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Abstract
In this paper,weprove that for each closeddifferential formu ∈ L1(RN ; (RN )∗∧...∧(RN )∗),
which is almost in L∞ in the sense thatˆ

{y∈RN : |u(y)|≥L}
|u(y)|dy < ε

for some L > 0 and a small ε > 0,wemayfinda closeddifferential formv, such that‖u−v‖L1

is again small, and v is, in addition, in L∞ with a bound on its L∞ norm depending only on
N and L . In particular, the set {v �= u} has measure at most CL−1ε. As an application of this
theorem, we are able to prove that the A-p-quasiconvex hull of a set does not depend on p.
Furthermore, we can prove a classification theorem for A-∞-Young measures.

Mathematics Subject Classification 49J45 · 26B25

1 Introduction

1.1 A-free truncations

An interesting question in the calculus of variations and real analysis is the following: Con-
sider a linear differential operator A : C∞(RN ,Rd) → C∞(RN ,Rl) of first order with
constant coefficients, and a bounded sequence of functions un ∈ L1(RN ,Rd) which satisfy
Aun = 0 in the sense of distributions and are close to a bounded set in L∞, i.e.

lim
n→∞

ˆ
{x∈RN : |un(x)|≥L}

|un | dx = 0 (1.1)

for some L > 0. Does there exist a sequence of functions vn , such that Avn = 0, ‖vn‖L∞ ≤
CL and (un − vn) → 0 in measure (in L1)?

This questionwas answeredfirst byZhang in [38] for sequences of gradients (un = ∇wn),
i.e. for the operatorA = curl, which assigns to a function u : RN → R

N the skew-symmetric
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(N × N )-matrix with entries ∂i u j − ∂ j ui . Zhang’s proof, which builds on the works of Liu
[22] and Acerbi- Fusco [1], proceeds as follows. Denote by M f the Hardy–Littlewood
maximal function of f ∈ L1

loc(R
N ,Rd) and let un = ∇wn . The estimate (1.1) implies that

the sets Xn = {M(∇wn) ≥ L ′} have small measure for large n. One then uses (cf. [1]) that

|wn(x) − wn(y)| ≤ CL ′|x − y|′, x, y ∈ R
N\Xn, (1.2)

i.e. wn is Lipschitz continuous on R
N\Xn . The fact that Lipschitz continuous functions on

closed subsets ofRN can be extended to Lipschitz continuous functions onRN with the same
Lipschitz constant [15] yields the result.

In this paper, we show that the answer to the previously formulated question is also positive
for sequences of differential forms and A = d , the operator of exterior differentiation.

Let us denote by �r the r-fold wedge product of the dual space (RN )∗ of RN and by
d : C∞(RN ,�r ) → C∞(RN ,�r+1) the exterior derivative w.r.t. the standard Euclidean
geometry on RN .

Theorem 1.1 (L∞-truncation of differential forms) Suppose that we have a sequence un ∈
L1(RN ,�r ) with dun = 0 (in the sense of distributions), and that there exists an L > 0 such
that ˆ

{y∈RN : |un(y)|>L}
|un(y)| dy −→ 0 as n → ∞. (1.3)

There exists a constant C1 = C1(N , r) and a sequence vn ∈ L∞(RN ,�r ) with dvn = 0
and

(i) ‖vn‖L∞(RN ,�r ) ≤ C1L;
(ii) ‖vn − un‖L1(RN ,�r ) → 0 as n → ∞;

(iii) |{y ∈ R
N : vn(y) �= un(y)}| → 0.

An analogous version of Theorem 1.1 holds if RN is replaced by the N -torus TN (cf.
Theorem 5.1) or by an open Lipschitz set � and functions u with zero boundary data (cf.
Propostion 5.4). Moreover, the result immediately extends to R

m-valued forms by taking
truncations coordinatewise (cf. Proposition 5.5).

In particular, the result ofTheorem1.1 includes a positive answer to the question previously
raised for the differential operator A = div after suitable identifications of �N−1 and �N

with R
N and R, respectively.

One key ingredient in the proofs is a version of the Acerbi-Fusco estimate (1.2) for
simplices rather than pairs of points in Lemma 3.1. For the estimate, let us consider ω ∈
C2
c (R

N ,�r ) with dω = 0 and let D be a simplex with vertices x1, ..., xr+1 and a normal
vector νr ∈ R

N ∧ ...∧R
N (cf. Sect. 2.3 for the precise definition). Assume that Mω(xi ) ≤ L

for i = 1, ..., r + 1. Then
∣
∣
∣
∣

ˆ
D

ω(νr )

∣
∣
∣
∣
≤ C(N )L sup

1≤i, j≤r+1
|xi − x j |r = C(N )Ldiam(D)r . (1.4)

The second ingredient is a geometric version of the Whitney extension theorem, which may
be of independent interest, cf. Sect. 4.

Combining (1.4) and the extension theorem, one easily obtains the assertion for smooth
closed forms. The general case follows by a standard approximation argument.

Before turning to an application of the truncation result, let us alsomention that in Theorem
1.1 the hard part is to get the convergence in 1.1) just from the rather weak assumption (1.3).
A version of Theorem 1.1 has been seen for a stronger assumption on the smallness of the

123



L∞-truncation of closed differential forms Page 3 of 33 135

sequence in [14]. Regarding solenoidal Lipschitz truncations [4, 5], meaning W 1,1-W 1,∞-
truncations instead of L1-L∞, the smallness corresponding to (1.3) is also assumed to be
slightly different from the present setting.

Moreover, in the settingA = curl, the statement of Theorem 1.1 can be further improved
as follows. If K is a compact, convex set and un → K in L1, we can even get a sequence
vn , such that the L∞-norm of dist(vn, K ) converges to 0, cf. [25]. In contrast, Theorem 1.1
only implies an L∞-bound on vn and convergence in measure to K . Müller’s technique
does not rely directly to a curl-free truncation, but on a Lipschitz truncation. It then uses
suitable cut-offs and mollifications. The author does not see any obvious obstruction, why
this technique should not work, if we replace the Lipschitz truncation by a general truncation
statement on any potential instead of∇. To keep the paper at a reasonable length, we however
focus on A-free truncations.

1.2 A-∞Youngmeasures

Truncation results like the result by Zhang or Theorem 1.1 have immediate applications in
the calculus of variations. In particular, they provide characterisations of the A-quasiconvex
hulls of sets (cf. Sect. 6.1) and the set of Young-measures generated by sequences satisfying
Aun = 0. For a precise definition of A-Young measures we refer to Sect. 6 and [11].

The classical result for Young measures generated by sequences of gradients (i.e.
sequences of functions un satisfying curl un = 0) goes back to Kinderlehrer and Pedre-
gal [17, 18]. Here, we show the natural counterpart of their characterisation result, whenever
the operator A admits the following L∞-truncation result:

We say that A satisfies the property (ZL) if for all sequences un ∈ L1(TN ,Rd) ∩ kerA,
such that there exists an L > 0 withˆ

{y∈TN : |un(y)|>L}
|un(y)| dy −→ 0 as n → ∞,

there exists a C = C(A) and a sequence vn ∈ L1(TN ,Rd) ∩ kerA such that

(i) ‖vn‖L∞(TN ,Rd ) ≤ CL;
(ii) ‖vn − un‖L1(TN ,Rd ) → 0 as n → ∞.

By Zhang [38], the property (ZL) holds forA = curl and a version of Theorem 1.1 shows
this for A = d (Corollary 5.2). Further examples are shortly discussed in Example 6.2.

For the characterisation of Young measures, recall that spt ν denotes the support of a
(signed) Radon measure ν ∈ M(Rd), and for f ∈ Cc(R

d)

〈ν, f 〉 :=
ˆ
Rd

f dμ.

If the property (ZL) holds for some differential operator A, then one is able to prove the
following statement.

Theorem 1.2 (Classification ofA-∞-Young measures) LetA satisfy (ZL). A weak∗ measur-
able map ν : TN → M(Rd) is an A-∞-Young measure if and only if νx ≥ 0 a.e. and there
exists K ⊂ R

d compact and u ∈ L∞(TN ,Rd) ∩ kerA with

(i) spt νx ⊂ K for a.e. x ∈ TN ;
(ii) 〈νx , id〉 = u(x) for a.e. x ∈ TN ;
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(iii) 〈νx , f 〉 ≥ f (〈νx , id〉) for a.e. x ∈ TN and all continuous andA-quasiconvex f : Rd →
R i.e. f ∈ C(Rd), such that for all ψ ∈ C∞(TN ,Rd) ∩ kerA

f

(ˆ
TN

ψ(x) dx

)

≤
ˆ

f (ψ(x)) dx .

For further reference to classification of A-p-Young measures for p < ∞, let us shortly
refer to [2, 11, 12, 19, 20].

1.3 Outline

We close the introduction with a brief outline of the paper. In Sect. 2, we introduce some
notation, recall some basic facts from multilinear algebra, the theory of differential forms
and Young measures. We prove the key estimate (1.4) in Sect. 3. Section 4 is devoted to the
proof of the geometric Whitney extension theorem. In Sect. 5, the proof of the truncation
result (and its local and periodic variant) is given. Section 6 discusses the applications to
A-quasiconvex hulls and A-Young measures. The proofs of the theorems closely follow the
arguments in [17] and are discussed in the last Sect. 6.3.

2 Preliminary results

2.1 Notation

Weconsider an open andboundedLipschitz set� ⊂ R
N anddenote by TN the N -dimensional

torus,which arises from identifying faces of [0, 1]N .Wemay identify functions f : TN → R
d

with ZN -periodic functions f̃ : RN → R
d , and vice versa. We write Bρ(x) to denote the ball

with radius ρ and centre x . Denote by LN the Lebesgue measure and, for a set X ⊂ R
N ,

|X | := LN (X).

For a measure μ on R
N and a μ-measurable set A ⊂ R

N with 0 < μ(A) < ∞ define the
average integral of a μ-measurable function f via

 
A
f dμ = 1

μ(A)

ˆ
A
f dμ.

For k ∈ N write [k] = {1, ..., k}. For a normed vector space V we denote by V ∗ the dual
space of V .

Define the space �r as the r -fold wedge product of (RN )∗, i.e.

�r = (RN )∗ ∧ ... ∧ (RN )∗
︸ ︷︷ ︸

r copies

and similarly the space �r as the r -fold wedge product of RN . Then �r and �r are finite-
dimensional vector spaces. ForRN denote by {ei }i∈[N ] the standard basis and by · the standard
scalar product. For (RN )∗ denote by θ1, ..., θN the corresponding dual basis of (RN )∗, i.e. θi
is the map y �→ y · ei . For k ∈ Ir := {l ∈ [N ]r : l1 < l2 < ... < lr } the vectors

ek,r = ek1 ∧ ek2 ∧ ... ∧ ekr (2.1)
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form a basis of�r . Denote by ·r the scalar product with respect to this basis, i.e. for k, l ∈ Ir

ek,r ·r el,r =
{

1 k = l,
0 k �= l.

