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Abstract
We consider linear partial differential equations on resistance spaces that are uniformly ellip-
tic and parabolic in the sense of quadratic forms and involve abstract gradient and divergence
terms. Our main interest is to provide graph andmetric graph approximations for their unique
solutions. For families of equations with different coefficients on a single compact resistance
space we prove that solutions have accumulation points with respect to the uniform conver-
gence in space, provided that the coefficients remain bounded. If in a sequence of equations
the coefficients converge suitably, the solutions converge uniformly along a subsequence. For
the special case of local resistance forms on finitely ramified sets we also consider sequences
of resistance spaces approximating the finitely ramified set from within. Under suitable
assumptions on the coefficients (extensions of) linearizations of the solutions of equations
on the approximating spaces accumulate or even converge uniformly along a subsequence
to the solution of the target equation on the finitely ramified set. The results cover discrete
and metric graph approximations, and both are discussed.
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1 Introduction

For several classes of fractal spaces, such as p.c.f. self-similar sets [12,61–64,74,75], classical
Sierpinski carpets [9,11], certain Julia sets [89], Laaksø spaces [90], diamond lattice type
fractals [1,3,35], and certain random fractals [33,34], the existence of resistance forms in the
sense of [65,67] has been proved. This allows to establish a Dirichlet form based analysis
[15,27,78], with respect to a given volume measure, and in particular, studies of partial
differential equations on fractals [8,64,92]. These results and many later developments based
on them are motivated by a considerable body of modern research in physics suggesting
that in specific situations fractal models may be much more adequate than classical ones.
The difficulty in this type of analysis comes from the fact that on fractals many tools from
traditional calculus (and evenmany tools used in themodern theory ofmetricmeasure spaces,
see e.g. [29,30,37]) are not available.

For fractal counterparts of equations of linear second order equations [22,31], that do not
involve first order terms—such as Poisson or heat equations for Laplacians—many results
are known [8,56,64,66,92], and there are also studies of related semilinear equations without
first order terms, [24,25]. More recently fractal counterparts for equations involving first
order terms have been suggested, [47,50–52], and a few more specific results have been
obtained, see for instance [48,77]. The discussion of first order terms is of rather abstract
nature, because onmost fractals there is no obvious candidate for a gradient operator; instead,
it has to be constructed from a given bilinear form in a subsequent step [17,18,50,55]. (An
intuitive argument why this construction cannot be trivial is the fact that for self-similar
fractals, endowed with natural Hausdorff type volume measures, volume and energy are
typically singular [14,40,41,43].) For a study of, say, counterparts of second order equations
[31, Section 8], involving abstract gradient and divergence terms, it therefore seems desirable
to establish results which indicate that the equations have the correct physical meaning.

In this article we consider analogs of linear elliptic and parabolic equations with first
order terms on locally compact separable resistance spaces [65,67]. We wish to point out
that we use the word ’elliptic’ in a very broad (quadratic form) sense—the principal parts
of our operators should rather be seen as fractal generalizations of hypoelliptic operators.
Under suitable assumptions the equations admit unique weak respectively semigroup solu-
tions, Corollaries 3.2 and 3.3. We prove that if the resistance space is compact and we are
given bounded sequences of coefficients, the corresponding solutions have uniform accumu-
lation points, Corollary 4.3. If the sequences of coefficients converge, then the corresponding
solutions converge in the L2-sense and uniformly along subsequences, Theorem 4.1. For
certain local resistance forms on finitely ramified sets, [55,96], we introduce an approxima-
tion scheme along varying spaces, general enough to accommodate both discrete and metric
graph approximations. If the coefficients are bounded in a suitable manner, extensions of
linearizations of solutions to the equations on the approximating spaces have uniform accu-
mulation points on the target space, Corollary 5.5. If the coefficients are carefully chosen, the
solutions converge in an L2-sense and the mentioned extensions converge uniformly along
subsequences, Theorem 5.1. Combining these results, we obtain an approximation for more
general coefficients, Theorem 5.2.
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For resistance forms on discrete and metric graphs the abstract gradient operators admit
more familiar expressions, Examples 2.1 and 2.2, and the bilinear forms associatedwith linear
equations can be understood in terms of thewell-known analysis on graphs andmetric graphs,
Examples 3.1 and 3.2, see for instance [32,60,81,85]. The approximation scheme itself is
of first order in the sense that it relies on the use of piecewise linear respectively piecewise
harmonic functions, and it resembles familiar finite element methods. One motivation to
use this approach is that pointwise restrictions of piecewise harmonic functions on, say, the
Sierpinski gasket, are of finite energy on approximating metric graphs, [48], but for general
energy finite functions on the Sierpinski gasket this is not true—the corresponding trace
spaces on the metric graphs are fractional Sobolev spaces of order less than one, see for
instance [93] and the reference cited there (and [42] for related results). Of course first order
approximations have a certain scope and certain limitations.But keeping these inmind,we can
certainly viewour results as a strongfirst indication that the abstractly formulated equations on
the target space have the desired physical meaning, because their solutions appear as natural
limits of solutions to similar equations on more familiar geometries, where they are better
understood. The established approximation scheme also provides a computational tool which
could be used for numerical simulations. Our results hold under rather minimal assumptions
on the volume measure on the target space. For instance, in the situation of p.c.f. self-similar
structures it is not necessary to specialize to self-similar Hausdorff measures [8,64], or to
energy dominant Kusuoka type measures [40,41,74,75].

In [94, Section 6] a finite element method for a Poisson type equation on p.c.f. self-similar
fractals was discussed, and the use of an equivalent scalar product and a related orthogonal
projection made it possible to regard the approximation itself as the solution of a closely
related equation. For equations involving divergence and gradient terms one cannot hope
for a similarly simple mechanism. On the other hand, the construction of resistance forms
itself is based on discrete approximations [61–64], and in symmetric respectively self-adjoint
situations this can be used to obtain approximation results on the level of resistance forms [19],
or Dirichlet forms [86,87]. In the latter case the dynamics of a partial differential equation
of elliptic or parabolic type for self-adjoint operators comes into play, and it can be captured
using spectral convergence results [80,88], possibly along varying Hilbert spaces [76,85].
The equations we have in mind are governed by operators that are not necessarily symmetric,
but under some conditions on the coefficients they are still sectorial [59,78]. This leads to the
question of how to implement similar types on convergences for sectorial operators, and one
arrives to a situation similar to those in [82] or [95]. The main difficulty is how to correctly
implement the convergence of drift and divergence terms. With [48,86,87] in mind a first
reflex might be to try to verify a type of generalized norm resolvent convergence as in [82],
and to do so the first order terms would have to fit the estimate in their Definition 2.3, where
particular (2.7e) is critical. For convergent sequences of drift and divergence coefficients
[50], on a single resistance space one can establish this estimate with trivial identification
operators (as addressed in Example 2.5 there), but in the case of varying spaces the interaction
of identification operators with the first order calculus seems too difficult to handle. The
convergence results in [95, Section 4] use the variational convergence studied in [97,98],
which generalizes the Mosco type convergence [80], for generalized forms [38], to the setup
of varying Hilbert spaces [76], and encodes a generalization of strong resolvent convergence.
Also in the present article this variational convergence is used as a key tool: We verify the
adequate Mosco type convergence along varying spaces of the bilinear forms associated
with the equations, and by [38,97,98] we can then conclude the L2-type convergence of the
solutions, see Theorem A.1. A significant difference between [95, Section 4] and our results
is the way the first order terms are handled. There the approach from [5] is used, which
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relies heavily on having a carré du champ operator [15]. But this is an assumption which we
wish to avoid, because—as mentioned above—interesting standard examples do not satisfy
it. The target spaces for the approximation result along varying spaces that we implement are
assumed to be finitely ramified sets [55,96], endowed with local regular resistance forms [65,
67], satisfying certain assumptions. This class of fractals contains many interesting examples
[33,34,36,79,89], and in particular, p.c.f. self-similar fractalswith regular harmonic structures
[64], but it does not contain Sierpinski carpets [9,11]. The cell structure of a finitely ramified
set allows a transparent use of identification operators based on piecewise harmonic functions.
The key property of resistance spaces that energy finite functions are continuous compensates
the possible energy singularity of a given volume measure to a certain extent, in particular,
we can use an inequality originally shown in [49] when handling the first order terms in the
presence of an energy singular measure. Uniform energy bounds and the compactness of the
space then allow to use Arzela–Ascoli type arguments to obtain subsequential limits in the
sense of uniform convergence. Together with the L2-type limit statements produced by the
variational convergence these limit points are then identified to be the solutions on the target
space.

The use of variational convergence schemes to study dynamical phenomena on certain
geometries is a well-established idea, see for instance [57,58,76]. It was already a guid-
ing theme in [80], and related results in different setups have been studied in a number
of recent articles, see for instance [4,23,44,54,68,69,82,84–87,95]. For fractal spaces varia-
tional schemes can provide a certain counterpart to homogenization: In the latter the effect
of a complicated microstructure can be encoded in an equation for an effective material if
the problem is viewed at a certain mesoscopic scale. In analysis on fractals it may not be
possible to find such a scale, and it is desirable to have a more direct understanding of how
the microstructure determines analysis. This typically leads to non-classical rescalings when
passing from discrete to continuous or from smooth to fractal. Although the present study is
written specifically for resistance spaces, some aspects of the approximation scheme in Sect. 5
might also provide some guidance for schemes along varying spaces for non-symmetric local
or non-local operators on non-resistance spaces.

In Sect. 2 we recall basics from the theory of resistance forms and explain items of
the related first order calculus. We discuss bilinear forms including drift and divergence
terms in Sect. 3, and follow standard methods [22,26,31], to state existence, uniqueness
and energy estimates for weak solutions to elliptic equations and (semigroup) solutions to
parabolic equations. In Sect. 4we prove convergence results for equations on a single compact
resistance space. We first discuss suitable conditions on the coefficients, then accumulation
points and then strong resolvent convergence. Section 5 contains the approximation scheme
along varying spaces for finitely ramified sets. We first state the basic assumptions and
record some immediate consequences, then survey conditions on the coefficients and finally
state the accumulation and convergence results. Section 6 discusses discrete approximations
(Sect. 6.1), including classes of examples, metric graph approximations (Sect. 6.2), and short
remarks on possible generalizations. Section 7 contains an auxiliary result on the restriction
of vector fields for finitely ramified sets.

We follow the habit to write E(u) for E(u, u) if E is a bilinear quantity depending on two
arguments and both arguments are the same.
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2 Resistance forms and first order calculus

We recall the definition of resistance form, due to Kigami, see [64, Definition 2.3.1] or [65,
Definition 2.8]. By �(X) we denote the space of real valued functions on a set X .

Definition 2.1 A resistance form (E,F) on a set X is a pair such that

(i) F ⊂ �(X) is a linear subspace of �(X) containing the constants and E is a non-negative
definite symmetric bilinear form on F with E(u) = 0 if and only if u is constant.

(ii) Let ∼ be the equivalence relation on F defined by u ∼ v if and only if u − v is constant
on X . Then (F/ ∼, E) is a Hilbert space.

(iii) If V ⊂ X is finite and v ∈ �(V ) then there is a function u ∈ F so that u
∣
∣
V = v.

(iv) For x, y ∈ X

R(x, y) := sup
{ (u(x) − u(y))2

E(u)
: u ∈ F, E(u) > 0

}

< ∞.

(v) If u ∈ F then ū := max(0,min(1, u(x))) ∈ F and E(ū) ≤ E(u).

To R one refers as the resistance metric associated with (E,F) [65, Definition 2.11], and to
the pair (X , R), which forms a metric space [65, Proposition 2.10], we refer as a resistance
space. All functions u ∈ F are continuous on X with respect to the resistance metric, more
precisely, we have

|u(x) − u(y)|2 ≤ R(x, y)E(u), u ∈ F, x, y ∈ X . (1)

For any finite subset V ⊂ X the restriction of (E,F) to V is the resistance form (EV , �(V ))

defined by

EV (v) = inf
{

E(u) : u ∈ F, u
∣
∣
V = v

}

, (2)

where a unique infimum is achieved. If V1 ⊂ V2 and both are finite, then (EV2)V1 = EV1 .
We assume X is a nonempty set and (E,F) is a resistance form on X so that (X , R) is

separable. Then there exists a sequence (Vm)m of finite subsets Vm ⊂ X with Vm ⊂ Vm+1,
m ≥ 1, and

⋃

m≥0 Vm dense in (X , R). For any such sequence (Vm)m we have

E(u) = lim
m

EVm (u), u ∈ F, (3)

as proved in [65, Proposition 2.10 and Theorem 2.14]. Note that for any u ∈ F the sequence
(EVm (u))m is non-decreasing. Each EVm is of the form

EVm (u) = 1

2

∑

p∈Vm

∑

q∈Vm
c(m; p, q)(u(p) − u(q))2, u ∈ F, (4)

with constants c(m; p, q) ≥ 0 symmetric in p and q .
We further assume that (X , R) is locally compact and that (E,F) is regular, i.e., that the

space F ∩Cc(X) is uniformly dense in the space Cc(X) of continuous compactly supported
functions on (X , R), see [67, Definition 6.2]. Definition 2.1 (v) implies that F ∩Cc(X) is an
algebra under pointwise multiplication and

E( f g)1/2 ≤ ‖ f ‖sup E(g)1/2 + ‖g‖sup E( f )1/2, f , g ∈ F ∩ Cc(X), (5)

see [67, Lemma 6.5].
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To introduce the first order calculus associated with (E,F), let �a(X × X) denote the
space of all real valued antisymmetric functions on X × X and write

(g · v)(x, y) := g(x, y)v(x, y), x, y ∈ X , (6)

for any v ∈ �a(X × X) and g ∈ Cc(X), where

g(x, y) := 1

2
(g(x) + g(y)).

Obviously g · v ∈ �a(X × X), and (6) defines an action of Cc(X) on �a(X × X), turning it
into a module. By du : F ∩ Cc(X) → �a(X × X) we denote the universal derivation,

du f (x, y) := f (x) − f (y), x, y ∈ X , (7)

and by

�1
a(X) :=

{
∑

i

gi · du fi : gi ∈ Cc(X), fi ∈ F ∩ Cc(X)

}

, (8)

deviating slightly from the notation used in [48], the submodule of �a(X × X) of finite
linear combinations of functions of form g · du f . A quick calculation shows that for f , g ∈
F ∩ Cc(X) we have du( f g) = f · dug + g · du f .

