Wang [44, 45] showed that � j (v; ·) can be extended to a Radon measure on
Conv(Rn;R). It coincides up to the factor

(n
j

)
with

MA(v[ j], 1
2h2

Bn [n − j]; ·).
Indeed, if v ∈ Conv(Rn;R) ∩ C2(Rn), then by Theorem 4.3 (c) and (3.4),
(

n

j

)
dMA(v[ j], 1

2h2
Bn [n − j]; x) =

(
n

j

)
det(D2v(x)[ j], In[n − j]) dx = [D2v(x)] j dx

= d� j (v, x).

We obtain the conclusion using the denseness of smooth functions.

4.3 A special family of mixedMonge–Ampèremeasures

We introduce the following family ofmixedMonge–Ampèremeasures. For v ∈ Conv(Rn;R)

and 0 ≤ j ≤ n, we set

MA j (v; ·) := MA(v[ j], h Bn [n − j]; ·). (4.3)

By construction, this is a Radon measure on Rn .
It follows from Theorem 4.3 (a) that the mixed Monge–Ampère measures (4.3) can also

be obtained as coefficients of the following Steiner formula,

MA(v + rh Bn ; B) =
n∑

j=0

(
n

j

)
rn− jMA j (v; B) (4.4)

for B ∈ B(Rn) and r ≥ 0.
We derive some of the properties of the measures MA j (v; ·) for 0 ≤ j ≤ n. The subdif-

ferential of h Bn can be explicitly described as

∂h Bn (x) =
⎧
⎨

⎩

{ x

|x |
}

for x �= 0,

Bn for x = 0.
(4.5)

Combining this with the definition of Monge–Ampère measure, we see that

MA(h Bn ; ·) = κnδ0, (4.6)

where δ0 is the Dirac measure at 0. Indeed, if B ∈ B(Rn) does not contain the origin, then
we have ∂h Bn (B) ⊂ S

n−1, so that

MA(h Bn ; B) = |∂h Bn (B)| = 0.

On the other hand, if 0 ∈ B, then ∂h Bn (B) = Bn . Note that

D2h Bn (x) = 1

|x |
(

In − x

|x | ⊗ x

|x |
)

(4.7)
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for x �= 0, where y ⊗ z denotes the tensor product of y, z ∈ R
n .

Theorem 4.5 Let v ∈ Conv(Rn;R). The following properties hold.

(a) For B ∈ B(Rn),

MA0(v; B) = κnδ0(B).

In particular, MA0(v; ·) is independent of v.
(b) For B ∈ B(Rn),

MAn(v; B) = |∂v(B)| = MA(v; B).

(c) For 0 ≤ j ≤ n,

MA j (v; {0}) = κn− j(n
j

) Vj (∂v(0)).

(d) If v ∈ C2(V ) with V ⊂ R
n open and 1 ≤ j ≤ n, thenMA j (v; ·) is absolutely continuous

on V \{0} with respect to n-dimensional Lebesgue measure and

dMA j (v; x) = det(D2v(x)[ j],D2h Bn (x)[n − j]) dx

for x ∈ V with x �= 0.
(e) For 0 ≤ j ≤ n, the map MA j : Conv(Rn;R) → M(Rn) is a continuous valuation.

Proof Item (a) follows from (4.6). Item (b) follows from (4.3) with j = n and the definition
of MA(v; ·). Item (d) is a consequence of Theorem 4.3 (d) and (g) while item (c) follows
from Theorem 4.3 (c) combined with (4.7) and (3.1).

It remains to show (c). By (4.5) we obtain that for v ∈ Conv(Rn;R) and r ≥ 0,

∂(v + r h Bn )(0) = ∂v(0) + r Bn,

where we use that the subdifferential of the sum of two convex functions is the Minkowski
sum of their subdifferentials (see, for example, [41, Theorem 23.8]). Hence, according to
the Steiner formula (1.1),

|∂(v + r h Bn )(0)| =
n∑

j=0

rn− jκn− j V j (∂v(0)),

which combined with the definition of Monge–Ampère measure and (4.4) concludes the
proof. ��

5 ConjugateMonge–Ampère and conjugatemixedMonge–Ampère
measures

First, we define the conjugate Monge–Ampère measure for super-coercive convex functions,
using the construction ofMonge–Ampère measures on Conv(Rn;R) and a duality argument.
Let u ∈ Convsc(Rn). For B ∈ B(Rn), we set

MA∗(u; B) := MA(u∗; B). (5.1)

Note that Lemma 4.1 implies that MA∗ : Convsc(Rn) → M(Rn) is well-defined and that
MA∗(u; ·) is a Radon measure for every u ∈ Convsc(Rn), as u∗ ∈ Conv(Rn;R) in this case.
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We refer to MA∗(u; ·) as the conjugate Monge–Ampère measure of u. It is the push-forward
through ∇u of n-dimensional Lebesgue measure restricted to the domain of u and we have
included a proof of this known fact as item (a) of the following result. In the following, for
u ∈ Convsc(Rn), we use the relation

D2u∗(∇u(x)) = (
D2u(x)

)−1
(5.2)

for x ∈ R
n such that u ∈ C2+(U ) in a neighborhood U of x (see [42, p. 605]).

Theorem 5.1 The following properties hold.

(a) If u ∈ Convsc(Rn), then
∫

Rn
β(y) dMA∗(u; y) =

∫

dom u
β(∇u(x)) dx

for every β ∈ Cc(R
n).

(b) If u j is a sequence in Convsc(Rn) that is epi-convergent to u ∈ Convsc(Rn), then the
sequence of measures MA∗(u j ; ·) converges weakly to MA∗(u; ·).

(c) For every u1, u2 ∈ Convsc(Rn) such that u1 ∨ u2 and u1 ∧ u2 are in Convsc(Rn),

MA∗(u1; ·) + MA∗(u2; ·) = MA∗(u1 ∧ u2; ·) + MA∗(u1 ∨ u2; ·),
that is, MA∗ is a (measure-valued) valuation on Convsc(Rn).

Proof Properties (b) and (c) are consequences of properties (b) and (c) in Theorem 4.2,
respectively, and of Proposition 3.1.

Concerning property (a), observe that if u ∈ Convsc(Rn) ∩ C2+(Rn), then u∗ ∈
Conv(Rn;R) ∩ C2+(Rn) (by Proposition 3.1). By Theorem 4.2 (a), setting v := u∗, we
obtain

∫

Rn
β(y) dMA∗(u; y) =

∫

Rn
β(y) dMA(v; y)

=
∫

Rn
β(y) det(D2v(y)) dy

=
∫

Rn
β(∇u(x)) dx

forβ ∈ Cc(R
n).Hereweused the changeof variable y = ∇u(x) and (5.2). The statement now

follows from property (b) combined with the fact that the functional u �→ ∫
Rn β(∇u(x)) dx

is continuous on Convsc(Rn) (see (1.4)). ��

5.1 Conjugate mixedMonge–Ampèremeasures

We use polarization of the conjugate Monge–Ampère measure with respect to infimal con-
volution to define conjugate mixed Monge–Ampère measures. The following result is easily
obtained from Theorem 4.3.