This also provides us with a suitable norm on �r , which we denote by ‖ · ‖�r . Similarly,
using the standard basis of (Rn)∗, we define a basis θk,r and a norm ‖ · ‖�r . Also note that
for 0 ≤ s ≤ r there exists (up to sign) a natural map�r ×�s �→ �r−s (the interior product),
as �s is the dual space of �s and �r = �s ∧ �r−s . In particular, in the special case s = 1
for h1, ..., hr ∈ R

N∗ and y ∈ R
N

(h1 ∧ .... ∧ hr )(y) =
r

∑

i=1

(−1)i−1hi (y)h1 ∧ ... ∧ hi−1 ∧ hi+1... ∧ hr . (2.2)

In the case s = r and for h1, ..., hr ∈ (RN )∗ and y1, ..., yr ∈ R
N

(h1 ∧ .... ∧ hr )(y1 ∧ ... ∧ yr ) =
∑

σ∈Sr

(

sgn(σ )

r
∏

i=1

hi (yσ(i))

)

, (2.3)

where Sr denotes the group of permutations of {1, ..., r}. (2.3) also gives us a representation
of the map �r × �s �→ �r−s as for h ∈ �r , x ∈ �s we may consider the element of
�r−s = (�r−s)

∗ defined by

z �−→ h(x ∧ z), z ∈ �r−s .

Let us shortly remark that this notation is slightly different to the usual notation for interior
products.

Moreover, note that the space �N is isomorphic to R via the map I N defined by

a θ1 ∧ ... ∧ θN �−→ a ∈ R.

2.2 Differential forms

In the following, we will define all objects for an open set � ⊂ R
N , but these definitions are

also valid for RN and TN respectively.
We call a map f ∈ L1

loc(�,�r ) an r -differential form on �. We define the space

� =
⋃

r∈N
C∞(�,�r ).

It is well-known (c.f [7, 9]) that there exists a linear map d : � �→ �, called the exterior
derivative with the following properties

(i) d2 = d ◦ d = 0,
(ii) d maps C∞(�,�r ) into C∞(�,�r+1),
(iii) We have the Leibniz rule: If α ∈ C∞(�,�r ) and β ∈ C∞(�,�s), then

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ, (2.4)

(iv) d : C∞(�,�0) → C∞(�,�1) is the gradient via the identification �0 = R, �1 =
(RN )∗ ∼= R

N .
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We sometimes write dx to indicate that this derivative is taken in terms of a space variable
x ∈ R

N . This map d has the following representation in terms of the standard coordinates
(cf. [9]). Let ω ∈ C∞(�,�r ), which, for some ak ∈ C∞(�,R), can be written as

ω(y) =
∑

k∈Ir
ak(y)θ

k,r .

Then
dω(y) =

∑

k∈Ir

∑

l∈[N ]
∂lak(y)θl ∧ θk,r . (2.5)

Remark 2.1 For a fixed r ∈ {0, ..., N −1}we can identify d : C∞(�,�r ) �→ C∞(�,�r+1)

with some well-known differential operator A. By definition, for r = 0, d can be identified
with the gradient. For r = 1, after a suitable identification of�2 withRN×N

skew , d = curl, which
is the differential operator mapping u ∈ C∞(�,RN ) to curl u ∈ C∞(�,RN×N

skew ) defined by

(curl u)lk = ∂luk − ∂kul .

If r = N − 1, after identifying �N−1 with R
N and �N with R, the differential operator

d becomes the divergence of a vector field which is defined for u ∈ C∞(�,RN ) by

div u =
N

∑

k=1

∂kuk .

Lemma 2.2 We have the following product rules for d:

(i) Let ω ∈ C1(�,�1), z ∈ R
N = �1. Then

dy
(

ω(y)(y − z)
) = ∇yω(y) · (y − z) + ω(y), (2.6)

where we define ∇yω(y) · (y − z) ∈ C(�,�1) as follows:

If ω =
N

∑

i=1

ωiθi and (y − z) =
N

∑

i=1

(y − z)i ei , then

∇yω(y) · (y − z) :=
N

∑

l=1

N
∑

i=1

∂lωi (y)(y − z)iθl .

(ii) There is a linear bounded map D1,r ∈ Lin((�r × R
N ) × R

N ,�r ) such that for ω ∈
C1(�,�r ), z ∈ R

N we have

dy
(

ω(y)(y − z)
)

= D1,r
(

∇ω(y), (y − z)
)

+ ω(y). (2.7)

(iii) There is a linear and bounded map Ds,r ∈ Lin((�r × R
N ) × �s,�

r−s) such that for
ω ∈ C1(�,�r ), z ∈ R

N , z2 ∈ �s−1

dy
(

ω(y)((y − z) ∧ z2)
)

= Ds,r
(

∇yω(y), (y − z) ∧ z2
)

+ (−1)s−1ω(y)(z2). (2.8)

Proof (i) simply follows from a calculation, i.e., if as mentioned

ω(y) =
N

∑

i=1

ωi (y)θi and (y − z) =
N

∑

i=1

(y − z)i ei ,
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then

d(ω(y)(y − z)) =
N

∑

l=1

∂l(ω(y)(y − z))θl

=
N

∑

i,l=1

∂lωi (y)(y − z)iθl +
N

∑

l=1

ωl(y)θl ,

which is what we claimed. (ii) then follows from (i) and using (2.2). Likewise, (iii) then
follows from ii). ��

Definition 2.3 Forω ∈ L1
loc(�,�r ) and u ∈ L1

loc(�,�r+1)we say that dω = u in the sense
of distributions if for all ϕ ∈ C∞

c (�,�N−r−1) we have

ˆ
�

dϕ ∧ ω = (−1)N−r
ˆ

�

ϕ ∧ u.

Note that this definition is equivalent to the following formula: For all ϕ ∈ C∞
c (�,�s)

with 0 ≤ s ≤ N − r − 1 and all θ ∈ �N−r−s−1 we have

(−1)r+1
ˆ

�

ω ∧ dϕ ∧ θ = −
ˆ

�

u ∧ ϕ ∧ θ.

2.3 Stokes’ theorem on simplices

Wewant to establish a suitable notion of Stokes’ theorem for differential forms on simplices.
Let 1 ≤ r ≤ N and x1, ..., xr+1 ∈ R

N . Define the simplex Sim(x1, ..., xr+1) as the convex
hull of x1, ..., xr+1. We call this simplex degenerate, if its dimension is strictly less than r .

For i ∈ {1, ..., r + 1} consider Sim(x1, ...xi−1, xi+1, ..., xr+1) =: Simi (x1, ...xr+1). This
is an (r − 1) dimensional face of Sim(x1, ..., xr+1) and a subset of the boundary of the
manifold Sim(x1, ..., xr+1), which, for simplicity, will be denoted by ∂ Sim(x1, ..., xr+1).
Suppose first that we are given the simplex

{λ ∈ [0, 1]r :
r

∑

i=1

λi ≤ 1} × {0}N−r = Sim(0, e1, ..., er ) ⊂ R
r × {0}N−r ⊂ R

N .

Then the classical version of Stokes’ theorem on oriented manifolds reads that for every
differential form ω̃ ∈ C1(Rr × {0}N−r ,Rr ∧ ... ∧ R

r ) -Rr is the corresponding tangential
space of the manifold Sim(0, e1, ..., er )- we have

ˆ
Sim(0,e1,...,er )

dω̃(y) dHr (y) =
ˆ

∂∗ Sim(0,e1,...,er )
ω̃(y) ∧ ν(y) dHr−1(y). (2.9)

In (2.9), ν(y) denotes the outer normal unit vector at y ∈ ∂∗ Sim(0, e1, ...er ) and ∂∗ is the
reduced boundary of the simplex, where this outer normal exists (the interior of all (r − 1)-
dimensional faces). In our case, we are given a differential form with the underlying space
being R

N and not Rr (the tangential space of the manifold/simplex), hence we can modify
(2.9) to get for ω ∈ C1(RN ,�r−1)
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ˆ
Sim(0,e1,...,er )

dω(y)(e1 ∧ ... ∧ er ) dHr (y)

=
r

∑

i=1

(−1)i
ˆ
Sim(0,...,ei−1,ei+1,...,er )

ω(y)(e1 ∧ ... ∧ ei−1 ∧ ei+1 ∧ ... ∧ er )

+
ˆ
Sim(e1,...,er )

2−r/2ω(y)((e2 − e1) ∧ (e3 − e2) ∧ ... ∧ (er − er−1)).

(2.10)

Let us write for simplicity that for x1, ..., xr+1 ∈ R
N

νr (x1, ..., xr+1) = ((x2 − x1) ∧ (x3 − x2) ∧ ... ∧ (xr+1 − xr )) ∈ �r .

The map νr has the following properties:

(i) νr is alternating, i.e. for a permutation σ ∈ Sr :

νr (y1, ..., yr+1) = sgn(σ )νr (yσ(1), ..., yσ(r+1)).

(ii) We have the relation

‖νr (y1, ..., yr+1)‖�r = rHr (Sim(y1, ..., yr+1)).

A linear change of coordinates from Sim(0, e1, .., er ) to Sim(x1, ..., xr+1) leads from
(2.10) to the following: For ω ∈ C∞(RN ,�r−1) and x1, ...xr+1 ∈ R

N

1

r

 
Sim(x1,...,xr+1)

dω(y)(νr (x1, ..., xr+1)) dHr (y) (2.11)

=
r+1
∑

i=1

(−1)i

r − 1

 
Simi (x1,...xr+1)

ω(y)(νr−1(x1, ..., xi−1, xi+1, ...xr+1)) dHr−1(y),

2.4 Themaximal function

The Hardy–Littlewood maximal function for u ∈ L1
loc(R

N ,Rd) is defined by

Mu(x) = sup
R>0

 
BR(x)

|u(y)| dy.

Again, we can also define the maximal function for functions on the torus using the
identification with periodic functions.

Proposition 2.4 (Properties of the maximal function) (cf. [31]) M is sublinear, i.e.
M(u + v)(y) ≤ Mu(y) + Mv(y) for all u, v ∈ L1

loc(R
N ,Rd) and y ∈ R

N . Moreover,
M : L p(RN ,Rd) → L p(RN ,R) is bounded for 1 < p ≤ ∞ and bounded from L1 to L1,∞.
In particular, this means that for 1 ≤ p < ∞

|{Mu > λ}| ≤ Cpλ
−p‖u‖p

L p(RN ,Rd )
.

If u ∈ L p
loc(R

N ,Rd) is a ZN -periodic function, i.e. u ∈ L p(TN ,Rd), then

|{Mu > λ} ∩ [0, 1]N | ≤ Cpλ
−p‖u‖p

L p([0,1]N ,Rd )
.
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3 A geometric estimate for closed differential forms

In this section we prove a key lemma for our main theorem.

