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Abstract
We consider the torsional rigidity and the principal eigenvalue related to the p-Laplace
operator. The goal is to find upper and lower bounds to products of suitable powers of the
quantities above in various classes of domains. The limit cases p = 1 and p = ∞ are
also analyzed, which amount to consider the Cheeger constant of a domain and functionals
involving the distance function from the boundary.

Mathematics Subject Classification 49Q10 · 49J45 · 49R05 · 35P15 · 35J25

1 Introduction

In this paper we consider the problem of minimizing or maximizing the quantity

λα
p(�)T β

p (�)

on the class of open sets � ⊂ R
d having a prescribed Lebesgue measure, where α, β are two

real parameters, and λp(�), Tp(�) are respectively the principal eigenvalue and the torsional
rigidity, which are defined below, relative to the p-Laplace operator

�pu := div
(|∇u|p−2∇u

)
.
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In all the paper, we use the following notation:

• p′ is the conjugate exponent of p given by p′ := p/(p − 1);
• � ⊂ R

d is an open set with finite Lebesgue measure |�|;
• d� is the distance function from ∂�

d�(x) := inf
{|x − y| : y ∈ ∂�

};
• ρ(�) is the inradius of �

ρ(�) := ‖d�‖L∞(�),

corresponding to the maximal radius of a ball contained in �;
• diam(�) is the diameter of �

diam(�) := sup
{|x − y| : x, y ∈ �

};
• P(�) is the distributional perimeter of � in the De Giorgi sense, defined by

P(�) := sup

{∫

�

div φ dx : φ ∈ C1
c (Rd ;Rd), ‖φ‖L∞(Rd ) ≤ 1

}
;

• h(�) is the Cheeger constant of �, that we define in Sect. 5;
• Br is the open ball in Rd centered at the origin with radius r and ωd := |B1|;
• Hd−1 is the d − 1 dimensional Hausdorff measure.

Given 1 < p < ∞, Tp(�) denotes the p-torsional rigidity of �, defined by

Tp(�) = max

{[ ∫

�

|u| dx
]p[ ∫

�

|∇u|p dx
]−1 : u ∈ W 1,p

0 (�), u 	= 0

}
, (1.1)

where W 1,p
0 (�) stands for the usual Sobolev space obtained as the completion of the space

C∞
c (�)with respect to the norm ‖∇u‖L p(�). Equivalently, ifwp is the unique weak solution

of the nonlinear PDE
{

−�pw = 1 in �,

w ∈ W 1,p
0 (�),

(1.2)

we can define Tp(�) as (see [7, Proposition 2.2]):

Tp(�) =
( ∫

�

wpdx

)p−1

. (1.3)

Note that wp is a nonnegative function and (1.2) is the Euler–Lagrange equation of the
variational problem

min
{

Jp(u) : u ∈ W 1,p
0 (�)

}
,

where

Jp(u) := 1

p

∫

�

|∇u|p dx −
∫

�

u dx . (1.4)

Multiplicating by wp in (1.2) and integrating by parts gives
∫

�

wp dx =
∫

�

|∇wp|p dx = −p′ Jp(wp).
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When � = B1, the solution wp to the boundary problem (1.2) is explicit and given by

wp(x) = 1 − |x |p′

p′d1/(p−1)
(1.5)

which leads to

Tp(B1) = 1

d

( ωd

p′ + d

)p−1
.

The p-principal eigenvalue λp(�) is defined through the Rayleigh quotient

λp(�) = min

{[∫

�

|∇u|p dx

] [∫

�

|u|p dx

]−1

: u ∈ W 1,p
0 (�), u 	= 0

}

. (1.6)

Equivalently, λp(�) denotes the least value λ such that the nonlinear PDE
{

−�pu = λ|u|p−2u in �,

u ∈ W 1,p
0 (�),

has a nonzero solution; we recall that in dimension 1 we have (see for instance [22])

λp(−1, 1) =
(πp

2

)p
where πp = 2π

(p − 1)1/p

p sin(π/p)
, (1.7)

while in higher dimension the following estimate holds true, see [20, Theorem 3.1]:

λp(B1) ≤ (p + 1)(p + 2) · · · (p + d)

d! . (1.8)

It is easy to see that the two quantities above scale as

λp(t�) = t−pλp(�), Tp(t�) = t p+d(p−1)Tp(�). (1.9)

By using a symmetrization argument and the so-called Pólya–Szegö principle (see [18]) it
is possible to prove that balls maximize Tp (respectively minimize λp) among all sets of
prescribed Lebesgue measure, which can be written in a scaling free form as

λp(B)|B|p/d ≤ λp(�)|�|p/d , Tp(�)|�|1−p−p/d ≤ Tp(B)|B|1−p−p/d , (1.10)

where B is any ball in R
d . The inequalities (1.10) are known respectively as Faber–Krahn

inequality and Saint-Venant inequality.
Moreover, we have:

inf
{
Tp(�) : � open in Rd , |�| = 1

} = 0, (1.11)

sup
{
λp(�) : � open in R

d , |�| = 1
} = +∞. (1.12)

To prove (1.11) and (1.12) it is enough to take into account of the scaling properties (1.9)
and use the fact that if � is the disjoint union of a family of open sets �i with i ∈ I , then

T 1/(p−1)
p (�) =

∑

i∈I

T 1/(p−1)
p (�i ), λp(�) = inf

i∈I
λp(�i ). (1.13)

Then, choosing �n as the disjoint union of n balls with measure 1/n each and taking the
limit as n → ∞, gives

Tp(�n) = ω
1−p−p/d
d n−p/d Tp(B1) → 0
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and

λp(�n) = ωp/dn p/dλp(B1) → +∞.

Thus, a characterization of inf / sup of the quantity λα
p(�)T β

p (�), among the domains

� ⊂ R
d with unitary measure, when α = 0 or β = 0 or αβ < 0, follows by (1.10), (1.11)

and (1.12).
It remains to consider the case α > 0 and β > 0. Setting q = β/α > 0 we can limit

ourselves to deal with the quantity

λp(�)T q
p (�).

Using the scaling properties (1.9) we can remove the constraint of prescribed Lebesgue
measure on � by normalizing the quantity λp(�)T q

p (�), multiplying it by a suitable power
of |�|. We then end up with the scaling invariant shape functional

Fp,q(�) = λp(�)T q
p (�)

|�|α(p,q,d)
with α(p, q, d) := q(p − 1) + p(q − 1)

d
,

that wewant tominimize ormaximize over the class of open sets� ⊂ R
d with 0 < |�| < ∞.

The limit cases, when p = 1 and p = +∞, are also meaningful. When p → 1 the
quantities λp(�) and Tp(�) are related to the notion of Cheeger constant h(�), see definition
(5.1). In particular we obtain as a natural “limit” functional

F1,q(�) =
(

h(�)|�|1/d
)1−q

whose optimization problems arewell studied in the literature. Concerning the case p = +∞,
we show that the family F1/p

p,q pointwise converges, as p → ∞, to the shape functional

F∞,q(�) =
(∫−

�
d�(x) dx

)q

ρ(�)|�|(q−1)/d
,

and we study the related optimization problems in the class of all domains � and in that of
convex domains.