On �1
a(X) we can introduce a symmetric nonnegative definite bilinear form 〈·, ·〉H by

extending

〈g1 · du f1, g2 · du f2〉H
:= lim

m→∞
1

2

∑

p∈Vm

∑

q∈Vm
c(m; p, q)g1(p, q)g2(p, q)du f1(p, q)du f2(p, q) (9)

linearly in both arguments, respectively, and we write ‖·‖H = √〈·, ·〉H for the associated
Hilbert seminorm. In Proposition 2.1 below we will verify that the definition of 〈·, ·〉H does
not depend on the choice of the sequence (Vm)m .

We factor�1
a(X) by the elements of zero seminorm and obtain the space�1

a(X)/ ker ‖·‖H.
Given an element

∑

i gi · du fi of �1
a(X) we write

[∑

i gi · du fi
]

H to denote its equivalence
class. Completing �1

a(X)/ ker ‖·‖H with respect to ‖·‖H we obtain a Hilbert space H, we
refer to it as the space of generalized L2-vector fields associated with (E,F). This is a version
of a construction introduced in [17,18] and studied in [13,49–53,55,77], see also the related
sources [20,29,30,99]. The basic idea is much older, see for instance [15, Exercise 5.9], it
dates back to ideas of Mokobodzki and LeJan.

The action (6) induces an action of Cc(X) on H: Given v ∈ H and g ∈ Cc(X), let
(vn)n ⊂ �1

a(X)be such that limn[vn]H = v inH and define g·v ∈ H by g·v := limn[g·vn]H.
Since (6) and (9) imply

‖g · v‖H ≤ ‖g‖sup ‖v‖H , (10)

it follows that the definition of g · v is correct. Given f ∈ F ∩ Cc(X), we denote the H-
equivalence class of the universal derivation du f as in (7) by ∂ f . By the preceding discussion
we observe [g · du f ]H = g · ∂ f for all f ∈ F ∩ Cc(X) and g ∈ Cc(X). It also follows that
the map f �→ ∂ f defines a derivation operator

∂ : F ∩ Cc(X) → H

123



Approximation of partial differential equations on compact… Page 7 of 47 19

which satisfies the identity ‖∂ f ‖2H = E( f ) for any f ∈ F ∩ Cc(X) and the Leibniz rule
∂( f g) = f · ∂g + g · ∂ f for any f , g ∈ F ∩ Cc(X).

To show the independence of 〈·, ·〉H of the choice of the sequence (Vm)m in (9) and to
formulate later statements, we consider energy measures. For f ∈ F ∩ Cc(X) there is a
unique finite Radon measure ν f on X satisfying

∫

X
g dν f = E( f g, f ) − 1

2
E( f 2, g), g ∈ F ∩ Cc(X), (11)

the energy measure of f , see for instance [56,66,75,96] and or [27,39–41,43,46]. It is not
difficult to see that for any f ∈ F ∩ Cc(X) and g ∈ Cc(X) we have

∫

X
g dν f = 1

2
lim

m→∞
∑

p∈Vm

∑

q∈Vm
c(m; p, q)g(p)(du f (p, q))2. (12)

Mutual energymeasures ν f1, f2 for f1, f2 ∈ F∩Cc(X) are definedusing (11) andpolarization.
According to the Beurling-Deny decomposition of (E,F), see [2, Théorème 1] (or [27,

Section 3.2] for a different context), there exist a uniquely determined symmetric bilinear
form Ec on F ∩ Cc(X) satisfying Ec( f , g) = 0 whenever f ∈ F ∩ Cc(X) is constant on an
open neighborhood of the support of g ∈ F ∩ Cc(X) and a uniquely determined symmetric
nonnegative Radon measure J on X × X\ diag such

E( f ) = Ec( f ) +
∫

X

∫

X
(du f (x, y))

2 J (dxdy), f ∈ F ∩ Cc(X). (13)

The form Ec is called the local part of E , and by νcf we denote the local part of the energy
measure of a function f ∈ F ∩ Cc(X), i.e. the finite Radon measure (uniquely) defined as
in (11) with Ec in place of E . From (11) and (13) it is immediate that
∫

X
gdν f =

∫

gdνcf +
∫

X

∫

X
g(x)(du f (x, y))

2 J (dxdy), f , g ∈ F ∩ Cc(X). (14)

Proposition 2.1 Suppose that closed balls in (X , R) are compact. Then for any f1, f2 ∈
F ∩ Cc(X) and g1, g2 ∈ Cc(X) we have

〈g1 · ∂ f1, g2 · ∂ f2〉H =
∫

X
g1g2 dν

(c)
f1, f2

+
∫

X

∫

X
g1(x, y)g2(x, y)du f1(x, y)du f2(x, y) J (dxdy).

In particular, the definition of the bilinear form 〈·, ·〉H is independent of the choice of the
sets Vm.

Proof Standard arguments show that for all v ∈ Cc(X × X\ diag) we have
1

2
lim
ε→0

lim
m→∞

∑

x∈Vm

∑

y∈Vm ,R(x,y)>ε

c(m; x, y)v(x, y) =
∫

X

∫

X
v(x, y)J (dxdy), (15)

see for instance [27, Section 3.2]. The particular case v = du f , together with (13), then
implies that

Ec( f ) = 1

2
lim
ε→0

lim
m→∞

∑

x∈Vm

∑

y∈Vm ,R(x,y)≤ε

c(m; x, y)(du f (x, y))2 (16)
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for any f ∈ F ∩ Cc(X). We claim that given such f and g ∈ Cc(X),
∫

X
g2dνcf = 1

2
lim
ε→0

lim
m→∞

∑

x∈Vm

∑

y∈Vm ,R(x,y)≤ε

c(m; x, y)g(x, y)2(du f (x, y))2. (17)

This follows from (11) and (16) and the fact that

lim
ε→0

lim
m→∞

∑

x∈Vm

∑

y∈Vm ,R(x,y)≤ε

c(m; x, y)(dug(x, y))2(du f (x, y))2 = 0,

which can be seen following the arguments in the proof of [48, Lemma 3.1]. Combining (15),
applied to v = g · du f , and (17), we obtain the desired result by polarization. ��

As a consequence of Proposition 2.1 and dominated convergence we can define g · v for
all v ∈ H and g ∈ Cb(X) and (10) remains true for such v and g. Note also that if v1, v2 ∈ H
and g ∈ Cb(X) then

〈g · v1, v2〉H = 〈v1, g · v2〉H .

In the special cases of finite graphs [32,60], and compact metric graphs [28,70–73,81,85],
the space H and the operator ∂ appear in a more familiar form.

Example 2.1 If (V , ω) is a finite simple weighted (unoriented) graph, [32], then

E(u) = 1

2

∑

p∈V

∑

q∈V
ω(p, q)(u(p) − u(q))2, u ∈ �(V ),

is a resistance form on the finite set V , and it makes it a compact resistance space. In this case
H is isometrically isomorphic to the space �2a(V ×V \ diag, ω) of real-valued antisymmetric
functions on V × V \ diag, endowed with the usual �2-scalar product, and for any f ∈ �(V )

the gradient ∂ f ∈ H of f is the image of du f ∈ �2a(V × V \ diag, ω) under this isometric
isomorphism, see for instance [45, Section 3].

Example 2.2 Let (V , E) be a finite simple (unoriented) graph and (le)e∈E a finite sequence
of positive numbers. Consider the metric graph � obtained by identifying each edge e ∈ E
with an oriented copy of the interval (0, le) and considering different copies to be joined at
the vertices the respective edges have in common. Then the set X� = V ∪⋃e∈E e, endowed
with a natural topology, becomes a compact metric space. For each u ∈ C(X�) let

E�(u) =
∑

e∈E
Ee(ue), where Ee(ue) =

∫ le

0
(ue(s))

2ds, e ∈ E,

and ue is the restriction of u to e ∈ E . If Ẇ 1,2(X�) denotes the space of all u ∈ C(X�)

such that E(u) < +∞ then (E�, Ẇ 1,2(X�)) is a resistance form making X� a compact
resistance space. The space H is isometrically isomorphic to

⊕

e∈E L2(0, le), and for any
f ∈ Ẇ 1,2(X�) the gradient ∂ f ∈ H is the image under this isometric isomorphism of
( f ′

e)e∈E , where f ′
e ∈ L2(0, le) denotes the usual first derivative of fe, seen as a function on

(0, le). For more precise descriptions and further details see [13,55]. In Sect. 6.2 we consider
a scaled variant of this construction as in [48].

Remark 2.1 For convenience the above construction of the space H and the operator ∂ is
formulated for resistance spaces. However, we wish to point out that the original construction
does not need the specific properties of a resistance space, it can be formulated for Dirichlet
forms in very high generality [17].
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3 Linear equations of elliptic and parabolic type

The considerations in this section are straightforward from standard theory for partial differ-
ential equations [31, Chapter 8], and Dirichlet forms [27], see for instance [26].

Let (E,F) be a resistance form on a nonempty set X so that (X , R) is separable and
locally compact and assume that (E,F) is regular. In addition, assume that closed balls are
compact. Let μ be a Borel measure on (X , R) such that for any x ∈ X and R > 0 we have
0 < μ(B(x, R)) < +∞. Then by [67, Theorem 9.4] the form (E,F ∩ Cc(X)) is closable
on L2(X , μ) and its closure, which we denote by (E,D(E)), is a regular Dirichlet form. In
general we have D(E) ⊂ F ∩ L2(X , μ), and in the special case that (X , R) is compact,
D(E) = F [67, Section 9]. Given α > 0 we write

Eα( f , g) := E( f , g) + α 〈 f , g〉L2(X ,μ) , f , g ∈ D(E), (18)

and we use an analogous notation for other bilinear forms. Recall that we also write E( f ) to
denote E( f , f ) and similarly for other bilinear quantities.

By the closedness of (E,D(E)) the derivation ∂ , defined as in the preceding section,
extends to a closed unbounded linear operator ∂ : L2(X , μ) → H with domain D(E), we
write Im ∂ for the image ofD(E) under ∂ . The adjoint operator (∂∗,D(∂∗)) of (∂,D(E)) can
be interpreted as minus the divergence operator, and for the generator (L,D(L)) of (E,D(E))

we have ∂ f ∈ D(∂∗) whenever f ∈ D(L), and in this case, L f = −∂∗∂ f .

3.1 Closed forms

We call a symmetric bounded linear operator a : H → H a uniformly elliptic (in the sense
of quadratic forms) if there are universal constants 0 < λ < � such that

λ ‖v‖2H ≤ 〈a v, v〉H ≤ � ‖v‖2H , v ∈ H. (19)

As mentioned in the introduction, the phrase ’uniformly elliptic’ is interpreted in a wide
sense, and (19) rather corresponds to a sort of energy equivalence, see for instance [10,
Definition 2.17]. We follow [26] and say that an element b ∈ H is in the Hardy class if there
are constants δ(b) ∈ (0,∞) and γ (b) ∈ [0,∞) such that

‖g · b‖2H ≤ δ(b)E(g) + γ (b) ‖g‖2L2(X ,μ)
, g ∈ F ∩ Cc(X). (20)

Given uniformly elliptic a as in (19), b, b̂ ∈ H in the Hardy class and c ∈ L∞(X , μ) we
consider the bilinear form on F ∩ Cc(X) defined by

Q( f , g) = 〈a · ∂ f , ∂g〉H − 〈g · b, ∂ f 〉H − 〈 f · b̂, ∂g〉H
−〈c f , g〉L2(X ,μ) , f , g ∈ F ∩ Cc(X). (21)

We say that a densely defined bilinear form (Q,D(Q)) on L2(X , μ) is semibounded if
there exists some C ≥ 0 such that Q( f ) ≥ −C ‖ f ‖2L2(X ,μ)

, f ∈ D(Q). If in addition

(D(Q), Q̃C+1) is a Hilbert space, where Q̃ denotes the symmetric part of Q, defined by

Q̃( f , g) = 1

2
(Q( f , g) + Q( f , g)) , f , g ∈ D(Q), (22)

then we call (Q,D(Q)) a closed form. In other words, we call (Q,D(Q)) a closed form
if (Q̃,D(Q)) is a closed quadratic form in the sense of [88, Section VIII.6]. We say that a

123
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closed form (Q,D(Q)) is sectorial if there is a constant K > 0 such that

|QC+1( f , g)| ≤ K QC+1( f )
1/2QC+1(g)

1/2, f , g ∈ D(Q),

whereC is as above. In otherwords, we call a closed form (Q,D(Q)) sectorial if (QC ,D(Q))

is a coercive closed form in the sense of [78, Definition 2.4].
The following proposition follows from standard estimates and (20), we omit its proof.

Proposition 3.1 (i) Assume that a : H → H is symmetric and satisfies (19), c ∈ L∞(X , μ)

and b, b̂ ∈ H are in the Hardy class and such that

λ0 := 1

2

(

λ −√δ(b) −
√

δ(b̂)

)

> 0. (23)

Then (Q,F ∩ Cc(X)) is closable on L2(X , μ), and its closure (Q,D(E)) is a sectorial
closed form.

(ii) If in addition c is such that

c0 := ess inf x∈X (−c(x)) − γ (b) + γ (b̂)

2λ0
> 0 (24)

then (Q,D(E)) satisfies the bounds

λ0 E( f ) + c0 ‖ f ‖2L2(X ,μ)
≤ Q( f ) ≤ �∞ E( f )+c∞ ‖ f ‖2L2(X ,μ)

, f ∈ D(E),

(25)

where

�∞ := � +√δ(b) +
√

δ(b̂) + 1 and c∞ := γ (b) + γ (b̂)

2
+ ‖c‖L∞(X ,μ) . (26)

Remark 3.1 These conditions are chosen for convenience, we do not claim their optimality.
Standard estimates using integrability conditions for vector fields, as for instance used in
[95], do not apply unless one assumes that energy measures are absolutely continuous with
respect to μ, an assumption we wish to avoid.