Lemma 3.1 There exists a constant C = C(N , r) such that for all ω ∈ C1(RN ,�r ), λ > 0
with dω = 0 and x1, ..., xr+1 ∈ {Mω ≤ λ} we have

∣
∣
∣
∣

 
Sim(x1,...,xr+1)

ω(νr (x1, ..., xr+1))

∣
∣
∣
∣
≤ Cλ max

1≤i, j≤r+1
|xi − x j |r

This lemma can be seen as a natural analogue of Lipschitz continuity on the set where
the maximal function is small. In particular, it has been proven (for example in [1]) that for
u ∈ W 1,1

loc (RN ,Rm) and for y1, y2 ∈ {M∇u(x) ≤ L}
∣
∣
∣
∣

ˆ 1

0
∇u(t y1 + (1 − t)y2) · (y1 − y2) dt

∣
∣
∣
∣
= |u(y1) − u(y2)| ≤ CL|y1 − y2|.

Hence, one should view Lemma 3.1 as a generalisation of this result.

Proof For simplicity write |ω| := ‖ω‖�r . Recall that

‖νr (x1, ..., xr+1)‖�r = rHr (Sim(x1, ..., xr+1)) ≤ C max
1≤i, j≤r+1

|xi − x j |r .

It suffices to show that there exists z ∈ R
N such that

r+1
∑

i=1

ˆ
Sim(x1,...xi−1,z,xi+1,...)

|ω| dHr (y) ≤ Cλ max
1≤i, j≤r+1

|xi − x j |r . (3.1)

Indeed, to see that (3.1) is enough, note that

r+1
∑

i=1

 
Sim(x1,...xi−1,z,xi+1,...)

ω(νr (x1, ...xi−1, z, xi+1, ...)) dHr (y) (3.2)

=
 
Sim(x1,...,xr+1)

ω(νr (x1, ..., xr+1)) dHr (y).

and  
Sim(x1,...xi−1,z,xi+1,...)

ω(νr (x1, ...xi−1, z, xi+1, ...)) dHr (y)

≤ 1

r

ˆ
Sim(x1,...xi−1,z,xi+1,...)

|ω| dHr (y).

The equation (3.2) can be verified by Stokes’ theorem (2.11), using that boundary terms
with a simplex with vertex z cancel out on the left-hand side of (3.2) (Fig. 1).

We now prove (3.1). W.l.o.g. R = max
i, j∈[r+1] |xi − x j | = |x1 − x2|. Note that there exists a

dimensional constant C1 such that

|BR(x1) ∩ BR(x2)| ≥ C1R
N .

First, consider x1, ..., xr ∈ BR(x1). For z ∈ BR(x1) define E(z) to be the r -dimensional
hyperplane going through x1, ..., xr and z. This is well-defined if z is not in the (r − 1)
dimensional hyperplane F going through x1, ..., xr . Note that for z, z̃ /∈ F

z ∈ E(z̃) ⇔ z̃ ∈ E(z). (3.3)
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Fig. 1 Illustration of (3.2) for
r = 2. The integrals on the
dashed 1-dimensional faces
cancel out in (3.2) after applying
Stokes’ theorem

x1

x2

x3

z

As Mω(x1) ≤ λ, we know that
ˆ
BR(x1)

|ω|(z) dz ≤ λbN RN ,

where bN is the volumeof the N -dimensional unit ball B1(0). AsHr (E(z)∩BR(x1)) = br R
r ,

it also follows by Fubini and (3.3)

ˆ
BR(x1)

ˆ
E(z)∩BR(x1)

|ω|(y) dHr (y) dz ≤ λbNbr R
N+r .

Using that Sim(x1, ..., xr , z) ⊂ E(z) ∩ BR(x1), we conclude that for μ > 0

∣
∣
∣
∣

{

z ∈ BR(x1) :
∣
∣
∣
∣

ˆ
Sim(x1,...,xr ,z)

|ω|(y) dy
∣
∣
∣
∣
≥ μ

}∣
∣
∣
∣
≤ λbrbN RN+r

μ
. (3.4)

Choose nowμ∗ = 2(r+1)brbN RrλC−1
1 . Plugging this into (3.4), we see that themeasure

of this set is smaller than RN (2(r+1))−1. Repeating this procedure for all (r−1)-dimensional
faces of Sim(x1, ..., xr+1), we get that for i > 1

∣
∣
∣
∣

{

z ∈ BR(x1) :
∣
∣
∣
∣

ˆ
Sim(x1,...,xi−1,z,xi+1,...)

|ω|(y) dHr (y)

∣
∣
∣
∣
≥ μ∗

}∣
∣
∣
∣
≤ C1RN

2(r + 1)
,

and for i = 1
∣
∣
∣
∣

{

z ∈ BR(x2) :
∣
∣
∣
∣

ˆ
Sim(z,x2,...xr+1)

|ω|(y) dHr (y)

∣
∣
∣
∣
≥ μ∗

}∣
∣
∣
∣
≤ C1RN

2(r + 1)
.

Hence, there exists z ∈ BR(x1) ∩ BR(x2) such that all the summands of (3.1) are smaller
than μ∗ = ((2(r + 1))brbNC

−1
1 )Rrλ, i.e.

r+1
∑

i=1

ˆ
Sim(x1,...xi−1,z,xi+1,...)

|ω| dHr (y) ≤ (

2(r + 1)2brbNC
−1
1

)

λ max
1≤i, j≤r+1

|xi − x j |r .

This is what we wanted to prove. ��
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4 AWhitney-type extension theorem

First, let us recall the following Lipschitz extension theorem.

Theorem 4.1 (Lipschitz extension theorem) Let X ⊂ R
N be a closed set and u ∈ C(X ,Rd)

such that
|u(x) − u(y)| ≤ L|x − y|. (4.1)

Then there exists a function v ∈ C(RN ,Rd) with v|X = u and such that v is Lipschitz onRN

with Lipschitz constant at most C(N )L (i.e. the Lipschitz constant does not depend on X).

Of course, there are several ways to prove such a theorem, even with C(N ) = 1 [15].
However, Whitney’s proof [36] plays with the geometry of RN quite nicely. Similar geo-
metric ideas lies behind our proof for closed differential forms. First, let us define an analogue
of (4.1).

Suppose that X is a closed subset ofRN , such that XC = R
N\X is bounded and |∂X | = 0.

Let u ∈ C∞
c (RN ,�r ) with du = 0. Let L > 0 be such that ‖u‖L∞(X) ≤ L and that for

all x1, ..., xr+1 ∈ X we have
∣
∣
∣
∣

 
Sim(x1,...,xr+1)

u(y)(νr (x1, ..., xr+1)) dy

∣
∣
∣
∣
≤ L max |xi − x j |r . (4.2)

Lemma 4.2 (Whitney-type extension theorem) There exists a constant C = C(N , r) such
that for all u ∈ C∞

c (RN ,�r ) and X meeting the requirements above there exists v ∈
L1
loc(R

N ,�r ) with

(i) dv = 0 in the sense of distributions;
(ii) v(y) = u(y) for all y ∈ X;
(iii) ‖v‖L∞ ≤ CL.

Remark 4.3 The constant C does not depend on the choice of u or X , it is only important that
the pair (u, X) satisfies (4.2). The assumption that XC is bounded makes the proof easier,
but may be dropped. It is not clear, whether the assumption that |∂X | = 0 is necessary for
the statement to hold or not.

Remark 4.4 As one can see in the proof, the assumption u ∈ C∞
c (RN ,�r ) can be weakened

to u ∈ C2
c (R

N ,�r ), as we only need the first two derivatives of u. However, it is important
to remember that we cannot prove Lemma 4.2 for the even weaker assumption u ∈ L1

loc, as
(4.2) is not well-defined.

For the proof we follow the classical approach by Whitney with a few little twists. First,
we will define the extension in (4.4). Then we prove that v satisfies properties (i)–(iii). (ii)
and (iii) are quite easy to see from the definition of v, however it is hard to verify that (i)
holds. On the one hand, we show that the strong derivative of v exists almost everywhere,
namely inRN\∂X and that dv = 0 almost everywhere, where we use the assumption that the
boundary of X is a null-set. On the other hand, we then prove that the distributional derivative
dv is in fact also an L1 function, yielding that dv = 0 in the sense of distributions.

We now start with the definition of the extension. Let us recall (cf. [31]) that for X ⊂ R
N

closed we can find a collection of pairwise disjoint open cubes {Q∗
i }i∈N such that

• Q∗
i are open dyadic cubes;

• ∪i∈N Q̄∗
i = XC ;

• dist(Q∗
i , X) ≤ l(Q∗

i ) ≤ 4 dist(Q∗
i , X),; where l(Q∗

i ) denotes the sidelength of the cube.
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∂X

X

XC

∂X

X

Fig. 2 A collection of cubes Q∗
j near the boundary (up to a certain size)

Choose 0 < ε < 1/4 and define another collection of cubes by Qi = (1 + ε)Q∗
i (cube

with the same center and sidelength (1 + ε)l(Q∗
i )). Then

• ∪i∈N Qi = XC ;
• For all i ∈ N, the number of cubes Q j such that Qi∩Q j �= ∅ is bounded by a dimensional

constant C(N );
• In particular, all x ∈ R

N are only contained in at most C(N ) cubes Qi ;
• The distance to the boundary is again comparable to the sidelength, i.e.

1/2 dist(Qi , X) ≤ l(Qi ) ≤ 8 dist(Qi , X).

Note that if X is ZN -periodic, then also Qi can be chosen to be Z
N periodic (initially, we

have a collection of dyadic cubes) (Fig. 2).
Now consider ϕ ∈ C∞

c ((−1−ε, 1+ε)N , [0,∞))with ϕ = 1 on (−1, 1)N .We can rescale
ϕ such that we obtain functions ϕ∗

j ∈ C∞
c (Q j ) with ϕ∗

j = 1 on Q∗
j . Define the partition of

unity on XC by

ϕ j = ϕ∗
j

∑

i∈N ϕ∗
i
.

Note that 0 ≤ ϕ j ≤ 1 and that there exists a constant C > 0 such that for all j ∈ N

|∇ϕ j | ≤ C/8 l(Q j )
−1 ≤ C dist(Q j , X)−1.

For each cube Qi , we may find an x ∈ X such that dist(Qi , x) = dist(Qi , X). Denote
this x by xi . For a multiindex I = (i1, ..., ir+1) ∈ N

r+1, define

G(xi1 , ..., xir+1) = G(I ) :=
 
Sim(xi1 ,...,xir+1 )

u(y) dy.

123



L∞-truncation of closed differential forms Page 13 of 33 135

We now define the differential form α ∈ L1(RN ,�r ) by

α(y) :=
∑

I∈Nr+1

ϕi1dϕi2 ∧ ... ∧ dϕir+1 ∧ (G(I )(νr (xi1 , ..., xir+1))). (4.3)

Note that in this setting G(I )(νr (...)) ∈ R = �0.
We claim that the function v ∈ L1

loc(R
N ,�r ) given by

v(y) :=
{
u(y) y ∈ X ,

(−1)rα(y) y ∈ XC (4.4)

is the function satisfying all the properties of Lemma 4.2.

Lemma 4.5 The differential form α defined in (4.3) satisfies α ∈ L1(XC ,�r ) and the sum
in (4.3) converges pointwise and in L1.

