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Abstract
We prove that on a closed 3-manifold of constant positive curvature the unit vector fields of
minimum volume are exactly the Hopf vector fields.
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1 Introduction

The seminal paper [7] where the authors show that on the unit S3 the unit vector fields of
minimum volume are Hopf vector fields and no others has served as inspiration of a wide
research work.

Let’s recall that any smooth vector field V on a Riemannianmanifold (M, g) of dimension
n defines an immersion V : M → T M and if we consider the natural metric gS on the tangent
bundle called the Sasaki metric, the n-dimensional volume of the submanifold V (M) ⊂
(T M, gS) is what is known as the volume of the vector field Vol(V ); equivalently the volume
of V is the volume of theRiemannianmanifold (M, V ∗gS). It’s immediate from the definition
of the Sasaki metric that if the volume of the manifold vol(M, g) is finite then it is a lower
bound of the volume functional; the equality holds if and only if V is a parallel vector field.
For odd-dimensional spheres, probably the simplest manifolds admitting unit vector fields
but not parallel ones, the question of finding the unit vector fields of minimum volume (or
at least the infimum if the bound is not attained) is only solved in the case of S3(1) the unit
sphere of dimension 3 ( [7]); for greater dimensional spheres the problem is open although
some advances have been obtained concerning the lower bounds in [3] and on the first and
second variation of the volume functional in [5], [6] and [1].

In [7] the main ingredient of the proof was the use of a calibration in the unit tangent
manifold T 1S3(1) that calibrates exactly the images of Hopf vector fields. The calibration
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was obtained taking into account that (T 1S3(1), gS) is isometric to the Stiefel manifold of
orthonormal 2-frames ofR4 with the homogeneous metric resulting from its diffeomorphism
with SO(4)/SO(2). It’s worth recalling that unit tangent bundle T 1S3(c) with the Sasaki
metric for c �= 1 is not isometric to the standard Stiefel manifold and the proof in [7] is not
valid.

The aim of this paper is to show that a unit vector field V on the sphere S3(c) of curvature
c > 0 minimises the volume if and only if V is a Hopf vector field. The proof we provide is
not an extension of the one in [7] but we rather use a completely different method. We obtain
here that Hopf vector fields realise the minimum of the volume of unit vector fields from a
result in [2] relating, on any 3-dimensional closed manifold, the volume of vector fields and
the Ricci curvature tensor. Our proof of the more delicate part, namely the rigidity result, is
based on the characterisation of the unit vector fields that are critical points of the volume
functional given in [6] and the properties of the first two eigenvalues of the rough Laplacian
acting on vector fields.

The rigidity of Hopf vector fields as volume minimisers among unit vector fields is
extended to any complete three dimensional manifold of positive constant curvature; in fact,
the proof is much simpler for constant curvature spaces different from the spheres themselves
as can be seen in our main result, Theorem 9.

2 Preliminaries

The Sasaki metric of the tangent bundle of a Riemannian manifold (M, g) will be denoted
by gS and, for (x, v) ∈ T M , ξ1, ξ2 ∈ T(x,v)T M , it is defined by

gS(ξ1, ξ2) = g(π∗(ξ1), π∗(ξ2)) + g(κ(ξ1), κ(ξ2)),

where κ : T (T M) → T M is the connectionmap corresponding to the Levi Civita connection
of g. An element ξ ∈ T(x,v)T M is said to be vertical ifπ∗(ξ) = 0 and it is said to be horizontal
if κ(ξ) = 0.

To each smooth vector field X on M we can associate two vector fields on T M , a vertical
one denoted by Xver and the horizontal lift Xhor . See for example [10] pg. 53 for more
details.

Any smooth vector field V : M → (T M, gS) determines an embedded submanifold and
by the definition of the vertical and horizontal lifts we obtain that for all vector field Y and
p ∈ M

V∗|p(Y (p)) = Y hor (V (p)) + (∇Y V )ver (V (p)) (1)

where ∇ is the covariant derivative of the Levi Civita connection of g.