Suppose that the hypotheses of Proposition 3.1 (i) are satisfied. Let (L(Q),D(L(Q)))

denote the infinitesimal generator of (Q,D(E)), that is, the unique closed operator on
L2(X , μ) associated with (Q,D(E)) by the identity

Q( f , g) = − 〈LQ f , g
〉

L2(X ,μ)
, f ∈ D(LQ), g ∈ D(E).

A direct calculation shows the following.

Corollary 3.1 Let the hypotheses of Proposition 3.1 (i) and (ii) be satisfied, let notation be as
there and set

K = 1

λ

(

� +√δ(b) +
√

δ(b̂) +√γ (b) +
√

γ (b̂)

)

+ 2 ‖c‖L∞(X ,μ)

c0
+ 1. (27)

Then the generator (L(Q),D(L(Q))) satisfies the sector condition

| 〈(−LQ − ε) f , g
〉

L2(X ,μ)
| ≤ K

〈

(−LQ − ε) f , f
〉1/2
L2(X ,μ)

〈

(−LQ − ε)g, g
〉1/2
L2(X ,μ)

, (28)

f , g ∈ D(LQ), for all 0 ≤ ε ≤ c0/2.
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3.2 Linear elliptic and parabolic problems

Suppose throughout this subsection that a, b, b̂ and c satisfy the hypotheses of Proposition 3.1
(i) and (ii). It is straightforward to formulate equations of elliptic type. Given f ∈ L2(X , μ),
we say that u ∈ L2(X , μ) is a weak solution to

LQu = f (29)

if u ∈ D(E) and Q(u, g) = −〈 f , g〉L2(X ,μ) for all g ∈ D(E).

Remark 3.2 Formally, the generator (LQ,D(LQ)) of (Q,D(E)) has the structure

LQu = −∂∗(a ∂u) + b · ∂u + ∂∗(u · b̂) + cu,

so that equation (29) is seen to be an abstract version of the elliptic equation

div(a∇u) + b · ∇u − div(ub) + cu = f .

It follows from the lower estimate in (25) that the Green operator GQ = (−LQ)−1 of LQ
exists as a bounded linear operator GQ : L2(X , μ) → L2(X , μ) and satisfies

Q(GQ f , g) = 〈 f , g〉L2(X ,μ) , f ∈ L2(X , μ), g ∈ D(E). (30)

Corollary 3.2 For any f ∈ L2(X , μ) the function u = −GQ f ∈ D(LQ) is the unique weak
solution to (29). It satisfies

Q1(u) ≤
(

2

c0
+ 4

c20

)

‖ f ‖2L2(X ,μ)
. (31)

Remark 3.3 The constant in (31) is chosen just for convenience. The only fact that matters is
that it may be chosen in a way that depends monotonically on c0.

Proof The first part is clear, the second follows from (30), Cauchy–Schwarz and because for
any 0 < ε ≤ c0/2 with c0 as in (24) the operator LQ + ε generates a strongly continuous
contraction semigroup, so that

∥
∥GQ f

∥
∥
L2(X ,μ)

=
∥
∥
∥

(

ε + (−ε − LQ)
)−1

f
∥
∥
∥
L2(X ,μ)

≤ 1

ε
‖ f ‖L2(X ,μ) .

��

Remark 3.4 If c ∈ L∞(X , μ) does not satisfy (24), one can at least solve equations

LQu − c1u = f , (32)

where c1 > 0 is such that with c0 defined as in (24) one has c0 + c1 > 0. The sectorial closed
form

Qc1( f , g) = Q( f , g) + c1〈 f , g〉L2(X ,μ), f , g ∈ D(E), (33)

satisfies (25), (26), (28) and (27) with c0 + c1 and ‖c‖L∞(X ,μ) + c1 in place of c0 and
‖c‖L∞(X ,μ).
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Related parabolic problems can be discussed in a similar manner. Given ů ∈ L2(X , μ)

we say that a function u : (0,+∞) → L2(X , μ) is a solution to the Cauchy problem

∂t u(t) = LQu(t), t > 0, u(0) = ů, (34)

if u is an element of C1((0,+∞), L2(X , μ)) ∩ C([0,+∞), L2(X , μ)), we have u(t) ∈
D(LQ) for any t > 0 and (34) holds. See [83, Chapter 4, Section 1].

Remark 3.5 Problem (34) is an abstract version of the parabolic problem

∂t u(t) = div(a∇u(t)) + b · ∇u(t) − div(u(t)b̂) + cu(t), t > 0, u(0) = ů.

Let (TQ
t )t>0 denote the strongly continuous contraction semigroupon L2(X , μ)generated

by LQ.

Corollary 3.3 For any ů ∈ L2(X , μ) the Cauchy problem (34) has the unique solution u(t) =
TQ
t ů, t > 0. For any t > 0 it satisfies u(t) ∈ D(LQ) and

Q1(u(t)) ≤
(
CK

t
+ 1

)
∥
∥ů
∥
∥2
L2(X ,μ)

, (35)

where CK > 0 is a constant depending only on the sector constant K in (28).

Proof Again the first part of the Corollary is standard. To see (35) recall that the operator
(LQ,D(LQ)) satisfies the sector condition (28). Consequently the semigroup (TQ

t )t>0 gen-
erated by (LQ + ε,D(LQ)) extends to a holomorphic contraction semigroup on the sector
{z ∈ C : | Im z| ≤ K−1Re z}, see for instance [59, Chapter XI, Theorem 1.24], or [78,
Theorem 2.20 and Corollary 2.21]. By (25) zero is contained in the resolvent set of LQ. This
implies that for any t > 0 we have

‖LQTQ
t f ‖L2(X ,μ) ≤ CK

t
‖ f ‖L2(X ,μ), f ∈ L2(X , μ), (36)

for some CK ∈ (0,∞) depending only on the sector constant K , as an inspection of the
classical proofs of (36) shows, see for instance [21, Theorem 4.6], [83, Section 2.5, Theorem
5.2] or the explanations in [82, Section 2]. Now (35) follows using (36), Cauchy–Schwarz
and contractivity. ��
Remark 3.6 Since weak solutions to (29) and solutions to (34) at fixed positive times are
elements of D(E) ⊃ D(LQ), they are Hölder continuous of order 1/2 on (X , R) by (1).

It is a trivial observation that if a ∈ C(X) satisfies

λ < a(x) < �, x ∈ X , (37)

then a, interpreted as a bounded linear map v �→ a · v from H into itself, satisfies (19). Our
main interest is to understand the drift terms and therefore we restrict attention to coefficients
a of form (37) in the following sections. Note that under condition (37) the function a may
also be seen as a conformal factor, [7].

Remark 3.7 A discussion of more general diffusion coefficients a should involve suitable
coordinates, see [40,53,96]. In view of the fact that natural local energy forms on p.c.f.
self-similar sets have pointwise index one [13,41,75], assumption (37) does not seem to be
unreasonably restrictive for this class of fractal spaces.
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On finite graphs [32,60], and compact metric graphs [28,70–73,81,85], the forms in (21)
admit rather familiar expressions.

Example 3.1 In the setup of Examples 2.1 and with a given volume function μ : V →
(0,+∞) we obtain, accepting a slight abuse of notation,

Q( f , g) = 1

2

∑

p∈V

∑

q∈V
ω(p, q)a(p, q)( f (p) − f (q))(g(p) − g(q))

−1

2

∑

p∈V

∑

q∈V
ω(p, q)g(p, q)b(p, q)( f (p) − f (q))

−1

2

∑

p∈V

∑

q∈V
ω(p, q) f (p, q)b̂(p, q)(g(p) − g(q)) −

∑

p∈V
c(p) f (p)g(p)μ(p)

for all f , g ∈ �(V ) and any given coefficients a, c ∈ �(V ) and b, b̂ ∈ �2(V × V \ diag, ω).

Example 3.2 Suppose we are in the same situation as in Example 2.1 and μ is a finite Borel
measure on X� that has full support and is equivalent to the Lebesgue-measure on each
individual edge. Then, abusing notation slightly,

Q( f , g) =
∑

e∈E

∫ le

0
ae(s) f

′
e(s)g

′
e(s)ds −

∑

e∈E

∫ le

0
ge(s)be(s) f

′
e(s)ds

−
∑

e∈E

∫ le

0
fe(s)b̂e(s)g

′
e(s)ds

−
∑

e∈E

∫ le

0
ce(s) fe(s)ge(s)μ(ds)

for all f , g ∈ Ẇ 1,2(X�) and all a ∈ C(X�), c ∈ L∞(X�, μ) and b, b̂ ∈ ⊕e∈E L2(0, le),
where ue denoted the restriction to e ∈ E in the a.e. sense of an integrable function on X� .

4 Convergence of solutions on a single space

In this section we define bilinear formsQ(m) on L2(X , μ) by replacing a, b and b̂ in (21) by
coefficients am bm and b̂m that may vary with m. To keep the exposition more transparent
and since it is rather trivial to vary it, we keep c fixed. We consider the unique weak solutions
to elliptic problems (29) and unique solutions at fixed positive times of parabolic problems
(34) with these coefficients. For a sequence (am)m satisfying (19) uniformly in m, bounded
sequences (bm)m and (b̂m)m and small enough c, we can find accumulation points with
respect to the uniform convergence on X of these solutions, and these accumulation points are
elements of F , Corollary 4.3. If coefficients a, b, b̂ and c are given and the sequences (am)m ,
(bm)m and (b̂m)m converge to a, b and b̂, respectively, then we can conclude the uniform
convergence of the solutions to the respective solutions of the target problem, Theorem 4.1.
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4.1 Boundedness and convergence of vector fields

As in the preceding section we assume that (X , R) is separable and locally compact, that
(E,F) is regular and that μ is a Borel measure on (X , R) such that for any x ∈ X and R > 0
we have 0 < μ(B(x, R)) < +∞.

Under a mild geometric assumption on μ any vector field b ∈ H satisfies the Hardy
condition. We say that μ has a uniform lower bound V if V is an non-decreasing function
V : (0,+∞) → (0,+∞) so that

μ(B(x, r)) ≥ V (r), x ∈ X , r > 0. (38)

The following proposition is a partial refinement of [49, Lemma 4.2].

Proposition 4.1 Suppose thatμ has the uniform lower bound V . Then for any g ∈ F∩Cc(X),
any b ∈ H and any M > 0 we have

‖g · b‖2H ≤ 1

M
E(g) + V(M ‖b‖2H) ‖b‖2H ‖g‖2L2(X ,μ)

, (39)

where V is the non-decreasing function

V(s) = 2

V
( 1
2s

) , s > 0.

In particular, any b ∈ H is in the Hardy class, and for any M > 0 it satisfies the estimate
(20) with δ(b) = 1

M and γ (b) = V(M ‖b‖2H) ‖b‖2H. Moreover, for any λ > 0 condition (23)

holds if we choose M > 2/λ for both b and b̂.

A proof of an inequality of type (39) had already been given in [49, Lemma 4.2], but the
function V had not been specified and an unnecessary metric doubling assumption had been
made. We comment on the necessary modifications.

Proof We may assume ‖b‖H > 0. Let {Bj } j be a countable cover of X by open balls Bj of
radius r = (2M ‖b‖2H)−1. As in [49] we can use (1) to see that for any j and any x ∈ Bj we
have

|g(x)|2 ≤ 2|g(x) − (g)Bj |2 + 2(g)2Bj
≤ 2E(g)r + 2(g2)Bj ,

where we use the shortcut notation ( f )B = 1
μ(B)

∫

B f dμ. Setting B0 = ∅ and C j =
Bj\⋃ j−1

i=0 Bi , j ≥ 1, we obtain a countable Borel partition {C j } j of X with C j ⊂ Bj ,
j ≥ 1. Then for any x ∈ X we have

|g(x)|2 ≤ 2E(g)r + 2
∑

j

(g2)Bj 1C j (x) ≤ 2E(g)r + 2

V (r)
‖g‖2L2(X ,μ)

,

and using (10) we arrive at the claimed inequality. ��
We record two consequences of Proposition 4.1. The first states that if the norms of vector

fields in a sequence are uniformly bounded then we may choose uniform constants in the
Hardy condition (20).

Corollary 4.1 Suppose that μ has a uniform lower bound. If (bm)m ⊂ H satisfies
supm ‖bm‖H < +∞ then for any M > 0 there is a constant γM > 0 independent of m
such that (20) holds for each bm with constants δ(bm) = 1

M and γ (bm) = γM.
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Proof Let V be defined as in Proposition 4.1. Since V is increasing we can take

γM := V(M sup
m

‖bm‖2H) sup
m

‖bm‖2H . (40)

��
The second consequence is a continuity statement.

Corollary 4.2 Suppose that μ has a uniform lower bound. If b ∈ H and (bm)m ⊂ H is a
sequence with limm bm = b in H then for any g ∈ Cc(X) we have

lim
m

‖g · bm − g · b‖2H = 0.

Proof This is immediate from the definition of the function V in Proposition 4.1 and the fact
that the uniform lower bound V of μ is strictly positive and increasing. ��

4.2 Accumulation points

For the rest of this section we assume that (E,F) is a resistance form on a nonempty set X so
that (X , R) is compact, and that μ is a finite Borel measure on (X , R) with a uniform lower
bound V . Note that by compactness (E,F) is regular.

For each m let am ∈ C(X) satisfy (37) with the same constants 0 < λ < �. Suppose
M > 0 is large enough so that λ0 := λ/2 − 1/M > 0 and that bm, b̂m ∈ H satisfy

sup
m

‖bm‖2H < +∞ and sup
m

∥
∥b̂m
∥
∥
2
H < +∞. (41)

Let γM be as in (40), let γ̂M defined in the samewaywith the b̂m replacing the bm and suppose
that c ∈ L∞(X , μ) is such that

c0 := ess inf x∈X (−c(x)) − γM + γ̂M

λ − 2/M
> 0. (42)

Then by Proposition 3.1 and Corollary 4.1 the forms

Q(m)( f , g) := 〈am · ∂ f , ∂g〉H − 〈g · bm, ∂ f 〉H − 〈 f · b̂m, ∂g
〉

H
−〈c f , g〉L2(X ,μ) , f , g ∈ F, (43)

are sectorial closed forms on L2(X , μ). They satisfy (25) with δ(bm) = δ(b̂m) = 1/M and
γM , γ̂M replacing γ (b), γ (b̂) in (26). Their generators (LQ(m) ,D(LQ(m) )) satisfy the sector
conditions (28) with the same sector constant K . As a consequence we observe uniform
energy bounds for the solutions of (29) and (34). We writeQ(m),α for the form defined as Eα

in (18) but with Q(m) in place of E .

