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Abstract
We provide a new convergence proof of the celebrated Merriman–Bence–Osher scheme for
multiphase mean curvature flow. Our proof applies to the new variant incorporating a general
class of surface tensions and mobilities, including typical choices for modeling grain growth.
The basis of the proof are theminimizingmovements interpretation of Esedoḡlu andOtto and
DeGiorgi’s general theory of gradient flows. Under a typical energy convergence assumption
we show that the limit satisfies a sharp energy-dissipation relation.

Mathematics Subject Classification 35A15 · 53E10 · 65M12 · 74N20

1 Introduction

The thresholding scheme is a highly efficient computational scheme for multiphase mean
curvature flow (MCF) which was originally introduced by Merriman, Bence, and Osher [27,
28]. Themainmotivation forMCFcomes frommetallurgywhere itmodels the slow relaxation
of grain boundaries in polycrystals [31]. Each ”phase” in ourmathematical jargon corresponds
to a grain, i.e., a region of homogeneous crystallographic orientation. The effective surface
tension σi j (ν) and the mobility μi j (ν) of a grain boundary depend on the mismatch between
the lattices of the two adjacent grains �i and � j and on the relative orientation of the grain
boundary, given by its normal vector ν. It is well known that for small mismatch angles, the
dependence on the normal can be neglected [32]. The effective evolution equations then read

Vi j = −μi jσi j Hi j along the grain boundary �i j , (1)

where Vi j and Hi j denote the normal velocity and mean curvature of the grain boundary
�i j = ∂�i ∩ ∂� j , respectively. These equations are coupled by the Herring angle condition
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Fig. 1 The Herring angle condition at a triple junction

σi jνi j + σ jkν jk + σkiνki = 0 along triple junctions �i j ∩ � jk, (2)

which is a balance-of-forces condition and simply states that triple junctions are in local
equilibrium; here νi j denotes the unit normal of �i j pointing from �i into � j , (Fig. 1). We
refer the interested reader to [17] for more background on the modeling.

Efficient numerical schemes allow to carry out large-scale simulations to give insight into
relevant statistics like the average grain size or the grain boundary character distribution, as
an alternative to studying corresponding mean field limits as in [4,18]. The main obstruction
to directly discretize the dynamics (1)–(2) are ubiquitous topological changes in the network
of grain boundaries like for example the vanishing of grains. Thresholding instead natu-
rally handles such topological changes. The scheme is a time discretization which alternates
between the following two operations: (i) convolutionwith a smooth kernel; (ii) thresholding.
The second step is a simple pointwise operation and also the first step can be implemented
efficiently using the Fast Fourier Transform. One of the main objectives of our analysis is to
rigorously justify this intriguingly simple scheme in the presence of such topological changes.

The basis of our analysis is the underlying gradient-flow structure of (1)–(2), which
means that the solution follows the steepest descent in an energy landscape. More precisely,
the energy is the total interfacial area weighted by the surface tensions σi j , and the metric
tensor is the L2-product on normal velocities, weighted by the inverse mobilities 1

μi j
. One

can read off this structure from the inequality

d

dt

N∑

i, j=1

σi jArea(�i j ) = −
N∑

i, j=1

1

μi j

∫

�i j

V 2
i j dS ≤ 0,

which is valid for sufficiently regular solutions to (1)–(2). In the seminal work [8], Esedoḡlu
and Otto showed that the efficient thresholding scheme respects this gradient-flow structure
as it may be viewed as a minimizing movements scheme in the sense of De Giorgi. More
precisely, they show that each step in the scheme is equivalent to solving a variational problem
of the form

min
χ

{
1

2h
d2h (�,�n−1) + Eh(�)

}
, (3)

where Eh(�) and dh(�,�n−1) are proxies for the total interfacial energy of the configura-
tion � and the distance of the configuration � to the one at the previous time step �n−1,
respectively. Since the work of Jordan, Kinderlehrer, and Otto [15], the importance of the

123



De Giorgi’s inequality for the thresholding scheme with… Page 3 of 42 35

formerly often neglectedmetric in such gradient-flow structures has beenwidely appreciated.
Also in the present work, the focus lies on the metric, which in the case of MCF is well-
known to be completely degenerate [29]. This explains the proxy for the metric appearing in
the related well-known minimizing movements scheme for MCF by Almgren, Taylor, and
Wang [1], and Luckhaus and Sturzenhecker [25]. This remarkable connection between the
numerical scheme and the theory of gradient flows has the practical implication that it made
clear how to generalize the algorithm to arbitrary surface tensions σi j . From the point of view
of numerical analysis, (3) means that thresholding behaves like the implicit Euler scheme and
is therefore unconditionally stable. The variational interpretation of the thresholding scheme
has of course implications for the analysis of the algorithm as well. It allowed Otto and
one of the authors to prove convergence results in the multiphase setting [19,20], which lies
beyond the reach of the more classical viscosity approach based on the comparison principle
implemented in [3,9,13]. Also in different frameworks, this variational viewpoint turned out
to be useful, such as MCF in higher codimension [23] or the Muskat problem [14]. The only
downside of the generalization [8] are the somewhat unnatural effective mobilitiesμi j = 1

σi j
.

Only recently, Salvador and Esedoḡlu [33] have presented a strikingly simple way to incor-
porate a wide class of mobilities μi j as well. Their algorithm is based on the fact pointed
out in [7] that although the same kernel appears in the energy and the metric, each term
only uses certain properties of the kernel, which can be tuned independently: Starting from
two Gaussian kernels Gγ and Gβ of different width, they find a positive linear combination
Ki j = ai jGγ +bi jGβ , whose effective mobility and surface tension match the givenμi j and
σi j , respectively. It is remarkable that this algorithm retains the same simplicity and structure
as the previous ones [8,28]. We refer to Sect. 2 for the precise statement of the algorithm.

In the present work, we prove the first convergence result for this new general scheme.
The main novelty here is that the proof applies in the full generality of this new scheme
incorporating arbitrary mobilities. Furthermore, this is the first proof of De Giorgi’s inequal-
ity in the multiphase case. We exploit the gradient-flow structure and show that under the
natural assumption of energy convergence, any limit of thresholding satisfies De Giorgi’s
inequality, a weak notion of multiphase mean curvature flow. This assumption is inspired by
the fundamental work of Luckhaus–Sturzenhecker [25] and has appeared in the context of
thresholding in [19,20]. We expect it to hold true before the onset of singularities such as the
vanishing of grains. Furthermore, at least in the simpler two-phase case, it can be verified
for certain singularities [5,6]. We would in fact expect this assumption to be true generically,
which however seems to be a difficult problem in the multiphase case.

The present work fits into the theory of general gradient flows even better than the two
previous ones [19,20] and crucially depends on De Giorgi’s abstract framework, cf. [2]. This
research direction was initiated by Otto and the first author and appeared in the lecture notes
[21]. There, De Giorgi’s inequality is derived for the simple model case of two phases. Here,
we complete these ideas and use a careful localization argument to generalize this result to
the multiphase case. A further particular novelty of our work is that for the first time, we
prove the convergence of the new scheme for arbitrary mobilities [33].

Our proof rests on the fact that thresholding, like any minimizing movements scheme,
satisfies a sharp energy-dissipation inequality of the form

Eh(�
h(T )) + 1

2

∫ T

0

(
1

h2
d2h (�

h(t),�h(t − h)) + |∂Eh |2(�̃h(t))

)
dt ≤ Eh(�(0)), (4)

where �h(t) denotes the piecewise constant interpolation in time of our approximation,
�̃h(t) denotes another, intrinsic interpolation in terms of the variational scheme, cf. Lemma
3, and |∂Eh | is the metric slope of Eh , cf. (33).
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Our main goal is to pass to the limit in (4) and obtain the sharp energy-dissipation relation
for the limit, which in the simple two-phase case formally reads

σArea(�(T )) + 1

2

∫ T

0

∫

�(t)

(
1

μ
V 2 + μσ 2H2

)
dS dt ≤ σArea(�(0)). (5)

To this end, one needs sharp lower bounds for the terms on the left-hand side of (4). While
the proof of the lower bound on the metric slope of the energy

lim inf
h↓0

∫ T

0
|∂Eh |2(�̃h(t)) dt ≥ μσ 2

∫ T

0

∫

�(t)
H2dS dt (6)

is a straight-forward generalization of the argument in [21], the main novelty of the present
work lies in the sharp lower bound for the distance-term of the form

lim inf
h↓0

∫ T

0

1

h2
d2h (�

h(t),�h(t − h)) dt ≥ 1

μ

∫ T

0

∫

�(t)
V 2 dS dt . (7)

This requires us to work on a mesoscopic time scale τ ∼ √
h, which is much larger than

the microscopic time-step size h and which is natural in view of the parabolic nature of our
problem. It is remarkable that De Giorgi’s inequality (5) in fact characterizes the solution
of MCF under additional regularity assumptions. Indeed, if �(t) evolves smoothly, this
inequality can be rewritten as

1

2

∫ T

0

∫

�(t)
σ
( 1√

μσ
V + √

μσH
)2
dS dt ≤ 0, (8)

and therefore V = −μσH . For expository purpose, we focused here on the vanilla two-
phase case. In the multiphase case, the resulting inequality implies both the PDEs (1) and the
balance-of-forces conditions (2), cf. Remark 1.Anoptimal energy-dissipation relation like the
one here also plays a crucial role in the recent weak-strong uniqueness result for multiphase
mean curvature flow by Fischer, Hensel, Simon, and one of the authors [10]. There, a new
dynamic analogue of calibrations is introduced and uniqueness is established in the following
two steps: (i) any strong solution is a calibrated flow and (ii) every calibrated flow is unique in
the class of weak solutions. In fact, Hensel and the first author recently showed in [11] that (a
slightly weaker version of) De Giorgi’s inequality is sufficient for weak-strong uniqueness.
De Giorgi’s general strategy we are implementing here is also related to the approaches by
Sandier and Serfaty [34] and Mielke [30]. They provide sufficient conditions for gradient
flows to converge in the same spirit as �-convergence of energy functionals, implies the
convergence of minimizers. In the dynamic situation it is clear that one needs conditions on
both energy and metric in order to verify such a convergence.

There has been continuous interest in MCF in the mathematics literature, so we only point
out some of the most relevant recent advances. We refer the interested reader to the intro-
ductions of [19] and [22] for further related references. The existence of global solutions to
multiphaseMCF has only been established recently byKim andTonegawa [16]who carefully
adapt Brakke’s original construction and show in addition that phases do not vanish sponta-
neously. For the reader who wants to familiarize themselves with this topic, we recommend
the recent notes [37]. Another approach to understanding the long-time behavior of MCF is
to restart strong solutions after singular times. This amounts to solving the Cauchy problem
with non-regular initial data, such as planar networks of curves with quadruple junctions. In
this two-dimensional setting, this has been achieved by Ilmanen, Neves, and Schulze [12] by
gluing in self-similarly expanding solutions for which it is possible to show that the initial
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condition is attained in some measure theoretic way. Most recently, using a similar approach
of gluing in self-similar solutions, but also relying on blow-ups from geometric microlocal
analysis, Lira, Mazzeo, Pluda, and Saez [24] were able to construct such strong solutions,
prove stronger convergence towards the initial (irregular) network of curves, and classify all
such strong solutions.

The rest of the paper is structured as follows. In Sect. 2 we recall the thresholding scheme
for arbitrary mobilities introduced in [33], show its connection to the abstract framework of
gradient flows, and record the direct implications of this theory. We state and discuss our
main results in Sect. 3. Section 4 contains the localization argument in space, which will play
a crucial role in the proofs which are gathered in Sect. 5. Finally, in the short “Appendix”,
we record some basic facts about thresholding.

2 Setup and themodified thresholding scheme

Here and in the rest of the paper, [0, 1)d denotes the d-dimensional torus. Thus when we
deal with functions u : [0, 1)d → R we always assume that they have periodic boundary
conditions. In particular they can be extended periodically onRd . In general if u is a function
as before and f : Rd → R then by f ∗ u we mean the convolution on Rd between f and
the periodic extension of u, i.e.

f ∗ u(x) :=
∫

Rd
f (z)u(x − z)dz, x ∈ Rd (9)

when this expression makes sense.

2.1 Themodified algorithm

We start by describing the algorithm proposed by Salvador and Esedoḡlu [33]. Let the sym-
metricmatrix σ = (σi j )i j ∈ RN×N of surface tensions and the symmetricmatrixμ = (μi j )i j
of mobilities be given. In this work we define for notational convenience σi i = μi i = 0. Let
γ > β > 0 be given. Define thematricesA = (−ai j )i j ∈ RN×N andB = (−bi j )i j ∈ RN×N

by

ai j =
√

π
√

γ

γ − β
(σi j − βμ−1

i j ), (10)

bi j =
√

π
√

β

γ − β
(−σi j + γμ−1

i j ), (11)

for i �= j and aii = bii = 0. Then ai j , bi j are uniquely determined as solutions of the
following linear system

⎧
⎨

⎩
σi j = ai j

√
γ√

π
+ bi j

√
β√

π
,

μ−1
i j = ai j√

π
√

γ
+ bi j√

π
√

β
.

(12)

The algorithm introduced by Salvador and Esedoḡlu is as follows. Let the time step size
h > 0 be fixed. Hereafter Gh

γ := G(d)
γ h denotes the d-dimensional heat kernel (18) at time

γ h.
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Algorithm 1 (Modified thresholding scheme) Let {�0
1, ..., �

0
N } be disjoint open subsets of

[0, 1)d such that [0, 1)d = ∪i�
0
i , to obtain the new collection {�n+1

1 , ..., �n+1
N } at time

t = h(n + 1) from the collection {�n
1, ..., �

n
N } at time t = hn

(1) For any i = 1, ..., N form the convolutions

φn
1,i = Gh

γ ∗ 1�n
i
, φn

2,i = Gh
β ∗ 1�n

i

(2) For any i = 1, ..., N form the comparison functions

ψn
i =

∑

j �=i

ai jφ
n
1, j + bi jφ

n
2, j .