Definition 1 The volume of a vector field V ∈ �∞(T M) is the n-dimensional volume of
V (M), or equivalently the volume of M endowed with the pullback metric V ∗gS and will
be denoted Vol(V ).

The volume is expressed in terms of the endomorphism field LV relating the two metrics g
and V ∗gS by V ∗gS(X , Y ) = g(LV (X), Y ). Using (1),

V ∗gS(X , Y ) = g(X , Y ) + g(∇XV ,∇Y V ) = g(X , Y ) + g(∇V (X),∇V (Y ))
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and then LV = Id + (∇V )t ◦ ∇V . If we denote fV = √
det LV then the volume functional

Vol : �∞(T M) → R ∪ {+∞} is given by

Vol(V ) =
∫
M

fV dvg. (2)

The covariant derivative acts on sections of a tensor bundleπ : P → M over aRiemannian
manifold as a differential operator∇ : �∞(P) → �∞(P⊗T ∗M) given by (∇σ)(X) = ∇Xσ

for σ ∈ �∞(P) and X ∈ �∞(T M). The divergence operator ∇∗ : �∞(P ⊗ T ∗M) →
�∞(P) is a tensor contraction of the covariant derivative that for K ∈ �∞(P ⊗ T ∗M) is
expressed in an orthonormal local frame {Ei }ni=1 as

∇∗K = −
n∑

i=1

(∇Ei K )Ei = −
n∑

i=1

{
∇Ei K (Ei ) − K (∇Ei Ei )

}
.

In [6] we have computed the condition for a vector field to be a critical point of the volume
and the more interesting condition of being critical of the volume functional restricted to unit
vector fields, which is connected with the question raised in [7] of finding the minimisers.
The next proposition summarises our results included in Propositions 4 and 6 of [6] and in
Theorem 16 and Proposition 17 of [4].

Proposition 2 Let V be a smooth unit vector field on a Riemannan manifold (M, g), let’s
denote by DV the one dimensional subbundle of T M defined by V and by KV the endomor-
phism field KV = fV∇V ◦ L−1

V .

1. V is a critical point of the volume functional restricted to unit vector fields if and only if
∇∗KV ∈ DV . This condition can be also written as ∇∗KV = 〈KV ,∇V 〉V = tr((∇V )t ◦
KV )V . Such a unit vector field will be called minimal.

2. If V is a critical point of the volume of vector fields then it is also a critical point of
the volume for general immersions of M into T 1M and therefore V → (T 1M, gS) is a
minimal submanifold.

3. If V is a critical point of the volume the curvature tensor R verifies

n∑
i=1

{
R((∇V )Ẽi , V , Ẽi , Y ) + g(∇Ẽi

Ẽi − ∇̃Ẽi
Ẽi , Y )

}
= 0 (3)

for all vector field Y , where ∇̃ is the covariant derivative of the Levi-Civita connection of
g̃ = V ∗gS and {Ẽi }ni=1 is a g̃-orthonormal local frame.

It is well known that Hopf fibration π : S2m+1 −→ CPm determines a foliation of S2m+1

by great circles and that a unit vector field can be chosen as a generator of this distribution.
It is given by H = J N where N represents the unit normal to the sphere and J the usual
complex structure on R2m+2. H is the standard Hopf vector field

Definition 3 A Hopf vector field will be any vector field in S2m+1 obtained as J N for J a
complex structure on R2m+2, that is J ∈ End(R2m+2) such that J t ◦ J = Id, J 2 = −Id.

A useful characterisation is that Hopf vector fields of S2m+1 are exactly the unit Killing
vector fields; more precisely

Proposition 4 A unit vector field V on the sphere S2m+1(c) of radius 1√
c
is a Killing vector

field if and only if V = J N for J a complex structure on R2m+2.
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Proof Let’s recall that a vector field V is Killing if it verifies one of the following equivalente
conditions:

• If {ϕt }t∈R is the flow of V , all the ϕt are isometries.
• The Lie derivative verifies LV g = 0.
• The covariant derivative ∇V is skewsymmetric.