Theorem 5.2 There exists a symmetric map MA∗ : (Convsc(Rn))n → M(Rn) which
assigns to every n-tuple of functions u1, . . . , un ∈ Convsc(Rn) a Radon measure
MA∗(u1, . . . , un; ·) with the following properties.
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(a) For every m ∈ N, every m-tuple of functions u1, . . . , um ∈ Convsc(Rn)andλ1, . . . , λm ≥
0,

MA∗(λ1 u1 � . . . � λm um; ·) =
m∑

i1,...,in=1

λi1 · · · λin MA∗(ui1 , . . . , uin ; ·).

(b) For every u ∈ Convsc(Rn),

MA∗(u, . . . , u; ·) = MA∗(u; ·).

(c) If u1, . . . , un ∈ Convsc(Rn) and u∗
1, . . . , u∗

n ∈ C2(V ) on an open set V ⊂ R
n, then the

measureMA∗(u1, . . . , un; ·) is absolutely continuous on V with respect to n-dimensional
Lebesgue measure and

dMA∗(u1, . . . , un; x) = det(D2u∗
1(x), . . . ,D2u∗

n(x)) dx

for x ∈ V .
(d) The map MA∗ : (Convsc(Rn))n → M(Rn) is continuous, when (Convsc(Rn))n is

equipped with the product topology and every factor has the topology induced by epi-
convergence, while M(Rn) is equipped with the topology induced by weak convergence.

(e) The map MA∗ : (Convsc(Rn))n → M(Rn) is epi-translation invariant with respect to
every entry, that is,

MA∗(u ◦ τ−1 + γ, u1, . . . , un−1; ·) = MA∗(u, u1, . . . , un−1; ·)

for every u, u1, . . . , un−1 ∈ Convsc(Rn), every translation τ : Rn → R
n and γ ∈ R.

(f) The map MA∗ : (Convsc(Rn))n → M(Rn) is epi-additive and epi-homogeneous of
degree 1 with respect to every entry, that is,

MA∗((λ u) � (μ w), u1, . . . , un−1; ·) = λMA∗(u, u1, . . . , un−1; ·)
+μMA∗(w, u1, . . . , un−1; ·),

for every u, w, u1, . . . , un−1 ∈ Convsc(Rn) and for every λ,μ ≥ 0.
(g) For 0 ≤ j ≤ n and u1, . . . , un− j ∈ Convsc(Rn), the map

u �→ MA∗(u[ j], u1, . . . , un− j ; ·)

is a (measure-valued) valuation on Convsc(Rn).

Here, for (a) and (f), we extend the definition of epi-multiplication to 0 u = I{0} for u ∈
Convsc(Rn).

The dual version of Proposition 4.4 is the following result.

Proposition 5.3 Let β ∈ Cc(R
n) and 0 ≤ j ≤ n. If u1, . . . , un− j ∈ Convsc(Rn), then the

map Z : Convsc(Rn) → R, defined by

Z(u) :=
∫

Rn
β(x) dMA∗(u[ j], u1 . . . , un− j ; x), (5.3)

is a continuous, epi-translation invariant valuation, that is epi-homogeneous of degree j .

123



The Hadwiger theorem on convex functions, III Page 19 of 37 181

5.2 Connections to Hessianmeasures

For u ∈ Convsc(Rn) ∩ C2+(Rn) and 0 ≤ j ≤ n, define the Hessian measure � j (u; ·) as the
push-forward through ∇u of the Hessian measure �n− j (u; ·) of u, that is,

∫

Rn
β(y) d� j (u; y) =

∫

Rn
β(∇u(x)) [D2u(x)]n− j dx

for every Borel function β : Rn → [0,∞). We remark that the measure � j (u; ·) can be
defined for every u ∈ Convsc(Rn) and is a marginal of a generalized Hessian measure (see
[15]). Moreover, for u ∈ Convsc(Rn) ∩ C2+(Rn) we obtain from (5.1) and Theorem 4.3 (c)
that

∫

Rn
β(y) dMA∗(u[ j], 1

2h2
B[n − j]; y) =

∫

Rn
β(y) dMA(u∗[ j], 1

2h2
B [n − j]; y)

=
∫

Rn
β(y) det(D2u∗[ j], In[n − j]) dy

= 1(n
j

)
∫

Rn
β(y)[D2u∗(y)] j dy

= 1(n
j

)
∫

Rn
β(∇u(x))[D2u(x)]n− j dx,

where for the last step we used (5.2) and (3.5). Hence, the measure

MA∗(u[ j], 1
2h2

Bn [n − j]; ·),
coincides up to the factor

(n
j

)
with � j (u; ·) for u ∈ C2+(Rn). The corresponding statement

holds for general u ∈ Convsc(Rn) by the denseness of smooth functions and the weak
continuity of Hessian and conjugate mixed Monge–Ampère measures.

5.3 A special family of conjugatemixedMonge–Ampèremeasures

We introduce the following family of conjugate mixed Monge–Ampère measures. For u ∈
Convsc(Rn) and 0 ≤ j ≤ n, we set

MA∗
j (u; ·) := MA∗(u[ j], IBn [n − j]; ·).

By construction, this is a Radon measure on Rn . A consequence of this definition is that

MA∗
j (u; ·) = MA j (u

∗; ·)
for u ∈ Convsc(Rn). It follows from Theorem 5.2 (a) that this family of conjugate mixed
Monge–Ampère measures can also be obtained as coefficients of the following Steiner for-
mula,

MA∗(u � (r IBn ); B) =
n∑

j=0

(
n

j

)
rn− jMA∗

j (u; B) (5.4)

for B ∈ B(Rn) and r ≥ 0.
The next result describes properties of this family of conjugateMonge–Ampère measures.

Theorem 5.4 Let u ∈ Convsc(Rn). The following statements hold.
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(a) For every B ∈ B(Rn),

MA∗
0(u; B) = κnδ0(B).

In particular, MA∗
0(u; ·) is independent of u.

(b) For every B ∈ B(Rn),

MA∗
n(u; B) = |∂u∗(B)| = MA∗(u; B).

(c) For 0 ≤ j ≤ n,

MA∗
j (u; {0}) = κn− j(n

j

) Vj (argmin u).

(d) If u∗ ∈ C2+(V ) with V ⊂ R
n open and 1 ≤ j ≤ n, then MA∗

j (u; ·) is absolutely
continuous on V with respect to n-dimensional Lebesgue measure and

dMA∗
j (u; x) = det(D2u∗(x)[ j],D2h Bn (x)[n − j]) dx

for x ∈ V with x �= 0.
(e) For 0 ≤ j ≤ n, the map MA∗

j : Convsc(Rn) → M(Rn) is a continuous valuation.

Proof The statements follow from the corresponding statements in Theorem 4.5 by duality.
For (c), we use that ∂u∗(0) = argmin u (see [42, Theorem 11.8]). ��

In the following, for u ∈ Convsc(Rn), we will use the fact that y ∈ ∂u(x) if and only if
x ∈ ∂u∗(y) (see, for example, [41, Theorem 23.5]). Combined with (5.2), it implies that
u ∈ C2+(U ) for some open set U ⊂ R

n if and only if u∗ ∈ C2+(V ) with V := {∇u(x) : x ∈
U }. In particular, we obtain that the set V is open and ∇u : U → V is a bijection.