Proposition 4.2 Let am, bm, b̂m and c be as above such that (41) and (42) hold.

(i) If f ∈ L2(X , μ) and um is the unique weak solution to (29) with LQ(m) in place of L,
then we have supm Q(m),1(um) < +∞.

(ii) If ů ∈ L2(X , μ) and um is the unique solution to (34) with LQ(m) in place of L, then for
any t > 0 we have supm Q(m),1(um(t)) < +∞.

Proof Since (42) and (28) hold with the same constants c0 and K for all m, the statements
follow from Corollaries 3.2 and 3.3. ��

123



19 Page 16 of 47 M. Hinz, M. Meinert

The compactness of X implies the existence of accumulation points in C(X).

Corollary 4.3 Let am, bm, b̂m and c be as above such that (41) and (42) are satisfied.

(i) If f ∈ L2(X , μ) and um is the unique weak solution to (29) with LQ(m) in place of
LQ, then each subsequence of (um)m has a subsequence converging to a limit ũ ∈ F
uniformly on X.

(ii) If ů ∈ L2(X , μ) and um is the unique solution to (34) with LQ(m) in place of LQ, then
for each t > 0 each subsequence of (um(t))m has a further subsequence converging to
a limit ũt ∈ F uniformly on X.

At this point we can of course not claim that the C(X)-valued function t �→ ũt has any
good properties or significance.

Proof Since all Q(m) satisfy (25) with the same constants, Proposition 4.2 implies that
supm E1(um) < +∞. By [67, Lemma 9.7] the embedding F ⊂ C(X) is compact, hence
(um)m has a subsequence that converges uniformly on X to a limit ũ. To see that ũ ∈ F ,
note that also this subsequence is bounded in F and therefore has a further subsequence
that converges to a limit w̃ ∈ F weakly in L2(X , μ), as follows from a Banach-Saks type
argument. This forces w̃ = ũ. Statement (ii) is proved in the same manner. ��

4.3 Strong resolvent convergence

Let (E,F) and μ be as in the preceding subsection. Let a ∈ F be such that (37) holds with
constants 0 < λ < � and let (am)m ⊂ C(X) be such that

lim
m

‖am − a‖sup = 0. (44)

Without loss of generality wemay then assume that also the functions am satisfy (37) with the
very same constants 0 < λ < �. SupposeM > 0 is large enough so that λ0 := λ/2−1/M >

0. Let b, b̂ ∈ H and let (bm)m ⊂ H and (b̂m)m ⊂ H be sequences such that

lim
m

‖bm − b‖H = 0 and lim
m

∥
∥b̂m − b̂

∥
∥H = 0. (45)

Note that this implies (41). Let γM be as in (40) and γ̂M similarly but with the b̂m , and suppose
that c ∈ L∞(X , μ) satisfies (42). Let Q be as in (21) and Q(m) as in (43).

The next theorem states that the solutions to (29) and (34) depend continuously on the
coefficients a, b and b̂. It is based on [38, Theorem 3.1].

Theorem 4.1 Let a, am, b, bm, b̂ and b̂m be as above such that (44) and (45) hold. Then
limm LQ(m) = LQ in the strong resolvent sense, and the following hold.

(i) If f ∈ L2(X , μ), u and um are the unique weak solutions to (29) and to (29)withLQ(m) in
place of LQ, respectively, then limm um = u in L2(X , μ). Moreover, there is a sequence
(mk)k with mk ↑ +∞ such that limk umk = u uniformly on X.

(ii) If ů ∈ L2(X , μ), and u and um are the unique solutions to (34) and to (34) with LQ(m)

in place of L, then for any t > 0 we have limm um(t) = u(t) in L2(X , μ). Moreover,
for any t > 0 there is a sequence (mk)k with mk ↑ +∞ such that limk umk (t) = u(t)
uniformly on X.

Proof By [38, Theorem 3.1], the claimed strong resolvent convergence and the stated con-
vergences in L2(X , μ) follow once we have verified the conditions in Definition A.2, see
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Theorem A.1 and Remark A.3 in Appendix A. The statements on uniform convergence then
also follow using Corollary 4.3.

Without loss of generality we may assume that the function c ∈ L∞(X , μ) satisfies
condition (42). If not, proceed similarly as inRemark 3.4 and replace c by c−c1, where c1 > 0
is large enough so thatwith c0 as defined as in (42)we have c1+c0 > 0, and consider the forms
(Q(m),c1 ,F) with generators (LQ(m) − c1,D(LQ(m) )). If limm→∞ LQ(m) − c1 = LQ − c1
in the KS-generalized strong resolvent sense then also limm→∞ LQ(m) = LQ in the KS-
generalized strong resolvent sense. The statements on uniform convergence then follow using
Corollary 4.3 and Remark 3.4, note that for all m and u ∈ F we haveQ(m)(u) ≤ Q(m),c1(u).

Thanks to (23), (24), (25) and (26) together with Proposition 4.1 and Corollaries 4.1
and 4.2 we can find a constant C > 0 such that for every sufficiently large m we have

C E1( f ) ≤ Q(m),1( f ) ≤ C−1 E1( f ), f ∈ F . (46)

Suppose that limm um = u weakly in L2(X , μ) with limm Q(m),1(um, um) < +∞. Then
there is a subsequence (umk )k such that supk Q(mk ),1(umk ) < +∞, and by (46) we have
supk E1(umk , umk ) < +∞. A subsequence of (umk )k converges to a limit uE ∈ F weakly in
(F, E) and standard Banach-Saks type argument shows that uE = u, what proves condition
(i) in Definition A.2.

To verify condition (ii) in Definition A.2 suppose that (mk)k be a sequence of natural
numbers with mk ↑ ∞, limk uk = u weakly in L2(X , μ) with supk Q(mk ),1(uk, uk) < ∞
and u ∈ F . By (46) we have supk E1(uk) < ∞, what implies that (uk)k has a subsequence
(uk j ) j converging to u ∈ F weakly in F and uniformly on X , and such that its averages

N−1∑N
j=1 uk j converge to u in F . Here the statement on uniform convergence is again a

consequence of the compact embedding F ⊂ C(X) [67, Lemma 9.7]. Combined with the
weak convergence in L2(X , μ) it follows that (uk j ) j converges weakly to u in (F/ ∼, E).
Moreover, using (13), the convergence of averages and the linearity of du we may assume
that (duuk j ) j converges to duu weakly in L2(X × X\ diag, J ). As a consequence, we also
have

lim
j
Ec(uk j , v) = lim

j
E(uk j , v) − lim

j

∫

X

∫

X
duuk j (x, y)duv(x, y)J (dxdy)

= E(u, v) −
∫

X

∫

X
duu(x, y)duv(x, y)J (dxdy)

= Ec(u, v)

for all v ∈ F .
Now let w ∈ F . Then we have

|Q(mk j )
(w, uk j ) − Q(w, u)| ≤ |Q(mk j )

(w, uk j ) − Q(w, uk j )| + |Q(w, uk j − u)|. (47)

Since c is kept fixed, the first summand on the right hand side of the inequality (47) is bounded
by
∣
∣
∣

〈

(amk j
− a) · ∂w, ∂uk j

〉

H

∣
∣
∣+
∣
∣
∣

〈

uk j · (bmk j
− b), ∂w

〉

H
∣
∣
∣+
∣
∣
∣

〈

w · (b̂mk j
− b̂), ∂uk j

〉

H

∣
∣
∣

≤ ‖amk j
− a‖supE(w)1/2E(uk j )

1/2 + ‖uk j ‖sup‖bmk j
− b‖H E(w)1/2

+‖w‖sup‖b̂mk j
− b̂‖H E(uk j )

1/2,

where we have used Cauchy–Schwarz and (10). By the hypotheses on the coefficients and
the boundedness of (uk j ) j in energy and in uniform norm this converges to zero. The second
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summand on the right hand side of (47) is bounded by

| 〈∂w, a · ∂(uk j − u)
〉

H | + |〈(uk j − u) · b, ∂w〉H|
+|〈w · b̂, ∂(uk j − u)〉H| + |〈cw, uk j − u〉L2(X ,μ)|.

The last summand in this line obviously converges to zero, and also the second does, note
that |〈(uk j − u) · b, ∂w〉H| ≤ ‖uk j − u‖sup‖b‖H E(w)1/2 by Cauchy–Schwarz and (10). By
Proposition 2.1 we have

〈

∂w, a · ∂(uk j − u)
〉

H

=
∫

X
a dνcw,uk j −u +

∫

X

∫

X
a(x, y)duw(x, y)du(uk j − u)(x, y) J (dxdy).

Since ‖aduw‖L2(X×X\ diag,J ) ≤ ‖a‖sup E(w)1/2, the double integral converges to zero
by the weak convergence of (duuk j ) j to duu in L2(X × X\ diag, J ). By (5) we have
sup j E1(auk j )1/2 < +∞ and E1(wuk j )

1/2 < +∞. Thinning out the sequence (uk j ) j once
more we may, using the arguments above, assume that lim j Ec(auk j , v) = Ec(au, v) and
lim j Ec(wuk j , v) = Ec(wu, v) for all v ∈ F . Then also
∫

X
a dνcw,uk j −u = 1

2

{Ec(aw, uk j − u) + Ec(a(uk j − u), w) − Ec(w(uk j − u), a)
}

converges to zero. Together this implies that lim j
〈

∂w, a · ∂(uk j − u)
〉

H = 0. Finally, note
that by the Leibniz rule for ∂ ,

〈

b̂, w · ∂(uk j − u)
〉

H = 〈b̂, ∂(w(uk j − u))
〉

H − 〈b̂, (uk j − u) · ∂w
〉

H.

As before we see easily that the second summand on the right hand side goes to zero. For the
first, let b̂ = ∂ f + η be the unique decomposition of b̂ ∈ H into a gradient ∂ f of a function
f ∈ F and a ’divergence free’ vector field η ∈ ker ∂∗. Then

〈

b̂, ∂(w(uk j − u))
〉

H = 〈∂ f , ∂(w(uk j − u))
〉

H = E( f , w(uk j − u)),

which converges to zero by the preceding arguments. Combining, we see that

lim
j
Q(nk j )(w, uk j ) = Q(w, u),

and since w ∈ F was arbitrary, this implies condition (ii) in Definition A.2. ��
Example 4.1 The basic requirements for Theorem 4.1 are that the resistance form (E,F) is
regular, the space (X , R) is compact, and that the Borel measure μ on (X , R) has a uniform
lower bound. In particular, μ does not have to satisfy a volume doubling property. Possible
examples can for instance be found amongst finite graphs [32,60], compact metric graphs
[28,70–73,81,85], p.c.f. self-similar sets [12,61–64,74,75,79], classical Sierpinski carpets
[9,11], certain Julia sets [89], and certain random fractals [33,34].

5 Convergence of solutions on varying spaces

In this section we basically repeat the approximation program from Sect. 4, but now on
varying resistance spaces.More precisely, we study the convergence of suitable linearizations
of solutions to (29) and (34) on approximating spaces X (m) to solutions to these equations
on X . We establish these results for the case that X is a finitely ramified set [55,96], endowed
with a local resistance form. Possible generalizations are commented on in Sect. 6.3.
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5.1 Setup and basic assumptions

We describe the setup we consider and the assumptions under which the results of this section
are formulated. They are standing assumptions for all results in this section and will not be
repeated in the particular statements.

We recall the notion of finitely ramified cell structures as introduced in [96, Definition
2.1].

Definition 5.1 A finitely ramified set X is a compact metric space which has a cell structure
{Xα}α∈A and a boundary (vertex) structure {Vα}α∈A such that the following hold:

(i) A is a countable index set;
(ii) each Xα is a distinct compact connected subset of X ;
(iii) each Vα is a finite subset of Xα;
(iv) if Xα =⋃k

j=1 Xα j then Vα ⊂⋃k
j=1 Xα j ;

(v) there is a filtration {An}n such that

(v.a) each An is a finite subset of A, A0 = {0}, and X0 = X ;
(v.b) An ∩ Am = ∅ if n �= m;
(v.c) for any α ∈ An there are α1, ..., αk ∈ An+1 such that Xα =⋃k

j=1 Xα j ;

(vi) Xα′ ∩ Xα = Vα′ ∩ Vα for any two distinct α, α′ ∈ An ;
(vii) for any strictly decreasing infinite sequence Xα1 � Xα2 � ... there exists x ∈ X such

that
⋂

n≥1 Xαn = {x}.
Under these conditions the triple (X , {Xα}α∈A, {Vα}α∈A) is called a finitely ramified cell
structure.

We write Vn = ⋃α∈An
Vα and V∗ = ⋃n≥0 Vn , note that Vn ⊂ Vn+1 for all n. Suppose

that (E, F̃) is a resistance form on V∗. It can be written in the form (3) with F̃ in place of F ,
where the forms EVm are the restrictions of E to Vm as in (2) and (4). Any function in F̃ is
continuous in (�, R), where � denotes the R-completion of V∗, and therefore has a unique
extension to a continuous function on �. Writing F for the space of all such extensions, we
obtain a resistance form (E,F) on�. To avoid topological difficulties in this paper, we make
the following assumption.

Assumption 5.1 We have� = X and the resistance metric R is compatible with the original
topology.

In view of [36, Section 4], [79, Section 7] and the well-established theory in [64, Section
3.3] one could rephrase this by saying we consider a regular harmonic structure. As a conse-
quence, (X , R) is a compact and connected metric space and (E,F) is a regular resistance
form on X , local in the sense that if f ∈ F is constant on an open neighborhood of the
support of g ∈ F , then E( f , g) = 0, see for instance [96, Theorem 3 and its proof].

