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Abstract
We establish partial regularity for the ω-minimizers of quasiconvex functionals of power
growth. A first-order partial regularity result of BV ω-minimizers is obtained in the linear
growth case under a Dini-type condition on ω. Only assuming the smallness of ω near the
origin,we showpartialHölder continuity in the subquadratic case by considering a normalised
excess.

Mathematics Subject Classification 35J47 · 35J50 · 49N60

1 Introduction

We investigate the local regularity of maps u : � → R
N that almost minimize a variational

functional F , which is given by

F (u,�) :=
ˆ

�

F(∇u) dx (1.1)

onW 1,p(�,RN ), where the integrand F : RN×n → R is assumed to be strongly quasiconvex
(in Morrey’s sense [54]) and of p-growth. See Sect. 2 for any undefined notation.

When the integrand F is of p-growth for p ∈ [1,∞), the functional F is obviously
well-defined for u ∈ W 1,p(�,RN ). Now assume that � is a bounded Lipschitz domain. In
the case p > 1, one can apply the direct method to obtain the existence of a minimizer in the
Dirichlet class W 1,p

g (�,RN ) for some boundary datum g ∈ W 1,p(�,RN ). Considering the
compactness issue for p = 1, we study a suitably relaxed problem in BV instead of working
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with W 1,1 maps. To extend the integral to maps of bounded variation, we follow Lebesgue
[48], Serrin [59] and Marcellini [52], and define

Fg(u,�) := inf

{
lim inf
j→∞

ˆ
�

F(∇u j ) dx : {u j } ⊂ W 1,1
g (�,RN ),

u j → u in L1(�,RN )

}
. (1.2)

An integral expression of Fg(u,�) was found in [46] based on the work by Ambrosio and
Dal Maso [4], and Fonseca and Müller [29]. When F is quasiconvex, of linear growth and
L1 mean coercive, we have

Fg(u,�) =
ˆ

�

F(∇u) dx +
ˆ

�

F∞
(

dDsu

d|Dsu|
)

d|Dsu|

+
ˆ

∂�

F∞((g − u) ⊗ ν�) dHn−1, (1.3)

where ν� is the outward unit normal on ∂�. The third term is present as the trace operator is
not continuous with respect to the weak∗ topology in BV . We abbreviate the first two terms
by

F̄ (u,�) :=
ˆ

�

F(Du) :=
ˆ

�

F(∇u) dx +
ˆ

�

F∞
(

dDsu

d|Dsu|
)

d|Dsu|. (1.4)

This expression coincides with the extension by area-strict continuity of (1.1) from W 1,1 to
BV (see [46], Theorem 4).

Our focus in this work is on ω-minimizers, which are also called almost minimizers.
This concept is closely connected to the elliptic parametric variational problems studied in
geometric measure theory (see [3, 12, 23]), where the analogues are called (F, ε, δ)-sets
or almost-minimal currents. See [27] for more comments on the connection between the
variational problems in our setting and geometric measure theory. It was Anzellotti [6] that
first studied ω-minimizers in non-parametric problems, and some later work can be found
in [21, 24, 25, 58]. The solutions to multiple problems (for instance, minimizers subject to
some constraints) are ω-minimizers of some suitable functionals. The introduction of this
notion, therefore, allows us to unify the study of those problems. We refer to [6, 24, 38] for
more background information and some examples.

Definition 1.1 Suppose that F : R
N×n → R is of p-growth, andF and F̄ are defined as in

(1.1) and (1.4), respectively.

(a) When p > 1, a map u ∈ W 1,p
loc (�,RN ) is said to be an ω-minimizer or almost minimizer

of F with constant R0 > 0, if for any ball BR = BR(x0) ⊂⊂ � with R < R0 and any
v ∈ W 1,p

u (BR,RN ), we have

F (u, BR) ≤ F (v, BR) + ω(R)

ˆ
BR

(1 + |∇v|p) dx . (1.5)

(b) When p = 1, a map u ∈ BVloc(�,RN ) is said to be anω-minimizer or almost minimizer
of F̄ with constant R0 > 0, if for any ball BR = BR(x0) ⊂⊂ � with R < R0 and any
v ∈ BVu(BR,RN ), we have

F̄ (u, BR) ≤ F̄ (v, BR) + ω(R)

ˆ
BR

(1 + |Dv|). (1.6)
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Alternatively, we can replace the ω-related term by ω(R)
´
BR

(1+ |∇u|p + |∇u − ∇v|p) dx
(ω(R)

´
BR

(1+ |Du| + |Du − Dv|) for p = 1). This definition is more general and appears
in some examples. See [24], § 2 for details. We remark that our results (Theorem 1.2 and 1.3)
also hold true in this case with only slight modification to the proofs.

Here, the function ω is defined on [0,∞) and is nonnegative. Typically, it is assumed to
be small enough near the origin, which explains the word “almost” in the definition above.
To be more precise, we assume

(ω1) ω : [0,∞) → [0, 1] is nondecreasing, and ω(0) = limt→0 ω(t) = 0.

For ourfirst result, thefirst-order partial regularity, the followingproperties are furthermore
required:

(ω2) There exists β ∈ (0, 1) such that t 
→ ω(t)
t2β

is non-increasing in (0,∞);
(ω3) The Dini-type condition: for any ρ > 0, 
 1

4
(ρ) < ∞, where


α(ρ) :=
ˆ ρ

0

ωα(t)

t
dt .

Sometimes, a more specific control of ω is assumed:

(ω4) ω(t) ≤ At2β
′
for some β ′ ∈ (0, 1).

In this case, condition (ω3) is satisfied,while (ω2)might not hold anymore.The condition (ω4)
can significantly simplify the discussion about ω.

To state the first result, we also specify the assumptions on F . See (2.3) for the definition
of Ep .

(H1) |F(z)| ≤ L(1 + |z|p) for any z ∈ R
N×n with L > 0;

(H2) F is strongly quasiconvex in the sense that F−�Ep is quasiconvex for some � > 0;
(H3) F is in C2,1

loc (R
N×n).

Our first result is the partial regularity for the derivatives of ω-minimizers:

Theorem 1.2 Suppose that the function F satisfies (H1)-(H3) with p = 1, and ω satisfies
(ω1)-(ω3). If u ∈ BVloc(�,RN ) is an ω-minimizer of F̄ , then it is partially regular in the
following sense: there exists a relatively closed L n-null set Su ⊂ � such that u is C1 on
� \ Su. Furthermore, the gradient Du has a local modulus of continuity ρ 
→ ρα + 
 1

2
(ρ)

on � \ Su for any α ∈ (0, 1).

In particular, if (ω4) holds, we have u ∈ C1,β ′
loc (� \ Su,RN ).

Partial regularity for ω-minimizers under the Dini-type condition (like (ω3)) has been
done in the super-linear case (see [21, 24, 25]), and the result above gives the counterpart for
the end point case (p = 1).

An excess decay estimate plays an important role in our proof of Theorem1.2. In particular,
we need to estimate the series

∑∞
j=0 ωα(τ j R) for some α, τ ∈ (0, 1) when iterating this

process. Such an estimate is essential to control (Du)x0,R as R → 0, and is guaranteed
by (ω2) and (ω3). Then it is natural to ask what happens if we only assume the smallness
of ω near the origin (ω1). In this case, the regularity of Du as above is no longer expected,
but it is still possible to get the partial Hölder continuity of u in the subquadratic case (cf.
[25]). See Subsec. 4.5 for details. For the second result, a more precise characterisation of
the second derivatives of F is required and we replace (H3) by the following with L > 0:

(H31) F is C2 with |F ′′(z)| ≤ L(1 + |z|)p−2 for any z ∈ R
N×n ;

123



178 Page 4 of 40 Z. Li

(H32) F ′′ is Lipschitz and satisfies

|F ′′(z1) − F ′′(z2)| ≤ L|z1 − z2|
(1 + |z1| + |z2|)3−p

, for any z1, z2 ∈ R
N×n .

Theorem 1.3 Suppose that the function F satisfies (H1), (H2), (H31) and (H32) with 1 <

p < 2, and ω satisfies (ω1). If u ∈ W 1,p
loc (�,RN ) is an ω-minimizer ofF , then it is partially

regular in the following sense: there exists a relatively closedL n-null set S′
u ⊂ � such that

u ∈ C0,α
loc (� \ S′

u,R
N ) for any α ∈ (0, 1).

The strategy used for most partial regularity results, which is also followed by us, dates
back to De Giorgi and Almgren, who worked onminimal surfaces in the context of geometric
measure theory. Thismethodwas later adapted byGiusti andMiranda [39] to prove the partial
regularity for minimizers in some variational problems, and by Morrey [56] for the solutions
to certain elliptic systems. It was Evans [27] that showed the first partial regularity result
in the quasiconvex setting. Shortly afterwards, Fusco and Hutchinson [33], and Giaquinta
and Modica [35] extended the result to functionals with general integrands F(x, u,∇u),
and Acerbi and Fusco [1] dealt with integrands of p-growth with p ≥ 2. Carozza, Fusco
and Mingione [16] first studied the subquadratic case (1 < p < 2), and there are various
results afterwards, including [2, 15, 20, 22]. As to the linear growth case (p = 1), there are
only limited references. Anzellotti and Giaquinta [7] showed a partial regularity result in the
convex case, and some later references for convex functionals include [9–11, 36, 58]. Some
recent progress in the quasiconvex case is given by Gmeineder and Kristensen [42].

The literature on regularity in quasiconvex settings is extensive, and the list above is far
from complete. We refer to [42] and the monograph by Giusti [38] for a thorough review.
The question about the size of singular sets in partial regularity results remains open, but see
[43–45] for some estimates of the Hausdorff dimensions of singular sets in different set-ups.

The key step in our proof is to establish the aforementioned excess decay estimate, which
is similar to the one for linear homogeneous elliptic systems with constant coefficients (see,
for example, [34], § III.2 ). With a harmonic approximation process and a Caccioppoli-type
inequality, one can transfer the estimate for solutions to elliptic systems to (ω-)minimizers.

The proofs of the two theorems (Theorem 1.2 and 1.3) are in the same spirit and there
are several difficulties especially in our situation. One difficulty appears in the harmonic
approximation, where it is impossible to work in the natural space W 1,2 for a linear elliptic
system. This is due to the lack of integrability in the case 1 ≤ p < 2. We also emphasize that
in the linear-growth case, a weak reverse Hölder inequality is unavailable. Thus, one cannot
apply Gehring’s lemma to obtain a higher integrability, which is usually helpful in showing
the excess decay estimate. The approximation process in Subsec. 4.3 is adapted from an
approach by Gmeineder and Kristensen ([42], § 4.3), and in that process they used a Fubini
type property of BV maps and truncation to construct an explicit test map. The difference
between minimizers and ω-minimizers also leads to an issue, as for the latter there are no
Euler-Lagrange equations holding true. However, thanks to the almost-minimality, we are
able to establish an Euler-Lagrange type inequality with the help of Ekeland’s variational
principle.

Another obstacle turns up in the proof of Theorem 1.3. Since the continuity of ∇u does
not hold anymore, the excess decay estimate cannot be carried out as in Theorem 1.2. Instead
of estimating the typical excess, we normalise it by 1 + |(∇u)x0,R | and then try to control
the oscillation of ∇u on that scale. This method is inspired by [30], where the authors
studied elliptic systems (variational functionals) with coefficients a(x, u, Du) (integrands
F(x, u, Du)) only continuous in (x, u) in the case p ≥ 2. The solutions (minimizers) in
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this case may be considered as almost minimisers of a family of functionals (see [24], § 2).
However, the subquadratic counterpart does not directly follow from the approach in [30]
due to the inhomogeneity of our excess integrand Ep . Thus, to switch among different
normalising factors, we need to control the ratios between them. A zero-order regularity
result for ω-minimizers is done in [21] under similar assumptions for the quadratic case
(p = 2), and there are similar results in the scalar case in [18, 49, 50, 53].

We believe that the approach used to prove Theorem 1.2 also applies to ω-minimizers
in the super-linear case (p > 1), which were studied in [21, 24, 25]. In the subquadratic
case, an Euler-Lagrange type inequality was also obtained in [25] (Lemma 5), with which
the harmonic approximation was carried out indirectly. This method can also be adapted into
our case (see Subsec. 4.7 and Remark 5.5).

It is worth mentioning that some variational problems originated from, for example, plas-
ticity, are posed in the space of maps of bounded deformation, where symmetric gradients
Eu := 1

2 (Du + Dut ) are considered instead of gradients Du. Two recent pieces of work by
Gmeineder [40, 41] present the Sobolev and partial C1,α regularity theory for BD minimiz-
ers. We refer to them and the references therein for the background and existing results in
this direction. Moreover, one can consider general elliptic operators and the corresponding
variational problems. The trace theorem and the existence of minimizers are established in
[14] for functionals defined with C-elliptic operators. Franceschini [31] studied the case of
R-elliptic operators and proved the corresponding partial regularity result.