For the following result, we recall that τi (u, x) is the i th elementary symmetric function
of the principal curvatures of the sublevel set of u passing through x for x /∈ argmin u.

Theorem 5.5 Let u ∈ Convsc(Rn) and 1 ≤ j ≤ n −1. If u ∈ C2+(U ) for an open set U ⊂ R
n

and V := {∇u(x) : x ∈ U }, then

MA∗
j (u; B) = 1(n

j

)
∫

(∇u)−1(B)

τn− j (u, x) dx (5.5)

for every Borel set B ⊂ V \{0}. Equivalently,
∫

Rn
β(y) dMA∗

j (u; y) = 1(n
j

)
∫

Rn
β(∇u(x)) τn− j (u, x) dx (5.6)

for every β ∈ Cc(V ) .

For the proof we need the following result.

Lemma 5.6 Let u ∈ Convsc(Rn) be such that u ∈ C2+(U ) for an open set U ⊂ R
n and let

r > 0. If Tr : U\ argmin u → R
n is defined by

Tr (x) := x + r
∇u(x)

|∇u(x)| ,
then, for the Jacobi matrix DTr , we have

det(DTr (x)) =
n−1∑

j=0

r jτ j (u, x)

for every x ∈ U\ argmin u.
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Proof Let x ∈ U\ argmin u. Clearly,

DTr (x) = In + r DN (x)

where N (x) = (N1(x), . . . , Nn(x)) is defined as

N (x) := ∇u(x)

|∇u(x)| .

Let t := u(x). We choose a coordinate system such that

∇u(x) = λen = λνt (x), (5.7)

where νt (x) denotes the outer unit normal to {u ≤ t} at x and λ = |∇u(x)| > 0. We may
also assume that, for 1 ≤ j ≤ n − 1, the vector e j is a direction of principal curvature for
∂{u ≤ t} at x with corresponding principal curvature κ j (u, x). As N is an extension of νt ,
we obtain

DN (x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

κ1(u, x) 0 · · · 0 ∂ N1
∂xn

(x)

0 κ2(u, x) · · · 0 ∂ N2
∂xn

(x)

...
...

. . .
...

...

0 0 · · · κn−1(u, x)
∂ Nn−1
∂xn

(x)
∂ Nn
∂x1

(x) ∂ Nn
∂x2

(x) · · · ∂ Nn
∂xn−1

(x) ∂ Nn
∂xn

(x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

On the other hand, using (5.7), we obtain

∂ Nn

∂x j
(x) = ∂

∂x j

(
1

|∇u(x)|
∂u(x)

∂xn

)

= 1

|∇u(x)|
∂2u(x)

∂x j∂xn
− 1

|∇u(x)|2
∂u(x)

∂xn

∂

∂x j
|∇u(x)|

= 1

|∇u(x)|
∂2u(x)

∂x j∂xn
− 1

|∇u(x)|3
∂u(x)

∂xn

n∑

i=1

∂u(x)

∂xi

∂2u(x)

∂xi∂x j

= 0

for 1 ≤ j ≤ n. Here, for the last equality, we used that ∂u(x)
∂xi

= 0 for all 1 ≤ i ≤ n − 1
because of the choice of our coordinate system. Therefore,

DTr (x) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 + rκ1(u, x) 0 · · · 0 ∂ N1
∂xn

(x)

0 1 + rκ2(u, x) · · · 0 ∂ N2
∂xn

(x)

...
...

. . .
...

...

0 0 · · · 1 + rκn−1(u, x)
∂ Nn−1
∂xn

(x)

0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

and

det(DTr (x)) =
n−1∏

i=1

(1 + r κi (u, x)),

which implies the representation formula. ��
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Proof of Theorem 5.5 Formula (5.6) directly follows from (5.5). So, we have to prove (5.5).
Let B ⊂ V \{0} be a Borel set. For r > 0, let Tr : U\ argmin u be the map defined in

Lemma 5.6. Note that U\ argmin u = ∇u−1(V \{0}). We have

|∂(u∗ + r h Bn )(B)| =
∣∣∣
{∇u∗(y) + r

y

|y| : y ∈ B
}∣∣∣

=
∣∣∣
{

x + r
∇u(x)

|∇u(x)| : x ∈ (∇u)−1(B)
}∣∣∣

=
∫

(∇u)−1(B)

det(DTr (x)) dx

=
n−1∑

j=0

r j
∫

(∇u)−1(B)

τ j (u, x) dx,

where we have used Lemma 5.6. On the other hand, by the definition of the Monge–Ampère
measure and of the conjugate Monge–Ampère measure and (5.4), we have

|∂(u∗ + r h Bn )(B)| = MA∗(u � (r IBn ); B) =
n∑

j=1

(
n

j

)
rn− jMA∗

j (u; B).

The conclusion follows from comparing coefficients. ��

6 ConnectingMAj(v; ·) and Hessianmeasures

The purpose of this section is to prove Proposition 6.7, which shows how integrals of radially
symmetric functions with respect to Hessian measures can be written in terms of integrals
with respect to the new family of mixed Monge–Ampère measures. This result is essential
for our new proof of the existence of functional intrinsic volumes, Theorems 1.2 and 2.1, as
well as for the proof of the new representations, Theorems 1.6 and 2.5.

6.1 Reilly-type lemmas

We will need the following result by Reilly [40, Proposition 2.1] (or see [46, (2.10)]).

Lemma 6.1 (Reilly) If v1, . . . , vn−1 ∈ C3(Rn) and 1 ≤ j ≤ n, then

n∑

i=1

∂

∂xi
Di j (D

2v1(x), . . . ,D2vn−1(x)) = 0

for every x ∈ R
n.

The following result shows that

(v0, . . . , vn) �→
∫

Rn
v0(x) det(D2v1(x), . . . ,D2vn(x)) dx

with v0, . . . , vn ∈ C2(Rn) is symmetric in its entries if at least one the functions has compact
support. We remark that this corresponds to the symmetry of mixed volumes in the following
representation,

V (K1, . . . , Kn) =
∫

Sn−1
hK1(y) det(D̃

2
hK2(y), . . . , D̃

2
hKn (y)) dy,
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for sufficiently smooth K1, . . . , Kn ∈ Kn , where D̃
2
hK (y) is the restriction of D2hK to the

tangent space of Sn−1 at y ∈ S
n−1 (see for example equations (2.68) and (5.19) in [43]).

Lemma 6.2 If v0, . . . , vn ∈ C2(Rn) are such that at least one of the functions has compact
support, then

∫

Rn

v0(x) det(D2v1(x), . . . ,D2vn(x)) dx (6.1)

=
∫

Rn

vn(x) det(D2v1(x), . . . ,D2vn−1(x),D2v0(x)) dx .

