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Abstract
We study a free boundary isometric embedding problem for abstract Riemannian two-
manifolds with the topology of the disc. Under the assumption of positive Gauss curvature
and geodesic curvature of the boundary being equal to one, we show that every such disc
may be isometrically embedded into the Euclidean three-space R

3 such that the image of
the boundary meets the unit sphere S

2 orthogonally. We also show that the embedding is
unique up to rotations and reflections through planes containing the origin. Finally, we define
a new Brown-York type quasi-local mass for certain free boundary surfaces and discuss its
positivity.

Mathematics Subject Classification 35J55 · 53A05

1 Introduction

It is a fundamental problem in differential geometry to understandwhich abstract Riemannian
manifolds can be realised as embedded submanifolds of a Euclidean space. In a seminal work,
J. Nash showed that every sufficiently smooth Riemannian manifold can be isometrically
embedded in a higher dimensional Euclidean space, see [27]. A similar result was later
obtained by M. Günther, see [11]. While these results are of broad generality, they give little
information about the dimension of the ambient Euclidean space and the extrinsic geometry
of the embedded manifold.

By contrast, stronger results can be obtained in more restrictive settings. In 1916, H. Weyl
conjectured that every sufficiently smooth Riemannian metric h defined on the unit sphere S2

with positive Gauss curvature Kh may be realised as a convex surface in R
3. This problem,

which is now known as the Weyl problem, was solved by H. Lewy in 1938 if h is analytic,
see [18], and in a landmark paper by L. Nirenberg if h is of class C4, see [28].

As had been proposed by H. Weyl, L. Nirenberg used the continuity method in his proof.
Namely, he constructed a smooth one-parameter family of positive curvature metrics ht ,
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where t ∈ [0, 1], such that h1 equals h and h0 is the round metric. The round metric is
realised by the round sphere S2 ⊂ R

3 and it thus suffices to show that the set of points t for
which the Weyl problem can be solved is open and closed in [0, 1]. In order to show that
this set is open, L. Nirenberg used a fix point argument which is based on proving existence
and estimates for a linearised equation. To show that the set is closed, he established a global
C2-estimate for solutions of fully non-linear equations of Monge-Ampere type. Here, the
positivity of the Gauss curvature translates into ellipticity of the equation. We remark that
a similar result was independently obtained by A. Pogorelov using different techniques, see
[30].

L. Nirenberg’s result has been generalized subsequently in various ways. In the degenerate
case Kh ≥ 0, P. Guan and Y. Li as well as J. Hong and C. Zuily, showed that there exists a
C1,1-embedding into the Euclidean space, see [8,17]. Regarding the regularity required on
the metric h, E. Heinz established an interor C2-estimate which allowed him to relax the
regularity assumption in [28] to h being of class C3, see [12,13]. Using similar techniques,
F. Schulz further weakened the assumption to h being of class C2,α for some α ∈ (0, 1),
see [32]. We note that the isometric embedding problem for more general target manifolds,
particularly with warped product metrics, has been studied. We refer to the works of P. Guan
and S. Lu, see [9], S. Lu, see [22], as well as C. Li and Z. Wang, see [23].

A natural extension of theWeyl problem consists in the consideration of isometric embed-
ding problems for manifolds with boundary. In [16], J. Hong considered Riemannian metrics
on the disc (D, h) with both positive Gauss curvature Kh and positive geodesic curvature of
the boundary kh and showed that (D, h) can be isometrically embedded into R

3 such that
the image of the boundary is contained in a half space. In [10], B. Guan studied a similar
embedding problem in theMinkowski space. These boundary value problems are reminiscent
of the classical free boundary problem for minimal surfaces, see for instance [29]. However,
in the case of minimal surfaces, the variational principle forces the contact angle to be π/2.
By contrast, there is no additional information in [16] about the contact angle between the
embedding of ∂D and the supporting half-space. In order to make this distinction precise, we
call surfaces that meet a supporting surface at a contact angle of π/2 free boundary surfaces
(with respect to the supporting surface). Moreover, we call geometric boundary problems
which require the solution to be a free boundary surface free boundary problems.

If the supporting surface is a half-space, free boundary problems canoften be solved using a
reflection argument. Consequently, it is more interesting to consider more general supporting
surfaces, the most simple non-trivial example being the unit sphere. In recent years, there
has been considerable activity in the study of free boundary problems with respect to the
unit sphere. For example, A. Fraser and R. Schoen studied free boundary minimal surfaces
in the unit ball, see [5–7]. B. Lambert and J. Scheuer studied the free boundary inverse
mean curvature flow and derived a geometric inequality for convex free boundary surfaces,
see [20,21] and also [37]. G. Wang and C. Xia proved the uniqueness of stable capillary
surfaces in the unit ball, see [40], while J. Scheuer, G. Wang and C. Xia proved certain
Alexandrov-Fenchel type inequalities, see [35].

In this paper, we study a free boundary isometric embedding problem with respect to the
unit sphere. More precisely, we prove the following theorem.

Theorem 1.1 Let k ≥ 4, α ∈ (0, 1) and h ∈ Ck,α(D̄,Sym(R2)) be a Riemannian metric on
the closed unit disc D̄ with positive Gauss curvature Kh and geodesic curvature kh along
∂D equal to one. Then there exists an isometric embedding

F : D̄ → {x ∈ R
3 : |x | ≤ 1}
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of class Ck+1,α such that F(∂D) ⊂ S
2 and F(D̄) meets S2 orthogonally along F(∂D). This

embedding is unique up to rotations and reflections through planes that contain the origin.

Remark As pointed out by the anonymous referee, the proof of Theorem 1.1 still works if h
is only of class C3,1. In this case, the presented argument shows that F is of class C4,β for
every β ∈ (0, 1).

One may check that the condition kh = 1 is necessary. However, we expect that the
regularity assumption and the condition Kh > 0 may be weakened in a similar way as for
the classical Weyl problem. Before we give an overview of the proof, we provide some
motivation to study this problem besides its intrinsic geometric interest.

In general relativity, the resolution of the classical Weyl problem is used to define the
so-called Brown-York mass, see [1]. Let (M, g) be a compact Riemannian three-manifold
with boundary ∂M and assume that ∂M is a convex sphere. J. Nirenberg’s theorem implies
that ∂M may be isometrically embedded into R3. We denote the mean curvature of ∂M as a
subset of R3 by H̄ and the mean curvature of ∂M as a subset of M by H . The Brown York
mass is then defined to be

mBY (M) = 1

8π

∫
∂M

(H̄ − H) dvolh

where h is the metric of ∂M . It was already proved by S. Cohn-Vossen in 1927 that an
isometric embedding of a convex surface is unique up to rigid motions provided it exists,
see [2]. It follows that the Brown-York mass is well-defined. Under the assumption that ∂M
is strictly mean convex and that (M, g) satisfies the dominant energy condition R ≥ 0,
where R denotes the scalar curvature of (M, g), Y. Shi and L.-F. Tam proved in [33] that the
Brown-York mass is non-negative and that equality holds precisely if (M, g) is isometric to a
smooth domain in R3. In fact, they proved that the positive mass theorem for asymptotically
flat manifolds is equivalent to the positivity of the Brown-York mass of every compact and
convex domain. A weaker inequality, which still implies the positive mass theorem, was
proven by O. Hijazi and S. Montiel using spinorial methods, see [15]. We would also like to
mention that C.-C. Liu and S.-T. Yau introduced a quasi-local mass in the space-time case
and proved positivity thereof, see [24,25]. Their mass was later on generalized and further
studied by M.-T. Wang and S.-T. Yau, see [41,42]. Moreover, S. Lu and P. Miao derived a
quasi-local mass type inequality in the Schwarzschild space, see [19].

In the setting of free boundary surfaces, we instead consider a compact three-manifold
(M, g) with a non-smooth boundary ∂M = S ∪ �. Here, S and � are compact smooth
surfaces meeting orthogonally along their common boundary ∂� = ∂S. We assume that
∂� is strictly mean convex, has positive Gauss curvature and geodesic curvature along the
boundary equal to one. The latter requirement is for instance satisfied if S is a totally umbilical
surface with mean curvature H(S) equal to two. We may then isometrically embed � into
R
3 with free boundary in the unit sphere. It is natural to ask if we can expect a geometric

inequality in the spirit of [33] to hold on the free boundary surface �. In Appendix B, we
provide some numerical evidence that this might be indeed the case. The condition H(S) ≥ 2
in the following conjecture is natural in the context of positive mass type theorems, see for
instance [26].

Conjecture 1.2 Let (M, g) be a manifold with boundary ∂M = S ∪ � where S and � are
smooth discs meeting orthogonally along ∂� = ∂S. Assume that � is strictly mean convex,
has positive Gauss curvature as well as geodesic curvature along ∂� equal to one and that
R ≥ 0 on M and H(S) ≥ 2 on S. Then there holds
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∫
�

(H̄ − H) dvolh ≥ 0.

Equality holds if and only if (M, g) is isometric to a domain in R
3 and if the isometry maps

S to a subset of S2.

Apositive answer to this conjecture wouldmean that in certain cases, mass can be detected
with only incomplete information about the geometry of the boundary of the domain under
consideration. It turns out that proving such an inequality is not straightforward. On the one
hand, there does not seem to be an obvious approach to adapt spinorialmethods such as in [15]
to the free boundary setting. On the other hand, arguing as in [33], we observe that a positive
answer to the conjecture is equivalent to a positive mass type theorem for asymptotically flat
manifolds which are modeled on a solid cone.

We now describe the proof of Theorem 1.1. As in [28], we use the continuity method
and smoothly connect the metric h to the metric h0 of the spherical cap whose boundary has
azimuthal angle π/4. In particular, the free boundary isometric embedding problem can be
solved for h0. We then need to show that the solution space is open and closed. Contrary to
the argument by Nirenberg, the non-linearity of the boundary condition does not allow us to
use a fixed point argument. We instead use a power series of maps, as H. Weyl had initially
proposed, where the maps are obtained as solutions of a linearised first-order system. This
systemwas previously studied byC. Li and Z.Wang in [23]. Another difficulty arises from the
fact that the prescribed contact angle makes the problem seemingly overdetermined. We thus
solve the linearised problem without prescribing the contact angle and recover the additional
boundary condition from the constancy of the geodesic curvature and a lengthy algebraic
computation. Regarding the convergence of the power series, we prove a-priori estimates
using the Nirenberg trick. Here, it turns out that a recurrence relation for the Catalan numbers
plays an important part. In order to show that the solution space is closed, we observe that the
Codazzi equations imply a certain algebraic structure for the normal derivative of the mean
curvature at the boundary. This allows us to use the maximum principle to prove a global
C2-estimate for every isometric embedding.

The rest of this paper is organized as follows. In Sect. 2, we define the so-called solution
space and show that the space of metrics on D with positive Gauss curvature and geodesic
curvature along ∂D being equal to 1 is path-connected. In Sect. 3, we study the linearised
problem and show that the solution space is open. In Sect. 4, we prove a global curvature
estimate and show that the solution space is closed. In Sect. 5, we prove Theorem 1.1.

2 Basic properties of the solution space

Let α ∈ (0, 1) and fix an integer k ≥ 2. Let D ⊂ R
2 be the unit two-disc and consider a

Ck,α-Riemannian metric h defined on the closure D̄. We assume that the Gauss curvature
Kh is positive and that the geodesic curvature of ∂D satisfies kh = 1.