Proof Pointwise convergence is clear, as for fixed y ∈ XC only finitely many summands are
nonzero in a neighbourhood of y (ϕi is only nonzero in Qi and any point is only covered
by at most C(N ) cubes). For L1 convergence fix some i1 ∈ N. Note that there are at most
C(N )r summands in i2, ..., ir+1, which are nonzero, as Qi1 only intersects with C(N ) other
cubes. Furthermore, note that for all il with Qil ∩ Qi1 �= ∅

‖dϕil (y)‖�1 ≤ C dist(y, X)−1 ≤ Cl(Qi1)
−1.

Moreover, we can bound νr by

‖νr (xi1 , ..., xir+1)‖�r ≤ max
a,b∈{i1,..,ir+1}

|xa − xb|r ≤ Cl(Qi1)
r .

Hence, we can bound the L∞-norm of a nonzero summand of (4.3) byC‖u‖L∞ , as |G(I )| ≤
‖u‖L∞ . As the support of the summand is contained in Qi1 , we have that its L1 norm is
bounded by

C‖u‖L∞|Qi1 |.
Remember that any point in XC is covered by only C(N ) cubes, such that the sum of

|Qi | is bounded by C(N )|XC |. Hence, the sum in (4.3) converges absolutely in L1 and its
L1 norm is bounded by C(N )r+1C‖u‖L∞|XC |. ��
Lemma 4.6 The function v is strongly differentiable almost everywhere and satisfies dv(y) =
0 for all y ∈ R

N\∂X.
Proof Note that u ∈ C∞

c (RN ,�r ) and hence v is strongly differentiable in X\∂X . Fur-
thermore, the sum in (4.3) is a finite sum in a neighbourhood of y for all y ∈ XC . As the
summands are also C∞, the sum is C∞ in the interior of XC .

By assumption du = 0, hence it remains to prove that dα(y) = 0 for all y ∈ XC . Note
that in a neighbourhood of y ∈ XC again only finitely many summands are nonzero. Using
that d2 = 0 and the Leibniz rule, we get

dα(y) =
∑

I∈Nr+1

dϕi1(y) ∧ ... ∧ dϕir+1(y)(G(I )(νr (xi1 , ..., xir+1))). (4.5)

Observe that this term does not converge in L1 and hence this identity is only valid
pointwise.
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Pick some j ∈ N such that y ∈ Q j . As all ϕi sum up to 1 in XC , we have

dϕ j (y) = −
∑

I∈N\{ j}
dϕi (y).

Replace dϕ j in the sum in (4.5) by −
∑

I∈N\{ j}
dϕi (y). Recall that νr (x1, ..., xr+1) = 0 if

xl = xl ′ for some l �= l ′. Hence,

dα(y) =
∑

I∈Nr+1

dϕi1(y) ∧ ... ∧ dϕir+1(y) ∧ (G(I )(νr (xi1 , ..., xir+1)))

=
∑

I∈(N\{ j})r+1

dϕi1(y) ∧ ... ∧ dϕir+1(y) ∧ (G(I )(νr (xi1 , ..., xir+1)))

+
r+1
∑

l=1

∑

I∈Nr+1 : il= j

dϕi1(y) ∧ ... ∧ dϕir+1(y) ∧ (G(I )(νr (xi1 , ..., xir+1)))

=
∑

I∈(N\{ j})r+1

dϕi1(y) ∧ ... ∧ dϕir+1(y) ∧ (G(I )(νr (xi1 , ..., xir+1)))

−
r+1
∑

l=1

∑

I∈(N\{ j})r+1

dϕi1(y) ∧ ... ∧ dϕir+1(y)

∧ (G(xi1 , ...xil−1 , x j , xil+1 , ...)(ν
r (xi1 , ...xil−1 , x j , xil+1 , ...))).

We apply Stokes’ theorem (2.11) to the r -form u and the simplex with vertices
x j , xi1 , ..., xir+1 , use that du = 0 and conclude that this term is 0, i.e.

G(I )(νr (xi1 , ..., xir+1)) −
r+1
∑

l=1

G(xi1 , ..., xil−1 , x j , xil+1 , ...)(ν
r (xi1 , ..., x j , xil+1 , ...))

= −r − 1

r

 
Sim(x j ,xi1 ,...,xir+1 )

du(y)(νr+1(x j , xi1 , ..., xir+1)) dHr (y) = 0.

Hence, the pointwise derivative equals 0 almost everywhere. ��
It is important to note that the sum (4.3) in the definition of α converges in L1, but in

general does not converge in W 1,1, and thus we have no information on the behaviour at the
boundary of XC . However, it suffices to show that the distribution dv for v given by (4.4) is
actually an L1 function. If dv ∈ L1, we can conclude with Lemma 4.6 that dv = 0 in the
sense of distributions.

Lemma 4.7 The distributional exterior derivative of v defined in (4.4) satisfies dv ∈
L1(RN ,�r+1), i.e. there exists an L1 function h ∈ L1(RN ,�r+1) such that for all
ψ ∈ C∞

c (RN ,�N−r−1)

(−1)r
ˆ
XC

α ∧ dψ +
ˆ
X
u ∧ dψ =

ˆ
RN

h ∧ ψ.

Proof Consider ˆ
XC

α(y) ∧ dψ(y) dy.
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In view of the definition of α, this expression is given by:ˆ
RN

∑

I∈Nr+1

ϕi1dϕi2 ∧ ... ∧ dϕir+1(G(I )(νr (xi1 , ..., xir+1))) ∧ dψ dy = (∗).

We use the splitting G(I ) = (G(I ) − u(·)) + u(·) and write (∗) as
(∗) =

ˆ
RN

∑

I∈Nr+1

ϕi1dϕi2 ∧ ... ∧ dϕir+1 ∧ ((G(I ) − u(·))(νr (xi1 , ..., xir+1)) ∧ dψ

+
ˆ
RN

∑

I∈Nr+1

ϕi1dϕi2 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr (xi1 , ..., xir+1))) ∧ dψ

= (I) + (II).

(4.6)

Note that (I) defines a distribution given by an L1 function. Indeed, the sum

ϕi1dϕi2 ∧ ... ∧ dϕir+1 ∧ ((G(I ) − u(y))(νr (xi1 , ..., xir+1))

converges in W 1,1(RN ,�r+1). To see this, one can repeat the proof of Lemma 4.5 and use
that there are additional factors in the estimate of the norms. For this, note that if z ∈ Qi1

‖G(I ) − u(z)‖�r ≤ Cl(Qi )‖∇u‖L∞

and

‖∇(G(I ) − u(·))(z)‖�r ≤ C‖∇u‖L∞ .

One gets improved regularity and may integrate by parts to eliminate the derivative of ψ .
Term (II) is not so easy to handle. We prove the following claims:
Claim1Let 1 ≤ s ≤ r and I ′ = (is, ..., ir+1) ∈ N

r−s+2.There exists hs ∈ L1(RN ,�r+1)

such thatˆ
XC

∑

I ′∈Nr−s+2

ϕis dϕis+1 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s+1(xis , ..., xir+1)))) ∧ dψ

=
ˆ
XC

hs ∧ ψ

−
ˆ
XC

∑

I ′∈Nr−s+1

ϕis+1dϕis+2 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s(xis+1 , ..., xir+1)) ∧ dψ.

(4.7)
Here we use the notation that ν0(xir+1) = 1 ∈ �0 = R.
Claim 2 There is h̃ ∈ L1(RN ,�r+1) such thatˆ

RN

∑

I ′∈Nr+1

ϕi1dϕi2 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr (xi1 , ..., xir+1)))) ∧ dψ

=
ˆ
XC

h̃ ∧ ψ + (−1)r
ˆ
XC

u ∧ dψ.

(4.8)

Note that Claim 2 follows from Claim 1 by an inductive argument. The domain of inte-
gration in (4.8) can be replaced by XC as well, as all ϕi j are supported in XC .

First, let us conclude the proof under the assumption that Claim 1 holds true. Using (4.6)
and Claim 2 we see that there is an h ∈ L1(RN ,Rd) such thatˆ

XC
α ∧ dψ =

ˆ
RN

h ∧ ψ + (−1)r
ˆ
XC

u ∧ dψ.
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Recall that du = 0 in the sense of distributions and therefore

−
ˆ
XC

u ∧ dψ =
ˆ
X
u ∧ dψ.

We conclude that there exists an L1 function h ∈ L1(RN ,�r+1) such that
ˆ
XC

α ∧ dψ + (−1)r
ˆ
X
u ∧ dψ =

ˆ
RN

h ∧ ψ.

Thus, dv is an L1 function.
It remains to prove Claim 1. Note that

νr−s+1(xis , ..., xir+1) =
r+1
∑

j=s

νr−s+1(xis , ..., xi j−1 , y, xi j+1 , ..., xir+1). (4.9)

This can be verified using that the wedge product is alternating and explicitly writing the
right-hand side of (4.9).

Using this identity, we may split the right-hand side of (4.7) (denoted by (III)), i.e.

(III) =
r+1
∑

j=s+1

ˆ
RN

∑

I∈Nr−s+2

ϕis dϕis+1 ∧ ... ∧ dϕir+1

∧ (u(·)(νr−s+1(xis , ..., xi j−1 , y, xi j+1 , ..., xir+1))) ∧ dψ

+
ˆ
RN

∑

I∈Nr−s+2

ϕis dϕis+1 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s+1(y, xis+1 , ..., xir+1))) ∧ dψ

= (IIIa) + (IIIb).

Arguing as in Lemma 4.5, we see that the sum
∑

I∈Nr−s+2

ϕis dϕis+1 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s+1(xis , ..., xi j−1 , y, xi j+1 , ..., xir+1)))

is in fact convergent in L1. Moreover, the index i j only appears once in this sum. Recall that
for y ∈ XC

∑

is∈N
dϕis (y) = 0.

Thus,

(IIIa) = 0.

For (IIIb) note that
∑

i1∈N
ϕis = 1XC and, by the same argument as for (IIIa), we can write

(IIIb) =
ˆ
XC

∑

I∈Nr−s+1

dϕis+1 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s+1(y, xis+1 , ..., xir+1))) ∧ dψ.