Proof Assume first that v0, . . . , vn ∈ C3(Rn). In this case, Di j (D2v2(x), . . . ,D2vn(x)) is
differentiable and therefore

∂

∂xi

( n∑

j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂vn(x)

∂x j

)

=
n∑

j=1

∂

∂xi
Di j (D

2v1(x), . . . ,D2vn−1(x))
∂vn(x)

∂x j

+
n∑

j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂2vn(x)

∂xi∂x j

for 1 ≤ i ≤ n and x ∈ R
n . Summation over i combined with Lemma 6.1 now gives

n∑

i, j=1

∂

∂xi

(
Di j (D

2v1(x), . . . ,D2vn−1(x))
∂vn(x)

∂x j

)

=
n∑

i, j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂2vn(x)

∂xi∂x j

for x ∈ R
n . By the definition of Di j and using that at least one of the functions v0, . . . , vn

has compact support, we now obtain from the divergence theorem that
∫

Rn
v0(x) det(D2v1(x), . . . ,D2vn(x)) dx

=
∫

Rn
v0(x)

n∑

i, j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂2vn(x)

∂xi∂x j
dx

=
∫

Rn
v0(x)

n∑

i, j=1

∂

∂xi

(
Di j (D

2v1(x), . . . ,D2vn−1(x))
∂vn(x)

∂x j

)
dx

= −
∫

Rn

n∑

i, j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂vn(x)

∂x j

∂v0(x)

∂xi
dx .

Since the last expression is symmetric in v0 and vn , we may exchange the two functions.
This completes the proof under the additional assumption that all functions are in C3(Rn).

It remains to show that the result holds true on C2(Rn). By the multilinearity of the mixed
discriminant combined with the assumption that one of the functions v0, . . . , vn has compact
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support, there exists r > 0 such that the integrands in (6.1) vanish outside of r Bn . The result
now easily follows by a standard approximation argument combined with the dominated
convergence theorem. ��

A further consequence of Lemma 6.1 is the following result.

Lemma 6.3 Let v1, . . . , vn−1 ∈ C2(Rn) and let F : Rn → R
n be a continuously differen-

tiable vector field. If F has compact support, then

∫

Rn

n∑

i, j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂ Fi (x)

∂x j
dx = 0.

Proof Assume first that v1, . . . , vn−1 ∈ C3(Rn). Using the definition of Di j and that F has
compact support, we obtain from the divergence theorem that

∫

Rn

n∑

i, j=1

Di j (D
2v1(x), . . . ,D2vn−1(x))

∂ Fi (x)

∂x j
dx

= −
∫

Rn

n∑

i, j=1

Fi (x)
∂

∂x j
Di j (D

2v1(x), . . . ,D2vn−1(x)) dx

and the statement follows from Lemma 6.1.
As in the proof of Lemma 6.2, the general case follows from the fact that F has compact

support combined with a standard approximation argument and the dominated convergence
theorem. ��

6.2 Applications tomixedMonge–Ampère integrals

In the following we consider special integrals of mixed discriminants where the support
function of the unit ball Bn appears repeatedly.

First, we show that such integrals are well-defined. Recall that D2h Bn (x) exists for every
x �= 0. We remark that throughout this subsection, Lebesgue integrals with respect to the
standard Lebesgue measure on R

n are considered.

Lemma 6.4 Let 1 ≤ k ≤ n. If ζ ∈ Cb((0,∞)) is such that limr→0+ rk−1ζ(r) exists and is
finite, then the integral

∫

Rn

∣∣ζ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k])∣∣ dx

is well-defined and finite for every v1, . . . , vk ∈ C2(Rn).

Proof Fix v1, . . . , vk ∈ C2(Rn) and let w ∈ C(Rn\{0}) be defined by

w(x) = |x |n−k det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k])
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for x ∈ R
n\{0}. By the multilinearity of the mixed discriminant and (4.7) the function w is

bounded on Bn\{0}. Using polar coordinates, we obtain
∫

Rn

∣∣ζ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k])∣∣ dx

=
∫

Sn−1

∞∫

0

∣∣rk−1ζ(r)w(ry)
∣∣ dr dHn−1(y),

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. The result now follows
from our assumptions on ζ together with the fact that w is bounded on Bn\{0}. ��

The following result shows how replacing h Bn by 1
2h2

Bn once in the mixed discriminant
corresponds to taking an integral transform of the density function.

Lemma 6.5 Let 1 ≤ k ≤ n − 1 and let ε > 0. If v1, . . . , vk ∈ C2(Rn) and D2v1(x) = 0 for
every x ∈ εBn, then

∫

Rn
ψ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k]) dx

=
∫

Rn
ρ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], In) dx

for every ψ ∈ C2
b ((0,∞)), where ρ ∈ Cb((0,∞)) is given for s > 0 by

ρ(s) := ψ(s)

s
−

∫ ∞

s

ψ(t)

t2
dt .

Proof Observe that our assumptions on v1 imply that themixed discriminants in both integrals
vanish on εBn . Since the support of ψ is bounded, this implies that both integrals are well-
defined and finite.

Let ξ(t) = ∫ ∞
t

ψ(s)
s2

ds for t > 0. Since ψ ∈ C2
b ((0,∞)) we have ξ ∈ C3

b ((0,∞)) and

furthermore ψ(t) = −ξ ′(t)t2 as well as ψ(t)
t = −ξ ′(t)t for t > 0. Thus, we need to show

that
∫

Rn
ξ ′(|x |)|x |2 det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k]) dx

=
∫

Rn

(
ξ ′(|x |)|x | + ξ(|x |)) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], In) dx

(6.2)

for every v1, . . . , vk ∈ C2(Rn). Since the mixed discriminants in both integrals vanish
on εBn , we can replace h Bn as well as x �→ ξ ′(|x |)|x |2 and x �→ ξ ′(|x |)|x | + ξ(|x |) by
suitable functions inC2(Rn)without changing the values of the integrals. Thus after applying
Lemma 6.2 and changing back to the original functions, we obtain that (6.2) is equivalent to
∫

Rn
|x | det(D2v1(x), . . . ,D2vk(x),D2hBn (x)[n − k − 1],D2(ξ ′(|x |)|x |2)) dx

=
∫

Rn

|x |2
2

det(D2v1(x), . . . ,D2vk(x),D2hBn (x)[n − k − 1],D2(ξ ′(|x |)|x | + ξ(|x |))) dx .
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Using the multilinearity of mixed discriminants, it suffices to show that
∫

Rn
det

(
D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], |x |D2(ξ ′(|x |)|x |2)

−|x |2
2

D2(ξ ′(|x |)|x | + ξ(|x |))) dx

vanishes. Since we have

D2(ξ ′(|x |)|x |2) = ξ ′′′(|x |) x ⊗ x + ξ ′′(|x |)|x | In + 3
ξ ′′(|x |)

|x | x ⊗ x + 2ξ ′(|x |) In

and

D2(ξ ′(|x |)|x | + ξ(|x |)) = ξ ′′′(|x |)
|x | x ⊗ x + ξ ′′(|x |) In + 2

ξ ′′(|x |)
|x |2 x ⊗ x

+2
ξ ′(|x |)

|x | In − 2
ξ ′(|x |)
|x |3 x ⊗ x,

we obtain

|x |D2(ξ ′(|x |)|x |2) − |x |2
2

D2(ξ ′(|x |)|x | + ξ(|x |)) = −1

2

(
ψ ′(|x |)In + ψ ′′(|x |)

|x | x ⊗ x
)

= −1

2
D(ψ ′(|x |)x)

for every x ∈ R
n\{0}, where D(ψ ′(|x |)x) denotes the Jacobian of the vector field x �→

ψ ′(|x |)x . The result now follows from Lemma 6.3 and the definition of Di j , where we have
used again that we may replace the integrands in a neighborhood of the origin. ��

In the next two statements we remove the regularity assumptions of the last result and
treat the case where the support function of the unit ball Bn is replaced multiple times.

