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Abstract
We consider a partially overdetermined problem for anisotropic N -Laplace equations in a
convex cone � intersected with the exterior of a bounded domain � in R

N , N ≥ 2. Under
a prescribed logarithmic condition at infinity, we prove a rigidity result by showing that the
existence of a solution implies that � ∩� must be the intersection of the Wulff shape and �.
Our approach is based on a Pohozaev-type identity and the characterization of minimizers
of the anisotropic isoperimetric inequality inside convex cones.

Mathematics Subject Classification 35N25 · 35A23 · 35B06 · 31B15

1 Introduction

In this paper we consider a variational problem in an anisotropic medium which is related to
the so-called conformal N -capacity (or logarithmic capacity). Our main goal is to provide
symmetry results for a partially overdetermined problem in convex cones.

The physical motivation for studying anisotropic problems comes from well-established
models of surface energy (see for instance [50]). Moreover, there are many mathematical
interesting aspects arising when one considers symmetry problems in an anisotropic setting
[3, 4, 6, 11, 13, 16, 17, 23].

The logarithmic capacitance has applications in physics, such as in the classical study of
nonlinear voltage and capacitance differences between, respectively, diodes and capacitors.
It appears in condensed-matter and high-energy physics [32, 43], and it is naturally studied in
quasiconformal geometry (see for instance [30]). The study of symmetry problems in convex
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cones has recently attracted the interest of many authors, see for instance [6, 12–14, 23, 26,
34, 39, 40, 45]. As far as the authors know, overdetermined capacity problems in convex
cones have not been considered so far, even in the Euclidean case.

1.1 Themathematical framework

Let H ∈ C2(RN \{0}) be a positively homogeneous function of degree one which is positive
on S

N−1, and let H0 be the dual function of H defined by

H0(x) := sup
H(ξ)=1

〈x, ξ 〉 , for x ∈ R
N . (1.1)

Given an open, convex cone� and a bounded domain� inR
N , we consider the following

exterior boundary value problem for the anisotropic N -Laplace equation
⎧
⎨

⎩

�H
N u = 0 in � ∩ �

c
,

u = 0 on �0,

〈a(∇u), ν〉 = 0 on �1,

(1.2)

with prescribed asymptotic behavior at infinity

1

d
≤ u(x)

ln H0(x)
≤ d for some d > 1, as H0(x) → ∞. (1.3)

Here �H
N is the so-called Finsler N -Laplacian which is given by

�H
N u = div (a(∇u))

in the sense of distributions, where

a(ξ) = 1

N
∇(H N )(ξ) ∀ξ ∈ R

N ,

�
c := R

N \�, �0 := � ∩ ∂�, �1 := �
c ∩ ∂�,

and ν is the outer normal to ∂�. We will assume throughout this paper that � ∩ �
c
is

connected and HN−1(�0) > 0 where HN−1 stands for the (N − 1)-dimensional Hausdorff
measure. By a weak solution of (1.2) we mean a function u ∈ W 1,N

loc (� ∩ �c) with u = 0 on
�0,1 such that

∫

�∩�
c
〈a(∇u),∇ϕ〉 dx = 0

for all ϕ ∈ W 1,N (� ∩ �
c
) with ϕ = 0 on �0 and with bounded support.

Notice that, when � = R
N , we have �1 = ∅ and the third condition in (1.2) is trivially

satisfied. In this case, if H is the Euclidean norm (i.e. H(ξ) = |ξ |), the model (1.2)–(1.3)
applies to the study of logarithmic capacity [15, 56], and it determines the N -equilibrium
potential of �, which naturally appears in computing the capacitance difference between
coaxial cylindrical capacitors (see [42]). Analogously, for a general H , problem (1.2)–(1.3)

1 Given a bounded open set O ⊂ R
N , a function f ∈ W 1,N (O) and a relatively open subset � of ∂O ,

we say that f = 0 on � if f is the limit in W 1,N (O) of a sequence of functions in C∞(O) vanishing in a
neighborhood of �. In particular, when ∂O is Lipschitz, this definition is equivalent to T� f = 0, where T� f
is the trace of f on � (see for instance [46, Proposition 7.86]).
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can be applied to the study of the related capacity problems, when the set � is embedded
in a possibly anisotropic medium. In this connection, problem (1.2)–(1.3) can also be seen
as a logarithmic counterpart of those arising from the study of anisotropic p-capacity with
1 < p < N instead, see for instance [3, 4, 54]. More concrete applications of related
anisotropic models arise in the theory of crystals as well as in noise-removal procedures in
digital image processing, see for instance [24, 50] and the references therein.

1.2 The overdetermined problem

The aim of this paper is to characterize the shape of � in terms of the existence of solutions
to problem (1.2)–(1.3), coupled with the overdetermined condition

H(∇u) = C on �0, (1.4)

for some given constant C > 0. Differently from the classical overdetermined problems
originated in Serrin’s famous work [49], we emphasize that whenever � � R

N , problem
(1.2)–(1.3) with (1.4) is partially overdetermined, since in this case both Dirichlet and Neu-
mann conditions are simultaneously imposed only on a part of the boundary of �, namely
�0. Accordingly, one may expect to determine the shape of �0 while a sole homogeneous
Neumann boundary condition is assigned on �1, provided that �1 satisfies some geometric
constraint.

It is well-known that in the isotropic setting, the characterized geometric property of the
domain in Serrin’s overdetermined problems is the spherical symmetry. In an anisotropic
framework encoded by the anisotropy H , the natural counterpart of this feature is the so-
called Wulff shape which is a ball in the dual function H0, that is

B H0
R (x0) := {x ∈ R

N : H0(x − x0) < R}, (1.5)

where x0 ∈ R
N and R > 0 denote the center and the radius, respectively. Starting from

this connection, our research is motivated by the observation that there is indeed an explicit
logarithmic function in H0 fulfilling problem (1.2)–(1.3) with (1.4) in the classical sense,
when � = B H0

R (x0) for suitable choice of x0 depending on the convex cone �. To make this
precise, we need some more notation.

In general, up to a change of coordinates, we canwrite� = R
k ×�̃, where k ∈ {0, . . . , N }

and �̃ ⊂ R
N−k is an open, convex cone with vertex at the origin which does not contain

a line. Besides, following [16, 17], we say that the function H is uniformly elliptic if its
1-sublevel set

B H
1 := {ξ ∈ R

N : H(ξ) < 1} (1.6)

is uniformly convex. This is a standard assumption ensuring the Hessian of H N is positive
definite in R

N \{0}, and thus equation (1.2) is of elliptic type, though possibly degenerate.
Moreover, under this assumption, one has that H is convex and H0 ∈ C2(RN \{0}). These
claims will be explained in detail in Sect. 2.1.

With above notations, observe that

Proposition 1.1 Let N ≥ 2 and � = R
k × �̃ where k ∈ {0, . . . , N } and �̃ ⊂ R

N−k is an
open, convex cone with vertex at the origin which contains no lines.
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Let R > 0, x0 ∈ R
k × {0RN−k } and � = B H0

R (x0). Assume that H ∈ C2(RN \{0}) is
uniformly elliptic. Then the function

u(x) = C R ln
H0(x − x0)

R
(1.7)

is of class C2(RN \{x0}) and is the unique solution to problem (1.2)–(1.3) with (1.4).

Proposition 1.1 can be verified directly by exploiting the homogeneity and differentiability
of H and H0, see Lemmas 2.1 and 2.2 below. In particular, the uniqueness of (1.7) follows
from the well-posedness of original problem (1.2)–(1.3), as we will show in Theorem 3.3.

1.3 Themain result

Concerning the reverse of Proposition 1.1, an investigation into seeking aWulff shape charac-
terization for the domain� naturally arises. Indeed, we shall prove that if problem (1.2)–(1.3)
with (1.4) admits a weak solution, then � ∩ � must be � ∩ B H0

R (x0), under some regularity
assumption on � and on the solution. More precisely, our main result is the following.

Theorem 1.2 Let � be a bounded domain of R
N with boundary of class C1,α , α ∈ (0, 1)

and N ≥ 2. Let � = R
k × �̃ where k ∈ {0, . . . , N } and �̃ ⊂ R

N−k is an open, convex cone
with vertex at the origin and containing no lines.

Let H ∈ C2(RN \{0}) be a positively homogeneous function of degree one which is positive
on S

N−1 and uniformly elliptic, and let H0 be its dual function defined by (1.1).
Assume that there exists a solution u ∈ W 1,N

loc (� ∩ �c) to problem (1.2)–(1.3) with (1.4)
such that

∇u ∈ L∞
loc(� ∩ �c) .