We would like to find a map F ∈ Ck+1,α(D̄,R3) which isometrically embeds the Rie-
mannian manifold (D̄, g) into R

3 such that the boundary F(∂D) meets the unit sphere
S
2 orthogonally. To this end, we consider the space Gk,α of all Riemannian metrics

h̃ ∈ Ck,α(D̄,Sym(R2)with positive Gauss curvature and geodesic curvature along ∂D equal
to one. Up to a diffeomorphism of D̄, we may write the metric h̃ in isothermal coordinates,
see [3]. This means that there exists a positive function Ẽ ∈ Ck,α(D̄) such that

h̃ = Ẽ2(dx21 + dx22 ) = Ẽ2(dr2 + r2dϕ2).
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Here, (x1, x2) denote the standard Euclidean coordinates on D while (ϕ, r) denote polar
coordinates centred at the origin. A map F̃ isometrically embeds (D̄, h̃) into R

3 with free
boundary in the unit sphere if and only if it solves the following boundary value problem

⎧⎪⎨
⎪⎩

d F̃ · d F̃ = h̃ in D,

|F̃ |2 = 1 on ∂D,

∂r F̃ = Ẽ F̃ on ∂D.

(1)

We will prove the existence of such a map F corresponding to the metric h using the
continuity method. More precisely, we define the solution space Gk,α∗ ⊂ Gk,α to be the space
which contains all metrics h̃ ∈ Gk,α for which there exists a map F̃ ∈ Ck+1,α(D̄,R3) solving
the problem (1). Onemay construct explicit examples to see that the space Gk,α∗ is non-empty.
In order to show that Gk,α∗ = Gk,α , we equip Gk,α with the Ck,α(D̄,Sym(R2))-topology and
show that Gk,α is path-connected, open and closed. It actually turns out that Gk,α is not only
path-connected but that the paths can be chosen to be analytic maps from the unit interval to
Gk,α .

In the proof of the next lemma, the connection and Laplacian of the Euclidean metric ḡ
on D will be denoted by ∇̄ and �̄, respectively.

Lemma 2.1 Given h0, h1 ∈ Gk,α , there exists an analytic map

h : [0, 1] → Gk,α

such that h(0) = h0 and h(1) = h1. In particular, the space Gk,α is path-connected.

Proof Let h0, h1 ∈ Gk,α and choose isothermal coordinates with conformal factors E0, E1,
respectively. Given t ∈ [0, 1], we define a one-parameter family of Riemannian metrics ht
connecting h0 and h1 to be

ht = E2
t (dx

2
1 + dx22 ) = E2

t (dr
2 + r2dϕ2) (2)

where

Et = E0E1

(1 − t)E1 + t E0
(3)

denotes the conformal factor of the metric ht . Since both E0 and E1 are positive, Et is well-
defined. A straightforward computation reveals that given a metric h, the Gauss curvature
and the geodesic curvature of ∂D satisfy the formulae

kh = −r∂r ((r E)−1)
∣∣
r=1, Kh = −E−2�̄ log E, (4)

see [14]. This implies that

kht = −r∂r
(
(1 − t)(r E0)

−1 + t(r E1)
−1)∣∣

r=1 = 1

for every t ∈ [0, 1]. In order to see that the Gauss curvature is positive, we abbreviate
K0 = Kh0 , K1 = Kh1 and compute

�̄ log Et

= �̄ log E0 + �̄ log E1 − �̄ log(t E0 + (1 − t)E1)

= −K0E
2
0 − K1E

2
1 − t�̄E0 + (1 − t)�̄E1

t E0 + (1 − t)E1
+ |t∇̄E0 + (1 − t)∇̄E1|2

(t E0 + (1 − t)E1)2
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= −K0E
2
0 − K1E

2
1 + (t E0 + (1 − t)E1)

−1
(
t E3

0K0 + (1 − t)E3
1K1 − t

|∇̄E0|2
E0

− (1 − t)
|∇̄E1|2
E1

)

+ (t E0 + (1 − t)E1)
−2(t2|∇̄E0|2 + (1 − t)2|∇̄E1|2 + 2t(1 − t)|∇̄E0||∇̄E1|

)
= −(t E0 + (1 − t)E1)

−1((1 − t)E1E
2
0K0 + t E0E

2
1K1

)
− (t E0 + (1 − t)E1)

−2(t(1 − t)E1E
−1
0 |∇̄E0|2 + t(1 − t)E0E

−1
1 |∇̄E1|2

− 2t(1 − t)|∇̄E0||∇̄E1|
)

< 0.

In the last inequality, we used Young’s inequality and the positivity of K0, K1, E0 and E1

as well as t ∈ [0, 1]. In particular, Kht is positive for every t ∈ [0, 1]. Clearly, ht is analytic
with respect to t . 
�

3 Openness of the solution space

In this section, we show that the solution space Gk,α∗ is open. Let h ∈ Gk,α and suppose
that there is a map F ∈ Ck+1,α(D̄,R3) satisfying (1) with respect to the metric h. Since the
Gaussian curvature K = Kh is strictly positive, it follows that F(D̄) is strictly convex.Wewill
now show that for every h̃ ∈ Gk,α which is sufficiently close to h in the C2,α(D̄,Sym(R2))-
topology for some α ∈ (0, 1) there exists a solution F̃ ∈ C3,α(D̄,R3) of (1). To this end, we
use Lemma 2.1 to find a path ht connecting h and h̃ in Gk,α and observe that ht and all of its
spacial derivatives are analytic with respect to t .

3.1 The linearised problem

We define a family of C3,α(D̄,R3)-maps

Ft : [0, 1] × D̄ → R
3

which is analytic with respect to t and satisfies F0 = F . This means that

Ft =
∞∑
l=0

	l t
l

l! , (5)

where 	0 = F0 and 	l ∈ C3,α(D̄,R3) are solutions to certain linearised equations if l ≥ 1.
Clearly, if (1) is solvable up to infinite order at t = 0 and if Ft and all its time derivatives
converge in C2,α(D̄,R3) for every t ∈ [0, 1], then it follows that F̃ = F1 is a solution of (1)
with respect to h̃. More precisely, we have the following lemma.

Lemma 3.1 Consider two metrics h, h̃ ∈ Gk,α with conformal factors E, Ẽ and let ht :
[0, 1] → Gk,α be the connecting path from Lemma 2.1 with conformal factor Et . Let F be a
solution of the free boundary problem (1) with respect to h and suppose that Ft as defined in
(5) converges in C2,α(D̄) uniformly. Then the following identities hold
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dl

dtl
ht

∣∣∣∣
t=0

= Id
l∑

i=0

(
l

i

)
∂ it Et∂

l−i
t Et

∣∣∣∣
t=0

,

dl

dtl
(dFt · dFt )

∣∣∣∣
t=0

= 2dF · d	l +
l−1∑
i=1

(
l

i

)
d	l−i · d	 i ,

dl

dtl
|Ft |2

∣∣∣∣
t=0

= 2F · 	l +
l−1∑
i=1

(
l

i

)
	l−i · 	 i ,

dl

dtl
∂r Ft

∣∣∣∣
t=0

= ∂r	
l ,

dl

dtl
(Et Ft )

∣∣∣∣
t=0

=
l∑

i=0

(
l

i

)
∂ it Et	

l−i
∣∣∣∣
t=0

.

We therefore consider the following boundary value problem. For every l ∈ N, we seek
to find a map 	l satisfying⎧⎪⎨

⎪⎩
dF · d	l + 1

2

∑l−1
i=1

(l
i

)
d	l−i · d	 i = 1

2 Id
∑l

i=0

(l
i

)
∂ it Et∂

l−i
t Et

∣∣
t=0 in D,

F · 	l + 1
2

∑l−1
i=1

(l
i

)
	l−i · 	 i = 0 on ∂D,

∂r	
l = ∑l

i=0

(l
i

)
∂ it Et	

l−i
∣∣
t=0 on ∂D.

(6)

The first equation is understood in the sense of symmetric two-tensors, which means that we
use the convention d1d2 = d2d1 = Sym(d1 ⊗ d2), where d1, d2 are the dual one-forms of
the given coordinate system.

Lemma 3.2 Consider two metrics h, h̃ ∈ Gk,α with conformal factors E, Ẽ and let ht :
[0, 1] → Gk,α be the connectingpath fromLemma2.1. Let F bea solutionof the free boundary
problem (1) with respect to h and suppose that there exists a family {	l ∈ C2,α(D̄) : l ∈ N}
satisfying (6) for every l ∈ N. Furthermore, assume that Ft as defined in (5) converges in
C2,α(D̄) uniformly. Then there holds⎧⎪⎨

⎪⎩
dFt · dFt = ht in D,

|Ft |2 = 1 on ∂D,

∂r Ft = Et Ft on ∂D.

for every t ∈ [0, 1]. Here, Et is the conformal factor of the metric ht .

Proof This follows from the previous lemma and well-known facts about analytic functions.

�

We nowmodify the approach used in [23] to find solutions of (7). For ease of notation, we
fix an integer l ∈ N and define	 = 	l . Given a coordinate frame ∂1, ∂2 with dual one-forms
d1, d2, we define

ui = 	 · ∂i F

and

v = 	 · ν,

where ν is the unit normal of the surface F(D̄) pointing inside the larger component of
B1(0) − F(D). Here and in the following, the Latin indices i, j,m, n always range over
{1, 2} unless specified otherwise. We consider the one-form
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w = 	 · dF = uid
i .

We denote the second fundamental form of the surface F with respect to our choice of unit
normal ν by A = (Ai j )i j and compute

∇hw = ∂ j ui d
i d j − �m

i, j umd
id j

= ∂i F · ∂ j	did j + �m
i, j	 · ∂mFd

id j − 	 · νAi j d
i d j − �m

i, j umd
id j

= ∂i F · ∂ j	did j − vAi j d
i d j ,

where ∇h and �m
i, j denote the Levi-Civita connection and Christoffel-Symbols of the metric

h, respectively. In the second equation, we used that

∂i∂ j F = �m
i, j∂mF − Ai jν.

Hence, if q̃ ∈ Ck,α(D̄,Sym(R2)) is a symmetric covariant two-tensor, ψ ∈ Ck+1,α(D̄) and
 ∈ Ck,α(D̄,R3), the system ⎧⎪⎨

⎪⎩
dF · d	 = q̃ in D,

F · 	 = ψ on ∂D,

∂r	 =  on ∂D,

is equivalent to ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂1u1 − �m
1,1um = q̃11 − vA11 in D,

∂1u2 + ∂2u1 − 2�m
1,2um = 2(q̃12 − vA12) in D,

∂2u2 − �m
2,2um = q̃22 − vA22 in D,

w(∂r ) = Eψ on ∂D,

∂r	 =  on ∂D.

(7)

This system is over-determined. However, it turns out that it suffices to solve the first four
lines, as in the special situation of (6), the last equation will be automatically implied by the
constancy of the geodesic curvature along ∂D. Another way of writing the first three lines
of (7) is

Sym(∇hw) = q̃ − vA.

Since F(D̄) is strictly convex, the second fundamental form A defines a Riemannian metric
on D̄. We can thus take the trace with respect to A to find

v = 1

2
trA(q̃ − Sym(∇hw)).