Proposition 6.6 If 1 ≤ k ≤ n − 1 and ψ ∈ Dn
n−k+1, then

∫

Rn
ψ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k]) dx

=
∫

Rn
R−1ψ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], In) dx

for every v1, . . . , vk ∈ C2(Rn), where R−1 was defined in Sect. 3.3.

Proof Since ψ ∈ Dn
n−k+1, there exists γ > 0 such that ψ(t) = 0 for every t ≥ γ . Note that

by Lemma 3.2 this implies that R−1ψ(t) = 0 for every t ≥ γ . We will assume first that
there exists ε > 0 such that D2v1(x) = 0 for every x ∈ εBn .

Letψε ∈ Cb((0,∞)) be such thatψε ≡ ψ on [ε,∞) andψε ≡ 0 on (0, ε/2]. Observe that
this implies thatR−1ψε ≡ R−1ψ on [ε,∞). For δ > 0 we can find ψε,δ ∈ C2

b ((0,∞)) such
thatψε,δ ≡ 0 on (0, ε/2]∪[γ +δ,∞) and such thatψε,δ → ψε uniformly on (ε/2, γ +δ) (and
thus on (0,∞)) as δ → 0+. By the properties of ψε this also implies uniform convergence
of R−1ψε,δ to R−1ψε on (0,∞) as δ → 0+. Using that D2v1 ≡ 0 on εBn , Lemma 6.5, as
well as the fact that the integrands in each of the following integrals are continuous and have
compact support, we now have
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∫

Rn
ψ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k]) dx

=
∫

Rn
ψε(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k]) dx

= lim
δ→0+

∫

Rn
ψε,δ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k]) dx

= lim
δ→0+

∫

Rn
R−1ψε,δ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], In) dx

=
∫

Rn
R−1ψε(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], In) dx

=
∫

Rn
R−1ψ(|x |) det(D2v1(x), . . . ,D2vk(x),D2h Bn (x)[n − k − 1], In) dx,

which completes the proof under the additional assumptions on v1.
For general v1 ∈ C2(Rn), observe that without loss of generality we may assume that

v1(0) = 0 and ∇v1(0) = 0. Thus, there exist β, ε0 > 0 such that |v1(x)| ≤ β|x |2 and
|∇v1(x)| ≤ β|x | for every x ∈ 2ε0Bn . Let ϕ ∈ C2([0,∞)) be such that ϕ(t) = 0 for
t ∈ [0, 1] and ϕ(t) = 1 for t ∈ [2,∞). For ε ∈ (0, ε0), set v1,ε(x) := v1(x) ϕ(|x |/ε)
for x ∈ R

n . We now have D2v1,ε(x) = 0 for every x ∈ εBn and our assumptions on v1
together with the fact that ϕ is constant on [2,∞) imply that D2v1,ε is uniformly bounded
on γ Bn for every ε ∈ (0, ε0). Moreover, D2v1,ε → D2v1 pointwise on R

n as ε → 0+.
Since ψ ∈ Dn

n−k+1 the limit limt→0+ tk−1ψ(t) exists and is finite. By Lemma 3.2 and since

Dn
n−k+1 = Dn−1

n−k , we have R−1ψ ∈ Dn
n−k and thus also limt→0+ tkR−1ψ(t) exists and is

finite. Hence, by the first part of the proof and Lemma 6.4 combined with the dominated
convergence theorem we now obtain
∫

Rn
ψ(|x |) det(D2v1(x), . . . ,D2vk(x),D2hBn (x)[n − k]) dx

= lim
ε→0+

∫

Rn
ψ(|x |) det(D2v1,ε(x),D2v2(x), . . . ,D2vk(x),D2hBn (x)[n − k]) dx

= lim
ε→0+

∫

Rn
R−1ψ(|x |) det(D2v1,ε(x),D2v2(x), . . . ,D2vk(x),D2hBn (x)[n − k − 1], In) dx

=
∫

Rn
R−1ψ(|x |) det(D2v1(x),D2v2(x), . . . ,D2vk(x),D2hBn (x)[n − k − 1], In) dx,

which concludes the proof. ��
Proposition 6.7 If 1 ≤ j ≤ n − 1 and ζ ∈ Dn

j , then
∫

Rn
ζ(|x |) [D2v(x)] j dx =

(
n

j

)∫

Rn
Rn− jζ(|x |) det(D2v(x)[ j],D2h Bn (x)[n − j]) dx

for every v ∈ C2(Rn).

Proof Let 1 ≤ j ≤ n − 1 and ζ ∈ Dn
j be given. We claim that

∫

Rn
Rn−kζ(|x |) det(D2v(x)[ j],D2h Bn (x)[n − k], In[k − j]) dx

=
∫

Rn
Rn−(k+1)ζ(|x |) det(D2v(x)[ j],D2h Bn (x)[n − (k + 1)], In[(k + 1) − j]) dx

(6.3)
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for every k ∈ N such that j ≤ k ≤ n −1 and every v ∈ C2(Rn). Indeed, as ζ ∈ Dn
j it follows

from Lemma 3.2 thatRn−kζ ∈ Dk
j . Since Dk

j = Dn
n−k+ j and Dn

n−k+ j ⊆ Dn
n−k+1, the claim

now follows from Proposition 6.6.
Applying (6.3) recursively (n − j) times (for each possible value of k), we obtain that

∫

Rn
Rn− jζ(|x |) det(D2v(x)[ j],D2h Bn (x)[n − j]) dx

=
∫

Rn
ζ(|x |) det(D2v(x)[ j], In[n − j]) dx

for every v ∈ C2(Rn). The statement now follows from (3.4). ��

7 Proofs of themain results

In this section, we present a new proof of the existence of functional intrinsic volumes,
Theorems 1.2 and 2.1. Moreover, we prove our main results: the new representations of
functional intrinsic volumes, Theorems 1.6 and 2.5, aswell as the Steiner formulas, Theorems
1.4 and 2.3.

By the duality relations between valuations on Convsc(Rn) and Conv(Rn;R), it is enough
to prove the results for valuations on Conv(Rn;R), that is, to prove Theorems 2.1, 2.3 and
2.5. Theorems 1.2 and 1.4 are immediate consequences of their counterparts on Conv(Rn;R)

while Theorem 1.6 follows from Theorem 2.5 combined with Theorem 5.5.

7.1 New proof of Theorem 2.1

The statement is trivial for j = 0 and follows from Proposition 4.4 for j = n. So, let
1 ≤ j ≤ n − 1 and ζ ∈ Dn

j . We set α := (n
j

)Rn− jζ and note that, by Lemma 3.2, we have
α ∈ Dn

n . We define Z : Conv(Rn;R) → R by

Z(v) :=
∫

Rn
α(|x |) dMA j (v; x).