Then �∩� = �∩B H0
R (x0) and u is given by (1.7), for some R > 0 and x0 ∈ R

k×{0RN−k }.
In order to compare Theorem 1.2 to related results available in literature, we make some

remark concerning the regularity of the solution and on the type of anisotropy we are con-
sidering.

We first remark that, under the above assumptions on � and H , u belongs to C1((� ∩
�

c
) ∪ �0). Actually, by interior regularity results in [22, 48, 51] a weak solution to equation

(1.2) which is in W 1,N
loc (�∩�

c
) is automatically of class C1. Thanks to [38],2 such regularity

can be pushed up to �0 and to the C1,α-regular portion of �1. Moreover, as we will see in
Proposition 2.6 below,

a(∇u) ∈ W 1,2
loc ((� ∩ �

c
) ∪ �1) .

However, the regularity up to the whole boundary is a delicate issue, since it strongly relies
on how � and � intersect. Nevertheless, our result holds true without requiring any global
regularity other than

∇u ∈ L∞
loc(� ∩ �c) .

This can be viewed as a gluing condition between the cone and �0 as explained in [40]. We
also refer this to [9], where global Lipschitz regularity is proved for Dirichlet or Neumann

2 In order to apply the boundary regularity results in [38] (see Theorems 1 and 2 there), it is not difficult to
observe that u ∈ L∞

loc((� ∩ �
c
) ∪ �0 ∪ �1) by employing the Moser iteration argument as in [48].
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boundary value problems of p-Laplace type in convex domains. We notice that in the case
� = R

N we do not need to impose additional regularity assumptions on the solution u.
Moreover, regarding the anisotropy H , we note that here we do not assume H to be even, so,
in general, H(ξ) �= H(−ξ); namely, H is not necessarily a norm. The same is true for the
dual function H0 as well.

When k = N (i.e. � = R
N ) and H is the Euclidean norm, Theorem 1.2 was proved in

Reichel [44] and Poggesi [41], respectively by the well-known moving planes method and
by using some integral identities combined with the classical isoperimetric inequality. In
an anisotropic setting, the moving plane technique is no more helpful, and the Wulff shape
characterization result in the case k = N of Theorem 1.2 was recently treated in Xia–Yin
[55] by adapting the arguments used in [41], under the assumptions that H ∈ C∞(RN \{0})
is a norm and that ∂� is of class C2,α . In the present paper, by exploiting similar integral
methods, we generalize such characterization results to the setting of convex cones, and also
classify the resulting symmetry for the solutions.

Here it is worth pointing out that the generalization is not trivial. Indeed, in the case
� � R

N we have to deal with the mixed boundary value problem (1.2). In order to deal
with a problem of this type, we need to establish qualitative properties such as comparison
principles and Liouville-type results in a cone setting with homogeneous Neumann boundary
conditions. These are essential tools in analyzing the precise asymptotic behavior of the
solutions at infinity, since neither Kelvin type transform nor Hopf’s boundary point lemma
are available in our case. Moreover, due to the lack of global C1-regularity of the solution
as well as the non-smoothness of �, we have to employ careful approximation arguments
to validate certain integral identities and inequalities, including a Pohozaev-type identity
contained in Theorem 4.1 and local W 1,2 estimates up to ∂� for the nonlinear vector fields
of the gradient of the solutions (see Proposition 2.6). In particular, this brings the subtle issue
that we need to approximate possibly non-Lipschitz sets in � ∩ �

c
by Lipschitz ones.

The result of Theorem 1.2 is strictly related to the anisotropic isoperimetric inequality
inside convex cones, which was obtained in Cabré–Ros-Oton–Serra [6] along with a general
weighted version. It states that, in our notation, if E ⊂ R

N is a measurable set with finite
Lebesgue measure HN in �, then

PH (E;�)

HN (� ∩ E)
N−1

N

≥ PH (B H0
1 ;�)

HN (� ∩ B H0
1 )

N−1
N

(1.8)

and the equality holdswhenever�∩E = �∩B H0
R (x0); here B H0

1 := B H0
1 (0) is the unitWulff

ball centered at the origin and PH (E;�) denotes the anisotropic perimeter of E relative to
� defined in (2.8) below. Inequality (1.8) was proved in [6] by reducing it to a degenerate
case of the classical Wulff inequality which is well-known in the literature (see for instance
[18, 27, 29, 50]). Such an idea is first observed by Figalli and Indrei [26] in order to establish
a quantitative version of the isoperimetric inequality in convex cones due to Lions–Pacella
[39], corresponding to (1.8) where H is the Euclidean norm. Recently, the ideas in [26]
were further adapted in Dipierro–Poggesi–Valdinoci [23] to prove the uniqueness of the
minimizers of (1.8) for a general norm H , illustrating that the equality in (1.8) holds if and
only if � ∩ E = � ∩ B H0

R (x0). However, the same argument still works in our case where
H is a gauge as required in [6]. We shall state this precisely in Theorem 2.5, from which we
are able to conclude the proof of Theorem 1.2 (see below for a detailed description).

Before explaining the main ideas of our proof, we would like to mention more related
studies on Serrin’s overdetermined problems for anisotropic equations and their variants in
cones.
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In the wholeR
N , classical Serrin’s result in [49] has been extended to the setting of Finsler

p-Laplacian (p > 1) both in bounded domains and exterior domains, we refer to [3, 4, 11,
52, 55] and the references therein. The two alternative approaches used in these literatures
are both based on integral identities and they are inspired by the idea of Weinberger [53] and
that of Brandolini–Nitsch–Salani–Trombetti [5], respectively. The main difference is that the
latter relies on a Cauchy–Schwarz inequality about the Hessian matrix and does not invoke
a maximum principle for a P-function as introduced in [53].

Regarding the variants for cones, rigidity results of Serrin type were first obtained in
Pacella–Tralli [40], where they considered an interior overdetermined problem inside a
smooth convex cone for Laplacian and gave a characterization of spherical sectors follow-
ing the approaches in [5, 53]. Then the first author and Roncoroni [14] generalized that to
more general elliptic (possibly degenerate) operators in the Euclidean space as well as to
space forms. More generally, during the last decade, much interest has been devoted to other
parallel problems in convex cones and anisotropic setting (see for instance [6, 13, 16, 23,
45]). However, as far as we know, exterior overdetermined problems in unbounded domains
contained in cones have not been studied yet even in the isotropic setting. The study presented
in this paper may serve as a starting point in this direction.

Now we comment the proof of Theorem 1.2. Unlike those developed in [4, 5, 53], here
we adopt an isoperimetric argument to prove Theorem 1.2 in the spirit of [23, 25, 41].
The crucial point consists in using integral identities to show that � ∩ � is a minimizer of
the anisotropic isoperimetric inequality inside � (see (1.8)) whenever problem (1.2)–(1.3)
with (1.4) admits a solution, which implies the desired Wulff shape characterization. To
this aim, the proof is made in three steps. Firstly, via scaling arguments we improve the
logarithmic behavior of u prescribed in (1.3) and obtain its asymptotic expansion at infinity,
see Proposition 3.1. Secondly, we derive a Pohozaev-type identity for equation (1.2). Finally,
by an approximation argument we compute the explicit value of the constant C appearing
in overdetermined condition (1.4) and we further apply the Pohozaev identity to deduce that
� ∩ � satisfies the equality case of (1.8).

The paper is organized as follows. In Sect. 2, we collect some auxiliary and techni-
cal results, including properties of the anisotropy H , a weak comparison principle and the
anisotropic isoperimetric inequality in convex cones. In particular, a second-order regular-
ity result for weak solutions to problem (1.2) is established in Sect. 2.4. The solvability of
problem (1.2)–(1.3) and the asymptotic expansion at infinity of the solution are tackled in
Sect. 3. Section 4 is devoted to a Pohozaev-type identity which is derived for more general
homogeneous anisoptropic p-Laplace equations with any 1 < p < ∞. Finally, we complete
the proof of Theorem 1.2 and of Proposition 1.1 in Sect. 5.

