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Abstract

We provide a new convergence proof of the celebrated Merriman—Bence—Osher scheme for
multiphase mean curvature flow. Our proof applies to the new variant incorporating a general
class of surface tensions and mobilities, including typical choices for modeling grain growth.
The basis of the proof are the minimizing movements interpretation of Esedoglu and Otto and
De Giorgi’s general theory of gradient flows. Under a typical energy convergence assumption
we show that the limit satisfies a sharp energy-dissipation relation.

Mathematics Subject Classification 35A15 - 53E10 - 65M12 - 74N20

1 Introduction

The thresholding scheme is a highly efficient computational scheme for multiphase mean
curvature flow (MCF) which was originally introduced by Merriman, Bence, and Osher [27,
28]. The main motivation for MCF comes from metallurgy where it models the slow relaxation
of grain boundaries in polycrystals [31]. Each ”phase” in our mathematical jargon corresponds
to a grain, i.e., a region of homogeneous crystallographic orientation. The effective surface
tension o;; (v) and the mobility ;; (v) of a grain boundary depend on the mismatch between
the lattices of the two adjacent grains 2; and €2; and on the relative orientation of the grain
boundary, given by its normal vector v. It is well known that for small mismatch angles, the
dependence on the normal can be neglected [32]. The effective evolution equations then read

Vij = —uijoijH;j along the grain boundary %;;, (1)

where V;; and H;; denote the normal velocity and mean curvature of the grain boundary
X;j = 082; N 9K}, respectively. These equations are coupled by the Herring angle condition
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Fig.1 The Herring angle condition at a triple junction

0ijVij + 0jkvjk + orivii = 0 along triple junctions X;; N X ji, 2)

which is a balance-of-forces condition and simply states that triple junctions are in local
equilibrium; here v;; denotes the unit normal of ¥;; pointing from &; into 2;, (Fig. 1). We
refer the interested reader to [17] for more background on the modeling.

Efficient numerical schemes allow to carry out large-scale simulations to give insight into
relevant statistics like the average grain size or the grain boundary character distribution, as
an alternative to studying corresponding mean field limits as in [4,18]. The main obstruction
to directly discretize the dynamics (1)—(2) are ubiquitous topological changes in the network
of grain boundaries like for example the vanishing of grains. Thresholding instead natu-
rally handles such topological changes. The scheme is a time discretization which alternates
between the following two operations: (i) convolution with a smooth kernel; (ii) thresholding.
The second step is a simple pointwise operation and also the first step can be implemented
efficiently using the Fast Fourier Transform. One of the main objectives of our analysis is to
rigorously justify this intriguingly simple scheme in the presence of such topological changes.

The basis of our analysis is the underlying gradient-flow structure of (1)-(2), which
means that the solution follows the steepest descent in an energy landscape. More precisely,
the energy is the total interfacial area weighted by the surface tensions o;;, and the metric
tensor is the L2-product on normal velocities, weighted by the inverse mobilities /%l One
can read off this structure from the inequality !

Area(T;;) = V5dsS <0,
dl‘ ZU” rea U) Z Mlj/E

which is valid for sufﬁciently regular solutions to (1)—(2). In the seminal work [8], Esedoglu
and Otto showed that the efficient thresholding scheme respects this gradient-flow structure
as it may be viewed as a minimizing movements scheme in the sense of De Giorgi. More
precisely, they show that each step in the scheme is equivalent to solving a variational problem
of the form

1
in{ —d>(=, 2" Y + Ep(= 3
rr;(m{Zh (2, )+ En( )}, 3)
where E,(X) and dj,(Z, =" 1) are proxies for the total interfacial energy of the configura-

tion ¥ and the distance of the configuration X to the one at the previous time step "7,
respectively. Since the work of Jordan, Kinderlehrer, and Otto [15], the importance of the
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formerly often neglected metric in such gradient-flow structures has been widely appreciated.
Also in the present work, the focus lies on the metric, which in the case of MCF is well-
known to be completely degenerate [29]. This explains the proxy for the metric appearing in
the related well-known minimizing movements scheme for MCF by Almgren, Taylor, and
Wang [1], and Luckhaus and Sturzenhecker [25]. This remarkable connection between the
numerical scheme and the theory of gradient flows has the practical implication that it made
clear how to generalize the algorithm to arbitrary surface tensions o;;. From the point of view
of numerical analysis, (3) means that thresholding behaves like the implicit Euler scheme and
is therefore unconditionally stable. The variational interpretation of the thresholding scheme
has of course implications for the analysis of the algorithm as well. It allowed Otto and
one of the authors to prove convergence results in the multiphase setting [19,20], which lies
beyond the reach of the more classical viscosity approach based on the comparison principle
implemented in [3,9,13]. Also in different frameworks, this variational viewpoint turned out
to be useful, such as MCF in higher codimension [23] or the Muskat problem [14]. The only
downside of the generalization [8] are the somewhat unnatural effective mobilities u;; = %

Only recently, Salvador and Esedoglu [33] have presented a strikingly simple way to incojr-

porate a wide class of mobilities u;; as well. Their algorithm is based on the fact pointed
out in [7] that although the same kernel appears in the energy and the metric, each term
only uses certain properties of the kernel, which can be tuned independently: Starting from
two Gaussian kernels G, and Gg of different width, they find a positive linear combination
Kij = a;jG, +b;;G g, whose effective mobility and surface tension match the given 1;; and
oij, respectively. It is remarkable that this algorithm retains the same simplicity and structure
as the previous ones [8,28]. We refer to Sect. 2 for the precise statement of the algorithm.

In the present work, we prove the first convergence result for this new general scheme.
The main novelty here is that the proof applies in the full generality of this new scheme
incorporating arbitrary mobilities. Furthermore, this is the first proof of De Giorgi’s inequal-
ity in the multiphase case. We exploit the gradient-flow structure and show that under the
natural assumption of energy convergence, any limit of thresholding satisfies De Giorgi’s
inequality, a weak notion of multiphase mean curvature flow. This assumption is inspired by
the fundamental work of Luckhaus—Sturzenhecker [25] and has appeared in the context of
thresholding in [19,20]. We expect it to hold true before the onset of singularities such as the
vanishing of grains. Furthermore, at least in the simpler two-phase case, it can be verified
for certain singularities [5,6]. We would in fact expect this assumption to be true generically,
which however seems to be a difficult problem in the multiphase case.

The present work fits into the theory of general gradient flows even better than the two
previous ones [19,20] and crucially depends on De Giorgi’s abstract framework, cf. [2]. This
research direction was initiated by Otto and the first author and appeared in the lecture notes
[21]. There, De Giorgi’s inequality is derived for the simple model case of two phases. Here,
we complete these ideas and use a careful localization argument to generalize this result to
the multiphase case. A further particular novelty of our work is that for the first time, we
prove the convergence of the new scheme for arbitrary mobilities [33].

Our proof rests on the fact that thresholding, like any minimizing movements scheme,
satisfies a sharp energy-dissipation inequality of the form

1 (T/1 .
En(Z"(D) + 5 /0 <ﬁd,3<2h(r), it —hy) + |aEh|2(2h<z))> dt < Ex(2(0)), (4)
where =" (¢) denotes the piecewise constant interpolation in time of our approximation,

(1) denotes another, intrinsic interpolation in terms of the variational scheme, cf. Lemma
3, and |0 Ey| is the metric slope of Ej, cf. (33).
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Our main goal is to pass to the limit in (4) and obtain the sharp energy-dissipation relation
for the limit, which in the simple two-phase case formally reads

T
oArea(2(T)) + 1 / / <1V2 + ;wsz) dSdt < oArea(X(0)). (5)
2Jo Jsim \u

To this end, one needs sharp lower bounds for the terms on the left-hand side of (4). While
the proof of the lower bound on the metric slope of the energy

T T
liminf/ [0E, 12 (E" (1)) dt > WZ/ / H*dSdt 6)
ri0  Jo 0 JE@®)

is a straight-forward generalization of the argument in [21], the main novelty of the present
work lies in the sharp lower bound for the distance-term of the form

T 1 1 T
liminf/ —d>(=" @), ="t — h)) dt > 7/ / V2dSdr. 7
wo Jo 2" wJo Jza

This requires us to work on a mesoscopic time scale T ~ ~/A, which is much larger than
the microscopic time-step size & and which is natural in view of the parabolic nature of our
problem. It is remarkable that De Giorgi’s inequality (5) in fact characterizes the solution
of MCF under additional regularity assumptions. Indeed, if X(¢#) evolves smoothly, this
inequality can be rewritten as

: / Tf ( : 2
- o(—=V + VioH) dSdi <0, ®)
2Jo Js@w Mo

and therefore V = —po H. For expository purpose, we focused here on the vanilla two-

phase case. In the multiphase case, the resulting inequality implies both the PDEs (1) and the
balance-of-forces conditions (2), cf. Remark 1. An optimal energy-dissipation relation like the
one here also plays a crucial role in the recent weak-strong uniqueness result for multiphase
mean curvature flow by Fischer, Hensel, Simon, and one of the authors [10]. There, a new
dynamic analogue of calibrations is introduced and uniqueness is established in the following
two steps: (i) any strong solution is a calibrated flow and (ii) every calibrated flow is unique in
the class of weak solutions. In fact, Hensel and the first author recently showed in [11] that (a
slightly weaker version of) De Giorgi’s inequality is sufficient for weak-strong uniqueness.
De Giorgi’s general strategy we are implementing here is also related to the approaches by
Sandier and Serfaty [34] and Mielke [30]. They provide sufficient conditions for gradient
flows to converge in the same spirit as I'-convergence of energy functionals, implies the
convergence of minimizers. In the dynamic situation it is clear that one needs conditions on
both energy and metric in order to verify such a convergence.

There has been continuous interest in MCF in the mathematics literature, so we only point
out some of the most relevant recent advances. We refer the interested reader to the intro-
ductions of [19] and [22] for further related references. The existence of global solutions to
multiphase MCF has only been established recently by Kim and Tonegawa [16] who carefully
adapt Brakke’s original construction and show in addition that phases do not vanish sponta-
neously. For the reader who wants to familiarize themselves with this topic, we recommend
the recent notes [37]. Another approach to understanding the long-time behavior of MCF is
to restart strong solutions after singular times. This amounts to solving the Cauchy problem
with non-regular initial data, such as planar networks of curves with quadruple junctions. In
this two-dimensional setting, this has been achieved by Ilmanen, Neves, and Schulze [12] by
gluing in self-similarly expanding solutions for which it is possible to show that the initial
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condition is attained in some measure theoretic way. Most recently, using a similar approach
of gluing in self-similar solutions, but also relying on blow-ups from geometric microlocal
analysis, Lira, Mazzeo, Pluda, and Saez [24] were able to construct such strong solutions,
prove stronger convergence towards the initial (irregular) network of curves, and classify all
such strong solutions.