The study of the functionals Fp,q has been already considered in the literature. The case
when p = 2 has been extensively discussed in [30–33] (see also [9]) and our results can be
seen as natural extensions. An interesting variant, where the shape functionals involve the
L∞ norm of the function wp solution of (1.2) has been considered in [19] in the case p = 2.

The paper is organized as follows. In the first three sections we study the optimization
problems for Fp,q , when 1 < p < ∞ and in different classes of domains. More precisely:
in Sect. 2 we consider the class of all open sets of Rd with finite Lebesgue measure, in
Sect. 3 we consider the class of bounded convex open sets and in Sect. 4 that of thin domains
which will be suitable defined. The analysis of the optimization problems in the extremal
cases (respectively when p = 1 and p = +∞) are contained in Sects. 5 and 6. Finally
Sect. 7 contains a list of several open problems which we believe may be interest for future
researches. For the sake of completeness we add an appendix section devoted to clarify the
assumptions we use for the limit case of Sect. 6.
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2 Optimization for general domains

The crucial inequality to provide a lower bound to Fp,q is the Kohler-Jobin inequality, first
proved for p = 2 in [25,26] and then for a general p in [7], which asserts that balls minimize
principal frequency among all sets of prescribed torsional rigidity. More precisely we have

λp(B)T p′/(p′+d)
p (B) ≤ λp(�)T p′/(p′+d)

p (�). (2.1)

Proposition 2.1 Let 1 < p < +∞. Then
{
min

{
Fp,q(�) : � open in R

d , 0 < |�| < ∞} = Fp,q(B) if 0 < q ≤ p′/(p′ + d);
inf

{
Fp,q(�) : � open in R

d , 0 < |�| < ∞} = 0 if q > p′/(p′ + d),

where B is any ball in R
d .

Proof We denote for the sake of brevity q̄ = p′/(p′ + d). Notice that

α(p, q, d) = [d(p − 1) + p][q − q̄]
d

and thus

Fp,q(�) = λ(�)T q̄(�)
[ T (�)

|�|[d(p−1)+p]/d

]q−q̄
.

By Kohler-Jobin inequality (2.1) and Saint-Venant inequality (1.10) we get the thesis for
0 < q ≤ q̄ . Now, let � be the disjoint union of B1 and N disjoint balls of radius ε ∈ (0, 1].
Taking into account (1.13) we have

Fp,q(�) = Fp,q(B1)
(1 + Nεd+p/(p−1))q(p−1)

(1 + Nεd)(d(p−1)+p)(q−q̄)/d
.

Taking now Nεd+p/(p−1) = 1 gives

Fp,q(�) ≤ Fp,q(B1)
2q(p−1)

(1 + ε−p/(p−1))(d(p−1)+p)(q−q̄)/d
,

which vanishes as ε → 0 as soon as q > q̄ . ��
In dealing with the supremum of Fp,q a natural threshold arises from the Polya inequality

whose brief proof we recall.

Proposition 2.2 For every � ⊂ R
d with 0 < |�| < +∞ and every 1 < p < +∞ we have

Fp,1(�) = λp(�)Tp(�)

|�|p−1 ≤ 1. (2.2)

Proof Let w� be the solution to (1.2). By the definition of λp(�) and by Hölder inequality
we have

λp(�) ≤
∫
�

|∇wp|pdx
∫
�

w
p
pdx

=
∫
�

wpdx
∫
�

w
p
pdx

≤ |�|p−1

(∫
�

wpdx
)p−1 .

The conclusion follows by (1.3). ��
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Proposition 2.3 Let 1 < p < ∞. Then
{
sup

{
Fp,q (�) : � open in R

d , 0 < |�| < ∞} = +∞ if 0 < q < 1;
sup

{
Fp,q (�) : � open in R

d , 0 < |�| < ∞} ≤ T q−1
p (B)/|B|(q−1)(p−1+p/d) if q ≥ 1.

Proof Let �N be the disjoint union of N balls of unitary radius. By (1.13) we have

Fp,q(�N ) = N (1−q)(p−1+p/d)Fp,q(B1).

Taking the limit as N → ∞ we have Fp,q(�N ) → +∞ whenever 0 < q < 1. Moreover,
when q ≥ 1, using Proposition 2.2 and the Saint-Venant inequality (1.10), we have

Fp,q(�) = Fp,1(�)
( Tp(�)

|�|p−1+p/d

)q−1 ≤
( Tp(B)

|B|p−1+p/d

)q−1
.

which concludes the proof. ��
When p = 2 and q = 1 the upper bound given in the Proposition 2.2 is sharp as first

proved in [32]. Using the theory of capacitary measures, a shorther proof was given in [30].
The latter extends, naturally, to the case when p ≤ d and q = 1 as we show in the proposition
below.

Proposition 2.4 Let 1 < p ≤ d. Then

sup
{

Fp,1(�) : � ⊂ R
d open, 0 < |�| < +∞} = 1.

Proof By repeating the constructionmade in [13] (see alsoRemark4.3.11 andExample 4.3.12
of [10], and references therein) we have that for every p-capacitary measure μ (that is a
nonnegative Borel measure, possibly taking the value +∞, with capp(E) = 0 �⇒ μ(E) =
0) there exists a sequence (�n) of (smooth) domains such that

λp(�n) → λp(μ), Tp(�n) → Tp(μ), |�n | → |{μ < +∞}|,
where

λp(μ) = min

{ ∫
|∇u|p dx +

∫
|u|p dμ : u ∈ W 1,p(Rd) ∩ L p

μ,

∫
|u|p dx = 1

}
,

Tp(μ) = max

{[∫
|u| dx

]p[ ∫
|∇u|p dx +

∫
|u|p dμ

]−1

: u ∈ W 1,p(Rd) ∩ L p
μ\{0}

}
.

Taking the ball B1 and μc = c dx B1 for every c > 0, we have

sup
�

[
λp(�)Tp(�)

|�|p−1

]
= sup

μ

[
λp(μ)Tp(μ)

|{μ < +∞}|p−1

]
≥ sup

c>0

[
λp(μc)Tp(μc)

|B1|p−1

]
.

Clearly λp(μc) = c + λp(B1). Now, consider for δ > 0 the function

uδ(x) =
{
1 if |x | ≤ 1 − δ,

(1 − |x |)/δ if |x | > 1 − δ.

We have

Tp(μc) ≥
[ ∫

B1

uδ dx
]p[ ∫

B1

|∇uδ|p dx + c
∫

B1

u p
δ dx

]−1

≥
[
ωd(1 − δ)d

]p[
δ−pωd

(
1 − (1 − δ)d) + cωd

]−1

≥ ω
p−1
d (1 − δ)pd

[
δ−p + c

]−1
.
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Therefore

λp(μc)Tp(μc)

|B1|p−1 ≥ (c + λp(B1))(1 − δ)pd

δ−p + c
.

By letting c → +∞ and then δ ↓ 0 we obtain the thesis. ��

3 Optimization in convex domains

We now deal with the optimization problems in the class of convex domains. Notice that
adding in (1.11) and in (1.12) a convexity constraint on the admissible domains � does not
change the values of inf and sup. To see this one can take a unit measure normalization of
the following convex domains (slab shape)

CA,ε := A × (−ε, ε) (3.1)

being A a convex d−1 dimensional open set with finite d−1 dimensionalmeasure and use the
following Lemma, which will be proved in a slightly more general version in Proposition 4.1
of Sect. 4.