(3) Thresholding step, define

�n+1
i :=

{
x : ψn

i (x) < min
j �=i

ψn
j (x)

}
.

We will assume the following:

The coefficients ai j , bi j satisfy the strict triangle inequality. (13)

The matrices A and B are positive definite on (1, ..., 1)⊥. (14)

In particular, for v ∈ (1, ..., 1)⊥ we can define norms

|v|2
A

= v · Av, |v|2
B

= v · Bv.

We remark that we need the matrices A,B to be positive definite on (1, ..., 1)⊥ to guarantee
that the functional defined in (28) is a distance, see the comment following (28) below.

Observe that condition (13) is always satisfied if we choose γ large and β small provided
the surface tensions and the inverse of the mobilities satisfy the strict triangle inequality.
Indeed, define

mσ = min
i, j,k

{σik + σk j − σi j } and Mσ = max
i, j,k

{σik + σk j − σi j },

where i, j, k range over all triples of distinct indices 1 ≤ i, j, k ≤ N . Definem 1
μ
and M 1

μ
in

a similar way. Then a computation shows that ai j and bi j satisfy the (strict) triangle inequality
if

β <
mσ

M 1
μ

and γ >
Mσ

m 1
μ

, (15)

which can always be achieved since γ > β > 0 are arbitrary. For the second condition (14),
we have the following result of Salvador and Esedoḡlu [33].

Lemma 1 Let the matrix σ of the surface tensions and the matrix 1
μ
of the inverse mobilities

(for the diagonal we set inverses to be zeros) be negative definite on (1, ..., 1)⊥. Let γ > β

be such that

γ >
mini=1,...,N−1 si
maxi=1,...,N−1 mi

, β <
maxi=1,...,N−1 si
mini=1,...,N−1 mi

(16)

where si and mi are the nonzero eigenvalues of Jσ J and J 1
μ
J respectively, where the matrix

J has components Ji j = δi j − 1
N . Then A and B are positive definite on (1, ..., 1)⊥.
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In particular, if we choose γ large enough and β small enough, condition (14) on the matrices
A,B is satisfied provided the matrices σ and 1

μ
are negative definite on (1, ..., 1)⊥. By a

classical result of Schoenberg [35] this is the case if and only if
√

σi j and 1/
√

μi j are �2

embeddable. In particular, this holds for the choice of Read-Shockley surface tensions and
equal mobilities.

For 1 ≤ i �= j ≤ N define the kernels

Ki j (z) = ai jGγ (z) + bi jGβ(z) (17)

where, for a given t > 0, we define G(d)
t as the heat kernel in Rd , i.e.,

G(d)
t (z) = e− |z|2

4t

√
4π t

d
. (18)

If the dimension d is clear from the context, we suppress the superscript (d) in (18). We
recall here some basic properties of the heat kernel.

Gt (z) > 0 (non-negativity), (19)

Gt (z) = Gt (Rz) ∀R ∈ O(d) (symmetry), (20)

Gt (z) = 1√
t
d
G1

(
z√
t

)
(scaling), (21)

Gt ∗ Gs = Gt+s (semigroup property), (22)

G(d)
t (z) =

d∏

i=1

G(1)
t (zi ) (factorization property). (23)

We observe that the kernels Ki j are positive, with positive Fourier transform K̂i j provided
γ > maxi, j σi, jμi, j and β < mini, j σi, jμi, j . In particular assuming

(1) σi j and 1
μi j

satisfy the strict triangle inequality,

(2) σ and 1
μ
are negative definite on (1, ..., 1)⊥,

we can always achieve the conditions posed on A,B and the positivity of the kernels Ki j by
choosing γ large and β small.

Given any h > 0 we define the scaled kernels

Kh
i j (z) = 1√

h
d
Ki j

(
z√
h

)
, (24)

then the first and the second step in Algorithm 1 may be compactly rewritten as follows

ψn
i =

∑

j �=i

K h
i j ∗ 1�n

j
.

For later use, we also introduce the kernel

K (z) = 1

2
Gγ (z) + 1

2
Gβ(z). (25)
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2.2 Connection to De Giorgi’s minimizingmovements

The first observation is that Algorithm 1 has a minimizing movements interpretation. To
explain this, let us introduce the class

A :=
{

χ : [0, 1)d → {0, 1}N
∣∣∣∣

N∑

k=1

χk = 1

}

and its relaxation

M :=
{
u : [0, 1)d → [0, 1]N

∣∣∣∣
N∑

k=1

uk = 1

}
.

If χ ∈ A ∩ BV ([0, 1)d)N , then each of the sets �i := {χi = 1} is a set of finite perimeter.
We denote by ∂∗�i the reduced boundary of the set �i , and for any pair 1 ≤ i �= j ≤ N we
denote by �i j := ∂∗�i ∩ ∂∗� j the interface between the sets. For u ∈ M we define

E(u) :=
{∑

i, j σi jHd−1(�i j ) if u ∈ A ∩ BV ([0, 1)d)N ,

+∞ otherwise.
(26)

For h > 0 fixed we define the approximate energy Eh for u ∈ M

Eh(u) =
∑

i, j

1√
h

∫

[0,1)d
ui K

h
i j ∗ u jdx . (27)

For u, v ∈ M and h > 0 we also define the distance

d2h (u, v) := −2hEh(u − v) = −2
√
h
∑

i, j

∫
(ui − vi )K

h
i j ∗ (u j − v j )dx

= 2
√
h
∫

|Gh/2
γ ∗ (u − v)|2

A
+ |Gh/2

β ∗ (u − v)|2
B
dx, (28)

where we used the semigroup property (22) and the symmetry (20) to derive the last equality.
We also point out that since

∑
i ui =∑i vi = 1 a.e., we haveGh/2

γ ∗(u−v),Gh/2
β ∗(u−v) ∈

(1, ..., 1)⊥. Hence the assumptions on A and B guarantee that dh defines a distance on M
(and on A).

Lemma 2 The pair (M, dh) is a compact metric space. The function Eh is continuous with
respect to dh. For every 1 ≤ i ≤ N and n ∈ N define χn

i = 1�n
i
, where �n

1, ..., �
n
N are

obtained from �n−1
1 , ..., �n−1

N by the thresholding scheme. Then χn minimizes

1

2h
d2h (u, χn−1) + Eh(u) among all u ∈ M. (29)

Proof For u, v ∈ M definition (28) and the fact that A and B are positive definite imply
that dh is a distance on M. The fact that (M, dh) is compact and Eh is continuous is just a
consequence of the fact that dh metrizes the weak convergence in L2 on M, the interested
reader may find the details of the reasoning in [21]. We are thus left with showing that χn

satisfies (29). For u, v ∈ L2([0, 1)d) define

(u, v) = 1√
h

∑

i, j

∫
ui K

h
i j ∗ v j dx,
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then by the symmetry (20) of the Gaussian kernel and by the symmetry of both matricesA,B

it is not hard to show that (·, ·) is symmetric. In particular we can write for any u ∈ M
1

2h
d2h (u, χn−1) + Eh(u) = −Eh(u − χn−1) + Eh(u)

= −(u − χn−1, u − χn−1) + (u, u)

= 2(χn−1, u) − (χn−1, χn−1).

Thus (29) is equivalent to the fact that χn minimizes (χn−1, u) among all u ∈ M. Since by
(13)

(χn−1, u) =
∫ ∑

i

uiψ
n
i dx,

we see that χn minimizes the integrand pointwise, and thus it is a minimizer for the
functional. ��
The previous lemma allows us to apply the general theory of gradient flows in [2] to this
particular problem. We record the key statement for our purposes in the following lemma,
which will be applied to (M, dh), where dh is the metric (28).

Lemma 3 Let (M, d) be a compact metric space and E : M → R be continuous. Given
χ0 ∈ M and h > 0 consider a sequence {χn}n∈N satisfying

χn minimizes
1

2h
d2(u, χn−1) + E(u) among all u ∈ M. (30)

Then we have for all t ∈ Nh

E(χ(t)) + 1

2

∫ t

0

(
1

h2
d2(χ(s + h), χ(s)) + |∂E |2(u(s))

)
ds ≤ E(χ0). (31)

Here χ(t) is the piecewise constant interpolation, u(t) is the so-called variational inter-
polation, which for n ∈ N and t ∈ ((n − 1)h, nh] is defined by

u(t) ∈ argminu∈M
{
E(u) + d2(u, χn−1)

2(t − (n − 1)h)

}
, (32)

and |∂E |(u) is the metric slope defined by

|∂E |(u) := lim
d(u,v)→0

(E(u) − E(v))+
d(u, v)

∈ [0,∞]. (33)

Moreover, the variational interpolation u(t) satisfies
∫ ∞

0

1

2h2
d2(u(t), χ(t))dt ≤ E(χ0), (34)

E(u(t)) ≤ E(χ(t)) for all t ≥ 0. (35)

3 Statement of results

Our main result is the convergence of the modified thresholding scheme to a weak notion of
multiphase mean curvature flow. More precisely, given an initial partition {�0

1, ..., �
0
N } of
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35 Page 10 of 42 T. Laux, J. Lelmi

[0, 1)d encoded by χ0 : [0, 1)d → {0, 1}N such that
∑

i χ
0
i = 1, define χh : [0, 1)d ×R →

{0, 1}N by setting

χh(t, x) = χ0(x) for t < h,

χh(t, x) = χn(x) for t ∈ [nh, (n + 1)h) for n ∈ N.
(36)

If χ0 is a function of bounded variation, we denote by �0
i j := ∂∗�0

i ∩ ∂∗�0
j . Our main

result is contained in the following theorem.

Theorem 1 Given χ0 ∈ A and such that ∇χ0 is a bounded measure and a sequence h ↓ 0;
let χh be defined by (36). Assume that there exists χ : [0, 1)d × (0, T ) → [0, 1]N such that

χh⇀χ in L1([0, 1)d × (0, T )). (37)

Then χ ∈ {0, 1}N almost everywhere,
∑

i χi = 1 and χ ∈ L1((0, T ), BV ([0, 1)d))N .
If we assume that

lim sup
h↓0

∫ T

0
Eh(χ

h(t))dt ≤
∑

i, j

σi j

∫ T

0
Hd−1(�i j (t))dt, (38)

then χ is a De Giorgi solution in the sense of Definition 1 below.

The convergence assumption (38) is motivated by a similar assumption on the implicit
time discretization in the seminal paper [25] by Luckhaus and Sturzenhecker, and has also
appeared in previous work in the context of the thresholding scheme [19–21]. As of now, this
assumption can be verified only in particular cases, such as before the first singularity [36]
or for certain types of singularities, namely mean convex ones, meaning H > 0. This was
shown for the implicit time discretization in [6] and a proof in the case of the thresholding
scheme will appear in a forthcoming work by Fuchs and the first author.

Inspired by the general framework [2] and [34], generalizing the previous two-phase
version [21], we propose the following definition for weak solutions in the case of multiphase
mean curvature flow.

Definition 1 Given χ0 ∈ A and such that ∇χ0 is a bounded measure, a map χ : [0, 1)d ×
(0, T ) → {0, 1}N such that

∑
i χi = 1 and χ ∈ L1((0, T ), BV ([0, 1)d))N is called a De

Giorgi solution to themultiphasemean curvature flowwith surface tensionsσi j andmobilities
μi j provided the following three facts hold:

(1) There exist Hi j ∈ L2(Hd−1
|�i j

(dx)dt) which are mean curvatures in the weak sense, i.e.,

such that for any test vector field ξ ∈ C∞
c ([0, 1)d × (0, T ))d

∑

i, j

σi j

∫

[0,1)d×(0,T )

(∇ · ξ − νi j · ∇ξνi j )Hd−1
|�i j (t)

(dx)dt

= −
∑

i, j

σi j

∫

[0,1)d×(0,T )

Hi jνi j · ξHd−1
|�i j (t)

(dx)dt . (39)

(2) There exist normal velocities Vi j ∈ L2(Hd−1
|�i j (t)

(dx)dt) with
∫

[0,1)d
η(t = 0)χ0

i dx +
∫

[0,1)d×(0,T )

∂tη χi dxdt

+
∑

k �=i

∫

[0,1)d×(0,T )

ηVik Hd−1
|�ik (t)

(dx)dt = 0
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for all η ∈ C∞
c ([0, 1)d × [0, T )).

(3) De Giorgi’s inequality is satisfied, i.e.,

lim sup
τ↓0

1

τ

∑

i, j

σi j

∫

(T−τ,T )

Hd−1(�i j (t))dt

+ 1

2

∑

i, j

∫

[0,1)d×(0,T )

(
V 2
i j

μi j
+ μi jσ

2
i j H

2
i j

)
Hd−1

|�i j (t)
(dx)dt ≤

∑

i, j

σi jHd−1(�0
i j ).