The rest of the paper is structured as follows. In Sect. 2 we recall the thresholding scheme
for arbitrary mobilities introduced in [33], show its connection to the abstract framework of
gradient flows, and record the direct implications of this theory. We state and discuss our
main results in Sect. 3. Section 4 contains the localization argument in space, which will play
a crucial role in the proofs which are gathered in Sect. 5. Finally, in the short “Appendix”,
we record some basic facts about thresholding.

2 Setup and the modified thresholding scheme

Here and in the rest of the paper, [0, l)d denotes the d-dimensional torus. Thus when we
deal with functions u : [0, 1) — R we always assume that they have periodic boundary
conditions. In particular they can be extended periodically on R¢. In general if u is a function
as before and f : R¢ — R then by f * u we mean the convolution on R? between f and
the periodic extension of u, i.e.

Frut) = / F@ulx —2)dz, x € R ©)
R

when this expression makes sense.

2.1 The modified algorithm

We start by describing the algorithm proposed by Salvador and Esedoglu [33]. Let the sym-
metric matrix o = (0j;);; € RN >N of surface tensions and the symmetric matrix gt = (1;;);;
of mobilities be given. In this work we define for notational convenience o;; = w;; = 0. Let
y > B > Obe given. Define the matrices A = (—a;;);; € RV*N and B = (—b;;);j € RV*N
by

-1
aij =~ iy = B, (10)
VB —1
by = o+ v, (11)
fori # j and a;; = b;; = 0. Then a;;, b;; are uniquely determined as solutions of the
following linear system
aij Yy | bijvB
oij = 7\’/{ + ==
—1 _ dij ij (12)
Wij =i T R

The algorithm introduced by Salvador and Esedoglu is as follows. Let the time step size
h > 0 be fixed. Hereafter Gi’, = G;dh) denotes the d-dimensional heat kernel (18) at time
yh.
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Algorithm 1 (Modified threshoﬂng scheme) Let {QY, ..., Q?V} be disjoint open subsets of

[0, D9 such that [0, 1)1 = U; Ql.o, to obtain the new collection {Q'f“, . Q';VH} at time
t = h(n + 1) from the collection {Q], ..., Q4 } at time t = hn

(1) Foranyi =1, ..., N form the convolutions

¢} =Glxlgn, @), = Ghxlg

(2) Foranyi =1, ..., N form the comparison functions
Ul =D aidl  + biidh
J#

(3) Thresholding step, define
Q?H = {x (Y (x) < min w;(x)} .
J#

We will assume the following:

The coefficients g;;, b;; satisfy the strict triangle inequality. (13)
The matrices A and B are positive definite on (1, ..., 1)l. (14)

1

In particular, for v € (1, ..., 1)~ we can define norms

|v|i =v-Av, |v|]%33 =v - Bv.

We remark that we need the matrices A, B to be positive definite on (1, ..., 1)l to guarantee
that the functional defined in (28) is a distance, see the comment following (28) below.

Observe that condition (13) is always satisfied if we choose y large and B small provided
the surface tensions and the inverse of the mobilities satisfy the strict triangle inequality.
Indeed, define

My = m_ig{aik +oxj —oij}and My = m?l)k({aik + oxj — 0ij},
i,], L],

where i, j, k range over all triples of distinct indices 1 < i, j,k < N.Definem 1 and M, in

23 23
asimilar way. Then a computation shows that a;; and b;; satisfy the (strict) triangle inequality
if

My M,
d -2 15
M. and y > e (15)

n B

B <

which can always be achieved since y > f > 0 are arbitrary. For the second condition (14),
we have the following result of Salvador and Esedoglu [33].

Lemma 1 Let the matrix o of the surface tensions and the matrix % of the inverse mobilities

(for the diagonal we set inverses to be zeros) be negative definite on (1, ..., 1)*. Let y >
be such that
min—i . N—15i max;—i, . N—1Si

y > ————m, ,3 < -/ — (16)
max;=1,.. ,N—1M; minj=1, .. N—-1M;

yeens yaees

where s; and m; are the nonzero eigenvalues of Jo J and J % J respectively, where the matrix

J has components J;j = §;j — % Then A and B are positive definite on (1, ..., 1)*.
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In particular, if we choose y large enough and B small enough, condition (14) on the matrices
A, B is satisfied provided the matrices o and i are negative definite on (1, ..., 1)*. By a

classical result of Schoenberg [35] this is the case if and only if ,/07; and 1/, /i;; are 2
embeddable. In particular, this holds for the choice of Read-Shockley surface tensions and
equal mobilities.

For 1 <i # j < N define the kernels

Kij(z) = a;jG,(2) + b;jGp(2) A7)

where, for a given ¢ > 0, we define Gﬁd) as the heat kernel in RY, i.e.,

22

e 4

Gt(d)(z) =
At

(18)

If the dimension d is clear from the context, we suppress the superscript (d) in (18). We
recall here some basic properties of the heat kernel.

Gi(2)>0 (non-negativity), (19)
G(z) = G;(Rz) VR € O(d) (symmetry), (20)
1 b4
G(2) = —G (*) (scaling), 1)
t ﬁd ﬁ
G xGs = Gyqs (semigroup property), (22)
d
ng) (2) = 1_[ Ggl)(zi) (factorization property). (23)

i=1

We observe that the kernels K;; are positive, with positive Fourier transform K;; provided
Yy > max; jo; j[i,j and 8 < minl-,j Oi jMi,j- In particular assuming

(1) ojj and % satisfy the strict triangle inequality,
ij

(2) o and i are negative definite on (1, ..., Dt

il

we can always achieve the conditions posed on A, B and the positivity of the kernels K;; by
choosing y large and 8 small.
Given any & > 0 we define the scaled kernels

1 z
Ktz =—Kij|—=). 24
@) 7 ,<ﬁ> 24)

then the first and the second step in Algorithm 1 may be compactly rewritten as follows

no__ h .
vl =) Kl lgr.
j#i

For later use, we also introduce the kernel

1 1
K(z) = EG,,(Z) + EG,g(z). (25)
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2.2 Connection to De Giorgi’s minimizing movements

The first observation is that Algorithm 1 has a minimizing movements interpretation. To
explain this, let us introduce the class

A:=1{x:[0,D? = {0, 1}V

N
D o= 1]
k=1

and its relaxation

M:=1u:[0, D¢ =0, 11V

N
Zuk = 1].
k=1

If xy e AN BV([O, l)d)N, then each of the sets 2; := {x; = 1} is a set of finite perimeter.
We denote by 0*Q; the reduced boundary of the set 2;, and for any pair 1 <i # j < N we
denote by X;; 1= 9*; N 9*Q; the interface between the sets. For u € M we define

EGe) e YoM (S ifue AN BV([0, DY, 26)
+ otherwise.
For h > 0 fixed we define the approximate energy Ej for u € M
1
Epu) =Y — wiKli s« ujdx. (27)
v Vi Jio,1yd
Foru,v € M and h > 0 we also define the distance
d2(u,v) := —2hEp(u —v) = —NEZ/(ui — ) K[! (uj — vj)dx
i.j
:Nﬁ/|G’;/2>:<(u—v)|i+|G’/§/2>k(u—u)|§Ig dx, (28)

where we used the semigroup property (22) and the symmetry (20) to derive the last equality.
We also point out that since Zi u; =y ;v; = lae., wehave Gi’/z *(U—v), Gg/z *(u—v) €
{, ..., I)J-. Hence the assumptions on A and B guarantee that dj, defines a distance on M
(and on A).

Lemma 2 The pair (M, dy) is a compact metric space. The function Ej, is continuous with
respect to dy. For every 1 < i < N andn € N define x/' = IQI'_!, where QY, ..., Q% are
obtained from Q’l’_l, s Q;ﬁl_l by the thresholding scheme. Then x" minimizes
1

o }%(u, XY + Ep(u) among all u € M. (29)
Proof For u,v € M definition (28) and the fact that A and B are positive definite imply
that dj, is a distance on M. The fact that (M, dj) is compact and Ej, is continuous is just a
consequence of the fact that dj, metrizes the weak convergence in L? on M, the interested

reader may find the details of the reasoning in [21]. We are thus left with showing that x”
satisfies (29). For u, v € L*([0, 1)?) define

1
(u,v) = —Z/M,KZ *vjdx,
Vi =
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then by the symmetry (20) of the Gaussian kernel and by the symmetry of both matrices A, B
it is not hard to show that (-, -) is symmetric. In particular we can write for any u € M

2, x4 En(u) = —Ep(u — x"Y + En(u)
n—1

1

2h
=—@—x"""u—x""N+ @ u
=2x"""w) — (" "h.

Thus (29) is equivalent to the fact that x” minimizes ( x" N u) among all u € M. Since by
(13)

" = /Xdex

we see that x” minimizes the integrand pointwise, and thus it is a minimizer for the
functional. O

The previous lemma allows us to apply the general theory of gradient flows in [2] to this
particular problem. We record the key statement for our purposes in the following lemma,
which will be applied to (M, d},), where d, is the metric (28).

Lemma3 Let (M, d) be a compact metric space and E : M — R be continuous. Given
XO € M and h > 0 consider a sequence {x"},eN satisfying

1
x" minimizes Edz(u, X"V + E(u) among all u € M. (30)
Then we have for allt € Nh
1 /1
E(x () + 5/0 <h7d2(x(s +h), x(s)) + |3E|2(14(S))) ds < E(x"). 3D

Here x (t) is the piecewise constant interpolation, u(t) is the so-called variational inter-
polation, which forn € Nandt € ((n — 1)h, nh] is defined by

] dZ(M Xn l)
u(t) € argmin,, . y {E(u) + m} (32)
and |0 E|(u) is the metric slope defined by
o (Ew) —E@)
[0E|(u) := d(ul,lgl_)() ¥ TOR) € [0, oo]. (33)
Moreover, the variational interpolation u(t) satisfies
<1, 0
/(; thd (u(r), x@)dt < E(x"), (34)
Ew®)) < E(x(@)) forallt > 0. (35)

3 Statement of results

Our main result is the convergence of the modified thresholding scheme to a weak notion of
multiphase mean curvature flow. More precisely, given an initial partition {52(1), e SZ?V} of
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[0, 1)¥ encoded by x° : [0, )¢ — {0, 1}V such that }; x? = 1, define x" : [0, DY xR —
{0, 1} by setting

x"(t,x) = x°(x) fort < h,

0 ; (36)
x"(t,x) = x"(x)fort € [nh,(n+ 1)h) forn € N.

If XO is a function of bounded variation, we denote by Z?j = B*Q? N 8*52(;. Our main
result is contained in the following theorem.

Theorem 1 Given x° € A and such that V x° is a bounded measure and a sequence h |, 0;
let Xh be defined by (36). Assume that there exists x : [0, l)d x (0, T) — [0, 11N such that

x"—x in L' ([0, D? x (0, T)). (37)

Then x € {0, 1}V almost everywhere, Yixi=landyx € LY(0, T), BV ([0, DH?)V.
If we assume that

T T
lim sup / Ex(x"0)dr <) o f HN (i ()t (38)
nlo Jo i 0

then x is a De Giorgi solution in the sense of Definition I below.