Given b ∈ {0, 1}, we define
Ab,α

A ⊂ Cb,α(D̄,Sym(T ∗ D̄ ⊗ T ∗ D̄))

to be the sections of the bundle of trace-free (with respect to A) symmetric (0,2)-tensors of
class Cb,α . Moreover, we define

Bb,α
A = Cb,α(D̄, T ∗ D̄)

to be the one-forms of class Cb,α . Next, we define the operator

L : B1,α
A → A0,α

A , ω �→ Sym(∇hω) − 1

2
trA(Sym(∇hω))A.
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We are then left to find a solution w of the equation

L(w) = q̃ − 1

2
trA(q̃)A.

We abbreviate the right hand side by q . We note that Ab,α
A and Bb,α

A are both isomorphic to
Cb,α = Cb,α(D̄,R2) via the isomorphisms

(a1, a2) �→ a1dx
1dx1 + a2(dx

1dx2 + dx2dx1) − (A22)−1(A11a1 + 2A12a2)dx
2dx2,

(u1, u2) �→ uidx
i .

Here, x1, x2 are the standard Euclidean coordinates. At this point, we emphasize that (Ai j )i j
denotes the inverse tensor of the second fundamental form A and not the quantity himh jn Amn .
We also define inner products on Ab,α

A and Bb,α
A , respectively. Namely,

〈q0, q1〉AA =
∫
D
K Ai j Amnq0imq

1
jn dvolh =

∫
D
K 〈q0, q1〉A dvolh,

〈ω0, ω1〉BA =
∫
D
K Ai jω0

i ω
1
j dvolh =

∫
D
K 〈ω0, ω1〉A dvolh,

where q0, q1 ∈ Ab,α
A and ω0, ω1 ∈ Bb,α

A . The particular choice of the inner product does
not really matter as the strict convexity implies that these inner products are equivalent to the
standard L2-product with respect to the metric h. However, our choice implies a convenient
form for the adjoint operator of L .

As was observed by C. Li and Z. Wang in [23], the operator L is elliptic. For the conve-
nience of the reader, we provide a brief proof.

Lemma 3.3 The operator L is a linear elliptic first-order operator.

Proof We regard L as an operator from C1,α to C0,α . The leading order part of the operator
is given by

L̃(u1, u2) = (∂1u1 − A11

2
Ai j∂i u j ,

∂1u2 + ∂2u1
2

− A12

2
Ai j∂i u j ). (8)

In order to compute the principal symbol at a point p ∈ D, we may rotate the coordinate
system such that A is diagonal. It then follows that

L̃(u1, u2) =
( 1

2 0
0 1

2

)
∂1

(
u1
u2

)
+

(
0 − 1

2
A11
A22

1
2 0.

)
∂2

(
u1
u2

)
. (9)

Given ξ ∈ S
1, the principal symbol thus equals

σL(ξ) = σL̃(ξ) = 1

2

(
ξ1 − A11

A22
ξ2

ξ2 ξ1

)
.

Consequently,

4 det(σL(ξ)) = ξ21 + ξ22 A
2
11/A

2
22 > 0,

as F(D) is strictly convex. 
�
We proceed to calculate the adjoint of L denoted by L∗. Let ω ∈ B1,α

A and q ∈ A1,α
A . We

denote the outward co-normal of ∂D by μ = μi∂i and the formal adjoint of ∇h , regarded
as an operator mapping (0, 1)-tensors to (0, 2)-tensors, by − divh , regarded as an operator
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50 Page 10 of 36 T. Koerber

mapping (0, 2)-tensors to (0, 1)-tensors. Moreover, we denote the musical isomorphisms of
h and A by �A, �h, �A and �h . Using integration by parts and the fact that q is trace free with
respect to A, we obtain

〈L(ω), q〉AA

=
∫
D
K 〈∇hω, q〉A dvolh − 1

2

∫
D
K Ai j Amn trA(Sym(∇hω))Aimq jn dvolh

=
∫
D
K 〈∇hω, q�A�A�h�h 〉h dvolh

= −
∫
D
〈ω, divh(Kq�A�A�h�h )〉h dvolh +

∫
∂D

K 〈ω, ιμq
�A�A�h�h 〉h dvolh

= −
∫
D
K 〈ω,

1

K
(divh(Kq�A�A�h�h ))�A�h 〉A dvolh +

∫
∂D

K 〈ω, ιμ�h q
�A 〉A dvolh .

(10)

Consequently, the adjoint operator

L∗ : A1,α
A → B0,α

A

is given by

q �→ − 1

K
(divh(Kq�A�A�h�h ))�A�h . (11)

As L∗ is the adjoint of an elliptic operator, it is elliptic itself. We now take a closer look at the
boundary term. We consider isothermal polar coordinates (ϕ, r) centred at the origin with
conformal factor E and compute at ∂D, using the free boundary condition, that

−Arϕ = ∂ϕ∂r F · ν = ∂ϕ(EF) · ν = 0. (12)

The last equality holds since F, ∂ϕF are both tangential at ∂D. Consequently, we have
Arϕ ≡ 0 on ∂D. Combining this with trA(q) = 0 and writing ω = ωi di we obtain∫

∂D
K 〈ω, ιμ�h q

�A 〉A dvolh =
∫

∂D
K Ai j Amnωiμ

�h
m q jn dvolh

=
∫

∂D
K Arrμ

�g
r (Aϕϕωϕqϕr + Arrωr qrr ) dvolh

=
∫

∂D
K Arr Aϕϕμ�h

r (ωϕqϕr − ωr qϕϕ) dvolh

=
∫

∂D

1

E2 μr (ωϕqϕr − ωr qϕϕ) dvolh

=
∫

∂D
(〈ω, ιμq〉(∂D,h) − ω(μ) trace(∂D,h)(q)) dvolh .

(13)

This leads us to define the boundary operators

R1 : B0,α
A → C0,α(∂D), R∗

1 : A0,α
A → C0,α(∂D),

R2 : B0,α
A → C0,α(∂D, T ∗∂D), R∗

2 : A0,α
A → C0,α(∂D, T ∗∂D)

to be

R1(ω) = ω(μ), R∗
1(q) = trace(∂D,h)(q),

R2(ω) = e∗ω, R∗
2(q) = e∗ιμq.
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Here, e : ∂D → D̄ denotes the inclusionmap. Clearly, given b ∈ {0, 1}, the spacesCb,α(∂D)

and Cb,α(∂D, T ∗∂D) are isomorphic.
Next, we define the operators

L : B1,α
A → A0,α

A × C1,α(∂D), ω �→ (Lω, R1(ω))

and

L∗ : A1,α
A → B0,α

A × C1,α(∂D, T ∗∂D), q �→ (L∗(q), R∗
2(q)).

Given ω0, ω1 ∈ B0,α
A , q0, q1 ∈ A0,α

A , ψ ∈ C0,α(∂D) and ζ ∈ C0,α(∂D, T ∗∂D), we define
the inner products

〈〈(q0, ψ), q1〉〉AA = 〈q0, q1〉AA +
∫

∂D
ψR∗

1(q
1) dvolh

〈〈ω0, (ω1, ζ )〉〉BA = 〈ω0, ω1〉BA +
∫

∂D
〈ζ, R2(ω

0)〉(∂D,h) dvolh .

According to (10) and (13), there holds

〈〈L(ω), q〉〉AA = 〈〈ω,L∗(q)〉〉BA (14)

for every ω ∈ B1,α
A and q ∈ A1,α

A .

3.2 Existence of solutions to the linearised problem

First-order elliptic boundary problems satisfy a version of the Fredholm alternative if the
boundary operator satisfies a certain compatibility condition, the so-called Lopatinski-
Shapiro condition; cf. [38]. A definition of this condition can be found in Chapter 4 of
[38] for instance. It can be proved that both L and L∗ satisfy this condition. We postpone the
proof to the appendix.

We proceed to prove the following solvability criterion. From now on, all norms are
computed with respect to the isothermal Euclidean coordinates on D.

Lemma 3.4 Let q ∈ A0,α
A and ψ ∈ C1,α(∂D). Then there exists a one-form w ∈ B1,α

A with
L(w) = (q, ψ) if and only if

〈q, q̂〉AA +
∫

∂D
ψR∗

1(q̂) dvolh = 0 (15)

for every q̂ ∈ ker(L∗). If (15) holds, then w satisfies the estimate

|w|C1,α(D̄) ≤ c(|q|C0,α(D̄) + |ψ |C1,α(∂D) + |w|C0,α(D̄)), (16)

where c depends on α, |A|C0,α(D̄) and |h|C1,α(D̄). Moreover, if q is of class Cb,α and ψ of

class Cb+1,α for some integer 1 ≤ b ≤ k − 1, then w is of class Cb+1,α .

Proof We can regard the operators L and L∗ as mappings from

C1,α(D̄,R2) → C0,α(D̄,R2) × C1,α(∂D).

According to Lemma 3.3 and Lemma A.1, the operators L and L∗ are elliptic operators that
satisfy the Lopatinski-Shapiro condition. Consequently, they are Fredholm operators, see [38,
Theorem 4.2.1]. The existence of a C1,α-solution under the given hypothesis now follows
from the identity (14) and [38, Theorem 1.3.4]. Moreover, [38, Theorem 4.1.2] provides us
with the a-priori estimate. The claimed regularity follows from standard elliptic theory. 
�
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50 Page 12 of 36 T. Koerber

In order to complete the proof of the existence of solutions to the first four lines of the
linearised Eq. (7), we proceed to show that the kernel of L∗ is empty. Let q̂ ∈ A1,α

A such that
L∗(q̂) = 0. We first transform (11) into a more useful form.

Lemma 3.5 The (0, 3) tensor ∇hq̂ is symmetric. In particular, in any normal coordinate
frame, there holds

0 = ∂1q̂22 − ∂2q̂12 (17)

as well as

0 = ∂1q̂12 − ∂2q̂11. (18)

Proof See [23, p. 10]. 
�
Let × : R

3 → R
3 be the Euclidean cross product. Taking the cross product with the

normal ν defines a linear map on the tangent bundle of F(D̄). We define the (1, 1)-tensor Q
via

Q = Xmd
m = hi j q̂imν × ∂ j Fd

m = ν × ιdF q̂.

Using the properties of the cross product, we find that

X1 = 1√
det(h)

(−q̂12∂1F + q̂11∂2F), (19)

X2 = 1√
det(h)

(−q̂22∂1F + q̂12∂2F). (20)

The next lemma is a variation of Lemma 7 in [23]. In its statement ant its proof, ∇̄ denotes
the flat connection of R3.

Lemma 3.6 Let Y ∈ C1(D̄,R3) be a vector field satisfying Y · ∂r F = 0 on ∂D and

ω = Q · Y = Xi · Ydi .
If Y satisfies

dF · ∇̄Y = 0 (21)

in the sense of symmetric (0, 2)-tensors, then ω = 0.

Proof We compute

dω = ∂ j (Xi · Y )d j ∧ di

= (∇̄∂ j Xi · Y + Xi · ∇̄∂ j Y )d j ∧ di

= ((∇̄∂1X2 − ∇̄∂2 X1) · Y + X2 · ∇̄∂1Y − X1 · ∇̄∂2Y )d1 ∧ d2.

We fix a point p ∈ D and choose normal coordinates centred at p. Equation (21) reads

∂1F · ∇̄∂1Y = ∂2F · ∇̄∂2Y = ∂1F · ∇̄∂2Y + ∂2F · ∇̄∂1Y = 0.