(40)

Remark 1 Observe that inequality (40) together with the definition of the weak mean curva-
tures gives a notion of weak solution for the multiphase mean curvature flow incorporating
both the dynamics Vi j = −σi jμi j Hi j and the Herring angle condition at triple junc-
tions. Indeed if χ : [0, 1)d × (0, T ) → {0, 1}N with

∑
i χi (t) = 1 is such that the sets

�i (t) = {χi (·, t) = 1} meet along smooth interfaces �i j := ∂�i ∩ ∂� j which evolve
smoothly and satisfy (39), (40) then

(1) TheHerring angle condition at triple junctions is satisfied. Indeed by the divergence theo-
rem on surfaces (see Theorem 11.8 and Remark 11.42 in [26]) for any ξ ∈ C∞

c ([0, 1)d)d
∫

�i j (t)
(∇ · ξ − νi j · ∇ξνi j ) Hd−1

|�i j (t)
(dx) = −

∫

�i j (t)
Hi jνi jHd−1

|�i j (t)
(dx)

+
∫

∂�i j (t)
ξ · Jνi jHd−2(dx),

where J denotes the rotation by ninety degrees in the normal plane to the triple junction
∂�i j (t). Thus (39) and Hi j ∈ L2(Hd−1

|�i j (t)
(dx)dt) imply that

σi1i2

∫

∂�i1i2 (t)
ξ · Jνi1i2Hd−2(dx)

+ σi2i3

∫

∂�i2 i3 (t)
ξ · Jνi2i3Hd−2(dx)

+ σi3i1

∫

∂�i3i1 (t)
ξ · Jνi3i1Hd−2(dx) = 0,

which forces σi1i2νi1i2 + σi2i3νi2i3 + σi3i1νi3i1 = 0 at triple junctions.
(2) We have Vi j = −σi jμi j Hi j on�i j (t). Indeed in the smooth case inequality (40) reduces

to
∑

i, j

σi j

∫

(0,T )

d

dt
Hd−1(�i j (t))dt

+ 1

2

∑

i, j

∫

[0,1)d×(0,T )

(
V 2
i j

μi j
+ μi jσ

2
i j H

2
i j

)
Hd−1

|�i j (t)
(dx)dt ≤ 0.

Using the Herring angle condition we have

∑

i, j

d

dt
Hd−1(�i j (t)) =

∑

i, j

∫

[0,1)d
Vi j Hi jHd−1

|�i j (t)
(dx)

123
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and after completing the square we arrive at

∑

i, j

σi j

∫

[0,1)d×(0,T )

(
Vi j√
μi jσi j

+ √
μi jσi j Hi j

)2

Hd−1
|�i j (t)

(dx)dt ≤ 0,

which implies Vi j = −σi jμi j Hi j .

The following lemma establishes, next to a compactness statement, that our convergence can
be localized in the space and time variables x and t , but also in the variable z appearing in
the convolution.

Lemma 4 We have the following:

(i) Let {χh}h↓0 be a sequence of {0, 1}N -valued functions on (0, T )×[0, 1)d that satisfies
χh ∈ A for a.e. t and

lim sup
h↓0

(
esssup
t∈(0,T )

Eh(χ
h(t)) +

∫ T

0

1

2h2
d2h (χ

h(t), χh(t − h))dt

)
< ∞ (41)

and that is piecewise constant in time in the sense of (36). Such a sequence is
precompact in L1([0, 1)d × (0, T ))N and any weak limit χ is such that χ ∈
L1((0, T ), BV ([0, 1)d))N with

∑

i, j

σi j

∫ T

0
Hd−1(�i j (t))dt ≤ lim inf

h↓0

∫ T

0
Eh(χ

h(t))dt . (42)

(ii) Assume that uh is a sequence of [0, 1]N -valued functions with
∑

i u
h
i = 1 such that

(38) holds (with χh replaced by uh) and such that uh → χ in L1([0, 1)d × (0, T ))N

holds. Assume also that

lim sup
h↓0

esssup
t∈(0,T )

Eh(u
h(t)) < ∞. (43)

Then as measures on Rd × [0, 1)d × (0, T ) we have the following weak convergences
for any i �= j

Ki j (z)√
h

uhi (x, t)u
h
j (x − √

hz, t)dxdtdz

⇀Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dtdz. (44)

Ki j (z)√
h

uhi (x − √
hz, t)uhj (x, t)dxdtdz

⇀Ki j (z)(νi j (x, t) · z)−Hd−1
|�i j (t)

(dx)dtdz. (45)

Here νi j (·, t) denotes the outer measure theoretic unit normal of �i (t) restricted to the
interface �i j (t). Here the convergence may be tested also with continuous functions
which have polynomial growth in z ∈ Rd .

The next proposition is the main ingredient in the proof of Theorem 1. It establishes the
sharp lower bound on the distance-term.
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Proposition 1 Suppose that (37) and the conclusion of Lemma 4 (ii) hold. Assume also that
the left hand side of (47) is finite. Then for every 1 ≤ k ≤ N there exists Vk ∈ L2(|∇χk |dt)
such that

∂tχk = Vk |∇χk |dt (46)

in the sense of distributions. Given i �= j , it holds that Vi (x, t) = −Vj (x, t) on �i j (t) and
if we define Vi j (x, t) := Vi (x, t)|�i j (t) then we have

lim inf
h↓0

∫ T

0

1

h2
d2h (χ

h(t), χh(t − h))dt ≥
∑

i, j

1

μi j

∫ T

0

∫

�i j (t)
|Vi j (x, t)|2Hd−1(dx)dt .

(47)

The final ingredient is the analogous sharp lower bound for the metric slope.

Proposition 2 Suppose that the conclusion of Lemma 4 (ii) holds and that (37) holds with χh

replaced by uh. Then for any i �= j there exists a mean curvature Hi j ∈ L2(Hd−1
�i j (t)

(dx)dt)
in the sense of (39). Moreover the following inequality is true:

lim inf
h↓0

∫ T

0
|∂Eh |2(uh(t))dt ≥

∑

i, j

μi jσ
2
i j

∫ T

0

∫

�i j (t)
|Hi j (x, t)|2Hd−1(dx)dt . (48)

Wewill present the proofs of Theorem 1, Lemma 4, Proposition 1 and Proposition 2 in Sect. 5.
Before doing that, we need a simple geometric measure theory construction.

4 Construction of suitable partitions of unity

In the sequel we will frequently want to localize on one of the interfaces. To do so, we need
to construct a suitable family of balls on which the behavior of the flow is split into two
majority phases and several minority phases. Hereafter we will ignore the time variable and
consider a map χ : [0, 1)d → {0, 1}N such that χ ∈ BV ([0, 1)d ,RN ),

∑
k χk = 1. Given

1 ≤ i < j ≤ N we denote by ∂∗�i the reduced boundary of the set {χi = 1} and by
�i j = ∂∗�i ∩ ∂∗� j the interface between phase i and phase j . Given a real number r > 0
and a natural number n ∈ N we define

Fr
n :=

{
B(x, nr

√
d) : x ∈ rZd ∩ [0, 1)d

}
(49)

where the balls appearing in the definition are intended to be open. Observe that for any
n ≥ 2 and any r > 0 the collection of balls in Fr

n is a covering of [0, 1)d with the property
that any point x ∈ [0, 1)d lies in at most c(n, d) distinct balls belonging to Fr

n , where
0 < c(n, d) ≤ (2n)d is a constant that depends on n, d but not on r . Given numbers
1 ≤ l �= p ≤ N we define

Er :=
{
B ∈ Fr

2 : B ∩ �lp �= ∅,
Hd−1(�i j ∩ 2B)

ωd−1(4r)d−1 ≤ 1

2d
, {i, j} �= {l, p}

}
. (50)

Here 2B denotes the ball with center given by the center of B and twice its radius. Given
l, p as above, denote by {Br

m} an enumeration of Er and by {ρm} a smooth partition of unity
subordinate to {Br

m}. Then the following result holds true (for a proof, see the “Appendix”).

Lemma 5 Fix 1 ≤ l �= p ≤ N. With the above construction the following two properties
hold.
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(i) For any 1 ≤ i �= j ≤ N, {i, j} �= {l, p} and any η ∈ L1(Hd−1
|�i j

)

lim
r↓0
∑

m

∫

Br
m

ηHd−1
|�i j

(dx) = 0. (51)

(ii) For any η ∈ L1(Hd−1
|�lp

)

lim
r↓0
∑

m

∫
ρmηHd−1

|�lp
(dx) =

∫
ηHd−1

|�lp
(dx). (52)

5 Proofs

5.1 Proof of Theorem 1

Proof By Lemma 2, we can apply Lemma 3 on the metric space (M, dh) so that we get
inequality (31) with (E, d, χ, u) = (Eh, dh, χh, uh). Our first observation is that

lim
h↓0 Eh(χ

0) =
∑

i, j

σi jHd−1(�0
i j ), (53)

which follows from the consistency, cf. Lemma 7 in the “Appendix”. Inequality (31) then
yields that the sequence χh satisfies (41), so that Lemma 4 (i) applies to get that χ ∈
L1((0, T ), BV ([0, 1)d))N , χ ∈ {0, 1}N a.e.,

∑
i χi = 1 and, after extracting a subsequence,

χh → χ in L2([0, 1)d × (0, T ))N . We claim that this implies uh → χ in L2([0, 1)d ×
(0, T ))N . To see this, observe that (34) implies

hEh(χ
0) ≥ −

∫ T

0
Eh(u

h(t) − χh(t))dt

≥ C
1√
h

N∑

i=1

(∫
|Gh/2

γ ∗ (uhi − χh
i )|2dxdt +

∫
|Gh/2

β ∗ (uhi − χh
i )|2dxdt

)

(54)

whereC is a constant which depends on N ,A,B but not on h and comes from the fact that all
norms on (1, ..., 1)⊥ are comparable. Inequality (54) clearly implies that Kh ∗ uh − Kh ∗χh

converges to zero in L2. Observe that inequality (35) in particular yields (43). Recalling (158)
in the “Appendix”, we learn that uh − χh converges to zero in L2. This implies that we can
apply Lemma 4 (ii) both to the sequence uh and the sequence χh . In particular, we may apply
Proposition 1 for χh and Proposition 2 for uh . Now the proof follows the same strategy as
the one in the two-phase case in [21]. For the sake of completeness, we sketch the argument
here. First of all, Lemma 3 gives inequality (31) for (Eh, dh, χh, uh), namely for n ∈ N

ρ(nh) ≤ Eh(χ
0), (55)

where we set ρ(t) = Eh(χ
h(t)) + 1

2

∫ t
0

(
1
h2
d2h (χ

h(s + h), χh(s)) + |∂Eh(uh(s))|2
)
ds.

Multiplying (55) by η(nh) − η((n + 1)h) for some non-increasing function η ∈ Cc([0, T ))

we get − ∫ dη
dt ρdt ≤ (η(0) + h sup

∣∣∣ dη
dt

∣∣∣)Eh(χ
0). As test function η, we now choose

η(t) = max{min{ T−t
τ

, 1}, 0} and obtain
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1

τ

∫ T

T−τ

Eh(χ
h(t))dt

+ 1

2

∫ T−τ

0

(
1

h2
d2h (χ

h(t), χh(t − h)) + |∂Eh(u
h(t))|2

)
dt ≤ (1 + h

τ
)Eh(χ

0). (56)

Now it remains to pass to the limit as h ↓ 0: to get (40) from inequality (56) one uses the
lower semicontinuity (42) for the first left hand side term, the sharp bound (47) for the second
left hand side term, the bound (48) for the last left hand side term and finally one uses the
consistency Lemma 7 in the “Appendix” to treat the right hand side term. To get (40) it
remains to pass to the limit in τ ↓ 0. ��

5.2 Proof of Lemma 4

Proof Argument for (i) For the compactness, the arguments in [21] adapt to this setting with
minor changes. The first observation is that, by inequality (158) in the “Appendix”, one needs
to prove compactness in L2([0, 1)d × (0, T ))N of {Kh ∗ χh}h↓0. For this, one just needs a
modulus of continuity in time. I.e. it is sufficient to prove that there exists a constant C > 0
independent of h such that Ih(s) ≤ C

√
s, where

Ih(s) =
∫

(s,T )×[0,1)d
|χh(x, t) − χh(x, t − s)|2dxdt .

This can be done applyingword byword the argument in [21] oncewe show the following:
for any pair χ, χ ′ ∈ A, we have

∫
|χ − χ ′|dx ≤ C√

h
d2h (χ, χ ′) + C

√
h
(
Eh(χ) + Eh(χ

′)
)
. (57)

Here the constant C depends on N ,A,B but not on h.
To prove (57) we proceed as follows: let S ∈ RN×N be a symmetric matrix which

is positive definite on (1, ..., 1)⊥. Since any two norms on a finite dimensional space are
comparable, there exists a constant C > 0 depending on S and N such that

|χ − χ ′| ≤ |χ − χ ′|2 ≤ C |χ − χ ′|2
S

(58)

where | · |S denotes the norm induced by S. For a function u ∈ M write (K̃ h∗)uh for the
function

(
(K̃ h∗)uh

)

i
=
∑

j �=i

K h
i j ∗ uhj .

Then we calculate

|χ − χ ′|2
S

= −(χ − χ ′) · (K̃ h∗)(χ − χ ′) + (χ − χ ′) · (S + (K̃ h∗))(χ − χ ′). (59)

Select S = (si j ) where si j = − ∫ Ki j (z)dz. Then, by our assumption (14), S is positive
definite on (1, ..., 1)⊥ and after integration on [0, 1)d identity (59) becomes

∫
|χ − χ ′|2

S
dx = 1

2
√
h
d2h (χ, χ ′) +

∫
(χ − χ ′)(S + (K̃ h∗))(χ − χ ′)dx .