The convergence assumption (38) is motivated by a similar assumption on the implicit
time discretization in the seminal paper [25] by Luckhaus and Sturzenhecker, and has also
appeared in previous work in the context of the thresholding scheme [19-21]. As of now, this
assumption can be verified only in particular cases, such as before the first singularity [36]
or for certain types of singularities, namely mean convex ones, meaning H > 0. This was
shown for the implicit time discretization in [6] and a proof in the case of the thresholding
scheme will appear in a forthcoming work by Fuchs and the first author.

Inspired by the general framework [2] and [34], generalizing the previous two-phase
version [21], we propose the following definition for weak solutions in the case of multiphase
mean curvature flow.

Definition 1 Given x° € A and such that V x© is a bounded measure, a map x : [0, D9 x
(0,7) — {0, 1}¥ such that 3", x; = l and x € L'((0, T), BV ([0, )%))" is called a De
Giorgi solution to the multiphase mean curvature flow with surface tensions o;; and mobilities
wij provided the following three facts hold:

(1) There exist H;; € LZ(HE /] (dx)dt) which are mean curvatures in the weak sense, i.e.,
such that for any test vector field £ € C2°([0, D4 x (0, T))4

Zo,-jf (Vg =iy Ve (g L (dx)dn
i [0,1)4x(0,T) ’

==Y o / L Hivi EHG ) (dx)dr. (39)
i [0,1)¥x(0,T)

(2) There exist normal velocities V;; € Lz(Hle_i ;(t)(dx)dt) with

/ n(t = 0)x dx + / 8 xi dxdt
[0,1)d [0,1)¥4%(0,T)
d—1
+ Z/ oo MVik Hyg ) (dx)dt =0
ki Y 10.)7x(0.7)
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for all n € C°([0, 1)¢ x [0, T)).
(3) De Giorgi’s inequality is satisfied, i.e.,

lim sup — Za, /T T)Hd—l(zij(t))dt
T,

2
+- Z/ <”+M,]G HZ)HlZ lp@xdr <Y o).
[0,1)4 % (0,T)

ij

(40)

Remark 1 Observe that inequality (40) together with the definition of the weak mean curva-
tures gives a notion of weak solution for the multiphase mean curvature flow incorporating
both the dynamics V;; = —o;ju;jH;; and the Herring angle condition at triple junc-
tions. Indeed if x : [O, DY x (0, T) — {0, 1}V with > xi(t) = 1 is such that the sets
Q;(t) = {xi(-,t) = 1} meet along smooth interfaces X;; := 9€2; N 92; which evolve
smoothly and satisfy (39), (40) then

(1) The Herring angle condition at triple junctions is satisfied. Indeed by the divergence theo-
rem on surfaces (see Theorem 11.8 and Remark 11.42 in [26]) forany & € C2°([0, 1)4)d

/ (V& —vij - VEvip) Hiy ) (dx) = / HijvijHfs, | (dx)
i (1) i (1) :
+/ £ - JviH 2 (dx),
%5 (1)

where J denotes the rotation by ninety degrees in the normal plane to the triple junction
0%y (1). Thus (39) and Hyj € L*(H{y, |, (dx)d1) imply that

Oiyip / g . Jviling_z(dx)
0%ii, ()
d—2
+ Oiyis / & JvpiyH " (dx)
321'21';([)

+ 0z, / £ - Jvii H97 2 (dx) = 0,
3Zigi, ()

which forces 0,1, Vijis + Giyis Viyis + 0isiy Vizi; = 0 at triple junctions.
(2) Wehave V;; = —oj;u;jH;j on X;;(t). Indeed in the smooth case inequality (40) reduces
to

0,

4+ - / 4y HE ) 1O (dx)dr < 0.
Z 1% (0,T) (Mu Y 1% (1)

> oy / d—Hd L2 (1)dt
i,j L)

Using the Herring angle condition we have

d _ _
Z —H! I(Zij(t)) = Z/ Vininflzl-l(t)(dx)
i iy o ’
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and after completing the square we arrive at

2
ij d—1
Ojj + JurijoiiHij | His. (dx)dt <0,
o Jovenon (o + i) e,

which implies V;; = —o;juij Hjj.

The following lemma establishes, next to a compactness statement, that our convergence can
be localized in the space and time variables x and ¢, but also in the variable z appearing in
the convolution.

Lemma4 We have the following:

(i) Let {Xh}hw be a sequence of {0, 1}N -valued functions on (0, T) x [0, D)4 that satisfies
x" e Afora.e t and

T
lim sup esssuth(Xh(t))—i—/ 2afh()( ), x (t h))dt | < oo 41)
h0 \1e(0,T) 0o 2h

and that is piecewise constant in time in the sense of (36). Such a sequence is
precompact in L'([0, D)? x (0, T))N and any weak limit x is such that x €
L', T), BV(0, )N with

T T
Zaij/o H"—l(z,-j(t))dtgli%ionf/o En(x"(t))dt. (42)

(ii) Assume that u" is a sequence of [0, 11V -valued functwns with Z u = 1 such that
(38) holds (with x" replaced by u") and such that u" — x in L1([0, 1)d x (0, THN
holds. Assume also that

lim sup esssup Ej, (uh (1)) < o0. (43)
0 1€(0,T)

Then as measures on RY x [0, 1)? x (0, T) we have the following weak convergences
foranyi # j
Kl/ (2) h

Vh
—K;j(@)(v;j(x,1)- z)+HD: (t)(dx)dtdz (44)

Kij(2) 4 A
NG ul (x — vhz, Nu'j(x, n)dxdrdz

Klj(z)(vlj(-x t)-7)— H\E (,)(dx)dtdz 45)

I ol (x — Vhz, tydxdtdz

Here v;j (-, t) denotes the outer measure theoretic unit normal of Q; (t) restricted to the
interface X;j(t). Here the convergence may be tested also with continuous functions
which have polynomial growth in z € R,

The next proposition is the main ingredient in the proof of Theorem 1. It establishes the
sharp lower bound on the distance-term.
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Proposition 1 Suppose that (37) and the conclusion of Lemma 4 (ii) hold. Assume also that
the left hand side of (47) is finite. Then for every 1 < k < N there exists Vi € L2(|V xx|d1)
such that

O xk = Vi|Vxkldt (46)

in the sense of distributions. Given i # j, it holds that V;(x,t) = —V;(x,t) on X;;(t) and
if we define Vij(x,1) := V;(x, t)|);ij(,) then we have

T 1 1 T
liminf/ —d2(x" @), x"t = h))dt > —/ / Vi (x, )R (dx)dt.
no o Jo h2h %.:Mij 0 Jzi !

47
The final ingredient is the analogous sharp lower bound for the metric slope.

Proposition 2 Suppose that the conclusion of Lemma 4 (ii) holds and that (37) holds with x"
replaced by u". Then for any i # j there exists a mean curvature Hij € Lz(Hd):i_jl(t) (dx)dt)
in the sense of (39). Moreover the following inequality is true:

T T
lim inf/ DEL > (t)dt =Y pijo; / / |H;j(x, ) PR (dx)de.  (48)
o Jo i 0 JZ;@)
We will present the proofs of Theorem 1, Lemma 4, Proposition 1 and Proposition 2 in Sect. 5.
Before doing that, we need a simple geometric measure theory construction.

4 Construction of suitable partitions of unity

In the sequel we will frequently want to localize on one of the interfaces. To do so, we need
to construct a suitable family of balls on which the behavior of the flow is split into two
majority phases and several minority phases. Hereafter we will ignore the time variable and
consider a map x : [0, D4 — {0, 1} such that x € BV ([0, )¢, RY), >k xk = 1. Given
1 <i < j < N we denote by 9*Q; the reduced boundary of the set {x; = 1} and by
%ij = 0%Q; N 0*Q; the interface between phase i and phase j. Given a real number r > 0
and a natural number n € N we define

T = [B(x, nrvd) : x e rZé N 1o, l)d} (49)

where the balls appearing in the definition are intended to be open. Observe that for any
n > 2 and any r > 0 the collection of balls in F}, is a covering of [0, 1)? with the property
that any point x € [0, 1) lies in at most ¢(n, d) distinct balls belonging to F;, where
0 < c(n,d) < (2n)9 is a constant that depends on n,d but not on r. Given numbers
1 <1 # p < N we define

or_1ard—1 =4 L~ p)

d=1(s;: N 2B 1
grzz{Befg:Bmzlp;é@,H(’) . (50)

Here 2B denotes the ball with center given by the center of B and twice its radius. Given
[, p as above, denote by {B] } an enumeration of £” and by {p,,} a smooth partition of unity
subordinate to {B),}. Then the following result holds true (for a proof, see the “Appendix”).

Lemma5 Fix 1 <[ # p < N. With the above construction the following two properties
hold.
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(i) Forany 1 <i # j <N, {i,j}#{l, plandanyn € Ll(Hldz_i;)

1}382 /B , ang} (dx) = 0. (51)
m m
(ii) Foranyn e LI(H‘dE’l;)

. d—1 _ d—1
lim ; / My, (dx) = / My, (dx). (52)

5 Proofs
5.1 Proof of Theorem 1

Proof By Lemma 2, we can apply Lemma 3 on the metric space (M, dj) so that we get
inequality (31) with (E, d, x,u) = (Ep, dp, Xh, uh). Our first observation is that

lim En(x") = Zo,»,-Hd*I(ZP,), (53)
i
which follows from the consistency, cf. Lemma 7 in the “Appendix”. Inequality (31) then
yields that the sequence x” satisfies (41), so that Lemma 4 (i) applies to get that x €
L0, T), BV([0, DOV, x € {0, 1} ae., > xi = 1 and, after extracting a subsequence,
x" — x in L2([0, D¢ x (0, T))N. We claim that this implies u” — x in L2([0, 1)? x
(0, T))N . To see this, observe that (34) implies

T
hER (") = — / En"(t) — x"(t))d1
0

N
1
>C—=Y" (/ G125 (ult — 1) Pdxar +/ G % (ult — Xl.h)|2dxdt>
\/ﬁ i=1
(54)

where C is a constant which depends on N, A, B but not on / and comes from the fact that all
norms on (1, ..., 1)+ are comparable. Inequality (54) clearly implies that K" s u” — K" % x"
converges to zero in L2. Observe that inequality (35) in particular yields (43). Recalling (158)
in the “Appendix”, we learn that u” — x" converges to zero in L2. This implies that we can
apply Lemma 4 (ii) both to the sequence u” and the sequence x". In particular, we may apply
Proposition 1 for x” and Proposition 2 for u”. Now the proof follows the same strategy as
the one in the two-phase case in [21]. For the sake of completeness, we sketch the argument
here. First of all, Lemma 3 gives inequality (31) for (Ej,, dp,, x", u"), namely forn € N

p(nh) < En(x°), (55)

where we set p(t) = En(x"(1) + 1 [ (,j—Qd,f(X”(s +h), x"(s)) + |3Eh(uh(s))|2) ds.
Multiplying (55) by n(nh) — n((n + 1)h) for some non-increasing function n € C.([0, T))

we get —f i—;’,odt < () + hsup“;—;’))Eh(XO). As test function 1, we now choose

n(t) = max{min{Z=, 1}, 0} and obtain
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1 [T A
- / En(x"())dt
T JTr—