2 Preliminaries

2.1 Basic properties of the function H

Throughout this subsection, we always let H : R
N → R be a positively homogeneous

function of degree one which is of class C0(RN \{0}) and satisfies H(ξ) > 0 for any ξ ∈
S

N−1, and let H0 be its dual function defined by (1.1). Clearly, by definition, H0 is also
positively homogeneous of degree one and is convex.Here, recall that a function f : R

N → R

is said to be positively homogeneous of degree one if

f (t z) = t f (z) for any t > 0, z ∈ R
N .
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From this, one infers that H(0) = 0 and H ∈ C0(RN ). Also, for any ξ ∈ R
N ,

|ξ | min
SN−1

H ≤ H(ξ) ≤ |ξ |max
SN−1

H .

It is clear that analogous properties hold with H replaced by H0. Moreover, the homogeneity
implies that

Lemma 2.1 If H , H0 ∈ C1(RN \{0}), then

∇ H(tξ) = ∇ H(ξ), ∇ H0(t x) = ∇ H0(x)

for any t > 0 and ξ, x ∈ R
N \{0}, and

〈∇ H(ξ), ξ 〉 = H(ξ), 〈∇ H0(x), x〉 = H0(x)

for any ξ, x ∈ R
N .

From Lemma 2.1, one observes that H N ∈ C1(RN ) if H ∈ C1(RN \{0}), referring to
[16, Lemma 2.3] for a rigorous proof. Thus, the function a(ξ) = 1

N ∇(H N )(ξ) is actually
continuous at the origin and we have

a(ξ) =
{

H N−1(ξ)∇ H(ξ), if ξ ∈ R
N \{0},

0, if ξ = 0.
(2.1)

The next lemma collects several well-known properties containing the convexity of H ,
the differentiability of H0 and useful connections between H and H0.

Lemma 2.2 If H ∈ C2(RN \{0}) and the Hessian of H N is positive definite in R
N \{0}, then

H is convex and H0 ∈ C2(RN \{0}). Moreover, for x, ξ ∈ R
N \{0},

H(∇ H0(x)) = H0(∇ H(ξ)) = 1, (2.2)

and

x = H0(x)∇ H(∇ H0(x)), ξ = H(ξ)∇ H0(∇ H(ξ)). (2.3)

Proof Let us give the precise references for these assertions. The convexity of H was proved
in [16, Lemma 2.5]. The regularity that H0 is of class C2 outside the origin and the formula
(2.2) were obtained in [17, Lemma 2.3] (see also [11, Lemma 3.1]). There the authors also
stated that the map H∇ H is a C1-diffeomorphism of R

N with inverse H0∇ H0, from which
we get (2.3). ��
Related to the differentiability of H0, we remark further that since H0 is actually the support
function of the set B H

1 (given by (1.6)), it is known that H0 ∈ C1(RN \{0}) if and only if B H
1

is strictly convex (see [47, Corollary 1.7.3]). In addition, from [11, Lemma 3.1], formulas
(2.2) and (2.3) hold as long as H , H0 ∈ C1(RN \{0}).

We conclude this part by presenting the following estimates gained from assuming H to
be uniformly elliptic (i.e. the set B H

1 is uniformly convex).

Lemma 2.3 Assume that H ∈ C2(RN \{0}) is uniformly elliptic. Then there exists λ > 0
such that

∂2i j (H N )(ξ)ηiη j ≥ 1

λ
|ξ |N−2|η|2 and

∑

i, j

|∂2i j (H N )(ξ)| ≤ λ|ξ |N−2 (2.4)
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for any ξ ∈ R
N \{0}, η ∈ R

N . Furthermore, there exist c1, c2 > 0, depending only on N and
λ, such that

〈a(ξ1) − a(ξ2), ξ1 − ξ2〉 ≥ c1(|ξ1| + |ξ2|)N−2|ξ1 − ξ2|2, (2.5)

|a(ξ1) − a(ξ2)| ≤ c2(|ξ1| + |ξ2|)N−2|ξ1 − ξ2|, (2.6)

for any ξ1, ξ2 ∈ R
N \{0}.

Proof We refer the validity of (2.4) to [17, Theorem 1.5]. Then estimates (2.5) and (2.6)
follow by applying [19, Lemma 2.1]. ��

Once (2.4) holds, the Finsler N -Laplacian �H
N is a possibly degenerate elliptic operator

and we are allowed to apply standard regularity theory for quasilinear PDEs developed in
[22, 48, 51] to Eq. (1.2).

2.2 Comparison principles

Wederive the followingweak comparison principles for the operator�H
N in bounded domains

inside a convex cone. For convenience, we write below �0 := � ∩ ∂ E and �1 := ∂� ∩ E ,
consistent with the notation used in (1.2).

Lemma 2.4 Let � ⊂ R
N be an open, convex cone and E ⊂ R

N be a bounded domain
such that HN−1(�0) > 0 and � ∩ E is connected. Let H be as in Lemma 2.3. Assume that
u, v ∈ W 1,N (� ∩ E) ∩ C0((� ∩ E) ∪ �0) satisfy

⎧
⎨

⎩

−�H
N u ≤ −�H

N v in � ∩ E,

u ≤ v on �0,

〈a(∇u), ν〉 = 〈a(∇v), ν〉 = 0 on �1.

(2.7)

Then u ≤ v in � ∩ E.

Proof By the weak formulation of (2.7) and since u ≤ v on �0, we can use (u − v)+ as a
test function to get

∫

�∩E

〈
a(∇u) − a(∇v),∇(u − v)+

〉
dx ≤ 0.

Thus, it follows from (2.5) that
∫

�∩E
|∇(u − v)+|N dx = 0,

which means that (u − v)+ is constant in � ∩ E . Since (u − v)+ = 0 on �0, we infer that
(u − v)+ ≡ 0, i.e. u ≤ v in � ∩ E . ��

We remark that when � = R
N and H is a norm, Lemma 2.4 is well-known (see for

instance [4, 8] where more general anisotropic elliptic operators are concerned).

2.3 Anisotropic isoperimetric inequality inside convex cones

In this subsection, we shall let H : R
N → R be a gauge, i.e., a nonnegative, positively

homogeneous of degree one, convex function; and we also assume that H is positive on
S

N−1. Notice that if we further assume H to be even, then it becomes a norm in R
N .
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Given an open subset D ⊂ R
N and a measurable set E ⊂ R

N , we recall the definition of
anisotropic perimeter of E in D with respect to the gauge H , given by

PH (E; D) = sup

{∫

E
div dx :  ∈ C1

c (D; R
N ), H0() ≤ 1

}

, (2.8)

where H0 is the dual function of H defined by (1.1). In particular, when E has locally finite
perimeter we have that

PH (E; D) =
∫

D∩∂∗ E
H(ν) dHN−1

where ∂∗E is the reduced boundary of E and ν is the outer (measure theoretic) normal to E .
Then the following result holds.

Theorem 2.5 Let � = R
k × �̃ where k ∈ {0, . . . , N } and �̃ ⊂ R

N−k is an open, convex
cone with vertex at the origin which contains no lines. Let H be a gauge in R

N which is
positive on S

N−1 and let H0 be its dual function defined by (1.1). Then for each measurable
set E ⊂ R

N with HN (� ∩ E) < ∞,

PH (E;�)

HN (� ∩ E)
N−1

N

≥ PH (B H0
1 ;�)

HN (� ∩ B H0
1 )

N−1
N

.

Moreover, the equality sign holds if and only if � ∩ E = � ∩ B H0
R (x0) for some R > 0 and

x0 ∈ R
k × {0RN−k }.

Here B H0
R (x0) is as in (1.5) and B H0

1 := B H0
1 (0).

Proof As already mentioned in the Introduction, this inequality has been obtained in [6,
Theorem 1.3]. The characterization of the equality cases was showed in [23, Theorem 4.2] by
adapting the ideas of [26, Theorem 2.2], under the assumption that H is a norm. Nevertheless,
the argument in [23] works the same way considering a positive gauge H , since in this case
� ∩ B H0

1 is still an open bounded convex set. For this reason, we omit the proof. ��

2.4 Second-order regularity for weak solutions

This subsection is concerned with the regularity of W 2,2
loc type for weak solutions u to problem

(1.2). Inspired by the approach in [2, 10, 13], in Proposition 2.6 below we establish local
W 1,2-regularity up to the boundary of the cone for the stress field a(∇u), which will be useful
in Sect. 4 to derive a Pohozaev-type identity and in the proof of Theorem 1.2 in Sect. 5. In
particular, it allows us to avoid assuming u is C1 up to �1 which is required in [14, 23, 40]
to prove symmetry results for related problems defined in convex cones.