We now proceed to estimate the integral on the right hand side. By the choice of S and
Jensen’s inequality we have

∫
(χ − χ ′)(S + (K̃ h∗))(χ − χ ′)dx ≤ C

∫
|(S + (K̃ h∗))(χ − χ ′)|dx
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≤ C
∑

i, j

∫
Kh
i j (z)|(χ j − χ ′

j )(x − z) − (χ j − χ ′
j )(x)|dxdz. (60)

Using the triangle inequality and (156) in the “Appendix” we can estimate the right hand
side to obtain the following inequality

∫
(χ − χ ′)(S + (K̃ h∗))(χ − χ ′)dx

≤ C
∑

i, j

⎛

⎝
∑

k �= j

∫
Kh
i j (z)χ j (x − z)χk(x)dxdz

+
∑

k �= j

∫
Kh
i j (z)χ j (x)χk(x − z)dxdz

+
∑

k �= j

∫
Kh
i j (z)χ

′
j (x − z)χ ′

k(x)dxdz

+
∑

k �= j

∫
Kh
i j (z)χ

′
j (x)χ

′
k(x − z)dxdz

⎞

⎠ . (61)

Observing that there is a constant C > 0 such that Ki j ≤ CK jk we conclude that
∫

(χ − χ ′)(S + (K̃ h∗))(χ − χ ′)dx ≤ C
√
h
(
Eh(χ) + Eh(χ

′)
)
.

This proves (57) and closes the argument for the compactness.
We also have to prove (42), but this follows from (44) with uh replaced by χh once we

have shown that the limit χ is such that |∇χ | is a bounded measure, equiintegrable in time.
Indeed one can check from the proof of (44) that the lower bound of (44) does not require
the extra assumption (38). Thus one gets that

lim inf
h↓0

∫ T

0
Eh(χ

h(t))dt = lim inf
h↓0

∑

i �= j

1√
h

∫ T

0

∫

[0,1)d
χh
i K

h
i j ∗ χh

j dxdt

≥
∑

i �= j

lim inf
h↓0

1√
h

∫ T

0

∫

[0,1)d
χh
i K

h
i j ∗ χh

j dxdt

=
∑

i �= j

lim inf
h↓0

1√
h

∫ T

0

∫

[0,1)d

∫

Rd
χh
i (x, t)Kh

i j (z)χ
h
j (x − z, t)dzdxdt

≥
∑

i �= j

∫ T

0

∫

[0,1)d

∫

Rd
Ki j (z)(νi j · z)+dzHd−1

|�i j (t)
(dx)dt

=
∑

i �= j

σi j

∫ T

0
Hd−1

|�i j (t)
(dx)dt,

where in the last two lines we used (44) and the definition of σi j . To prove that the limit
χ is such that |∇χ | is a bounded measure, equiintegrable in time one can proceed with
an argument similar to the one used in [21] for the two-phase case. Observe that this only
requires the weaker assumption (43).
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Argument for (ii)Asmentioned in the previous paragraph,we already know that the limitχ
is such that |∇χ | is a bounded measure, equiintegrable in time.We will prove (44). Then (45)
easily follows by recalling that νi j = −ν j i . A standard argument (to be found in [21]) which
relies on the exponential decay of the kernel yields the fact that we can test convergences
(44) with functions with at most polynomial growth in z provided we already have the result
for bounded and continuous test functions, thus we focus on this case.

Let ξ ∈ Cb(Rd × [0, 1)d × (0, T )) be a bounded and continuous function. To show (44)
we aim at showing that

lim
h↓0

∫
ξ(z, x, t)

Ki j (z)√
h

uhi (x, t)u
h
j (x − √

hz, t)dxdtdz

=
∫

ξ(z, x, t)Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dtdz.

(62)

Upon splitting ξ into the positive and the negative part, by linearity we may assume that
0 ≤ ξ ≤ 1. We can split (62) into the local lower bound

lim inf
h↓0

∫
ξ(z, x, t)

Ki j (z)√
h

uhi (x, t)u
h
j (x − √

hz, t)dzdxdt

≥
∫

ξ(z, x, t)Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dtdz

(63)

and the global upper bound

lim sup
h↓0

∫
Ki j (z)√

h
uhi (x, t)u

h
j (x − √

hz, t)dzdxdt

≤
∫

Ki j (z)(νi j (x, t) · z)+Hd−1
�i j (t)

(dx)dtdz.

(64)

Indeed we can recover the limsup inequality in (62) by splitting ξ = 1−(1−ξ) and applying
the local lower bound (63) to 1 − ξ .

We first concentrate on the local lower bounds in the case where uh = χ , namely we will
show

lim inf
h↓0

∫
ξ(z, x, t)

Ki j (z)√
h

χi (x, t)χ j (x − √
hz, t)dzdxdt

≥
∫

ξ(z, x, t)Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dtdz.

(65)

By Fatou’s lemma the claim is reduced to showing that for a.e. point t in time and every
z ∈ Rd

lim inf
h↓0

∫
ξ(z, x, t)

Ki j (z)√
h

χi (x, t)χ j (x − √
hz, t)dx

≥
∫

ξ(z, x, t)Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx). (66)

Fix a point t such that χ(·, t) ∈ BV ([0, 1)d , {0, 1}N ) and any z ∈ Rd . In the sequel,
we will drop those variables, so χ(x) = χ(x, t), ξ(x) = ξ(z, x, t). By approximation we
may assume that ξ ∈ C∞([0, 1)d). Let ρmi j be a partition of unity obtained by applying the
construction of Sect. 4 to the function χ(x) on the interface �i j . Let νi be the outer measure
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theoretic normal of �i (t). Then by Lemma 5 we have
∫

ξ(x)(νi j (x) · z)+Hd−1
|�i j

(dx)

= lim
r↓0

(
∑

m∈N

∫
ρmi j (x)ξ(x)(νi j (x) · z)+Hd−1

|�i j
(dx)

)

= lim
r↓0
∑

m∈N

(∫
ρmi j (x)ξ(x)(νi (x) · z)+Hd−1

|∂∗�i
(dx)

−
∑

k �=i, j

∫
ρmi j (x)ξ(x)(νi j (x) · z)+Hd−1

|�ik
(dx)

⎞

⎠

= lim
r↓0
∑

m∈N

∫
ρmi j (x)ξ(x)(νi (x) · z)+Hd−1

|∂∗�i
(dx). (67)

We now focus on estimating the argument of the last limit. Observe that (νi (x) ·
z)+Hd−1

|∂∗�i
(dx) = (∂zχi )+, thus by definition of positive part of a measure, given ε > 0

we can select, for any m ∈ N, a function ξ̃m ∈ C1
c (Bm) such that 0 ≤ ξ̃m ≤ 1 and such that

∫
ρmi jξ ξ̃m∂zχi + 2−mε ≥

∫
ρmi j ξ(νi · z)+Hd−1

|∂∗�i
(dx). (68)

Let ηm := ρmi jξ ξ̃m ∈ C1
c (Bm), then

∫
ηm∂zχi = −

∫
∂zηmχi dx

= lim
h↓0

∫
ηm(x + √

hz) − ηm(x)√
h

χi (x)dx

= lim
h↓0

∫
ηm(x)

χi (x) − χi (x − √
hz)√

h
dx .

Using that χi (x) − χi (x − √
hz) ≤ χi (x)(1 − χi (x − √

hz)) (because χi ∈ {0, 1}) and that
1 − χi =∑k �=i χk we can estimate the last item by

lim inf
h↓0

∑

k �=i

∫
ηm(x)

χi (x)χk(x − √
hz)√

h
dx

≤ lim inf
h↓0

∫
ηm(x)

χi (x)χ j (x − √
hz)√

h
dx

+ lim sup
h↓0

∑

k �=i, j

∫
ηm(x)

χi (x)χk(x − √
hz)√

h
dx

≤ lim inf
h↓0

∫
ηm(x)

χi (x)χ j (x − √
hz)√

h
dx

+
∑

k �=i, j

lim sup
h↓0

∫
ηm(x)

χi (x)χk(x − √
hz)√

h
dx .
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Observe that for each m ∈ N, using also the consistency Lemma 7

lim sup
h↓0

∫
ηm(x)

χi (x)χk(x − √
hz)√

h
dx

≤ lim sup
h↓0

∫
ηm(x)

χi (x)χk(x − √
hz) + χi (x − √

hz)χ j (x)√
h

dx

=
∫

ηm(x)|νik(x) · z|Hd−1
|�ik

(dx)

≤ |z|Hd−1(Br
mi j ∩ �ik).

Thus we obtain

∫
ηm∂zχi ≤ lim inf

h↓0

∫
ηm(x)

χi (x)χ j (x − √
hz)√

h
dx

+
∑

k �=i, j

|z|Hd−1(Br
mi j ∩ �ik).

Inserting back into (67), recalling also Lemma 5 and the inequality (68), using Fatou’s
lemma, the fact that ρmi j is a partition of unity and that 0 ≤ ξ̃m ≤ 1 we obtain that

∫
ξ(x)(νi j (x) · z)+Hd−1

|�i j
(dx) ≤ lim inf

h↓0

∫
ξ(x)

χi (x)χ j (x − √
hz)√

h
dx + ε

and (65) follows letting ε go to zero. To derive inequality (63) we just apply Lemma 9 in the
“Appendix”.

To get the upper bound (64) we argue as follows. First of all, recall Assumption (38) which
says

lim sup
h↓0

∫ T

0
Eh(u

h(t))dt ≤
∫ T

0
E(χ(t))dt . (69)

Now, if we define

ei jh (uh) = 1√
h

∫ T

0

∫
uhi (t)K

h
i j ∗ uhj (t)dxdt,

we have that by (63) lim infh↓0 ei jh (uh) ≥ ei j (χ), where ei j (χ) is defined in the obvious way.

Assume that there exists a pair i, j such that lim suph↓0 e
i j
h (uh) > ei j (χ), then

∫ T

0
E(χ(t))dt ≥ lim sup

h↓0

∫ T

0
Eh(u

h(t))dt

≥
∑

(l,p)�=(i, j)

lim inf
h↓0 elph (uh) + lim sup

h↓0
ei jh (uh)

>

∫ T

0
E(χ(t))dt

which is a contradiction. Thus we have proved (64). ��
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5.3 Proof of Proposition 1

Proof Since we assume that the left hand side of (47) is finite, in view of (28), upon passing
to a subsequence we may assume that, in the sense of distributions, the limit

lim
h↓0

1

h
√
h

(∣∣∣Gh/2
γ ∗ (χ − χ(· − h))

∣∣∣
2

A

+
∣∣∣Gh/2

β ∗ (χ − χ(· − h))

∣∣∣
2

B

)
= ω (70)

exists as a finite positive measure on [0, 1)d × (0, T ). Here we indicated with χh
l (· − h) the

time shift of function χh
l . We denote by τ a small fraction of the characteristic spatial scale,

namely τ = α
√
h for some α > 0, which we think as a small number. Given 1 ≤ l ≤ N we

define

δχh
l := χh

l − χh
l (· − τ). (71)

We divide the proof into two parts: first we show that the normal velocities exist, and
afterwards we prove the sharp bound. But first, let us state two distributional inequalities that
will be used later. Namely

• In a distributional sense it holds that

lim sup
h↓0

− 1√
h

∑

i �= j

δχi K
h
i j ∗ δχ j ≤ α2ω. (72)

• There exists a constant C > 0 such that for any 1 ≤ i ≤ N and any θ ∈ {γ, β} in a
distributional sense it holds that

lim sup
h↓0

1√
h

(χi − χi (· − τ))Gh
θ ∗ (χi − χi (· − τ)) ≤ Cα2ω. (73)

We observe that it suffices to prove (72), then (73) follows immediately. Indeed recall that
A and B are positive definite on (1, ..., 1)⊥. In particular there exists a constant C > 0 such
that for any v ∈ (1, ..., 1)⊥ one has |v|2

A
+ |v|2

B
≥ C |v|2 ≥ Cv2i for any i ∈ {1, ..., N }.

Applying this to the vector vi = Gh/2
θ ∗ δχi one gets

|Gh/2
θ ∗ δχi |2 ≤ 1

C
|Gh/2

θ ∗ δχ |2
A

+ |Gh/2
θ ∗ δχ |2

B
. (74)

The claim then follows from the definition of ω, (72), the symmetry (20) and the semigroup
property (22). Indeed it is sufficient to check that, in the sense of distributions

lim
h↓0

1√
h

∑

i �= j

δχi K
h
i j ∗ δχ j + 1√

h

(
|Gh/2

γ ∗ δχ |2
A

+ |Gh/2
β ∗ δχ |2

B

)
= 0. (75)

To this aim, pick a test function η ∈ C∞
c ([0, 1)d × (0, T )). Spelling out the definition of

the norms | · |A and | · |B, the claim is proved once we show that

lim
h↓0

1√
h

∑

i �= j

ai j

∫
ξ(δχi G

h
γ ∗ δχ j − Gh/2

γ ∗ δχi G
h/2
γ ∗ δχ j )dxdt = 0, (76)

and the same claim with ai j , γ replaced by bi j , β respectively.
We concentrate on (76). Clearly, we are done once we show that for any i �= j

lim
h↓0

1√
h

∫
ξ(δχi G

h
γ ∗ δχ j − Gh/2

γ ∗ δχi G
h/2
γ ∗ δχ j )dxdt = 0. (77)
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To show this, using the semigroup property (22) we rewrite the argument of the limit as

− 1√
h

∫
[ξ,Gh/2

γ ∗](δχi )G
h/2
γ ∗ δχ j dxdt, (78)

where [ξ,Gh/2
γ ∗] denotes the commutator of multiplying by ξ and convolving with Gh/2

γ ,
i.e.

[ξ,Gh/2
γ ∗]( f ) = ξGh/2

γ ∗ f − Gh/2
γ ∗ (ξ f ), (79)

for every function f for which this expression makes sense. We observe that by the bound-
edness of the measures 1√

h
|Gh/2

γ ∗ δχ |2
A
it suffices to show

lim
h↓0

1√
h

∫
|[ξ,Gh/2

γ ∗](δχi )|2dxdt = 0. (80)

To prove this, spelling out the integrand, using the Cauchy–Schwarz inequality and recalling
the scaling (21) we observe that

∫
|[ξ,Gh/2

γ ∗](δχi )|2dxdt

≤
∫ (∫

|ξ(x, t) − ξ(x − z, t)|2Gh/2
γ (z)dz

)
Gh/2

γ ∗ |δχi (x, t)|2dxdt

≤ h

2
sup |∇ξ |2

∫
Gγ (z)|z|2dz

∫ T

0

∫
|δχi (x, t)|2dxdt . (81)

Observe that by the compactness of χh in L2([0, 1)d × (0, T )), (81) is of order h, thus (80)
indeed holds true.