+ L id2( "y, '@t = h)) + [0ER (" (0))? ) dt < (1 ﬁ)E 0. (56)
| (oo WO ) dr = (1 + DEO),

Now it remains to pass to the limit as 2 | 0: to get (40) from inequality (56) one uses the
lower semicontinuity (42) for the first left hand side term, the sharp bound (47) for the second
left hand side term, the bound (48) for the last left hand side term and finally one uses the
consistency Lemma 7 in the “Appendix” to treat the right hand side term. To get (40) it
remains to pass to the limitin 7 | 0. O

5.2 Proof of Lemma 4

Proof Argument for (i) For the compactness, the arguments in [21] adapt to this setting with
minor changes. The first observation is that, by inequality (158) in the “Appendix”, one needs
to prove compactness in L2([0, D? x (0, T)N of {K" % Xh}hw- For this, one just needs a
modulus of continuity in time. Le. it is sufficient to prove that there exists a constant C > 0
independent of 4 such that I;,(s) < C./s, where

Ins) =/ X" 1) = 1 et — )Pdxds.
(s.T)x[0,1)4

This can be done applying word by word the argument in [21] once we show the following:
for any pair x, x’ € A, we have

/Ix —x'ldx < [dh(x x)+ CVR(En(x) + En(x). (57)

Here the constant C depends on N, A, B but not on 4.
To prove (57) we proceed as follows: let S € R¥*Y be a symmetric matrix which

is positive definite on (1, ..., 1)1 . Since any two norms on a finite dimensional space are
comparable, there exists a constant C > 0 depending on S and N such that
= xI<lx=x'P <Clx —x'i§ (58)

where | - |s denotes the norm induced by S. For a function u € M write (I% hx)yu™ for the
function
cho\ h h h
((K ) ),- - ZKij % u
J#i
Then we calculate
X =x1E==x—x)- K" —x)+ & —x)- S+ E")(x —x). (59

Select S = (s;;) where s;j = — [ K;j(z)dz. Then, by our assumption (14), S is positive
definite on (1, ..., 1)* and after integration on [0, N identity (59) becomes

/|x—x 2dx = fd,,u x)+/(x—x)(S+(Kh*))(x—x)dx

We now proceed to estimate the integral on the right hand side. By the choice of S and
Jensen’s inequality we have

f(x — xS+ (K")(x — x"dx < C/ IS + (K"5)) (x — x))ldx
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<C Z/K!;(zn(x, — X —2) = (xj — X)) ldxdz. (60)

Using the triangle inequality and (156) in the “Appendix” we can estimate the right hand
side to obtain the following inequality

f(x — xS+ (K")(x — x)dx

= CZ Z/Kihj(Z)Xj(x—Z)Xk(x)dde

ij \k#j

+Z/Kl/(Z)Xj(X)Xk(x —z)dxdz
k#j

+ Z/ (@)X (x = 2) xp(x)dxdz
k#j

+Z/ L (@)X xi(x — 2)dxdz | . (61)
k#]j

Observing that there is a constant C > 0 such that K;; < CK j; we conclude that

/(x — xS+ (K")(x — xhdx < CVh (En(x) + En(x)).

This proves (57) and closes the argument for the compactness.

We also have to prove (42), but this follows from (44) with ul replaced by x" once we
have shown that the limit y is such that |V x| is a bounded measure, equiintegrable in time.
Indeed one can check from the proof of (44) that the lower bound of (44) does not require
the extra assumption (38). Thus one gets that

lm inf / En(x (t))dt—llmmfzf / / XKD xdxdi
0, l)‘l

> l1m1nf—// X, l] hdxdt
iz [0, 1)4

- hmmf— / / / X DK @) (x — 2, ndzdxdt
iz 0,1)4
#Jj

> K; d dx)dt
Z/ /[;) 1y /Rd z](Z)(VZJ D+ ZH|E (t)( X)
=> oy / His, 0 (@0)dt,

i#]

where in the last two lines we used (44) and the definition of o;;. To prove that the limit
x is such that |[Vx| is a bounded measure, equiintegrable in time one can proceed with
an argument similar to the one used in [21] for the two-phase case. Observe that this only
requires the weaker assumption (43).
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Argument for (ii) As mentioned in the previous paragraph, we already know that the limit x
is such that |V x| is a bounded measure, equiintegrable in time. We will prove (44). Then (45)
easily follows by recalling that v;; = —vj;. A standard argument (to be found in [21]) which
relies on the exponential decay of the kernel yields the fact that we can test convergences
(44) with functions with at most polynomial growth in z provided we already have the result
for bounded and continuous test functions, thus we focus on this case.

Leté € Cyp (R x [0, D4 x (0, T)) be a bounded and continuous function. To show (44)
we aim at showing that

hm/&(z X, 1) ijf(Z) h(x t)u h(x = Vhz, t)dxdtdz
(62)

/S(Z X, t)sz(Z)(Vlj(x t) Z)+H|E (t)(dx)dtdz

Upon splitting & into the positive and the negative part, by linearity we may assume that
0 < & < 1. We can split (62) into the local lower bound

Kij(z) u,h(X, t)ulj-(x — Vhz, t)dzdxdt
N (63)

> /S(Z,X,I)Kij(z)(vij(xat)’Z)+H‘dg_ijl(t)(dx)dtdz

lim inf t
l?fon /%‘(z,x, )

and the global upper bound

lim sup Kij@) h(x t)u (x —hz, t)ydzdxdt

hl0 Vh

(64)
/ sz (Z)(Vlj (x,1) - Z)+HE (t) (dx)dtdz.
Indeed we can recover the limsup inequality in (62) by splitting § = 1 — (1 —&) and applying
the local lower bound (63) to 1 — &.
‘We first concentrate on the local lower bounds in the case where u
show

h — X, namely we will

ij/(f) xi@. 0xj(x = ~hz, dzdxdr
(65)

fS(Z x, ) K;j(2)(vij(x,1) - Z)JFH\): (t)(dx)dtdz

hmmf/é(z X, t)

By Fatou’s lemma the claim is reduced to showing that for a.e. point # in time and every
d
zeR

lim 1nf/§(z X, t) Kij@ Xxi (e, ) xj(x — Vhz, t)dx
Vh
> / 5@z x, DK (@) vij (x, 1) - D) Hg L (d0). (66)

Fix a point ¢ such that x(-,1) € BV([0, D?,{0, 1}¥) and any z € R?. In the sequel,
we will drop those variables, so x (x) = x(x, 1), E&(x) = &(z, x, t). By approximation we
may assume that & € C*°([0, 1)?). Let p,,; j be a partition of unity obtained by applying the
construction of Sect. 4 to the function x (x) on the interface X;;. Let v; be the outer measure
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theoretic normal of €2; (7). Then by Lemma 5 we have

[ w0y 2wl
= lim (Z f P (05 (1) (i (x) - )+ i (dx))
meN

= lim < f Pmi (CVE () (Vi () - 2) 1 Hilofy (d)

rl0
meN

- / P (X)E () (vij (x) - 2) 4 H (dxc)

k#i,

= lim > / Pmij (X)E () (Vi (x) - 2) 4 Hiye gy (d).
meN

(67)

We now focus on estimating the argument of the last limit. Observe that (v;(x) -
Z)+Hfazslz, (dx) = (9;xi)+, thus by definition of positive part of a measure, given € > 0
we can select, for any m € N, a function §m € Ccl. (B,,) such that 0 < §m < 1 and such that

/ Pmij&Emdexi + 27" > f Pmij& i - 2)+ Hilegy, (d).

Let 1y := omijE&m € CL(By), then

/nmain = _faznmXidx

. / M (x 4+ Vhz) — 1 (x)
= lim

hm NG Xi (x)dx
L Xi () = xi(x = Vhz)
= 2%/%()6) \/ﬁ dx.

(68)

Using that x; (x) — xi (x — vhz) < xi (x)(1 — xi (x — v/hz)) (because x; € {0, 1}) and that

I — Xi = 2_y; Xk We can estimate the last item by

Vh

Xi () xj(x — x/ﬁz)dx
vh

. Xi () xi (x — /hz)
+1 / m d
e So“pk;i’j () NG !

< liminf/nm(x)
10

Xi () 3 (x — \/Ez)dx
JVh

. —Jh
+ ) limsup/nm(x)x (xx = Vha)
K Mo N

§liminf/nm(x)
hl0
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Observe that for each m € N, using also the consistency Lemma 7

/77 (X)Xi(x)Xk(x —«/Ez)dx
" vh
Xi () xk(x — Vhz) + xi(x — vVh2)xj (x)d
X
Vh

lim sup
10

<lim sup/ N (X)
10

/nm(X)lvzk(x) 2|5 (dx)

mij

N Z,k)

Thus we obtain

. xi () (x — v/hz)
by <1 f d
/nm L Xi < leon /nm(X) N x

+ ) 1z H (Bl 0 Bik).
k#L,j

Inserting back into (67), recalling also Lemma 5 and the inequality (68), using Fatou’s
lemma, the fact that p,,;; is a partition of unity and that 0 < &,, < 1 we obtain that

[ 605020 @ < timint [ 60 BT ) gy 4 e

and (65) follows letting € go to zero. To derive inequality (63) we just apply Lemma 9 in the
“Appendix”.

To get the upper bound (64) we argue as follows. First of all, recall Assumption (38) which
says

T T
lim sup / En(u” (1))dt < / E(x(t))dr. (69)
nio  Jo 0

Now, if we define

el Wy = f/ /u (K *u (H)dxdt,

we have that by (63) lim inf}, o ezj (up) > €' (x), where e (x) is defined in the obvious way.
Assume that there exists a pair i, j such that lim sup;, | ¢/ (u") > "/ (x), then

T T
/ E(x(1))dt > lim sup / En(u” (t))dt
0 110

> Z 11m1nfep(u )+hmsupeh (u )
. hl0 hi0
L, p)#G,J)

T
> / E(x(@))dt
0

which is a contradiction. Thus we have proved (64). O
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5.3 Proof of Proposition 1

Proof Since we assume that the left hand side of (47) is finite, in view of (28), upon passing
to a subsequence we may assume that, in the sense of distributions, the limit

lim —— ’Gh/z* - —h ‘ —i—’Gh/2
hwhf< X —xC—="h)

exists as a finite positive measure on [0, D4 x (0, T). Here we indicated with th (- — h) the

2
* O —h))\B> o (70)

time shift of function th~ We denote by t a small fraction of the characteristic spatial scale,

namely 7 = a~/h for some o > 0, which we think as a small number. Given 1 <[/ < N we
define

Sx/ = x' = X' =) (71)

We divide the proof into two parts: first we show that the normal velocities exist, and
afterwards we prove the sharp bound. But first, let us state two distributional inequalities that
will be used later. Namely

e In a distributional sense it holds that

hmsup——Z(S)(,K * 8 X <a2w (72)
hi0 i#]j

e There exists a constant C > 0 such that forany 1 <i < N and any # € {y,B}ina
distributional sense it holds that

. 1
limsup —= (xi — xi (- = )Gy * (i — xi (- — 7)) < Ca’w. (73)
no ~h

We observe that it suffices to prove (72), then (73) follows immediately. Indeed recall that
A and B are positive definite on (1, ..., I)J-. In particular there exists a constant C > 0 such
that for any v € (1, ..., D~ one has |v|2A + |v|IZB > Ch)? > Cvi2 forany i € {1, ..., N}.