The organisation of this paper is as follows. Section 2 contains some preliminaries, which
include the basics of functionals defined on measures and BV maps. Subsection 2.4 presents
some background results on elliptic systems, which will be used in the harmonic approxi-
mation step. In Sect. 3 we state some auxiliary results about and properties of the integrands
involved. The proof of Theorem 1.2 is given in Sect. 4, and is split into six steps. The first
goal is to obtain a Hölder-type continuity result of Du, after which we further utilise the
boundedness to show regularity to the full extent. At the end we also sketch how to approach
our result with an indirect argument. Section 5 is devoted to Theorem 1.3, and some details
are omitted since the main steps are similar with those in Sect. 4.

2 Preliminaries

2.1 Basic notation

This subsection is for clarifying the notations used throughout the paper.
The n-dimensional Euclidean space R

n is equipped with the Lebesgue measure L n .
Throughout the paper, the symbol � indicates a bounded open set in R

n with n ≥ 2 if not
specified. For any measurable set S ⊂ R

n , if 0 < L n(S) < ∞, the average of f ∈ L1(S,H)

is denoted by

fS :=
 
S
f dx := 1

L n(S)

ˆ
S
f dx .

The space H here and in the following is a finite dimensional Hilbert space, and we denote
its norm by |·|. For a ball B(x, R) ⊂ R

n , we may use fx,R or fR to represent fB(x,R). If μ

is an H-valued Radon measure on � and S ⊂⊂ � is a Borel set, the average of μ on S is
similarly denoted by μA(:= μ(A)/L n(A)).

When considering a locally integrable functionormap,we intend the precise representative
of it. For any u ∈ L1

loc(�,H), it has an approximate limit ũ(x) L n-almost everywhere, i.e.,
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for L n-almost every x ∈ � there exists ũ(x) ∈ H such that

lim
r→0

 
B(x,r)

|u(y) − ũ(x)| dy = 0.

Then ũ is defined on � except for an L n-null set and is called the precise representative of
u. The meaning of u|∂B with B being a ball in � is clear when u has proper regularity, and
it is considered as both the trace of u : B → H (when defined) and the pointwise restriction
of ũ.

The Sobolev spaces Wk,p(�,RN ) are defined as usual, and see Subsec. 2.3 for the space
of maps of bounded variation. For u in W 1,p(�,RN ), p ≥ 1 and BV (�,RN ), we have the
Dirichlet classes

W 1,p
u (�,RN ) := {v ∈ W 1,p(�,RN ) : u − v ∈ W 1,p

0 (�,RN )} and

BVu(�,RN ) := {v ∈ BV (�,RN ) : wu,v ∈ BV (Rn,RN ), |Dwu,v|(∂�) = 0},
respectively. The map wu,v above is defined as u − v in � and is extended to R

n \ � by 0.
Notice that we can define W 1,1

u (�,RN ) with u ∈ BV (�,RN ) for a Lipschitz domain �, as
the trace of u exists in L1(∂�,RN ) and can be considered as that of a map in W 1,1(�,RN )

(see [37], Chap. 18).
The space of N × n matrices with real entries is denoted by RN×n and equipped with the

inner product z ·w = tr(ztw) for any z, w ∈ R
N×n and the induced norm |·|. Let⊙2

(RN×n)

be the space of symmetric and real bilinear forms on R
N×n , that is, the space

⊙2
(RN×n)

consists of maps A : RN×n × R
N×n → R such that

A[z, w] = A[w, z], A[az1 + z2, w] = aA[z1, w] + A[z2, w]
for any z, z1, z2, w ∈ R

N×n and a ∈ R. The operator norm of A ∈ ⊙2
(RN×n) is |A| =

sup{A[z, w] : |z|, |w| ≤ 1}.
Consider an integrand F : RN×n → R. It is said to be of p-growth (p ≥ 1), if there exists

L > 0 such that

|F(z)| ≤ L(1 + |z|p), for any z ∈ R
N×n . (2.1)

In particular, the function is of linear growth if p = 1. We say the integrand is

• quasiconvex if for any z ∈ R
N×n and any ϕ ∈ C∞

c ((0, 1)n,RN ) we have
ˆ

(0,1)n
F(z + ∇ϕ) dx ≥ F(z); (2.2)

• rank-one convex if F(z + tξ) is convex in t ∈ R for any z, ξ ∈ R
N×n with rank(ξ) ≤ 1

(i.e., ξ = a ⊗ b for some a ∈ R
N , b ∈ R

n).

We refer to [19] for a thorough discussion about different convexity notions. In particular,
we will use the fact that quasiconvexity implies rank-one convexity (see [19], Theorem 5.3).
When F has sufficient differentiability at a fixed point z ∈ R

N×n , we consider F ′(z) as an
N × n matrix and F ′′(z) as a symmetric bilinear form in

⊙2
(RN×n).

The reference integrand in the following is a function defined on any finite dimensional
Hilbert space (the space is not emphasized in the notation):

Ep(z) := 〈z〉p − 1 := (1 + |z|2) p
2 − 1. (2.3)
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In particular, we denote E1 by E for convenience. More generally, for any μ ≥ 0 define

Eμ
p (z) := ((1 + μ)2 + |z|2) p

2 − (1 + μ)p.

It is obvious that

Eμ
p (z) = (1 + μ)pEp

(
z

1 + μ

)
. (2.4)

Given any A ∈ R
N×n , set E A

p := E |A|
p .

The constants c and C throughout this paper may vary from one line to another, and the
factors they depend on will be specified when necessary.

2.2 Functionals defined onmeasures

In this subsection, we recall some background results about functionals defined on measures,
that is, functionals with measures instead of only maps as arguments.

Let μ be an H-valued Radon measure on an open set � ⊂ R
n . Then the total variation

|μ| of it is a real-valued Radon measure on �. μ is said to be a bounded Radon measure if
|μ|(�) < ∞. By the Lebesgue-Radon-Nikodym decomposition, μ can be decomposed as

μ = μac + μs = dμ

dL n
L n + dμ

d|μs | |μ
s |.

Let f : H → R be a Borel function of linear growth. Its recession function is defined by

f ∞(z) := lim sup
w→z
t→∞

f (tw)

t
, z ∈ H. (2.5)

Hence, the recession function f ∞ is also Borel and positively 1-homogeneous, and satisfies
| f ∞(z)| ≤ C |z|. Now we can define the signed Radon measure f (μ): for any Borel set A
compactly contained in �, set

f (μ)(A) :=
ˆ
A
f (μ) :=

ˆ
A
f

(
dμ

dL n

)
dL n +

ˆ
A
f ∞

(
dμ

d|μs |
)

d|μs |. (2.6)

For any z ∈ H, we write f (μ − z) as a short-hand of f (μ − zL n). If μ is bounded, the
definition above can be extended to all Borel subsets of � and f (μ) is a bounded Radon
measure on �. If f is in addition assumed to be continuous and the limit superior in the
definition of f ∞ is a limit which exists locally uniformly in z, then we say that f admits a
regular recession function. The collection of continuous functions with recession functions
is denoted by E1(H). It is clear that the functions in E1(H) are of linear growth.

We now recall the convergence ofRadonmeasureswith respect to some particular function
f .

Definition 2.1 Suppose that {μ j } andμ are Radon measures defined on� such thatμ j
∗−⇀ μ

in M(�,H) and f (μ j )(�) → f (μ)(�).

(a) μ j is said to converge to μ strictly if f = |·|;
(b) μ j is said to converge to μ area-strictly if f = E .

Lemma 2.2 Any Radon measureμ on� can be locally area-strictly approximated by smooth
maps. If μ is bounded on �, the approximation is global.
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This can be done by mollification with the help of Theorem 2.2 and 2.34 in [5].
A generalisation of a result by Reshetnyak (see [57] and the appendix of [46]) states that

if f : H → R is in E1(H), then ˆ
�

f (μ j ) →
ˆ

�

f (μ)

for μ j → μ in the area-strict sense. An immediate corollary is that convergence in the
area-strict sense implies that in the strict sense.

2.3 Maps of bounded variation

For maps of bounded variation and the relevant results, we refer to [5]. Some definitions and
results are stated here for later use.

Consider a bounded open set � ⊂ R
n . A map u : � → R

N is said to be of bounded
variation if it is in L1(�,RN ) and its distributional derivative can be represented by a bounded
R

N×n-valued Radon measure, i.e.,

|Du|(�) := sup

{ˆ
�

u · div(ϕ) dx : ϕ ∈ C1
c (�,RN×n), |ϕ| ≤ 1

}
< ∞.

The space of maps of bounded variation is a Banach space under the norm ‖u‖BV (�) :=
‖u‖L1(�) + |Du|(�).

Convergencewith respect to the BV norm is rather strong and rarely used. Instead, we con-
sider two other forms of convergence: Suppose that {u j } ⊂ BV (�,RN ), u ∈ BV (�,RN )

and u j → u in L1(�,Rn). We say that {u j } converges to u in the BV (area-)strict sense if
{Du j } converges to Du in the (area-)strict sense as in Definition 2.1.

It is well-known that smooth maps are dense in BV (�,RN ) in the BV area-strict sense:

Lemma 2.3 Let� ⊂ R
n be a bounded open setwithout any additional regularity assumptions

on ∂�. If u ∈ BV (�,RN ), there exists a sequence {u j } ⊂ W 1,1
u ∩ C∞(�,RN ) such that

u j → u in the BV area-strict sense. If u ∈ W 1,1(�,RN ), we can further require strong
convergence in W 1,1(�,RN ).

See [47], Lemma 1 for a proof. The following lemma allows us to approximate a map of
bounded variation in energy and is helpful in various cases. See Theorem 4 in [46] for details.

Lemma 2.4 Suppose that G : RN×n → R is rank-one convex and of linear growth. If� ⊂ R
n

is a bounded Lipschitz domain, u j , u ∈ BV (�,RN ) and u j → u in the BV area-strict sense,
then ˆ

�

G(Du j ) →
ˆ

�

G(Du) as j → ∞. (2.7)

The two lemmas above give a direct corollary:

Lemma 2.5 Suppose that � ⊂ R
n is a bounded Lipschitz domain. For any u ∈ BV (�,RN ),

there exists a sequence {u j } ⊂ W 1,1
u ∩C∞(�,RN ) such that u j → u in the BV area strict

sense. Furthermore, for any function G : RN×n → R that is rank-one convex and of linear
growth, we have ˆ

�

G(Du j ) →
ˆ

�

G(Du) as j → ∞. (2.8)
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Remark 2.6 Notice that E(· − z0) for any z0 ∈ R
N×n is convex by (3.3), and thus rank-

one convex. Obviously it is of linear growth and then Lemma 2.5 applies to E(· − z0).
The lemma also holds for functions satisfying (H2) with p = 1 as quasiconvexity implies
rank-one convexity.

The next result is a Fubini-type property for BV maps. It involves BV maps on subman-
ifolds of Rn , which are well-defined by local charts and partitions of unity. In our case, we
only consider (n − 1)-spheres, which can be covered by two local charts that correspond
to the stereographic projections from two antipodal points. The two charts are taken to be
such that they both correspond to a bounded open subset of Rn−1, over which the induced
metric is comparable to the natural one onRn−1. Thus, we can apply various results for maps
defined on (open subsets of) Rn−1. For a BV map u : ∂B → R

N , we denote its tangential
approximate gradient by ∇τu, which exists Hn−1-almost everywhere on ∂B. Its tangential
distributional derivative is denoted by Dτu. Indeed, the former is the absolutely continuous
part of the latter with respect toHn−1 ∂B, and the two coincide when u ∈ W 1,p(∂B,RN )

with p ≥ 1.

Lemma 2.7 Let BR denote a ball B(x0, R) ⊂ R
n and u be a map in BV (BR,RN ). Then for

L 1-almost every ρ ∈ (0, R), the pointwise restriction u|∂Bρ coincides with the traces of u
from Bρ and B \ B̄ρ , and is in BV (∂Bρ,RN ). For any two radii r1, r2 with 0 < r1 < r2 < R,
we can find ρ ∈ (r1, r2) such that the above holds and the total variation of u|∂Bρ on ∂Bρ is
bounded by that of u: ˆ

∂Bρ

|Dτ (u|∂Bρ )| ≤ C(n, N )

r2 − r1

ˆ
Br2\B̄r1

|Du|. (2.9)

This lemma is Lemma 2.3 in [42] and allows us to work on those balls over the boundary of
which a BV map has nice properties. To see this, we recall the definition of fractional Sobolev
spaces. Let X be an embedded d-submanifold (d ≤ n) ofRn and s ∈ (0, 1), r ∈ (1,∞). The
space Ws,r (X ,RN ) consists of maps u : X → R

N of which the Gagliardo norm

‖u‖Ws,r (X) = (‖u‖rLr (X) + [u]rWs,r (X))
1
r ,

is finite. The semi-norm is defined by

[u]rWs,r (X) :=
ˆ
X

ˆ
X

|u(x) − u(y)|r
|x − y|d+sr

dHd(x) dHd(y),

Lemma 2.8 Let B be a ball B(x0, R) ⊂ R
n and v ∈ BV (∂B,RN ). Then we have v ∈

W 1− 1
r ,r (∂B,RN ) and

( 
∂B

ˆ
∂B

|v(x) − v(y)|r
|x − y|n+r−2 dHn−1(x) dHn−1(y)

) 1
r ≤ CR

1
r

 
∂B

|Dτ v|, (2.10)

where C = C(n, N , r) > 0. The range of r depends on the dimension:⎧⎨
⎩
r = n

n − 1
, n ≥ 3

r ∈ (1, 2), n = 2.