Wecan now integrate by parts to eliminate the exterior derivative in front ofϕis+1 . Applying
Lemma 2.2, using d2 = 0, the Leibniz rule and the fact that ϕi j ∈ C∞

c (RN ,R)
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(−1)r−s+1(IIIb)

=
ˆ
XC

∑

I∈Nr−s+1

ϕis+1dϕis+2 ∧ ... ∧ dϕir+1 ∧ d(u(·)(νr−s+1(y, xis+1 , ..., xir+1))) ∧ dψ

=
ˆ
XC

∑

I∈Nr−s+1

ϕis+1dϕis+2 ∧ ... ∧ dϕir+1

∧ Dr−s+1,r (∇u(·), (νr−s+1(y, xis+1 , ..., xir+1))) ∧ dψ

+ (−1)(r−s)
ˆ
XC

∑

I∈Nr−s+1

ϕis+1dϕis+2 ∧ ... ∧ dϕir+1

∧ u(·)(νr−s(xis+1 , ..., xir+1))) ∧ dψ

Arguing similarly to Lemma 4.5 and as for term (I), we can show that
∑

I∈Nr

ϕis+1dϕis+2 ∧ ... ∧ ϕir+1 ∧ Dr−s+1,r (∇u(·), (νr−s+1(y, xis+1 , ..., xir+1 ))) ∈ W 1,1(RN ,�r ),

and that this sum is convergent in W 1,1. Hence, we have shown that there exists hs ∈
L1(RN ,�r+1) such that

(III) =
ˆ
RN

∑

I∈Nr−s+2

ϕis dϕis+1 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s+1(xi1 , ..., xir+1))) ∧ dψ

=
ˆ
RN

hs ∧ ψ

−
ˆ
RN

∑

I∈Nr−s+1

ϕis+1dϕis+2 ∧ ... ∧ dϕir+1 ∧ (u(·)(νr−s(xis+1 , ..., xir+1))) ∧ dψ

(4.10)
Hence, Claim 1 holds, completing the proof of Lemma 4.7 ��

This proves Lemma 4.2. The property that

dv = 0 in the sense of distributions

follows from Lemma 4.6 and Lemma 4.7. By definition, v = u on X . Finally, we can bound
the L∞-norm of v by CL , as in the definition of α

∑

I∈Nr+1

ϕi1dϕi2 ∧ ... ∧ dϕir+1 ∧ (G(I )(νr (xi1 , ..., xir+1)))

every summand can be bounded by CL due to (4.2) and the estimate |dϕ j | ≤
C dist(Q j , X)−1. Again, we get the L∞ bound, as only finitely many summands are nonzero
for every y ∈ XC .

With slight modifications one is able to prove the following variants.

Corollary 4.8 Let u ∈ C∞(RN ,�r ) with du = 0, let L > 0, and let X ⊂ R
N be a nonempty

closed set such that ‖u‖L∞(X) ≤ L and for all x1, ..., xr+1 ∈ X we have
∣
∣
∣
∣

 
Sim(x1,...,xr+1)

u(y)(νr (x1, ..., xr+1)) dy

∣
∣
∣
∣
≤ L max |xi − x j |r .

Suppose further that |∂X | = 0.
There exists a constant C = C(N , r) such that for all u ∈ C∞(RN ,�r ) and X meeting

these requirements there exists v ∈ L1
loc(R

N ,�r ) with
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(i) dv = 0 in the sense of distributions;
(ii) v(y) = u(y) for all y ∈ X;
(iii) ‖v‖L∞ ≤ CL.

This statement is proven in the same way as Lemma 4.2, but all the statements are only
true locally (e.g. the L1 bounds on α are replaced by bounds in L1

loc(X
C ,�r )).

If we choose u and X to be ZN periodic we get a suitable statement for the torus.

Corollary 4.9 Let u ∈ C∞(TN ,�r ) with du = 0, let L > 0, and let X ⊂ R
N be a nonempty,

closed, ZN -periodic set (which can be viewed as a subset of TN ) such that ‖u‖L∞(X) ≤ L
and for all x1, ..., xr+1 ∈ X we have

∣
∣
∣
∣

 
Sim(x1,...,xr+1)

ũ(y)(νr (x1, ..., xr+1)) dy

∣
∣
∣
∣
≤ L max |xi − x j |r ,

where ũ ∈ C∞(RN ,�r ) is theZN -periodic representative of u. Suppose further that |∂X | =
0.

There exists a constant C = C(N , r) such that for all u ∈ C∞(TN ,�r ) and X meeting
these requirements there exists v ∈ L1(TN ,�r ) with

(i) dv = 0 in the sense of distributions;
(ii) v(y) = u(y) for all y ∈ X ⊂ TN ;
(iii) ‖v‖L∞ ≤ CL.

As mentioned before, we can choose the cubes Q j to be rescaled dyadic cubes. As the
set X is periodic, the set of cubes (and hence also the partition of unity) and their projection
points may also be chosen to be ZN -periodic. By definition then also the extension will be
Z
N -periodic.

5 L∞-truncation

Now we prove the main result of this paper on the L∞-truncation of closed forms.

Theorem 5.1 (L∞-truncation of differential forms) There exist constats C1,C2 > 0 such
that for all u ∈ L1(TN ,�r ) with du = 0 and all L > 0 there exists v ∈ L∞(TN ,�r ) with
dv = 0 and

(i) ‖v‖L∞(TN ,�r ) ≤ C1L;

(ii) |{y ∈ TN : v(y) �= u(y)|} ≤ C2

L

ˆ
{y∈TN : |u(y)|>L}

|u(y)| dy;

(iii) ‖v − u‖L1(TN ,�r ) ≤ C2

ˆ
{y∈TN : |u(y)|>L}

|u(y)| dy.

Given theWhitney-type extension obtained in Lemma 4.9 and Lemma 4.2 combined with
Lemma 3.1, the proof now roughly follows Zhang’s proof for Lipschitz truncation in [38].
First, we prove the statement in the case that v is smooth directly using our extension theorem
for the set X = {Mu ≤ L}. After calculations similar to [38] we are able to show that this
extension satisfies the properties of Theorem 5.1. Afterwards, we prove the statement for
u ∈ L1(TN ,�r ) by a standard density argument.
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Proof First, suppose that u ∈ C∞(TN ,�r ). For λ > 0 define the set

Xλ = {y ∈ TN : Mu(y) ≤ λ}.
Choose 2L ≤ λ ≤ 3L such that |∂Xλ| = 0. Then, by Lemma 3.1 and the extension

Lemma 4.9, there exists a v ∈ L1(TN ,�r ) with

1 {y ∈ TN : v(y) �= u(y)} ⊂ XC
λ .

2 ‖v‖L∞ ≤ Cλ.
3 dv = 0 in the sense of distributions.

We need to show that

‖v − u‖L1(TN ,�r ) ≤ C2

ˆ
{y : |u(y)|>L}

|u(y)| dy (5.1)

and that

|{y ∈ TN : v(y) �= u(y)}| ≤ C2

L

ˆ
{y : |u(y)|>L}

|u(y)| dy. (5.2)

Indeed, (5.1) follows from (5.2), as {v �= u} ⊂ XC
λ and thus

ˆ
TN

|v(y) − u(y)| dy =
ˆ
XC

λ

|v(y) − u(y)| dy

≤
ˆ

{Mu≥λ}
|u(y)| dy +

ˆ
{Mu≥λ}

|v(y)| dy

≤
ˆ

{|u|≥λ}
|u(y)| dy + 2CL|{Mu ≥ λ}|.

Thus, it suffices to prove (5.2).
To this end, define the function h : �r → R by

h(z) =
{

0 if |z| < L,

|z| − L if |z| ≥ L.

Let y ∈ {Mu > μ} for μ ∈ R. Then there exists an R > 0 such that 
BR(y)

|u(z)| dz > μ.

Thus,

M(h(u))(y) ≥
 
BR(y)

|h(u)(z)| dz

= 1

|BR(y)|
ˆ
BR(y)∩{u≥L}

|u(z)| − L dz

≥
 
BR(y)

|u(z)| dz − 1

|BR(y)|
ˆ
BR(y)∩{u≤L}

|u(z)| dz

− 1

|BR(y)|
ˆ
BR(y)∩{|u|≥L}

L dz

≥ μ − L.

Thus, {y ∈ TN : Mu > μ} ⊂ {y ∈ TN : Mh(u)(y) > μ − L}.
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Using the weak-L1 estimate for the maximal function (Proposition 2.4), we get

|{y ∈ TN : Mu(y) ≥ λ}| ≤ |{y ∈ TN : Mh(u) ≥ λ − L}|
≤ 1

λ − L
C
ˆ
TN

|h(u)(z)| dz

≤ C

L

ˆ
TN∩{|u|≥L}

|u(z)| dz.
(5.3)

This is what we wanted to show. Note that the proof only uses u ∈ C∞(TN ,�r ) to define
v and nowhere else, hence estimate (5.3) is valid for all u ∈ L1(TN ,�r ).

For general u ∈ L1(TN ,�r ), one may consider a sequence un ∈ C∞(TN ,�r ) with
dun = 0 and un → u in L1 and pointwise almost everywhere. This sequence can be easily
constructed by convolving with standard mollifiers.

Observe that for λ > 0ˆ
{|un |≥2λ}

|un | dy ≤
ˆ

{|un−u|≥|u|}∩{|un |≥2λ}
|un | dy +

ˆ
{|un−u|≤|u|}∩{|un |≥2λ}

|un | dy (5.4)

≤ 2
ˆ

{|u|≥λ}
|u| dy + 2‖un − u‖L1 .

Furthermore, we use the subadditivity of the maximal function and see that for all y ∈ TN

Mun(y) ≤ Mu(y) + M(u − un)(y).

Thus,

{y ∈ TN : Mun(y) ≥ 2λ} ⊂ {y ∈ TN : Mu(y) ≥ λ} ∪ {y ∈ TN : M(u − un)(y) ≥ λ}.
Using the weak-L1estimate for the maximal function (Proposition 2.4) we see that

|{y ∈ TN : Mu(y) ≤ λ} ∩ {y ∈ TN : Mun(y) ≥ 2λ}| −→ 0 as n → ∞. (5.5)

Choose some λ ∈ (4L, 6L) such that for all n ∈ N |∂{y ∈ TN : Mun(y) ≥ 2λ}| = 0.
Then extend like in the first part of the proof to get a sequence vn with dvn = 0 and

(a) ‖vn‖L∞(TN ,�r ) ≤ 2C1λ;

(b) |{y ∈ TN : vn(y) �= un(y)|} ≤ C2

2λ

ˆ
{y : |un(y)|>2λ}

|un(y)| dy;

(c) ‖vn − un‖L1(TN ,�r ) ≤ C2

ˆ
{y : |un(y)|>2λ}

|un(y)| dy.

Letting n → ∞, by a) this sequence converges, up to extraction of a subsequence, weakly∗
to some v ∈ L∞(TN ,�r ). The weak∗-convergence implies dv = 0. Moreover, by construc-
tion, the set {y ∈ TN : vn �= un} is contained in the set {y ∈ TN : Mun(y) ≥ 2λ}. As un → u
pointwise a.e. and in L1, we get using (5.5) that v = u on the set {y ∈ TN : Mu(y) ≤ λ}. (If
vn converges to u in measure on a set A and vn weakly to some v, then v = u on A.)

Hence, v defined as the weak∗ limit of vn satisifies

(i) ‖v‖L∞(TN ,�r ) ≤ C1λ ≤ 6C1L;
(ii) using (5.3) and v = u on {y ∈ TN : Mu(y) ≤ λ}

|{y ∈ TN : u(y) �= v(y)}| ≤ C2

L

ˆ
{y∈TN : |u(y)|>L}

|u(y)| dy;

123



L∞-truncation of closed differential forms Page 21 of 33 135

(iii) using triangle inequality and vn − un → 0 in L1, one obtains

‖v − u‖L1(TN ,�r ) ≤ C2

ˆ
{y∈TN : |u(y)|>L}

|u(y)| dy.