Applying this to the vector v; = Gz/ 2% Xi one gets

h/2 n/2 n/2

1GA? 5 8y < |G/ w8x 3 + G % 8x13. (74)

The claim then follows from the definition of w, (72), the symmetry (20) and the semigroup
property (22). Indeed it is sufficient to check that, in the sense of distributions

110 Vi - NG

To this aim, pick a test function € C2°([0, D4 x (0, T)). Spelling out the definition of
the norms | - |5 and | - |, the claim is proved once we show that

hm—Z(sX,Kh *8xj + —= (|Gh/2 % 8x 13 + |Gh/2 *5X|123) =0. (75)
oy

hi0 /B

and the same claim with a;;, y replaced by b;;, B respectively.
We concentrate on (76). Clearly, we are done once we show that for any i # j

lim — Za,»j/.s(ax,-c’; #8xj — GI? %8 Gl/? % 8 x;)dxdt =0, (76)
£

E%T/E(‘SX"GI; x8x; — GU2 %8 Gl/? % Sx)dxdt = 0. (77)
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To show this, using the semigroup property (22) we rewrite the argument of the limit as

1
-7 [€. G158 x)Gl/* = 8 xjdxdt, (78)
where [§, G), >|<] denotes the commutator of multiplying by &£ and convolving with Gh/ 2
ie.
[€, G1/21(f) = &G [ — G2 % (€ ), (79)

for every function f for Which this expression makes sense. We observe that by the bound-

h/2

edness of the measures [ |G/~ *dx |2A it suffices to show

e h/2 2 _
lim f 1€, G416 x0) Pdxdr = 0. (80)

To prove this, spelling out the integrand, using the Cauchy—Schwarz inequality and recalling
the scaling (21) we observe that

[ 16,626 Paa
5/(/ lE(x, 1) — E(x — 2, z)|2G’y'/2(z)dz) G2 5 |8 (x, 1) *dxdt

h T
< Esup|vg|2/Gy(z)|z|2arz/ /|8x,~(x,z)|2dxdt. (81)
0

Observe that by the compactness of x” in L2([0, 1)? x (0, T)), (81) is of order &, thus (80)
indeed holds true.

Now we can turn to the proof of (72), which is essentially already contained in the paper
[21]. For the convenience of the reader we sketch the main ideas here. One reduces the claim
to proving the following facts:

1 1 2
lim — 3 8x KL+ 8 ﬁ<‘c”/2*ax' +‘Gh/2*8X’]B>:O, (82)
i

ni0 /h

Jim sup —— | G1/2 *5)(’2 _er L ’Gh/z « ( — x (- —h))‘2 <0, (83)
no N A hv/h 17 A

. L w2 2 h/2 2

limsup — |G *8)(’ -« —‘G *(X—X(’—h))‘ <0. (84)
no ~h p B B

Claim (82) was proved in the previous paragraph, while (83) and (84) are consequences
of Jensen’s inequality in the time variable for the convex functions | - |2A and |- |]2B respectively.
More precisely, assume without loss of generality that t = Nh for some N € N, then by a
telescoping argument and Jensen’s inequality for | - |2A we get

1
—|GM? % 5x 13

vh
1

N-1
<NY —=IG2 % (x" (- —nh) — x"( — (n + D)3
X 7%
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Recalling that N = «/+/h we can rewrite the right hand side as

2N1

—Z |Gh/2*<x( nh) = x"(- = (n+ D). (85)
n= 0

This is an average of time shifts of o2 \f|Gh/2 * (Xh — Xh(- — h))|i Since Nh = o(1) all

these time shifts are small, thus the average has the same distributional limit as o> —~ /2 4

h
i G7
(X" = x"( = h))|2 . This proves (83). The argument for (84) is similar.
Existence of the normal velocities We now prove the existence of the normal velocities. Fix

1 <i < N and observe that for w € {y, 8} we have

i —XxiC— O <G — 5 —NGE % (xi — xi - — )+ 1xi — G * %l

P (86)
+Ixi(C—1) =Gy * xi (- = 1),

which follows simply by observing that |x; — x; (- — )| = |xi — xi(- = O* = (i — xi (- —
DGh (i —xi =)+ — X=X —Glhx )+ (- —1) — x) (i (- —7) — Gl «
xi (- — 7)). Using Jensen’s inequality and the elementary identity (156) in the “Appendix”
we have

Ixi —G" % xil < /Gf‘U(Z)IXi(x) — xi(x —2)ldz
- / Gl (@i ()(1 = xi(x — 2))dz + / Gh(@) (1 = xi () xi (x — 2)dz

=y / Gh@xi ) (x —2)dz+ ) / Gl (@) xa (¥) xi (x — 2)dz.
k#i k#i
(87)

Now observe that by testing (44) with G, /K;; (which is bounded, and thus admissible), we
learn that

1 .
lim —— / Gy ()i () xe(x — 2)dz = f Gu(@ik(x, 1) - 2)4dzH{g |, (dx)dr. (83)

Thus, if we divide (86) by Vhandleth | 0, using also (73) we obtain

18 i
Vh

. 18 xi 89
< lim sup (89)
no  ~h

< Co’o+ CH{jg () (dx)dt,

ol xi| < hmilnf

where C is a constant which depends on y, B, N, the mobilities and the surface tensions. If
we d1v1de by « and then let « — 0 we learn that |9; X, | is absolutely continuous with respect
to He d*Q (t)(dx)dt In particular, there exists V; € L! (H d*Q (t)(dx)dt) which is the normal
Velocuy of xi in the sense that o xi = Vi|Vyi| in the sense of distributions. The optimal
integrability V; € L2(H 3*9 (t)(dx)dt) will be shown in the second part of the proof. Let

us record for later use that with a similar reasoning we actually obtain that lim sup,, "i}‘

is absolutely continuous with respect to HIB*Qi o (dx)dt. Thus in particular inequality (89)
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holds with @ replaced by its absolutely continuous part with respect to Hl‘gigzi o (dx)dt;
calling this @f¢, it means

hrnsup| i <

2
ns Ca?w® + CHIlLg () (dx)dt. (90)

Sharp bound For a given 1 <i < N we denote by § Xi+ and dx;” the positive and negative
parts fo & x; respectively, i.e. we set 3X,<+ = —xi¢—1)yranddy; = (i —xi(-—1)-.
Before entering into the proof of the sharp bound, we need to prove the following property.
For any i # j we have that, in a distributional sense, the following holds

11m—6xl *SX;":O_hm l-hj*SXj_. 91)

hi0 /B 10 f
We focus on the first limit, the second one being analogous. The first observation is that
the limit

A= hm —5;(,*1(” 8% (92)

0 V7

is a nonnegatlve bounded measure, which is absolutely continuous w1th respect to
\): ([) (dx)dt. Indeed, spelling out the z-integral and using the fact that § X = (1l —

xi(- — 7)) we obtain

1
+ grh + _ h + +oe
\/E(SX K}’ *‘SXJ- = ﬁ/Ki.i(Z)SXi (x,t)&)(j (x —z,t)dz

1
=< 7 / Kl ()i (x, D (x — 2, D)dz.
By (44) in Lemma 4, as & |, 0, the right hand side converges to

/ Kij(2)(vij(x, 1) - Z)+Hfz_ij-l(t)(dx)dt’ ©3)

which is absolutely continuous with respect to ’HTIE_ ,l(t) (dx)dt.
ij

Now, given vg € S9-1 we claim that

A Sj; i Kij(z)(vij -Z)+Hf{ijl(,)(dx)dt

02 (94)

+/ Kij(2)(vij -z)_HEjl(,)(dx)dt.
vo-z=>0

To see this, we rewrite the argument of the limit in (92) as

1
ﬁ./Rd An(t, x, 2)dz, 95)

where we set A, (¢, x, z) 1= xi (x, t)(1— x;i)(x, t—t)Kihj(z)x,'(x—z, HA—x)(x—z,t—1).
Using the fact that 0 < x; < 1 and ), x; = | we obtain the following inequalities

h < xi 06 DK@ 3 (x = 2,1, (96)
A< xj(xt — DK F@xi(x —z, 1 —1)
+C Y KA (I8, 1) + 18 el (x — 2,1)) - 97)
ki, j
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Here C is a constant that does not depend on /. Using inequality (96) on the domain {vy-z < 0}
and inequality (97) on the domain {vg - z > 0} we obtain

A <limsup — xi(x, t)K (z)xl (x —z,)dz
10 f 0-2<0
+ lim sup — Xj(x,t—r)Kﬁi(z)Xi(x—z,t—r)dz
nl0 f 0-2>0 ‘
1 h
+C Z hm SUP (Z)ISXkI(x, Ndz+ — | K;;@I8xkl(x —z,0)dz ).
Parg f N

Observe that for any 1 < k < N we have

1 1
limsup—/K-h-(z)|8)(k|(x,t)dz=limsup—v/Kh-(z)|6Xk|(x—z,t)dz. (98)
no ~h Y no ~h Y

This can be seen by showing that
hm 7/ (z) (18xkl(x, 1) = [8xk|(x —z,1))dz =0, 99)

which can be shown to be true by testing with an admissible test function, and putting the
spatial shift z on it. Thus recalling (44) and (90), we obtain that

rs [ Ky@wy 0 dxdr
vo-2<0 /

d—1
+ /UO.PO Kij(@)(vij - 2)-Hjz, ) (dx)dt (100)

2
+C ) o +H, o dx)dr.
k#i,j

Since we already know that A is absolutely continuous with respect to HE /_l(t)(dx)d t, the
same bound holds true if we replace the right hand side with its absolutely continuous part
with respect to ’Hldz_ l(t)(dx)dt Observing that for k # i, j by Lemma 6 in the “Appendix”
the measures H|a*9k(z)(dx)dt and 7-[‘8*2 (t)(dx)dz are mutually singular, this yields (94).

Writing A = 0(x, t)HIE (t)(dx)dt for some L! (HIZ (t)(dx)dt) -function # we obtain
that inequality (94) yields

Ox,1) < / Kij(2)(vij(x,1) - 2)4+dz

Y020 (101)

+/ Kij()(vij(x,1)-2)_dz
vo-z=>0

for every vy € S9-1 and Hf): I(I)(dx)dt -ae. (x,1) € [0, D4 x (0, T). By a separability
argument, we see that the null set on which (101) does not hold can be chosen so that it
is independent of the choice of vgy. If we select vy = v;;(x, t) this yields & < 0 almost
everywhere with respect to ’Hldz_[ /10) (dx)dt. Since we already know that A is nonnegative this
gives A = 0.