This lemma is a corollary of several embedding results. See [13], Lemma D.1 for n ≥ 3, and
[61], Lemma 38.1 and [62], §3.3.1 for n = 2. There is also a discussion after Lemma 2.4 in
[42].

123



178 Page 10 of 40 Z. Li

2.4 Estimates for elliptic systems

We will need some results on Legendre-Hadamard elliptic systems. A bilinear form A ∈⊙2
(RN×n) is said to satisfy the strongLegendre-Hadamard condition if there existsλ,� > 0

such that {
A[η ⊗ ξ, η ⊗ ξ ] ≥ λ|η|2|ξ |2, for any η ∈ R

N , ξ ∈ R
n,

A[z, z] ≤ �|z|2, for any z ∈ R
N×n .

(2.11)

We say that u is A-harmonic in some open set � if it satisfies

− div(A∇u) = 0 (2.12)

in the distributional sense in �.

Lemma 2.9 Suppose that A ∈ ⊙2
(RN×n) satisfies (2.11) with some �,λ > 0. If h ∈

W 1,1(BR,RN ) is A-harmonic in the ball BR = B(x0, R) ⊂ R
n, then h is in C∞(BR,RN ),

and for any z ∈ R
N×n and some ca = ca(n, N , �

λ
) > 0 we have

sup
B R

2

|∇h − z| + R sup
B R

2

|∇2h| ≤ ca

 
BR

|∇h − z| dx . (2.13)

This lemma is classical and obtained with, for example, the results in [34], § III.2 and [38],
§ 7.2. The next result is also classical, and see Proposition 2.11 in [42] and the references
therein for a proof.

Lemma 2.10 Suppose that A ∈ ⊙2
(RN×n) satisfies (2.11) with some �,λ > 0. Let r ∈

(1,∞), q ∈ [2,∞) and B be the unit ball in Rn.

(a) For any g ∈ W 1− 1
r ,r (∂B,RN ), the elliptic system{

− div(A∇h) = 0, in B

h|∂B = g, on ∂B
(2.14)

admits a unique solution h ∈ W 1,r (B,RN ), and there exists C = C(n, N , r , �
λ
) > 0

such that

‖h‖W 1,r (B,RN ) ≤ C ‖g‖
W 1− 1

r ,r (∂B,RN )
.

(b) For any f ∈ Lq(B,RN ), the elliptic system{
− div(A∇w) = f , in B

w|∂B = 0, on ∂B
(2.15)

admits a unique solution w ∈ W 2,q ∩ W 1,q
0 (B,RN ), and there exists C =

C(n, N , q, �
λ
) > 0 such that

‖w‖W 2,q (B,RN ) ≤ C‖ f ‖Lq (B,RN ).

Remark 2.11 Ifweonly consider the gradient∇h above, it is enough to control‖∇h‖W 1,r (B,RN )

by [g]
W 1− 1

r ,r (∂B,RN )
with considering g− (g)∂B . In particular, if g ∈ W 1,r (B,RN ), its trace

trB g exists in W 1− 1
r ,r (B,RN ) (see [37], Sect. 18.4). The estimate of ‖h‖W 1,r (B,RN ) in (a)

can be then replaced by ‖g‖W 1,r (B,RN ).
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3 Auxiliary results for the integrands

The first two subsections are devoted for estimates of the integrands involved in our proof.
Some proofs are omitted andwe refer to [42] for details. Two corollaries of the quasiconvexity
of F are given in the third subsection.

3.1 Estimates for the reference integrand

We show some properties for the reference integrand Ep that will be useful later. In the
following, only the case p ∈ [1, 2) is considered.

Obviously, we have that Ep(z) is C2, and an elementary calculation gives

E ′
p(w)z = p〈w〉p−2w · z, (3.1)

E ′′
p(w)[z, z] = p〈w〉p−4(〈w〉2|z|2 + (p − 2)|w · z|2). (3.2)

Considering the two cases p ∈ (1, 2) and p = 1 separately, we have

E ′′
p(w)[z, z] ≥

{
p(p − 1)〈w〉p−2 |z|2 , p ∈ (1, 2)

〈w〉−3 |z|2 , p = 1.
(3.3)

Thus, the function Ep is a convex function. In the following, we only consider Ep with
1 ≤ p < 2. By the definition and convexity of Ep , it is easy to get the following:

Lemma 3.1 Suppose that 1 ≤ p < 2 and set a1 = √
2−1, a2 = 1. Then the following holds

a1 min{|z|p, |z|2} ≤ Ep(z) ≤ a2 min{|z|p, |z|2}, (3.4)

Ep(az) ≤ max{a, a2}Ep(z) and Ep(z + w) ≤ 2(Ep(z) + Ep(w)) (3.5)

for any a > 0 and any z, w ∈ H.

A corollary of (3.4) is

|z|p ≤ 1 + 1

a1
Ep(z), for any z ∈ H, p ∈ [1, 2). (3.6)

Lemma 3.2 Let 1 ≤ p < 2, B ⊂ R
n be an open ball and u ∈ L p(B,H). Then for any z ∈ H

we have ˆ
B
Ep(u − uB) dx ≤ 4

ˆ
B
Ep(u − z) dx . (3.7)

When p = 1, the function u can be replaced by a bounded H-valued Radon measure, and
the inequality holds in the relaxed sense as in (2.6).

It is easy to show this lemma for L p maps with (3.5) and Jensen’s inequality, and the estimate
for Radon measures follows by mollification.

Lemma 3.3 Let 1 ≤ p < 2, B ⊂ R
n be an open ball and f ∈ L p(B,H). Set E :=ffl

B Ep( f ) dx, then we have  
B

| f |p dx ≤
√
E2 + 2E . (3.8)

When E ≤ a, it is obvious that the right-hand side can be replaced by
√

(2 + a)E . When
p = 1, we have the analogue holds for bounded H-valued Radon measures.
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The above lemma gives the estimate of
ffl
B | f |p dx in terms of

ffl
B Ep( f ) dx , and can be

shown by Jensen’s inequality and taking the inverse of E .
By definition, we know that for E A

p , A ∈ R
N×n , the analogues of Lemma 3.1 and 3.2

hold. Moreover, for any p ∈ [1, 2) there exists c = c(p) > 0 such that

1

c
E A
p (z) ≤ |z|2

(1 + |A| + |z|)2−p
≤ cE A

p (z), for any z ∈ R
N×n . (3.9)

3.2 Estimates for the shifted integrand

Given any C2 function F : RN×n → R, we define for any w ∈ R
N×n the corresponding

shifted integrand

Fw(z) := F(z + w) − F(w) − F ′(w)z

=
ˆ 1

0
(1 − t)F ′′(w + t z)[z, z] dt . (3.10)

Lemma 3.4 Suppose that F : RN×n → R is C2 and satisfies (H2). When p ∈ (1, 2), there
holds, with c = c(p) > 0, ˆ

B
Fw(∇ϕ) dx ≥ c �

ˆ
B
Ew
p (∇ϕ) dx, (3.11)

F ′′(w)[η ⊗ ξ, η ⊗ ξ ] ≥ c �
|η|2|ξ |2
〈w〉2−p

(3.12)

for any ball B ⊂ R
n, w ∈ R

N×n, ϕ ∈ W 1,p
0 (B,RN ), η ∈ R

N and ξ ∈ R
n. For p = 1, the

corresponding estimates are, with C > 0,ˆ
B
Fw(∇ϕ) dx ≥ C�

ˆ
B
〈w〉−3E(∇ϕ) dx, (3.13)

F ′′(w)[η ⊗ ξ, η ⊗ ξ ] ≥ C�
|η|2|ξ |2
〈w〉3 . (3.14)

The first estimate (3.11) can be showed with the quasiconvexity condition (H2), [16],
Lemma 2.1 and (3.9). See [42], Lemma 4.1 for (3.13). The Legendre-Hadamard estimates
(3.12) and (3.14) follow from the convexity of Ep and [28], 5.1.10.

Lemma 3.5 Suppose that F : RN×n → R satisfies (H2),(H3) with p ∈ [1, 2). Then for any
m > 0 and any w ∈ R

N×n satisfying |w| ≤ m, we have

|Fw(z)| ≤ CEp(z) (3.15)

hold for C = C(m, n, N , L, p) > 0. If we assume (H31) alternatively with p ∈ (1, 2), the
estimate becomes

|Fw(z)| ≤ CEw
p (z) (3.16)

with C = C(L, p) > 0.

Proof The estimate (3.15) can be obtained with direct calculation and Lemma 3.7 by con-
sidering the cases |z| ≤ 1 and |z| > 1 separately.
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For (3.16), by definition, Taylor’s theorem and (H31), we have the estimate

|Fw(z)| = |F(z + w) − F(w) − F ′(w)z|

= |
ˆ 1

0
F ′′(w + t z)(1 − t) dt[z, z]|

≤ L
ˆ 1

0

1 − t

(1 + |w + t z|)2−p
dt |z|2 .

Lemma 2.1 in [16] implies that the integral in the last line is controlled by C(p)(1 + |w| +
|z|)p−2. The estimate (3.9) then gives the desired result. ��

Lemma 3.6 Suppose that F : RN×n → R satisfies (H2),(H3) with p ∈ [1, 2). Then for any
m > 0 and any w ∈ R

N×n with |w| ≤ m, there exists a constant C = C(m, n, N , L, p) > 0
such that

|F ′′
w(0)z − F ′

w(z)| ≤ CE(z). (3.17)

Alternatively, with (H31), (H32) and no bound for w, we have

|F ′′
w(0)z − F ′

w(z)| ≤ C(1 + |w|)p−2Ew(z) (3.18)

with C = C(n, N , L, p) > 0.

Proof The estimate (3.17) can be easily obtained by considering the two cases separately.
When |z| ≤ 1, there holds

|F ′′
w(0)z − F ′

w(z)| = |F ′′(w)z − (F ′(w + z) − F ′(w))|

=
∣∣∣∣
ˆ 1

0
(F ′′(w) − F ′′(w + t z)) · z dt

∣∣∣∣ ≤ C
ˆ 1

0
t |z|2 dt ≤ CE(z),

where the last line is from (H3) and that w + t z, w ∈ B(0,m + 1). In the other case, we
estimate the three terms directly with Lemma 3.7:

|F ′′
w(0)z − F ′

w(z)| = |F ′′(w)z − (F ′(w + z) − F ′(w))|
≤ C(m)|z| + CL(2 + |w + t z|p−1 + |z|p−1)

|z|>1≤ C(m, L)|z| ≤ CE(z). (3.19)

For (3.18), the proof is in a similar manner. When |z| ≤ 1 + |w|, the condition (H32)
implies

∣∣F ′′
w(0)z − F ′

w(z)
∣∣ =

∣∣∣∣
ˆ 1

0
(F ′′(w) − F ′′(w + t z)) · z dt

∣∣∣∣
≤ L

ˆ 1

0

t |z|2
(1 + |w| + |w + t z|)3−p

dt

p<2≤ L(1 + |w|)p−1 |z|2
(1 + |w|)2 ≤ C(1 + |w|)p−2Ew(z).

When |z| > 1+|w|, the estimate can be obtained in a way similar to (3.19) with Lemma 3.7.
��
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3.3 Local lipschitz continuity andmean coercivity

In this subsection, we state two corollaries of the quasiconvexity of F . One is the local
Lipschitz continuity of F and the other is its L p mean coercivity.

It is well-known that separately convex functions are locally Lipschitz (see [55], p.112,
and [32, 51]). Lemma 2.2 in [8] gives a better estimate constant. As a corollary of the above
results, the following lemma gives the growth of the derivative of a quasiconvex integrand.

Lemma 3.7 Suppose that G : RN×n → R is a real-valued function and of p-growth with
p ∈ [1,∞), i.e.,

|G(z)| ≤ L(1 + |z|p)
for some L > 0 and any z ∈ R

N×n. If G is furthermore quasiconvex, then there exists a
constant C = C(n, N , p) > 0 such that

|G ′(z)| ≤ CL(1 + |z|p−1). (3.20)

In particular, G is Lipschitz when p = 1.

The next result is the L p mean coercivity of F , which helps us control the L p-integral
of |∇v| for v ∈ W 1,p by

´
F(∇v) dx . For a thorough discussion of the connection between

coercivity and quasiconvexity, see [17].

Lemma 3.8 Suppose that F : RN×n → R satisfies (H1) and (H2) with p ∈ [1, 2). Fix a
ball BR = B(x0, R) ⊂ R

n and u ∈ W 1,p(BR,RN ), then there exist a3 = a3(p, �), a4 =
a4(n, N , L, �, p, F) ∈ R, a5 = a5(n, N , L, �, p) > 0 such that

a3

 
BR

|∇v|p dx + a4 ≤
 
BR

F(∇v) dx + a5

 
BR

|∇u|p dx (3.21)

for any v ∈ W 1,p
u (BR,RN ).