Together with (19) and (20), this implies that

X2 · ∇̄∂1Y − X1 · ∇̄∂2Y = q̂12∂2F · ∇̄∂1Y + q̂12∂1F · ∇̄∂2Y = 0.
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Moreover, we may choose the direction of the normal coordinates to be principal directions,
that is, A12=0. Using (19) and (20), we then find

∇̄∂1X2−∇̄∂2 X1=(−∂1q̂22 + ∂2q̂12)∂1F + (∂1q̂12 − ∂2q̂11)∂2F − (q̂22A11 + q̂11A22)ν =0

where we have used (17), (18) and trA(q̂) = 0. It follows that ω is closed. Since the disc is
contractible,ω is also exact and consequently, there exists a function ζ ∈ C2,α(D̄) satisfying

ω = dζ = ∂lζd
l .

This implies that ∂lζ = Xl · Y . As R∗
2(q̂) = 0, we have q̂rϕ = 0 on ∂D where ϕ, r denote

isothermal polar coordinates. It follows that

∂ϕζ = Xϕ · Y = 1√
det(h)

q̂ϕϕ∂r F · Y = 0

on ∂D. In particular, ζ is constant on ∂D. We can now argue as in the proof of Lemma 7
in [23] to show that ζ satisfies a strongly elliptic equation with bounded coefficients. The
maximum principle implies that ζ attains its maximum and minimum on the boundary. Since
ζ is constant on ∂D, ζ is constant on all of D̄ and consequently ω = dζ = 0. 
�

We now prove the following existence result.

Lemma 3.7 Let q̃ ∈ Ck−1,α(D̄,Sym(T ∗D ⊗ T ∗D)) and ψ ∈ Ck,α(∂D). Then there exists
a map 	 ∈ Ck,α(D̄,R3) which satisfies

d	 · dF = q̃ in D,

	 · F = ψ on ∂D.

Moreover, the one-form w = uidi where ui = 	 · ∂i F satisfies the estimate

|w|C1,α(D̄) ≤ c(|q̃|C0,α(D̄) + |ψ |C1,α(∂D) + |w|C0(D̄)), (22)

where c depends on |h|C2(D̄) as well as |A|C1(D̄).

Proof We have seen that it is sufficient to prove the existence of a smooth one-form w

solving L(w) = (q, ψ), where q = q̃ − 1
2 trA(q̃)A. w then uniquely determines the map 	.

Moreover, there holds |q|C0,α(D̄) ≤ c|q̃|C0,α(D̄), where c solely depends on |A|C1(D̄). Hence,
according to Lemma 3.4 it suffices to show that ker (L∗) is empty.

Let q̂ ∈ ker(L∗) and Q be defined as above. Denote the standard basis ofR3 by {e1, e2, e3}
and define the vector fields Ya = ea × F for a ∈ {1, 2, 3}. Since ∂r F = EF on ∂D, there
holds Ya · ∂r F = 0 on ∂D. We denote the group of orthogonal matrices by O(3). It is
well-known that TId(O(3)) = Skew(3) which is the space of skew-symmetric matrices. The
operator Y �→ ea × Y is skew-symmetric and it follows that there exists a C1-family of
orthogonal matrices I(t), where t ∈ (−ε, ε) for some ε > 0, such that I(0) = Id and
I ′(0)(F) = Ya . In particular, every I(t)(F) is a solution to the free boundary value problem
(1) for the metric h. It follows that

0 = 1

2

d

dt
dI(t)(F) · dI(t)(F)

∣∣∣∣
t=0

= dYa · dF = ∇̄Ya · dF

as the connection ∇̄ and the vector-valued differential d on R
3 can be identified with each

other. Hence the hypotheses of Lemma 3.6 are satisfied and Ya · Q vanishes identically on
D. Clearly, Q · ν = 0 and Q = 0 implies q̂ = 0. Thus, it suffices to show that
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span{ν, Y1, Y2, Y3} = R
3

on D.
At any point p ∈ D, the vector fields Y1, Y2, Y3 span the space F(p)⊥ so we need to show

that ν /∈ F(p)⊥ on D. Applying the Gauss-Bonnet formula we obtain

Length(∂D) +
∫
D
K dvolh = 2π,

that is, Length(∂D) < 2π . According to the Crofton formula, we have

Length(F(∂D)) = 1

4

∫
S2
#(F(∂D) ∩ ξ⊥) dξ.

The set of great circles which intersect F(∂D) exactly once is of measure zero. It follows that
F has to avoid a great circle and, after a rotation, we may assume that F(∂D) is contained
in the upper hemisphere. Now, the strict convexity of F implies that F lies above the cone

C = {t F(p) : t ∈ [0, 1], p ∈ ∂D}
and only touches C on the boundary. On ∂D, there holds ν · F = 0. If there was an interior
point p such that ν(p) · F(p) = 0, then the tangent plane TF(p)F(D̄) would meet a part of
S
2 above the cone C . However, strict convexity then implies that F has to lie on one side of

that tangent plane. This contradicts F(∂D) = ∂C . 
�
By induction, we are now able to find C2-solutions 	l to the first four lines of (7) which

however do not yet satisfy the condition

∂r	
l =

l∑
i=0

(
l

i

)
∂ it Et	

l−i
∣∣∣∣
t=0

on ∂D.

We now show that this additional boundary condition is implied by the constancy of the
geodesic curvature in the t-direction.

Lemma 3.8 Let 	l , l ∈ N, be C2-solutions of{
dF · d	l + 1

2

∑l−1
i=1

(l
i

)
d	l−i · d	 i = 1

2 Id
∑l

i=0

(l
i

)
∂ it Et∂

l−i
t Et

∣∣
t=0 in D,

F · 	l + 1
2

∑l−1
i=1

(l
i

)
	l−i · 	 i = 0 on ∂D.

(23)

Then there also holds

∂r	
l =

l∑
i=0

(
l

i

)
∂ it Et	

l−i
∣∣∣∣
t=0

on ∂D.

Proof We choose isothermal polar coordinates (ϕ, r) centred at the origin and abbreviate
∂1 = ∂ϕ as well as ∂2 = ∂r . Differentiating the boundary condition in (23) tangentially we
find

∂1F · 	l + F · ∂1	
l + 1

2

l−1∑
i=1

(
l

i

)(
∂1	

l−i · 	 i + 	l−i · ∂1	
i ) = 0. (24)

At every point p ∈ ∂D, we need to show the following three equations

∂2	
l · F =

(
∂ lt Et +

l−2∑
i=0

(
l

i

)
∂ it Et	

l−i · F
)∣∣∣∣

t=0
, (25)
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∂2	
l · ∂1F =

l−1∑
i=0

(
l

i

)
∂ it Et	

l−i · ∂1F

∣∣∣∣
t=0

, (26)

∂2	
l · ν =

l−1∑
i=0

(
l

i

)
∂ it Et	

l−i · ν

∣∣∣∣
t=0

, (27)

where we have used that |F |2 = 1, F · 	1 = 0 and F · ∂1F = F · ν = 0 on ∂D. We prove
the statement by induction and start with l = 1. Since ∂2F = EF we find

∂2	
1 · F = 1

E
∂2	

1 · ∂2F = ∂t Et
∣∣
t=0

by the differential Eq. (23). This proves (25). Next, we have

∂2	
1 · ∂1F = −∂1	

1 · ∂2F = −E∂1	
1 · F = E	1 · ∂1F

where we have used the Eq. (23), the free boundary condition of F and (24). This proves
(26). Now let ζ = r Et . Since kh(∂D) = 1 for all t ∈ [0, 1], there holds 1 = −∂2(ζ

−1) on
∂D. Differentiating in time, we obtain

0 = −∂t∂2

(
1

ζ

)
= ∂2

(
∂tζ

ζ 2

)
=

(
∂t∂2ζ

ζ 2 − 2
∂tζ∂2ζ

ζ 3

)
.

Since ∂2ζ = ζ 2 at t = 0, there holds

ζ∂t∂2ζ = 2ζ 2∂tζ.

According to (23), we have ζ∂tζ = ∂1F · ∂1	
1 at t = 0. Differentiating yields

ζ∂t∂2ζ + ζ 2∂tζ = ∂1∂2F · ∂1	
1 + ∂1F · ∂1∂2	

1

at t = 0. Using that ζ = Et on ∂D, Et = E for t = 0 and

∂1∂2F · ∂1	
1 = ∂1(EF) · ∂1	

1 = ∂1EF · ∂1	
1 + E∂1F · ∂1	 = ∂1EF · ∂1	

1

+E2∂t Et
∣∣
t=0,

we obtain

∂1F · ∂1∂2	
1 = 2∂t Et E

2
∣∣
t=0 − ∂1EF · ∂1	

1. (28)

We compute

∂1∂2	
1 · ∂1F = ∂1(∂2	

1 · ∂1F) − ∂2	
1 · ∂1∂1F

= −∂1(∂1	
1 · ∂2F) − ∂2	

1 · ∂1∂1F

= −∂1(∂1	
1 · EF) − ∂2	

1 · ∂1∂1F

= ∂1(	
1 · E∂1F) − ∂2	

1 · ∂1∂1F

= ∂1E	1 · ∂1F + E	1 · ∂1∂1F + E∂1F · ∂1	
1 − ∂2	

1 · ∂1∂1F

= −∂1E∂1	
1 · F + E	1 · ∂1∂1F + E2∂t Et

∣∣
t=0 − ∂2	

1 · ∂1∂1F

which together with (28) implies that

∂1∂1F · (−∂2	
1 + E	1) − ∂t Et E

2
∣∣
t=0 = 0. (29)
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A calculation shows that ∂1∂1F = −A11ν + ∂1EE−1∂1F − E∂2F . Furthermore, we have
already shown that

−∂2	
1 + E	1 = −∂t Et

∣∣
t=0F + ν · (−∂2	

1 + E	1 + ∂t Et F
∣∣
t=0)ν

= −∂t Et
∣∣
t=0F + ν · (−∂2	

1 + E	1)ν.

Together with the above, F · ∂2F = E and F · ∂1F = 0, this implies that

A11(∂2	
1 − E	1) · ν = 0.