Proposition 2.6 Let � ⊂ R
N be an open, convex cone and � ⊂ R

N be a bounded domain.
Let u be a weak solution to problem (1.2) where H is as in Theorem 1.2. Then a(∇u) ∈
W 1,2

loc ((� ∩ �
c
) ∪ �1).

Proof From [2, Theorem 4.2] (see also [1]), we already know that a(∇u) ∈ W 1,2
loc (� ∩ �

c
).

It suffices to show a(∇u) ∈ W 1,2(Bρ(x) ∩ (� ∩ �
c
)) for each x ∈ �1 and some small

ρ = ρ(x) > 0. Hereafter, Bρ(x) denotes the Euclidean ball centered at x and having radius
ρ. The main issue is due to the degeneracy of the equation as well as the non-smoothness of
�1. We shall deal with that by approximation.
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Fix y ∈ �1 and Bρ(y) with small ρ > 0 such that Bρ(y) is away from �. Let �k ⊃ �

be a family of smooth convex sets in R
N such that HN ((�k\�) ∩ Bρ(y)) → 0 and the

Hausdorff distance between �k and � inside Bρ(y) tends to 0 as k → ∞. For simplicity,
we will denote by

Bρ := Bρ(y) ∩ � and Bρ,k := Bρ(y) ∩ �k .

Also, as in [10, Formula (4.58)] we require that the Lipschitz constant of Bρ,k satisfies

L Bρ,k ≤ C L Bρ (2.9)

for some constant C independent of k.
Since u ∈ W 1,N (Bρ), by extension theorem (see for instance [36, Theorem 12.15]), there

is ũ ∈ W 1,N (RN ) such that ũ = u in Bρ . Let us consider the following equation
⎧
⎨

⎩

�H
N uk = 0 in Bρ,k,

uk = ũ on �k ∩ ∂ Bρ(x) := �0
ρ,k,

〈a(∇uk), ν〉 = 0 on ∂�k ∩ Bρ(x) := �1
ρ,k .

(2.10)

We notice that the existence of a weak solution uk to (2.10) follows by solving the minimiza-
tion problem

inf

{
1

N

∫

Bρ,k
H N (∇w) dx : w ∈ W 1,N (Bρ,k), w = ũ on �0

ρ,k

}

. (2.11)

We first claim that uk → u in C1
loc(Bρ), by taking, if necessary, a subsequence of k → ∞.

Indeed, choosing uk − ũ as a test function in the weak formulation of (2.10) and applying
the Poincaré inequality (see for instance [57, Corollary 4.5.2] with parameters k = 0, p = N
and m = 1 there), we find that

‖uk‖W 1,N (Bρ) ≤ C‖u‖W 1,N (Bρ)

for some constant C = C(N , H , Bρ). Thus, the Sobolev embedding theorem ensures that,
up to a subsequence,

uk → v in L N (Bρ) and uk⇀v in W 1,N (Bρ)

for some function v ∈ W 1,N (Bρ). Furthermore, by interior L∞ estimates in [48] and interior
C1,γ estimates in [22, 51] for quasilinear PDEs, we can infer that for every compact subset
K ⊂ Bρ , ‖uk‖C1,γ (K ) is uniformly bounded. Thus, by Ascoli–Arzelà theorem we get

uk → v and ∇uk → ∇v pointwise in Bρ, (2.12)

along a subsequence of k → ∞. These convergence results imply that the function v is a
weak solution to (2.10). Therefore, v = u by the uniqueness.

Next, we will show a(∇uk) ∈ W 1,2(B
ρ
6 ,k) and derive a uniform bound for

‖a(∇uk)‖
W 1,2(B

ρ
6 ,k

)
. The idea is to introduce a family of regularized non-degenerate equa-

tions (2.14) below and establish a Caccioppoli type estimate for their solutions uε
k which

approximate uk . Then the desired bound is obtained by taking the limit as ε → 0.
We start by letting {φε}with ε ∈ (0, 1) be a family of radially symmetric smoothmollifiers

and define

aε(ξ) := (a ∗ φε)(ξ) for ξ ∈ R
N .
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Here the symbol ∗ stands for the convolution. Since a(·) is continuous, standard properties
of convolutions imply aε → a uniformly on compact subset of R

N , as ε → 0. Moreover,
following [28, Lemma 2.4] it is seen that aε satisfies

〈∇aε(ξ)η, η
〉 ≥ 1

λ
(|ξ |2 + ε2)

N−2
2 |η|2 and |∇aε(ξ)| ≤ λ(|ξ |2 + ε2)

N−2
2

for every ξ, η ∈ R
N , with λ > 0 given by (2.4). In addition, from [2, Formula (2.4)], the

following monotonicity condition holds:

〈
aε(ξ) − aε(η), ξ − η

〉 ≥ C(N , λ)(|ξ |2 + |η|2 + ε2)
N−2
2 |ξ − η|2. (2.13)

Let uε
k ∈ W 1,N (Bρ,k) be the weak solution of

⎧
⎨

⎩

div (aε(∇uε
k)) = 0 in Bρ,k,

uε
k = ũ on �0

ρ,k,〈
aε(∇uε

k), ν
〉 = 0 on �1

ρ,k,

(2.14)

which can be obtained by considering (2.11) where the function H N is replaced by H N
ε

defined as

H N
ε (ξ) := (H N ∗ φε)(ξ) for ξ ∈ R

N .

Since equation (2.14) is non-degenerate and �1
ρ,k is smooth, one has uε

k ∈ C2
loc(Bρ,k ∪�1

ρ,k)

by classical regularity theory for elliptic equations.
We also let ϕ ∈ C∞

c (Bρ(y)) and let ζδ : Bρ,k → [0, 1] be a family of smooth functions3

such that ζδ → χBρ,k in the L1 sense and −∇ζδ → νHN−1�∂ Bρ,k in the sense of measures,
as δ → 0, where ν is the outer normal to ∂ Bρ,k .

Now, for m ∈ {1, . . . , N }, using ∂m(ϕζδ) as the test function in the weak formulation of
(2.14), we get

N∑

i=1

(∫

Bρ,k
ζδ∂maε

i (∇uε
k)∂iϕ dx +

∫

Bρ,k
ϕ∂maε

i (∇uε
k)∂iζδ dx

)

= 0,

where we used the notation aε = (aε
1, . . . , aε

N ) to denote the components of the vector field
aε . Thus, letting δ → 0 in the above equality yields

N∑

i=1

(∫

Bρ,k
∂maε

i (∇uε
k)∂iϕ dx −

∫

�1
ρ,k

ϕ∂maε
i (∇uε

k)νi dHN−1

)

= 0. (2.15)

By density, in (2.15) we actually can choose any ϕ ∈ W 1,2(Bρ,k) with ϕ = 0 on �0
ρ,k . In

particular, let us take ϕ = aε
m(∇uε

k)ψ
2, where ψ ∈ C∞

c (Bρ(y)). For this choice, using the
fact that ∂�k is convex and arguing as in the proof of [13, Proposition 2.8] (see Formulas

3 Such ζδ can be constructed as follows. For δ > 0, let ψδ ∈ C∞(R) with ψδ = 0 on (−∞, δ], ψδ = 1 on
[2δ, +∞) and ψ ′

δ ≤ 2
δ
. Since �1

ρ,k is smooth, the distance function dist(x, �1
ρ,k ) is also smooth on

{x ∈ Bρ,k : dist(x, �1
ρ,k ) < 3δ},

provided δ is sufficiently small (see [31, Lemma 14.16]). Set ζδ = ψδ(dist(x, �1
ρ,k )).
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(2.45)–(2.50) there), we deduce that

N∑

i,m=1

∫

Bρ,k
∂maε

i (∇uε
k)∂i

(
aε

m(∇uε
k)ψ

2) dx ≤ 0.

Furthermore, we can argue as in the proof of [2, Theorem 4.2] to obtain the following
Caccioppoli type estimate

∫

Bρ,k
|∇(aε(∇uε

k))|2ψ2 dx ≤ C
∫

Bρ,k
|aε(∇uε

k)|2|∇ψ |2 dx (2.16)

for some constant C = C(N , λ).
Pick a ψ ∈ C∞

c (B ρ
5
(y)) such that ψ = 1 in B ρ

6
(y) and |∇ψ | ≤ C

ρ
for some constant

C = C(N ). It follows from (2.16) that

‖aε(∇uε
k)‖2

W 1,2(B
ρ
6 ,k

)
≤ C(N , λ)

ρ2

∫

B
ρ
5 ,k

|aε(∇uε
k)|2 dx . (2.17)

In order to estimate the right-hand side, we fix a small τ ∈ (0, ρ
20 ) and assume that for some

yk ∈ �1
ρ,k , |y − yk | = dist(y, �1

ρ,k) < τ when k is sufficiently large. It is seen that for each
large k,

B ρ
5
(y) ⊂ B ρ

4
(yk) ⊂ B ρ

2
(yk) ⊂⊂ Bρ(y).