Lemma 3.1 Let A ⊂ R
d−1 be a bounded open set and let ε > 0. Let CA,ε := A × (−ε, ε).

Then we have

Tp(CA,ε) ≤
(
Hd−1(A)

)p−1
ε2p−1

(
2

p′ + 1

)p−1

, λp(CA,ε) ≥ ε−p
(πp

2

)p
,

where πp is given in (1.7). In addition, as ε → 0, we have

Tp(CA,ε) ≈
(
Hd−1(A)

)p−1
ε2p−1

(
2

p′ + 1

)p−1

, λp(CA,ε) ≈ ε−p
(πp

2

)p
.

By using the previous lemma we have also

lim
ε→0

Fp,q(CA,ε) =
{
0 if q > 1,

+∞ if q < 1.

Hence the only interesting optimization problems in the class of convex domains are the
following ones

inf{Fp,q(�) : � ⊂ R
d open, convex, bounded}, with q ≤ 1,

sup{Fp,q(�) : � ⊂ R
d open, convex, bounded}, with q ≥ 1.

We denote respectively by m p,q and Mp,q the two quantities above.
With the convexity constraint, the so called Hersch–Protter inequality holds (for a proof

see for instance [8,22]):

λp(�) ≥
(

πp

2ρ(�)

)p

. (3.2)

Moreover, the p-torsional rigidity of a bounded convex open set satisfies the following
generalization of Makai inequality (see [28, Theorem 4.3]):

Tp(�)

|�|p−1 ≤ ρ p(�)

(p′ + 1)p−1 . (3.3)

123
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Both inequalities are sharp and the equality is asymptotically attained by taking, for instance,
the sequence CA,ε of Lemma 3.1. Taking advantage of (3.2) and (3.3) we can show the
following bounds.

Proposition 3.2 Let 1 < p < +∞. Then

m p,1 ≥ 1

d

(πp

2

)p( 1

d + p′
)p−1

, (3.4)

Mp,1 ≤ min

{
1,

( 1

p′ + 1

)p−1
λp(B1)

}
. (3.5)

Proof Let � ⊂ R
d be any bounded convex set. Without loss of generality, we can suppose

0 ∈ �. We denote by j�(x) the Minkowski functional (also known as gauge function) of �,
that is

j�(x) := inf {r > 0 : x ∈ r�} .

The main properties of j� are summarized in Lemma 2.3 of [9]. In particular we recall that
j� is a convex, Lipschitz, 1-positively homogeneous function, Hd−1-a.e. differentiable in
∂�, and satisfies

|∇ j�(x)|−1 = x · ν�(x), for Hd−1-a.e. x ∈ ∂�, (3.6)

being ν�(x) the outer normal unit versor at the point x ∈ ∂�. We consider

u(x) := 1 − j p′
� (x) ∈ W 1,p

0 (�).

By using coarea formula (3.6) and the divergence theorem it is easy to prove that
∫

�

u(x)dx = |�| −
∫ 1

0
t p′+d−1dt

∫

∂�

| j�(x)|−1dHd−1(x) = p′

d + p′ |�|,

and
∫

�

|∇u(x)|pdx = p′p

d + p′

∫

∂�

|∇ j�(x)|p−1dHd−1(x) ≤ dp′p

d + p′ |�|ρ−p(�),

where the last inequality follows by the fact that

ρ(�) ≤ x · ν�(x), for Hd−1-a.e. x ∈ ∂�,

see Lemma 2.1 in [9]. Hence by testing (1.1) with the function u we have

Tp(�)

ρ(�)p|�|p−1 ≥ 1

d

( 1

d + p′
)p−1

. (3.7)

Taking into account (3.2), we obtain

Fp,1(�) ≥ 1

d

( 1

d + p′
)p−1

λp(�)ρ(�)p ≥ 1

d

(πp

2

)p( 1

d + p′
)p−1

,

which proves (3.4).
To prove the second inequality we use (3.3) and the inequality

λp(�) ≤ λp(B1)ρ(�)−p,

to obtain

Fp,1(�) ≤
( 1

p′ + 1

)p−1
ρ p(�)λp(�) ≤

( 1

p′ + 1

)p−1
λp(B1),

123
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which, together with Proposition 2.2, gives (3.5). ��
Remark 3.3 We stress here that inequality (3.7) has been already proved in [12,28]. However,
their results are given in the more general anisotropic setting where the proofs become more
involved.

Remark 3.4 Combining inequalities (3.5) and (1.8), we obtain

Fp,1(�) ≤
( 1

p′ + 1

)p−1 (p + 1)(p + 2) · · · (p + d)

d! ≤ (1 + p)d

2p−1 .

Thereby, as soon as p is large enough, we have Mp,1 < 1.

When q 	= 1 the values m p,q and Mp,q are achieved by some optimal domains, as shown
in the next theorem.

Theorem 3.5 Let 1 < p < +∞. Then
{

m p,q ≥ m p,1T q−1
p (B)/|B|(d(p−1)+p)(q−1)/d if q < 1,

Mp,q ≤ Mp,1T q−1
p (B)/|B|(d(p−1)+p)(q−1)/d if q > 1.

Moreover, there exist convex domains �m
p,q and �M

p,q such that
{

Fp,q(�m
p,q) = m p,q if q < 1,

Fp,q(�M
p,q) = Mp,q if q > 1.

Proof The first part follows at once using Saint-Venant inequality (1.10) together with the
equality

Fp,q(�) = Fp,1(�)
( Tp(�)

|�|p−1+p/d

)q−1
.

Concerning the existence of optimal convex domains, we can repeat the argument used in
[30]. First we notice that

Fp,q(�) = Fq
p,1(�)λp(�)1−q

|�|p(q−1)/d
. (3.8)

Moreover, any convex open set � contains a two-sided cone with base area equal to a d − 1
dimensional disk of radius ρ(�) and total height equal to diam(�), hence

|�| ≥ d−1ωd−1 diam(�)ρ(�)d−1. (3.9)

Thus, suppose 0 < q < 1 and let (�n) be a minimizing sequence for Fp,q made up of convex
domains. By scaling invariance we can suppose ρ(�n) = 1. For n large enough we have
Fp,q(�n) ≤ Fp,q(B). Using (3.2) and (3.8) we have

Fp,q(B)

mq
p,1

≥
(πp

2

)p(1−q) |�n |p(1−q)/d .

Combining the last estimate with (3.9) we have

sup
n

diam(�n) < +∞.

Hence, up to translations, the whole sequence (�n) is contained in a compact set and we can
extract a subsequence (�nk )which converges in both Hausdorff and co-Hausdorff distance to

123
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some�m
p,q (see [17], for details about these convergences). Using the well-known continuity

properties for λp , Tp and Lebesgue measure with respect to Hausdorff metrics on the class
of bounded convex sets, we conclude that

m p,q = lim
n→∞ Fp,q(�n) = Fp,q(�m

p,q).