If V = J N then ∇V = √
c J on D⊥

V and ∇V = 0 on DV and then ∇V is skewsymmetric.
Conversely, if V is a unit Killing vector field we can define the map J : R2m+2 → R2m+2

by

J (p) = ‖p‖ V
( 1

‖p‖√c
p
)

for p �= 0 and J (0) = 0 that clearly verifies J N = V . It’s easy to check that for V Killing J
is linear since the flow of V is given by isometries and then ϕt is the restriction to the sphere
of some ϕ̃t ∈ O(2m + 2); the linear map J is in fact an isometry because V is unit and J is
skwesymmetric since V is tangent to the sphere and then 〈J (p), p〉 = 0. Consequently, J is
a complex structure of R2m+2 as we wanted to show.

Any complete manifold M of constant positive curvature c is isometric to the quotient
of the sphere Sn(c) by a subgroup G ⊂ O(n + 1) of isometries without fixed points; in
particular, G ⊂ U (m + 1) if n = 2m + 1. This is a classical result that can be found in
[11] (Theorem 7.2.18). Vector fields of M are the projections of invariant vector fields on the
sphere

�∞
G (T S2m+1(c)) = {X ∈ �∞(T S2m+1(c)) ; γ ◦ X = X ◦ γ ∀γ ∈ G}.

In view of Proposition 4 we can define Hopf vector fields on these manifolds as follows ��
Definition 5 A vector field V on a complete manifold M of dimension 2m + 1 and constant
positive curvature c will be said a Hopf vector field if one of the two equivalent conditions
is verified:

• V is a unit Killing vector field.
• V is the projection of a Hopf vector field of S2m+1(c)

In the case of the projective spaceG = Z2 all the Hopf vector fields project to the quotient
but for general G we know that at least the set is not void since if J is the usual complex
structure on R2m+2 the standard Hopf vector field H = J N is G-invariant due to the fact
that G ⊂ U (m + 1).

In [6] we have shown

Proposition 6 Every unit Killing vector field V on a manifold M of constant curvature c is
minimal and its volume is Vol(V ) = (1 + c)(n−1)/2vol(M).

3 Characterisation of Hopf vector fields as theminimisers of the
volume in the three dimensional case

First let’s show that (1 + c)vol(M) is a lower bound of the volume of unit vector fields not
only for 3-spaces of constant curvature c but in general for Einstein 3-dimensional manifolds.
Although the result is true independently of the sign of c, it’s only relevant for c > 0 as we
know that always Vol(V ) ≥ vol(M). The main ingredient is Theorem 3 of [2] but we give
the complete proof to establish some notation that will be used in the sequel.
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Proposition 7 Let M be a compact 3-manifold without boundary with an Einstein metric of
Ricci curvature 2c > 0, then the volume functional verifies Vol(V ) ≥ (1 + c)vol(M) for
every unit vector field V .

Proof Let V be a unit vector field on M , we will denote by DV the set of sections of the
one-dimensional subbundle of T M determined by V . Since g(∇XV , V ) = 0 for all vector
field X , we can define P as the restriction of ∇V to the subbundle D⊥

V . If for a matrix A we
represent by σi (A) the coefficients of the characteristic polynomial, we have that

σ3((∇V )t ◦ ∇V ) = det((∇V )t ◦ ∇V ) = det(∇V )2 = 0

σ2((∇V )t ◦ ∇V ) = σ2(P
t ◦ P)

+
∑
j

(
‖∇V V ‖2‖∇E j V ‖2 − g(∇V V ,∇E j V )2

)

σ1((∇V )t ◦ ∇V ) = σ1(P
t ◦ P) + ‖∇V V ‖2

where {E1, E2} is a local orthonormal frame of D⊥
V . Then

det(LV ) = σ2((∇V )t ◦ ∇V ) + σ1((∇V )t ◦ ∇V ) + 1

≥ σ2(P
t ◦ P) + σ1(P

t ◦ P) + 1 = det(Id + Pt ◦ P),

where equality holds if and only if ∇V V = 0. Let μ2
1, μ2

2 with μ1 ≥ 0, μ2 ≥ 0 be the
eigenvalues of the positive semidefinite symmetric endomorphism Pt ◦ P . By definition
det(Id + Pt ◦ P) = μ2