Now we can turn to the proof of (72), which is essentially already contained in the paper
[21]. For the convenience of the reader we sketch the main ideas here. One reduces the claim
to proving the following facts:

lim
h↓0

1√
h

∑

i j

δχi K
h
i j ∗ δχ j − 1√

h

(∣∣∣Gh/2
γ ∗ δχ

∣∣∣
2

A

+
∣∣∣Gh/2

β ∗ δχ

∣∣∣
2

B

)
= 0, (82)

lim sup
h↓0

1√
h

∣∣∣Gh/2
γ ∗ δχ

∣∣∣
2

A

− α2 1

h
√
h

∣∣∣Gh/2
γ ∗ (χ − χ(· − h))

∣∣∣
2

A

≤ 0, (83)

lim sup
h↓0

1√
h

∣∣∣Gh/2
β ∗ δχ

∣∣∣
2

B

− α2 1

h
√
h

∣∣∣Gh/2
β ∗ (χ − χ(· − h))

∣∣∣
2

B

≤ 0. (84)

Claim (82) was proved in the previous paragraph, while (83) and (84) are consequences
of Jensen’s inequality in the time variable for the convex functions | · |2

A
and | · |2

B
respectively.

More precisely, assume without loss of generality that τ = Nh for some N ∈ N, then by a
telescoping argument and Jensen’s inequality for | · |2

A
we get

1√
h

|Gh/2
γ ∗ δχ |2

A

≤ N
N−1∑

n=0

1√
h

|Gh/2
γ ∗ (χh(· − nh) − χh(· − (n + 1)h))|2

A
.
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Recalling that N = α/
√
h we can rewrite the right hand side as

α2

N

N−1∑

n=0

1

h
√
h

|Gh/2
γ ∗ (χh(· − nh) − χh(· − (n + 1)h))|2

A
. (85)

This is an average of time shifts of α2 1
h
√
h
|Gh/2

γ ∗ (χh − χh(· − h))|2
A
. Since Nh = o(1) all

these time shifts are small, thus the average has the same distributional limit as α2 1
h
√
h
|Gh/2

γ ∗
(χh − χh(· − h))|2

A
. This proves (83). The argument for (84) is similar.

Existence of the normal velocitiesWe now prove the existence of the normal velocities. Fix
1 ≤ i ≤ N and observe that for w ∈ {γ, β} we have

|χi − χi (· − τ)| ≤(χi − χi (· − τ))Gh
w ∗ (χi − χi (· − τ)) + |χi − Gh

w ∗ χi |
+ |χi (· − τ) − Gh

w ∗ χi (· − τ)|, (86)

which follows simply by observing that |χi − χi (· − τ)| = |χi − χi (· − τ)|2 = (χi − χi (· −
τ)Gh

w ∗ (χi −χi (·− τ))+ (χi −χi (·− τ))(χ −Gh
w ∗χ)+ (χi (·− τ)−χi )(χi (·− τ)−Gh

w ∗
χi (· − τ)). Using Jensen’s inequality and the elementary identity (156) in the “Appendix”
we have

|χi − Gh
w ∗ χi | ≤

∫
Gh

w(z)|χi (x) − χi (x − z)|dz

=
∫

Gh
w(z)χi (x)(1 − χi (x − z))dz +

∫
Gh

w(z)(1 − χi (x))χi (x − z)dz

=
∑

k �=i

∫
Gh

w(z)χi (x)χk(x − z)dz +
∑

k �=i

∫
Gh

w(z)χk(x)χi (x − z)dz.

(87)

Now observe that by testing (44) with Gw/Ki j (which is bounded, and thus admissible), we
learn that

lim
h↓0

1√
h

∫
Gh

w(z)χi (x)χk(x − z)dz =
∫

Gw(z)(νik(x, t) · z)+dzHd−1
|�ik (t)

(dx)dt . (88)

Thus, if we divide (86) by
√
h and let h ↓ 0, using also (73) we obtain

α|∂tχi | ≤ lim inf
h↓0

|δχi |√
h

≤ lim sup
h↓0

|δχi |√
h

≤ Cα2ω + CHd−1
|∂∗�i (t)

(dx)dt,

(89)

where C is a constant which depends on γ, β, N , the mobilities and the surface tensions. If
we divide by α and then let α → 0 we learn that |∂tχi | is absolutely continuous with respect
toHd−1

|∂∗�i (t)
(dx)dt . In particular, there exists Vi ∈ L1(Hd−1

|∂∗�i (t)
(dx)dt) which is the normal

velocity of χi in the sense that ∂tχi = Vi |∇χi | in the sense of distributions. The optimal
integrability Vi ∈ L2(Hd−1

|∂∗�i (t)
(dx)dt) will be shown in the second part of the proof. Let

us record for later use that with a similar reasoning we actually obtain that lim suph
|δχi |√

h

is absolutely continuous with respect to Hd−1
|∂∗�i (t)

(dx)dt . Thus in particular inequality (89)
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holds with ω replaced by its absolutely continuous part with respect to Hd−1
|∂∗�i (t)

(dx)dt ;
calling this ωac

i , it means

lim sup
h↓0

|δχi |√
h

≤ Cα2ωac
i + CHd−1

|∂∗�i (t)
(dx)dt . (90)

Sharp bound For a given 1 ≤ i ≤ N we denote by δχ+
i and δχ−

i the positive and negative
parts fo δχi respectively, i.e. we set δχ

+
i := (χi −χi (·−τ))+ and δχ−

i := (χi −χi (·−τ))−.
Before entering into the proof of the sharp bound, we need to prove the following property.
For any i �= j we have that, in a distributional sense, the following holds

lim
h↓0

1√
h

δχ+
i K h

i j ∗ δχ+
j = 0 = lim

h↓0
1√
h

δχ−
i K h

i j ∗ δχ−
j . (91)

We focus on the first limit, the second one being analogous. The first observation is that
the limit

λ := lim
h↓0

1√
h

δχ+
i K h

i j ∗ δχ+
j (92)

is a nonnegative bounded measure, which is absolutely continuous with respect to
Hd−1

|�i j (t)
(dx)dt . Indeed, spelling out the z-integral and using the fact that δχ+

i = χi (1 −
χi (· − τ)) we obtain

1√
h

δχ+
i K h

i j ∗ δχ+
j = 1√

h

∫
Kh
i j (z)δχ

+
i (x, t)δχ+

j (x − z, t)dz

≤ 1√
h

∫
Kh
i j (z)χi (x, t)χ j (x − z, t)dz.

By (44) in Lemma 4, as h ↓ 0, the right hand side converges to
∫

Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dt, (93)

which is absolutely continuous with respect to Hd−1
|�i j (t)

(dx)dt .

Now, given ν0 ∈ Sd−1 we claim that

λ ≤
∫

ν0·z≤0
Ki j (z)(νi j · z)+Hd−1

|�i j (t)
(dx)dt

+
∫

ν0·z≥0
Ki j (z)(νi j · z)−Hd−1

|�i j (t)
(dx)dt .

(94)

To see this, we rewrite the argument of the limit in (92) as

1√
h

∫

Rd
λh(t, x, z)dz, (95)

where we set λh(t, x, z) := χi (x, t)(1−χi )(x, t−τ)Kh
i j (z)χi (x−z, t)(1−χi )(x−z, t−τ).

Using the fact that 0 ≤ χi ≤ 1 and
∑

l χl = 1 we obtain the following inequalities

λh ≤ χi (x, t)K
h
i j (z)χi (x − z, t), (96)

λh ≤ χ j (x, t − τ)Kh
i j (z)χi (x − z, t − τ)

+ C
∑

k �=i, j

K h
i j (z) (|δχk |(x, t) + |δχk |(x − z, t)) . (97)
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HereC is a constant that does not depend on h. Using inequality (96) on the domain {ν0 ·z ≤ 0}
and inequality (97) on the domain {ν0 · z ≥ 0} we obtain

λ ≤ lim sup
h↓0

1√
h

∫

ν0·z≤0
χi (x, t)K

h
i j (z)χi (x − z, t)dz

+ lim sup
h↓0

1√
h

∫

ν0·z≥0
χ j (x, t − τ)Kh

i j (z)χi (x − z, t − τ)dz

+ C
∑

k �=i, j

lim sup
h↓0

(
1√
h

∫
Kh
i j (z)|δχk |(x, t)dz + 1√

h

∫
Kh
i j (z)|δχk |(x − z, t)dz

)
.

Observe that for any 1 ≤ k ≤ N we have

lim sup
h↓0

1√
h

∫
Kh
i j (z)|δχk |(x, t)dz = lim sup

h↓0
1√
h

∫
Kh
i j (z)|δχk |(x − z, t)dz. (98)

This can be seen by showing that

lim
h↓0

1√
h

∫
Kh
i j (z) (|δχk |(x, t) − |δχk |(x − z, t)) dz = 0, (99)

which can be shown to be true by testing with an admissible test function, and putting the
spatial shift z on it. Thus recalling (44) and (90), we obtain that

λ ≤
∫

ν0·z≤0
Ki j (z)(νi j · z)+Hd−1

|�i j (t)
(dx)dt

+
∫

ν0·z≥0
Ki j (z)(νi j · z)−Hd−1

|�i j (t)
(dx)dt

+ C
∑

k �=i, j

α2ωac
k + Hd−1

|∂∗�k (t)
(dx)dt .

(100)

Since we already know that λ is absolutely continuous with respect to Hd−1
|�i j (t)

(dx)dt , the
same bound holds true if we replace the right hand side with its absolutely continuous part
with respect to Hd−1

|�i j (t)
(dx)dt . Observing that for k �= i, j by Lemma 6 in the “Appendix”

the measures Hd−1
|∂∗�k (t)

(dx)dt and Hd−1
|∂∗�i j (t)

(dx)dt are mutually singular, this yields (94).

Writing λ = θ(x, t)Hd−1
|�i j (t)

(dx)dt for some L1(Hd−1
|�i j (t)

(dx)dt)-function θ we obtain
that inequality (94) yields

θ(x, t) ≤
∫

ν0·z≤0
Ki j (z)(νi j (x, t) · z)+dz

+
∫

ν0·z≥0
Ki j (z)(νi j (x, t) · z)−dz

(101)

for every ν0 ∈ Sd−1 and Hd−1
|�i j (t)

(dx)dt-a.e. (x, t) ∈ [0, 1)d × (0, T ). By a separability
argument, we see that the null set on which (101) does not hold can be chosen so that it
is independent of the choice of ν0. If we select ν0 = νi j (x, t) this yields θ ≤ 0 almost
everywhere with respect toHd−1

|�i j (t)
(dx)dt . Since we already know that λ is nonnegative this

gives λ = 0.
Before getting the sharp bound, we check that for any i �= j we have Vi = −Vj a.e. with

respect toHd−1
|�i j (t)

(dx)dt . To see this, we start by observing that if ξ ∈ C∞
c ([0, 1)d × (0, T )),
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thanks to the fact that
∑

k �=i χk = 1 − χi , we get

∫
ξViHd−1

|∂∗�i (t)
(dx)dt = −

∫
∂tξχi dxdt

=
∑

k �=i

∫
∂tξχkdxdt

= −
∑

k �=i

∫
ξVkHd−1

|∂∗�k (t)
(dx)dt .

(102)

Choosing ξ = f (t)g(x) for some f ∈ C∞
c ((0, T )) and g ∈ C∞([0, 1)d), by a separability

argument, we obtain that for a.e. t and every g ∈ C∞([0, 1)d)
∫

gViHd−1
|∂∗�i (t)

(dx) = −
∑

k �=i

∫
gVkHd−1

|∂∗�k (t)
(dx). (103)

Pick t such that (103) holds. Let g ∈ C∞([0, 1)d) and let ρm be a partition of unity
obtained by the construction of Sect. 4 applied to the function χ(·, t) on the interface �i j (t).
Then

∑

m∈N

∫
ρmgViHd−1

|∂∗�i (t)
(dx) = −

∑

m∈N

∑

k �=i

∫
ρmgVkHd−1

|∂∗�k (t)
(dx). (104)

Passing to the limit r ↓ 0 in (104) we get by Lemma 5 that

∫
gViHd−1

|�i j (t)
(dx) = −

∫
gVjHd−1

|�i j (t)
(dx). (105)

Since this identity holds for any g ∈ C∞([0, 1)d), a density argument gives Vi (x, t) =
−Vj (x, t) for Hd−1

|�i j (t)
-a.e. x . In other words

∫
|Vi (x, t) + Vj (x, t)|Hd−1

|�i j (t)
(dx) = 0. (106)

Integrating in time yields that Vi = −Vj a.e. with respect to Hd−1
|�i j (t)

(dx)dt .

We now proceed with the derivation of the sharp lower bound. Define ci j := ∫ Ki j (z)dz.
Then we have

ci j (|δχi | + |δχ j |) = ci j (δχ
+
i + δχ−

j + δχ−
i + δχ+

j )

= 1

2

(
δχ+

i K h
i j ∗ (1 − δχ−

j ) + (1 − δχ−
j )Kh

i j ∗ δχ+
i + δχ−

j K
h
i j ∗ (1 − δχ+

i )

+(1 − δχ+
i )Kh

i j ∗ δχ−
j + δχ−

i K h
i j ∗ (1 − δχ+

j ) + (1 − δχ+
j )Kh

i j ∗ δχ−
i

+δχ+
j K

h
i j ∗ (1 − δχ−

i ) + (1 − δχ−
i )Kh

i j ∗ δχ+
j

)

+
(
δχ+

i K h
i j ∗ δχ−

j + δχ−
j K

h
i j ∗ δχ+

i + δχ−
i K h

i j ∗ δχ+
j + δχ+

j K
h
i j ∗ δχ−

i

)
.