If q > 1 we can follow the similar strategy and consider a maximizing sequence (�n) with
unitary inradius. By (3.8) and (3.2) we have, for n large enough,

Fp,q(B) ≤ Fp,q(�n) ≤ Mq
p,1

(πp

2

)p(1−q)
(

1

|�n |1/d

)p(q−1)

,

which, thanks to (3.9), implies again supn diam(�n) < +∞. ��

4 Optimization for thin domains

In this section we study the optimization problems for the functionals Fp,1 in the class of
the so-called thin domains, which has been already considered in [30] for p = 2. By a thin
domain we mean a family of open sets (�ε)ε>0, of the form

�ε := {
(x, y) ∈ A × R : εh−(x) < y < εh+(x)

}
, (4.1)

where A is (d − 1)-dimensional open set, h−, h+ are real bounded measurable functions
defined on A and ε is a small parameter. We assume h+ ≥ h− and we denote by h(x) the
local thickness function

h(x) = h+(x) − h−(x) > 0 on A.

Moreover we say that the thin domain (�ε)ε>0 is convex if the corresponding domain A is
convex and the local thickness function h is concave. The volume of �ε is clearly given by

|�ε| = ε

∫

A
h dx,

while we can compute the behaviour (as ε → 0) of Tp(�ε) and λp(�ε) by means of the
following proposition (in the case p = 2 a more refined asymptotics can be found in [5,6]).
From now on, we write the norms ‖ · ‖p , omitting the dependence on the domain.

Proposition 4.1 Let A ⊂ R
d−1 be an open set with finiteHd−1-measure and h−, h+ ∈ C1(A)

with h+ > h−. Let �ε be defined by (4.1). We have

Tp(�ε) ≤ ε2p−1

2p

(
1

p′ + 1

)p−1 (∫

A
h p′+1dx

)p−1

, λp(�ε) ≥ ε−p
(

πp

‖h‖∞

)p

,

(4.2)

where πp is given in (1.7). In addition, as ε → 0, we have

Tp(�ε) ≈ ε2p−1

2p

(
1

p′ + 1

)p−1 (∫

A
h p′+1dx

)p−1

, λp(�ε) ≈ ε−p
(

πp

‖h‖∞

)p

.

(4.3)
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Proof First we deal with inequalities (4.2). Let φ ∈ C∞
c (�ε); since the function φ(x, ·) is

admissible to compute Tp (εh−(x), εh+(x)), by (1.1) we obtain

∫ εh+(x)

εh−(x)

φ(x, ·)dy ≤ T 1/p
p (εh−(x), εh+(x))

(∫ εh+(x)

εh−(x)

|∇yφ(x, ·)|pdy

)1/p

≤ T 1/p
p (εh−(x), εh+(x))

(∫ εh+(x)

εh−(x)

|∇φ(x, ·)|pdy

)1/p

.

(4.4)

Taking into account (1.5) we have

Tp (εh−(x), εh+(x)) = ε2p−1

2p

(
p − 1

2p − 1

)p−1

h2p−1(x), (4.5)

and thus, integrating on A in (4.4), we deduce
(∫

�ε

φ(x, y) dxdy

)p

≤ ε2p−1

2p

(
p − 1

2p − 1

)p−1

[ ∫

A
h(2p−1)/p

( ∫ εh+(x)

εh−(x)

|∇φ(x, ·)|p dy

)1/p

dx

]p

.

Hölder inequality now gives
(∫

�ε

φ(x, y) dxdy

)p

≤ ε2p−1

2p

(
p − 1

2p − 1

)p−1 (∫

A
h(2p−1)/(p−1)dx

)p−1

∫

�ε

|∇φ(x, y)|pdxdy.

Since φ is arbitrary and p′ + 1 = (2p − 1)/(p − 1), we conclude that

Tp(�ε) ≤ ε2p−1

2p

(
1

p′ + 1

)p−1 (∫

A
h p′+1dx

)p−1

.

To get the second inequality in (4.2) we notice that, by (1.6), for every φ ∈ C∞
c (�ε)we have

λp(εh−(x), εh+(x))

∫ εh+(x)

εh−(x)

|φ(x, ·)|pdy ≤
∫ εh+(x)

εh−(x)

|∇yφ(x, ·)|pdy

≤
∫ εh+(x)

εh−(x)

|∇φ(x, ·)|pdy.

Since

λp(εh−(x), εh+(x)) = h−p(x)ε−pπ
p
p ≥ ‖h‖−p∞ ε−pπ

p
p ,

integrating on A and minimizing on φ, we obtain

λp(�ε) ≥ ‖h‖−p∞ ε−pπ
p
p .

We now prove (4.3) for Tp(�ε). To this end we consider the function

wε(x, y) := ε p′
h p′

(x)w

(
y − εh−(x)

εh(x)

)
,
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where w denotes the solution to (1.2) when � = (0, 1) and d = 1 (for the sake of brevity we
omit the dependence on p). Notice thatwε(x, ·) solves (1.2) in the interval (εh−(x), εh+(x)).
In particular, by using (1.3) and (4.5), we have

∫ εh+(x)

εh−(x)

wε(x, y)dy =
∫ εh+(x)

εh−(x)

|∇ywε(x, y)|pdy = ε p′+1h p′+1(x)

2p/(p−1)(p′ + 1)
.

A simple computation shows that

∇ywε(x, y) = ε p′−1W1(x, y), ∇xwε(x, y) = −ε p′−1W1(x, y)
y∇h(x)

h(x)
+ ε p′

W2(x, y),

where

W1(x, y) = h p′−1(x)w′
(

y − εh−(x)

εh(x)

)
,

and

W2(x, y) = p′h p′−1(x)∇h(x)w

(
y − εh−(x)

εh(x)

)
− h p′

(x)w′
(

y − εh−(x)

εh(x)

)
∇

(
h−(x)

h(x)

)
.

In particular
∫ εh+(x)

εh−(x)

|∇wε(x, y)|pdy

=
∫ εh+(x)

εh−(x)

{∣∣∣ε p′−1W1(x, y)

∣∣∣
2 +

∣∣∣∣−ε p′−1W1(x, y)
y∇h(x)

h(x)
+ ε p′

W2(x, y)

∣∣∣∣

2
}p/2

dy.

By exploiting the change of variable z = y−εh−(x)
εh(x)

in the latter identity, we conclude that, as
ε → 0,

∫ εh+(x)

εh−(x)

|∇wε(x, y)|p dy ≈
∫ εh+(x)

εh−(x)

|∇ywε(x, y)|pdy.

Let φ ∈ C∞
c (A). Since the function v(x, y) = φ(x)wε(x, y) is admissible in (1.1), we

get

T (�ε) ≥
(∫

�ε

wε(x, y)φ(x) dxdy

)p (∫

�ε

|∇ (wε(x, y)φ(x))|p dxdy

)−1

. (4.6)

Moreover, by using basically the same argument as above, we have also that
∫

�ε

|∇ (wε(x, y)φ(x))|p dxdy ≈
∫

�ε

∣∣∇ywε(x, y)
∣∣p |φ(x)|p dxdy, as ε → 0.