Before getting the sharp bound, we check that for any i # j we have V; = —V; a.e. with
respect to Hf}:_ijl(z) (dx)dt. To see this, we start by observing thatif £ € CZ°([0, D9 % (0, 7)),
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thanks to the fact that Zk#i xx =1 — xi, we get

/ EVIHIg, (o (dx)dt = — / O € xidxdr
= Z/a,g)(kdxdz (102)

ki

d—1
=-> / EViH gy, oy (dx)dt.
ki

Choosing & = f(t)g(x) for some f € C2°((0, T)) and g € C*°([0, D9, by a separability
argument, we obtain that for a.e. f and every g € C*([0, 1))
d—1 d—1
/giHw*szi(t)(dx) =- Z/ngH\a*ka(dx)' (103)
ki

Pick 7 such that (103) holds. Let g € C*([O0, D9) and let pm be a partition of unity
obtained by the construction of Sect. 4 applied to the function y (-, #) on the interface X;; (¢).
Then

d—1 d—1
Z fpnlng|a*Qi(t)(dx) = - Z Z/pmngHw*Qk(t)(dx)- (1()4)

meN meN k#i

Passing to the limit » | 0 in (104) we get by Lemma 5 that
d—1 d—1
/ g‘/iH|zi_/~(z) (dx) = — / ngH‘ZU(I) (dx). (105)

Since this identity holds for any g € C*([0, 1)?), a density argument gives V;(x,t) =
—V;(x,1) for Hldx_l_jl(t)—a.e. x. In other words

/ Vi, 1) + V0, DM ) (dx) = 0. (106)

Integrating in time yields that V; = —V; a.e. with respect to Hf{i jl(t) (dx)dt.

We now proceed with the derivation of the sharp lower bound. Define ¢;; := [ K;;(z)dz.
Then we have

cij (18] + 18351) = cij (1" +8x; + 8% +6x))
1

5 (3;(,.*1({} x (1= 8x7) + (1= 8x7 KD w8yt + 8% Kl (1= 8x%)

N - —xh + N -
+(1 =3dx; )Kij*éxj + 38 Kl-j*(l—ﬁxj )+ (1 —3Xj )KU*SXI.
+8x KL+ (1= 6x7) + (1= 8x7)K Ly 0 )

h — —h —h h _
+<8)(i+Kij*8xj +8Xj Kij*‘SXi++5Xi Kij*fSXj_"“SX;_K,‘j*SX,' )

(107)
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Now we rewrite the terms in the second parenthesis using —ab = ayb_ +a_by —ayby —
a_b_ and then adding and subtracting the contributions of the minority phases we obtain

1 _ _ _

cij (18 +18x1) < §<5x,~+K,-hj (1= 8x7)+ (1= 8x; K] % 8xT +8x; K+ (1=8x.")
+ (L= 8x DK %85 +8x7 Kpx (1= 8x) + (1= 8x K 8y,
+ 08X K] (1=8x7) + (1= 8x, K], *sxj> = > Skl 8xp

Lp
+ 81K w83 48X K]y %85 + 08X K]

n
J
+ 8)(1._1(1-’} *3x; + Z SX[K,};, *8Xp.
{1.p}#l.j)

*(SX;L

(108)

Now the main idea is to split the integral of K;; in the definition of ¢;; into two parts.
More precisely, by the symmetry (20), for any vy € SY~! and any Vy > 0 we have

Cij = 2/ Kij(z)dz + 2[ Kij(z)dz. (109)
0=<vp-z=<aVy vp-z>aVy

Substituting into (108) and dividing by ~/A we obtain

Sxil + 185,
2[ K,-,-(z)dzq Xil +18x;1)
0<vp-z<aVp x/ﬁ

1 . - _
< ﬁ(axiﬂd; (1= 8x7) + (L= 8x)K]; #8x7 +6x7 Ky + (1= 8x7)

+ (= 8xK] w80 +0x K (1= 8x)) + (1= 8x K] 8y
XK x (1= 8x7) + (1= 8x K % 8x;

—4 / Kij (2)dz(8%:] + 18%,1)
vo-z>aVy

=2 8xK[ *8xp +28x K] *8X7 +20x7 Kpwdx;
Lp
+ 280 K] w8 x;T +28x; Ky 8x;

+2 > 3;(,1(1’;*5;(,)) (110)
PG ). (LA D)

We will be interested in bounding the lim inf of the left hand side. Observe that the

distributional limit of the last five terms is non-positive. Indeed, the limit of first four terms
vanish distributionally by property (91), while the last term is bounded from above by

2 Z BXIJFKZ"'D*SX;—HS)([K{;,*SX;,
(4, p)#G, ), A, p)#( D)
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which vanish distributionally in the limit # | O by property (91). We thus obtain that the
lim inf of the left hand side of (110) is bounded from above by

1
hmimfﬁ<8x+l{h*(l—8x )+ (1=68x; VK!8 +8x; K (1 =8xh)

+(1 —3Xl+)1<h *8x; +ox K *(1 -sxH+d —5Xj+)1<h * 8y
+ XK+ (1= 8x7)+ (1 —8x,~ K} *8x;

- 4/ Kij@dz(18x:| + 18D — 2 8xuK}, *3Xp>-
vo-z>aVp Lp
(111)

For the last term we use the sharp bound (72), relating this term to our dissipation measure
. We would like to get a good bound for the other terms. This cannot be done naively as
before, since we want the bound to be sharp. We claim that

p 1 h - h

llrzl¢s[)up«/l7(axl K} *(l—cSXj)—i-(l 8)( )K *(SX, +5ij *(1—5)(,)
+(1—5xl+)1( *8x; +ox; Kl *(1—ax+)+(1—5xj)1< * ).
+8x+K">|<(1—8x )+ (1= 8% )K}, *8x;

4 / Ky ()dz(18 3] + |8><j|)>
vy-z>aVy

= 8/ Klj(z)lvl](-x) Z|dZH|>: ([)(dx)dl‘
0<vp-z<aVy

+C Y (@ + Mgy, o) (dx))dt. (112)
k#i, j
Here C is a constant that depends on y, 8, A, B, but not on 4. Assume for the moment that

(112) is true and let us conclude the argument in this case. Using (112) and (72) we obtain

Sxil + 183,
2%im inf / Ky (ydz L2XE1x;D
hl«o OEVO'ZfolV() \/E

<dw+4 / Kij(@)|vij (x) - zldzHfs | (dx)di
0<vp-z<aVp

2
+C ) (@ + Mg, (o (@x)dt (113)
k#i, j
in the sense of distributions on [0, 1)¢ x (0, T). Observe also that the left hand side of (113)
is an upper bound for f0<vo-z<0tVo K;j(z)dz(|0; xi| + |9, xj|), thus the inequality still holds
true if the left hand side is replaced by this term. Remember that &{° is absolutely continuous
with respect to HES a*Q (z) (dx)dt, thus there exist functions Wy € L! (H 3*9 o (dx)dt) such
that 0 = Wi (x, t)H\d*Q ) (dx)dt. We now disintegrate the measure w, i.e. we find a Borel

family w;, t € (0, T'), of positive measures on [0, l)d such that ® = w; ® dt. Having said
this, it is not hard to see that (113) holds in a disintegrated version, i.e. we have for Lebesgue
ae.te((0,7)

2a / Kij )z (Vi (6, D Hyigy () (@x) + [V (8 DI () (@)
0<vp-z<aVy
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< o?w, + 4 / Kij(@)vij (x) - zldzH{s ! ) (dx)
0<vp-z<aVp J
+C D (@ Wilx, 1) + DH{pg ( (dx). (114)
k#i, j

Here vy € S? ! and Vj € (0, o0) are arbitrary: indeed even if the set of points in time for
which (114) holds is a priori dependent on vg and V), a standard separability argument allows
us to conclude that we can get rid of this dependence.

Fix a point ¢ in time such that (114) holds. In what follows, we drop the time variable ¢
which is fixed, so for example V; (x) = V;(x, 1), &;; = X;;(t) and so on. Fix § € C([0, DY),
observe that by definition of V;; and by using the fact that ¥;; C 9*Q; N 9*Q2; we have

4o / Kij(2)dz / E@IVy M (dx)
0<vy-z<aVy [0,1)4

= /[o 1y sen(dn 4 /()<uo z<aVy Kij @i 0 - Zldzg()C)/'Lfldi_zjl(t)(d)‘)

[0,1)

+C Y / E) (@ Wi(x, 1) + DH{g () (dx). (115)
k#i, j

~ Let us relabel vy, Vo and & to make clear that they may depend on the pair i, j. Thus
vy € 8971, V) € (0, 00) and &;; € C ([0, 1)) are arbitrary, and it holds

do [ Kg@dz [ s @
0<v z<aV [0,1)d /

<o’ / &j(X)w, (dx) + 4 / K@) - zldag (OH ) dx)
[0,] O<\}0 Z<0(V(j'/ J

[0,1)4

+C Yy / &7 () (@ Wi (x, 1) + DM, ) (dx). (116)
k#i,j

Let {p,} be a partition of unity obtained using the construction of Sect. 4 applied to the
function x (-, #) on the interface X;; (). Use the above inequality with &;; replaced by 0,,,§;;
and sum over m and i, j to get

SN E) <> Y @ + 1w+ o) (117)

i<j meN i<j meN

where we have set
LH}) = 4a f Kij(z)dz / Pmij (V)i (OIVij (05 (dx),
0<v0 z<otV0 [0,1)
| A / £(X) pmij (X)ey (dx),
[O,l
I = / / K@ ) - 2z (0 YA (@),
0,1)d O<vO 7<OtV

mj=cy / Pmi ()i () (@ Wi (x, 1) + DHIG () (dx).
k#i,j
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Observe that

Z Z I < Za /0 .y £ (X)ay (dx) (118)

i<j meN i<j

because o, is a partition of unity. Moreover by Lemma 5 we get

d—1
Y Y ihi=ta [ oy O [, st o,

i<j meN 0
hmz Z II Z / / i K (@)|vij(x) - Z|dZ§',J()C)'H|2 (t)(dx)
i<jmeN i<j [0,1)¢ 0<v0 z=aVy
11m Z >
l<j meN

Putting things together we obtain that for any v(i)j e S8 any Véj € (0, 00), and any
§ €C(0. D%

4QZA<U Vil Klj(Z)dZ/ 0.1y E,J(x)|V,](x)|H (dx)
o i=aVy ,

1<j

<)« f £j(X)o; (dx)

i<j
+4Z/0 e [)<v0 z<aV Klj(z)h)l](x) Z|dz'§1](x)H‘): (t)(dx) (119)

‘We now claim that by approximation the above inequality is valid for any simple function
&;j = 0. To see this, it is clear that we can concentrate on &;; = w,-l,'lgl.j , where B;; C [0, l)d
are Borel and w;; > 0. Observe that by the dominated convergence theorem, the family

F:={B= l_[B,'j : B,‘j e B([0, l)d) S.t. Vwij >0 (119) holds with gij = wilei_,-
i<j

(120)

is a monotone class. Thus by the monotone class theorem we just need to show that it
contains all the products of open sets. But this is easy because given B;; C [0, 1)? open
sets, we can always find sequences nf(j of continuous functions with compact support such
that 0 < nij <1 Byj and such that nf(j —- 1 Bij» thus the claim follows by the monotone
convergence theorem.