Given m ≥ 0 and a function v ∈ �(Vm) there exists a unique function hm(v) ∈ F such
that hm(v)|Vm = v in �(Vm) and

E(hm(v)) = EVm (v) = min
{E(u) : u ∈ F, u|Vm = v

}

,

see [65, Proposition 2.15]. This function hm(v) is called the harmonic extension of v, and
as usual we say that a function u ∈ F is m-harmonic if u = hm(u|Vm ). We write Hm(X) to
denote the space of m-harmonic functions on X and write Hmu := hm(u|Vm ), u ∈ F , for the
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projection from F onto Hm(X). It is well known and can be seen as in [92, Theorem 1.4.4]
that

lim
m

E(u − Hmu) = 0, u ∈ F, (48)

and using (1) it follows that also limm ‖u − Hmu‖sup = 0, where ‖·‖sup denotes the supre-
mum norm. Consequently the space

H∗(X) =
⋃

m≥0

Hm(X)

is dense in F w.r.t. the seminorm E1/2 and in C(X) w.r.t. the supremum norm. We write
Hm(X)/ ∼ for the space of m-harmonic functions on X modulo constants. For each m the
space Hm(X)/ ∼ is a finite dimensional, hence closed subspace of (F/ ∼, E), and since
Hm1 = 1, the operator Hm is easily seen to induce an orthogonal projection in (F/ ∼, E)

onto Hm(X)/ ∼, which we denote by the same symbol. Clearly H∗(X)/ ∼ is dense in
(F/ ∼, E).

We now state themain assumptions underwhichwe implement the approximation scheme.
They are formulated in a way that simultaneously covers approximations schemes by discrete
graphs and by metric graphs as discussed in Sects. 6.1 and 6.2, respectively.

Let diamR(A) denote the diameter of a set A in (X , R). The following assumption requires
E to be compatible with the cell structure in the following ’uniform’ metric sense.

Assumption 5.2 We have limn→∞ maxα∈An diamR(Xα) = 0.

We now assume that (X (m))m is a sequence of subsets X (m) ⊂ X such that for eachm ≥ 0
we have X (m) ⊂ X (m+1) and X (m) = ⋃α∈Am

X (m)
α where for any α ∈ Am the set X (m)

α

satisfies

Vα ⊂ X (m)
α ⊂ Xα.

For any m ≥ 0 let now (E(m),F (m)) be a resistance form on X (m) so that (X (m), R(m)) is
topologically embedded in (X , R).We also assume that the spaces (X (m), R(m)) are compact,
this implies that the resistance forms (E(m),F (m)) are regular. By ν

(m)
f we denote the energy

measure of a function f ∈ F (m), defined as in (11) with (E(m),F (m)) in place of (E,F). The
energy measures ν

(m)
f may be interpreted as Borel measures on X .

Remark 5.1 For spaces, forms, operators, coefficients and measures indexed by m and con-
nected to X and the form (E,F)wewill use a subscript indexm, similar objects corresponding
to the spaces X (m) and the forms (E(m),F (m)) will be indexed by a superscript (m), unless
stated otherwise. For functions we will generally use a subscript index.

We make some further assumptions. The first expresses a connection between the resis-
tance forms in terms of m-harmonic functions.

Assumption 5.3 (i) For each m the pointwise restriction u �→ u|X (m) defines a linear map
from Hm(X) into F (m) which is injective and satisfies

E(m)(u|X (m) ) = E(u), u ∈ Hm(X). (49)

(ii) We have

νu = lim
m

ν
(m)
Hm (u)|X(m)

, u ∈ F, (50)

in the sense of weak convergence of measures on X .
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As a trivial consequence of (50) we have

E(u) = lim
m→∞ E(m)(Hm(u)|X (m) ), u ∈ F . (51)

Remark 5.2 For approximations by discrete graphs (50) follows from (51) and (12). For
metric graph approximations (50) is verified in Sect. 6.2 below, the use of products in (11)
hinders a direct conclusion of (50) from (51).

Now let

Hm(X (m)) := {u|X (m) : u ∈ Hm(X)
}

denote the image of Hm(X) under the pointwise restriction u �→ u|X (m) , which by (49)
induces an isometry from (Hm(X)/ ∼, E) onto the Hilbert space (Hm(X (m))/ ∼, E(m)). The
space Hm(X (m)) is a closed linear subspace of F (m) and the space Hm(X (m))/ ∼ is a closed
linear subspace of F (m)/ ∼. Let H (m)

m denote the projection from F (m) onto Hm(X (m)).
It satisfies H (m)

m 1 = 1 and induces an orthogonal projection from (F (m)/ ∼, E(m)) onto
Hm(X (m))/ ∼ so that in particular,

E(m)(H (m)
m v) ≤ E(m)(v), v ∈ F (m). (52)

Let idF (m) denote the identity operator in F (m). We need an assumption on the decay of the
operators idF (m) − H (m)

m as m goes to infinity. By ‖·‖sup,X (m) we denote the supremum norm

on X (m).

Assumption 5.4 (i) For any sequence (um)m with um ∈ F (m) such that supm E(m)(um) <

+∞ we have

lim
m

∥
∥um − H (m)

m um
∥
∥
sup,X (m) = 0. (53)

(ii) For u, w ∈ Hn(X) we have

lim
m

E(m)(u|X (m)w|X (m) − H (m)
m (u|X (m)w|X (m) )) = 0. (54)

Remark 5.3 For discrete graph approximations as in Sect. 6.1 we have H (m)
m v = v, v ∈ F (m),

so that Assumption 5.4 is trivial.

Now let μ and μ(m) be a finite Borel measures on X and X (m), respectively, which assign
positive mass to each nonempty open subset of the respective space. Then by [67, Theorem
9.4] and [96, Theorem 3] the forms (E,F) and (E(m),F (m)) are regular Dirichlet forms on
L2(X , μ) and L2(X (m), μ(m)), and the Dirichlet form (E,F) is strongly local in the sense of
[27].

We make an assumption on the connection between the spaces L2(X , μ) and L2(X (m),

μ(m)) and its consistency with the projections and pointwise restrictions. By Extm :
Hm(X (m)) → Hm(X) we denote the inverse of the bijection u �→ u|X (m) from Hm(X)

onto Hm(X (m)).

Assumption 5.5 (i) The measuresμ andμ(m) admit a uniform lower bound in the following
sense: There is a non-increasing function V : N → (0,+∞) such that for any m we
have μ(Xα) ≥ V (m), α ∈ Am , and moreover, μ(m)(X (m)

α ) ≥ V (m), α ∈ Am .
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(ii) There are linear operators �m : L2(X , μ) → L2(X (m), μ(m)) such that

sup
m

‖�m‖L2(X ,μ)→L2(X (m),μ(m)) < +∞, (55)

lim
m→∞
∥
∥�mu

∥
∥
L2(X (m),μ(m))

= ‖u‖L2(X ,μ) , u ∈ L2(X , μ), (56)

and for any n and u ∈ Hn(X) we have

lim
m

∥
∥�∗

m�mu − u
∥
∥
L2(X ,μ)

= 0, (57)

where for any m the symbol �∗
m denotes the adjoint of �m .

(iii) For any sequence (um)m ⊂ F with supm E(um) < +∞ we have

lim
m→∞
∥
∥�mum − um |X (m)

∥
∥
L2(X (m),μ(m))

= 0. (58)

(iv) For any sequence (um)m with um ∈ F (m) such that supm E(m)
1 (um) < +∞ we have

sup
m

∥
∥
∥Extm H (m)

m um
∥
∥
∥
L2(X ,μ)

< +∞. (59)

LetH andH(m) denote the spaces of generalized L2-vector fields associated with (E,F)

and (E(m),F (m)), respectively. The corresponding gradient operators we denote by ∂ and
∂(m). If a, b, b̂ and c satisfy the hypotheses of Proposition 3.1 (i) then

Q( f , g) := 〈a ∂ f , ∂g〉H − 〈g · b, ∂ f 〉H − 〈 f · b̂, ∂g〉H − 〈c f , g〉L2(X ,μ) , f , g ∈ F,

defines a sectorial closed form (Q,F) on L2(X , μ). If a and c are suitable continuous
functions on X and b, b̂, b(m) and b̂(m) are vector fields of a suitable form, then we can define
sectorial closed forms (Q(m),F (m)) on the spaces L2(X (m), μ(m)), respectively, by

Q(m)( f , g) := 〈a|X (m) · ∂ f , ∂g
〉

H(m) −
〈

g · b(m), ∂ f
〉

H(m)

−〈 f · b̂(m), ∂g
〉

H(m) − 〈c|X (m) f , g
〉

L2(X (m),μ(m))
, f , g ∈ F (m). (60)

In Sect. 5.4 belowwe observe that under simple boundedness assumptions the solutions of
(29) and (34) (for fixed t > 0) associated with the formsQ(m) on the spaces X (m) accumulate
in a suitable sense, see Proposition 5.2. In Theorem 5.1 in Sect. 5.5 we then conclude that
they actually converge to the solutions to the respective equation associated with the form
Q, as announced in the introduction. In the preparatory Sects. 5.2 and 5.3 we record some
consequences of the assumptions and discuss possible choices for b, b̂, b(m) and b̂(m).

5.2 Some consequences of the assumptions

We begin with some well-known conclusions.

Lemma 5.1 (i) For any p, q ∈ Vm we have R(m)(p, q) = R(p, q). In particular,
diamR(Vα) = diamR(m) (Vα) for any m ≥ n and α ∈ An.

(ii) We have diamR(Xα) = diamR(Vα) for any n and α ∈ An, and diamR(m) (X (n)
α ) =

diamR(m) (Vα) if m ≥ n.
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Proof To see (i) note that for any p, q ∈ Vm we have, by a standard conclusion and using
(49) and (52),

R(p, q)−1 = min {E(u) : u ∈ Hm(X) : u(p) = 0, u(q) = 1}
= min

{

E(m)(u|X (m) ) : u ∈ Hm(X), u(p) = 0, u(q) = 1
}

= R(m)(p, q)−1.

If the first statement (ii) were not true we could find p ∈ Xα ∩ V∗ and q ∈ (Xα ∩ V∗)\Vα

such that R(p, q) > R(p, q ′) for all q ′ ∈ Vα . This would imply that there exists some
u ∈ Hn(X) with u(p) = 0 and E(u) = 1 such that u(q)2 < u(q ′)2 for all q ′ ∈ Vα . However,
this contradicts the maximum principle for harmonic functions on the cell Xα . The second
statement follows similarly. ��

Also the following is due to Assumption 5.3.

Corollary 5.1 For any f1, f2 ∈ Hn(X) and g1, g2 ∈ C(X) we have

lim
m

〈

g1|X (m) · ∂(m)( f1|X (m) ), g2|X (m) · ∂(m)( f2|X (m) )
〉

H(m)
= 〈g1 · ∂ f1, g2 · ∂ f2〉H .

Proof If all E(m)’s are local then by Proposition 2.1 we have
∥
∥
∥g|X (m) · ∂(m)( f |X (m) )

∥
∥
∥

2

H(m)
=
∫

X (m)

(g|X (m) )
2dν

(m),c
f |X(m)

=
∫

X
g2dν

(m)

f |(m)
X

for all f ∈ Hn(X) and g ∈ C(X), where ν
(m),c
f denotes the local part of the energy measure

of f with respect to (E(m),F (m)), and by (50) this converges to
∫

X
g2dν f = ‖g · ∂ f ‖2H .

Suppose now that the E(m)’s have nontrivial jump measures J (m). If f ∈ Hn(X) and g ∈
Hn′(X) have disjoint supports then by Proposition 2.1, the locality of E(m),c, (49) and the
locality of E we have

− 2 lim
m

∫

X

∫

X
f (x)g(y) J (m)(dxdy)

= lim
m

∫

X (m)

∫

X (m)

( f (x) − f (y))(g(x) − g(y))J (m)(dxdy)

= lim
m

E(m)( f , g)

= E( f , g)

= 0. (61)

Given f , g ∈ C(X) with disjoint supports, we can, by the proof of [96, Theorem 3], find
sequences of functions ( f j ) j and (g j ) j from H∗(X) approximating f and g uniformly and
disjoint compact sets K ( f ) ⊂ X and K (g) ⊂ X such that all f j and g j are supported in
K ( f ) and K (g), respectively. Therefore (61) and the arguments used in the proof of [27,
Theorem 3.2.1] imply that limm J (m) = 0 vaguely on X×X\ diag. For functions f ∈ Hn(X)

and g ∈ C(X) we therefore have

lim
m

∫

X (m)

∫

X (m)

(dug(x, y))
2(du f (x, y))

2 J (m)(dxdy) = 0,
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as can be seen using the arguments in the proof of [48, Lemma 3.1]. On the other hand we
have

‖g · ∂ f ‖2H
= lim

m

{∫

X (m)

g2dν
(m),c
f + 1

2

∫

X (m)

∫

X (m)

(g2(x) + g2(y))(du f (x, y))
2 J (m)(dxdy)

}

for such f and g by (50) and (14). Combining and taking into account Proposition 2.1 we
can conclude that

‖g · ∂ f ‖2H = lim
m

{∫

X (m)

g2dν
(m),c
f + 1

2

∫

X (m)

∫

X (m)

(g(x, y))2(du f (x, y))
2 J (m)(dxdy)

}

= lim
m

∥
∥
∥g|X (m) · ∂(m)( f |X (m) )

∥
∥
∥

2

H(m)
,

from which the stated result follows by polarization. ��
Another consequence, in particular ofAssumption 5.5, is the convergence of the L2-spaces

and the energy domains in the sense of Definition A.1.

Corollary 5.2 (i) We have

lim
m→∞ L2(X (m), μ(m)) = L2(X , μ) (62)

in the KS-sense with identification operators �m as above.
(ii) We have

lim
m→∞F (m) = F (63)

in the KS-sense with identification operators u �→ (Hmu)|X (m) mapping from F into
F (m) respectively.

(iii) If f ∈ F and ( fm)m is a sequence of functions fm ∈ F (m) such that limm fm = f
KS-strongly w.r.t. (63) then we also have limm fm = f KS-strongly w.r.t. (62).