Thus, by virtue of a local flattening argument for �1
ρ,k and a L∞ estimate for ∇uε

k near
the boundary (see Formula (4.4) in [38, Proof of Lemma 6]), it is not difficult to deduce that

‖∇uε
k‖

L∞
(

B
ρ
5 ,k

) ≤ ‖∇uε
k‖

L∞
(

B ρ
4

(yk )∩�k

) ≤ C (2.18)

for some constant C = C(N , λ, ‖∇uε
k‖L N (Bρ,k ), ρ, L Bρ,k ). Consequently, combining (2.17)

with the relation |aε(ξ)| ≤ λ(|ξ | + ε)N−1 and with (2.18) gives

‖aε(∇uε
k)‖W 1,2(B

ρ
6 ,k

)
≤ C(N , λ, ‖∇uε

k‖L N (Bρ,k ), ρ, L Bρ,k ). (2.19)

Moreover, choosing uε
k − ũ as the test function in the weak formulation of (2.14), it follows

from (2.13) that

‖∇uε
k‖L N (Bρ,k ) ≤ C‖∇ũ‖L N (Bρ,k )

for some constant C = C(N , λ,HN (Bρ,k)). In view of (2.19), we hence arrive at

‖aε(∇uε
k)‖W 1,2(B

ρ
6 ,k

)
≤ C(N , λ, ‖∇ũ‖L N (Bρ,k ), ρ, L Bρ,k ). (2.20)

At this point, to obtain an estimate for ‖a(∇uk)‖
W 1,2(B

ρ
6 ,k

)
, we present certain convergence

results and then let ε → 0 in (2.20). Exploiting condition (2.13) and following the argument
for [2, Formula (4.20)], we easily get

∇uε
k → ∇uk in L N (Bρ,k), as ε → 0,

which implies aε(∇uε
k) → a(∇uk) in L1(Bρ,k). Moreover, since the constant C in (2.20) is

independent of ε, we have

aε(∇uε
k)⇀a(∇uk) in W 1,2(B

ρ
6 ,k),
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for a subsequence of ε → 0. Therefore, the lower semicontinuity for weak convergence leads
to

‖a(∇uk)‖
W 1,2(B

ρ
6 ,k

)
≤ C(N , λ, ‖∇ũ‖L N (Bρ,k ), ρ, L Bρ,k ). (2.21)

Finally, with (2.21) in hand, let us prove a(∇u) ∈ W 1,2(B
ρ
6 ). In view of (2.9) and the fact

that ‖∇ũ‖L N (Bρ,k ) ≤ C for some C not depending on k, we observe that the constant C in

(2.21) is actually independent of k. Hence, a(∇uk) is uniformly bounded in W 1,2(B
ρ
6 ) and

there exists a function U ∈ W 1,2(B
ρ
6 ) such that, up to a subsequence of k → ∞,

a(∇uk) → U in L2(B
ρ
6 ) and a(∇uk)⇀U in W 1,2(B

ρ
6 ). (2.22)

Via (2.22) and (2.12), we infer that

U = a(∇u) ∈ W 1,2(B
ρ
6 ).

This completes the proof. ��
Remark 2.7 Proposition 2.6 is stated for solutions to (1.2), even if it can be generalized to
more general type of homogeneous equations of the form

divA(∇u) = 0,

with A(·) satisfying suitable structure conditions as the ones in [38]. Indeed, the L∞ estimate
needed in the proof still holds in this setting thanks to [38] and all the argument in the proof
can be easily adapted.

A more delicate question is the generalization to inhomogeneous equations of the form

divA(∇u) = f .

Global optimal regularity results in the Euclidean case were obtained in [10]. Quantitative
interior regularity estimates in the anisotropic case have been recently obtained in [1] and
their generalization to global regularity estimates is in progress.

3 Asymptotic expansion and the solvability

This section is devoted to the study of problem (1.2)–(1.3). We first show that the prescribed
logarithmic behavior (1.3) can be improved to a precise asymptotic expansion near infinity,
by using scaling arguments and comparison principle together with a Liouville-type result
(Lemma 3.2 below). Thanks to such improved asymptotics, we prove the existence and
uniqueness of weak solutions to problem (1.2)–(1.3).

Proposition 3.1 Let �, H and H0 be as in Theorem 1.2 and let � ⊂ R
N be a bounded

domain. Let u be a weak solution to problem (1.2)–(1.3). Then there exist γ > 0 and β ∈ R

such that

lim
H0(x)→∞ (u(x) − γ ln H0(x)) = β, (3.1)

and

lim
H0(x)→∞ H0(x)H(∇(u − γ ln H0(x))) = 0. (3.2)
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Proof Let R0 > 1 be such that � ⊂ B H0
R0

:= B H0
R0

(0) and let

u R(x) = u(Rx)

ln R
, for x ∈ �\B H0

R0
R

.

Then
⎧
⎨

⎩

�H
N u R = 0 in �\B H0

R0
R

,

〈a(∇u R), ν〉 = 0 on ∂�\B H0
R0
R

.

From the condition (1.3) and by using 1-homogeneity of H0, we have

|u R(x)| ≤ d

(

1 + | ln H0(x)|
ln R

)

,

and in particular u R(x) is bounded in every compact subset of �\{0}, uniformly in R. From
regularity theory for quasilinear PDEs [22, 48, 51], we deduce that u R(x) is uniformly
bounded in C1,α

loc (�) ∩ W 1,N
loc (�\{0})4 with respect to R. Hence, by Ascoli–Arzelà theorem

and a diagonal process, u R j → v in C1
loc(�) and u R j ⇀v in W 1,N

loc (�\{0}) along a sequence
R j → ∞, where v ∈ W 1,N

loc (�\{0}) ∩ C1,α
loc (�). Moreover, v ∈ L∞(�) and it satisfies

{
�H

N v = 0 in �,

〈a(∇v), ν〉 = 0 on ∂�\{0}.
By Lemma 3.2 below, v ≡ γ for some constant γ > 0.

We next show that

u(x) − γ ln H0(x) ∈ L∞(�\B H0
R0

). (3.3)

For ε > 0, let

ūε(x) = (γ + ε) ln H0(x) − (γ + ε) ln R0 + sup
∂ B

H0
R0

u,

uε(x) = (γ − ε) ln H0(x) − (γ − ε) ln R0 + inf
∂ B

H0
R0

u.

Observe that there exists j(ε) ∈ N such that for any j ≥ j(ε) it holds

uε ≤ u ≤ ūε on ∂ B H0
R0

∪ ∂ B H0
R j

.

Since 〈a(∇ ln H0(x)), ν〉 = 〈x, ν〉 = 0 a.e. on ∂� by formula (2.3), by applying Lemma 2.4
in � ∩ (B H0

R j
\B H0

R0
) and letting ε → 0, we thus deduce that

inf
∂ B

H0
R0

u − γ ln R0 ≤ u − γ ln H0(x) ≤ sup
∂ B

H0
R0

u − γ ln R0

in �\B H0
R0

, which implies (3.3).
Now, we prove the asymptotic behaviors at infinity of u and ∇u.
For m > 0, we introduce the function

um(y) := u(my) − γ lnm.

4 Here and in the following, to avoid a misunderstanding, we point out that when � = R
N the regularity of

C1,α
loc (�) needs to be replaced by C1,α

loc (RN \{0}).
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By setting G(x) := u(x) − γ ln H0(x), we also have that

um(y) = γ ln H0(y) + G(my).

Since G(x) ∈ L∞(�\B H0
R0

), um(y) is bounded in every compact subset of �\{0}, uniformly

in m. Similarly as done for u R above, we have that um(y) is uniformly bounded in C1,α
loc (�)∩

W 1,N
loc (�\{0}) with respect to m. Consequently, there is a sequence m j → ∞ such that

um j → u∞ in C1
loc(�) and um j ⇀u∞ in W 1,N

loc (�\{0})
where u∞ satisfies

{
�H

N u∞ = 0 in �,

〈a(∇u∞), ν〉 = 0 on ∂�\{0}.
If we set

G∞(y) := u∞(y) − γ ln H0(y),

then G∞(y) ∈ L∞(�). By applying Lemma 3.2, we thus infer that

G∞ ≡ β

for some constant β ∈ R. This implies that

lim
m j →∞

(
u(m j y) − γ ln H0(m j y)

) = β

in the C1
loc(�) topology. Via Lemma 2.4, we get (3.1).