(4.7)

By combining (4.6) and (4.7) we obtain

lim
ε→0

Tp(�ε)

ε2p−1 ≥ lim
ε→0

1

ε2p−1

(∫

�ε

wε(x, y)φ(x) dxdy

)p

(∫

�ε

∣∣∇ywε(x, y)
∣∣p |φ(x)|p dxdy

)−1

.
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Finally, by taking φ which approximates 1A in L p(A) in the right hand side of the inequality
above, we conclude that

lim
ε→0

Tp(�ε)

ε2p−1 ≥ 1

2p

(
1

p′ + 1

)p−1 (∫

A
h p′+1dx

)p−1

,

and the thesis is achieved taking into account (4.2). The asymptotics in (4.3) for λp can be
treated with similar arguments. ��

Actually, by means of a density argument, we can drop the regularity assumptions on h+
and h− and extend the formulas (4.2) and (4.3) to any family (�ε)ε>0 defined as in (4.1),
with h+ and h− bounded and measurable functions. We thus have:

Fp,1(�ε) = λp(�ε)Tp(�ε)

|�ε|p−1 ≈ γp

(
‖h‖p′

∞
∫

A
h dx

)1−p (∫

A
h1+p′

dx

)p−1

,

where

γp =
(πp

2

)p
(

1

p′ + 1

)p−1

.

We then define the functional Fp,1 on the thin domain (�ε)ε>0 associated with the d − 1
dimensional domain A and the local thickness function h by

Fp,1(A, h) = γp

( ∫
A h p′+1dx

‖h‖p′
∞

∫
A h dx

)p−1

. (4.8)

Our next goal is to give a complete solution to the optimization problems for the functional
Fp,1 in the class of convex thin domains. To this aim we recall the following result (see
Theorem 6.2 in [4]).

Theorem 4.2 Let E ⊂ R
N be a bounded open convex set, such that 0 ∈ E and let 1 ≤ s <

r < ∞. Then for every continuous function h : E → R
+ satisfying

h(λx) ≥ λh(x) + (1 − λ) ∀x ∈ E, ∀λ ∈ (0, 1), (4.9)

and such that ‖h‖L∞(E) = 1, it holds
∫

E
hr (x) dx ≥ Cr ,s

∫

E
hs(x) dx

where

Cr ,s =
∫ 1
0 (1 − t)N−1tr dt

∫ 1
0 (1 − t)N−1t s dt

.

In addition, equality occurs if E is a ball of radius 1 and h(x) = 1 − |x |.
As an application we obtain the following lemma, which generalizes Proposition 5.2 in

[30].

Lemma 4.3 Let E ⊂ R
N be a bounded open convex set and let 1 < r < ∞. Then for every

concave function h : E → R
+ with ‖h‖L∞(E) = 1 we have

∫
E hr (x) dx
∫

E h(x) dx
≥ (N + 1)

(
N + r

N

)−1

. (4.10)
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In addition, the inequality above becomes an equality when E is a ball of radius 1 and
h(x) = 1 − |x |.
Proof First we assume that E ⊂ R

N is a ball centered in the origin and h is a radially
symmetric, decreasing, concave function h : E → [0, 1] with h(0) = 1. Then h satisfies
(4.9) and we can apply Theorem 4.2 with s = 1, to get

∫

E
hr (x) dx ≥ Cr ,1

∫

E
h(x) dx,

where

Cr ,1 =
∫ 1
0 (1 − t)N−1tr dt

∫ 1
0 (1 − t)N−1t dt

=
(N+r

N

)−1

(N+1
N

)−1 = (N + 1)

(
N + r

N

)−1

.

In order to get the inequality (4.10) in the general case, let h∗ : B → [0, 1] be the radially
symmetric decreasing rearrangement of h, defined on the ball B centered at the origin and
with the same volume as E . The standard properties of the rearrangement imply that

∫

B
(h∗)r (x) dx =

∫

E
hr (x) dx,

∫

B
h∗(x) dx =

∫

E
h(x) dx .

Moreover, it is well-known that h∗ is concave. Since h∗ satisfies all the assumptions of the
previous case, we get that h∗ (hence h) satisfies (4.10). Finally, it is easy to show that the
inequality in (4.10) holds as an equality for every cone function h(x) = 1 − |x |. ��

We are now in a position to show the main theorem of this section.

Theorem 4.4 Let 1 < p < ∞. Then
{
sup{Fp,1(A, h) : Hd−1(A) < +∞, h ≥ 0} = γp

inf{Fp,1(A, h) : A convex bounded, h ≥ 0, h concave} = γpd p−1
(d+p′

d−1

)1−p
.

In addition, the first equality is attained taking h(x) to be any constant function while the
second equality is attained taking as A the unit ball and as the local thickness function h(x)

the function 1 − |x |.
Proof Using definition (4.8) it is straightforward to prove that

Fp,1(A, h) ≤ γp

and to verify that, if h is constant, then

Fp,1(A, h) = γp.

Finally, by applying Lemma 4.3 with N = d − 1, E = A and r = p′ + 1 we obtain the
second part of the theorem. ��

5 The case p = 1

Given an open set � ⊂ R
d with finite measure we define its Cheeger constant h(�) as

h(�) = inf

{
P(E)

|E | : |E | > 0, E � �

}
, (5.1)
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where E � � means that Ē ⊂ �. Notice that in definition (5.1), thanks to a well-known
approximation argument, we can evaluate the quotient P(E)/|E | among smooth sets which
are compactly contained in �. Following [24] we have

lim
p→1

λp(�) = h(�), (5.2)

for every open set � with finite measure.

Remark 5.1 A caveat is necessary at this point: the usual definition of Cheeger constant as

c(�) = inf

{
P(E)

|E | : |E | > 0, E ⊂ �

}

is not appropriate to provide the limit equality (5.2), which would hold only assuming a mild
regularity on � (for instance, it is enough to consider � which coincides with its essential
interior, see [27]). To prove that in general h(�) 	= c(�), one can consider � = B1\∂ B1/2.
Then c(�) = c(B1) = d , while h(�) = 2d . The latter follows from the fact that, if E ⊂ �,
then E = E1 ∪ E2 where E1 � B1\B̄1/2 and E2 � B1/2, together with the equality

h(B1\B̄1/2) = h(B1/2) = 2d.

By the same argument used in [24] to prove (5.2) we can show that Tp(�) → h−1(�) as
p → 1. For the sake of completeness we give the short proof below (see also Theorem 2 in
[11]).

Proposition 5.2 Let � ⊂ R
d be an open set with finite measure. Then, as p → 1,

Tp(�) → h−1(�) . (5.3)

Proof First we notice that for any u ∈ C∞
c (�), it holds:

∫
�

|∇u(x)|dx
∫
�

|u(x)|dx
≥ h(�). (5.4)

Indeed, by assuming without loss of generality that u ≥ 0, by coarea formula and Cavalieri’s
principle, we have that

∫

�

|∇u| dx =
∫ +∞

0
Hd−1({u = t}) dt,

∫

�

u dx =
∫ +∞

0
|{u > t}| dt .