Proof Statement (i) is immediate from (56). To see statement (ii) let u ∈ F . If x0 ∈ V0 is
fixed, we have Hmu(x0) = u(x0) for any m and therefore, by (1) and (48),

lim
m

‖u − Hmu‖2L2(X ,μ)
≤ μ(X) lim

m
‖u − Hmu‖2sup ≤ μ(X) diamR(X) lim

m
E(u − Hmu) = 0.

Using (55), we obtain limm ‖�mHmu − �mu‖L2(X ,μ) = 0, and combining with (58) and
(56),

lim
m

∥
∥(Hmu)|X (m)

∥
∥
L2(X (m),μ(m))

= lim
m

∥
∥(Hmu)|X (m) − �mHmu

∥
∥
L2(X (m),μ(m))

+ lim
m

‖�mHmu‖L2(X (m),μ(m))

= lim
m

‖�mu‖L2(X (m),μ(m))

= ‖u‖L2(X ,μ) .

Together with (51) this shows that limm E(m)
1 ((Hmu)|X (m) ) = E1(u) for all u ∈ F . To see (iii)

note that according to the hypothesis, there exist ϕn ∈ F such that

lim
n

E1(ϕn − f ) = 0 and lim
n

lim
m

E(m)
1 ((Hmϕn)|X (m) − fm) = 0.
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This implies limn ‖ϕn − f ‖L2(X ,μ) = 0 and limn limm
∥
∥(Hmϕn)|X (m) − fm

∥
∥
L2(X (m),μ(m))

=
0. Conditions (56) and (58), applied to the constant function 1, yield limm μ(m)(X (m)) =
μ(X), and in particular,

sup
m

μ(X (m)) < +∞. (64)

We may therefore use (58) to conclude limm
∥
∥(Hmϕn)|X (m) − �mHmϕn

∥
∥
L2(X (m),μ(m))

= 0
for any n, so that

lim
n

lim
m

‖�mHmϕn − fm‖L2(X (m),μ(m)) = 0. (65)

Let x0 ∈ V0. Then, since Hmϕn(x0) = ϕ(x0) for all m and n, the resistance estimate (1)
implies

lim
m

‖Hmϕn − ϕn‖L2(X ,μ) = 0

for all n. Together with (55) it follows that

lim
n

lim
m

‖�mHmϕn − �mϕn‖L2(X (m),μ(m))

≤
(

sup
m

‖�m‖L2(X ,μ)→L2(X (m),μ(m))

)

lim
n

lim
m

‖Hmϕn − ϕn‖L2(X ,μ)

= 0,

and combining with (65) we obtain limn limm ‖�mϕn − fm‖L2(X (m),μ(m)) = 0. ��

In the sequel we will say ’KS-weakly’ resp. ’KS-strongly’ if we refer to the convergence
(62) and say ’KS-weakly w.r.t. (63)’ resp.’KS-strongly w.r.t. (63)’ if we refer to the conver-
gence (63). We finally record a property of KS-weak convergence that will be useful later
on.

Lemma 5.2 If limm fm = f KS-weakly and w ∈ F then there is a sequence (mk)k with
mk ↑ +∞ such that limk w|X (mk ) fmk = w f KS-weakly.

Proof For any w ∈ F we have limm w|X (m) = w KS-strongly by (58). Fix w ∈ F . Clearly

sup
m

∥
∥w|X (m) fm

∥
∥
L2(X (m),μ(m))

< +∞

by the boundedness of w, hence limk w|X (mk ) fmk = w̃ KS-weakly for some w̃ ∈ L2(X , μ)

and some sequence (mk)k . For any v ∈ F we have vw ∈ F and trivially (vw)|X (m) =
v|X (m)w|X (m) , hence

〈w̃, v〉L2(X ,μ) = lim
k

〈

w|X (mk ) fmk , v|X (mk )

〉

L2(X (mk ),μ(mk ))

= lim
k

〈

fmk , (vw)|X (mk )

〉

L2(X (mk ),μ(mk ))

= 〈 f , wv〉L2(X ,μ) = 〈w f , v〉L2(X ,μ) ,

what by the density of F in L2(X , μ) implies w̃ = w f and therefore the lemma. ��
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5.3 Boundedness and convergence of vector fields

We provide a version of Proposition 4.1 for finitely ramified sets. Recall the notation from
Assumption 5.5.

Proposition 5.1 (i) Given b ∈ H and M > 0 let n0 be such that

max
α∈An0

diamR(Xα) ≤ 1

2M ‖b‖2H
.

Then for all g ∈ F we have

‖g · b‖2H ≤ 1

M
E(g) + 2

V (n0)
‖b‖2H ‖g‖2L2(X ,μ)

.

(ii) Suppose b(m) ∈ H(m), M > 0 and n0 ≤ m are such that

max
α∈An0

diamR(m) (X (n0)
α ) ≤ 1

2M
∥
∥b(m)
∥
∥2H(m)

.

Then for all g ∈ F (m) we have

∥
∥g · b(m)

∥
∥
2
H(m) ≤ 1

M
E(m)(g) + 2

V (n0)

∥
∥b(m)
∥
∥
2
H(m)

∥
∥g
∥
∥
2
L2(X (m),μ(m))

.

Proof We use the shortcut (g)Xα = 1
μ(Xα)

∫

Xα
g dμ. For any α ∈ An0 and x ∈ Xα have, by

(1), |g(x) − (g)Xα | ≤ E(g)1/2 diamR(Xα)1/2 and therefore

|g(x)|2 ≤ 2E(g) diamR(Xα) + 2(g2)Xα ≤ 1

M ‖b‖2H
E(g) + 2

V (n0)
‖g‖2L2(X ,μ)

.

Creating a finite partition of X from the cells Xα , α ∈ An0 , we see that the preceding estimate
holds for all x ∈ X , and using (10) we obtain (i). Statement (ii) is similar. ��

Similarly as in Corollary 4.1, uniform norm bounds on the vector fields allow to choose
uniform constants in the Hardy condition (20).

Corollary 5.3 Suppose b(m) ∈ H(m) are such that supm
∥
∥b(m)
∥
∥H(m) < +∞. Then for any

M > 0 there exist γM > 0 and n0 such that for each m ≥ n0 the coefficient b(m) satisfies
(20) with δ(b(m)) = 1

M and γ (b(m)) = γM.

Proof By Lemma 5.1 and Assumption 5.2 we can find n0 such that

sup
m≥n0

max
α∈An0

diamR(m) (X (m)
α ) ≤ 1

4M supm
∥
∥b(m)
∥
∥
2
H(m)

.

Setting

γM := 2

V (n0)
sup
m≥n0

∥
∥b(m)
∥
∥2H(m) (66)

we obtain the desired result by Proposition 5.1. ��
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To formulate an analog of Corollary 4.2 for varying spaces we need a certain compatibility
of the vector fields involved. One rather easy way to ensure the latter is to focus on suitable
elements of themodule�1

a(X) and their equivalence classes inH andH(m) which then define
vector fields b on X and b(m) on X (m) suitable to allow an approximation procedure. Given
an element of �1

a(X) of the special form
∑

i gi · du fi with gi ∈ C(X) and fi ∈ Hn(X), let
b defined as its H-equivalence class

[∑

i gi · du fi
]

H as in Sect. 2, that is,

b :=
∑

i

gi · ∂ fi . (67)

By Assumption 5.3 we have fi |X (m) ∈ F (m) for all i and m, so that
∑

i gi |X (m) · du( fi |X (m) )

is an element of �1
a(X

(m)). We define b(m) to be its H(m)-equivalence class
[∑

i gi |X (m) ·
du( fi |X (m) )

]

H(m) , that is,

b(m) :=
∑

i

gi |X (m) · ∂(m)( fi |X (m) ). (68)

The following convergence result may be seen as a partial generalization of (50). It is
immediate from Corollary 5.1 and bilinear extension.

Corollary 5.4 Suppose b and b(m) are as in (67) and (68) and g ∈ C(X). Then we have

lim
m

∥
∥
∥g|X (m) · b(m)

∥
∥
∥H(m)

= ‖g · b‖H . (69)

Remark 5.4 One might argue that an analog of Corollary 4.2 in terms of a simple restriction
of vector fields b ∈ H to X (m) would be more convincing than Corollary 5.4. However, asH
and H(m) are obtained by different factorizations, it is not obvious how to correctly define a
restriction operation on all of H. Using the finitely ramified cell structure one can introduce
restrictions b|X (m) to X (m) of certain types of vector fields b ∈ H and obtain an counterpart
of (69) with these restrictions b|X (m) in place of the b(m)’s. This auxiliary observation is
discussed in Sect. 7, it is not needed for our main results.

5.4 Accumulation points

Let a ∈ C(X) satisfy (37) with 0 < λ < �, suppose M > 0 is large enough so that
λ0 := λ/2 − 1/M > 0 and that b(m), b̂(m) ∈ H(m) satisfy

sup
m

∥
∥
∥b(m)
∥
∥
∥

2

H(m)
< +∞ and sup

m
||b̂(m)||2H(m) < +∞. (70)

Let γM be as in (66) and γ̂M similarly but with the b̂(m) in place of b(m) and suppose that
c ∈ C(X) satisfies (42). Then for each m the form (Q(m),F (m)) as in (60) is a closed form
on L2(X (m), μ(m)), and (25) holds with δ(b(m)) = δ(b̂(m)) = 1/M and with γM , γ̂M in
place of γ (b), γ (b̂) in (26). There is a constant K > 0 such that for each m the generator
(LQ(m)

,D(LQ(m)
)) of (Q(m),F (m)) obeys the sector condition (28) with sector constant K .

As a consequence, we can observe the following uniform energy bounds on solutions to
elliptic and parabolic equations similar to Proposition 4.2.

Proposition 5.2 Let a, b(m), b̂(m) and c be as above such that (70) and (42) hold.

(i) If f ∈ L2(X , μ), and um is the unique weak solution to (29) with LQ(m)
in place of L

and fm = �m f in place of f then we have supm Q(m)
1 (um) < +∞.
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(ii) If ů ∈ L2(X , μ), and um is the unique solution to (34) in L2(X (m), μ(m)) with LQ(m)

in place of L and with initial condition ům = �mů then for any t > 0 we have
supm Q(m)

1 (um(t)) < +∞.

Proof Since (42) and (28) hold with the same constants c0 and K for all m, Corollaries

3.2 and 3.3 together with (55) yield that supm Q(m)
1 (um) ≤

(

2
c0

+ 4
c20

)

‖ f ‖L2(X ,μ) and

supm Q(m)
1 (um(t)) ≤

(
CK
t + 1

) ∥
∥ů
∥
∥
2
L2(X ,μ)

and the results follow. ��

Remark 5.5 Proposition 5.2 needs onlyAssumption 5.5 (i) and (ii). Assumption 5.3, Assump-
tion 5.4 and Assumption 5.5 (iii) and (iv) are not needed.

Remark 5.6 The hypotheses of Proposition 5.2 imply that ((Q(m),F (m)))m is an equi-elliptic
family in the sense of [82, Definition 2.1].

By the compactness of X we can find accumulation points in C(X) for extensions to X
of linearizations of solutions. The next corollary may be seen as an analog of Corollary 4.3.
Recall the definitions of the projections H (m)

m and the extension operators Extm .

Corollary 5.5 Let a, b(m), b̂(m) and c be as above such that (70) and (42) hold.

(i) If f ∈ L2(X , μ), and um is the unique weak solution to (29) with LQ(m)
in place of L

and fm = �m f in place of f then each subsequence (umk )k of (um)m has a further

subsequence (umk j
) j such that (Extmk j

H
(mk j )

mk j
umk j

) j converges to a limit ũ ∈ C(X)

uniformly on X.
(ii) If ů ∈ L2(X , μ), and um is the unique solution to (34) in L2(X (m), μ(m)) with

LQ(m)
in place of L and with initial condition ům = �mů then for any t > 0 each

subsequence (umk (t))k of (um(t))m has a further subsequence (umk j
(t)) j such that

(Extmk j
H

(mk j )

mk j
umk j

(t)) j converges to a limit ũt ∈ C(X) uniformly on X.

5.5 Generalized strong resolvent convergence

The next result is an analog of Theorem 4.1 on varying spaces, it uses notions of convergence
along a sequence of varying Hilbert spaces [76,97], see Appendix A. The key ingredient is
TheoremA.1—a special case of [98, Theorem 7.15, Corollary 7.16 and Remark 7.17], which
constitute a natural generalization of [38, Theorem 3.1] to the framework of varying Hilbert
spaces [76].

Theorem 5.1 Suppose that

b =
∑

i

gi · ∂ fi and b̂ =
∑

i

ĝi · ∂ f̂i (71)

are finite linear combinations with fi , f̂i , gi , ĝi ∈ Hn(X) as in (67) and for any m let

b(m) :=
∑

i

gi |X (m) · ∂(m)( fi |X (m) ) and b̂(m) :=
∑

i

ĝi |X (m) · ∂(m)( f̂i |X (m) ) (72)

as in (68). Let a ∈ Hn(X) be such that (19) holds and let c ∈ C(X). Then limm LQ(m) = LQ
in the KS-generalized resolvent sense, and the following hold.
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(i) If f ∈ L2(X , μ), u is the unique weak solution to (29) on X and um is the unique weak
solution to (29) on X (m) with LQ(m)

and �m f in place of LQ and f , then we have
limm um = u KS-strongly. Moreover, there is a sequence (mk)k with mk ↑ +∞ such that
limk Extmk H

(mk )
mk umk = u uniformly on X.

(ii) If ů ∈ L2(X , μ), u is the unique solution to (34) on X and um is the unique weak solution
to (34) on X (m) with LQ(m)

and �mů in place of LQ and ů, then for any t > 0 we have
we have limm um = u KS-strongly. Moreover, for any t > 0 there is a sequence (mk)k

with mk ↑ +∞ such that limk Extmk H
(mk )
mk umk (t) = u(t) uniformly on X.

A version of Theorem 5.1 for more general coefficients is stated below in Theorem 5.2.
The proof of Theorem 5.1 makes use of the following key fact.