(107)
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Now we rewrite the terms in the second parenthesis using −ab = a+b− + a−b+ − a+b+ −
a−b− and then adding and subtracting the contributions of the minority phases we obtain

ci j (|δχi | + |δχ j |) ≤ 1

2

(
δχ+

i K h
i j ∗ (1 − δχ−

j ) + (1 − δχ−
j )Kh

i j ∗ δχ+
i + δχ−

j K
h
i j ∗ (1 − δχ+

i )

+ (1 − δχ+
i )Kh

i j ∗ δχ−
j + δχ−

i K h
i j ∗ (1 − δχ+

j ) + (1 − δχ+
j )Kh

i j ∗ δχ−
i

+ δχ+
j K

h
i j ∗ (1 − δχ−

i ) + (1 − δχ−
i )Kh

i j ∗ δχ+
j

)
−
∑

l,p

δχl K
h
lp ∗ δχp

+ δχ+
i K h

i j ∗ δχ+
j + δχ−

i K h
i j ∗ δχ−

j + δχ+
j K

h
i j ∗ δχ+

i

+ δχ−
j K

h
i j ∗ δχ−

i +
∑

{l,p}�={i, j}
δχl K

h
lp ∗ δχp.

(108)

Now the main idea is to split the integral of Ki j in the definition of ci j into two parts.
More precisely, by the symmetry (20), for any ν0 ∈ Sd−1 and any V0 > 0 we have

ci j = 2
∫

0≤ν0·z≤αV0
Ki j (z)dz + 2

∫

ν0·z>αV0
Ki j (z)dz. (109)

Substituting into (108) and dividing by
√
h we obtain

2
∫

0≤ν0·z≤αV0
Ki j (z)dz

(|δχi | + |δχ j |)√
h

≤ 1

2
√
h

(
δχ+

i K h
i j ∗ (1 − δχ−

j ) + (1 − δχ−
j )Kh

i j ∗ δχ+
i + δχ−

j K
h
i j ∗ (1 − δχ+

i )

+ (1 − δχ+
i )Kh

i j ∗ δχ−
j + δχ−

i K h
i j ∗ (1 − δχ+

j ) + (1 − δχ+
j )Kh

i j ∗ δχ−
i

+ δχ+
j K

h
i j ∗ (1 − δχ−

i ) + (1 − δχ−
i )Kh

i j ∗ δχ+
j

− 4
∫

ν0·z>αV0
Ki j (z)dz(|δχi | + |δχ j |)

− 2
∑

l,p

δχl K
h
lp ∗ δχp + 2δχ+

i K h
i j ∗ δχ+

j + 2δχ−
i K h

i j ∗ δχ−
j

+ 2δχ+
j K

h
i j ∗ δχ+

i + 2δχ−
j K

h
i j ∗ δχ−

i

+ 2
∑

(l,p)�=(i, j),(l,p)�=( j,i)

δχl K
h
lp ∗ δχp

)
. (110)

We will be interested in bounding the lim inf of the left hand side. Observe that the
distributional limit of the last five terms is non-positive. Indeed, the limit of first four terms
vanish distributionally by property (91), while the last term is bounded from above by

2
∑

(l,p)�=(i, j),(l,p)�=( j,i)

δχ+
l K h

lp ∗ δχ+
p + δχ−

l K h
lp ∗ δχ−

p ,
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which vanish distributionally in the limit h ↓ 0 by property (91). We thus obtain that the
lim inf of the left hand side of (110) is bounded from above by

lim inf
h↓0

1

2
√
h

(
δχ+

i K h
i j ∗ (1 − δχ−

j ) + (1 − δχ−
j )Kh

i j ∗ δχ+
i + δχ−

j K
h
i j ∗ (1 − δχ+

i )

+ (1 − δχ+
i )Kh

i j ∗ δχ−
j + δχ−

i K h
i j ∗ (1 − δχ+

j ) + (1 − δχ+
j )Kh

i j ∗ δχ−
i

+ δχ+
j K

h
i j ∗ (1 − δχ−

i ) + (1 − δχ−
i )Kh

i j ∗ δχ+
j

− 4
∫

ν0·z>αV0
Ki j (z)dz(|δχi | + |δχ j |) − 2

∑

l,p

δχl K
h
lp ∗ δχp

)
.

(111)

For the last term we use the sharp bound (72), relating this term to our dissipation measure
ω. We would like to get a good bound for the other terms. This cannot be done naively as
before, since we want the bound to be sharp. We claim that

lim sup
h↓0

1√
h

(
δχ+

i K h
i j ∗ (1 − δχ−

j ) + (1 − δχ−
j )Kh

i j ∗ δχ+
i + δχ−

j K
h
i j ∗ (1 − δχ+

i )

+ (1 − δχ+
i )Kh

i j ∗ δχ−
j + δχ−

i K h
i j ∗ (1 − δχ+

j ) + (1 − δχ+
j )Kh

i j ∗ δχ−
i

+ δχ+
j K

h
i j ∗ (1 − δχ−

i ) + (1 − δχ−
i )Kh

i j ∗ δχ+
j

− 4
∫

ν0·z>αV0
Ki j (z)dz(|δχi | + |δχ j |)

)

≤ 8
∫

0≤ν0·z≤αV0
Ki j (z)|νi j (x) · z|dzHd−1

|�i j (t)
(dx)dt

+ C
∑

k �=i, j

(α2ωac
k + Hd−1

|∂∗�k (t)
(dx))dt . (112)

Here C is a constant that depends on γ, β,A,B, but not on h. Assume for the moment that
(112) is true and let us conclude the argument in this case. Using (112) and (72) we obtain

2 lim inf
h↓0

∫

0≤ν0·z≤αV0
Ki j (z)dz

(|δχi | + |δχ j |)√
h

≤ α2ω + 4
∫

0≤ν0·z≤αV0
Ki j (z)|νi j (x) · z|dzHd−1

|�i j (t)
(dx)dt

+ C
∑

k �=i, j

(α2ωac
k + Hd−1

|∂∗�k (t)
(dx)dt (113)

in the sense of distributions on [0, 1)d × (0, T ). Observe also that the left hand side of (113)
is an upper bound for

∫
0≤ν0·z≤αV0

Ki j (z)dz(|∂tχi | + |∂tχ j |), thus the inequality still holds
true if the left hand side is replaced by this term. Remember thatωac

k is absolutely continuous
with respect to Hd−1

|∂∗�k (t)
(dx)dt , thus there exist functions Wk ∈ L1(Hd−1

|∂∗�k (t)
(dx)dt) such

thatωac
k = Wk(x, t)Hd−1

|∂∗�k (t)
(dx)dt . We now disintegrate the measureω, i.e. we find a Borel

family ωt , t ∈ (0, T ), of positive measures on [0, 1)d such that ω = ωt ⊗ dt . Having said
this, it is not hard to see that (113) holds in a disintegrated version, i.e. we have for Lebesgue
a.e. t ∈ (0, T )

2α
∫

0≤ν0·z≤αV0
Ki j (z)dz(|Vi (x, t)|Hd−1

|∂∗�i (t)
(dx) + |Vj (x, t)|Hd−1

|∂∗� j (t)
(dx))
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≤ α2ωt + 4
∫

0≤ν0·z≤αV0
Ki j (z)|νi j (x) · z|dzHd−1

|�i j (t)
(dx)

+ C
∑

k �=i, j

(α2Wk(x, t) + 1)Hd−1
|∂∗�k (t)

(dx). (114)

Here ν0 ∈ Sd−1 and V0 ∈ (0,∞) are arbitrary: indeed even if the set of points in time for
which (114) holds is a priori dependent on ν0 and V0, a standard separability argument allows
us to conclude that we can get rid of this dependence.

Fix a point t in time such that (114) holds. In what follows, we drop the time variable t
which is fixed, so for example Vi (x) = Vi (x, t),�i j = �i j (t) and so on. Fix ξ ∈ C([0, 1)d),
observe that by definition of Vi j and by using the fact that �i j ⊂ ∂∗�i ∩ ∂∗� j we have

4α
∫

0≤ν0·z≤αV0
Ki j (z)dz

∫

[0,1)d
ξ(x)|Vi j (x)|Hd−1

|�i j
(dx)

≤ α2
∫

[0,1)d
ξ(x)ωt (dx) + 4

∫

[0,1)d

∫

0≤ν0·z≤αV0
Ki j (z)|νi j (x) · z|dzξ(x)Hd−1

|�i j (t)
(dx)

+ C
∑

k �=i, j

∫

[0,1)d
ξ(x)(α2Wk(x, t) + 1)Hd−1

|∂∗�k (t)
(dx). (115)

Let us relabel ν0, V0 and ξ to make clear that they may depend on the pair i, j . Thus
ν
i j
0 ∈ Sd−1, V i j

0 ∈ (0,∞) and ξi j ∈ C([0, 1)d) are arbitrary, and it holds

4α
∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)dz
∫

[0,1)d
ξi j (x)|Vi j (x)|Hd−1

|�i j
(dx)

≤ α2
∫

[0,1)d
ξi j (x)ωt (dx) + 4

∫

[0,1)d

∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)|νi j (x) · z|dzξi j (x)Hd−1
|�i j (t)

(dx)

+ C
∑

k �=i, j

∫

[0,1)d
ξi j (x)(α

2Wk(x, t) + 1)Hd−1
|∂∗�k (t)

(dx). (116)

Let {ρm} be a partition of unity obtained using the construction of Sect. 4 applied to the
function χ(·, t) on the interface �i j (t). Use the above inequality with ξi j replaced by ρmξi j
and sum over m and i, j to get

∑

i< j

∑

m∈N
LHi j

m ≤
∑

i< j

∑

m∈N
(Ii jm + IIi jm + IIIi jm ) (117)

where we have set

LHi j
m = 4α

∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)dz
∫

[0,1)d
ρmi j (x)ξi j (x)|Vi j (x)|Hd−1

|�i j
(dx),

Ii jm = α2
∫

[0,1)d
ξi j (x)ρmi j (x)ωt (dx),

IIi jm = 4
∫

[0,1)d

∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)|νi j (x) · z|dzρmi j (x)ξi j (x)Hd−1
|�i j (t)

(dx),

IIIi jm = C
∑

k �=i, j

∫

[0,1)d
ρmi j (x)ξi j (x)(α

2Wk(x, t) + 1)Hd−1
|∂∗�k (t)

(dx).
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Observe that
∑

i< j

∑

m∈N
Ii jm ≤

∑

i< j

α2
∫

[0,1)d
ξi j (x)ωt (dx) (118)

because ρm is a partition of unity. Moreover by Lemma 5 we get

lim
r↓0
∑

i< j

∑

m∈N
LHi j

m = 4α
∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)dz
∫

[0,1)d
ξi j (x)|Vi j (x)|Hd−1

|�i j
(dx),

lim
r↓0
∑

i< j

∑

m∈N
IIi jm =

∑

i< j

4
∫

[0,1)d

∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)|νi j (x) · z|dzξi j (x)Hd−1
|�i j (t)

(dx),

lim
r↓0
∑

i< j

∑

m∈N
IIIi jm = 0.

Putting things together we obtain that for any ν
i j
0 ∈ Sd−1, any V i j

0 ∈ (0,∞), and any
ξ ∈ C([0, 1)d)

4α
∑

i< j

∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)dz
∫

[0,1)d
ξi j (x)|Vi j (x)|Hd−1

|�i j
(dx)

≤
∑

i< j

α2
∫

[0,1)d
ξi j (x)ωt (dx)

+ 4
∑

i< j

∫

[0,1)d

∫

0≤ν
i j
0 ·z≤αV i j

0

Ki j (z)|νi j (x) · z|dzξi j (x)Hd−1
|�i j (t)

(dx). (119)

We now claim that by approximation the above inequality is valid for any simple function
ξi j ≥ 0. To see this, it is clear that we can concentrate on ξi j = wi j1Bi j , where Bi j ⊂ [0, 1)d
are Borel and wi j ≥ 0. Observe that by the dominated convergence theorem, the family

F :=
⎧
⎨

⎩B =
∏

i< j

Bi j : Bi j ∈ B([0, 1)d) s.t. ∀wi j ≥ 0 (119) holds with ξi j = wi j1Bi j

⎫
⎬

⎭

(120)

is a monotone class. Thus by the monotone class theorem we just need to show that it
contains all the products of open sets. But this is easy because given Bi j ⊂ [0, 1)d open

sets, we can always find sequences η
i j
k of continuous functions with compact support such

that 0 ≤ η
i j
k ≤ 1Bi j and such that η

i j
k → 1Bi j , thus the claim follows by the monotone

convergence theorem.
With this in place one can use an approximation argument to replace the vector ν

i j
0 with

the Hd−1-measurable vector valued function νi j obtaining the following inequality:

4α
∑

i< j

∫

[0,1)d

∫

0<νi j (x)·z<αV i j
0

Ki j (z)dzξi j (x)|Vi j (x)|Hd−1
|�i j

(dx)

≤
∑

i< j

α2
∫

[0,1)d
ξi j (x)ωt (dx)

+4
∑

i< j

∫

[0,1)d

∫

0≤νi j ·z≤αV i j
0

Ki j (z)|νi j (x) · z|dzξi j (x)Hd−1
|�i j

(dx). (121)
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Now divide by α2 and send α to zero. Record the following limits, which can be com-
puted spelling out the definition of Ki j , and recalling the symmetry property (20) and the
factorization property (23) for the heat kernel

lim
α↓0

1

α

∫

0<νi j (x)·z<αV i j
0

Ki j (z)dz = V i j
0

2μi j
.