By Proposition 4.4, the definition of MA j (v; ·), and (4.3), the functional Z is a continuous
and dually epi-translation invariant valuation on Conv(Rn;R). It is easy to see that Z is
rotation invariant. For v ∈ Conv(Rn;R) ∩ C2(Rn), it follows from Theorem 4.5 (c) and (d)
that

Z(v) =
∫

Rn
α(|x |) det(D2v(x)[ j],D2h Bn (x)[n − j]) dx

and thus, by Proposition 6.7, the valuation Z satisfies (2.1) for v ∈ Conv(Rn;R) ∩ C2(Rn).
We conclude that Z has the required properties and remark that it is uniquely determined

by (2.1), since Conv(Rn;R) ∩ C2+(Rn) is dense in Conv(Rn;R).

7.2 Proof of Theorem 2.5

For j = n the statement trivially follows from Proposition 4.4 and Theorem 4.5 (d). Next,
consider the case j = 0 and let ζ ∈ Dn

0 and α ∈ Cc([0,∞)) be as in the statement of the
theorem. Using polar coordinates and (4.6) we now have
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V∗
0,ζ (v) =

∫

Rn
ζ(|x |) dx = nκn lim

s→0+

∫ ∞

s
tn−1ζ(t) dt

= κn α(0) =
∫

Rn
α(|x |) dMA(h Bn ; x) =

∫

Rn
α(|x |) dMA0(v; x)

for every v ∈ Conv(Rn;R), which proves the statement for j = 0. Finally, let 1 ≤ j ≤ n −1
and ζ ∈ Dn

j . For v ∈ Conv(Rn;R) ∩ C2(Rn), it follows from (2.1), which was established

in the new proof of Theorem 2.1 for v ∈ Conv(Rn;R) ∩ C2(Rn), and Proposition 6.7 that

V∗
j,ζ (v) =

∫

Rn
ζ(|x |)[D2v(x)

]
j dx

=
(

n

j

)∫

Rn
Rn− jζ(|x |) det(D2v(x)[ j],D2h Bn (x)[n − j]) dx .

Combining this with Theorem 4.5 (c) and (d), we obtain

V∗
j,ζ (v) =

∫

Rn
α(|x |) dMA j (v; x).

The statement now follows from Proposition 4.4 and the fact that Conv(Rn;R) ∩ C2(Rn) is
dense in Conv(Rn;R).

7.3 Proof of Theorem 2.3

Let ζ ∈ Dn
n be given and for 0 ≤ j ≤ n, let ζ j ∈ Dn

j be defined as in (2.2). By Theorem 2.5
and (4.4) we have

V∗
n,ζ (v + rh Bn ) =

∫

Rn
ζ(|x |) dMA(v + rh Bn ; x)

=
n∑

j=0

(
n

j

)
rn− j

∫

Rn
ζ(|x |) dMA j (v; x)

for every v ∈ Conv(Rn;R) and r > 0. Using Theorem 2.5 again and Lemma 3.2, we obtain
that

(
n

j

)∫

Rn
ζ(|x |) dMA j (v; x) = κn− j V

∗
j, 1

κn− j
R−(n− j)ζ

(v) = κn− j V
∗
j,ζ j

(v)

for every 0 ≤ j ≤ n and v ∈ Conv(Rn;R), which concludes the proof.

8 Additional results and applications

In this section we prove additional results and derive further applications. Section 8.1 con-
tains a second proof of the functional Steiner formula, Theorem 1.4, which uses the Hadwiger
Theorem on convex functions, Theorem 1.3. In the subsequent subsection we use the proper-
ties of mixedMonge–Ampère measures to obtain a new representation of functional intrinsic
volumes. In Sect. 8.3, we show how the classical Steiner formula (1.1) can be retrieved from
our new functional version. The final subsection partly answers the question, which functions
playing the role of the unit ball give rise to all functional intrinsic volumes in a Steiner-type
formula.
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8.1 Alternate proof of Theorem 1.4

Our approach for this proof follows the proof of the classical Steiner formula from [27, The-
orem 9.2.3] and uses Theorem 1.3. We remark that multinomiality with respect to infimal
convolution of continuous, epi-translation invariant valuations on Convsc(Rn) was estab-
lished by the authors in [14]. For polynomial expansions for a different functional analog of
the volume on convex functions, see Milman and Rotem [36].

Let ζ ∈ Dn
n be given. It is easy to see that u �→ Vn,ζ (u � IBn ) defines a continuous,

epi-translation and rotation invariant valuation on Convsc(Rn). Thus, by Theorem 1.3 there
exist functions ζ̃ j ∈ Dn

j for 0 ≤ j ≤ n such that

Vn,ζ (u � IBn ) =
n∑

j=0

V j,ζ̃ j
(u)

for every u ∈ Convsc(Rn). Using the epi-homogeneity of functional intrinsic volumes, we
now have

Vn,ζ (u � (r IBn )) = rn Vn,ζ ((
1
r u) � IBn ) = rn

n∑

j=0

V j,ζ̃ j
( 1r u) =

n∑

j=0

rn− j V j,ζ̃ j
(u)

for every u ∈ Convsc(Rn) and r > 0.
In order to determine the functions ζ̃ j for 0 ≤ j ≤ n, we evaluate the last expression for

u = ut with t > 0, where ut (x) := t |x | + IBn (x) for x ∈ R
n . Since

(
ut � (r IBn )

)
(x) =

⎧
⎪⎨

⎪⎩

0 for 0 ≤ |x | ≤ r ,

t(|x | − r) for r < |x | ≤ 1 + r ,

+∞ for 1 + r < |x |,
a simple calculation shows that

Vn,ζ (ut � (r IBn )) =
∫

(1+r)Bn
ζ(|∇(ut � (r IBn ))(x)|) dx

= κnrnζ(0) + nκnζ(t)
∫ 1+r

r
sn−1 ds

= κnrnζ(0) +
n∑

j=1

(
n

j

)
rn− jκnζ(t)

for every r > 0 and t > 0. A comparison of coefficients combined with Lemma 3.3 shows
that Rn− j ζ̃ j (t) = ζ(t) for every t > 0 and 1 ≤ j ≤ n. Thus, by Lemma 3.2, we get
ζ̃ j = R−(n− j)ζ for every 1 ≤ j ≤ n.

For j = 0, observe that

V0,ξ (u) = V∗
0,ξ (u

∗) =
∫

Rn
ξ(|x |) dx = n κn lim

s→0+

∫ ∞

s
tn−1ξ(t) dt

for every u ∈ Convsc(Rn) and ξ ∈ Dn
0 . Thus, our calculations combined with Lemma 3.2

and the definition of Dn
0 show that

κnζ(0) = V0,ζ̃0
(ut ) = nκn

∫ ∞

0
ζ̃0(s)s

n−1 ds = κnRn ζ̃0(0)
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for every t > 0. Since V0,ζ̃0
(u) is independent of u ∈ Convsc(Rn) and only depends on

Rn ζ̃0(0), it easily follows from Lemma 3.2 that we may choose ζ̃0 = R−nζ .
The result now follows by setting ζ j = 1

κn− j
ζ̃ j = 1

κn− j
R−(n− j)ζ and observing that

V j,ζ̃ j
(u) = κn− j V j,ζ j (u)

for every u ∈ Convsc(Rn) and 0 ≤ j ≤ n.