Hence, v meets the requirements of Theorem 5.1. ��
Corollary 5.2 (L∞-truncation for sequences) Suppose that we have a sequence un ∈
L1(RN ,�r ) with dun = 0, and that there exists L > 0 such thatˆ

{y∈TN : |un(y)|>L}
|un(y)| dy −→ 0 as n → ∞.

There exists a C1 = C1(N , r) and a sequence vn ∈ L1(TN ,�r ) with dvn = 0 and

(a) ‖vn‖L∞(TN ,�r ) ≤ C1L;
(b) ‖vn − un‖L1(TN ,�r ) → 0 as n → ∞;
(c) |{y ∈ TN : vn(y) �= un(y)}| → 0.

This directly follows by applying Theorem 5.1.
The proof of Theorem5.1 alsoworks if L1 is replaced by L p for 1 < p < ∞. Furthermore,

we do not need to restrict us to periodic functions on RN , the statement is also valid for non-
periodic functions.

Proposition 5.3 Let 1 ≤ p < ∞. There exist constants C1,C2 > 0, such that, for all
u ∈ L p(RN ,�r ) with du = 0 and all L > 0, there exists v ∈ L p(RN ,�r ) with dv = 0 and

(i) ‖v‖L∞(RN ,�r ) ≤ C1L;

(ii) |{y ∈ R
N : v(y) �= u(y)|} ≤ C2

L p

ˆ
{y∈RN : |u(y)|>L}

|u(y)|p dy;

(iii) ‖v − u‖p
L p(RN ,�r )

≤ C2

ˆ
{y∈RN : |u(y)|>L}

|u(y)|p dy.

As described, the proof is pretty much the same as for Theorem 5.1. We may also want
to truncate closed forms supported on an open bounded subset � ⊂ R

N (cf. [4, 5]). This
is possible, but we may lose the property, that they are supported in this subset. Let us, for
simplicity, consider balls � = Bρ(0) and, after rescaling, ρ = 1.

Proposition 5.4 Let 1 ≤ p < ∞. There exist constants C1,C2 > 0 such that, for all u ∈
L p(RN ,�r ) with du = 0 and spt(u) ⊂ B1(0) and all L > 0, there exists v ∈ L p(RN ,�r )

with dv = 0 and

(i) ‖v‖L∞(RN ,�r ) ≤ C1L;

(ii) |{y ∈ R
N : v(y) �= u(y)|} ≤ C2

L p

ˆ
{y∈RN : |u(y)|>L}

|u(y)|p dy;

(iii) ‖v − u‖p
L p(RN ,�r )

≤ C2

ˆ
{y∈RN : |u(y)|>L}

|u(y)|p dy;
(iv) spt(v) ⊂ BR(0), where R only depends on the L p-norm of u and on L.

Again, this proof is very similar to the proof of Theorem 5.1. Property 5.4) comes from the
fact that if a function u is supported in B1(0), then its maximal function Mu(y) decays fast
as y → ∞. Regarding the construction made in Sect. 4 and Lemma 3.1, it is not clear, how
to avoid the rather weak statement 5.4), i.e. we cannot directly deal with arbitrary boundary
values and need to modify the truncation.

Let us mention that this result also holds for vector-valued differential forms, i.e. u ∈
L p(RN ,�r × R

m), where the exterior derivative is taken componentwise.
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Proposition 5.5 (Vector-valued forms on the torus) There exist constants C1,C2 > 0 such
that, for all u ∈ L1(TN ,�r ×R

m) with du = 0 and all L > 0, there exists v ∈ L1(TN ,�r ×
R
m) with dv = 0 and

i) ‖v‖L∞(TN ,�r×Rm ) ≤ C1L;

ii) |{y ∈ TN : v(y) �= u(y)|} ≤ C2

L

ˆ
{y∈TN : |u(y)|>L}

|u(y)| dy;

iii) ‖v − u‖L1(TN ,�r×Rm ) ≤ C2

ˆ
{y∈TN : |u(y)|>L}

|u(y)| dy.

This statement follows directly from the proof of Theorem 5.1 by simply truncating every
component of u. Likewise, similar statements as in Propositions 5.2, 5.3 and 5.3 follow for
vector-valued differential forms.

6 Applications toA-quasiconvexity and Youngmeasures

In the following, we consider a linear and homogeneous differential operator of first order,
i.e. we are given A : C∞(RN ,Rd) → C∞(RN ,Rl) of the form

Au =
N

∑

k=1

Ak∂ku,

where Ak : R
d → R

l are linear maps. We call a continuous function f : R
d → R A-

quasiconvex if for all ϕ ∈ C∞(TN ,Rd) with
ˆ
TN

ϕ(y) dy = 0 and Aϕ = 0, and for all

x ∈ R
d then the following version of Jensen’s inequality

f (x) ≤
ˆ
TN

f (x + ϕ(y)) dy (6.1)

holds true. Fonseca and Müller showed that [11], if the constant rank condition seen
below holds, thenA-quasiconvexity is a necessary and sufficient condition for weak∗ lower-
semicontinuity of the functional I : L∞(�,Rd) → [0,∞) defined by

I (u) =
⎧

⎨

⎩

ˆ
�

f (u(y)) dy Au = 0

∞ else.

Define the symbol A : RN\{0} → Lin(Rd ,Rl) of the operator A by

A(ξ) =
N

∑

k=1

ξk Ak .

The operator A is said to satisfy the constant rank property (cf. [27]) if for some fixed
r ∈ {0, ..., d} and all ξ ∈ S

N−1 = {ξ ∈ R
N : |ξ | = 1}

dim(kerA(ξ)) = r .

We call a homogeneous differential operator B : C∞(TN ,Rm) → C∞(TN ,Rd), which is
not necessarily of order one, the potential of A if

ImB(ξ) = kerA(ξ),
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i.e. if ψ = û(λ)e−2π i x ·λ for λ ∈ R
N \ {0}, then Aψ = 0 if and only if there is ŵ(λ), such

that ψ = B(ŵ(λ)e−2π i x ·λ). Recently, Raiţa showed that A has such a potential if and only
if A satisfies the constant rank property ( [28]). In the following, we always assume that A
satisfies the constant rank property and that B is the potential of A.

Definition 6.1 We say that A satisfies the property (ZL) if for all sequences un ∈
L1(TN ,Rd) ∩ kerA such that there exists an L > 0 withˆ

{y∈TN : |un(y)|>L}
|un(y)| dy −→ 0 as n → ∞,

there exists a C = C(A) and a sequence vn ∈ L1(TN ,Rd) ∩ kerA such that

i) ‖vn‖L∞(TN ,Rd ) ≤ C1L;
ii) ‖vn − un‖L1(TN ,Rd ) → 0 as n → ∞.

Our goal now is to show that (ZL) implies further properties for the operator A. We first
look at a few examples.

Example 6.2 (a) As shown by Zhang [38], the operator A = curl has the property (ZL).
This is shown by using that its potential is the operator B = ∇. In fact, most of the
applications here have been shown for B = ∇ relying on (ZL), but can be reformulated
for A satisfying (ZL).

(b) Let Wk = (RN ⊗ ... ⊗ R
N )sym ⊂ (RN )k . We may identify u ∈ C∞(TN ,Wk) with

ũ ∈ C∞(TN , (RN )k) and define the operator

curl(k) : C∞(TN ,Wk) → C∞(TN , (RN )k−1 × �2)

as taking the curl on the last component of ũ, i.e. for I ∈ [N ]k−1

(curl(k) u)I = 1/2
∑

i, j∈N
∂i ũ I j − ∂ j ũ I i ei ∧ e j

Note that this operator has the potential ∇k : C∞(RN ,R) → C∞(RN ,Wk) (cf. [23]).
To the best of the author’s knowledge the proof of the property (ZL) is in this setting
not written down anywhere explicitly, but basically combining the works [1, 13, 31, 38]
yields the result.

(c) In this work, it has been shown that the exterior derivative d satisfies the property (ZL).
The most prominent example is A = div.

(d) The result is also true, ifwe considermatrix-valued functions instead (cf. Proposition 5.4).
For example, (ZL) also holds if we consider div : C∞(RN ,RN×M ) → C∞(RN ,RM ),
where

divi u(x) =
N

∑

j=1

∂ j u ji (x).

(e) Likewise, let A1 : C∞(TN ,Rd1) → C∞(TN ,Rl1) and A2 : C∞(TN ,Rd2) →
C∞(TN ,Rl2) be two differential operators satisfying (ZL). Then also the operator

A : C∞(TN ,Rd1 × R
d2) → C∞(TN ,Rl1 × R

l2)

defined componentwise for u = (u1, u2) by

A(u1, u2) = (A1u1,A2u2)
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satisfies the property (ZL). The truncation is again done separately in the two components.
The most prominent example, which is also covered by the result of this paper, is A1 =
curl and A2 = div, which is highly significant in elasticity and in the framework of
compensated compactness.

An overview of the results one is able to prove using property (ZL) can be found in the
lecture notes [26,Sec. 4] and in the book [29,Sec. 4,7], where they are formulated for the case
of (curl)-quasiconvexity.

6.1 A-quasiconvex hulls of compact sets

For f ∈ C(Rd ,R) we can define the quasiconvex hull of f by (cf. [6, 11])

QA f (x) := inf

{ˆ
TN

f (x + ψ(y)) dy : ψ ∈ C∞(TN ,Rd) ∩ kerA,

ˆ
TN

ψ = 0

}

. (6.2)

QA f is the largest A-quasiconvex function below f [11].
In view of the separation theorem for convex sets in Banach spaces we define (cf. [8, 33,

34]) the A-quasiconvex hull of a set K ⊂ R
d by

KAqc∞ :=
{

x ∈ R
d : ∀ f : Rd → R A-quasiconvex with f|K ≤ 0 we have f (x) ≤ 0

}

,

and the A-p-quasiconvex hull for 1 ≤ p < ∞ by

KAqc
p :=

{

x ∈ R
d : ∀ f : Rd → R A-quasiconvex with f|K ≤ 0 and

| f (v)| ≤ C(1 + |v|p) we have f (x) ≤ 0
}

.

The A-p-quasiconvex hull for 1 ≤ p < ∞ can be alternatively defined via

KAqc∗
p :=

{

x ∈ R
d : (QA dist p(·, K ))(x) = 0

}

.

If K is compact, then KAqc
p = KAqc∗

p . Moreover, the spaces KAqc
p are nested, i.e. KAqc

q ⊂
KAqc
q ′ if q ≤ q ′. In [8] it is shown that equality holds for A being the symmetric divergence

of a matrix, K compact and 1 < q, q ′ < ∞. The proof can be adapted for different A, but
uses the Fourier transform and is not suitable for the cases p = 1 and p = ∞. Here, the
property (ZL) comes into play.

For a compact set K we define the set KAapp (cf. [26]) as the set of all x ∈ R
d such that

there exists a bounded sequence un ∈ L∞(TN ,Rd) ∩ kerA with

dist(x + un, K ) −→ 0 in measure, as n → ∞.