Lemma 5.3 Suppose (nk)k is a sequence with nk ↑ +∞ and (uk)k is a sequence with uk ∈
L2(X (nk ), μ(nk )) converging to u ∈ L2(X , μ)KS-weakly and satisfying supk E(nk )

1 (uk) < ∞.
Then we have u ∈ F , and there is a sequence (k j ) j with k j ↑ +∞ such that

(i) lim j unk j = u KS-weakly w.r.t. (63), and moreover, for any f ∈ F and any sequence

( f j ) j such that f j ∈ F (nk j ) and lim j f j = f KS-strongly w.r.t. (63) along (nk j ) j we
have

lim
j
E(nk j )( f j , unk j ) = E( f , u). (73)

(ii) lim j Extnk j H
(nk j )
nk j

unk j = u uniformly on X.

Proof Let vk := Extnk H
(nk )
nk uk . By hypothesis and (49) we have

sup
k

E(vk) = sup
k

E(nk )(H (nk )
nk (uk)) ≤ sup

k
E(nk )(unk ) < +∞. (74)

Since vk |X (nk ) = H (nk )
nk uk , (74), (64) and (53) allow to conclude that

lim
k

∥
∥vk |X (nk ) − uk

∥
∥
L2(X (nk ),μ(nk ))

= 0, (75)

what implies that limk vk |X (nk ) = u KS-weakly.
We now claim that for any n and any w ∈ Hn(X) we have

lim
k

〈w, vk〉L2(X ,μ) = 〈w, u〉L2(X ,μ) . (76)

We clearly have limk �nkw = w KS-strongly. Therefore

〈w, u〉L2(X ,μ) = lim
k

〈

�nkw, vk |X (nk )

〉

L2(Xnk ,μ(nk ))
,

and using (58) and (74) this limit is seen to equal

lim
k

〈

�nkw,�nkvk
〉

L2(Xnk ,μ(nk ))
= lim

k

〈

�∗
nk�nkw, vk

〉

L2(X ,μ)
.

Applying (57) we arrive at (76). By (74), and since (59) implies supk ‖vk‖L2(X ,μ) < +∞,
we can find a sequence (k j ) j with lim j k j = +∞ such that (uk j ) j converges KS-weakly
w.r.t. (63) to a limit uE ∈ F and (vk j ) j converges weakly in L2(X , μ) to a limit uE ∈ F .
Since

⋃

n≥0 Hn(X) is dense in L2(X , μ) we have uE = u by (76), what shows that u ∈ F .
We now verify that

uE = uE . (77)
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For any w ∈ Hn(X) the equalities

E1(w, uE ) = lim
j

{

E(w, vk j ) + 〈w, vk j
〉

L2(X ,μ)

}

= lim
j

{

E(w, vk j ) − 〈�∗
nk j

�nk j
w, vk j

〉

L2(X ,μ)

}

= lim
j

{

E(nk j )(w|
X

(nk j
) , vk j |X (nk j

) ) − 〈�nk j
w,�nk j

vk j
〉

L2(X
(nk j

)
,μ

(nk j
)
)

}

hold, the second and third equality due to (57) and (49), respectively. Using (58) twice on
the second summands in the last line, the above limit is seen to equal

lim
j

{

E(nk j )(w|
X

(nk j
) , vk j |X (nk j

) ) − 〈w|
X

(nk j
) , vk j |X (nk j

)

〉

L2(X
(nk j

)
,μ

(nk j
)
)

}

.

For j so large that nk j ≥ n the function w|
X

(nk j
) is an element of Hnk j

(X (nk j )), so that by

orthogonality in F (nk j ) we can replace vk j |X (nk j
) = H

(nk j )
nk j

uk j in the first summand by uk j .

In the second term we can make the same replacement by (53) and (64), so that the above
can be rewritten

lim
j

{

E(nk j )(w|
X

(nk j
) , uk j ) − 〈w|

X
(nk j

) , uk j
〉

L2(X
(nk j

)
,μ

(nk j
)
)

}

= lim
j
E(nk j )

1 (w|
X

(nk j
) , uk j )

= E1(w, uE ),

because lim j w|
X

(nk j
) = w KS-strongly w.r.t. (63). Since

⋃

n≥0 Hn(X) is dense in F , this

implies (77) and therefore the first statement of (i), so far for the sequence (uk j ) j . The
statement on the limit (73) in (i) follows by Corollary 5.2.

To save notation in the proof of (ii) we nowwrite (uk)k for the sequence (uk j ) j extracted in
(i). Let x0 ∈ V0. Then (1) implies that (vk − vk(x0))k is an equicontinuous and equibounded
sequence of functions on X , so that by Arzelà-Ascoli we can find a subsequence (vk j −
vk j (x0)) j which converges uniformly on X to a function wx0 ∈ C(X). Since μ is finite, this
implies lim j vk j − vk j (x0) = wx0 in L2(X , μ). By (58) and (74) we also have

lim
j

∥
∥
∥vk j |X (nk j

) − vk j (x0) − �nk j
(vk j − vk j (x0))

∥
∥
∥
L2(X

(nk j
)
,μ

(nk j
)
)
= 0,

so that combining, we see that lim j (vk j |X (nk j
) − uk j |X (nk j

) (x0)) = wx0 KS-strongly and

therefore also KS-weakly. Since limk vk |X (nk ) = u KS-weakly by (75), we may conclude
that limk vk |X (nk ) (x0) = u − wx0 KS-weakly. In particular, by [76, Lemma 2.3],

sup
j

|vk j |X (nk j
) (x0)|μ(X (nk j ))1/2 = sup

j

∥
∥
∥vk j |X (nk j

) (x0)
∥
∥
∥
L2(X

(nk j
)
,μ

(nk j
)
)
< +∞.

Since limm μ(m)(X (m)) = μ(X) > 0 it follows that vk j |X (nk j
) (x0) is a bounded sequence

of real numbers and therefore has a subsequence converging to some limit z ∈ R. Keep-
ing the same notation for this subsequence, we can use (58) and (64) to conclude that
lim j
∥
∥vk j |X (nk j

) (x0)−�nk j
z
∥
∥

L2(X
(nk j

)
,μ

(nk j
)
)
= 0, hence lim j vk j |X (nk j

) (x0) = z KS-weakly

and therefore necessarily z = u − wx0 . This implies that lim j vk j = lim j (vk j − vk j (x0)) +
lim j vk j (x0) = u uniformly on X as stated in (ii). Clearly the statements in (i) remain true
for this subsequence. ��

We prove Theorem 5.1.
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Proof Since the operators LQ(m)
obey the sector condition (28) with the same sector con-

stant, Theorem A.1 will imply the desired convergence, provided that the formsQ(m) andQ
satisfy the conditions in Definition A.2. Corollary 5.5 then takes care of the claimed uniform
convergences.

Without loss of generality we may (and do) assume that the function c ∈ C(X) satisfies
condition (42). Otherwise we use the same shifting argument as in the proof of Theorem 4.1,
the statements on uniform convergence then follow using Corollary 5.5.

By (23), (24), (25) and (26) together with Proposition 4.1 and Corollaries 5.3 and 5.4 we
can find a constant C > 0 such that for any sufficiently large m we have

C E(m)
1 ( f ) ≤ Q(m)

1 ( f ) ≤ C−1 E(m)
1 ( f ), f ∈ F (m). (78)

To check condition (i) in Definition A.2, suppose that (um)m is a sequence with
um ∈ L2(X (m), μ(m)) converging KS-weakly to a function u ∈ L2(X , μ) and such
that limm Q(m)

1 (um) < +∞. It has a subsequence (umk )k which by (78) satisfies
supk E(mk )(umk ) < +∞, and by Lemma 5.3 we then know that u ∈ F , what implies the
condition.

To verify condition (ii), suppose that u ∈ F , (mk)k is a sequence with mk ↑ +∞ and that
uk ∈ L2(X (mk ), μ(mk )) are such that limk uk = u KS-weakly and supk Q(mk )

1 (uk) < +∞.

By (78) we have supk E(mk )
1 (uk) < +∞. Now letw ∈ Hn(X). Clearly limm w|X (m) = w KS-

strongly. By Lemma 5.2 we may assume that along (mk)k we also have limk a|X (mk )uk = au
and limk(wĝi )|X (mk )uk = wĝi u KS-weakly for all i , otherwise we pass to a suitable subse-

quence. By (5) also supk E(mk )
1 (a|X (mk )uk) < +∞ and supk E(mk )

1 ((wĝi )|X (mk )uk) < +∞.
By Lemma 5.3 we can therefore find a sequence (k j ) j as stated so that (i) and (ii) in Lemma
5.3 hold simultaneously for the sequences (uk j ) j , (a|

X
(mk j

)uk j ) j and ((wĝi )|
X

(mk j
)uk j ) j with

limits u, au and wĝi u, respectively. Our first claim is that

lim
j

〈

∂
(mk j )(w|

X
(mk j

) ), a|
X

(mk j
) · ∂

(mk j )uk j

〉

H(mk j
) = 〈∂w, a · ∂u〉H . (79)

To see this note first that by the Leibniz rule for ∂
(mk j ) each element of the sequence on the

left hand side equals

〈

∂
(mk j )(w|

X
(mk j

) ), ∂
(mk j )(a|

X
(mk j

)uk j )
〉

H(mk j
)

−
〈

∂
(mk j )(w|

X
(mk j

) ), uk j · ∂
(mk j )(a|

X
(mk j

) )
〉

H(mk j
) .

The first term converges to 〈∂w, ∂(au)〉H by (73). In the second summand we can replace

uk j by H
(mk j )

mk j
uk j , note that by (10) and (53) we have

lim
j

∥
∥
∥
∥
(umk j

− H
(mk j )

mk j
uk j ) · ∂

(mk j )(a|
X

(mk j
) )

∥
∥
∥
∥H(mk j

)
= 0.

By Lemma 5.3 (ii) we also have

lim
j

∥
∥
∥
∥
(H

(mk j )

mk j
uk j − u|

X
(mk j

) ) · ∂
(mk j )(a|

X
(mk j

) )

∥
∥
∥
∥H(mk j

)
= 0,
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so that

lim
j

〈

∂
(mk j )(w|

X
(mk j

) ), uk j · ∂
(mk j )(a|

X
(mk j

) )
〉

H(mk j
)

= lim
j

〈

∂
(mk j )(w|

X
(mk j

) ), u · ∂
(mk j )(a|

X
(mk j

) )
〉

H(mk j
)

= 〈∂w, u · ∂a〉H
by Corollary 5.4 and polarization. Using the Leibniz rule for ∂ we arrive at (79). We next
claim that

lim
j

〈

w|
X

(mk j
) · b̂(mk j ), ∂

(mk j )umk j

〉

H(mk j
) =
〈

w · b̂, ∂u
〉

H
. (80)

Each element of the sequence on the left hand side is a finite linear combination with sum-
mands

〈

∂
(mk j )( f̂i |

X
(mk j

) ), ∂
(mk j )((wĝi )|

X
(mk j

)uk j )
〉

H(mk j
)

−
〈

∂
(mk j )( f̂i |

X
(mk j

) ), uk j · ∂
(mk j )((wĝi )|

X
(mk j

) )
〉

H(mk j
) .

The first term converges to
〈

∂ f̂i , ∂(wĝi u)
〉

H
by (73). To see that

lim
j

〈

∂
(mk j )( f̂i |

X
(mk j

) ), uk j · ∂
(mk j )((wĝi )|

X
(mk j

) )
〉

H(mk j
) =
〈

∂ f̂i , u · ∂(wĝi )
〉

H
(81)

let ε > 0 and choose n′ so that by (48) we have

E(Hn′(wĝi ) − wĝi )
1/2 < ε ‖u‖−1

sup E( f̂i )
−1/2. (82)

For any j so that mk j ≥ n′ we have

H
(mk j )

mk j
((wĝi )|

X
(mk j

) ) = Hmk j
(wĝi )|

X
(mk j

) = Hn′(wĝi )|
X

(mk j
)

and by (54) therefore

E(mk j )(Hn′(wĝi )|
X

(mk j
) − (wĝi )|

X
(mk j

) )
1/2 < εE( fi )

−1/2E(u)−1/2 (83)

for large enough j . Since as before we can replace uk j by u|
X

(mk j
) , (83) shows that

lim
j

|
〈

∂
(mk j )( f̂i |

X
(mk j

) ), uk j · ∂
(mk j )((wĝi )|

X
(mk j

) )
〉

H(mk j
)

−
〈

∂
(mk j )( f̂i |

X
(mk j

) ), u · ∂
(mk j )(Hn′(wĝi )|

X
(mk j

) )
〉

H(mk j
) | <

ε

2
.

By Corollary 5.4 and (82) we have

lim
j

|
〈

∂
(mk j )( f̂i |

X
(mk j

) ), u · ∂
(mk j )(Hn′(wĝi )|

X
(mk j

) )
〉

H(mk j
) −
〈

∂ f̂i , u · ∂(wĝi )
〉

H
| <

ε

2
.

Since ε was arbitrary, we can combine these two estimates to conclude (81) and therefore
(80). The identity

lim
j

〈

uk j · b(mk j ), ∂
(mk j )(w|

X
(mk j

) )
〉

H(mk j
) = 〈u · b, ∂w〉H (84)
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follows by linearity from the fact that by Lemma 5.3 (ii) and Corollary 5.4 we have

lim
j

〈

(uk j gi |X (mk j
) ) · ∂

(mk j ) fi , ∂
(mk j )(w|

X
(mk j

) )
〉

H(mk j
)

= lim
j

〈

(ugi |
X

(mk j
) ) · ∂

(mk j ) fi , ∂
(mk j )(w|

X
(mk j

) )
〉

H(mk j
)

= 〈(ugi ) · ∂ fi , ∂w〉H .

Together with the obvious identity

lim
j

〈

(cw)|
X

(mk j
) , uk j

〉

L2(X
(mk j

)
, μ

(mk j
)
)
= 〈cw, u〉L2(X ,μ) ,

formulas (79), (80) and (84) imply

lim
j
Q(mk j )(w|

X
(mk j

) , uk j ) = Q(w, u),

what shows condition (ii) in Definition A.2. ��
Theorems 4.1 and 5.1 together allow an approximation result involving more general

coefficients.