Since the sets {u > t} � � are smooth for a.e. t ∈ u(�), (5.4) follows straightforwardly
from (5.1). By combining (1.1) with (5.4) and Hölder inequality we then have

|�|1−pTp(�) ≤ h−p(�), (5.5)

for any 1 < p < ∞.
Now, let Ek � � be a sequence of smooth sets of� such that P(Ek)/|Ek | → h(�). For a

fixed k and any ε > 0 small enough, we can find a Lipschitz function v compactly supported
in �, such that,

χEk ≤ v ≤ χEk,ε
, |∇v| ≤ 1/ε in Ek,ε\Ek,

where Ek,ε = Ek + Bε. Hence, by (1.1), we have

Tp(�) ≥ ε p|Ek |p

|Ek,ε\Ek | .
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By first passing to the limit as p → 1, and then as ε → 0 we get

lim inf
p→1

Tp(�) ≥ |Ek |
P(Ek)

,

which implies, as k → ∞,

lim inf
p→1

Tp(�) ≥ h−1(�).

Finally we conclude, taking into account (5.5). ��
The limits (5.2) and (5.3) justify the following definition:

F1,q(�) :=
(

h(�)|�|1/d
)1−q

.

Notice that Fp,q(�) → F1,q(�) as p → 1. In the next proposition we solve the optimization
problems for F1,q in the class of general domains and in that of convex domains.

Proposition 5.3 For 0 < q < 1, we have
{
sup

{
F1,q(�) : � ⊂ R

d open and convex , 0 < |�| < ∞} = +∞;
min

{
F1,q(�) : � ⊂ R

d open, 0 < |�| < ∞} = F1,q(B).

For q > 1, we have
{
inf

{
F1,q(�) : � ⊂ R

d open and convex, 0 < |�| < ∞
}

= 0;
max

{
F1,q(�) : � ⊂ R

d open , 0 < |�| < ∞} = F1,q(B).

Proof The minimality (respectively maximality) of B, for 0 < q < 1 (respectively for
q > 1), is an immediate consequence of the well known inequality

h(B)|B|1/d ≤ h(�)|�|1/d ,

which holds for any � ⊂ R
d with finite measure. To prove the other cases we use the

inequality

h(�) ≥ P(�)

d|�| ,

which holds for any � ⊂ R
d open, bounded, convex set (see [8, Corollary 5.2]). Then taking

CA,ε as in (3.1) we get

lim
ε→0

h(CA,ε)|CA,ε|1/d = +∞,

from which the thesis easily follows. ��

6 The case p = ∞
The limit behaviour of the quantities λp(�), Tp(�), as p → ∞, are well known for bounded
open sets � ⊂ R

d : in [14] and in [21] the authors prove that

(λp(�))1/p → 1

ρ(�)
, (6.1)
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while, following [3] (see also [23]) it holds wp → d� uniformly in �, which implies

(Tp(�))1/p →
∫

�

d�(x) dx . (6.2)

Actually, in all these results, the boundedness assumption on � is not needed, as it is only
used to provide the compactness of the embedding W 1,p

0 (�) into the space C0(�) defined
as the completion of Cc(�) with respect to the uniform convergence. Indeed, this holds
under the weaker assumption that |�| < +∞ (see Appendix A for more details and for a
�-convergence point of view of both limits (6.1) and (6.2)).

According to (6.1) and to (6.2) we define the shape functional F∞,q as

F∞,q(�) =
(∫−

�
d�(x) dx

)q

ρ(�)|�|(q−1)/d
. (6.3)

Proposition 6.1 Let � ⊂ R
d be an open convex set. Then

1

d + 1
≤ 1

ρ(�)

∫
−

�

d�(x) dx ≤ 1

2
. (6.4)

Moreover, both inequalities are sharp. In particular
{
sup

{
F∞,1(�) : � open and convex in R

d , 0 < |�| < ∞} = 1/2;
min

{
F∞,1(�) : � open and convex in R

d , 0 < |�| < ∞
}

= F∞,1(B) = 1/(d + 1).

For its proof, we recall the following result, for which we refer to [4,15].

Theorem 6.2 Let 1 ≤ q ≤ p. Then for every convex set E of RN (N ≥ 1) and every
nonnegative concave function f on E we have

[∫
−

E
f p dx

]1/p ≤ C p,q

[∫
−

E
f q dx

]1/q
,

where the constant C p,q is given by

C p,q =
(

N + q

N

)1/q(
N + p

N

)−1/p

.

In addition, the inequality above becomes an equality when E is a ball of radius 1 and
f (x) = 1 − |x |.
Proof of Proposition 6.1 In order to prove the right-hand side inequality in (6.4), for every
t ≥ 0, we denote by �(t) the interior parallel set at distance t from ∂�, i.e.

�(t) := {
x ∈ � : d(x, ∂�) > t

}
,

and by A(t) := |�(t)|. Moreover we set

L(t) := P({x ∈ � : d(x, ∂�) = t}).
Then for a.e. t ∈ (0, ρ(�)) there exists the derivative A′(t) and it coincides with −L(t).
Moreover, being � a convex set, L is a monotone decreasing function. Then A is a convex
function such that A(ρ(�)) = 0 and A(0) = |�|. As a consequence we have

A(t) ≤ A(0)
(
1 − t

ρ(�)

)
on [0, ρ(�)].
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Integrating by parts, we get
∫

�

d�(x) dx =
∫ ρ(�)

0
t L(t) dt = −

∫ ρ(�)

0
t A′(t) dt =

∫ ρ(�)

0
A(t) dt

≤
∫ ρ(�)

0
A(0)

(
1 − t

ρ(�)

)
dt = 1

2
ρ(�)|�|.

The value 1/2 is asymptotically attained in (6.4) by considering a sequence of slab domains

�ε := (0, 1)d−1 × (0, ε) ⊂ R
d ,

as ε → 0. Indeed, we have ρ(�ε) = ε/2 and |�ε| = ε. Being

Aε(t) = |(t, 1 − t)d−1 × (t, ε − t)| = (1 − 2t)d−1(ε − 2t)

we get

lim
ε→0

∫−
�ε

d�ε (x) dx

ρ(�ε)
= lim

ε→0

∫ ε/2
0 Aε(t) dt

ε2/2
= lim

ε→0

[
(1 − ε)d+1 + ε(d + 1) − 1

(d + 1)dε2

]
= 1/2.

Now we prove the left-hand side inequality in (6.4). Since � is convex, the distance
function d� is concave (see [2]); then, applying Theorem (6.2) to d�, we obtain

[∫
−

�

d p
� dx

]1/p ≤ C p,1

∫
−

�

d� dx ∀p ≥ 1. (6.5)

Since (6.5) is an identity when � = B, C p,1 satisfies

C p,1 = ‖ f ‖p

‖ f ‖1 ω
1−1/p
d → ωd

‖ f ‖1 = (d + 1).

As p → ∞ in (6.5), we obtain

ρ(�) ≤ (d + 1)
∫
−

�

d� dx

which is an equality when � = B. ��
Remark 6.3 The proof of the right-hand side of (6.4) relies on the convexity properties of the
function A(t). In the planar case a general result, due to Sz. Nagy (see [29]), ensures that,
if � is any bounded k-connected open set, (i.e. �c has k bounded connected components),
then the function

t �→ A(t) + π(k − 1)t2, t ∈ (0, ρ(�))

is convex. Therefore, for such an �, with the same argument as above it is easy to prove that
{

F∞ρ(�) ≤ 1/2 if k = 0

F∞,1ρ(�) ≤ 1/2 + (k − 1)/6 if k ≥ 1.