Proof First, with the triangle inequality and (3.6) we have 
BR

|∇v|p dx ≤ Cp

 
BR

(|∇v − ∇u|p + |∇u|p) dx

≤ Cp

 
BR

(1 + a−1
1 Ep(∇v − ∇u) + |∇u|p) dx . (3.22)

Notice that v − u ∈ W 1,p
0 (BR,RN ), then (H2) implies

�

 
BR

Ep(∇v − ∇u) dx ≤
 
BR

F(∇v − ∇u) dx − F(0). (3.23)

To estimate the integral on the right-hand side, we apply Lemma 3.7 to get∣∣∣∣
 
BR

(F(∇v − ∇u) − F(∇v)) dx

∣∣∣∣ ≤
 
BR

ˆ 1

0

∣∣F ′(∇v − t∇u)
∣∣ |∇u| dt dx

≤ CL
 
BR

ˆ 1

0
(1 + |∇v − t∇u|p−1) |∇u| dt dx

≤ CL
ˆ
BR

(|∇u| + |∇u|p + |∇u| |∇v|p−1) dx

≤ CL
 
BR

(1 + (1 + σ 1−p) |∇u|p + σ |∇v|p) dx, (3.24)
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where the σ is to be determined. Combining (3.22)-(3.24), we know that

 
BR

|∇v|p dx ≤ c1

 
BR

(1 + (1 + σ 1−p) |∇u|p + σ |∇v|p) dx

+ c2

 
BR

(F(∇v) − F(0)) dx + Cp,

where c1 = c1(n, N , p, L, �) > 0, c2 = c2(p, �) > 0. Take σ = 1
2c1

, then (3.21) follows. ��

Remark 3.9 The convexity of |·| together with Remark 2.6 tells us that (3.21) can be extended
to maps in BVu(BR,RN ) if p = 1.

4 Partial regularity forDu

This section is for the proof of Theorem 1.2. The function F is assumed to grow linearly near
∞ (i.e., p = 1) and we consider BV ω-minimizers.

4.1 Caccioppoli-type inequality

We now give a Caccioppoli-type inequality of the second kind, which is a modified version
of Proposition 4.3 in [42].

Proposition 4.1 Suppose that F : RN×n → R satisfies (H1)-(H3) with p = 1, and u ∈
BVloc(�,RN ) is an ω-minimizer of F̄ with constant R0 > 0, where ω satisfies (ω1). Then
for any m > 0, there exists c = c(m, n, N , L, �) ≥ 1 such that the following holds: for any
B(x0, R) ⊂⊂ � with R < R0 and any affine map a : Rn → R

N satisfying |∇a| ≤ m, we
have

ˆ
B R

2

E(D(u − a)) ≤ c

(ˆ
BR

E

(
u − a

R

)
dx + ω(R)Rn

)
. (4.1)

Proof Let F̃ = F∇a , ũ = u − a. Then ũ is an ω-minimizer of the relaxed functional
corresponding to F̃ . Fix R

2 < t < s < R. Take a smooth cut-off function ρ between Bt and
Bs with ρ ∈ C∞

c (Bs) and |∇ρ| ≤ 2
s−t , and set ϕ = ρũ, ψ = (1 − ρ)ũ. Let {φε} be the

standard mollifiers and ϕε = ϕ ∗φε, then ϕε ∈ W 1,1
0 (Bs,R

N )when ε < dist(supp(ρ), ∂Bs).
The strong quasiconvexity of F gives, as in (3.13),

C(m, �)

ˆ
Bs

E(∇ϕε) dx ≤
ˆ
Bs

F̃(∇ϕε) dx .

Take ε → 0, then

C
ˆ
Bs

E(Dϕ) ≤
ˆ
Bs

F̃(Dϕ).
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We can further proceed as follows:

C
ˆ
Bt

E(Dũ) ≤ C
ˆ
Bs

E(Dϕ) ≤
ˆ
Bs

F̃(Dϕ)

=
ˆ
Bs

F̃(Dũ) +
ˆ
Bs

F̃(Dϕ) −
ˆ
Bs

F̃(Dũ)

≤
ˆ
Bs

F̃(Dψ) + ω(s)
ˆ
Bs

(1 + |Dψ |) +
ˆ
Bs

F̃(Dϕ) −
ˆ
Bs

F̃(Dũ)

(3.15)≤ C
ˆ
Bs

E(Dψ) + ω(s)
ˆ
Bs

(1 + |Dψ |) + C
ˆ
Bs\Bt

(E(Dϕ) + E(Dũ)).

The second term can be estimated by the triangle inequality and (3.6):

ω(s)
ˆ
Bs

(1 + |Dψ |) ≤ ω(s)

(
ωns

n +
ˆ
Bs

|Dψ |
)

≤ 2ω(s)ωns
n + C

ˆ
Bs

E(Dψ).

Inserting this into the estimate of C
´
Bt

E(Dũ), we obtain
ˆ
Bt

E(Dũ) ≤ C
ˆ
Bs

E(Dψ) +
ˆ
Bs\Bt

(E(Dϕ) + E(Dũ)) + Cω(s)sn

=
ˆ
Bs

E((1 − ρ)Dũ − ũ ⊗ ∇ρ) +
ˆ
Bs\Bt

(E(Dũ) + E(ρDũ + ũ ⊗ ∇ρ)) + Cω(s)sn

≤ C
ˆ
Bs\Bt

E(Dũ) + C
ˆ
Bs

E

(
ũ

s − t

)
dx + Cω(R)Rn .

Now we can apply the hole-filling trick, adding C
´
Bt

E(Dũ) to both sides, and divide the
inequality byC+1. Finally, by the following iteration lemma we have the desired inequality.

��
Lemma 4.2 Suppose that θ ∈ (0, 1), R > 0 and the two functions �,� : (0, R] → R are
positive.� is bounded, and� is decreasing with�(σρ) ≤ σ−2�(ρ) for any ρ ∈ (0, R], σ ∈
(0, 1]. If for any R

2 ≤ t < s ≤ R there holds

�(t) ≤ θ �(s) + �(s − t) + B (4.2)

for some B > 0, then we have, for some C = C(θ) > 0,

�

(
R

2

)
≤ C(�(R) + B). (4.3)

This lemma is widely used in the proofs of Caccioppoli-type inequalities and can be shown
by modifying Lemma 6.1 in [38].

4.2 Euler–lagrange inequality

Theminimizers of regular functionals satisfy the corresponding Euler-Lagrange equations. In
the case ofω-minimizers,we do not have such equations hold anymore,while a corresponding
inequality can be obtained instead with the help of Ekeland’s variational principle(see [26]
and [38], Theorem 5.6).
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Lemma 4.3 (Ekeland variational principle) Suppose that (X , d) is a complete metric space
and F : X → R∪ {∞} is a lower-semicontinuous function with respect to d, not identically
∞ and has a lower bound. If for some u ∈ X and ε > 0 we have

F(u) ≤ inf
v∈X F(v) + ε,

then there exists a w ∈ X satisfying the following:

(a) d(u, w) ≤ √
ε;

(b) F(w) ≤ F(u);
(c) F(w) ≤ F(v) + √

εd(v,w) for any v ∈ X.

Suppose that F : RN×n → R satisfies (H1)-(H3) with p = 1, ω satisfies (ω1) and u ∈
BVloc(�,RN ) is an ω-minimizer of F̄ with constant R0 > 0. Take BR = B(x0, R) ⊂⊂ �

such that R < R0, |Du|(∂BR) = 0 and u|∂BR ∈ BV (∂BR,RN ), which is possible by
Lemma 2.7. For any δ > 0, Remark 2.6 implies that there exists uδ ∈ W 1,1

u (BR,RN ) such
that

 
BR

|u − uδ|
R

dx < δ,

∣∣∣∣
 
BR

E(Du) −
 
BR

E(∇uδ) dx

∣∣∣∣ < δ, (4.4)

∣∣∣∣
 
BR

F(∇uδ) dx −
 
BR

F(Du)

∣∣∣∣ < δ. (4.5)

By the ω-minimality of u we know

F̄ (u, BR) ≤ F̄ (v, BR) + ω(R)

ˆ
BR

(1 + |Dv|) (4.6)

for any v ∈ BVu(BR,RN ).
Again from Remark 2.6, we know that

inf
v∈W 1,1

u (BR ,RN )

F (v, BR) = inf
v∈BVu (BR ,RN )

F̄ (v, BR) =: I

and there exists {v j } ⊂ W 1,1
u (BR,RN ) such that F (v j , BR) → I . The mean coercivity of

F (Lemma 3.8) implies

 
BR

(1 + |Dv j |) dx ≤ 1 + 1

a3

( 
BR

F(∇v j ) dx + a5

 
BR

|Du| − a4

)

≤ 1 − a4
a3

+ a5
a3

 
BR

|Du| + 1

a3

( 
BR

F(Du) + δ j

)

≤
 
BR

(a6 + a7 |Du|) + δ j

a3
,

where δ j := F (v j , BR) − I → 0 as j → ∞, and a6 = 1+ L−a4
a3

, a7 = a5+L
a3

. Take v to be
v j in (4.6) and let j → ∞, then we have

F̄ (u, BR) ≤ inf
v∈BVu (BR ,RN )

F̄ (v, BR) + ω(R)

ˆ
BR

(a6 + a7|Du|) . (4.7)
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Set ε = ω(R)
ffl
BR

(a6 + a7|Du|). From the above estimate of
´

(1 + |Dv j |) dx we can
see ε > 0. Then by (4.5) we have

F (uδ, BR) ≤ inf
v∈BVu (BR ,RN )

F̄ (v, BR) + ωn R
n(ε + δ)

= inf
v∈W 1,1

u (BR ,RN )

F (v, BR) + ωn R
n(ε + δ),

where ωn = L n(B(0, 1)) is the Lebesgue measure of the unit ball in R
n . Consider the

complete metric space X = W 1,1
u (BR,RN ) with d(w1, w2) = ffl

BR
|∇(w1 − w2)| dx . To

apply the Ekeland variational principle Lemma 4.3, we take F(w) = ffl
BR

F(∇w) dx and

replace ε by ε + δ. Then there is w ∈ W 1,1
u (BR,RN ) such that

(a) d(uδ, w) ≤ √
ε + δ;

(b) F(w) ≤ F(uδ);
(c) F(w) ≤ F(v) + √

ε + δ d(w, v), for any v ∈ X = W 1,1
u (BR,RN ).

For any ϕ ∈ W 1,1
0 (BR,RN ), we take v = w + tϕ and insert it into (c) to obtain 

BR

F(∇w) dx ≤
 
BR

F(∇(w + tϕ)) dx + √
ε + δ|t |

 
BR

|∇ϕ| dx .

Differentiate with respect to t , then we have an Euler-Lagrange inequality∣∣∣∣
 
BR

F ′(∇w)∇ϕ dx

∣∣∣∣ ≤ √
ε + δ

 
BR

|∇ϕ| dx . (4.8)

4.3 Harmonic approximation

Now we compare u with a harmonic map h which coincides with it on the boundary of a
certain ball. With the estimate of u − h, we are able to transfer some regularity of h to u.

Proposition 4.4 Suppose that the function F : RN×n → R satisfies (H1)-(H3) with p = 1,
ω satisfies (ω1) and u ∈ BVloc(�,RN ) is an ω-minimizer of F̄ with constant R0 > 0. Let
m > 0 be a fixed constant, a : Rn → R

N be affine with |∇a| ≤ m and F̃ := F∇a. Assume
that BR = B(x0, R) ⊂⊂ � is a ball such that |Du|(∂BR) = 0 and u|∂BR ∈ BV (∂BR,RN ).
Then the system {

− div(F̃ ′′(0)∇h) = 0, in BR

h|∂BR = u|∂BR , on ∂BR
(4.9)

admits a unique solution h ∈ W 1,r (BR,RN ) such that

( 
BR

|∇h − ∇a|r dx
) 1

r ≤ C
 

∂BR

|Dτ (u − a)|. (4.10)

The exponent r is as in Lemma 2.8 and C = C(m, n, N , L
�
, r) > 0. Furthermore, for any

q ∈ (1, n
n−1 ), there exists a constant C = C(m, n, N , L, �, q) > 0 such that

 
BR

E

(
u − h

R

)
dx ≤ C

( 
BR

E(D(u − a))

)q

+ C(
√

ε + √
ε
q
), (4.11)

where ε = ω(R)
ffl
BR

(a6 + a7|Du|) is as in last subsection.
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Proof From (H3) and (3.14) we have that |F̃ ′′(0)| ≤ C(m) and satisfies the Legendre-

Hadamard condition. By Lemma 2.8 we know that u|∂BR ∈ W 1− 1
r ,r (∂BR,RN ) for a proper

r and

( 
∂BR

ˆ
∂BR

|u(x) − u(y)|r
|x − y|n+r−2 dHn−1(x) dHn−1(y)

) 1
r ≤ CR

1
r

 
∂BR

|Dτu|.

Lemma 2.10 implies the existence of a unique solution h ∈ W 1,r (BR,RN ) to (4.9). By
replacing u by ũ, we have the estimate (4.10).