lim
α↓0

1

α2

∫

0≤νi j (x)·z≤αV i j
0

Ki j (z)|νi j (x) · z|dz = (V i j
0 )2

4μi j
. (122)

Then if we insert back into (121) we obtain

∑

i< j

2

μi j

∫

[0,1)d
V i j
0 ξi j (x)|Vi j (x)|Hd−1

|�i j
(dx) (123)

≤
∫

[0,1)d
ωt (dx) +

∑

i< j

∫

[0,1)d
(V i j

0 )2

μi j
ξi j (x)Hd−1

|�i j (t)
(dx). (124)

Now given M > 0 take sequences of simple functions

si jm =
pm∑

k=1

w
i j
k 1Bk

i j
(125)

such that si jm → |Vi j |1{|Vi j |≤M} as m → +∞ monotonically almost everywhere with respect

to Hd−1
|�i j (t)

. We are assuming that {Bk
i j }k=1,...,pm are disjoint andHd−1-measurable, with the

property that Bk1
i j ∩ Bk2

lr = ∅ if {i, j} �= {l, r}. Choosing V i j
0 = w

i j
k , ξi j = 1Bk

i j
in (123) and

summing over k we obtain

∑

i< j

2

μi j

∫

[0,1)d
si jm |Vi j (x)|Hd−1

|�i j
(dx)

≤
∫

[0,1)d
ωt (dx) +

∑

i< j

∫

[0,1)d
(si jm )2

μi j
Hd−1

|�i j (t)
(dx). (126)

Taking the limit m → +∞, using the monotone convergence theorem we obtain

∑

i< j

2

μi j

∫

[0,1)d
|Vi j (x)|21{|Vi j |≤M}Hd−1

|�i j
(dx)

≤
∫

[0,1)d
ωt (dx) +

∑

i< j

∫

[0,1)d
|Vi j (x)|2

μi j
1{|Vi j |≤M}Hd−1

|�i j
(dx) (127)

or, in other words,

∑

i< j

1

μi j

∫

[0,1)d
|Vi j (x)|21{|Vi j |≤M}Hd−1

|�i j
(dx) ≤

∫

[0,1)d
ωt (dx).

Recall that μi j = μ j i , thus the inequality above may be rewritten as

∑

i, j

1

2μi j

∫

[0,1)d
|Vi j (x)|21{|Vi j |≤M}Hd−1

|�i j
(dx) ≤

∫

[0,1)d
ωt (dx).
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If we now integrate in time we learn by the monotone convergence theorem that Vi j ∈
L2(Hd−1

|�i j (t)
(dx)dt) and that the sharp bound (47) is satisfied.

Proof of (112) To prove (112) we proceed in several steps.
First of all, we claim that the first eight terms may be substituted by

2
∫

ν0·z≥0
Kh
i j (z)

(
|δχ+

i − δχ−
j (−z)| + |δχ+

i (−z) − δχ−
j |

|δχ−
i − δχ+

j (−z)| + |δχ−
i (−z) − δχ+

j |
)
dz. (128)

To show this, observe that we may replace the implicit z-integrals in the convolution in
the first eight terms by twice the integrals over the half space {ν0 · z ≥ 0} instead of Rd . This
is clearly true once we observe that, in the sense of distribution

lim
h↓0

1√
h

(
δχ+

i

∫

ν0·z≥0
Kh
i j (z)(1 − δχ−

j (· − z))dz

+(1 − δχ−
j )

∫

ν0·z≥0
Kh
i j (z)δχ

+
i (· − z)dz

)

= lim
h↓0

1√
h

(
δχ+

i

∫

ν0·z≤0
Kh
i j (z)(1 − δχ−

j (· − z))dz

+(1 − δχ−
j )

∫

ν0·z≤0
Kh
i j (z)δχ

+
i (· − z)dz

)
(129)

and that similar identities hold exchanging the roles of i, j and+,− respectively. That (129)
holds is not difficult to show. Indeed multiplying the argument in both the limits by a test
function ξ ∈ C∞

c ([0, 1)d × (0, T )) and integrating over space-time one observes that since
the kernel is even, the argument of the second limit is just a spatial shift of z of the first one.
By translation invariance the spatial shift may be put onto the test function, and thanks to
the scaling of the kernel one can get the claim. We may thus substitute the first eight terms
of the left hand side of (112) with twice the same terms with the integration with respect to
z on the half space {ν0 · z ≥ 0}. If we rely again on the fact that δχ+

i ∈ {0, 1}, by identity
(156) in the “Appendix” we obtain (128), as claimed.

Now we need two inequalities for the integrand. First note that the integrand is a mixed
space-time second-order finite difference. We claim that

|δχ+
i − δχ−

j (· − z)| + |δχ+
i (· − z) − δχ−

j | + |δχ−
i − δχ+

j (· − z)| + |δχ−
i (· − z) − δχ+

j |

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|δχ+
i − δχ+

i (· − z)| + |δχ−
i − δχ−

i (· − z)| + |δχ+
j − δχ+

j (· − z)| + |δχ−
j − δχ−

j (· − z)|
+ 4

∑
k �=i, j (|δχk | + |δχk(· − z)|),

|δχi | + |δχi (· − z)| + |δχ j | + |δχ j (· − z)|.
(130)

The second follows from the triangle inequality. To show the first one, observe that

|δχ+
i − δχ−

j (· − z)| = (1 − δχ+
i )δχ−

j (· − z) + δχ+
i (1 − δχ−

j (· − z))

≤ (1 − δχ+
i )δχ+

i (· − z) +
∑

k �=i, j

|δχk(· − z)| + δχ−
j (1 − δχ−

j (· − z))
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+
∑

k �=i, j

|δχk | (131)

and that similarly

|δχ+
i (· − z) − δχ−

j | =(1 − δχ+
i (· − z))δχ−

j + δχ+
i (· − z)(1 − δχ−

j )

≤(1 − δχ+
i (· − z))δχ+

i +
∑

k �=i, j

|δχk | + δχ−
j (· − z)(1 − δχ−

j )

+
∑

k �=i, j

|δχk(· − z)|. (132)

Summing up the two inequalities we get

|δχ+
i − δχ−

j (· − z)| + |δχ+
i (· − z) − δχ−

j |
≤ |δχ+

i − δχ+
i (· − z)| + |δχ−

j − δχ−
j (· − z)| + 2

∑

k �=i, j

(|δχk | + |δχk(· − z)|) . (133)

Similar bounds hold for the remaining terms in (130).
We now split the integral (128) into the domains of integration {0 ≤ ν0 · z ≤ αV0}

and {ν0 · z > αV0}. On the first one we use the first inequality in (130) for the integrand.
Recalling identity (156) and inequality (157) in the “Appendix” we obtain, and using the fact
that

∑
k χk = 1

2
∫

0≤ν0·z≤αV0
Kh
i j (z)

(
|δχ+

i − δχ−
j (· − z)| + |δχ+

i (· − z) − δχ−
j |

+ |δχ−
i − δχ+

j (· − z)| + |δχ−
i (· − z) − δχ+

j |
)
dz

≤ 2
∫

0≤ν0·z≤αV0
Kh
i j (z)

(
|χi − χi (· − z)| + |χi (· − τ) − χi (· − τ, · − z)|

+ |χ j − χ j (· − z)| + |χ j (· − τ) − χ j (· − τ, · − z)|
+ 8

∑

k �=i, j

|δχk | + |δχk(· − z)|
)
dz

≤ 2
∫

0≤ν0·z≤αV0
Kh
i j (z)

⎛

⎝χiχ j (· − z) + χi (· − z)χ j +
∑

k �=i, j

χiχk(· − z) + χi (· − z)χk

+χi (· − τ)χ j (· − τ, · − z) + χi (· − τ, · − z)χ j (· − τ)

+
∑

k �=i, j

χi (· − τ)χk(· − τ, · − z) + χi (· − τ, · − z)χk(· − τ)

+χ jχi (· − z) + χ j (· − z)χi +
∑

k �=i, j

χ jχk(· − z) + χ j (· − z)χk

+χ j (· − τ)χi (· − τ, · − z) + χ j (· − τ, · − z)χi (· − τ)

+
∑

k �=i, j

χ j (· − τ)χk(· − τ, · − z) + χ j (· − τ, · − z)χk(· − τ)

+8
∑

k �=i, j

|δχk | + |δχk(· − z)|
⎞

⎠ dz. (134)
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On the set {ν0 · z > αV0} we use the second inequality in (130), obtaining

2
∫

ν0·z>αV0
Kh
i j (z)

(
|δχ+

i − δχ−
j (· − z)| + |δχ+

i (· − z) − δχ−
j |

+|δχ−
i − δχ+

j (· − z)| + |δχ−
i (· − z) − δχ+

j |
)
dz

≤ 2
∫

ν0·z>αV0
Kh
i j (z)(|δχi | + |δχi (· − z)| + |δχ j | + |δχ j (· − z)|)dz. (135)

We now observe that for any 1 ≤ k ≤ N we have, as we already observed in (99)

lim
h↓0

1√
h

∫

0≤ν0·z≤αV0
Kh
i j (z)(|δχk(· − z)| − |δχk |)dz = 0, (136)

thus in particular

lim sup
h↓0

1√
h

∫

0≤ν0·z≤αV0
Kh
i j (z)|δχk(· − z)|dz

= lim sup
h↓0

1√
h

∫

0≤ν0·z≤αV0
Kh
i j (z)|δχk |dz. (137)

By putting the time shift τ on the test function it is easy to check that the distributional limit
of the terms of (134) which involve the shift τ have the same limit as the corresponding
terms without the time shift. Thus recalling (90) and relying on (136) and (44) we obtain that
inserting (134) and (135) into (128), the left hand side of (112) is bounded by

8
∫

0≤ν0·z≤αV0
Ki j (z)((νi j (x, t) · z)+ + (νi j (x, t) · z)−)Hd−1

|�i j (t)
(dx)dtdz

+ C
∑

k �=i, j

∫

0≤ν0·z≤αV0
Kik(z)((νik(x, t) · z)+ + (νik(x, t) · z)−)Hd−1

|�ik (t)
(dx)dtdz

+ C
∑

k �=i, j

(α2ωac
k + Hd−1

|∂∗�k (t)
(dx)dt),

which clearly gives the claim once we realize that
∫

0≤ν0·z≤αV0
Kik(z)((νik(x) · z)+ + (νik(x) · z)−)dz

≤ 2
∫

Rd
Kik(z)|z|dz ≤ C .

��

5.4 Proof of Proposition 2

Proof The proof is along the same lines as Proposition 2 in [21], where the claim is shown in
the case of two phases. For the convenience of the reader, we outline the strategy of the full
proof, providing details only for the required changes. The proof is split into several steps.
step 1. The first observation is that for any h > 0, any admissible u ∈ M and any smooth
vector field ξ we have the following lower bound for the metric slope, cf. (33)

1

2
|∂Eh |(u) ≥ δEh(u)•ξ − 1

2
(δdh(·, u)•ξ)2 .
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Here δ denotes the first variation, which is computed considering the curve s → us of
configurations which solve the transport equations

{
∂susi + ξ · ∇usi = 0,

usi (·, 0) = ui (·), (138)

and by setting

δEh(u)•ξ := d

ds |s=0
Eh(u

s) and δdh(·, u)•ξ := d

ds |s=0
d(u, us). (139)

step 2. The second observation is a representation formula for δEh(u)•ξ . Namely

δEh(u)•ξ =
∑

i, j

1√
h

(∫
∇ · ξui K

h
i j ∗ u jdx +

∫
∇ · ξu j K

h
i j ∗ uidxdt

+
∫

[ξ,∇Kh
i j∗](u j )uidx

)
.

(140)

Here [ξ,∇Kh
i j∗] denotes the commutator obtained taking the convolution with ∇Kh

i j and
multiplying by ξ , the definition is analogous to the one given in (79). To check this formula
one starts by assuming u to be smooth and then an approximation argument gives the result
for a general u ∈ M.
step 3. Representation for δdh(·, u)•ξ . One checks that

1

2
(δdh(·, u)•ξ)2

=
√
h

2

∑

i, j

(∫
uiξ · ∇2Kh

i j ∗ (ξu j )dx +
∫

u jξ · ∇2Kh
i j ∗ (ξui )dx

+
∫

ui∇ · ξ∇Kh
i j ∗ (ξu j )dx +

∫
u j∇ · ξ∇Kh

i j ∗ (ξui )dx

−
∫

ui∇ · ξKh
i j ∗ (u j∇ · ξ)dx −

∫
u j∇ · ξKh

i j ∗ (ui∇ · ξ)dx

−
∫

ξui∇Kh
i j ∗ (u j∇ · ξ)dx −

∫
ξu j∇Kh

i j ∗ (ui∇ · ξ)dx

)
. (141)

Once again this formula can be easily checked when u is smooth, an approximation
argument then gives the extension to the case u ∈ M.
step 4. Passage to the limit in δEh . We claim that

lim
h↓0

∫ T

0
δEh(u

h(t))•ξdt =
∑

i, j

σi j

∫ (∇ · ξ − νi j · ∇ξνi j
)Hd−1

|�i j (t)
(dx)dt . (142)

The proof is very similar to the two phases case, and relies on the weak convergence (44)
and (45). Firstly, testing (44) with ∇ · ξ we get

lim
h↓0
∑

i, j

1√
h

∫ (
∇ · ξuhi K

h
i j ∗ uhj + ∇ · ξuhj K

h
i j ∗ uhi

)
dxdt

=
∑

i, j

2σi j

∫
∇ · ξHd−1

|�i j (t)
(dx)dt .
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For the term involving the commutator, one checks that

lim
h↓0

(∫
[ξ,∇Kh

i j∗](uhj )uhi dxdt −
∫

∇ξ z · ∇Kh
i j (z)u

h
j (x − z, t)uhi (x, t)dzdxdt

)
= 0.