This proves the claim since A11 > 0 and E = E0.
Now, let l > 1 and suppose that the assertion has already been shown for every i < l. At

t = 0, there holds

∂2	
l · F = 1

E
∂2	

l · ∂2F

= 1

2E

( l∑
i=0

(
l

i

)
∂ it Et∂

l−i
t Et −

l−1∑
i=1

(
l

i

)
∂2	

l−i · ∂2	
i
)

= 1

2E

( l∑
i=0

(
l

i

)
∂ it Et∂

l−i
t Et −

l−1∑
i=1

(
l

i

)[ l−i∑
j=0

(
l − i

j

)
∂
j
t Et	

l−i− j
]

·
[ i∑
m=0

(
i

m

)
∂mt Et	

i−m
])

= 1

2E

(
2E∂ lt Et − 2

l−1∑
i=1

(
l

i

)
∂ l−i
t Et

i−1∑
j=0

(
i

j

)
∂
j
t Et F · 	 i− j

−
l−1∑
i=1

(
l

i

) l−i−1∑
j=0

i−1∑
m=0

(
l − i

j

)(
i

m

)
∂
j
t Et∂

m
t Et	

l−i− j · 	 i−m
)

= 1

2E

(
2E∂ lt Et − 2

l−1∑
i=1

l−i−1∑
j=0

(
l

i + j

)(
i + j

j

)
∂ it Et∂

j
t Et F · 	l−i− j

−
l−2∑
i=0

l−2−i∑
j=0

(
l

i + j

)(
i + j

j

)
∂ it Et∂

j
t Et

l−1−i− j∑
m=1

(
l − i − j

m

)
	l−i− j−m · 	m

)

= 1

2E

(
2E∂ lt Et − 2

l−1∑
i=1

(
l

i + l − i − 1

)(
i + l − i − 1

l − i − 1

)
∂ it Et∂

l−i−1
t Et F

· 	l−i−(l−i−1)

+ 2
l−2∑
j=0

(
l

j

)(
j

0

)
Et∂

j
t Et F · 	l− j

)

=∂ lt Et +
l−2∑
j=0

(
l

j

)
∂
j
t Et F · 	l− j ,

which proves (25). In the first equation, we used that F satisfies the free boundary condition.
In the second equation, we used the (2, 2)-component of the differential equation for 	l . In
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the third equation, we used that the claim holds for every i < l. The fourth equation follows
from extracting the terms involving F and using |F |2 = 1 and 	0 = F . The fifth equation
follows from rearranging the sums, changing indices and rewriting the binomial coefficients.
In the sixth equation, we used the boundary condition for each 	l−i− j−m and cancel the
terms which appear twice. Finally, we used that 	1 · F = 0. We proceed to show (26). We
have

∂2	
l · ∂1F = − ∂1	

l · ∂2F − 1

2

l−1∑
i=1

(
l

i

)(
∂1	

l−i · ∂2	
i + ∂2	

l−i · ∂1	
i
)

= − E∂1	
l · F − 1

2

l−1∑
i=1

(
l

i

)(
∂1	

l−i · ∂2	
i + ∂2	

l−i · ∂1	
i
)

=E	l · ∂1F + E

2

l−1∑
i=1

(
l

i

)(
∂1	

l−i · 	 i + 	l−i · ∂1	
i
)

− 1

2

l−1∑
i=1

(
l

i

)( i∑
j=0

(
i

j

)
∂
j
t Et∂1	

l−i · 	 i− j

+
l−i∑
j=0

(
l − i

j

)
∂
j
t Et∂1	

i · 	l−i− j
)

=E	l · ∂1F − 1

2

l−1∑
i=1

(
l

i

)
∂ it Et

( i∑
j=1

(
i

j

)
∂1	

l−i · 	 i− j

+
l−i∑
j=1

(
l − i

j

)
∂1	

i · 	l−i− j
)

=E	l · ∂1F − 1

2

l−1∑
i=1

(
l

i

)
∂ it Et

( l−i−1∑
j=0

(
l − i

j

)
∂1	

l−i− j · 	 j

+
l−i∑
j=1

(
l − i

j

)
∂1	

l−i− j · 	 j
)

=E	l · ∂1F +
l−1∑
i=1

(
l

i

)
∂ it Et∂1F · 	l−i ,

which proves (26). In the first equation, we used the (1, 2) component of the differential
equation for 	l . In the second equation, we used the free boundary condition. The third
equation follows from the differentiated boundary condition (24) for 	l and the induction
hypothesis. The fourth equation, follows fromusing the j = 0 terms to cancel the second term.
The fifth equation follows from changing indices and recomputing the binomial coefficients.
The last equation follows from the differentiated boundary condition for 	l−1.

We recall that ζ = r Et . Differentiating the identity ∂2ζ = ζ 2 l times with respect to t ,
we obtain

∂2∂
l
t ζ

∣∣∣∣
t=0

= ∂ lt ζ
2
∣∣∣∣
t=0

=
l∑

i=0

(
l

i

)
∂ it ζ∂ l−i

t ζ

∣∣∣∣
t=0

.
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Moreover,

∂ lt ζ ζ

∣∣∣∣
t=0

= 1

2
∂ lt ζ

2
∣∣∣∣
t=0

− 1

2

l−1∑
i=1

(
l

i

)
∂ it ζ∂ l−i

t ζ

∣∣∣∣
t=0

.

Hence, using ζ = E on ∂D, the identity ∂2ζ = ζ 2 for the lower order terms and the (1, 1)
component of the differential equation for 	l , we obtain, at t = 0, that

∂2

(
∂1F · ∂1	

l + 1

2

l−1∑
i=1

(
l

i

)
∂1	

l−i · ∂1	
i
)

= ζ

l∑
i=0

(
l

i

)
∂ it ζ∂ l−i

t ζ + 1

2

l−1∑
i=1

(
l

i

)(
∂ l−i
t ζ

i∑
j=0

(
i

j

)
∂
j
t ζ∂

i− j
t ζ

+ ∂ it ζ

l−i∑
m=0

(
l − i

m

)
∂mt ζ∂ l−i−m

t ζ

)
.

Consequently, at t = 0, we have

∂1∂2F · ∂1	
l + ∂1F · ∂1∂2	

l + 1

2

l−1∑
i=1

(
l

i

)(
∂1∂2	

l−i · ∂1	
i + ∂1	

l−i · ∂1∂2	
i
)

= ζ

l∑
i=0

(
l

i

)
∂ it ζ∂ l−i

t ζ + 1

2

l−1∑
i=1

(
l

i

)(
∂ l−i
t ζ

i∑
j=0

(
i

j

)
∂
j
t ζ∂

i− j
t ζ

+ ∂ it ζ

l−i∑
m=0

(
l − i

m

)
∂mt ζ∂ l−i−m

t ζ

)
. (30)

We calculate

∂1∂2F · ∂1	
l = ∂1EF · ∂1	

l + E∂1F · ∂1	
l (31)

as well as

∂1F · ∂1∂2	
l

= ∂1(∂1F · ∂2	
l) − ∂1∂1F · ∂2	

l

= −∂1(∂1	
l · ∂2F) − ∂1

(
1

2

l−1∑
i=1

(
l

i

)
(∂1	

l−i · ∂2	
i + ∂2	

l−i · ∂1	
i )

)
− ∂1∂1F · ∂2	

l

= −∂1(E∂1	
l · F) − ∂1

(
1

2

l−1∑
i=1

(
l

i

)
(∂1	

l−i · ∂2	
i + ∂2	

l−i · ∂1	
i )

)
− ∂1∂1F · ∂2	

l

= ∂1

(
E∂1F · 	l + E

2

l−1∑
i=1

(
l

i

)
(∂1	

l−i · 	 i + 	l−i · ∂1	
i )

)
(32)

− ∂1

(
1

2

l−1∑
i=1

(
l

i

)
(∂1	

l−i · ∂2	
i + ∂2	

l−i · ∂1	
i )

)
− ∂1∂1F · ∂2	

l
2

= ∂1∂1F · (E	l − ∂2	
l) + E∂1F · ∂1	

l
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+ ∂1E

(
∂1F · 	l + 1

2

l−1∑
i=1

(
l

i

)
(∂1	

l−i · 	 i + 	l−i · ∂1	
i )

)

+ 1

2

l−1∑
i=1

(
l

i

)[
E

(
∂1∂1	

l−i · 	 i + 	l−i · ∂1∂1	
i )

+ E

(
∂1	

l−i · ∂1	
i + ∂1	

l−i · ∂1	
i
)

−
(

∂1∂1	
l−i · ∂2	

i + ∂2	
l−i · ∂1∂1	

i
)

−
(

∂1	
l−i · ∂1∂2	

i + ∂1∂2	
l−i · ∂1	

i
)]

= ∂1∂1F · (E	l − ∂2	
l) + E∂1F · ∂1	

l + I + I I + I I I + I V + V . (33)

In the second equation, we used the (1, 2) component of the differential equation for 	l and
in the fourth equation, we used the differentiated boundary condition. Now I and the first
term on the left hand side of (31) cancel out because of the differentiated boundary condition,
V cancels out the third term on the left hand side of (30). Moreover, at t = 0, we have

2E∂1F · ∂1	
l + I I I = E

l∑
i=0

(
l

i

)
∂ it Et∂

l−i
t Et .

Combining all of this and noting that E = ζ on ∂D, we are left with, again at t = 0,

∂1∂1F · (E	l − ∂2	
l) + I I + I V

= 1

2

l−1∑
i=1

(
l

i

)(
∂ l−i
t Et

i∑
j=0

(
i

j

)
∂
j
t Et∂

i− j
t Et + ∂ it Et

l−i∑
m=0

(
l − i

m

)
∂mt Et∂

l−i−m
t Et

)
. (34)

We now proceed to calculate the term I I + I V . Using the induction hypothesis and changing
the order of summation, we deduce at t = 0

I I + I V

= −1

2

l−1∑
i=1

(
l

i

)( i∑
j=1

(
i

j

)
∂
j
t Et∂1∂1	

l−i · 	 i− j +
l−i∑
j=1

(
l − i

j

)
∂
j
t Et	

l−i− j · ∂1∂1	
i
)

= −1

2

l−1∑
j=1

(
l

j

)
∂
j
t Et

( l− j−1∑
i=0

(
l − j

i

)
∂1∂1	

l− j−i · 	 i +
l− j∑
i=1

(
l − j

i

)
	l− j−i · ∂1∂1	

i
)

= −1

2

l−1∑
j=1

(
l

j

)
∂
j
t Et

( l− j∑
i=0

(
l − j

i

)
∂1∂1	

l− j−i · 	 i +
l− j∑
i=0

(
l − j

i

)
	l− j−i · ∂1∂1	

i
)

+
l−1∑
j=1

(
l

j

)
∂
j
t Et∂1∂1F · 	l− j .

Differentiating the boundary condition (24) again and using the (1, 1) component of the
differential equation for 	l− j we conclude
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− 1

2

l−1∑
j=1

(
l

j

)
∂
j
t Et

( l− j∑
i=0

(
l − j

i

)
∂1∂1	

l− j−i · 	 i +
l− j∑
i=0

(
l − j

i

)
	l− j−i · ∂1∂1	

i
)

=1

2

l−1∑
j=1

(
l

j

)
∂
j
t Et

( l− j∑
i=0

(
l − j

i

)
∂1	

l− j−i · ∂1	
i +

l− j∑
i=0

(
l − j

i

)
∂1	

l− j−i · ∂1	
i
)

=1

2

l−1∑
j=1

(
l

j

)
∂
j
t Et

( l− j∑
i=0

(
l − j

i

)
∂
l− j−i
t Et∂

i
t Et +

l− j∑
i=0

(
l − j

i

)
∂
l− j−i
t Et∂

i
t Et

)
,

which is exactly the right hand side of (34). Hence, we conclude, at t = 0, that

0 = ∂1∂1F ·
(
E	l − ∂2	

l +
l−1∑
i=1

(
l

i

)
∂ it Et	

l−i
)

= ∂1∂1F ·
(

− ∂2	
l +

l−1∑
i=0

(
l

i

)
∂ it Et	

l−i
)

.

Since we already know that the only potentially non-zero component of the second term in
the product is the normal component, we conclude as before that

0 = A11ν ·
(

∂2	
l −

l−1∑
i=0

(
l

i

)
∂ it Et · 	l−i

)
.


�

3.3 A-priori estimates and convergence of the power series

The final ingredient to prove that the solution space is open is an a-priori estimate for the
map 	l . This will establish the convergence of the power series.

Lemma 3.9 Let l ∈ N and 	l be a solution of (6). Then 	l satisfies the estimate

|	l |C2,α(D̄) ≤c

( l∑
i=0

(
l

i

)
|∂ it Et |C2,α(D̄)|∂ l−i

t Et |C2,α(D̄) +
l−1∑
i=1

(
l

i

)
|	l−i |C2,α(D̄) · |	 i |C2,α(D̄)

+
l∑

i=1

(
l

i

)
|∂ it Et |C1,α(D̄)|	l−i |C1,α(D̄)

)∣∣∣∣
t=0

,

where c depends on α, the C3,α-data of F and the C2,α-data of h. As usual, all norms are
taken with respect to Euclidean isothermal coordinates on D.