Hence, it is interesting to notice how, even when k = 0, 1, the upper bound given in (6.4)
remains sharp. In other words, in the maximization of F∞,1 on planar domains, there is no
gain in replacing the class of convex domains by the larger one consisting of simply-connected
domains or even more in allowing � to have a single hole.

In the general case q 	= 1 the optimization problems for the functional F∞,q defined in
(6.3) are studied below.
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Corollary 6.4 If 0 < q < 1, then
{
sup

{
F∞,q (�) : � open and convex in R

d , 0 < |�| < ∞} = ∞;
min

{
F∞,q (�) : � open and convex in R

d , 0 < |�| < ∞
}

= F∞,q (B) = (d + 1)−qω
(1−q)/d
d .

If q > 1, then
{
sup

{
F∞,q(�) : � open and convex in R

d , 0 < |�| < ∞} ≤ (1/2)qω
(1−q)/d
d ;

inf
{

F∞,q(�) : � open and convex in R
d , 0 < |�| < ∞

}
= 0 .

Proof Notice that

F∞,q(�) = Fq
∞,1(�)

(
ρ(�)

|�|1/d

)q−1

, (6.6)

and that the inequality |�| ≥ ωdρ(�)d holds for every open set � ⊂ R
d with equality when

� = B. Thus, if 0 < q < 1, by (6.4) we have

F∞,q(�) ≥ F∞,q(B) = (d + 1)−qω
(1−q)/d
d ,

while if q > 1, using again (6.4) we have

F∞,q(�) ≤ (1/2)qω
(1−q)/d
d .

Finally, let �ε be the slab domain as in Proposition 6.1. Then

lim
ε→0

F∞,q(�ε) = (1/2)−q lim
ε→0

( ε

2ε1/d

)q−1 =
{
0, if q > 1;
∞, if 0 < q < 1,

from which the thesis is achieved. ��
If we remove the convexity assumption on the admissible domains�, the picture is similar

to those provided by Proposition 2.1 and Proposition 2.3.More precisely, if q > 1/(d+1), the
minimization problem for F∞,q is ill posed. When q > 1, this follows directly by Corollary
6.4, while, in the case 1/(d + 1) < q ≤ 1, by taking �n to be the union of n disjoint balls
of radius r j = j−1/d with j = 1, . . . , n, one can verify that F∞,q(�n) → 0, as n → ∞.
On the contrary, when q ≤ 1/(d + 1), the minimum of F∞,q is attained by any ball. Indeed,
since 1/(d + 1) ≤ p′/(p′ + d) for every p > 1, by using Proposition 2.1, we have

F1/p
p,q (�) ≥ F1/p

p,q (B).

Hence, passing to the limit as p → +∞, we obtain

F∞,q(�) ≥ F∞,q(B).

Concerning the upper bound, Corollary 6.4 implies that themaximization problem is ill posed
in the case q < 1, while, when q ≥ 1, using (6.6), we obtain

F∞,q(�) ≤ ω
(1−q)/d
d .

However, working with general domains provides an upper bound larger than in (6.4); for
instance, in the two-dimensional case, taking as �N the unit disk where we remove N points
as in Fig. 1, gives

lim
N→∞ F∞,1(�N ) =

∫
−

E
|x | dx = 1

3
+ log 3

4
≈ 0.608
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Fig. 1 The two-dimensional region �N

where E is the regular exagon with unitary sides centered at the origin, as an easy calculation
shows.

7 Further remarks and open questions

Several interesting problems and questions about the shape functionals Fp,q are still open;
in this section we list some of them.

Problem 1 The characterization of the infimum of Fp,q in the class of all domains is well
clarified in Proposition 2.1; on the contrary, for the supremum of Fp,q , Proposition 2.3 only
says it is finite for q ≥ 1. It would be interesting to know if the supremum can be better
characterized, if it is attained, and in particular if it is attained for a ball when the exponent
q is large enough (see also Problems 1 and 2 in [30]).

Problem 2 Concerning Problem 1 above, the case q = 1 is particularly interesting. The Polya
inequality gives sup Fp,1 ≤ 1, and Proposition 2.4 gives sup Fp,1 = 1 whenever p ≤ d . It
would be interesting to prove (or disprove) that sup Fp,1 < 1 for all p > d .

Problem 3 In the convex setting, Proposition 3.2 provides some upper and lower bounds to
Fp,1 that however are far from being sharp. Even in the case p = 2, sharp values for the
infimum and the supremum of F2,1 in the class of convex sets are unknown (see Conjecture
4.2. in [30]). It seems natural to conjecture that the right sharp inequalities are those given
in Theorem 4.4 for Fp,1 on the class of thin domain.

Problem 4 In the two-dimensional case with p = ∞ we have seen that the domains �N in
Fig. 1 give the asymptotic value 1

3+ log 3
4 for the shape functional F∞,1. It would be interesting

to prove (or disprove) that this number is actually the supremum of F∞,1(�) when � varies
in the class of all bounded open two-dimensional sets. In addition, in the case of a dimension
d > 2, it is not clear how a maximizing sequence (�n) for F∞,1 has to be.

Acknowledgements Thework of GB is part of the Project 2017TEXA3H “Gradient flows, Optimal Transport
and Metric Measure Structures” funded by the Italian Ministry of Research and University. The authors are
member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).

Funding Open access funding provided by Università di Pisa within the CRUI-CARE Agreement.

123



Inequalities between torsional rigidity… Page 21 of 25 78

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

Wedevote this Appendix to give a proof of the known asymptotics (6.1) and (6.2) bymeans of
�-convergence when 0 < |�| < +∞. We recall that if p > d and � ⊂ R

d is any (possibly
unbounded) open set with finite measure we have the compact embedding:

W 1,p
0 (�) ↪→ C0(�). (A.1)

A quick proof of it can be obtained by combining the Gagliardo–Niremberg inequality in
W 1,p(Rd):

‖φ‖L∞(Rd ) ≤ C(d, p)‖∇φ‖1−α

L p(Rd )
‖φ‖α

L p(Rd )
∀φ ∈ W 1,p(Rd), (A.2)

together with the well known facts that the inclusion W 1,p
0 (�) ↪→ L p(�) is compact (thanks

to the Riesz–Frechét–Kolmogorov Theorem) and the embedding (A.1) is continuous. Note
that, in (A.2),C(d, p) denotes a positive constant depending on p and d , andα = 1−d/p (we
refer to [1], Chapter 6, for a comprehensive discussion on necessary and sufficient conditions
for the compactness of several embeddings of Sobolev spaces).

In particular, if we denote by W 1,∞
0 (�) the closure of C∞

c (�) with respect to the weak*

convergence of W 1,∞(�), we have that u ∈ W 1,∞
0 (�) if and only if u ∈ C0(�) and u is a

Lipschitz continuous function on �. Moreover W 1,∞
0 (�) can be easily characterized as:

W 1,∞
0 (�) = W 1,∞(�) ∩

⋂

p≥1

W 1,p
0 (�). (A.3)

Proposition A.1 Let � ⊂ R
d be an open set with finite measure and let �p, �∞ : L1(�) →

R̄ be defined by

�p(u) :=
{

‖∇u‖L p(�) if u ∈ W 1,p
0 (�) and ‖u‖p = 1,

+∞ otherwise,

�∞(u) :=
{

‖∇u‖L∞(�) if u ∈ W 1,∞
0 (�), ‖u‖∞ = 1,

+∞ otherwise.