1μ
2
2 + μ2

1 + μ2
2 + 1 and then det(Id + Pt ◦ P) ≥ (1 + μ1μ2)

2 with
equality if and only if μ1 = μ2. Finally

fV = √
det(LV ) ≥ (1 + μ1μ2) ≥ 1 + σ2(P) = 1 + σ2(∇V )

where the second inequality is an equality if and only if σ2(P) = det P ≥ 0. Now the lower
bound of the volume is a consequence of the integral formula, see for example [9] pg.170,∫

M
ρ(X , X)dvg = 2

∫
M

σ2(∇X)dvg

where X is any vector field and ρ is the Ricci curvature. ��
Proposition 8 For the sphere S2m+1(c) the first eigenvalue of the rough Laplacian acting on
vector fields is λ∗

1 = c with E(λ∗
1) = {grad(〈a, N 〉) ; a ∈ R2m+2} as eigenspace; the second

eigenvalue is λ∗
2 = 2mc with eigenspace E(λ∗

2) being the space of Killing vector fields. For a
constant positive curvature space S2m+1(c)/G different from the sphere the first eigenvalue
is 2mc with the Killing vector fields as eigenvectors.

Proof For the spheres, the spectrum of the Hodge Laplacian acting on p-forms is well known
(see [8] for example) and in particular for 1-forms the first eigenvalue is λ1 = (2m+1)c and
the corresponding eigenspace is given by the differential of the eigenfunctions fa = 〈a, N 〉
corresponding to the first non zero eigenvalue of the Laplacian acting on functions

E(λ1) = {d fa ; a ∈ R2m+2 a �= 0}.
The second eigenvalue is λ2 = 4mc and the eigenspace E(λ2) is the space of Killing 1-forms.

For M = S2m+1(c)/G, G �= {Id}, the spectrum of the Hodge Laplacian is included in the
spectrumof the sphere and consists on thoseλi such that the space ofG-invariant eigenvectors
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is different from {0} and then the corresponding eigenspace consists in the projections of the
elements of

EG(λi ) = {ω ∈ E(λi ) ; γ ∗ω = ω ∀γ ∈ G}.
In particular, EG(λ1) = {0} since if ω = d fa would be G-invariant then ∀γ ∈ G we will

have d( fa ◦ γ ) = γ ∗d fa = d fa and then

d fa = 1

#(G)
d
( ∑

γ∈G
fa ◦ γ

)
.

But for every p ∈ S2m+1(c),
∑
γ∈G

fa(γ (p)) = √
c 〈a,

∑
γ∈G

γ (p)〉 = 0

since
∑

γ∈G γ (p) is a fixed point for the action of G which is fixed point free.

On the contrary, EG(λ2) �= {0} since, as we have pointed out in the previous section, the
standard Hopf vector field H is G-invariant and then the 1-form associated with H by the
metric ω(X) = g(H , X) is an element of EG(λ2); so 4mc belongs to the spectrum and in
that case it is the lowest eigenvalue.

To conclude we use the relation of the Hodge Laplacian � and the rough Laplacian ∇∗∇
as can be seen for instance in [9] page 161

�α = ∇∗∇α + 2mcα

and the correspondence between 1-forms and vector fields given by the metric g. ��
Remark When M = RPn(c), it’s easy to see that every Killing vector field of Sn(c) is Z2-
invariant and then 2(n − 1)c has the same multiplicity in the spectra of both the sphere and
the projective space.

Now we are going to show the main result of the paper

Theorem 9 The only unit vector fields minimising the volume functional on a closed 3-
manifold of constant positive curvature are the Hopf vector fields.

Proof From Propositions 6 and 7 Hopf vector fields minimise the volume functional. Con-
versely, let V be a unit vector field that realises the lower bound Vol(V ) = (1 + c)vol(M)

that in turn implies, as we have seen in Proposition 7, that ∇V V = 0, Pt ◦ P = μ2Id ,
det P ≥ 0, then ∫

M
(1 + μ2)dvg = Vol(V ) = (1 + c)vol(M)

and ∫
M

‖∇V ‖2dvg =
∫
M
2μ2dvg = 2c vol(M) = 2c

∫
M

‖V ‖2dvg.