Let δ, uδ and w be as in last subsection. Take an arbitrary ϕ ∈ C∞
c (BR,RN ), then we

have

 
BR

F̃ ′′(0)[∇(w − h),∇ϕ] dx =
 
BR

F̃ ′′(0)[∇w̃,∇ϕ] dx

=
 
BR

(F̃ ′′(0)[∇w̃,∇ϕ] − F̃ ′(∇w̃)∇ϕ) dx +
 
BR

F ′(∇w)∇ϕ dx

≤ C
 
BR

E(∇w̃)|∇ϕ| dx + √
ε + δ

 
BR

|∇ϕ| dx, (4.12)

where w̃ = w −a and the last line is obtained with Lemma 3.6 and (4.8). By approximation,
ϕ can be taken in W 1,∞

0 ∩ C1(BR,RN ). To obtain the desired estimate, we need to find a
proper test map ϕ, before which we scale to the unit ball B(0, 1)(=: B).

Define ψ := w − h, and set

�(y) := ψ(x0 + Ry)

R
, �(y) := ϕ(x0 + Ry)

R
, W̃ (y) := w̃(x0 + Ry)

R
.

Consider the system, with A := F̃ ′′(0),

{
− div(A∇�) = T (�), in B

�|∂B = 0, on ∂B,
(4.13)

where

T (�) :=
⎧⎨
⎩

�, |�| ≤ 1

�

|�| , |�| > 1.
(4.14)

As T (�) ∈ L∞(BR,RN ), the solution � exists and lies in W 1,s
0 ∩ W 2,s(BR,RN ) for any

s > 1. We take s > n so that by Morrey’s inequality

‖∇�‖L∞ ≤ C‖�‖W 2,s ≤ C‖T (�)‖Ls ≤ C

( 
B
E(�) dx

) 1
s

. (4.15)
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Thus, the following can be deduced from (4.12)

 
B
E(�) dx ≤ a2

 
B
min{|�|, |�|2} dx = a2

 
B
[T (�),�] dx

= a2

 
B
A[∇�,∇�] dx = a2

 
B
A[∇�,∇�] dx

(4.12)≤ C
 
B
E(∇W̃ )|∇�| dx + a2

√
ε + δ

 
B
|∇�| dx

≤ C

( 
B
E(∇W̃ ) dx + √

ε + δ

) ( 
B
E(�) dx

) 1
s

.

Setting q = s′ = s
s−1 , we can obtain

 
B
E(�) dx ≤ C

( 
B
E(∇W̃ ) dx

)q

+ C(ε + δ)
q
2 . (4.16)

Back to BR , the above inequality becomes

 
BR

E

(
w − h

R

)
dx ≤ C

( 
BR

E(∇(w − a)) dx

)q

+ C(ε + δ)
q
2 . (4.17)

To compare u and h, we decompose u − h as (u − uδ) + (uδ − w) + (w − h):

 
BR

E

(
u − h

R

)
dx ≤ C

 
BR

(
E

(
u − uδ

R

)
+ E

(
uδ − w

R

)
+ E

(
w − h

R

))
dx

≤ C
 
BR

|u − uδ|
R

dx + C
 
BR

|uδ − w|
R

dx + C
 
BR

E

(
w − h

R

)
dx

≤ Cδ + C
 
BR

|∇(uδ − w)| dx + C
 
BR

E

(
w − h

R

)
dx

≤ Cδ + C
√

ε + δ + C

( 
BR

E(∇(w − a)) dx

)q

+ C(ε + δ)
q
2 ,

where the third line comes from (4.4) and Poincaré’s inequality, and the fourth the difference
between uδ andw (see (a)) and (4.17). The term concerningw−a can be controlled in terms
of u − a:

 
BR

E(∇(w − a)) dx ≤ C
 
BR

(E(∇(w − uδ) + E(∇ũδ)) dx

≤ C
 
BR

|∇(w − uδ)| dx + C

( 
BR

E(∇ũδ) −
 
BR

E(Dũ)

)
+ C

 
BR

E(Dũ)

≤ C
√

ε + δ + C(δ) + C
 
BR

E(Dũ),

where C(δ) is a δ-related constant and goes to 0 as δ → 0 (see Remark 2.6). Combining the
estimates above and taking δ → 0, we have (4.11) hold. ��
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4.4 Excess decay estimate

For any ball B(x0, R) ⊂⊂ �, define the excess of u as

E (x0, R) :=
 
BR

E(Du − (Du)BR ).

Proposition 4.5 Suppose that F : RN×n → R satisfies (H1)-(H3) with p = 1 and
ω : [0,∞) → [0,∞) satisfies (ω1)-(ω3). The map u ∈ BVloc(�,RN ) is an ω-minimizer of
F̄ with constant R0 > 0. If the ball BR = B(x0, R) ⊂⊂ � with R < R0 is such that

|(Du)BR | < m,

 
BR

|Du − (Du)BR | ≤ 1 (4.18)

for some m > 0, then we have

E (σ R) ≤ c(σ 2 + σ−(n+2)E (R)q−1)E (R) + cσ−(n+2)
√

ω(R) (4.19)

holds for any σ ∈ (0, 1) and any q ∈ (1, n
n−1 ) with some c = c(m, n, N , L, �, q) > 0.

Proof When σ ≥ 1
5 , (4.19) is easy to show, and thus we only consider the case σ ∈ (0, 1

5 ).
Set a(x) = uBR + (Du)BR (x − x0), ũ = u − a and F̃ = F∇a . Take ρ ∈ ( 9

10 R, R) such
that |Dũ|(∂Bρ) = 0 and ũ|∂Bρ ∈ BV (∂Bρ,RN ), then by Lemma 2.8 and 2.7, we have

ũ|∂Bρ ∈ W 1− 1
r ,r (∂Bρ,RN ) (r = n

n−1 if n ≥ 3, r ∈ (1, 2) if n = 2), and

[ũ|∂Bρ ]
W 1− 1

r ,r ≤ C
ˆ

∂Bρ

|Dτ (ũ|∂Bρ )| ≤ C

R

ˆ
BR

|Dũ|. (4.20)

Let h be the harmonic map determined by (4.9) with R replaced by ρ. We moreover define

h̃ = h − a, a1(x) = h̃(x0) + ∇ h̃(x0)(x − x0), a0 = a + a1.

Then Lemma 2.9, Remark 2.11 and (4.20) imply

|∇h̃(x0)| ≤ sup
B ρ

2

|∇h̃| ≤ C
 
Bρ

|∇h̃| dx ≤ C

( 
Bρ

|∇h̃|r dx
) 1

r

≤ [ũ|∂Bρ ]
W 1− 1

r ,r ≤ C

Rρn−1

ˆ
BR

|Dũ| ≤ C
 
BR

|Dũ|.

Then by assumption, it is possible to control |∇a0| as follows

|∇a0| ≤ |∇a| + |∇a1| ≤ |(Du)BR | + C
 
BR

|Dũ| ≤ m + C =: Cm .

For any σ ∈ (0, 1
5 ), we have 2σ R <

ρ
2 . Lemma 3.2 gives

 
Bσ R

E(Du − (Du)Bσ R ) ≤ 4
 
Bσ R

E(D(u − a0)), (4.21)
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and inequality (4.1) implies

 
Bσ R

E(D(u − a0)) ≤ C

( 
B2σ R

E

(
u − a0
2σ R

)
dx + ω(2σ R)

)

≤ 2C
 
B2σ R

(
E

(
ũ − h̃

2σ R

)
+ E

(
h̃ − a1
2σ R

))
dx + Cω(2σ R). (4.22)

By Lemma 2.9 we have, for x ∈ B2σ R ,

|h̃(x) − a1(x)|
2σ R

≤ C sup
B2σ R

|∇2h| |x − x0|2
2σ R

≤ Cσ R sup
B ρ

2

|∇2h̃|

≤ Cσ

 
Bρ

|∇h̃| dx ≤ Cσ

 
∂Bρ

|Dτ (ũ|∂Bρ )|
(4.20)≤ Cσ

 
BR

|Du − (Du)BR |

≤ Cσ

( 
BR

E(Du − (Du)BR )

) 1
2

.

The assumption implies
ffl
BR

E(Dũ) ≤ ffl
BR

|Dũ| ≤ 1, then Lemma 3.3 can be used to get

the last line. Thus, the integral involving h̃ − a1 is controlled by the following

 
B2σ R

E

(
h̃ − a1
2σ R

)
dx ≤ E

(
Cσ

( 
BR

E(Du − (Du)BR )

) 1
2
)

≤ a2Cσ 2
 
BR

E(Du − (Du)BR ). (4.23)

The term concerning ũ − h̃ can be estimated with (4.11):

 
B2σ R

E

(
ũ − h̃

2σ R

)
dx ≤ C

σ n+2

 
Bρ

E

(
ũ − h̃

ρ

)
dx

≤ C

σ n+2

(( 
Bρ

E(D(u − a))

)q

+ √
ε + √

ε
q

)
, (4.24)

where ε = ffl
Bρ

(a6 + a7 |Du|). Considering |Du| ≤ |Du − (Du)BR | + |(Du)BR |, we obtain
by assumption that ε ≤ Cω(ρ). The above estimates (4.21)-(4.24) and the estimate for ε

together give

 
Bσ R

E(Du − (Du)Bσ R ) ≤ C

σ n+2

(( 
BR

E(Du − (Du)BR )

)q

+ √
ω(R)

)

+ Cσ 2
 
BR

E(Du − (Du)BR ) + Cω(2σ R), (4.25)

which is exactly (4.19). ��
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4.5 Iteration

Now it is the time to do iteration with (4.19) and get a first regularity result of u. Before that
we present a lemma concerning the summability of ω to some power.

Lemma 4.6 For any fixed r > 0, α ∈ [ 14 , 1) and τ ∈ (0, 1), we have

∞∑
j=0

ωα(τ j r) ≤ 2αβ

1 − τ 2αβ

α(r), (4.26)

where β is as in (ω2). In particular,

ωα(r) ≤ 
α(r). (4.27)

Proof The idea is to transform the sum on the left-hand side into that of a series of integrals
on many subintervals of [0, r ]. Indeed, by (ω2)

ˆ τ j−1r

τ j r

ωα(ρ)

ρ
dρ ≥ ωα(τ j−1r)

(τ j−1r)2αβ

ˆ τ j−1r

τ j r
ρ2αβ−1 dρ

= ωα(τ j−1r)

(τ j−1r)2αβ

1

2αβ
((τ j−1r)2αβ − (τ j r)2αβ)

= 1

2αβ
(1 − τ 2αβ) ωα(τ j−1r).

Summing over j we obtain

∞∑
j=0

ωα(τ j r) ≤ 2αβ

1 − τ 2αβ

ˆ r

0

ωα(ρ)

ρ
dρ = 2αβ

1 − τ 2αβ

α(r).

��
Proposition 4.7 Suppose that F : RN×n → R satisfies (H1)-(H3)with p = 1, ω : [0,∞) →
[0,∞) satisfies (ω1)-(ω3) and u ∈ BVloc(�,RN ) is an ω-minimizer of F̄ with constant
R0 > 0. For any α ∈ (

β
2 , 1) and m > 0, there exist C = C(m, n, N , L, �, α, β) > 0, εm > 0

and R1 > 0 such that the following holds: if BR = B(x0, R) ⊂⊂ � is such that

|(Du)BR | < m, E (x0, R) <
εm

2
, R < R1, (4.28)

then for any 0 < ρ < R,

E (ρ) ≤ C
( ρ

R

)2α
E (R) + C

√
ω(ρ). (4.29)

Proof By Lemma 3.3, we have 
BR

|Du − (Du)BR | ≤ √
3E (R)

if E (R) ≤ 1. Then set εm < 1
3 so that

ffl
BR

|Du − (Du)BR | < 1. Meanwhile, we take R1 such
that ω(R1) < 1. The assumptions of Proposition 4.5 are satisfied and then, for some fixed
q ∈ (1, n

n−1 ),

E (σ R) ≤ c(σ 2 + σ−(n+2)E (R)q−1)E (R) + cσ−(n+2)
√

ω(R), (4.30)
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where c = c(m, n, N , L, �, q). Set Cm+1 = c(m + 1, n, N , L, �, q)). Take σ ∈ (0, 1
5 ) and

then εm ∈ (0, 1
3 ) such that

Cm+1σ
2 <

1

2
σ 2α, Cm+1σ

−(n+2)ε
q−1
m <

1

2
σ 2α.

In this case, with c1 := Cm+1σ
−(n+2), (4.30) becomes

E (σ R) ≤ σ 2αE (R) + c1
√

ω(R).

To do the iteration, we consider the following

(I j ) |(Du)B
σ j R

| ≤ m + 1,

(II j ) E (σ j R) ≤ σ 2 jαE (R) + c2
√

ω(σ j R),
(III j ) E (σ j R) ≤ εm ,

where c2 = c1
σβ−σ 2α . The three hold for j = 0. Assume that they hold for j = 0, 1, . . . , k−1

with k ≥ 1 and do induction. Then (III j ) together with εm < 1
3 implies

ffl
B

σ j R
|Du −

(Du)B
σ j R

| < 1. Combining this with (I j ) we have, by Proposition 4.5 and the choice of
σ, εm ,

E (σ k R) ≤ σ 2kαE (R) + c1

k−1∑
j=0

σ 2(k− j−1)α
√

ω(σ j R)

≤ σ 2kαE (R) + c1

k−1∑
j=0

σ ( j−k)β+2(k− j−1)α
√

ω(σ k R)

≤ σ 2kαE (R) + c1
σβ − σ 2α

√
ω(σ k R),

which actually gives (IIk). Take σ and R1 small enough such that σ 2α < 1
2 , c2

√
ω(R1) < εm

2 ,
and we furthermore have (IIIk). Finally, to get (Ik) we use the triangle inequality

|(Du)B
σk R

| ≤ |(Du)BR | +
k−1∑
j=0

|(Du)B
σ j+1R

− (Du)B
σ j R

|.