Moreover, setting Gm(y) := G(my), we have

sup
H0(x)=m

H0(x) |∇ (u(x) − γ ln H0(x))| = sup
H0(y)=1

|∇Gm(y)|. (3.4)

Since Gm j → G∞ in C1
loc(�), then

sup
H0(y)=1

|∇Gm j (y)| → sup
H0(y)=1

|∇G∞(y)| = 0. (3.5)

It follows from (3.4)–(3.5) that

sup
H0(x)=m

H0(x) |∇ (u(x) − γ ln H0(x))| → 0

holds for any sequence m → ∞ up to extracting a subsequence. This implies the validity of
(3.2), thus completing the proof. ��

In the proof of Proposition 3.1, we have used the following rigidity result of Liouville-type.

Lemma 3.2 Let �, H and H0 be as in Theorem 1.2. Let γ ∈ R be a constant. Assume that
G(x) ∈ W 1,N

loc (�\{0}) ∩ L∞(�) and the function γ ln H0(x) + G(x) satisfies
{

�H
N (γ ln H0(x) + G(x)) = 0 in �,

〈a (∇(γ ln H0(x) + G(x))) , ν〉 = 0 on ∂�\{0}.
Then G(x) is a constant function.
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If � = R
N , the homogeneous Neumann boundary condition above is trivially satisfied

and this rigidity result has been shown in the Euclidean case (i.e. H is the Euclidean norm),
referring to [35, Theorem2.2] (see also [25, Lemma 4.3] for an alternative proof). Also, in this
case we mention that the asymptotics (3.2) was stated in [35, Remark 1.5] for N -harmonic
functions. Since the argument in [35] relies on the Kelvin transform, which is, however, not
helpful neither for cones nor for anisotropic equations, we shall prove Lemma 3.2 by adapting
the one given in [25] to the conical-anisotropic setting, which is based on appropriate cut-off
functions.

Proof of Lemma 3.2 For simplicity, we set

A(x) := γ ln H0(x) + G(x).

It holds that

− �H
N A + �H

N (γ ln H0(x)) = 0 in �. (3.6)

Let η be a cut-off with compact support in R
N \{0}. Testing (3.6) with ηN G yields

I :=
∫

�

ηN 〈a(∇ A) − a(∇(γ ln H0(x))),∇G〉 dx

= −N
∫

�

ηN−1G 〈a(∇ A) − a(∇(γ ln H0(x))),∇η〉 dx := I I ,

where we used the fact that

〈a(∇ A), ν〉 = 〈a(∇(γ ln H0(x))), ν〉 = 0, on ∂�\{0}.
By (2.5) and (2.6), we get that

I ≥ c1

∫

�

ηN |∇G|N dx, (3.7)

and

I I ≤ C N‖G‖L∞
∫

�

ηN−1
(

|∇G|N−1 + |∇G|
|x |N−2

)

|∇η| dx

≤ c1
2

∫

�

ηN |∇G|N dx + C
∫

�

(

|∇η|N + |∇η| N
N−1

|x | N (N−2)
N−1

)

dx . (3.8)

By combining (3.7) and (3.8), we thus obtain

∫

�

ηN |∇G|N dx ≤ C
∫

�

(

|∇η|N + |∇η| N
N−1

|x | N (N−2)
N−1

)

dx . (3.9)

For 0 < δ < 1, we now choose η as

η(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if |x | ≤ δ2,

− ln |x |−2 ln δ
ln δ

if δ2 ≤ |x | ≤ δ,

1 if δ ≤ |x | ≤ 1
δ
,

ln |x |+2 ln δ
ln δ

if 1
δ

≤ |x | ≤ 1
δ2

,

0 if |x | ≥ 1
δ2

.

After a direct computation, one has that
∫

RN
|∇η|N dx = CN

| ln δ|N−1 → 0
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and
∫

RN

|∇η| N
N−1

|x | N (N−2)
N−1

dx = CN

| ln δ| 1
N−1

→ 0

as δ → 0, where CN := HN−1(SN−1). Consequently, letting δ → 0 in (3.9), we deduce
that

∫

�

|∇G|N dx = 0.

This implies that G is constant. ��
Now let us investigate the solvability of problem (1.2)–(1.3). We establish the following

existence and uniqueness theorem for weak solutions.

Theorem 3.3 Let �, �, H, H0 and x0 be the same as in Theorem 1.2. Assume x0 ∈ �.
Problem (1.2)–(1.3) admits a unique weak solution u fulfilling

lim
H0(x)→∞ (u(x) − ln H0(x)) = β (3.10)

for some constant β ∈ R.

Proof Without loss of generality, we prove the assertion in the case that x0 is the origin.
Let R > 1 be such that B H0

R ⊃ �. We first solve the following local problem
⎧
⎪⎪⎨

⎪⎪⎩

�H
N UR = 0 in � ∩ (B H0

R \�),

UR = 0 on � ∩ ∂� := �0,

〈a(UR), ν〉 = 0 on ∂� ∩ (B H0
R \�),

UR = ln R on � ∩ ∂ B H0
R := �R .

(3.11)

To this aim, we consider the minimization problem

inf

{∫

�∩B
H0
R

H N (∇ϕ) dx : ϕ ∈ V

}

(3.12)

where

V :={ϕ ∈ W 1,N (� ∩ B H0
R ) : ϕ = 0 on �R and

ϕ − f =wχ� for some w ∈ W 1,N
0 (B H0

R \�)}.
Here f ∈ C∞

c (B H0
R ) is a given function such that f = 1 in a neighborhood of �.

By the Poincaré inequality and a standard variational argument (see for example [37]),
there is a minimizer vR to (3.12) which solves the Euler–Lagrange equation

⎧
⎪⎪⎨

⎪⎪⎩

�H
N vR = 0 in � ∩ (B H0

R \�),

vR = 1 on �0,

〈a(vR), ν〉 = 0 on ∂� ∩ (B H0
R \�),

vR = 0 on �R .

Thus, we obtain that

UR(x) = (1 − vR(x)) ln R

is the unique solution of (3.11).
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We next show that the limit of UR is a solution to problem (1.2)–(1.3).
Fix R1 > 0 such that B H0

R1
⊂ � and let UR1,R be the solution to (3.11) for � = B H0

R1
. By

Lemma 2.4 it holds

0 ≤ UR(x) ≤ UR1,R for x ∈ � ∩ (B H0
R \�), (3.13)

where

UR1,R = ln R (ln H0(x) − ln R1)

ln R − ln R1
.

Since UR1,R is uniformly bounded in L∞
loc(� ∩ �c) with respect to R, so is the function UR .

Hence, applying classical regularity results for quasilinear PDEs [22, 48, 51] we deduce that
UR is bounded in C1,α

loc (� ∩ �
c
) ∩ W 1,N

loc (� ∩ �c), uniformly in R. By the Ascoli–Arzelà
theorem and a diagonal process one can find a sequence R j → ∞ so that UR j → u in

C1
loc(� ∩ �

c
) and UR j ⇀u in W 1,N

loc (� ∩ �c). Moreover, thanks to the boundary regularity

result in [38], it follows that u ∈ C1,α((� ∩ �
c
) ∪ �0). With these assertions, it turns out

that u is a solution of problem (1.2). It suffices to verify that u satisfies (1.3).
Indeed, fix R2 > 0 such that B H0

R2
⊃ � and let

UR2,R = ln R (ln H0(x) − ln R2)

ln R − ln R2

be the solution to (3.11) for � = B H0
R2

. It holds

UR(x) ≥ UR2,R for x ∈ � ∩ (B H0
R \B H0

R2
). (3.14)

Passing to the limit in (3.13) and (3.14) as R → ∞, we obtain that

ln H0(x) − ln R2 ≤ u(x) ≤ ln H0(x) − ln R1

for any x ∈ �\B H0
R2

. This readily implies

lim
H0(x)→∞

u(x)

ln H0(x)
= 1.