Proof We fix an integer l ∈ N, abbreviate 	 = 	l and define

ψ = −1

2

l−1∑
i=1

(
l

i

)
	l−i · 	 i ,  =

l∑
i=1

(
l

i

)
∂ it Et	

l−i
∣∣∣∣
t=0

as well as

q = 1

2

(
Id

l∑
i=0

(
l

i

)
∂ it Et∂

l−i
t Et −

l−1∑
i=1

(
l

i

)
d	l−i · d	 i

)∣∣∣∣
t=0

.

123



A free boundary isometric embedding problem in the unit ball Page 21 of 36 50

Let ∂1, ∂2 be any coordinate system on D. We recall that

w = uid
i , ui = 	 · ∂i F, v = 	 · ν.

ψ and  are of class C2 while q is of class C1. Thus, Lemma (3.7) implies the a-priori
estimate

|w|C1,α(D̄) ≤ c(|q|C0,α(D̄) + |ψ |C1,α(∂D) + |w|C0,α(D̄)),

where c depends on α, |A|C1(D̄) and |h|C1(D̄). After choosingw to be orthogonal to the kernel
of L, a standard compactness argument implies the improved estimate

|w|C1,α(D̄) ≤ c(|q|C0,α(D̄) + |ψ |C1,α(∂D)). (35)

We rewrite (7) as

1

A11
(∂1u1 − �i

1,1ui − q11) = 1

A22
(∂2u2 − �i

2,2ui − q22),

∂1u2 + ∂2u1 − 2�i
1,2ui − 2q12 = 2

A12

A11
(∂1u1 − �i

1,1ui − q11), (36)

∂1u2 + ∂2u1 − 2�i
1,2ui − 2q12 = 2

A12

A22
(∂2u2 − �i

2,2ui − q22)

and {
w(∂r ) = Eψ on ∂D

∂r	 = E	 +  on ∂D.
(37)

For the sake of readability, we define Q to be a quantity which can be written in the form

Q(ζ ) = ρi jmζi jm,

where ρi jm and ζi jm are functions defined on D. In practice, ζ will be one of ui , qi j , ∂i u j ,
∂i q jm and for every ρ under consideration, we have the uniform estimate

|Q(ζ )|C0,α(D̄) ≤ c|ζ |C0,α(D̄),

where c only depends on |h|C2,α(D̄) and |A|C1,α(D̄). Differentiating the first equation of (36)
with respect to ∂1 and the second equation with respect to ∂2, we obtain

∂1∂1u1 = A11

A22
∂1∂2u2 + Q(ui ) + Q(∂i u j ) + Q(qi j ) + Q(∂i q jm),

∂2∂2u1 = −∂2∂1u2 + 2
A12

A11
∂2∂1u1 + Q(ui ) + Q(∂i u j ) + Q(qi j ) + Q(∂i q jm).

Multiplying the second inequality by A11/A22 and adding the equalities we infer

∂1∂1u1 + A11

A22
∂2∂2u1 − 2

A12

A22
∂1∂2u1 = Q(ui ) + Q(∂i u j ) + Q(qi j ) + Q(∂i q jm). (38)

Similarly, one obtains

∂1∂1u2 + A11

A22
∂2∂2u2 − 2

A12

A22
∂1∂2u2 = Q(ui ) + Q(∂i u j ) + Q(qi j ) + Q(∂i q jm). (39)
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Since strict convexity implies that these equations are strongly elliptic, we may choose
Euclidean coordinates and appeal to the Schauder theory for elliptic equations to obtain the
interior estimate

|w|C2,α(D1/2)
≤ c(|w|C1,α(D̄) + |q|C1,α(D̄)), (40)

where c depends on α, |h|C2,α(D̄), |A|C1,α(D̄) and |A−1|C0(D̄). Next, we choose polar coordi-
nates (ϕ, r) and note that

uϕ = (ux1 , ux2) · (−x2, x1), ur = r−1(ux1 , ux2) · (x1, x2)

are well-defined functions on the annulus D \ D1/4. Here, (x1, x2) denote Euclidean coordi-
nates on D. The ellipticity of (38) and (39) remains unchanged if we write ∂ϕ, ∂r in terms of
∂x1 , ∂x2 . Consequently, ur and uϕ satisfy a strongly elliptic equationwith respect to Euclidean
coordinates. Moreover, for every b ∈ N, there is a constant cb > 1 which only depends on b
such that

|w|cb,α(D\D1/4)
≤ cb(|ur |Cb,α(D\D1/4)

+ |uϕ |Cb,α(D\D1/4)
) ≤ c2b|w|Cb,α(D\D1/4)

. (41)

We now apply the Schauder theory for elliptic equations to ur and uϕ . Since ur = ψ on ∂D,
we find

|ur |C2,α(D\D1/4)
≤ c(|w|C1,α(D\D1/4)

+ |q|C1,α(D\D1/4)
+ |ψ |C2,α(D̄) + |w|C2,α(D̄1/4)

), (42)

where c has the same dependencies as before. Conversely, equation (36) yields that

∂r uϕ = Q(ui ) + Q(∂i ur ) + Q(qi j ).

on ∂D. Consequently, the Schauder estimates for equations with Neumann boundary condi-
tions give

|uϕ |C2,α(D\D1/4)
≤ c(|w|C1,α(D\D1/4)

+ |q|C1,α(D\D1/4)
+ |ur |C2,α(D\D1/4)

+ |w|C2,α(D1/4)
).

Combining this with (42), we may remove the ur term on the right hand side. Then, the
interior estimate (40), the estimate (35) and (41) imply

|w|C2,α(D̄) ≤ c(|w|C2,α(D\D1/2)
+ |uϕ |C2,α(D\D1/4)

+ |ur |C2,α(D\D1/4)
)

≤ c(|q|C1,α(D̄) + |ψ |C2,α(D̄)).
(43)

Finally, we need an estimate for v. There holds

v = 1

2
trA(Sym(∇hw) − q̃)

and consequently

|v|C1,α(D̄) ≤ C(|q|C1,α(D̄) + |u|C2,α(D̄)) ≤ C(|q|C1,α(D̄) + |ψ |C2,α(D̄)).

In order to proceed,we use the so-calledNirenberg trick in the followingway.Wedifferentiate
the first equation of (7) twice in ∂1 direction, the second equation in ∂1 and ∂2 direction and
the third equation twice in ∂2 direction. We then multiply the second equation by (−1) and
add all three equations. The terms involving third derivatives cancel out and we obtain

∂1∂1(vA22) + ∂2∂2(vA11) − 2∂1∂2(vA12)

= 2∂1∂2q12 − ∂1∂1q22 − ∂2∂2q11 + Q(∂i∂ j um) + Q(∂i u j )

+ Q(ui ) + Q(qi j ) + Q(∂i q jm).
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As before, strict convexity translates into strong ellipticity of this equation. Moreover, the
Gauss-Codazzi equations imply that the second order derivatives of the second fundamental
form on the left hand side cancel out. Similarly, one may check that no third order terms of
the metric h appear on the right hand side. On the other hand, in polar coordinates, we have

∂rv = ∂r	 · ν + 	 · ∂rν =  · ν + E	 · ν + Arrur =  · ν + Ev + Arrur ,

wherewe used Lemma 3.8 and Aϕr = 0 on ∂D. Hence the Schauder estimates with Neumann
boundary conditions imply

|v|C2,α(D̄) ≤ c(|w|C2,α(D̄) + |q|C1,α(D̄) + |2∂1∂2q12 − ∂1∂1q22

−∂2∂2q11|C0,α(D̄) + ||C1,α(D̄) + |v|C1,α(D̄))

where the derivatives are taken with respect to Euclidean coordinates. Combining this with
the previous estimates, we obtain the final estimate

|	|C2,α(D̄) ≤ c(|q|C1,α(D̄) + |2∂1∂2q12 − ∂1∂1q22

−∂2∂2q11|C0,α(D̄) + ||C1,α(D̄) + |ψ |C2,α(D̄)).

The term 2∂1∂2q12 − ∂1∂1q22 − ∂2∂2q11 does not contain any third derivatives of 	 i where
i < l and it follows that

|	|C2,α(D̄) ≤ c

( l∑
i=0

(
l

i

)
|∂ it Et |C2,α(D̄)|∂ l−i

t Et |C2,α(D̄) +
l−1∑
i=1

(
l

i

)
|	l−i |C2,α(D̄) · |	 i |C2,α(D̄)

+
l∑

i=1

(
l

i

)
|∂ it Et |C1,α(D̄)|	l−i |C1,α(D̄)

)∣∣∣∣
t=0

.


�

We now iteratively use this a-priori estimate to show that the power series (5) converges
in C2,α(D̄). To this end, recall that the conformal factors of the metrics h and h̃ are given by
E and Ẽ , respectively.

Lemma 3.10 Given ε > 0 small enough, there exists a constant � > 0 depending only on
|F |C3,α(D̄), |E |C2,α(D̄), |Ẽ |C2,α(D̄), α and a number δ > 0 which additionally depends on ε

such that the following holds. If

|E − Ẽ |C2,α(D̄) < δ,

then

|	l |C2,α(D̄) ≤ l!(�ε)l .

Proof Let us define

	̂ i = 1

i !	
i , Êi = 1

i !∂
i
t Et

∣∣
t=0.

Now, Lemma 3.9 becomes
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|	̂l |C2,α(D̄) ≤ c

( l∑
i=0

|Êi |C2,α(D̄)|Êl−i |C2,α(D̄) +
l−1∑
i=1

|	̂l−i |C2,α(D̄)|	̂ i |C2,α(D̄)

+
l∑

i=1

|Êi |C1,α(D̄)|	̂l−i |C1,α(D̄)

)
. (44)

We may assume that c ≥ 1. In order to proceed, we use the following recursive estimate.

Lemma 3.11 Let {yi }∞i=1 be a sequence of positive numbers, ε, γ , c > 0 and assume that

yi ≤ εiγ i−1ci−1
i∏

j=2

(
4 − 6

j

)

for every i < l, where l ∈ N. Then there holds

l−1∑
i=1

yi yl−i ≤ εlγ l−2cl−2
l∏

j=2

(
4 − 6

j

)
.

Wewill prove the lemma later on.We now show that for every number l ∈ N, the following
two estimates hold

|	̂l |C2,α(D̄) ≤ (�ε)l , |	̂l |C2,α(D̄) ≤ εlγ l−1cl−1
l∏

j=2

(
4 − 6

j

)
. (45)

Using the explicit definition of Et from Lemma 2.1, we compute

∂ it Et

∣∣∣∣
t=0

= (−1)i
E

Ẽi
(E − Ẽ)i i !.

Hence, given ε̃ > 0, we can chose δ small enough such that

|∂ it E |C2,α(D̄)

∣∣
t=0 ≤ i !ε̃i

and consequently

|Êi |C2,α(D̄) ≤ ε̃i , (46)

provided

|E − Ẽ |C2,α(D̄) < δ.