For any j ∈ {0, 1, . . . , k − 1}, by Lemma 3.3, (III j ) and (II j ) we have

|(Du)B
σ j+1R

− (Du)B
σ j R

| ≤ σ−n
 
B

σ j R

|Du − (Du)B
σ j R

|

≤ σ−n
√
3E (σ j R) ≤ σ−n(3σ 2 jαE (R) + 3c2

√
ω(σ j R))

1
2

≤ σ−n(
√
3σ jα

√
E (R) + √

3c2ω
1
4 (σ j R)).

Sum up the above from 0 to k − 1 with the help of Lemma 4.6 to obtain

|(Du)B
σk R

| ≤ m + √
3σ−n

k−1∑
j=0

(σ jα
√
E (R) + √

c2ω
1
4 (σ j R))

≤ m + √
3σ−n

(√
E (R)

1 − σα
+

√
c2β

2(1 − σ
β
2 )


 1
4
(R)

)
.
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We require
√
3σ−n

1 − σα

√
εm <

1

2
,

√
3c2βσ−n

2(1 − σ
β
2 )


 1
4
(R1) <

1

2
,

which can be satisfied when εm � 1, R1 � 1. Then (Ik) also holds true. Notice that in the
above we have chosen σ, εm, R1 in order such that |(Du)BR | < m, E (R) < εm

2 and R < R1

imply (I j )-(III j ) for any j ∈ N. Given any ρ ∈ (0, R), we can take σ k+1R < ρ ≤ σ k R and
get the desired estimate for E (ρ) by controlling it with E (σ k R). ��

We claim that there exists a relatively closed null set Su ⊂ � such that u ∈ C1
loc(� \

Su,RN ) and Du locally has the modulus of continuity ρ 
→ ρα +
 1
4
(ρ) on�\ Su . Actually,

for any x0 ∈ � such that

lim sup
R→0+

|(Du)x0,R | < ∞ and lim inf
R→0+

 
B(x0,R)

E(Du − (Du)x0,R) dx = 0, (4.31)

one can show that Du = ∇uL n and ∇u has the desired modulus of continuity in a neigh-
bourhood of x0 by Proposition 4.9 in [42] and mollifying the proof of Theorem 2.9 in [38].
Thus, the set Su ⊂ � is relatively closed and null with respect to the Lebesgue measure.

4.6 Improvement of regularity

With the regularity proved above, it is possible to further show that the local modulus of
continuity of Du is ρ 
→ ρα + 
 1

2
(ρ) for any α ∈ (0, 1). For any open set �′ ⊂⊂ � \ Su ,

we assume ‖u‖C1(�′) ≤ M(�′) < ∞. Then it is sufficient to perform the procedure in the
quadratic case as in [38], § 9.4. For completeness, we sketch the process here.

Proposition 4.8 Suppose that F : RN×n → R satisfies (H1)-(H3)with p = 1, ω : [0,∞) →
[0,∞) satisfies (ω1)-(ω3) and u ∈ BVloc(�,RN ) is an ω-minimizer of F̄ with constant
R0 > 0. Let Su be the relatively closed singular set as in last subsection. Take �′ ⊂⊂ � \ Su
and M = M(�′) > 0 as above. For any ball B(x0, R) ⊂⊂ �′ with R < R0, if a : Rn → R

N

is an affinemapwith |∇a| ≤ m for somem > 0, then there existsC = C(m, n, N , L, �, M) >

0 such that  
B R

2

|∇(u − a)|2 dx ≤ C

( 
BR

|u − a|2
R2 dx + ω(R)

)
. (4.32)

Proof In Proposition 4.1we have already obtained a Caccioppoli-type inequality with respect

to E . By (3.4), we have E( u−a
R ) ≤ a2

|u−a|2
R2 . To deal with the left-hand side, notice that

|∇(u − a)| ≤ |∇u| + |∇a| ≤ M + m and then E(∇(u − a)) ≥ CM+m |∇(u − a)|2. ��
Proposition 4.9 Suppose that F, ω, u, Su,�′ and M(�′) are as in Proposition 4.8 and z0 ∈
R

N×n satisfies |z0| ≤ m. There exists q > 1 depending on m, n, N , L, �, M and C =
C(m, n, N , L, �, M, q) ≥ 1, such that |∇u − z0| ∈ L2q

loc(�
′), and for any ball B(y0, R) ⊂⊂

�′ we have
( 

B(y0,
R
2 )

|∇u − z0|2q dx
) 1

q

≤ C

( 
B(y0,R)

|∇u − z0|2 dx + ω(R)

)
. (4.33)
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Proof Pick Bρ = B(x0, ρ) ⊂ B(y0, R) with ρ < R0 and a(x) = uBρ + z0(x − x0). The
average of u − a on Bρ vanishes by the definition of a, and then the Sobolev-Poincaré
inequality implies

 
Bρ

|u − a|2
ρ2 dx ≤ C

( 
Bρ

|∇(u − a)|2∗ dx

) 2
2∗

= C

( 
Bρ

|∇u − z0|2∗ dx

) 2
2∗

,

where 2∗ = 2n
n+2 < 2.CombiningProposition4.8wehave theweak reverseHölder inequality

 
B ρ

2

|∇u − z0|2 dx ≤ C

( 
Bρ

|∇u − z0|2∗ dx

) 2
2∗

+ Cω(ρ). (4.34)

The above estimate holds for any ball Bρ ⊂ B(y0, R) with ρ < R0 and we can replace the
ω(ρ) on the right-hand side by ω(R). By the generalised Gehring lemma (see [34], Chap.V
or [60], § 2.3), we know that there is an q0 > 1 such that |∇u − z0| ∈ L2q(B(y0, R)) for
any q ∈ (1, q0) with (4.33) holding true. ��

To get the regularity of u, we compare it with a harmonic map again, which is now taken
as the minimizer of a quadratic functional. Take a ball BR = B(x0, R) with R < R0 and
B(x0, 2R) ⊂⊂ �′ and consider

{
− div(A∇h) = 0, in BR

h|∂BR = u|∂BR , on ∂BR,
(4.35)

where A = F̃ ′′(0) with F̃ = F∇a and a(x) = uBR + (∇u)B2R (x − x0). It is obvious that h
is the minimizer of

G (v, BR) :=
ˆ
BR

(F(∇a) + F ′(∇a)∇(v − a) + 1

2
F ′′(∇a)[∇(v − a),∇(v − a)]) dx .

Lemma 4.10 Let F, ω, u, Su,�′, M(�′) be as in Proposition 4.8, F̃, a, BR and h be
as above, and q be the exponent obtained in Proposition 4.9. Then for some C =
C(n, N , L, �, M, q) > 0 we have

 
BR

|∇(u − h)|2 dx ≤ C

( 
B2R

|∇(u − a)|2 dx
)1+ 1

q′
+ Cω(2R). (4.36)

Proof As u ∈ C1(B̄R,RN ), we have |∇(u − h)| ∈ L2(BR) and by (3.14)

ˆ
BR

|∇(u − h)|2 dx ≤ 1

2
C
ˆ
BR

F̃ ′′(0)[∇(u − h),∇(u − h)] dx
= C(G (u) − G (h))

= C(G (u) − F (u) + F (u) − F (h) + F (h) − G (h))

=: C(I + I I + I I I ).

123



Partial regularity for ω-minimizers Page 27 of 40 178

The ω-minimality of u, Hölder’s inequality and the L2-estimate of (4.35) (see [38], §10.4)
give

I I ≤ ω(R)

ˆ
BR

(1 + |∇h|) dx

≤ ω(R)(ωn R
n + CR

n
2 ‖∇u‖L2(BR))

≤ ω(R)ωn R
n(1 + CM).

By the C1 boundedness of u, we have |∇(u − a)| ≤ 2M and then I can be estimated as
follows

I = −
ˆ
BR

ˆ 1

0
(1 − t)(F ′′(∇a + t∇(u − a)) − F ′′(∇a))[∇(u − a),∇(u − a)] dx

≤ C(M)

ˆ
BR

|∇(u − a)|3 dx

≤ C(M)ωn R
n
( 

BR

|∇(u − a)|q ′
dx

) 1
q′ ( 

BR

|∇(u − a)|2q dx
) 1

q

(4.33)≤ Cωn R
n
( 

BR

|∇(u − a)|2 dx
) 1

q′ ( 
B2R

|∇(u − a)|2 dx + ω(2R)

)
.

The q can be taken smaller than 2 and thus |∇(u − a)|q ′ ≤ (2M)q
′−2|∇(u − a)|2. The

estimate of I I I is similar with the help of the L p-estimate of (4.35) (see [38], Sect. 10.4).
Summing up the estimates for I , I I and I I I gives the desired inequality. ��
Proposition 4.11 Suppose that F, ω, u, Su,�′, M(�′) and q are as in Proposition 4.9. Take
a ball B(x0, R) such that R < R0 and B(x0, 2R) ⊂⊂ �′. For any σ, γ ∈ (0, 1) we have

E1(σ R) ≤ C(σ−n + σ 2γ )

(
E1(2R)

1+ 1
q′ + ω(2R)

)
+ Cσ 2γ E1(2R) (4.37)

for any γ ∈ (0, 1) with C = C(n, N , L, �, M, q, γ ) > 0, where E1 is the L2-excess

E1(x0, ρ) :=
 
Bρ

|∇u − (∇u)Bρ |2 dx .

Proof Suppose that h is as in Lemma 4.10. For any ρ < R, the harmonic function h satisfies,
by §III.2 in [34], 

Bρ

|∇h − (∇h)Bρ |2 dx ≤ C
( ρ

R

)2γ  
BR

|∇h − (∇h)BR |2 dx . (4.38)

Then the excess of ∇u can be estimated by comparing ∇u and ∇h. With the help of (4.36),
we can obtain (4.37). ��

Replace 2R by R and then the excess estimate is

E1(σ R) ≤ C(σ−n + σ 2γ )

(
E1(R)

1+ 1
q′ + ω(R)

)
+ Cσ 2γ E1(R). (4.39)

It indeed holds for σ ∈ (0, 1) as the case σ ∈ ( 12 , 1) is obvious. Given α ∈ (0, 1), we take
γ > α and do iteration as in Subsec. 4.5. The final statement is as follows: There exist ε0 > 0
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and R2 ∈ (0, R0) such that if B(x0, R) ⊂⊂ �′ satisfies

E1(R) <
ε0

2
, R < R2,

we have

E1(ρ) ≤ C
( ρ

R

)2α
E1(R) + Cω(ρ) (4.40)

for any ρ ∈ (0, R) with some C = C(n, N , L, �, M, α) > 0. It is routine to get that ∇u has
the local modulus of continuity ρ 
→ ρα + 
 1

2
(ρ). From the discussion at the end of last

subsection, it is not hard to see that Su ⊂ �1 ∪ �2, where

�1 :=
{
x ∈ � : lim inf

ρ→0+

 
Bρ(x)

E(Du − (Du)Bρ(x)) > 0

}
,

�2 :=
{
x ∈ � : lim sup

ρ→0+
|(Du)Bρ(x)| = ∞

}
.

4.7 Indirect argument

In [25] the authors showed the partial regularity for ω-minimizers in the subquadratic case
(1 < p < 2), where the harmonic approximation is done via an indirect argument. That
method can be adapted to the linear growth case in this paper, and a sketch of the proof is in
the following. We remark that with this method, only C2 regularity of F is needed, in other
words, we replace (H3) by

(H3)′ F is C2 and ∣∣F ′′(z1) − F ′′(z2)
∣∣ ≤ νM (|z1 − z2|)

for any z1, z2 ∈ B(0, M + 1), where νM is concave and non-decreasing on [0,∞) with
νM (0) = limt→0 νM (t) = 0.

The Dini type condition ofω can also be relaxed to
 1
2
(ρ) < ∞ for any ρ > 0, as the desired

exponent of ω(R) is obtained with one attempt in the excess decay estimate.
For this argument, most of the steps in [25] remain the same. The difference is twofold:

the Sobolev-Poincaré inequality and the harmonic approximation.
Define two maps V ,W on finite dimensional Hilbert spaces (not specified here):

V (ξ) := ξ

(1 + |ξ |2) 1
4

, W (ξ) := ξ√
1 + |ξ | .

Then we can see that |W (ξ)| ≤ |V (ξ)| ≤ 2
1
4 |W (ξ)| and |W (·)|2 is convex.