Theorem 6.3 Suppose that K is compact and A is an operator satisfying (ZL). Then

KAapp = KAqc∞ =
{

x ∈ R
d : QA(dist(·, K ))(x) = 0

}

. (6.3)

Proof We first prove KAapp ⊂ KAqc∞ . Let x ∈ KAapp and take an arbitrary A-quasiconvex
function f : Rd → [0,∞) with f|K = 0. We claim that then f (x) = 0.

Take a sequence un from the definition of KAapp . As f is continuous and hence locally
bounded, f (x+un) → 0 inmeasure and 0 ≤ f (x+un) ≤ C . Quasiconvexity and dominated
convergence yield

f (x) ≤ lim inf
n→∞

ˆ
TN

f (x + un(y)) dy = 0.
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KAqc∞ ⊂
{

x ∈ R
d : QA(dist(·, K ))(x) = 0

}

is clear by definition, as QA(dist(·, K )) is an

admissible separating function.
The proof of the inclusion {x ∈ R

d : QA(dist(·, K ))(x) = 0} ⊂ KAapp uses (ZL). If

QA(dist(·, K )) = 0, then there exists a sequenceϕn ∈ C∞(TN ,Rd)∩kerAwith
ˆ
TN

ϕn = 0

such that

0 = QA(dist(·, K ))(x) = lim
n→∞

ˆ
TN

dist(x + ϕn(y), K ) dy.

As K is compact, there exists R > 0 such that K ⊂ B(0, R). Moreover, as x ∈ KAqc∞ , also
x ∈ B(0, R). This implies that

lim
n→∞

ˆ
TN∩{|ϕn |≥6R}

|ϕn | dy = 0.

We may apply (ZL) and find a sequence ψn ∈ L∞(TN ,Rd) ∩ kerA such that

‖ϕn − ψn‖L1(TN ,Rd ) −→ 0 as n → ∞
and

‖ψn‖L∞(TN ,Rd ) ≤ CR.

Hence, x ∈ KAapp . ��
Remark 6.4 Theorem 6.3 shows that for all 1 ≤ p < ∞

KAapp = KAqc∞ =
{

x ∈ R
d : QA(dist(·, K )p)(x) = 0

}

= KAqc
p .

This follows directly, as all the sets KAqc
p are nested and, conversely, all the hulls of the

distance functions are admissible f in the definition of KAqc∞ .

Remark 6.5 Such a kind of theorem is not true for general unbounded closed sets K . As a
counterexample one may consider A = curl (i.e. usual quasiconvexity) and look at the set
of conformal matrices K = {λQ : λ ∈ R

+, Q ∈ SO(n)} ⊂ R
n×n . If n ≥ 2 is even, by [24],

there exists a quasiconvex function F : Rn×n → R with F(x) = 0 ⇔ x ∈ K and

0 ≤ F(A) ≤ C(1 + |A|n/2).

On the other hand, let n ≥ 4 be even and F : Rn×n → R be a rank-one convex function with
F|K = 0 and for some p < n/2

0 ≤ F(A) ≤ C(1 + |A|p).
Then F = 0 by [37].

A reason for the nice behaviour of compact sets is that for such sets all distance functions
are coercive, i.e.

dist(v, K )p ≥ |v|p − C,

which is obviously not true for unbounded sets. Coercivity of a function is often needed for
relaxation results (c.f [6]).
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6.2 A-∞Youngmeasures

We considerM(Rd) the set of signed Radon measures with finite mass. Note that this is the
dual space of Cc(R

d) with the dual pairing

〈μ, f 〉 =
ˆ
Rd

f (y) dμ(y).

For a measurable set E ⊂ R
N we call μ : E → M(Rd) weak∗ measurable if the map

x �−→ 〈μx , f 〉
is measurable for all f ∈ Cc(R

d). Later, we may consider the space L∞
w (E,M(Rd)), which

is the space of all weakly measurable maps such that sptμx ⊂ B(0, R) for some R > 0 and

for a.e. x ∈ E . This space is equipped with the topology νn
∗
⇀ν iff ∀ f ∈ C0(R

d)

〈νnx , f 〉 ∗
⇀〈νx , f 〉 in L∞(E).

Remark 6.6 The topology of L∞
w (E,M(Rd)) is metrisable on bounded sets. In this setting,

we call a set X ⊂ L∞
w (E,M(Rd)) bounded, if

1 There is R > 0, such that for all μ ∈ X the measure μx is supported in B(0, R) for
almost every x ∈ E ;

2 There is C > 0, such that for all μ ∈ X the mass ‖μx‖M(Rd ) ≤ C for almost every
x ∈ E .

Note that νn supported on B(0, R) converges to ν if and only if for all f ∈ C(B̄(0, R))

and all g ∈ L1(E) ˆ
E
〈νnx , f 〉g(x) dx −→

ˆ
E
〈νx , f 〉g(x) dx .

If νn is bounded, then this equation holds for all f , g if and only if it holds for dense subsets
ofC(B̄(0, R)) and L1(E). As these spaces are separable, we may consider a countable dense
subset ( fk, gk)k∈N of C(B̄(0, R)) × L1(E) and the pseudo-metric

dk(ν, μ) =
∣
∣
∣
∣

ˆ
E
〈νx − μx , fk〉gk(x) dx

∣
∣
∣
∣
,

and then define the metric

d(ν, μ) =
∑

k∈N
2−k dk(ν, μ)

1 + dk(ν, μ)
.

Let us now recall the Fundamental Theorem of Young measures(cf. [3, 32]).

Proposition 6.7 (Fundamental Theorem of Young measures) Let E ⊂ R
N be a measurable

set of finite measure and u j : E → R
d a sequence of measurable functions. There exists a

subsequence u jk and a weak∗ measurable map ν : E → M(Rd) such that the following
properties hold:

(i) νx ≥ 0 and ‖νx‖M(Rd ) =
ˆ
Rd

1 dνx ≤ 1;

(ii) ∀ f ∈ C0(R
d) define f̄ (x) = 〈νx , f 〉.Then f (u jk )

∗
⇀ f̄ in L∞(E);

(iii) If K ⊂ R
d is compact, then spt νx ⊂ K if dist(u jk , K ) → 0 in measure;
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(iv) It holds
‖νx‖M(Rd ) = 1 for a.e. x ∈ E (6.4)

if and only if

lim
M→∞ sup

k∈N

∣
∣{|u jk | ≥ M}∣∣ = 0;

(v) If (6.4) holds, then for all A ⊂ E measurable and for all f ∈ C(Rd) such that f (u jk )

is relatively weakly compact in L1(A), also

f (u jk )⇀ f̄ in L1(A);
(vi) If (6.4) holds, then (iii) holds with equivalence.

We call such a map ν : E → M(Rd) the Young measure generated by the sequence u jk .
One may show that every weak∗ measurable map E → M(Rd) satisfying (i) is generated
by some sequence u jk .

Remark 6.8 If uk generates a Young measure ν and vk → 0 in measure (in particular, if
vk → 0 in L1), then the sequence (uk + vk) still generates ν.

If u : TN → R
d is a function, we may consider the oscillating sequence un(x) := u(nx).

This sequence generates the homogeneous (i.e. νx = ν a.e.) Young measure ν defined by

〈ν, f 〉 =
ˆ
TN

f (un(y)) dy.

Question 6.9 What happens to the Young measure generated by a sequence u jk if we impose
further conditions on it, for instance Au jk = 0?

For 1 ≤ p < ∞ we call a sequence v j ∈ L p(�,Rd) p-equi-integrable if

lim
ε→0

sup
j∈N

sup
E⊂� : |E |<ε

ˆ
E

|v j (y)|p dy = 0.

Definition 6.10 Let 1 ≤ p ≤ ∞. We call a map ν : � → R
d anA-p-Young measure if there

exists a p-equi-integrable sequence {v j } ⊂ L p(�,Rd) (for p = ∞ a bounded sequence),
such that v j generates ν and satisfies Av j = 0.

For 1 ≤ p < ∞ the set ofA-p Young measures was classified by Fonseca and Müller
in [11] and for the special case A = curl already in [18].

Proposition 6.11 Let 1 ≤ p < ∞ and A be a constant rank operator. A Young-measure
ν : TN → M(Rd) is an A-p-Young measure if and only if

(i) ∃v ∈ L p(TN ,Rd) such that Av = 0 and

v(x) = 〈νx , id〉 =
ˆ
Rd

y dνx (y) for a.e. x ∈ TN ;

(ii)
ˆ
TN

ˆ
Rd

|z|p dνx (z) dx < ∞;

(iii) for a.e. x ∈ TN and all continuous g with |g(v)| ≤ C(1 + |v|p) we have
〈νx , g〉 ≥ QAg(〈νx , id〉).
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Recently, there has also been progress for so-called generalized Young measures (p = 1
is a special case), cf. [2, 10, 16, 19, 20].

Proposition 6.11 only uses the constant rank property, the property (ZL) is not needed.
However, for p = ∞ the situation changes. Let us recall the result of Kinderlehrer and
Pedregal for W 1,∞-Gradient Young measures (cf. [17, 21]), whose proof relies on the
validity of (ZL) for curl.

Proposition 6.12 Aweak∗measurablemap ν : � → M(RN×m) is a curl-∞-Youngmeasure
if and only if νx ≥ 0 a.e. and there exists K ⊂ R

N×m compact, v ∈ L∞(�,RN×m) such
that

(a) spt νx ⊂ K for a.e. x ∈ �;
(b) 〈νx , id〉 = v(x) for a.e. x ∈ �;
(c) for a.e. x ∈ � and all continuous g : RN×m → R we have

〈νx , g〉 ≥ Qcurlg(〈νx , id〉).
It is possible to state such a theorem in the general setting thatA satisfies (ZL). The proofs

from [17] mostly rely on this fact and this general case can be treated in the same fashion
with few modifications. We do not give all the details of the proofs, but only the crucial steps
where we use

Let us first state the classification theorem for so called homogeneous A-∞-Young mea-
sures, i.e. A-∞-Young measures ν : TN → M(Rd) with the following properties

(i) spt νx ⊂ K for a.e. x ∈ TN where K ⊂ R
d is compact;

(ii) ν is a homogeneous Young measure, i.e. there exists ν0 ∈ M(Rd) such that νx = ν0 for
a.e. x ∈ TN .

Define the set MAqc(K ) by (cf. [35])

MAqc(K )=
{

ν ∈ M(Rd) : ν ≥ 0, spt ν ⊂ K , 〈ν, f 〉 ≥ f (〈ν, id〉) ∀ f : Rd → R A-qc
}

.

(6.5)
Denote by HA(K ) the set of homogeneous A-∞-Young measures supported on K . We are
now able to formulate the classification of these measures (cf. [17,Theorem 5.1.]).

Proposition 6.13 (Characterisation of homogeneous A-∞-Young measures) Let A satisfy
the property (ZL) and K be a compact set. Then

HA(K ) = MAqc(K ).

Using this result, one may prove the Characterisation of A-∞-Young measures (c.f
[17,Theorem 6.1]).