With this in place one can use an approximation argument to replace the vector v(i)j with
the 4~ !-measurable vector valued function v; j obtaining the following inequality:

4a2/

/ Kij(2)dzE; () Vi (O[5 (dx)
0<v;j(x) z<o¢V(;] /

i<j 0.1)¢
= / £ (X))
i<j
2 fo 1y /0<w/ z<av Kij@lvij (x) - Z|dz§ij(x)HT12_i; @x). (2

l<j
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Now divide by o and send « to zero. Record the following limits, which can be com-
puted spelling out the definition of K;;, and recalling the symmetry property (20) and the
factorization property (23) for the heat kernel

1 vy
lim — Kij(z)dz =
@l & Jo<v;(x)z<aVy 2puij
1 0%
lim — CKij@vij(x) - zldz = ——. (122)
0 & Jo<y;(x)z<aV! Apaij
Then if we insert back into (121) we obtain

Z / Vé’Sz] ()| Vij (x)IH (dX) (123)

ie Mij
J

Vs>
< o (dx) + Y & (OH, ) (dx). (124)
[0,1)4 iz Jond Kij
Now given M > 0 take sequences of simple functions
s — Z w,‘lek (125)

such that s — Vi1 {IV;jl<m} a8 m — 400 monotonically almost everywhere with respect
,,,,, , are disjoint and H4~1_measurable, with the

property that Bij [r =@if {i, j} #{l, r}. Choosing V(;j = wij, &j =1 in (123) and
ij

summing over k we obtain

$H d—1
m | Vij (O Hs,  (dx)
Z Mij /O 1)d Y I%ij

i<j

o2,
= e X [ S . (126)

i<j

to H|2 1) We are assummg that {Bl] He=1

Taking the limit m — 400, using the monotone convergence theorem we obtain

i . 21 d—1 d
[Vij 1 v 1=m My, (dx)
= 1ij Jio.d ' ’

Vi _
< /{0 b w;(dx)—i—Z/ | ,(x)l U|5M}Hijzul(dx) (127)

d .
i<j [0,1) Mij

or, in other words,

1 -
— Vi Py, < Ky, (dx) < / (dx).
iz Mii Jio.n / [0,1)4

Recall that 1;; = uj;, thus the inequality above may be rewritten as

/ Vij ()P Ly 1<mn His | (dx) < / ;(dx).
[0’1)11 t 1

i 21 [0.1)°
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If we now integrate in time we learn by the monotone convergence theorem that V;; €
LZ(H‘Z () (dx)dt) and that the sharp bound (47) is satisfied.

Proof of (112) To prove (112) we proceed in several steps.
First of all, we claim that the first eight terms may be substituted by

2/ Kl-h,»(z)<|8)<i+ —8x; (= +18x;" (—2) — 8x; |
vp-z>0

[0x; —8x (=D +18x; (=2) = 8x; |> (128)

To show this, observe that we may replace the implicit z-integrals in the convolution in
the first eight terms by twice the integrals over the half space {vg - z > 0} instead of R?. This
is clearly true once we observe that, in the sense of distribution

lim —— (BX?f Kl (@)(1=8x; (- —2)dz
o220

hi0 /h
IAURCZIRY S Kl (28 (- — z)dz>
~lim - (axr /WSO K@ = 57 (- = )dz
IAURCZIRY S K @8x7( — z)dz) (129)

and that similar identities hold exchanging the roles of i, j and 4, — respectively. That (129)
holds is not difficult to show. Indeed multiplying the argument in both the limits by a test
function & € C°([0, D x (0, T)) and integrating over space-time one observes that since
the kernel is even, the argument of the second limit is just a spatial shift of z of the first one.
By translation invariance the spatial shift may be put onto the test function, and thanks to
the scaling of the kernel one can get the claim. We may thus substitute the first eight terms
of the left hand side of (112) with twice the same terms with the integration with respect to
z on the half space {vp - z > 0}. If we rely again on the fact that § X;r € {0, 1}, by identity
(156) in the “Appendix” we obtain (128), as claimed.

Now we need two inequalities for the integrand. First note that the integrand is a mixed
space-time second-order finite difference. We claim that

18" = 8x; ¢ = DI+ 18x ¢ —2) = 8x; I +18x7 = 8x; ¢ =+ 8¢ (- —2) —8x] |
18" = 8% ¢ =Dl +18x; —8x —z)|+|5x, = 8x ¢ =D+ 18x; —8x; (- =2
+43 s (S xkl + 18 xx (- = 2D,
18xil +18xi (- — DI+ 18x;1 + 18x; (- — 2)I.
(130)
The second follows from the triangle inequality. To show the first one, observe that
18" = 8x; (=l = (1 =8x)dx; (- —2) + )" (1 = 8x; (- —2)

< =0xD8x =+ Y Ixe —2)| +8x7 (1= 8x; (- —2)
ki, j
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+ ) sl (131)
ki, j
and that similarly
187 —2) = 8x; 1 =(1 = 8% (- = 2)8x; +8x"( =21 =8x7)
<(1=oxtC—x + Y el + x5 ¢ — (1 —8x;)
ki, j
+ ) 18— 2)l. (132)
k#i,j
Summing up the two inequalities we get
8% = 8x; ¢ =D+ 1847 —2) = 8x; |
<18x;" = 8x ¢ =D+ 18x; —8x; (=l +2 Z U8kl + 183k (- — 2)) . (133)
ki, j
Similar bounds hold for the remaining terms in (130).
We now split the integral (128) into the domains of integration {0 < vyp -z < aVp}

and {vg - z > aVp}. On the first one we use the first inequality in (130) for the integrand.
Recalling identity (156) and inequality (157) in the “Appendix” we obtain, and using the fact

that >, xx =1
2/ 1<,~h,~(z)<l5xl-Jr —8X; =D+ 18x" (- —2) = 8x; |
0=<vp-z=aVp ’ ’
18X = x =D+ 18x (= 2) = 8)(f|>dz

= 2/ K%(Z)(IX;’ =X =D+t =1) =Xt —1,-=2)
0=<vp-z=<aVy
1 = xC=DF =) =X =1, = 2)]

+8 ) 18kl + 18k —z)l)dz
ki, j

<2 K@ [xiC =400 =00+ Y gt =2+ 066 — D0
0=<vp-z=aVp k#i,j

+xC—xC—1, =)+ x( -7, = —1)
+ Y =D C =T =) =T = D — 1)
ki, j
FXxC =D F X=X+ Y Kl — D+ x5 — D
ki, j
+xC=Oxt—1.- =)+ x¢—7, - —Dx(—1)

+ ) C=0xC =T =D+ ¢ =T = D = T)
ki, j

+8 ) 183kl + 18k (- — 2| | dz (134)
oy
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On the set {vp - z > aVp} we use the second inequality in (130), obtaining
2/ KB @ (166 = 825 ¢ = Dl + 18 ¢ =2 = 8|
vo-z>aVy
HOxT =X =D+ 18x ¢ —2) — 8xj+|> dz
< 2/ KE@ 851 + 18 ¢ = D+ 181 +18x; ¢ —Ddz. (135
vo-z>aVp

We now observe that for any 1 < k < N we have, as we already observed in (99)
1
lim — K@ I8x(- — 2| — 18xx))dz = 0, (136)
n0 \/E 0<vp-z<aVp Y

thus in particular

1
lim sup — K18 xx(- — 2)ldz
no Vh Jo<wz<avy Y
1
= lim sup — Kl ()18 xkldz. (137)

1m0 ~h Jo<uz<avy

By putting the time shift ¢ on the test function it is easy to check that the distributional limit
of the terms of (134) which involve the shift T have the same limit as the corresponding
terms without the time shift. Thus recalling (90) and relying on (136) and (44) we obtain that
inserting (134) and (135) into (128), the left hand side of (112) is bounded by

d—1
8 /0 ey K@D 24 0155 1) - )M L (dx)did

+C Y /0 ey, K@ik D D+ G, 1) DM (dx)didz
ki, j VSRS

+C ) (@ + Mg,y (dx)d),
ki, j

which clearly gives the claim once we realize that
/ Kik (@) ((ir (x) - 2)4 + (ig(x) - 2)-)dz
0=<vp-z=<aVy

< 2/ Kin(2)|zldz < C.
Rd

5.4 Proof of Proposition 2

Proof The proof is along the same lines as Proposition 2 in [21], where the claim is shown in
the case of two phases. For the convenience of the reader, we outline the strategy of the full
proof, providing details only for the required changes. The proof is split into several steps.
STEP 1. The first observation is that for any 2 > 0, any admissible # € M and any smooth
vector field & we have the following lower bound for the metric slope, cf. (33)

1 1
S10ERI) = 8E (e — 2 (3dn (. u)e£)? .
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Here § denotes the first variation, which is computed considering the curve s — u*® of
configurations which solve the transport equations

dgui +& - Vup =0, (138)
(-, 0) = (),
and by setting
d d
SEn(u)eé := —  Ejp(w®)and 8dp(-, u)eé := —  d(u,u’). (139)
ds |s=0 ds |s=0
STEP 2. The second observation is a representation formula for § Ej, (1)&. Namely
1
SEp(u)eE = Zﬁ (/v.guil(l.’} s ujdx +/v.su,K{} x u;jdxdt
by (140)

+ [ie VKf’j*](u,-)uidx)
Here [£, VKihj *] denotes the commutator obtained taking the convolution with VKl.h. and
multiplying by &, the definition is analogous to the one given in (79). To check this formula
one starts by assuming u to be smooth and then an approximation argument gives the result

for a general u € M.
STEP 3. Representation for 8dj, (-, u)e&. One checks that

1
5 6, u)e£)?

_ Jzﬁz(/ uig - V2Kl *(fuj>dx+/“f$~V2thj * Guildx
L]

+/u,»v-gv1<{1j *(su,)dx+/u,-v-gv1<{} % (Eup)dx
—/uiv-gK}'j*(u,-v-s)dx—/ujv.sK,.’;*(uiv-g)dx

—/Su,-VKihj *(ujV-E)dx—/éujVKihj *(ul-V-S)dx>. (141)

Once again this formula can be easily checked when u is smooth, an approximation
argument then gives the extension to the case u € M.
STEP 4. Passage to the limit in § E;. We claim that

T
. h d—1
}11?3/0 SE " (1))e&dt = Zaij / (V& —vij - VEv;)) Mg, (@x)dt.  (142)
iJ
The proof is very similar to the two phases case, and relies on the weak convergence (44)
and (45). Firstly, testing (44) with V - £ we get

: 1 hyh o h hgh ,  h
lhli%ijﬁ/(V~§uiKij*uj—f—V-Squij*ui)dxdt

= 20 / v-ngEjJ%(I)(dx)dr.
ij
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For the term involving the commutator, one checks that

}11% ( / €, VK5 (uu] dxdr — / VEz - VK[ (@uh(x — 2, ul (x, t)dzdxdt) =0.