Theorem 4.12 Let BR = B(x0, R) ⊂ R
n be a ball with n ≥ 2. Then for any u ∈

BV (BR,RN ) there holds

( 
BR

∣∣∣∣W
(
u − uR

R

)∣∣∣∣
2n
n−1

dx

) n−1
2n

≤ cs

( 
BR

|W (Du)|2
) 1

2

, (4.41)

where the constant cs depends on n, N. It also holds with W replaced by V .
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Proof Notice that |W |2 is convex and thus ´ |W |2 is continuous with respect to convergence
in the area-strict sense in BV . Thus, we only need to consider maps inW 1,1 ∩C∞(BR,RN ),
and the general case follows by approximation. For x, y ∈ BR , it is easy to see |x − y| < 2R.
Then fix an x ∈ BR , by Theorem 2 in [25] we have

W 2
( |u − uR |

2R

)
≤ (2R)n−1

(n − 1)L n(BR)

ˆ
BR

W 2(|Du(y)|)
|x − y|n−1 dy.

Integrating with respect to x in BR , we get

 
BR

∣∣∣∣W
(
u − uR

R

)∣∣∣∣
2

dx

≤ c

R

 
BR

ˆ
BR

W 2(|Du(y)|)
|x − y|n−1 dy dx

≤ c

R

 
BR

W 2(|Du(y)|)
ˆ
B2R(y)

|x − y|1−n dx dy

≤ c
 
BR

W 2(|Du(y)|) dy. (4.42)

To get a higher order integrability ofW (|u−uR |/R), we need the classical Sobolev inequality.
Consider g = (u − uR)/R and U = W 2(|g|). Notice that W 2(|·|) is Lipschitz, and then
U ∈ W 1,1(BR) with

DU (x) = |g(x)|(2 + |g(x)|)
(1 + |g(x)|)2 Dg(x)

g(x)

|g(x)| in {x ∈ BR : g(x) �= 0}.

The Sobolev embedding for W 1,1 gives

( 
BR

|U | n
n−1 dx

) n−1
n ≤ C

(
R
 
BR

|DU | dx +
 
BR

|U | dx
)

. (4.43)

When |Du(x)| ≥ 1, from the expression of DU we have

R|DU (x)| ≤ 2|Du(x)| ≤ cW 2(|Du(x)|).
When 0 < |Du(x)| < 1, apply Young’s inequality and then

R|DU (x)| ≤ 1

2

|g|2(2 + |g|)2
(1 + |g|)4 + 1

2
|Du|2

≤ 2min{|g|, |g|2} + cW 2(|Du|)
≤ c(W 2(|g|) + W 2(|Du|)).

Thus, the first term on the right-hand side of (4.43) is controlled by

R
 
BR

|DU | dx ≤ C
 
BR

(
W 2

(
u − uR

R

)
+ W 2(|Du|)

)
dx .

Combining (4.42) we have the desired inequality. ��
We have obtained a Caccioppoli-type inequality in Proposition 4.1. It is easy to see that

V 2(t) ∼ E(t), so we have the Caccioppoli-type inequality with respect to V 2.
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Lemma 4.13 Suppose that F : RN×n → R satisfies (H1),(H2) and (H3)′ with p = 1, ω

satisfies (ω1) with constant R0 > 0, and u ∈ BVloc(�,RN ) is an ω-minimizer of F̄ . Fix
m > 0, then there exists cc = cc(m, n, N , L, �) such that for any BR = B(x0, R) ⊂⊂ �

with R < R0 and affine map a : Rn → R
N with |∇a| ≤ m, there holds

 
B R

2

|V (D(u − a))|2 ≤ cc

( 
BR

∣∣∣∣V
(
u − a

R

)∣∣∣∣
2

dx + ω(R)

)
. (4.44)

The ω-minimality of u implies that it is almost an A-harmonic map with a proper A, to
present which we define the excess for u with A ∈ R

N×n :

E2(x0, R, A) :=
( 

B(x0,R)

|V (Du) − V (A)|2
) 1

2

.

When x0 (and R) and A are fixed, we abbreviate the quantity as E2(R)(E2). The following
can be showed with the proof of Lemma 4 in [25] by considering ∇u and Dsu separately.

Lemma 4.14 (Approximate harmonicity) Suppose that F, ω and u are as in Lemma 4.13.
For any m > 0, there exists ce > 0 depending on mn, N , L such that for any ball BR =
B(x0, R) ⊂⊂ � with R < R0 and any A ∈ R

N×n with |A| ≤ m, we have∣∣∣∣
 
BR

F ′′(A)[Du − A, Dϕ]
∣∣∣∣ ≤ ce(

√
νM (E2)E2 + E 2

2 + √
ω(R)) sup

BR

|Dϕ| (4.45)

for any ϕ ∈ C1
0 (BR,RN ).

With this result, we are able to approximate u by anA-harmonicmap by the following lemma:

Lemma 4.15 For any ε > 0, there exists δ = δ(n, N ,�, λ, ε) ∈ (0, 1] such that for any A ∈⊙2
(RN×n) that satisfies (2.11), any ball BR = B(x0, R) ⊂ R

n and any v ∈ BV (BR,Rn)

with  
BR

|W (Dv)|2 ≤ γ 2 ≤ 1, (4.46)

 
BR

A[Dv, Dϕ] ≤ γ δ sup
BR

|Dϕ|, for any ϕ ∈ C1
0 (BR,RN ), (4.47)

there exists an A-harmonic map h satisfying

 
BR

|W (Dh)|2 ≤ 1,
 
BR

∣∣∣∣W
(

v − γ h

R

)∣∣∣∣
2

dx ≤ γ 2ε. (4.48)

The proof of this lemma is by contradiction, see Lemma 6 in [25]. The integrals concerning
∇u and Dsu need to be considered separatelywhen necessary.Notice that the scaling between
BR and B(0, 1) for BV maps does not hold straightforward but can proved by approximation
with W 1,1 ∩ C∞ maps.

The excess decay estimate can be done with the same procedure as that in [25], Lemma 7.
At some points we need to consider the singular part of the integral of a BV map separately,
which will not make an essential difference.
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Then if a ball BR = B(x0, R) ⊂⊂ � is such that |(Du)R | ≤ m, and E2(R) and R are
taken to be small enough, we will have

E 2
2 (ρ) ≤ C

(( ρ

R

)2α
E2(R) + ω(R)

)
, for any ρ ∈ (0, R).

The desired partial regularity hence follows.

5 Partial regularity for u

This section is for the proof of Theorem 1.3, which gives the partial Hölder regularity of
ω-minimizers in the subquadratic case without the Dini-type condition (ω3). The main steps
are similar with those in last section, so we omit some details and only present an outline
with the difference.

5.1 Caccioppoli-type inequality

To showTheorem1.3,we need to consider a normalised excess (see (5.12)). Correspondingly,
the Caccioppoli-type inequality in this case also contains a normalising factor (1 + |A|).
Proposition 5.1 Suppose that F : RN×n → R satisfies (H1), (H2), (H31) and (H32) with
p ∈ (1, 2), and ω satisfies (ω1). The map u ∈ BVloc(�,RN ) is an ω-minimizer of F with
constant R0 > 0. Then for any ball BR = B(x0, R) ⊂⊂ � with R < R0 and any affine
map a : Rn → R

N with ∇a = A ∈ RN×n, there exists a constant c = c(n, N , L, �, p)
independent of a such thatˆ

B R
2

Ep

(∇u − A

1 + |A|
)

dx ≤ c

(ˆ
BR

Ep

(
u − a

R(1 + |A|)
)

dx + ω(R)Rn
)

. (5.1)

Proof Set F̃ := FA, ũ = u − a, and fix R
2 < t < s < R. Take a smooth cut-off function

between Bt and Bs with ρ ∈ C∞
c (Bs) and |∇ρ| ≤ 2

s−t , and set ϕ = ρũ, ψ = (1 − ρ)ũ.

Then ϕ ∈ W 1,p
0 (Bs,R

N ), and the quasiconvex condition (H2) with (3.11) givesˆ
Bs

F̃(∇ϕε) dx ≥ c�
ˆ
Bs

E A
p (∇ϕ) dx .

The rest part can be carried out as in Proposition 4.1 with E replaced by E A
p . We estimate

the term with ω(s) as follows

ω(s)
ˆ
Bs

(1 + |∇ψ |p) dx = ω(s)(1 + |A|)p
ˆ
Bs

1 + |∇ψ |p
(1 + |A|)p dx

(3.6)≤ ω(s)(1 + |A|)p
ˆ
Bs

(
2 + 1

a1
Ep

( ∇ψ

1 + |A|
))

dx

≤ 2ω(R)ωn R
n(1 + |A|)p + 1

a1

ˆ
Bs

E A
p (∇ψ) dx .

The inequality obtained from above with Lemma 4.2 isˆ
B R

2

E A
p (∇u − A) ≤ C

ˆ
BR

E A
p

(
u − a

R

)
dx + Cω(R)Rn(1 + |A|)p, (5.2)
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and then (5.1) follows by (2.4). ��

5.2 Harmonic approximation

The result in this subsection can be obtained by modifying the process in Subsec. 4.2 and 4.3,
so we will omit the repetitive part and only give the difference.

Suppose that F, ω andu are as inTheorem1.3,where p ∈ (1, 2). Take BR = B(x0, R) ⊂⊂
� with R < R0, and fix A ∈ R

N×n . Similar with Subsec. 4.2, we have

F (u, BR) ≤ inf
v∈W 1,1

u (BR ,RN )

F (v, BR) + ωn R
nε, (5.3)

where ε = ω(R)
ffl
BR

(a6 + a7|∇u|p) dx . Consider the complete metric space X =
W 1,p

u (BR,RN ) with

d(w1, w2) = (1 + |A|) p
2 −1

( 
BR

|∇(w1 − w2)|p dx

) 1
p

.

The Ekeland variational principle (Lemma 4.3) then implies the existence of w ∈
W 1,p

u (BR,RN ) such that, with F(u) = ffl
BR

F(∇u) dx ,

(a) d(u, w) ≤ √
ε;

(b) F(w) ≤ F(u);
(c) F(w) ≤ F(v) + √

ε d(w, v), for any v ∈ X = W 1,p
u (BR,RN ).

Subsequently, we have the Euler-Lagrange inequality: for any ϕ ∈ W 1,p
0 (BR,RN ) there

holds

∣∣∣∣
 
BR

F ′(∇w) · ∇ϕ dx

∣∣∣∣ ≤ √
ε(1 + |A|) p

2 −1
( 

BR

|∇ϕ|p dx

) 1
p

. (5.4)

Proposition 5.2 Suppose that F : R
N×n → R satisfies (H1), (H2), (H31) and (H32) with

p ∈ (1, 2), and ω satisfies (ω1). The map u ∈ W 1,p
loc (�,RN ) is an ω-minimizer of F with

constant R0 > 0. For any ball BR = B(x0, R) ⊂⊂ � and any affine map a : Rn → R
N with

∇a = A ∈ R
N×n, the system

{
− div(F ′′(A)∇h) = 0, in BR

h|∂BR = u|∂BR , on ∂BR
(5.5)

admits a unique solution h ∈ W 1,p
u (BR,RN ) such that

( 
BR

|∇h − A|p dx
) 1

p ≤ C

( 
BR

|∇u − A|p dx

) 1
p

, (5.6)

where C = C(n, N , L
�
, p) > 0. Furthermore, set

ε =
 
BR

(a6 + a7 |∇u|p) dx, εA,p = ε

(1 + |A|)p , r = max

{
2,

np′

n + p′

}
,
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and denote r ′
p = min{ 2p , n

n−p } by s, then there exists a constant C = C(n, N , L, �, p) > 0
such that  

BR

Ep

(
u − h

R(1 + |A|)
)

dx ≤ C

( 
BR

Ep

(∇u − A

1 + |A|
)

dx

)s

+ C(ε
p
2
A,p + ε

r ′
2
A,p). (5.7)

Proof Define A := F ′′(A)(1 + |A|)2−p . Then from (H31) and Lemma 3.4 we know that
|A| ≤ L and the operator satisfies the Legendre-Hadamard condition. Lemma 2.9 and the
comment after it indicate that there exists a unique solution h ∈ W 1,p

u (BR,RN ) to (5.5)
satisfying (5.6).

Set F̃ = FA, ũ = u − a and w̃ = w − a. As in (4.12), we have, by Lemma 3.6, (5.4),
Hölder’s inequality and the fact E(z)p ≤ c(p)Ep(z), 

BR

F̃ ′′(0)[∇(w − h),∇ϕ] dx

≤ (1 + |A|)p−1
(
C
 
BR

E

( ∇w̃

1 + |A|
)

|∇ϕ| dx + ε
1
2
A,p

 
BR

|∇ϕ| dx
)

≤ (1 + |A|)p−1
( 

BR

|∇ϕ|p′
dx

) 1
p′

(
C

( 
BR

Ep

( ∇w̃

1 + |A|
)

dx

) 1
p + ε

1
2
A,p

)

(5.8)

for any ϕ ∈ W 1,∞
0 ∩C1(BR,Rn). To find a proper test map ϕ, we again scale to the unit ball

B = B(0, 1), define �,� and W̃ as Proposition 4.4 and consider⎧⎪⎨
⎪⎩

− div(A∇�) = Tp

(
�

1 + |A|
)

, in B

�|∂B = 0, on ∂B,

(5.9)

where for any y ∈ R
N

Tp(y) =
{
y, |y| ≤ 1

|y|p−2 y, |y| > 1.