Moreover,

l∑
i=0

|Êi |C2,α(D̄)|Êl−i |C2,α(D̄) ≤ (l + 1)ε̃l . (47)

Increasing c if necessary, wemay arrange that |F |C2,α(D̄) ≤ c. Togetherwith (44) this implies,
decreasing ε̃ appropriately, that

|	̂1|C2,α(D̄) ≤ 2cε̃ + c2ε̃ < ε.
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In particular, for every γ ≥ 1 we have

|	̂1|C2,α(D̄) < γ 0c0ε1
1∏
j=2

(
4 − 6

j

)
.

This proves (45) for l = 1 and every �, γ > 1.
Now given l ≥ 2, let us assume that we have already shown that

|	̂ i |C2,α(D̄) ≤ γ i−1ci−1εi
i∏

j=2

(
4 − 6

j

)

for every i < l and some suitable choice of γ > 1. Then the a-priori estimate (44),
Lemma 3.11 as well as (46) and (47) imply

|	̂l |C2,α(D̄) ≤ c

(
(l + 1)ε̃l + εlγ l−2cl−2

l∏
j=2

(
4 − 6

j

)

+
l∑

i=1

ε̃iγ l−i−1cl−i−1εl−i−1
l−i∏
j=2

(
4 − 6

j

))
. (48)

If we also ensure that ε̃ < ε/2, then

(l + 1)ε̃l ≤ εlγ l−2cl−2
l∏

j=2

(
4 − 6

j

)
.

Furthermore, we have the trivial estimate

l∑
i=1

ε̃iγ l−i−1cl−i−1εl−i−1
l−i∏
j=2

(
4 − 6

j

)
≤ γ l−2cl−2εl

l∏
j=2

(
4 − 6

j

) l∑
i=1

2−i

≤ γ l−2cl−1εl
l∏

j=2

(
4 − 6

j

)
,

provided c ≥ 2. Combining this with (48), we obtain

|	̂l |C2,α(D̄) ≤ 3γ l−2cl−1εl
l∏

j=2

(4 − 6/ j) ≤ γ l−1cl−1εl
l∏

j=2

(
4 − 6

j

)
,

provided γ ≥ 3. Thus, we can choose � = 4γ c to obtain

|	̂l |C2,α(D̄) ≤ �lεl .


�
Proof of Lemma (3.11) We may assume that ε = c = γ = 1. We are then left to show the
following identity

l−1∑
i=1

i∏
j=2

(
4 − 6

j

) l−i∏
m=2

(
4 − 6

m

)
=

l∏
j=2

(
4 − 6

j

)
.
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There holds

l∏
j=2

(
4 − 6

j

)
= 2l−1

l!
l∏

j=2

(2 j − 3) = 2l−1

l!
(2(l − 1))!
2l−1(l − 1)! = ỹl−1

where ỹ j is the j-th Catalan number. For the Catalan numbers, the well-known recurrence
relation

ỹl−1 =
l−1∑
i=1

ỹi−1 ỹl−i−1

holds, see for instance [34]. This implies the above identity. 
�
We are now in the position to prove that the solution space is open.

Proposition 3.12 Let h, h̃ ∈ Gk,α and F ∈ Ck+1,α(D̄) be a solution of the free boundary
problem (1) for h. Then there exists a constant δ > 0 depending only on α, the C2,α-data of E
and the C3,α-data of F such that the following holds. There exists a solution F̃ ∈ Ck+1,α(D̄)

of (1) for h̃ provided

|h − h̃|C2,α(D̄) < δ.

In particular, the space Gk,α∗ is open with respect to the C2,α-topology.

Proof Let E and Ẽ be the conformal factors of h and h̃, respectively, and ht the connecting
analytic path from see Lemma 2.1. We solve (6) to obtain the maps 	l and define Ft :
D̄ × [0, 1] → R

3 by

Ft = F +
∞∑
l=1

	l

l! t
l .

First, we choose δ > 0 such that |Ẽ |C2,α(D̄) < 2|E |C2,α(D̄), provided |E − Ẽ |C2,α(D̄) < δ.

Let � be the constant from Lemma 3.10 and ε = (2�)−1. Lemma 3.10 then implies that we
may decrease δ appropriately such that

|	l |C2,α(D̄) ≤ l!2−l

for every l ∈ N provided |E − Ẽ |C2,α(D̄) < δ. It follows that Ft converges uniformly in

C2,α(D̄). Now, Lemma 3.2 implies that F̃ = F1 is a solution of (1) with respect to h̃.
Standard elliptic theory yields the claimed regularity for F̃ . 
�

4 Closedness of the solution space

In this section, we will prove the closedness of the solution space Gk,α∗ with respect to the
C4-topology, provided k ≥ 4. We suspect that this requirement can be weakened to k ≥ 3
using a more refined C2-estimate; cf. [13,32].

Let {hl}∞l=1 be a sequence of metrics hl ∈ Gk,α∗ converging to a metric h̃ ∈ Gk,α in C4.

We use a compactness argument to show that h̃ ∈ Gk,α∗ . To this end, we prove an a-priori
estimate for |Fl |C2,α(D̄), where Fl is the solution (1) with respect to hl .
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4.1 A global curvature estimate

We fix l ∈ N and abbreviate F = Fl as well as h = hl . Since F is an isometric embedding
of a compact disc, it is bounded in C1 in terms of the C0-norm of the metric h, that is,

|F |C1(D̄) ≤ c|h|C0(D̄).

Furthermore, in every coordinate chart, there holds

∂i∂ j F = �m
i j ∂mF − Ai jν.

The second fundamental form can be expressed in terms of the Gauss curvature and the mean
curvature. In fact, if κ1, κ2 are principal directions, then

κ1 = H

2
+

√
H2

4
− K , κ2 = H

2
−

√
H2

4
− K .

This implies the following estimate.

Lemma 4.1 Let h ∈ Gk,α∗ and F be a solution of (1) with respect to h. Then there is a constant
c which only depends on |h|C1(D̄) and |H |C0(D̄) such that

|F |C2(D̄) ≤ c.

In order to bound H in terms of the intrinsic geometry, we use the maximum principle. To
this end, we observe that the free boundary condition implies a useful formula for the normal
derivative of the mean curvature at the boundary ∂D.

Lemma 4.2 Let h ∈ Gk,α∗ and let F be a solution of (1) with respect to h. Then there exists a
constant c which only depends on |h|C4(D̄) and |1/K |C0(D̄) such that

|H |C0(D̄) ≤ c.

Proof We choose Fermi-coordinates h = ζ 2ds2 + dt2 adapted to the boundary ∂D with
ζ(s, 0) = 1. Since the geodesic curvature is equal to 1, it follows that ∂tζ(·, 0) = −1. One
may compute that the only non-zero Christoffel symbols at the boundary are

�s
st = −1, �t

ss = 1.

In this coordinate chart, the mean curvature is given by

H = ζ−2Ass + Att .

Since Ast vanishes on ∂D, see (12), the Gauss-Codazzi equations imply

∂t Ass = −H .

Consequently, differentiating the Gauss equation and using ∂tζ = −1, we find

∂t Att Ass = ∂t Ass Att + ∂t Att Ass − 2∂t Ast Ast + H Att

= ∂t (K ζ 2) + H Att = ∂t K − 2K + H Att .

on ∂D, where we used that Ast = 0. In particular,

∂t Att = ∂t K

K
Att − Att + A2

t t

Ass
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on ∂D. It follows that

∂t H ≥ Ass − �Att + A2
t t

Ass
, (49)

where

� = maxp∈D |K−1∇K | + 2.

Now, let γ > 0 be such that A11 = γ A22. It follows that

∂t H > 0

unless

�−1 ≤ γ ≤ �. (50)

Now, suppose that H attains its global maximum at p ∈ D̄. If p ∈ ∂D, then

∂t H ≤ 0

and it follows that (50) holds. We may assume that Ass ≤ Att and estimate

H ≤ 2Att ≤ 2
√

�
√
Ass Att ≤ 2

√
�

√
K ,

as claimed. So let us assume that p ∈ D. We choose normal coordinates ∂1, ∂2 centred at p.
Clearly, we have

0 = ∂1A11 + ∂1A22, (51)

0 = ∂2A11 + ∂2A22. (52)

As has been shown in Lemma 9.3.3. in [14], there also holds

Ai j∂i j H = − 2

K
(∂l A11∂l A22 − ∂l A12∂l A12) + H2 − 4K + �hK

K
.

Since the Hessian of H is non-positive at p, strict convexity, (51) and (52) imply that

0 ≥ − 2

K
(∂l A11∂l A22 − ∂l A12∂l A12) + H2 − 4K + �hK

K

= 2

K
(∂l A11∂l A11 + ∂l A12∂l A12) + H2 − 4K + �hK

K

≥ H2 − 4K + �hK

K
. (53)

The claim follows. 
�

4.2 A Krylov-Evans type estimate

Now, we improve the C2-estimate to a C2,α-estimate. The potential function

f = 1

2
|F |2

can be used to estimate the second fundamental form A; cf. [14]. Namely, there holds

∂i∂ j f = �m
i, j∂m f − Ai j F · ν + hi j .
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It follows that |A|C0,α(D̄) can be estimated in terms of |h|C1,α(D̄) and | f |C2,α(D̄) provided
that |F · ν| is uniformly bounded from below. Taking the determinant of both sides of the
equation, we find that f satisfies the following Monge-Ampere type equation

{
det(∂i j f − �m

i j ∂m f − hi j ) = det(h)K (F · ν)2 in D,

∂μ f = 1 on ∂D.
(54)

This suggests that a Krylov-Evans type estimate might be applicable. The major obstacle in
this regard is that the free boundary condition implies that F · ν = 0 on ∂D.

Lemma 4.3 Let h ∈ Gk,α∗ and F be a solution of the free boundary problem (1) with respect to
h. Then there exists a constant c which only depends on |h|C4(D̄), |1/K |C0(D̄) and α ∈ (0, 1)
such that

|F |C2,α(D̄) ≤ c.

Proof Let (ϕ, r) be isothermal polar coordinates centred at the origin with conformal factor
E . We consider the Gauss map ν : D̄ → S

2 ⊂ R
3. Since F is strictly convex, ν is a strictly

convex embedding, too. Let ĥ = ν∗ ḡ be the pull-back metric of the Euclidean metric ḡ.
There holds Arϕ = 0 on ∂D; cf. (12). This implies that

∂ϕν = E−2Aϕϕ∂ϕF, ∂rν = E−2Arr∂r F,

on ∂D. It follows that μ̂ = E−1∂r F = μ is the outward co-normal of ∂D with respect to ĥ.
Consequently, the geodesic curvature of ĥ along ∂D is given by

kĥ = E3

A2
ϕϕ

∂ϕ∂ϕν · ∂r F = E2

Aϕϕ

∂ϕ∂ϕF · μ = 1

Aϕϕ

,

where we used the fact that kh = 1. Thus, the previous lemma implies that

kĥ ≥ η > 0

for some constant η > 0 which can be uniformly bounded from below in terms of |h|C4(D̄)

and |1/K |C0(D̄). Arguing as in the proof of Lemma 3.7, we may assume, after a suitable

rotation, that ν(D̄) is contained in the lower hemisphere S2− and that the function ν ·e3 attains
its maximum s < 0 in at least two points p1, p2 ∈ ν(∂D). It then follows that there has to
be another point p ∈ ν(∂D) where kĥ ≤ ks = −s

√
1 − s2. Here, ks is the curvature of the

curve {p ∈ S
2 : p · e3 = s}. Consequently1,

ν · e3 ≤ s ≤ −1

2
η.