From Proposition 3.1, we deduce that u is a weak solution to problem (1.2) satisfying (3.10).
Finally, let us show the uniqueness of u. Suppose that there is another function v which

solves problem (1.2) and satisfies

lim
H0(x)→∞ (v(x) − ln H0(x)) = β ′

for some β ′ ∈ R. Let βi (i = 1, 2) be such that β1 > β ′ and β2 < β. Consider the function

ũ R(x) = ln R + β1

ln R + β2
u(x).

For sufficiently large R, ũ R ≥ v on �0 and �R . Then by Lemma 2.4,

ũ R ≥ v in � ∩ (B H0
R \�).

Passing to the limit as R → ∞, one has

u ≥ v in � ∩ �
c
.

Similarly, it also holds that u ≤ v in�∩�
c
by taking β1 < β ′ and β2 > β and then applying

Lemma 2.4 again. We thus conclude u = v. This completes the proof. ��
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4 Pohozaev identity

In this section, we derive the following Pohozaev-type identity for weak solutions of
anisotropic p-Laplace equations with p > 1.

Theorem 4.1 Let � ⊂ R
N be a bounded open set with Lipschitz boundary and let H be as

in Theorem 1.2. Assume that p > 1 and u ∈ C1(�) satisfies

div
(
H p−1(∇u)∇ H(∇u)

) = 0 in �. (4.1)

Then

p − N

p

∫

�

H p(∇u) dx

=
∫

∂�

(

H p−1(∇u) 〈x,∇u〉 〈∇ H(∇u), ν〉 − 1

p
H p(∇u) 〈x, ν〉

)

dHN−1.

Recall that ν denotes the unit outer normal to ∂�. In the case that ∂� ∈ C2 and H is the
Euclidean norm, Theorem 4.1 was established in [20, 33] for general p-Laplace equations
of the form −�pu = f , under suitable regularity assumptions on f . In the present paper,
for our applications on homogeneous equations, we generalize the argument as in [33] to the
anisotropic counterparts of p-harmonic functions.

We start with the following local version of the identity.

Lemma 4.2 Let 1 < p < ∞ and � be an open subset of R
N . Assume that u ∈ C1(�)

satisfies (4.1). Then

div

(

〈x,∇u〉 H p−1(∇u)∇ H(∇u) − 1

p
x H p(∇u)

)

= p − N

p
H p(∇u) (4.2)

holds in the sense of distributions in �.

Proof To prove the assertion, we show that
∫

�

(

H p−1(∇u) 〈x,∇u〉 〈∇ H(∇u),∇ϕ〉 − 1

p
H p(∇u) 〈x,∇ϕ〉

)

dx

= N − p

p

∫

�

H p(∇u)ϕ dx (4.3)

holds for every ϕ ∈ C∞
c (�).

From [2, Theorem 4.2] (see also [1]) we have

H p−1(∇u)∇ H(∇u) ∈ W 1,2
loc (�).

For δ > 0 and x ∈ �, let

ψδ(x) = min{δ1−p H p−1(∇u(x)), 1}.
By (2.2), we have H p−1(∇u) = H0(H p−1(∇u)∇ H(∇u)). Since H0 is Lipschitz continuous
on R

N , the chain rule entails

H p−1(∇u) ∈ W 1,2
loc (�).

Thus, ψδ(x) ∈ W 1,2
loc (�) and

ψδ(x) =
{
1 if x ∈ Uδ := {x ∈ � : H(∇u(x)) ≥ δ},
0 if x ∈ Z := {x ∈ � : ∇u(x) = 0}.
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Moreover, for every x ∈ �, ψδ(x) → ψ0(x) as δ → 0, where

ψ0(x) :=
{
1 if x ∈ �\Z ,

0 if x ∈ Z .

Given ϕ ∈ C∞
c (�), we decompose it as the sum

ϕ = ψδϕ + (1 − ψδ)ϕ (4.4)

with ψδϕ ∈ W 1,2
0 (�\Z) and (1 − ψδ)ϕ ∈ W 1,2

0 (�\Uδ). Notice that a direct computation
(see for instance [33, Formulas (34) and (35)]) shows that (4.2) holds pointwise in the domain
�\Z since u ∈ W 2,2

loc (�\Z) by classical regularity theory for elliptic equations. Hence, (4.3)
holds for ψδϕ in place of ϕ. Putting (4.4) into (4.3), the left-hand side becomes

N − p

p

∫

�

H p(∇u)ψδϕ dx +
∫

�

〈
Vp,∇((1 − ψδ)ϕ)

〉
dx (4.5)

where

Vp = Vp(x) := H p−1(∇u) 〈x,∇u〉 ∇ H(∇u) − 1

p
x H p(∇u).

For δ ∈ (0, 1), we estimate
∫

�

〈
Vp,∇((1 − ψδ)ϕ)

〉
dx

≤ C(p)

∫

�\Uδ

H p(∇u)|x | (|∇ϕ| + |ϕ||∇ψδ|) dx

≤ C(p)δ

∫

�\Uδ

δ−p H p(∇u)|x | (δ p−1|∇ϕ| + δ p−1|ϕ||∇ψδ|
)

dx

≤ C(p)δ

∫

�\Uδ

|x | (|∇ϕ| + δ p−1|ϕ||∇ψδ|
)

dx

≤ C(p)δ

∫

�\Uδ

|x | (|∇ϕ| + |ϕ||∇(H p−1(∇u))|) dx .

Thus, by the dominated convergence theorem, we find
∫

�

〈
Vp,∇((1 − ψδ)ϕ)

〉
dx → 0, as δ → 0. (4.6)

Combining (4.5) and (4.6), one deduces that
∫

�

〈
Vp,∇ϕ

〉
dx = lim

δ→0

∫

�

〈
Vp,∇ϕ

〉
dx = N − p

p
lim
δ→0

∫

�

H p(∇u)ψδϕ dx

= N − p

p

∫

�

H p(∇u)ψ0ϕ dx .

= N − p

p

∫

�

H p(∇u)ϕ dx .

This shows (4.3), thus completing the proof. ��
To prove Theorem 4.1, we also need the following generalized version of the divergence

theorem, and it will be used in proving Theorem 1.2 as well in the next section. It is probably
well-known, but we provide a proof for completeness.
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Lemma 4.3 Let � be a bounded open subset of R
N with Lipschitz boundary and let f ∈

L1(�). Assume that a ∈ C0(�; R
N ) satisfies div a = f in the sense of distributions in �.

Then we have
∫

∂�

〈a, ν〉 dHN−1 =
∫

�

f (x) dx .

Proof As in [21, Lemma 2], we let k ≥ 1 and φk : R → [0, 1] be given by

φk(s) =
⎧
⎨

⎩

0 if s ≤ 1
k ,

ks − 1 if 1
k < s < 2

k ,

1 if s ≥ 2
k .

Let ψk ∈ C0,1
c (�) be given by

ψk(x) = φk(dist(x, R
N \�)).

From [7, Sect. 7], we have that −∇ψk → νHN−1�∂� weakly* in the sense of measures on
�, namely,

lim
k→∞

∫

�

〈v,∇ψk〉 dx = −
∫

∂�

〈v, ν〉 dHN−1, ∀v ∈ C0(�; R
N ). (4.7)

Also, limk→∞ ψk = 1 for every x ∈ �. We test div a = f with ψk to get

−
∫

�

〈a,∇ψk〉 dx =
∫

�

f ψk dx . (4.8)

Hence, in view of (4.7), the assertion follows by passing to the limit in (4.8) as k → ∞ and
using the dominated convergence theorem. ��
Proof of Theorem 4.1 Applying Lemma 4.2 together with Lemma 4.3, one can immediately
get the desired integral identity. ��

5 Proof of Theorem 1.2

In this section we prove Theorem 1.2. At the end of the section, we also present the proof of
Proposition 1.1 although it follows easily via Lemmas 2.1 and 2.2.

We start by showing that the solvability of overdetermined problem (1.2)–(1.3) with (1.4)
implies a priori relation between the value of C given in (1.4) and the anisotropic perimeter
of the set � relative to �. Throughout the section, we denote �R := � ∩ ∂ B H0

R for R > 1,

where B H0
R := B H0

R (0).

Lemma 5.1 Let �, �, H and H0 be as in Theorem 1.2. Assume that problem (1.2)–(1.3) with
(1.4) admits a weak solution u satisfying ∇u ∈ L∞

loc(� ∩ �c). Then

(
C

γ

)N−1

= PH (B H0
1 ;�)

PH (�;�)
,

where γ is as in Proposition 3.1.