By Proposition 8, if M is not the sphere by Raigleigh formula V must be an eigenvector
corresponding to the first eigenvalue of the rough Laplacian acting on vector fields and then
a Killing vector field and since it’s unit by Proposition 4, V is a Hopf vector field.
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The case of the sphere ismore complicated since to conclude that V must be an eigenvector
corresponding to the second eigenvalue of the roughLaplacianwe need to show that the vector
field V must be L2-orthogonal to the vector fields grad fa with fa = 〈a, N 〉 for a ∈ R4,
a �= 0, that are the eigenvectors of the first eigenvalue of the rough Laplacian described in
Proposition 8.

Being aminimumof the volume functional,V must beminimal and then to verify∇∗KV =
〈KV ,∇V 〉V (Proposition 2, point 1). Under the conditions on∇V above it is easy to see that
KV = ∇V and so the minimality condition can be written as

∇∗∇V = ‖∇V ‖2V = 2μ2V . (4)

Therefore we have∫
S3(c)

g(V , grad fa)dvg = 1

c

∫
S3(c)

g(V ,∇∗∇grad fa)dvg

= 1

c

∫
S3(c)

g(∇∗∇V , grad fa)dvg

= 2

c

∫
S3(c)

μ2g(V , grad fa)dvg. (5)

On the other hand, by point 3 of Proposition 2,

3∑
i=1

{
c g(∇Ẽi

V , Ẽi )V + ∇Ẽi
Ẽi − ∇̃Ẽi

Ẽi

}
= 0. (6)

and since∇V V = 0, Pt ◦P = μ2Id we have that g̃ = g onDV and g̃ = (1+μ2)g onD⊥
V . So

if {E1, E2, V } is an g-orthonormal local frame we can construct a local frame orthonormal
with respect to the metric g̃ just by taking {Ẽ1, Ẽ2, V } where Ẽi = 1√

1+μ2
Ei .

By Koszul formula, for i = 1, 2

g̃(∇̃V V , Ẽi ) = g̃([Ẽi , V ], V ) = g([Ẽi , V ], V ) = 0

and then ∇̃V V = 0 and expression (6) can be written

c

1 + μ2 divV V + 1

1 + μ2

2∑
j=1

(
∇E j E j − ∇̃E j E j

)
= 0 (7)

If E = E j , j = 1, 2 and Z is any vector field, again by Koszul formula

g(∇E E − ∇̃E E, Z) = g(∇E E, Z) − g̃(∇̃E E, L−1
V (Z))

= Eg(E, Z) + g([Z , E], E) − Eg̃(E, L−1
V (Z))

+1

2
L−1
V (Z)g̃(E, E) − g̃([L−1

V (Z), E], E)

= −g(∇E Z , E) + g(∇E L
−1
V (Z), LV (E))

+1

2
L−1
V (Z)(1 + μ2).

In particular for Z = V we obtain

g(∇E E − ∇̃E E, V ) = −g(∇EV , E) + g(∇EV , (1 + μ2)E) + 1

2
V (1 + μ2) (8)
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that used in (7) jointly with the equality div( f Z) = f divZ + Z( f ) gives

0 = c divV +
2∑
j=1

(
μ2g(∇E j V , E j ) + 1

2
V (1 + μ2)

)

= (c + μ2)divV + V (1 + μ2) = div((c + μ2)V )

and consequently∫
S3(c)

(c + μ2)g(V , grad fa)dvg =
∫
S3(c)

(c + μ2)V ( fa)dvg = 0

which is in contradiction with (5), unless
∫
S3(c) g(V , grad fa)dvg = 0 which concludes the

proof. ��
Remark In the Theorem above the condition of completeness of M is crucial since the
unit vector fields V = (1/‖grad fa‖)grad fa that are tangent to the radial geodesics issuing
from the point p = (1/

√
c‖a‖)a have the same volume as the Hopf vector fields for the 3

dimensional spheres but they are only defined in the sphere minus the two antipodal points
{p,−p}
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