8.2 Representation formulas for functional intrinsic volumes

Let 1 ≤ j ≤ n. By Theorem 2.5,

V∗
j,ζ (v) =

∫

Rn
α(|x |) dMA j (v; x)

for v ∈ Conv(Rn;R) and ζ ∈ Dn
j , where α := (n

j

)Rn− jζ . If, in addition, v ∈ C2(Rn\{0}),
then Theorem 4.5 (c) and (d) imply that

V∗
j,ζ (v) = α(0) Vj (∂v(0)) +

∫

Rn
α(|x |) det(D2v(x)[ j],D2h Bn (x)[n − j]) dx . (8.1)

Correspondingly, by Theorem 1.6, we obtain that

V j,ζ (u) =
∫

Rn
α(|y|) dMA∗

j (u; y)

for u ∈ Convsc(Rn) and ζ ∈ Dn
j , where α is defined as before. If, in addition, u ∈

C2+(Rn\ argmin u), then Theorem 5.4 (c) and (d) combined with Theorem 5.5 imply that

V j,ζ (u) = α(0) Vj (argmin u) + 1(n
j

)
∫

Rn
α(|∇u(x)|) τn− j (u, x) dx . (8.2)

Note that α can be extended to a function in Cc([0,∞)) which implies that the densities
in the integrals in (8.1) and (8.2) are not singular. Hence, in the special cases considered
here, we obtain a representation of functional intrinsic volumes as Hessian valuations with
continuous densities and an additional term involving classical intrinsic volumes.

8.3 Retrieving the classical Steiner formula

As a further application of Theorem 1.4, we retrieve the classical Steiner formula (1.1) from
(1.5). We need the following result, which shows how the classical intrinsic volumes can be
retrieved from the functional intrinsic volumes.

Proposition 8.1 ([16], Proposition 5.2) If 0 ≤ j ≤ n − 1 and ζ ∈ Dn
j , then

V j,ζ (IK ) = κn− jRn− jζ(0) Vj (K )

for every K ∈ Kn. If ζ ∈ Dn
n , then

Vn,ζ (IK ) = ζ(0) Vn(K )

for every K ∈ Kn.
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Let r > 0 and choose u to be the convex indicator function of a convex body K ∈ Kn .
We have

u � (r IBn ) = IK � (r IBn ) = IK+r Bn

and therefore Theorem 1.4 combined with Lemma 3.2 and Proposition 8.1 implies that

ζ(0)Vn(K + r Bn) = Vn,ζ (IK � (r IBn )) =
n∑

j=0

rn− j V j,R−(n− j)ζ (IK )

= ζ(0)
n∑

j=0

rn− jκn− j V j (K )

for every K ∈ Kn and ζ ∈ Dn
n , which gives the classical Steiner formula if ζ(0) �= 0.

8.4 General functional Steiner formulas

We remark that the proof of Theorem 1.4 shows that Steiner formulas for convex functions
are also obtained if we replace the convex indicator function IBn by any radially symmetric,
super-coercive, convex function. Similarly, the support function h Bn in Theorem 2.3 can be
replaced by any radially symmetric, finite-valued, convex function. However, in general such
formulas do not give rise to all functional intrinsic volumes V∗

j,ζ , that is, not all ζ ∈ Dn
j will

appear in the polynomial expansion. For example, if v ∈ Conv(Rn;R) ∩ C2+(Rn), then it
easily follows from (2.1) and the definition of mixed discriminant that

V∗
n,ζ (v + 1

2 r h2
Bn ) =

n∑

j=0

rn− j V∗
j,ζ (v) (8.3)

for every ζ ∈ Dn
n and r > 0. By continuity, (8.3) also holds for all v ∈ Conv(Rn;R). Here

we use that Dn
n ⊆ Dn

j for every 0 ≤ j ≤ n to show that the functional intrinsic volumes
appearing in (8.3) are well-defined. However, the classes Dn

n and Dn
j do not coincide if j < n,

which shows that not all functional intrinsic volumes V∗
n,ζ j

with ζ j ∈ Dn
j are obtained in this

way.
This raises the question for which convex functions φ : [0,∞) → R we obtain all func-

tional intrinsic volumes when we replace h Bn by φ ◦ h Bn . Let VConv j (R
n;R) be the set of

continuous, dually epi-translation and rotation invariant valuations on Conv(Rn;R) that are
homogeneous of degree j . By Theorem 1.3, we know that

VConv j (R
n;R) = {V∗

j,ζ : ζ ∈ Dn
j }

for 0 ≤ j ≤ n.Weobtain the following complete description ifweuse a regularity assumption
for φ.

Theorem 8.2 Let φ ∈ C2([0,∞)) be convex and such that φ′(0) ≥ 0. For 1 ≤ j ≤ n − 1,

VConv j (R
n;R) =

{ ∫

Rn
β(|x |) dMA(v[ j], φ ◦ h Bn [n − j]; x) : β ∈ Cc([0,∞))

}
,

if and only if φ′(0) > 0.

We require the following results for the proof of Theorem 8.2. The function vt is defined
in (3.6).
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Lemma 8.3 Let Z1,Z2 : Conv(Rn;R) → R be continuous, dually epi-translation and
rotation invariant valuations that are homogeneous of degree j with 0 ≤ j ≤ n. If
Z1(vt ) = Z2(vt ) for every t ≥ 0, then Z1 ≡ Z2.

Proof By Theorem 2.2, there exist ζ1, ζ2 ∈ Dn
j such that

Z1(v) = V∗
j,ζ1(v) and Z2(v) = V∗

j,ζ2(v)

for every v ∈ Conv(Rn;R). If j = 0, then both Z1 and Z2 are constants, independent of
v, and thus the statement is trivial. For 1 ≤ j ≤ n, it follows from Lemma 3.4 and our
assumptions on Z1 and Z2 that

κn

(
n

j

)
Rn− jζ1(t) = V∗

j,ζ1(vt ) = Z1(vt ) = Z2(vt ) = V∗
j,ζ2(vt ) = κn

(
n

j

)
Rn− jζ2(t)

for every t ≥ 0. By Lemma 3.2 this implies ζ1 ≡ ζ2 and thus Z1 ≡ Z2. ��
We remark that it would be of great interest to find a proof of the previous lemma that does not
require Theorem 2.2. In particular, this would provide a new strategy to prove the Hadwiger
theorem for convex functions.

Lemma 8.4 Let 1 ≤ j ≤ n − 1, let φ ∈ C2([0,∞)) be convex with φ′(0) ≥ 0 and β ∈
Cc([0,∞)). If the functional Z̄ : Conv(Rn;R) → R is given by

Z̄(v) :=
∫

Rn
β(|x |) dMA(v[ j], φ ◦ h Bn [n − j]; x), (8.4)

then

κn

(
β(t)φ′(t)n− j + (n − j)

∫ ∞

t
β(r)φ′(r)n− j−1φ′′(r) dr

)
= Z̄(vt ) (8.5)

for t ≥ 0.