Proof We can assume γ = 1 (otherwise consider u/γ ). Let R > 1 be such that B H0
R ⊃ �.

The idea is to obtain an integral identity on �0 ∪ �R by applying Lemma 4.3, and then
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let R → ∞ in the identity by exploiting the asymptotic behavior at infinity of u given in
Proposition 3.1. Since u is not C1 up to the whole boundary, we will argue by approximation.

Without loss of generality, we assume that the N -th direction vector en belongs to � and

� = {xN > g(x1, . . . , xN−1)}

for some convex function g : R
N−1 → R. From [6, Proof of Theorem 1.3], there exists a

sequence of smooth convex functions gk : R
N−1 → R with k ∈ N\{0} such that the sets

given by

Fk := {xN > gk(x1, . . . , xN−1)}

belong to � and satisfy that Fk ∩ (B H0
R \�) are Lipschitz (∂ Fk and ∂(B H0

R \�) intersect

transversally) and they approximate�∩(B H0
R \�) in the L1 sense. In particular, the functions

gk fulfill:

(i) gk+1 < gk in B where B ⊂ R
N−1 is a large ball containing the projection of B H0

R \�;
(ii) gk → g uniformly in B;
(iii) |∇gk | is uniformly bounded and ∇gk → ∇g a.e. in B.

Notice that u ∈ C1
(

Fk ∩ (B H0
R \�)

)
. From Lemma 4.3 we have

∫

∂ Fk∩(B
H0
R \�)

〈a(∇u), ν〉 dHN−1 +
∫

Fk∩∂(B
H0
R \�)

〈a(∇u), ν〉 dHN−1 = 0. (5.1)

By Proposition 2.6, we see 〈a(∇u), ν〉 = 0 a.e. on ∂� ∩ (B H0
R \�). Since ∇u ∈ C0(� ∩

(B H0
R \�)) ∩ L∞(� ∩ (B H0

R \�)), by using dominated convergence and properties (ii)–(iii)
we deduce that

∫

∂ Fk∩(B
H0
R \�)

〈a(∇u), ν〉 dHN−1 →
∫

∂�∩(B
H0
R \�)

〈a(∇u), ν〉 dHN−1 = 0. (5.2)

Moreover, by properties (i)–(ii) we obtain

∫

Fk∩∂(B
H0
R \�)

〈a(∇u), ν〉 dHN−1 →
∫

�∩∂(B
H0
R \�)

〈a(∇u), ν〉 dHN−1. (5.3)

Hence, by combining (5.1) with (5.2) and (5.3), we arrive at

∫

�∩∂(B
H0
R \�)

〈a(∇u), ν〉 dHN−1 = 0.

Now, from (3.2), we infer that

∇u = ∇(ln H0(x)) + o(H−1
0 (x))

H(∇u) = H−1
0 (x) + o(H−1

0 (x))

123



An exterior overdetermined problem for Finsler N-Laplacian in… Page 23 of 27 121

uniformly for x ∈ �R , as R → ∞. So that

∫

�0

〈a(∇u), ν〉 dHN−1

=
∫

�R

〈a(∇u), ν〉 dHN−1

=
∫

�R

〈

a(∇u),
∇ H0(x)

|∇ H0(x)|
〉

dHN−1

= R
∫

�R

〈

a(∇u),
∇u + o(H−1

0 (x))

|∇ H0(x)|

〉

dHN−1

= R
∫

�R

H N−1(∇u)
H(∇u) + o(R−1)

|∇ H0(x)| dHN−1

=
∫

�R

(
R−1 + o(R−1)

)N−1
(1 + o(1))H(ν) dHN−1.

Letting R → ∞, we obtain that the right-hand side of the above equality becomes
PH (B H0

1 ;�). On the other hand, since ν = ∇u
|∇u| on �0, the left-hand side is

∫

�0

H N−1(∇u)

〈

∇ H(∇u),
∇u

|∇u|
〉

dHN−1 = C N−1PH (�;�).

Consequently, we get C N−1PH (�;�) = PH (B H0
1 ;�) if γ = 1. Then the conclusion for

general γ > 0 follows easily. This completes the proof. ��

Using Lemma 5.1 and Theorem 4.1, together with Theorem 2.5, we are now in position
to prove Theorem 1.2.

Proof of Theorem 1.2 Let

VN (x) = H N−1(∇u) 〈x,∇u〉 ∇ H(∇u) − 1

N
x H N (∇u).

Notice that 〈VN , ν〉 = 0 a.e. on �1. For any R > 1 such that B H0
R ⊃ �, we aim at applying

Theorem 4.1 to equation (1.2) in � ∩ (B H0
R \�). Due to the lack of regularity of u, we

approximate � ∩ (B H0
R \�) by a sequence of Lipschitz domains Fk ∩ (B H0

R \�) as done in

the proof of Lemma 5.1. Since u ∈ C1
(

Fk ∩ (B H0
R \�)

)
, by applying Theorem 4.1 we get

∫

∂ Fk∩(B
H0
R \�)

〈VN , ν〉 dHN−1 +
∫

Fk∩∂(B
H0
R \�)

〈VN , ν〉 dHN−1 = 0. (5.4)

Furthermore, by arguing as in the proof of Lemma 5.1, we can take the limit of (5.4) as
k → ∞ to deduce that

∫

�0

〈VN , ν〉 dHN−1 −
∫

�R

〈VN , ν〉 dHN−1 = 0. (5.5)
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On the one hand, using the fact that ν = ∇u
|∇u| on �0 and that

∫

�0
〈x, ν〉 = NHN (� ∩ �)

yields
∫

�0

〈VN , ν〉 dHN−1

=
∫

�0

(

H N (∇u) 〈x, ν〉 − H N (∇u)

N
〈x, ν〉

)

dHN−1

= (N − 1)C NHN (� ∩ �).

On the other hand, via Proposition 3.1 we see there exists γ > 0 such that

H(∇u) = γ H−1
0 (x) + o(H−1

0 (x)) and 〈x,∇u〉 = γ + o(1),

uniformly for x ∈ �R , as R → ∞. Similar to the proof of Lemma 5.1, a direct computation
entails

∫

�R

〈VN , ν〉 dHN−1 → γ N (N − 1)

N
PH (B H0

1 ;�),

as R → ∞.
Consequently, from (5.5) we arrive at

C NHN (� ∩ �) = γ N

N
PH (B H0

1 ;�).

By recalling that PH (B H0
1 ;�) = NHN (� ∩ B H0

1 ) (see [6, Formula (1.14)]) and using
Lemma 5.1, we conclude

PH (�;�)

HN (� ∩ �)
N−1

N

= PH (B H0
1 ;�)

HN (� ∩ B H0
1 )

N−1
N

.

That is,�∩� satisfies the equality case ofTheorem2.5. This forces that�∩� = �∩B H0
R (x0)

for some R > 0 and x0 ∈ � as described in the theorem. Then the representation of u and
its uniqueness are concluded from Proposition 1.1. This finishes the proof. ��
Proof of Proposition 1.1 Let u be as in (1.7). First, u = 0 on �0 holds trivially since H0(x −
x0) = R on �0. From Lemma 2.2, we see that u ∈ C2(RN \{x0}) and

∇u = C R
∇ H0(x − x0)

H0(x − x0)
.

By (2.2),

H(∇u) = C R

H0(x − x0)
= C on �0,

that is, the condition (1.4) holds. Moreover, by Lemma 2.1 and (2.2)–(2.3), we get

a(∇u) = (C R)N−1H1−N
0 (x − x0)∇ H(∇ H0(x − x0))

= (C R)N−1H1−N
0 (x − x0)

x − x0
H0(x − x0)

= (C R)N−1 x − x0
H N
0 (x − x0)

.

123



An exterior overdetermined problem for Finsler N-Laplacian in… Page 25 of 27 121

Clearly, 〈a(∇u), ν〉 = 〈x − x0, ν〉 = 0 a.e. on �1. Next, let us verify that u satisfies the
equation (1.2). It follows from Lemma 2.1 that

div (
x − x0

H N
0 (x − x0)

)

= H−N
0 (x − x0)div(x − x0) +

〈
x − x0, (−N )H−N−1

0 ∇ H0(x − x0)
〉

= N H−N
0 (x − x0) − N H−N

0 (x − x0) = 0.

This implies �H
N u = div (a(∇u)) = 0 for x �= x0.

Finally, the uniqueness of u follows from Theorem 3.3. ��
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