With this in place, we observe that

lim
h↓0

∫
∇ξ z · ∇Kh

i j (z)u
h
j (x − z, t)uhi (x, t)dzdxdt

=
∫

∇ξ(x, t)z · ∇Ki j (z)(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dt

which can be seen by testing (44) with
∇ξ z·∇Ki j (z)

Ki j (z)
, which is of polynomial growth in z. To

conclude (142) we just need to show that for any symmetric matrix A ∈ Rd×d and any unit
vector ν we have

∫
Az · ∇Ki j (z)(ν · z)+dz = −σi j (tr A + ν · Aν) .

Using the definition of the kernel Ki j it suffices to show that

∫
Az · ∇Gw(z)(ν · z)+dz = −

√
w√
π

(tr A + ν · Aν) w ∈ {γ, β}.

step 5. Passage to the limit in δdh(·, u)ξ . We claim that

lim
h↓0

1

2

(
δdh(·, uh)•ξ

)
=
∑

i, j

1

2μi j

∫
(ξ · νi j )

2Hd−1
|�i j (t)

(dx)dt . (143)

To prove this, we observe that the terms which do not involve the Hessian ∇2Kh
i j are all

O(
√
h). For example, to prove that

√
h
∫

uhi ∇ · ξ∇Kh
i j ∗ (ξuhj )dxdt = O(

√
h), (144)

spell out the integral in the convolution, use the fact that ∇Kh
i j = 1√

h
d+1 ∇Ki j (

z√
h
), use the

fact that ∇ · ξ(x, t)ξ(x − √
hz, t) is bounded and test (44) with ∇Ki j/Ki j . The other terms

can be treated similarly. For the terms involving the Hessian of the kernel, we split the claim
into

lim
h↓0

√
h
∫

uhi (ξ · ∇2Kh
i j ∗ u j )ξdxdt = 1

2μi j

∫
(ξ · νi j (x, t))

2Hd−1
|�i j (t)

(dx)dt, (145)

√
h
∫

uhi ξ · [ξ,∇2Kh
i j∗](uhj )dxdt = O(

√
h). (146)

The proof of (146) is similar to the argument for (144). In fact, while the additional
derivative on the kernel gives an additional factor 1√

h
, we gain a factor

√
h by the Lipschitz

estimate

|ξ(x, t) − ξ(x − √
hz, t)| ≤ √

h‖∇ξ‖∞. (147)
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To prove identity (145) observe that by spelling out the z-integral, a change of variable and

by testing (44) with
ξ(x,t)·∇2Ki j (z)ξ(x,t)

Ki j (z)
we obtain

lim
h↓0

√
h
∫

uhi (ξ · ∇2Kh
i j ∗ uhj )ξdxdt

=
∫

ξ · ∇2Ki j (z)ξ(νi j (x, t) · z)+Hd−1
|�i j (t)

(dx)dt .

Now identity (143) follows from the following formula: For any two vectors ξ ∈ Rd and
ν ∈ Sd−1 we have

∫
ξ · ∇2Ki j (z)ξ(ν · z)+dz = 1

2μi j
(ξ · ν)2. (148)

To check (148), by relying on the definition of the kernels, we just need to show that for
w ∈ {γ, β}

∫
ξ · ∇2Gw(z)ξ(ν · z)+dz = 1

2
√

πw
(ξ · ν)2.

Since the kernel is isotropic, we can reduce to the case ξ = e1, thus we need to prove

∫
∂21Gw(z)(ν · z)+dz = 1

2
√

πw
ν21 .

This can be done after two integration by parts and observing that

∫

ν·z=0
Gw(z)Hd−1(dz) = 1

2
√

πw
.

conclusion. By step 1 we have

1

2

∫ T

0
|∂Eh |2(uh) dt ≥

∫ T

0
δEh(u

h)•ξdt − 1

2

∫ T

0

(
δdh(·, uh)•ξ

)2
dt .

Taking the liminf on the left hand side, using step 4 and step 5 we get that for any smooth
vector field ξ

lim inf
h↓0

1

2

∫ T

0
|∂Eh |2(uh)dt ≥

∑

i, j

[
σi j

∫ (∇ · ξ − νi j · ∇ξνi j
)Hd−1

|�i j (t)
(dx)dt

− 1

2μi j

∫
(ξ · νi j )

2 Hd−1
|�i j (t)

(dx)dt

]
.

Since the left hand side is bounded, the Riesz representation theorem for L2 yields functions
Hi j ∈ L2(Hd−1

|�i j (t)
(dx)dt) such that

∑

i, j

σi j

∫ (∇ · ξ − νi j · ∇ξνi j
) Hd−1

|�i j (t)
(dx)dt = −

∑

i, j

σi j

∫
Hi jνi j · ξ Hd−1

|�i j (t)
(dx)dt
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and such that for any ξ ∈ L2(Hd−1
|⋃i, j �i j (t)

(dx)dt)

lim inf
h↓0

1

2

∫ T

0
|∂Eh |(uh) dt ≥

∑

i, j

(
− σi j

∫
Hi jνi j · ξHd−1

|�i j (t)
(dx)dt

− 1

2μi j

∫
(ξ · νi j )

2Hd−1
|�i j (t)

(dx)dt

)
.

Since the integration measures are mutually singular we can test with a vector field ξ ∈
L2(Hd−1

|⋃i, j �i j (t)
(dx)dt) such that ξ|�i j (t) = −μi jσi j Hi jνi j . This yields

lim inf
h↓0

1

2

∫ T

0
|∂Eh |2(uh) dt ≥1

2

∑

i, j

σ 2
i jμi j

∫
H2
i j Hd−1

|�i j (t)
(dx)dt .

��
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6 Appendix

6.1 Proof of Lemma 5

Before giving the proof of this result, we need a simple technical lemma.

Lemma 6 Fix 1 ≤ l �= p ≤ N. Then for any 1 ≤ i �= j ≤ N such that {i, j} �= {l, p} the
interfaces �i j and �lp are disjoint. In particular for Hd−1-a.e. x ∈ �lp we have that

lim
r↓0

Hd−1(�i j ∩ B(x, r))

ωd−1rd−1 = 0. (149)

Proof We first show that the interfaces �i j and �lp are disjoint. This follows immediately
once we recall that every point in the reduced boundary of a set of finite perimeter has density
1/2 (see [26], Corollary 15.8). Assume for example that i �= l, p. Thus if y ∈ �lp we have

1 ≥ lim sup
r↓0

|(�l ∪ �p ∪ �i ) ∩ B(y, r)|
ωdrd

= lim
r↓0

|�l ∩ B(y, r)|
ωdrd

+ lim
r↓0

|�p ∩ B(y, r)|
ωdrd

+ lim sup
r↓0

|�i ∩ B(y, r)|
ωdrd

= 1 + lim sup
r↓0

|�i ∩ B(y, r)|
ωdrd

(150)
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which says that y has density zero in �i .
The fact that (149) holds is now a consequence of the general fact

lim sup
r↓0

Hd−1(�i j ∩ B(x, r))

ωd−1rd−1 = 0

for Hd−1-a.e. x ∈ (�i j )
c. ��

Proof of Lemma 5 The argument for (i) can be found in [19] in the case of two phases and
without localization, i.e. with η = 1 and N = 2. For the sake of completeness, we provide the
proof in our case. Upon splitting into the negative and positive part, we may assume η ≥ 0.
Clearly the only nonzero terms in the sum are those for which Br

m ∩ �i j �= ∅. Fix such a
ball: by definition there exists y ∈ rZd such that Br

m = B(y, 2r
√
d). If x ∈ �i j ∩ Br

m then
we have that B(x, 2r

√
d) ⊂ B(y, 4r

√
d), and by definition of Er this yields

Hd−1(B(x, 2r
√
d) ∩ �i j ) ≤ ωd−1

2d
(4r)d−1

√
d
d−1 = ωd−1

2
(2r)d−1

√
d
d−1

.

Thus x belongs to the set of points in �i j ∩ Br
m such that

Hd−1(B(x, 2r
√
d) ∩ �i j )

ωd−1(2r
√
d)d−1

≤ 1

2
. (151)

By De Giorgi’s structure theorem the approximate tangent plane exists at every point
x ∈ �i j , thus (151) cannot hold when r is small enough: moreover every point x ∈ �i j is
contained in at most c(2, d) balls, this means that

∑

m

1{
z∈Br

m∩�i j : Hd−1(B(x,2r
√
d)∩�i j )

ωd−1(2r
√
d)d−1 ≤ 1

2

}(x)η(x) ≤ c(2, d)η(x) (152)

and that the left hand side of (152) converges to zero pointwise. By the dominated convergence
theorem we get our claim.

Proof of (ii)Upon splitting into the negative and positive part,wemay assumeη ≥ 0.Given
a point x ∈ �lp , if y ∈ rZd is such that x ∈ B(y, 2r

√
d), then B(y, 4r

√
d) ⊂ B(x, 6r

√
d).

Thus for any 1 ≤ i < j ≤ N with (i, j) �= (l, p) we have

Hd−1(B(y, 4r
√
d) ∩ �i j ) ≤ Hd−1(B(x, 6r

√
d) ∩ �i j )

≤ ωd−1

2d
(4r)d−1

√
d
d−1

provided r is small enough, this follows from Lemma 6. Since Fr
2 covers [0, 1)d we obtain

that

x ∈
⋃

m

Br
m

for all r small enough. In other words

lim
r↓0
∑

m

ρm(x)η(x) = η(x)

pointwise on �lp , and the argument of the limit on the right hand side is dominated by η.
Thus we may once again appeal to the dominated convergence theorem and conclude the
proof. ��
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6.2 Consistency andmonotonicity

The following results are essentially contained in [8] and [19], indeed the proofs may be
adapted because we are assuming that ai j and bi j satisfy the triangle inequality.

Lemma 7 For every χ ∈ A ∩ BV ([0, 1)d)N we have

lim
h↓0 Eh(χ) = E(χ). (153)

If χ ∈ L1((0, T ), BV ([0, 1)d)N ) such that χ(·, t) ∈ A for a.e. t . Then

lim
h↓0

∫ T

0
Eh(χ)dt =

∫ T

0
E(χ)dt .

Even more is true: for any g ∈ C∞([0, 1)d) and any pair 1 ≤ i �= j ≤ N we have

lim
h↓0

1√
h

∫ T

0

∫
g(x)(χi (x, t)K

h
i j ∗ χ j (x, t) + χ j (x, t)K

h
i j ∗ χi (x, t))dxdt

=
∫

g(x)Ki j (z)|νi j · z|dzdxdt .

Lemma 8 For any 0 < h ≤ h0 we have

Eh(u) ≥
( √

h0√
h + √

h0

)d+1

Eh0(u).

6.3 Improved convergence of the energies

The following lemma is an improvement of the convergence of the energies, the proof of this
result is contained, with minor modifications, in the paper [19], Corollary 3.7.

Lemma 9 Let uh be a sequence of [0, 1]-valued functions such that uh → χ in L1([0, 1)d ×
(0, T )) and

lim
h↓0

∫ T

0
Eh(u

h(t))dt =
∫ T

0
E(χ(t))dt . (154)

Then we have that

lim
h↓0

1√
h

∫
Gh

γ (z)| f γ

h (z) − f γ (z)|dz = 0,

lim
h↓0

1√
h

∫
Gh

β(z)| f β
h (z) − f β(z)|dz = 0, (155)

where we set

f γ

h (z) =
∑

i, j

ai j

∫
uhi (x, t)u

h
j (x − z, t)dxdt, f γ (z) =

∑

i, j

ai j

∫
χi (x, t)χ j (x − z, t)dxdt,

f β
h (z) =

∑

i, j

bi j

∫
uhi (x, t)u

h
j (x − z, t)dxdt, f β(z) =

∑

i, j

bi j

∫
χi (x, t)χ j (x − z, t)dxdt .
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6.4 Some inequalities

Here we gather some elementary inequalities which are used frequently.

Lemma 10 Let a, b, a′, b′ ∈ {0, 1}, then the following inequalities hold:

|a − b| = a(1 − b) + b(1 − a), (156)

|(a − a′)+ − (b − b′)+| + |(a − a′)− − (b − b′)−|
≤ |a − b| + |a′ − b′|. (157)

Proof The first identity follows by expanding |a − b| = |a − b|2. The second one is proved
in [21]. For the sake of completeness, we reproduce the proof here. There are two cases. In
the first one we have (a − a′)(b − b′) ≥ 0 and we may assume upon replacing (a, a′, b, b′)
with (−a,−a′,−b,−b′) that (a − a′) and (b− b′) are non-negative. Then (157) reduces to

|(a − a′) − (b − b′)| ≤ |a − b| + |a′ − b′|.
The second case is given by (a − a′)(b− b′) ≤ 0. By an argument as before we may assume
(a − a′) ≥ 0 ≥ (b′ − b), thus (157) reduces to

(a − a′) + (b − b′) ≤ |a − b| + |a′ − b′|. ��

Lemma 11 There exists a constant C > 0 depending only on N ,A,B such that for any
v ∈ M

∫
|v − Kh0 ∗ v|dx ≤ C

√
h0Eh(v) for all h0 ≥ h. (158)

Proof The proof of (158) is contained in the proof of Lemma 3 in [21] for the two phases
case when Kh is the scaled version of the Gaussian with variance 1. The same proof may be
adapted to our setting because we still have monotonicity of the energy (Lemma 8) and we
can prove essentially by the use of Jensen’s inequality that

∫
|v − Kh ∗ v|dx ≤ C

√
hEh(v). ��
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