As we have seen in the proof of Lemma (3.7), F · ν vanishes precisely at the boundary. This
implies that F · ν ≤ 0 and it follows that F̂ · ν ≤ s < 0, where F̂ = F + e3. Clearly, F̂
satisfies estimates comparable to F . We define the function f̂ = 1

2 F̂ · F̂ and obtain

det(∂i j f̂ − �m
i j ∂m f̂ − hi j ) = det hK (F̂ · ν)2 on D, (55)

∂μ f̂ = 1 − F · e3 on ∂D. (56)

1 A similar result is also due to W. Fenchel, see [4].
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Since F̂ · ν ≤ s < 0, the equation is uniformly elliptic and the ellipticity constant can be
estimated in terms of |h|C4(D̄) and |1/K |C0(D̄). Now, the Krylov-Evans type estimate [36,
Theorem 6] implies

| f̂ |C2,α(D̄) ≤ c,

where c depends on α, |h|C4,α(D̄), the ellipticity constant, | f |C2(D̄) and the boundary data.
All these terms can be estimated in terms of |h|C4(D̄) and |1/K |C0(D̄). 
�

We now prove the main result of this section.

Proposition 4.4 Let {hl}∞l=1 be a sequence of Riemannian metrics hl ∈ Gk,α∗ converging in

C4 to a Riemannian metric h̃ ∈ Gk,α , where k ≥ 4. Then h̃ ∈ Gk,α∗ .

Proof Let Kl denote the curvature of the metric hl . The convergence implies that there is a
number � such that |hl |C4(D̄), |1/Kl |C0(D̄) ≤ � for all l ∈ N. Lemma 4.3 then implies the
uniform estimate

|Fl |C2,α(D̄) ≤ c,

where Fl are the respective solutions of (1). According to the Arzela-Ascoli theorem, we
can extract a subsequence converging in C2(D̄) to a map F ∈ C2(D̄) which is a solution of
the free boundary problem (1) with respect to h̃. Standard elliptic theory implies the claimed
regularity. 
�

5 Proof of Theorem 1.1

5.1 Existence.

It suffices to show that Gk,α∗ = Gk,α . According to Lemma 2.1, Gk,α is path-connected while
Proposition 3.12 and Proposition 4.4 imply that Gk,α∗ is open and closed. We define the map

F0 : [0, 4π] × [0, 2π ] given by F(θ, ϕ) = (sin θ sin ϕ, sin θ cosϕ,
√
2 − cos θ).

The image of F0 has positive curvature, geodesic curvature along the boundary equal to 1
and meets the unit sphere orthogonally. Consequently, Gk,α∗ is a non-empty, open and closed
subset of a path-connected space which implies that Gk,α∗ = Gk,α .

5.2 Uniqueness.

Suppose that F̃ is another solution of (1). We denote the Gauss curvature of h by K , and the
second fundamental forms of F and F̃ by A = (Ai j )i j and Ã = ( Ãi j )i j , respectively. The
respective normals ν and ν̃ are chosen in a way such that the respective mean curvatures,
denoted by H and H̃ , share the same sign. We now use a variation of the argument in [31].

After a rotation and reflection, we may assume that both F and F̃ are contained in the
open upper hemisphere, that ν and ν̃ both point downwards and that F · ν and F̃ · ν̃ vanish
precisely at the boundary. Next, we choose a local orthonormal frame e1, e2 with respect to
h and define the following two vector fields

X =
(
Ãi j F · dF(e j ) − H̃ F · dF(ei )

)
ei , Y =

(
Ai j F · dF(e j ) − HF · dF(ei )

)
ei .
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It can be checked that these definitions do not depend on the choice of the orthonormal
frame. Using the conformal property of the position vector field in R

3, one computes as in
[31, Proposition 1.2 and Proposition 1.8]) that

divh X = −H̃ − 2K F · ν + F · ν det(A − Ã), (57)

divh Y = −H − 2K F · ν. (58)

Let (ϕ, r) denote isothermal polar coordinates, μ the outward co-normal of the Riemannian
manifold (D, h) and E the conformal factor of h. Using the free boundary condition and
Arϕ = Ãrϕ = 0, we find

X · μ = −E−2 Ãϕϕ Y · μ = −E−2Aϕϕ

on ∂D. Hence, integrating (57) and (58) over M , applying the divergence theorem and
subtracting both equations we find that

∫
∂D

E−2(Aϕϕ − Ãϕϕ) dvolh =
∫
D
(H − H̃) dvolh +

∫
D
F · ν det(A − Ã) dvolh .

Interchanging the roles of F and F̃ and performing the same computation again, we conclude
∫
D
(F · ν + F̃ · ν̃) det(A − Ã)dvolh = 0.

F · ν, F̃ · ν̃ are both positive on D. Conversely, A, Ã > 0 and

det(A) = det( Ã) = det(h)K

imply that det(A − Ã) ≥ 0. It follows that

det(A − Ã) = 0

and thus

A = Ã.

Hence, F and F̃ share the same second fundamental form and consequently only differ by a
rigid motion. Since both of their boundaries are contained in the unit sphere, this rigid motion
must be a composition of a rotation and a reflection through a plane containing the origin.
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Appendix A. The Lopatinski-Shapiro condition

In this section, we verify the Lopatinski-Shapiro condition. We refer to [38] for its definition.

Lemma A.1 L satisfies the Lopatinski-Shapiro condition.

Proof We interpret L as an operator from C1,α to C0,α and let ∂1, ∂2 be any local coordinate
system on D. We compute L(u) = M1∂1u + M2∂2(u) + M3u, where

M1 =
(
1 − 1

2 A
11A11 − 1

2 A
12A11

− 1
2 A

11A12 1 − 1
2 A

12A12

)
M2 =

( − 1
2 A

12A11 − 1
2 A

22A11

1 − 1
2 A

12A12 − 1
2 A

22A12

)

andM3 is a matrix which we do not need to determine. Calculating the inverse of A we find

M1 =
(
1 − (2 det(A))−1A11A22 (2 det(A))−1A12A11

−(2 det(A))−1A22A12 1 + (2 det(A))−1A12A12

)
,

M2 =
(

(2 det(A))−1A12A11 −(2 det(A))−1A11A11

1 + (2 det(A))−1A12A12 −(2 det(A))−1A11A12

)
.

Let p ∈ ∂D and choose polar coordinates (ϕ, r) centred at the origin with ∂1 = ∂ϕ and
∂2 = ∂r . The free boundary condition implies A12 = 0, see (12). Furthermore, there holds
det(A) = A11A22. Consequently,

M = M−1
1 M2 =

(
0 −ψ2

1 0

)

where ψ2 = A11
A22

. The eigenvalues of this matrix are given by ±iψ . In the chosen coordinate
chart, the boundary operator R1 is given by

R1 = (
0 1

)
.

According to [39, 16.1], the Lopatinski condition is satisfied if the matrix

R1

∫
γ

(ξ Id−M)−1dξ

has rank 1 for every closed path γ in the upper half plane containing iψ . We compute

(ξ Id−M) = 1

(ξ − iψ)(ξ + iψ)

(
ξ ψ2

−1 ξ

)
.

The residue theorem implies

R1

∫
γ

(ξ Id−M)−1dξ = π
(−ψ−1 i

)
.


�

Appendix B. Explicit examples in the Schwarzschild space

In this section, we consider explicit free boundary surfaces supported on the spheres of
symmetry in the Schwarzschild space and provide some numerical evidence for the validity
of Conjecture 1.2.
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On R
3 \ {0}, we consider the Schwarzschild metric gm with mass m > 0 defined by

gm =
(
1 + m

2|x |
)4

ḡ = φ4
m(|x |)ḡ,

where ḡ denotes the Euclidean metric and φm the conformal factor of gm . The continuous
function

ψ : [m/2,∞) → [0,∞), λ �→ H(Sλ(0)) = 2φ−2
m (λ)λ−1 − 2mφ−3

m (λ)λ−2.

vanishes at λ = m/2 and approaches 0 as λ → ∞. A lengthy but straightforward calculation
shows that

maxψm > 2 if and only if m < 3− 3
2 .

Let m ∈ (0, 3− 3
2 ) and λm > m/2 be maximal such that

H(Sλm (0)) = 2.

We consider the embedded disc � = Im(), where

 : [0, π/4] × [0, 2π) → R
3 \ {0} (θ, ϕ) �→ λm(sin θ sin ϕ, sin θ cosϕ,

√
2 − cos θ).

Let h be the metric induced by the Schwarzschild background metric. One may check that
the geodesic curvature of ∂� satisfies

kh = 1

2
H(Sλm (0)) = 1.

Similarly, the Gauss equation shows that

Kh = 1

2
H2 − Rc(ν, ν) > 0.

Here, we recall that

H = 2φ−2
m (|x |)λ−1

m − 2mφ−1
m |x |−3x · ν, Rc(ν, ν)

= 2mφ−6
m (|x |)|x |−3(1 − 3φ4

m(|x |)|x |−2(x · ν)2).

Let M be the closure of the component of Bλm (0) \ � with less volume. Since the scalar
curvature of the Schwarzschild manifold vanishes, M satisfies the assumptions of Conjec-
ture 1.2.

In order to check if Conjecture 1.2 holds up to these examples, we explicitly solve the
isometric embedding problem. To this end, we first observe that

||2 = λ2m(3 − 2
√
2 cos θ).

Consequently, there exists a function η : [0, π/4] → (0,∞) such that

η(θ) = φm(|(θ, ϕ)|)
for every ϕ ∈ (0, 2π). Moreover, we notice that

h = λ2mη4(θ)(sin2(θ)dϕ2 + dθ2).

We then consider the map

	 : [0, π/4] × [0, 2π) → R
3, (θ, ϕ) �→ λm(y(θ) sin ϕ, y(θ) cosϕ, z(θ)).
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Fig. 1 A plot of the total mean curvature of the free boundary surface � with respect to the Euclidean
background metric and the Schwarzschild background metric for different values ofm. The dotted line, corre-
sponding to the total Euclidean mean curvature, lies above the solid line, corresponding to the Schwarzschild
background metric

The isometric embedding equation becomes

y(θ) = η2(θ) sin θ,

(y′(θ))2 + (z′(θ)2) = η4(θ).
(59)

It can be checked that, as predicted by Theorem 1.1, the solution to this system can be chosen
such that 	(�) meets S2 orthogonally along 	(∂�). Let ν̄ and H̄ be the normal and mean
curvature of 	(�) ⊂ R

3. A direct computation gives

ν̄ = (y′(θ))2 + (z′(θ)2)−
1
2 (z′(θ) sin φ, z′(θ) cosφ,−y′(θ)), dvolh

= λ2m y(θ)

√
y′(θ))2 + (z′(θ)2,
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as well as

H̄ = λ−1
m (y′(θ)2 + z′(θ)2)−

3
2
[
z′′(θ)y′(θ) − y′′(θ)z′(θ)

]
+λ−1

m (y′(θ)2 + z′(θ)2)−
1
2 y(θ)−1z′(θ).

Conversely, we have

H = 2λ−1
m η−2(θ) + 2mλ−2

m η−3(θ)(3 − 2
√
2 cos θ)−

3
2 (

√
2 cos θ − 1).

A numerical computation for several sample values of m suggests that∫
�

H̄ dvolh >

∫
�

H dvolh

for every m ∈ (0, 3−3/2), see Figure 1.
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