Proposition 6.14 (Characterisation of A-∞-Young measures) Suppose that A satisfies the
property (ZL). A weak∗ measurable map ν : TN → M(Rd) is an A-∞-Young measure if
and only if νx ≥ 0 a.e. and there exists K ⊂ R

d compact and u ∈ L∞(TN ,Rd)∩ kerA with

(i) spt νx ⊂ K for a.e. x ∈ TN .
(ii) 〈νx , id〉 = u for a.e. x ∈ TN ,
(iii) 〈νx , f 〉 ≥ f (〈νx , id〉) for a.e. x ∈ TN and all continuous andA-quasiconvex f : Rd →

R.

As mentioned, the proofs in the case A = curl can be found in [17, 26, 29]. Let us
shortly describe the strategy of the proofs. For Proposition 6.13 one may prove that HA(K )
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is weakly compact, that averages of (non-homogeneous) A-infty Young measures are in
HA(K ) and that the set Hx

A(K ) = {ν ∈ HA : 〈ν, id〉 = x} is weak* closed and convex.
The characterisation theorem then follows by using Hahn–Banachs separation theorem and
showing that any μ ∈ MAqc cannot be separated from HA(K ), i.e. for all f ∈ C(K ) and
for all μ ∈ MAqc(K ) with 〈μ, id〉 = 0

〈ν, f 〉 ≥ 0 for all ν ∈ H0
A(K ) ⇒ 〈μ, f 〉 ≥ 0.

Proposition 6.14 then can be shown using Proposition 6.13 and a localisation argument.

6.3 On the proofs of Propositions 6.13 and 6.14

In this section, we present the proof of Proposition 6.13, basing on its counterpart for gradient
Young measures in [26]. After that we shortly sketch the proof of 6.14, which is then done
by a standard technique of approximation on small cubes.

The property (ZL) is helpful due to the following two observations:

1 If ν ∈ HA(K ) is a homogeneous A-∞-Young measure, then by using (ZL) we can find
a sequence generating ν with an L∞-bound only depending on |K |∞ := sup

y∈K
|y| (cf.

Lemma 6.16)
2 A Young measure ν is anA-∞-Young measure if there is vn ∈ L1(TN ,Rd) ∩ kerA and

L > 0 such that ˆ
|un |≥L

|un | dx −→ 0 as n → ∞.

Remark 6.15 Moreover, note that, if a sequence un ∈ L∞(TN ,Rd) ∩ kerA generates a
homogeneous Young measure ν, we can find vn ∈ C∞

c ((0, 1)N ,Rd)∩kerAwith ‖vn‖L∞ ≤
C‖un‖L∞ and ‖un − vn‖L1 → 0. In particular, vn still generates the same homogeneous
Young measure.

To find such a sequence, recall that there is a potential B of order kB to the differential
operator A. Let us, for simplicity, assume that all un have zero average. Then we can write

un = BUn

with ‖UN‖WkB ,q ≤ Cq‖un‖Lq ≤ Cq‖un‖L∞ for all 1 < q < ∞ and a constant Cq > 0. Let
us define

Un,i, j (x) = ϕ j (x)i
−kBUn(i x), un,i, j (x) = BUn,i, j (x),

for a suitable sequence of cut-offs ϕ j → 1 in L1((0, 1)N ,R). Picking suitable subse-
quences i(n) and j(n) we obtain a sequence un,i(n), j(n) bounded in L∞, still generating ν,
but with compact support in (0, 1)N . Convolution with a standard mollifier gives a sequence
vn that is also in C∞

c ((0, 1)N ,Rd)

Lemma 6.16 (Properties of HA(K ))

(i) If ν ∈ HA(K ) with 〈ν, id〉 = 0, then there exists a sequence u j ∈ L∞(TN ,Rd) such that
Au j = 0, u j generates ν and ‖u j‖L∞(TN ,Rd ) ≤ C sup

z∈K
|z| = C |K |∞.

(ii) HA(K ) is weakly∗ compact in M(Rd).
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Proof (i) follows from the definition of HA(K ). The uniform bound on the L∞ norm of u j

can be guaranteed by (ZL) and vi) in Theorem 6.7.
For the weak∗ compactness note that HA(K ) is contained in the weak∗ compact setP(K )

of probability measures on K . As the weak∗ topology is metrisable on P(K ) it suffices to
show that HA(K ) is sequentially closed. Hence, we consider a sequence νk ⊂ HA(K ) with

νk
∗
⇀ν and show that ν ∈ HA(K ).
Due to the definition of Young measures, we may find sequences u j,k ∈ L∞(TN ,Rd) ∩

kerA such that u j,k generates νk for j → ∞. Recall that the topology of generating Young
measures is metrisable on bounded set of L∞(TN ,Rd) (c.f. Remark 6.6). We may find a
subsequence u jk ,k which generates ν. As we know that ‖u jk ,k‖L∞ ≤ C |K |∞, ν ∈ HA(K )

and hence HA(K ) is closed. ��
Lemma 6.17 Let ν be an A-∞-Young measure generated by a bounded sequence uk ∈
L∞(TN ,Rd) ∩ kerA. Then the measure ν̄ defined via duality for all f ∈ C0(R

d) by

〈ν̄, f 〉 =
ˆ
TN

〈νx , f 〉 dx

is in HA(K ).

Proof For n ∈ N define unk ∈ L∞(TN ,Rd) ∩ kerA by unk (x) = uk(nx). Then for all
f ∈ C0(R

d)

f (unk )
∗
⇀

ˆ
TN

f (uk) in L∞(TN ,Rd) as n → ∞.

Note that by Theorem 6.7 ii) we also haveˆ
TN

f (uk(x)) dx −→
ˆ
TN

〈νx , f 〉 dx as k → ∞.

Due to metrisability on bounded sets (Remark 6.6), we can find a subsequence uk(n)
k in

L∞(TN ,Rd) such that

f (un(k)
k )

∗
⇀

ˆ
TN

〈νx , f 〉 dx as k → ∞.

Thus, ν̄ ∈ HA(K ). ��
Lemma 6.18 Define the set Hx

A(K ) := {ν ∈ HA : 〈ν, id〉 = x}. Then Hx
A(K ) is weak∗

closed and convex.

Proof Weak∗-closedness is clear by Lemma 6.16. For convexity, let ν1, ν2 be A-∞-
Young measures. By an argumentation following Remark 6.15, we can find sequences
vn ∈ C∞

c ((0, λ) × (0, 1)N−1,Rd) and wnC
∞
c ((λ, 1) × (0, 1)N−1,Rd) that generate ν1

and ν2, respectively. Define

un =
{

vn in (0, λ) × (0, 1)N−1,

wn in (λ, 1) × (0, 1)N−1.

and un,i via un,i (x) = un(i x). Then proceeding as in Lemma 6.17, picking a suitable
subsequence i(n) yields that un,i(n) generates λν1 + (1 − λ)ν2. ��

Weproceedwith the proof of the characterisation of homogeneousA-∞-Youngmeasures.
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Proof of Theorem 6.13 We have that HA(K ) ⊂ MAqc due to the fundamental theorem of
Young measures: ν ≥ 0 and spt ν ⊂ K are clear by i) and iii) of Theorem 6.7. The corre-
sponding inequality follows byA-quasiconvexity, i.e. if un ∈ L∞(TN ,Rd)∩kerA generates
the Young measure ν, then

〈ν, f 〉 = lim
n→∞

ˆ
TN

f (un(y)) dy ≥ lim inf
n→∞ f

(ˆ
TN

un(y) dy

)

= f (〈ν, id〉).

To prove MAqc(K ) ⊂ HA(K ), w.l.o.g. consider a measure such that 〈ν, id〉 = 0. We
just proved that H0

A(K ) is weak∗ closed and convex. Remember that C(K ) is the dual space
of the space of signed Radon measures M(K ) with the weak∗ topology (see e.g. [30]).
Hence, by Hahn-Banach separation theorem, it suffices to show that for all f ∈ C(K ) and
all μ ∈ MAqc(K ) with 〈μ, id〉 = 0

〈ν, f 〉 ≥ 0 for all ν ∈ H0
A(K ) �⇒ 〈μ, f 〉 ≥ 0.

To this end, fix some f ∈ C(K ), consider a continuous extension to C0(R
d) and let

fk(x) = f (x) + k dist2(x, K ).

We claim that
lim
k→∞QA fk(0) ≥ 0. (6.6)

If we show (6.6), μ satisfies

〈μ, f 〉 = 〈μ, fk〉 ≥ 〈μ,QA fk〉 ≥ QA fk(0),

finishing the proof. For the identity 〈μ, f 〉 = 〈μ, fk〉 recall that μ is supported in K and
dist(x, K ) = 0 for x ∈ K .

Hence, suppose that (6.6) is wrong. As fk is strictly increasing, there exists δ > 0 such
that

QA fk(0) ≤ −2δ, k ∈ N.

Using the definition of the A-quasiconvex hull (6.2), we get uk ∈ L∞(TN ,Rd) ∩ kerA
with

ˆ
TN

uk(y) dy = 0 and
ˆ
TN

fk(uk(y)) dy ≤ −δ. (6.7)

We may assume that uk⇀0 in L2(TN ,Rd) and also that dist2(uk, K ) → 0 in L1(TN ).
By property (ZL), there exists a sequence vk ∈ kerA bounded in L∞(TN ,Rd) with ‖uk −
vk‖L1 → 0. vk generates (up to taking subsequences) a Young measure ν with spt νx ⊂ K .

Then for fixed j ∈ N, using Lemma 6.17 and that ν̄ ∈ HA(K ) ⊂ MAqc(K ),

lim inf
k→∞

ˆ
TN

f j (uk(y)) dy ≥ lim inf
k→∞

ˆ
TN

f j (vk(y)) dy =
ˆ
TN

ˆ
Rd

f j dνx dx = 〈ν̄, f 〉 ≥ 0.

But this is a contradiction to (6.7), as fk ≥ f j if k ≥ j . ��

Let us finally outline the strategy of the proof for Proposition 6.14. For details we refer to
[17, 26].
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Proof of Propostion 6.14 (Sketch) Necessity of condition (i)–(iii) is established by the follow-
ing argument. (i) and (ii) follow directly from the fact that the Young-measureμ is generated
by an A-free sequence that, up to a subsequence, has a weak-∗-limit u. iii) follows from the
lower-semicontinuity statement of Fonseca and Müller [11].

To prove sufficiency of these conditions, one needs to construct a sequence generating
the Young-measure ν. Let us suppose that u = 0, otherwise we define the Young-measure
ν̃ = ν − u. Then we find a sequence vn generating ν̃ and, consequently, vn + u generates ν.

To find such a sequence one divides TN into subcubes and approximates ν by maps
νn : TN → M(Rd), which are constant on the subcubes. For each subcube Q one then
constructs a sequence vQ

n,m ∈ L∞(Q,Rd) ∩ kerA, m ∈ N, that generates νn and satisfies

vQ
n,m ∈ C∞

c (Q,Rd). These vQ
n,m then give a sequence vn,m generating νn and taking a suitable

diagonal sequence one may find a sequence generating ν (cf. [26,Proof of Theorem 4.7]). ��
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