Then, as p → ∞, the sequence �p �-converges to �∞ with respect to the L1-convergence.

Proof Let pn → ∞. The �-lim sup inequality is trivial since, for every u ∈ W 1,∞
0 (�) with

‖u‖∞ = 1, the sequence u pn = ‖u‖−1
pn

u converges to u in L1 and satisfies

‖un‖pn = 1, lim sup
n→∞

�pn (un) = �∞(u).
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To prove the �-lim inf inequality, without loss of generality, let u ∈ L∞(�), (u pn ) ⊆
W 1,pn

0 (�) be such that u pn → u in L1(�), ‖u pn ‖pn = 1, and lim infn→∞ �pn (u pn ) = C <

∞. Since for every q ≥ 1 and for n large enough it holds

‖Du pn ‖q ≤ |�|1/q−1/pn �pn (u pn )

we get that u pn → u in Lq(�), u ∈ W 1,q
0 (�) and

‖Du‖q ≤ C |�|1/q . (A.4)

Moreover

|�|1/q = lim
n→∞ |�|1/q−1/pn ‖u pn ‖p ≥ lim

n→∞ ‖u pn ‖q = ‖u‖q ,

which yields, as q → ∞, ‖u‖∞ ≤ 1. Combining this estimate with (A.4), we get that
u ∈ W 1,∞(�); hence, by (A.3), u ∈ W 1,∞

0 (�). Thanks to the compact embedding of

W 1,q
0 (�) in C0(�) when q > d , we obtain that ‖u pn − u‖∞ → 0 as n → ∞ and, since

1 = ‖un‖pn ≤ |�|1/pn ‖u pn ‖∞,

we get that ‖u‖∞ = 1. Finally, by letting n → ∞ in (A.4), it follows

�∞(u) = ‖Du‖∞ ≤ C = lim inf
n→∞ �(u pn ).

��
Corollary A.2 Let � ⊂ R

d be an open set with finite measure. Then, as p → ∞,

λ
1/p
p (�) → ρ(�)−1.

Proof Using d� as a test function for (1.6)we have lim supp→∞ λp(�) ≤ ρ(�)−1.Moreover

we notice that, for any φ ∈ W 1,∞
0 (�), it holds

|φ(x)| ≤ d�(x)‖∇φ‖∞. (A.5)

Let u p be the (only) minimum of �p , and let pn → ∞. With the same argument of Propo-
sition A.1 we can assume u pn → u∞ uniformly in L1(�), where u∞ ∈ W 1,∞

0 (�) and
‖u∞‖∞ = 1. Then, by Proposition A.1 and by (A.5), we have

ρ(�)−1 ≤ ‖∇u∞‖ = �(u∞) ≤ lim inf
n→∞ �(u pn ) = lim inf

p→∞ λ
1/pn
pn (�).

The thesis follows by the arbitrariness of the sequence pn . ��
Next Proposition generalizes Proposition 2.1 in [16].

Proposition A.3 Let � ⊂ R
d be an open set with finite measure and let �p,�∞ : L1(�) →

R̄ be defined by

�p(u) :=
{

1
p

∫
�

|∇u|p dx if u ∈ W 1,p
0 (�),

+∞ otherwise,

�∞(u) :=
{
0 if u ∈ W 1,∞

0 (�), ‖∇u‖∞ ≤ 1,

+∞ otherwise.

123



Inequalities between torsional rigidity… Page 23 of 25 78

Then, as p → ∞, the functionals �p �-converge to �∞ with respect to the L1-convergence.
Moreover, we have

lim
p→∞ �p(u) = �∞(u) for every u ∈ L1(�).

Proof Let pn → ∞. The �-limsup inequality is trivial since for any u ∈ W 1,∞
0 (�) with

‖∇u‖∞ ≤ 1 we have u ∈ W 1,pn
0 (�) for every n ∈ N and thus

lim sup
n→∞

�pn (u) = lim sup
n→∞

∫

�

1

pn
|∇u(x)|pn dx ≤ |�| lim sup

n→∞
1

pn
= 0 = �∞(u).

To prove the �-liminf inequality, we can assume un, u ∈ L1(�), un → u in L1(�), un ∈
W 1,pn

0 (�), and

lim inf
n→∞ �pn (u pn ) = lim

n→∞ �pn (u pn ) = M < +∞.

If q > 1 and pn > q we have

‖∇u pn ‖q ≤ |�|1/q−1/pn ‖∇u pn ‖pn ≤ |�|1/q−1/pn (Mpn)1/pn

which forces u ∈ W 1,q
0 (�). Moreover, since

‖∇u‖q ≤ lim inf
n→∞ ‖∇u pn ‖q ≤ |�|1/q ,

we have also ‖∇u‖∞ ≤ 1. Therefore, by (A.3), u ∈ W 1,∞
0 (�) and

�∞(u) = 0 ≤ lim inf
n→∞ �pn (u pn ).

The thesis follows by the arbitrariness of the sequence pn . ��
Corollary A.4 Let � ⊂ R

d be an open set with finite measure, let wp be the solution to (1.2).
Then, as p → ∞,

wp → d� in L∞(�), (Tp(�))1/p →
∫

�

d�(x) dx .

Proof It is sufficient to show that wp → d� uniformly in �. First we notice that by (2.2) we
get

(
|�|−1

∫

�

|∇wp|p dx
)1/p = (|�|1−pTpn (�)

)1/(p(p−1)) ≤
(
λ
1/p
p (�)

)1/1−p
. (A.6)

By Corollary A.2 we have

C := sup
p

|�|−1/p‖∇wp‖p < +∞.

Moreover, for every fixed q ≥ 1 and p large enough, by Hölder inequality, we have that

‖∇wp‖q ≤ ‖∇wp‖p|�|1/q−1/p ≤ C |�|1/q . (A.7)

Let pn → ∞. By applying (A.7) we can show that there exists w∞ ∈ W 1,∞
0 (�), such that

wpn converges uniformly to w∞ and weakly in W 1,q(�) for every q ≥ 1. Notice that (A.6)
combined with Corollary A.2 shows also

‖∇w∞‖q ≤ |�|1/q ,
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for every q ≥ 1, which implies ‖w∞‖ ≤ 1.
Now let Jp be the functional defined in (1.4) and J∞ be the functional given by

J∞(u) := �∞(u) −
∫

�

u dx .

Since the functional u �→ ∫
�

u dx is continuous with respect to the L1-convergence, thanks
to Proposition A.3, we have that

lim
n→∞ Jpn (wpn ) = J∞(w∞) = min

u∈W 1,∞
0 (�),‖∇u‖∞≤1

J∞(u) = −
∫

�

w∞ dx .

Moreover, by using (A.5) we have w∞(x) ≤ d�(x). In addition, since d� ∈ W 1,∞
0 (�),

we have also J∞(w∞) ≤ J∞(d�), i.e.
∫
�
(w∞ − d�) dx ≥ 0. Hence d� = w∞. By the

arbitrariness of the sequence pn , we get that wp → d� uniformly as p → ∞. ��
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