With this in place, we observe that
l1m/V$z VK (z)u (x—z, t)u (x, t)dzdxdt

= / VE(x, 0z VK@) v (x, 1) - 2+ Hiy | (dx)di

VEz-VKij(2)
Kij(z)
conclude (142) we just need to show that for any symmetric matrix A € R?*¢ and any unit

vector v we have

which can be seen by testing (44) with , which is of polynomial growth in z. To

/Az “VKj(@)(v-2)4dz = —0jj (rA+v - Av).

Using the definition of the kernel K;; it suffices to show that

/Az -VGy()(v-2)4dz = —@ (trA+4+v-Av) w e {y, B}.
N

STEP 5. Passage to the limit in 8dj, (-, u)€. We claim that

o1
%11?(}5 <5dh( u ) S /(S vl]) H|2 (t)(dx)dt (143)

i,' Hij

To prove this, we observe that the terms which do not involve the Hessian V2K f; are all
O (+/h). For example, to prove that

«/E/uf'ngK{’j x (Eu'dxdt = O(Vh), (144)

spell out the integral in the convolution, use the fact that VK f; = %HVK ij (ﬁ), use the

N

fact that V - £(x, 1)&E(x — hz, 1) is bounded and test (44) with VK;j/K;j. The other terms
can be treated similarly. For the terms involving the Hessian of the kernel, we split the claim
into

%i%ﬁ/uf’(é'vzl(ihj s uj)edxdt = H‘E L o(dx)di,  (145)

ﬁ/u?g &, VK] %)) dxdt = 0(\/71). (146)
The proof of (146) is similar to the argument for (144). In fact, while the additional

derivative on the kernel gives an additional factor ﬁ, we gain a factor /A by the Lipschitz
estimate

E(x, 1) — E(x — Vhz, )] < VRIIVE oo (147)
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To prove identity (145) observe that by spelling out the z-integral, a change of variable and

h E(x,1) V2K (DE(x.1)

by testing (44) witl K, we obtain

. h 2p-h h
}:%ﬁ/wi (& - V2K xu'edxdr
= [ & V2@ 0 2L

Now identity (143) follows from the following formula: For any two vectors & € R? and
v € 891 we have

1

(& -v)* (148)
24uij

/ £-VKij@EW - 7)1 dz =

To check (148), by relying on the definition of the kernels, we just need to show that for
w e {y, B}

/ £-V2Gy,(E( - 2)4dz = & -

1
2w
Since the kernel is isotropic, we can reduce to the case & = ey, thus we need to prove

1 2
Vl.
2/mTw

This can be done after two integration by parts and observing that

/ Gy (@ - 2)1dz =

1
d—1 _
/”:0 Gy(@H (dz) = W

CONCLUSION. By STEP 1 we have

1 T T 1 T 2
5 /0 DEL(" di > /O SEN )i — /0 (5. a8 ar.

Taking the liminf on the left hand side, using STEP 4 and STEP 5 we get that for any smooth
vector field &

S _
h%lonfif DARRIEDD [o,»j / (V-&—vy .Vév,'j)HfE”l(t)(dx)dt
0 i ’

! /(§~v,~)2Hd_l (dx)dt |.
2Mij J |2 (1)

Since the left hand side is bounded, the Riesz representation theorem for L? yields functions
Hij € L*(H{s |, (dx)d1) such that

> oy / (V& —vij - VEvy;) gl (dx)dt = =) o / Hijvij - § M5, | (dx)di
ij ij
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and such that for any & € LZ(H‘U 50 (@x)d)
N
hr!rllil()nfif [0ER|(up) dt > E —OU/H”UU éH‘E (Z)(dx)dt
0 v,
L [ vl @nar ).
- Vi X
20 ij 13 (z)

Since the integration measures are mutually singular we can test with a vector field & €
L2(H U 5 (t)(dx)dz) such that fliu(t) = —u;jo;jH;jv;;. This yields

S 2
h%lonfifo |0 ER|*(up) dt >~ ZUU/L,]/H Hl2 L (dx)dr.

m}
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6 Appendix
6.1 Proof of Lemma 5

Before giving the proof of this result, we need a simple technical lemma.

Lemmaé6 Fix1 <1 # p < N.Thenforany 1 <i # j < N such that {i, j} # {l, p} the
interfaces X;j and Xy are disjoint. In particular for H e x € X1p we have that

i HA=(Z;; N B(x, n _
m
rl0 Wy — 1rd 1

(149)

Proof We first show that the interfaces X;; and X, are disjoint. This follows immediately
once we recall that every point in the reduced boundary of a set of finite perimeter has density
1/2 (see [26], Corollary 15.8). Assume for example thati # [, p. Thus if y € X;, we have

|(§21 UL, U) N B(y, r)l

1 > lim sup =
rl0 wqr
QN B(y, Q, N B(y, . Q; N B(y,
:hml 1 (y r)|+lim| P (v r)|+hmsu €2 (v, 1)l
rl0 a)drd rl0 a)drd 10 a)drd

Q; N B(y,

— 1+ limsup w (150)

r0 wqr
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which says that y has density zero in £2;.
The fact that (149) holds is now a consequence of the general fact

HTNE NB&, ) _

lim sup i
0 Wd—1r

for H9 l-ae. x € (%i)e. O

Proofof Lemma 5 The argument for (i) can be found in [19] in the case of two phases and
without localization, i.e. with n = 1 and N = 2. For the sake of completeness, we provide the
proof in our case. Upon splitting into the negative and positive part, we may assume 1 > 0.

Clearly the only nonzero terms in the sum are those for which B, N X;; # . Fix such a

ball: by definition there exists y € rZ< such that B}, = B(y,2r+/d).If x € ¥;; N B!, then
we have that B(x, 2r+/d) C B(y, 4r/d), and by definition of £ this yields

Wd—1 (4r)?-! dd_l _ %Qr)dq d

d—1
24 2 '

HITNB(x, 2rVd) N Ey)) <

Thus x belongs to the set of points in X;; N B}, such that

m

HIYB(x, 2rV/d) N i) 1

(B(x I’f) lj) <_. (151)

wi—1(2ry/d)d-1 2

By De Giorgi’s structure theorem the approximate tangent plane exists at every point

X € Xjj, thus (151) cannot hold when r is small enough: moreover every point x € %;; is
contained in at most ¢(2, d) balls, this means that

1

E 1 d—1
HA=V(Bx,2rV/d)NE; ;)
o {zeB;ﬁEl‘j: - 3

Wl (2r\/¢?)d*1

}(X)U(X) < c@2, dn(x) (152)

=

and that the left hand side of (152) converges to zero pointwise. By the dominated convergence
theorem we get our claim.

Proof of (ii) Upon splitting into the negative and positive part, we may assume > 0. Given
apointx € Xy, if y € rZ4 is such that x € B(y, 2r+/d), then B(y, 4r\/d) C B(x, 6r+/d).
Thus forany 1 <i < j < N with (i, j) # (I, p) we have

HITNY(B(y, 4r/d) N 2i;) < HEN(B(x, 6rV/d) N Z))

Wd—1 _ d—1
=< 27(4”)0! 'Wd

provided r is small enough, this follows from Lemma 6. Since ]-'zr covers [0, l)d we obtain

that
X € U B,
m
for all » small enough. In other words
lim ; P ()N (x) = n(x)

pointwise on X, and the argument of the limit on the right hand side is dominated by 7.
Thus we may once again appeal to the dominated convergence theorem and conclude the
proof. O
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6.2 Consistency and monotonicity

The following results are essentially contained in [8] and [19], indeed the proofs may be
adapted because we are assuming that a;; and b;; satisfy the triangle inequality.

Lemma?7 Forevery x € AN BV ([0, DN we have
1. E —_— E . 153
lin n(X) 0 (153)

If x € L'((0, T), BV(0, D)N) such that x (-, t) € A fora.e. t. Then

T T
lim E dt = E(x)dt.
hw/o R(X) /0 0

Even more is true: for any g € C*°([0, 1)%) and any pair 1 <i # j < N we have

: 1 r h h
lhli%ﬁ/() /g(X)(Xi(x,t)K,-,»*Xj(x,t)-i—)(j(x,t)K,-j*Xi(x,t))dxdt

Z/g(x)Kij(Z)lvij - z|dzdxdt.

Lemma8 Forany 0 < h < hg we have

d+1
h
\/T) ) Epy(u).

E - -
n = (wﬂm

6.3 Improved convergence of the energies

The following lemma is an improvement of the convergence of the energies, the proof of this
result is contained, with minor modifications, in the paper [19], Corollary 3.7.

Lemma9 Letu” bea sequence of [0, 1]-valued functions such that ul — X in L([0, D9 x
0,7T)) and

T T
lim/ Ep(u"(1))dt :/ E(x(t))dt. (154)
10 Jo 0

Then we have that

limi/Gh(zW(z)—fy(z)|dz=0
NIt ’

nl0
S B By _ B _
Ei%ﬁ/Gﬁ(mfh (2) = fP(@)ldz =0, (155)

where we set

fhy(z) = Za,-j / uf’(x, t)u?(x —z,dxdt, fV(z) = Zaij / Xxi(x, ) xj(x —z, t)dxdt,
ij

i.j

_f,fg(z) = Zbij / uf’(x, t)u?(x —z,t)dxdt, flg(z) - Zbif / Xxi (e, ) xj(x —z, t)dxdt.
ij ij
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6.4 Some inequalities

Here we gather some elementary inequalities which are used frequently.

Lemma10 Leta, b,a’, b’ € {0, 1}, then the following inequalities hold:

la—bl=a(l —b)+b(l —a), (156)
@ —a)y — (b=l +l(a—d)- — (b —b)_|
<la—bl+d - (157)

Proof The first identity follows by expanding |@ — b| = |a — b|*>. The second one is proved
in [21]. For the sake of completeness, we reproduce the proof here. There are two cases. In
the first one we have (a — a’)(b — b’) > 0 and we may assume upon replacing (a, a’, b, b")
with (—a, —a’, —b, —b’) that (a — a’) and (b — b’) are non-negative. Then (157) reduces to

l(@a—a)—(b-b) <la—bl+la" =)

The second case is given by (a —a’) (b — b’) < 0. By an argument as before we may assume
(a—a’) > 0> (b — b), thus (157) reduces to

(@a—ad)+B-=b)<|a—bl+|a -V m]

Lemma 11 There exists a constant C > 0 depending only on N, A, B such that for any
veM

/ lv — K" s v|dx < C\/hoER(v) forall hg > h. (158)

Proof The proof of (158) is contained in the proof of Lemma 3 in [21] for the two phases
case when K is the scaled version of the Gaussian with variance 1. The same proof may be
adapted to our setting because we still have monotonicity of the energy (Lemma 8) and we
can prove essentially by the use of Jensen’s inequality that

/|U—Kh*u|dx§cﬁEh(v). O
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