Proof First, let φ,ψ ∈ C2([0,∞)) be convex and such that ψ ′(0) = 0. We want to compute
the mixed discriminant

det
(
D2(φ ◦ h Bn )[n − j],D2(ψ ◦ h Bn )[ j]).

For x ∈ R
n , set r := |x |. For r > 0, by the radial symmetry of φ ◦ h Bn and ψ ◦ h Bn and by

choosing a coordinate system such that en is parallel to x , we obtain

D2(φ ◦ h Bn )(x) = diag
(φ′(r)

r
, . . . ,

φ′(r)

r
, φ′′(r)

)
,

D2(ψ ◦ h Bn )(x) = diag
(ψ ′(r)

r
, . . . ,

ψ ′(r)

r
, ψ ′′(r)

)
,

where diag(λ1, . . . , λn) is the n × n diagonal matrix with entries λ1, . . . , λn in the diagonal.
Therefore, for ε > 0,

det
(
D2(φ ◦ h Bn )(x) + εD2(ψ ◦ h Bn )(x)

) =
(φ′(r)

r
+ ε

ψ ′(r)

r

)n−1
(φ′′(r) + εψ ′′(r)).

Using the previous expression and (3.1), we obtain, after some computations, that

det
(
D2(φ ◦ h Bn )(x)[n − j],D2(ψ ◦ h Bn )(x)[ j]) = 1

nrn−1

(
φ′(r)n− jψ ′(r) j

)′
.
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Next, assume that β ∈ C1
c ([0,∞)). By the previous step and Theorem 4.3 (c),

∫

Rn
β(|x |) dMA(φ ◦ h Bn [n − j], ψ ◦ h Bn [ j]; x) = κn

∫ ∞

0
β(r)

(
φ′(r)n− jψ ′(r) j

)′
dr

= −κn

∫ ∞

0
β ′(r)φ′(r)n− jψ ′(r) j dr

(8.6)

where we used polar coordinates, integration by parts and the condition ψ ′(0) = 0. For
t > 0, set

ψt (r) := max{0, r − t}
for r > 0. Note that for vt , we have

vt = ψt ◦ h Bn .

For t > 0, there exists a sequence of convex functions ψt, j converging to ψt uniformly in
[0,∞) and such thatψt, j ∈ C2([0,∞)) andψ ′

t, j (0) = 0 for every j . Moreover, the sequence
ψt, j can be chosen so thatψ ′

t, j is uniformly bounded and converges pointwise toψ ′
t in [0,∞)

except for r = t . By (8.6), the weak continuity of Monge–Ampère measures, the fact that
the support of β is bounded, and the dominated convergence theorem, we obtain that

∫

Rn
β(|x |) dMA(vt [ j], φ ◦ h Bn [n − j]; x) = −κn

∫ ∞

t
β ′(r)φ′(r)n− j dr .

Integration by parts gives
∫

Rn
β(|x |) dMA(vt [ j], φ ◦ h Bn [n − j]; x)

= κn
(
β(t)φ′(t)n− j + (n − j)

∫ ∞

t
β(r)φ′(r)n− j−1φ′′(r) dr

)
.

This equation, which has been proved in the case β ∈ C1
c ([0,∞)), can now be extended to

the case that β ∈ Cc([0,∞)) by approximating β uniformly on its support by a sequence of
functions in C1

c ([0,∞)). ��
Theorem 8.2 follows from the next two propositions.

Proposition 8.5 Let φ ∈ C2([0,∞)) be convex and let φ′(0) > 0. If Z : Conv(Rn;R) → R

is a continuous, dually epi-translation and rotation invariant valuation that is homogeneous
of degree j with 1 ≤ j ≤ n − 1, then there exists β ∈ Cc([0,∞)) such that

Z(v) =
∫

Rn
β(|x |) dMA(v[ j], φ ◦ h Bn [n − j]; x)

for every v ∈ Conv(Rn;R).

Proof Given α ∈ Cc([0,∞)), define the function β : [0,∞) → R as

β(t) := − 1

κn

(
α(t)

φ′(t)n− j
+ (n − j)

∫ ∞

t

α(r)

φ′(r)n− j+1 φ′′(r) dr

)
, (8.7)

where we use that φ′(t) > 0 for every t ∈ [0,∞). Also note that β ∈ Cc([0,∞)). We claim
that β is a solution of the equation

κn

(
β(t)φ′(t)n− j + (n − j)

∫ ∞

t
β(r)φ′(r)n− j−1φ′′(r) dr

)
= α(t). (8.8)
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If we assume that α ∈ C1
c ([0,∞)), then also β ∈ C1

c ([0,∞)) and (8.8) can be written in the
form

−κn

∫ ∞

t
β ′(r)φ′(r)n− j dr = α(t).

Hence the claim is easily verified under the additional assumption on α. The general case is
obtained by approximation.

For t ≥ 0, define

α(t) := Z(vt ).

By Theorem 2.2, Lemmas 3.4 and 3.2, we know that α ∈ Cc([0,∞)). For this function α,
define β : [0,∞) → R by (8.7). Define Z̄ : Conv(Rn;R) → R as

Z̄(v) :=
∫

Rn
β(|x |) dMA(v[ j], φ ◦ h Bn [n − j]; x).

By Proposition 4.4, the functional Z̄ is a continuous, dually epi-translation and rotation
invariant valuation on Conv(Rn;R) that is homogeneous of degree j . By Lemma 8.4 and
(8.8),

Z(vt ) = Z̄(vt )

for every t ≥ 0. By Lemma 8.3, this implies that Z ≡ Z̄. ��
Proposition 8.6 Let 1 ≤ j ≤ n − 1. If φ ∈ C2([0,∞)) is convex and φ′(0) = 0,
then there exists a continuous, dually epi-translation and rotation invariant valuation
Z : Conv(Rn;R) → R that is homogeneous of degree j such that

Z(v) =
∫

Rn
β(|x |) dMA(v[ j], φ ◦ h Bn [n − j]; x) for all v ∈ Conv(Rn;R)

is not verified by any β ∈ Cc([0,∞)).

Proof Let α ∈ C2
c ([0,∞)) be such that α′(0) > 0. By Lemma 3.4 and Lemma 3.2, there

exists a continuous, dually epi-translation and rotation invariant valuation Z on Conv(Rn;R)

that is homogeneous of degree j such that

Z(vt ) = α(t)

for t ≥ 0. Assume that there exists β ∈ Cc([0,∞)) such that (8.4) is satisfied for this
functional Z. By Lemma 8.4, the function β has to verify (8.5). As α ∈ C2

c ([0,∞), we have
β ∈ C1

c ([0,∞)), and the equation takes the form

−κn

∫ ∞

t
β ′(r) φ′(r)n− j dr = α(t)

for t > 0. Consequently,

β(t) = − 1

κn

∫ ∞

t

α′(r)

φ′(r)n− j
dr

for t > 0. By the conditions on φ and α, we conclude that

lim
t→0+ β(t) = +∞,

which is a contradiction. ��
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