Then we have Tp(
�

1+|A| ) ∈ L p′
(B,RN ) and that (5.9) has a unique solution � ∈ W 1,p′

0 ∩
W 2,p′

(B,RN ) satisfying

‖�‖W 2,r ≤ C(n, N , r)

∥∥∥∥Tp

(
�

1 + |A|
)∥∥∥∥

Lr
, for any r ∈ [2, p′]. (5.10)

Take r = max{2, np′
n+p′ }, which is smaller than p′, then ‖∇�‖L p′ can be controlled in the

following way with the Sobolev embedding

‖∇�‖L p′ ≤ C(p, n, N ) ‖�‖W 2,r ≤ C(p, n, N )

∥∥∥∥Tp

(
�

1 + |A|
)∥∥∥∥

Lr
. (5.11)

When |y| ≤ 1, it is easy to see that
∣∣Tp(y)

∣∣r ≤ |y|2 ≤ 1
a1
Ep(y). If |y| > 1, we consider two

cases:

• 2n
n+2 ≤ p < 2, i.e., np′

n+p′ ≤ 2 and r = 2: (p − 1)r = 2(p − 1) ≤ p as p < 2;
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• 1 < p < 2n
n+2 , i.e.,

np′
n+p′ > 2 and r = np′

n+p′ : (p − 1)r = np(p−1)
n(p−1)+p < p.

In both cases, we have
∣∣Tp(y)

∣∣r = |y|p−1 r ≤ |y|p ≤ CEp(y). Thus, with (5.8), (5.11) and
the difference between u and w (see (a)), the estimate (5.7) can be obtained as in Proposi-
tion 4.4. ��

5.3 Excess decay estimate

For a ball BR = B(x0, R) ⊂⊂ �, we define the excess

E(x0, R) :=
 
BR

Ep

(∇u − (∇u)R

1 + |(∇u)R |
)

dx . (5.12)

When the centre x0 is fixed, we will abbreviate the excess as E(R).

Proposition 5.3 Suppose that F : RN×n → R satisfies (H1), (H2), (H31) and (H32) with
p ∈ (1, 2), and ω satisfies (ω1). The map u ∈ W 1,p

loc (�,RN ) is an ω-minimizer of F with
R0 > 0. For any σ ∈ (0, 1), there exists ε1 > 0 such that if

R < R0, E(x0, R) < ε1 (5.13)

for some ball BR = B(x0, R) ⊂⊂ �, then we have

E(σ R) ≤ c1σ
−(n+2)(E(R)s + ω(R)p) + c2σE(R) + c3ω(2σ R), (5.14)

where s is as in Proposition 5.2 and ci = ci (n, N , L, �, p) > 0, i = 1, 2, 3.

Proof We only consider σ ∈ (0, 1
4 ) as it is obvious when σ ∈ [ 14 , 1). As in Proposition 4.5,

we define a(x) = uBR + (∇u)BR (x − x0), ũ = u − a and F̃ = F∇a . Let h be the harmonic
map determined by (5.5) and set

h̃ = h − a, a1(x) = h̃(x0) + ∇ h̃(x0)(x − x0), a0 = a + a1.

With (2.13) we have

|∇h(x0) − (∇u)R | = |∇h̃(x0)| ≤ C
 
BR

|∇h̃| dx

≤ c4

 
BR

|∇ũ| dx ≤ c4

( 
BR

|∇ũ|p dx

) 1
p

(5.15)

In each step, a different normalising factor is needed, and we now give the comparison of
them. The first one is as follows:

1 + |(∇u)R | ≤ 1 + |(∇u)σ R | + σ−n
 
BR

|∇u − (∇u)R | dx

≤ 1 + |(∇u)σ R | + 1 + |(∇u)R |
σ n

( 
BR

( |∇u − (∇u)R |
1 + |(∇u)R |

)p

dx

) 1
p

≤ 1 + |(∇u)σ R | + 1 + |(∇u)R |
σ n

(3E(R))
1
2p , (5.16)

where the last line is from Lemma 3.3 if we take ε1 < 1.We further require σ−n(3ε1)
1
2p < 1

2 ,

i.e., ε1 < σ 2np

3·4p , then the above estimate gives

1 + |(∇u)R | ≤ 2(1 + |(∇u)σ R |). (5.17)
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For 1 + |∇h(x0)| and 1 + |(∇u)σ R |, we have
1 + |∇h(x0)|
1 + |(∇u)σ R | ≤ 1 + 1

1 + |(∇u)σ R | (|∇h(x0) − (∇u)R | + |(∇u)R − (∇u)σ R |)
(5.15)≤ 1 + c4

 
BR

|∇u − (∇u)R |
1 + |(∇u)σ R | dx + σ−n

 
BR

|∇u − (∇u)R |
1 + |(∇u)σ R | dx

≤ 1 + 2(c4 + σ−n)(3E(R))
1
2p ,

where the last line follows from (5.17), Hölder’s inequality and Lemma 3.3. Taking 2(c4 +
σ−n)(3ε1)

1
2p < 1

2 , i.e., ε1 < 1
3·16p (c4 + σ−n)−2p , we have

1 + |∇h(x0)|
1 + |(∇u)σ R | ≤ 3

2
. (5.18)

The comparison between 1 + |(∇u)R | and 1 + |∇h(x0)| is similar:

1 + |(∇u)R |
1 + |∇h(x0)| ≤ 1 + |(∇u)R − ∇h(x0)|

1 + |(∇u)R | · 1 + |(∇u)R |
1 + |∇h(x0)|

≤ 1 + 2c4(E(R))
1
2p

1 + |(∇u)R |
1 + |∇h(x0)|

≤ 1 + 1

2
· 1 + |(∇u)R |
1 + |∇h(x0)| ,

which implies

1 + |(∇u)R |
1 + |∇h(x0)| ≤ 2. (5.19)

Now we estimate E(σ R): by (3.5) and (5.18) there holds

E(σ R) =
 
Bσ R

Ep

(∇u − (∇u)σ R

1 + |(∇u)σ R |
)

dx ≤ 16
 
Bσ R

Ep

(∇u − ∇h(x0)

1 + |∇h(x0)|
)

dx . (5.20)

The right-hand side can be estimated by the Caccioppoli-type inequality (5.1) 
Bσ R

Ep

(∇u − ∇h(x0)

1 + |∇h(x0)|
)

dx

≤ C
 
B2σ R

Ep

(
u − a0

2σ R(1 + |∇h(x0)|)
)

dx + Cω(2σ R). (5.21)

The term involving u − a0 can be estimated, like in Proposition 4.5, by decomposing u − a0
into ũ − h̃ and h̃ − a1. Applying (5.7) and (5.19), we have

 
B2σ R

Ep

(
ũ − h̃

2σ R(1 + |∇h(x0)|)

)
dx ≤ Cσ−(n+2)

 
BR

Ep

(
u − h

R(1 + |(∇u)R |)
)

≤ Cσ−(n+2)
(
E(R)s + ε

p
2
A,p + ε

r ′
2
A,p

)
. (5.22)

The estimate of |∇2h(x0)| in Lemma 2.9 and (5.19) implies
 
B2σ R

Ep

(
h̃ − a1

2σ R(1 + |∇h(x0)|)

)
dx ≤ Ep

(
Cσ

 
BR

|∇u − (∇u)R |
1 + |(∇u)R | dx

)
≤ CσE(R),

(5.23)

123



178 Page 36 of 40 Z. Li

where we used (3.5) and Jensen’s inequality. Notice that the term εA,p can be estimated with
the triangle inequality and Lemma 3.3, and we obtain

εA,p = ω(R)

 
BR

a6 + a7|∇u|p
(1 + |(∇u)R |)p dx ≤ Cω(R).

Thus, combining (5.20)-(5.23) we have the desired estimate (5.14) of E(σ R) under the

condition ε1 < 1
3 min{ σ 2np

4p , 1
16p (c4 + σ−n)−2p}. ��

5.4 Final conclusion

In this subsection, we use the excess decay estimate above to further obtain a Morrey’s type
estimate for ∇u, which then implies the Hölder regularity of u.

For any α ∈ (0, 1), we take γ = p(α − 1) + n ∈ (n − p, n).

Proposition 5.4 Suppose that F : RN×n → R satisfies (H1), (H2), (H31) and (H32) with
p ∈ (1, 2), and ω satisfies (ω1). The map u ∈ W 1,p

loc (�,RN ) is an ω-minimizer of F with
R0 > 0. There exist R1 ∈ (0, R0), ε2 ∈ (0, 1) such that for any ball BR = B(x0, R) ⊂⊂ �

with

0 < R < R1, E(x0, R) < ε2,

we have ˆ
Bρ

|∇u|p dx ≤ c5

(( ρ

R

)γ
ˆ
BR

|∇u|p dx + ργ

)
(5.24)

for some c5 = c5(n, N , L, �, p, γ ) > 0, where γ ∈ (n − p, n) is defined as above.

Proof Fix the constants σ, ε2 and R1 in order:

σ = min

{
1

2
,

1

4c2
, 2− 2p

n−γ

}
, (5.25)

ε2 = min

{
ε1,

(
σ n+2

4c1

) p
r ′−p

,
1

3 · 16p−1 ,
σ 2n

3 · 4p−1

}
, (5.26)

R1 ∈ (0, R0) such that ω(R1) ≤ min

⎧⎨
⎩

(
σ n+2ε2

4c1

) 1
p

,
ε2

4c3

⎫⎬
⎭ , (5.27)

where r is as in Proposition 5.2, and ε1 and ci , i = 1, 2, 3, are as in Proposition 5.3.
Suppose that for the ball BR = B(x0, R) ⊂⊂ � with some R ∈ (0, R1) there holds

E(x0, R) < ε2. (5.28)

We will show that

(Ik) E(σ k R) < ε2 (Ik)

holds for any k ≥ 0 by induction. Obviously, it holds for k = 0, and we assume that (Ik)
holds for some k ≥ 0. With our choice of ε2, Proposition 5.3 implies

E(σ k+1R) ≤ c1σ
−(n+2)(E(σ k R)s + ω(R)p) + c2σE(σ k R) + c3ω(2σ k+1R),
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where s = r ′
p . By (5.25)-(5.27), we know

c1σ
−(n+2)εs−1

2 ≤ 1

4
, c1σ

−(n+2)
√

ω(R) ≤ ε2

4
, c2σ ≤ 1

4
, c3ω(R) ≤ ε2

4
,

which thus gives (Ik+1). Therefore, we have (Ik) holds for any k ∈ N.
With (Ik) and Lemma 3.3 we have

ˆ
B

σk+1R

|∇u|p ≤ 2p−1

(ˆ
B

σk+1R

|∇u − (∇u)σ k R |p dx + ωn(σ
k+1R)n |(∇u)σ k R |p

)

≤ 2p−1(1 + |(∇u)σ k R |)p
ˆ
B

σk+1R

|∇u − (∇u)σ k R |p
(1 + |(∇u)σ k R |)p dx + 2p−1σ n

ˆ
B

σk R

|∇u|p dx

≤ 2p−1(1 + |(∇u)σ k R |)pωn(σ
k R)n

√
3E(σ k R) + 2p−1σ n

ˆ
B

σk R

|∇u|p dx

≤ 2p−1(2p−1
√
3ε2 + σ n)

ˆ
B

σk R

|∇u|p dx + 22(p−1)ωn(σ
k R)n

√
3ε2

From the choice of ε2, σ , it is easy to see

22(p−1)
√
3ε2 ≤ 1, 2p−1(2p−1

√
3ε2 + σ n) ≤ 2pσ n ≤ σ

γ+n
2 .

Set λ(ρ) := ´
Bρ

|∇u|p dx , then the above gives

λ(σ k+1R) ≤ σ
γ+n
2 λ(σ k R) + ωn(σ

k R)n (5.29)

for any integer k ≥ 0. With Lemma 7.3 in [38] we can further obtain

λ(t) ≤ c5

((
t

R

)γ

λ(R) + tγ
)

, (5.30)

where c5 = c5(n, γ, σ ). ��

Then by a discussion similar to that at the end of Subsec. 4.5, there exists a relatively closed
null set S′

u ⊂ � such that |∇u| is in the Morrey space L p,γ
loc (�\ S′

u). The Sobolev embedding

implies that u lies in the Campanato space Lp,γ+p
loc (� \ S′

u,R
N ), which is actually C0,α

loc (� \
S′
u,R

N ) as γ = p(α − 1) + n. The proof of Theorem 1.3 is then complete.

Remark 5.5 Theorem 1.3 can also be approached by an indirect argument, similar to that in
[25] or [30], by choosing normalising factors carefully. For such an argument, the Lipschitz
continuity of F ′′ can be relaxed to

(H32)′ For any z1, z2 ∈ R
N×n we have

|F ′′(z1) − F ′′(z2)| ≤ ν

( |z1 − z2|
1 + |z1| + |z2|

)
1

(1 + |z1| + |z2|)2−p
,

where ν is a concave, non-decreasing function on [0,∞) with ν(0) = limt→0 ν(t) = 0
and ν ≤ 1.
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