Theorem 5.2 Let a ∈ F be such that (19) holds with 0 < λ < �. Let b, b̂ ∈ H and let
c ∈ C(X). Then we can find a(m)

n ∈ F (m) and b(m)
n , b̂(m)

n ∈ H(m) such that for any n and m
the forms

Q(n,m)( f , g) = 〈an |X (m) · ∂ f , ∂g
〉

H(m) − 〈g · b(m)
n , ∂ f

〉

H(m)

− 〈 f · b̂(m)
n , ∂g

〉

H(m) − 〈c|X (m) f , g
〉

L2(X (m),μ(m))
, f , g ∈ F (m)

(85)

are sectorial closed forms on L2(X (m), μ(m)), respectively. Moreover, writing (LQ(n,m)
,

D(LQ(n,m)
)) for the generator of the form (Q(n,m),D(Q(n,m))), we can observe the following.

(i) If f ∈ L2(X , μ), u is the unique weak solution to (29) on X and u(m)
n is the unique weak

solution to (29) on X (m) with LQ(n,m)
and �m f in place of LQ and f , then there are

sequences (mk)k and (nl)l with mk ↑ +∞ and nl ↑ +∞ so that

lim
l
lim
k

∥
∥Extmk H

(mk )
mk

u(mk )
nl − u

∥
∥
sup = 0.

(ii) If ů ∈ L2(X , μ), u is the unique solution to (34) on X and u(m)
n is the unique weak

solution to (34) on X (m) with LQ(n,m)
and �mů in place of LQ and ů, then for any t > 0

there are sequences (mk)k and (nl)l with mk ↑ +∞ and nl ↑ +∞ so that

lim
l
lim
k

∥
∥Extmk H

(mk )
mk

u(mk )
nl (t) − u(t)

∥
∥
sup = 0.

Remark 5.7 By [6, Corollary 1.16] we can find a sequence (lk)k with lk ↑ +∞ such that

lim
k

∥
∥Extmk H

(mk )
mk

u(mk )
nlk

− u
∥
∥
sup = 0

in the situation of Theorem 5.2 (i) and similarly for (ii).

The following is a straightforward consequence of the density of H∗(X) in F , we omit its
short proof.
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Lemma 5.4 The space of finite linear combinations
∑

i gi∂ fi with gi , fi ∈ H∗(X) is dense
in H.

We prove Theorem 5.2.

Proof Given a ∈ F , let (an)n ⊂ H∗(X) be a sequence approximating a uniformly on X and
such that all an satisfy (19) with the same constants 0 < λ < � as a. Let M > 0 be large
enough such that λ0 := λ/2 − 1/M > 0. By Lemma 5.4 there exist

bn :=
∑

i

gn,i∂ fn,i and b̂n :=
∑

i

ĝn,i∂ f̂n,i

with fn,i , f̂n,i , gn,i , ĝn,i ∈ H∗(X) that approximate b and b̂ in H, respectively. For each n
we can proceed as in (68) and consider the elements

b(m)
n :=

∑

i

gn,i |X (m) · ∂(m)( fn,i |X (m) ) and b̂(m)
n :=

∑

i

ĝn,i |X (m) · ∂(m)( f̂n,i |X (m) )

of H(m). With γM and γ̂M as in (66) and assuming that, without loss of generality, c ∈
C(X) satisfies (42), we can conclude that for each n and each sufficiently large m the forms
(Q(n,m),D(Q(n,m))) as in (85) with D(Q(n,m)) = F (m) are closed forms in L2(X (m), μ(m)).

To prove (i), suppose that f ∈ L2(X , μ) and u is the unique weak solution to (29)
on X . Let u(m)

n be the unique weak solution to (29) on X (m) with LQ(n,m)
and �m( f ) in

place of LQ and f . By Theorem 5.1 we can find a sequence (mk)k with mk ↑ +∞ so that
limk→∞ Extmk H

(mk )
mk u(mk )

1 = u1 uniformly on X . Repeated applications of Theorem 5.1
allow to thin out (mk)k further so that for any n we have

∥
∥Extmk H

(mk )
mk

u(mk )
j − u j

∥
∥
sup < 2−n, j ≤ n,

provided that k is greater than some integer kn depending on n. On the other handTheorem4.1
allows to find a sequence (nl)l with nl ↑ +∞ such that liml→∞ unl = u uniformly on X ,
and combining these facts, we obtain (i). Statement (ii) is proved in the same manner. ��

6 Discrete andmetric graph approximations

6.1 Discrete approximations

We describe approximations in terms of discrete Dirichlet forms, our notation follows that of
Sect. 5.1. Let (E,F) be a local regular resistance form on the compact space (X , R), obtained
under Assumption 5.1 as in Sect. 5.1, and suppose that also Assumption 5.2 is satisfied. Let
X (m) = Vm , E(m) = EVm andF (m) = �(Vm) be the discrete energy forms on the finite subsets
Vm as in (3). Clearly Assumption 5.3 is satisfied, note that for every u ∈ Hm(X) we have
EVm (u|Vm ) = E(u) and that (50) is immediate from (12). Since every element of �(Vm) is

the pointwise restriction of a function in Hm(X), the operator H (m)
m is the identity operator

idF (m) , so that Assumption 5.4 is trivially satisfied, as pointed out in Remark 5.3.
Now let μ be a finite Borel measure on X such that for any m the value V (m) :=

infα∈Am μ(Xα) is strictly positive. Following [86] we define, for each m, a measure μ(m) on
Vm by

μ(m)({p}) :=
∫

X
ψp,m(x)dμ(x), p ∈ Vm,
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where ψp,m ∈ Hm(X) is the (unique) harmonic extension to X of the function 1{p} on Vm .

Since X (m)
α = Vα and

∑

p∈Vα
ψp,m(x) = 1 for all m, α ∈ Am and x ∈ Xα , we have

μ(m)(X (m)
α ) =

∑

p∈Vα

μ(m)({p}) =
∫

X

∑

p∈Vα

ψp,m(x)μ(dx) ≥ μ(Xα) ≥ V (m)

for all m and α ∈ Am , so that Assumption 5.5 (i) is seen to be satisfied.
For each m let �m be a linear operator �m : L2(X , μ) → �2(Vm, μ(m)) defined by

�m f (p) := 1

μ(m)({p})
〈

f , ψp,m
〉

L2(X ,μ)
, p ∈ Vm, f ∈ L2(X , μ).

In [86, proof of Theorem 1.1] it was shown that for each m the adjoint �∗
m of �m equals the

harmonic extension operator Extm : �2(Vm, μ(m)) → Hm(X),

Extm v =
∑

p∈Vm
v(p)ψp,m, v ∈ �2(Vm, μ(m))

which satisfies ‖Extm f ‖L2(X ,μ) ≤ ‖ f ‖�2(Vm ,μ(m)) for all f ∈ �2(Vm, μ(m)). Consequently
(55) is fulfilled, and also (59) holds. The function ψp,m is supported on the union of all Xα ,
α ∈ Am , which contain the point p. By Assumption 5.2 we therefore have

lim
m→∞ sup

p∈Vm
diamR

(

suppψp,m
) = 0. (86)

If a sequence (um)m ⊂ F is such that supm E(um) < ∞ then by (1) it is equicontinuous, and
combined with (86) it follows that given ε > 0 we have

sup
p∈Vm

sup
x∈ψp,m

|um(p) − um(x)| < ε

whenever m is large enough, and consequently

‖�mum − um |Vm‖2
�2(Vm ,μ(m))

≤
∑

p∈Vm

1

μ(m)({p})
(∫

X
|um(x) − um(p)|ψp,m(x)dμ(x)

)2

< ε2

for such m, note that
∑

p∈Vm ψp,m(x) = 1 for all m and x ∈ X . This shows (58). For every
u ∈ F it follows that

lim
m→∞ ‖u|Vm‖2

�2(Vm ,μ(m))

= lim
m→∞

∑

p∈Vm

∫

X

[

(u(p) − u(x))(u(p) + u(x)) + u2(x)
]

ψp,m(x)dμ(x)

= ‖u‖2L2(X ,μ)
,

since u is bounded and limm
∑

p∈Vm
∫

X (u(p) − u(x))ψp,m(x)dμ(x) = 0 by (86) as above,
proving (56). To verify the remaining condition (57) note that for u ∈ Hn(X) we have

‖�∗
m�mu − u‖L2(X ,μ) ≤ ‖�∗

m‖�2(Vm ,μ(m))→L2(X ,μ)‖�mu − u|Vm‖�2(Vm ,μ(m))

+‖�∗
m(u|Vm ) − u‖L2(X ,μ),

and since �∗
m(u|Vm ) = Hmu the last summand is bounded by diamR(X)1/2 E(Hmu −

u)1/2μ(X)1/2. Using (48), (55) and (58) condition (57) now follows.
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Example 6.1 It is well known that p.c.f. self-similar structures form a subclass of finitely
ramified sets. Because of its importance, and since we will discuss metric graph approxima-
tions for this subclass in the next section, we provide some details. Let (K , S, {Fj } j∈S) be a
connected post-critically finite (p.c.f.) self-similar structure, see [64, Definitions 1.3.1, 1.3.4
and 1.3.13]. The set of finite words w = w1w2...wm of length |w| = m over the alphabet S
is denoted by Wm := Sm , and we write W∗ = ⋃m≥0 Wm . Given a word w ∈ Wm we write
Fw = Fw1 ◦Fw2 ◦...◦Fwm and use the abbreviations Kw := Fw(K ) and Vw := Fw(V0). Then
(K , {Kw}w∈W∗ , {Vw}w∈W∗) is a finitely ramified cell structure in the sense of Definition 5.1.
We consider the discrete sets Vm := ∪|w|=mVw, m ≥ 0, and assume that ((EVm , �(Vm)))m
is a sequence of Dirichlet forms associated with a regular harmonic structure on K , [64,
Definitions 3.1.1 and 3.1.2], that is, there exist constants r j ∈ (0, 1), j ∈ S, a Dirichlet form
EV0(u) = 1

2

∑

p∈V0
∑

q∈V0 c(0; p, q)(u(p) − u(q))2 on �(V0), for all m ≥ 1 we have

EVm (u, v) =
∑

w∈Wm

r−1
w E0(u ◦ Fw, v ◦ Fw), u, v ∈ �(Vm), (87)

where rw := rw1 . . . rwm for w = w1...wm , and (EVm+1)Vm = EVm for all m ≥ 0. The
regularity of the harmonic structure implies in particular that� = K [64, Theorem3.3.4], and
the limit (3) defines a (self-similar) local regular resistance form (E,F) on K . Assumptions
5.1 and 5.2 are clear from general theory, [64].

Example 6.2 Further examples which fit into the above scheme are for instance non-self-
similar resistance forms on Sierpinski gaskets associated with regular harmonic structures
[79], certain energy forms on random Sierpinski gaskets [33,34], finitely ramified graph-
directed sets with a regular harmonic structure [36, Section 4, in particular p. 18], or basilica
Julia sets with a regular harmonic structure [89, Theorem 3.9].

6.2 Metric graph approximations

We describe approximations in terms of local Dirichlet forms on metric graphs (also called
’cable-systems’ in [10]). We follow the method in [48] and therefore specify to the case
where X is a post-critically finite self-similar set K . Let the setup and notation be as in
Examples 6.1.

For each m ≥ 0 we consider Vm as the vertex set of a finite simple (unoriented) graph
Gm = (Vm, Em)with two vertices p, q ∈ Vm being the endpoints of the same edge e ∈ Em if
there is a word w of length |w| = m such that F−1

w p, F−1
w q ∈ V0 and c(0; F−1

w , F−1
w q) > 0.

For each m and e ∈ Em let le be a positive number and identify the edge e with an oriented
copy of the interval (0, le) of length le, we write i(e) and j(e) for the initial and the terminal
vertex of e, respectively. This yields a sequence (�m)m≥0 of metric graphs �m , and for
each m the set X�m = Vm ∪⋃e∈Em

e, endowed with the natural length metric, becomes a
compact metric space See [48] for details and further references. By construction we have
X�m ⊂ X�m+1 and X�m ⊂ K for each m.

On the space X�m we consider the bilinear form (E�m , Ẇ 1,2(X�m )), where

E�m ( f ) :=
∑

w∈Wm

r−1
w

∑

e∈Em , e⊂Kw

leEe( fe) and Ee( fe) =
∫ le

0
( f ′

e(t))
2dt

and

Ẇ 1,2(X�m ) = { f = ( fe)e∈Em ∈ C(X�m ) : fe ∈ Ẇ 1,2(e), E�m ( f ) < +∞}.
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Here fe is the restriction of f to e ∈ Em and Ẇ 1,2(e) is the homogeneous Sobolev space
consisting of locally Lebesgue integrable functions g on the edge e such that

Ee(g) :=
∫ le

0
(g′(s))2 ds < +∞,

where the derivative g′ of g is understood in the distributional sense. Each form Ee, e ∈ Em ,
satisfies

( fe(s) − fe(s
′))2 ≤ leEe( fe) (88)

for any f ∈ Ẇ 1,2(X�m ) and any s, s′ ∈ e. See [48] for further details. We approximate K ,
endowed with (E,F) as in Examples 6.1, by the spaces X (m) = X�m carrying the resistance
forms E(m) = E�m with domains F (m) = Ẇ 1,2(X�m ).

To a function f ∈ Ẇ 1,2(X�m ) which is linear on each edge e ∈ Em we refer as edge-wise
linear function, and we denote the closed linear subspace of Ẇ 1,2(X�m ) of such functions
by ELm . If f ∈ ELm , then its derivative on a fixed edge e is the constant function f ′

e =
l−1
e ( f ( j(e)) − f (i(e))), so that

Ee( fe) =
∫ le

0
( f ′

e(t))
2dt = 1

le
( f ( j(e)) − f (i(e)))2 (89)

on each e ∈ Em . For a general function f ∈ Ẇ 1,2(X�m ) formula (89) becomes an inequality
in which the left hand side dominates the right hand side. Given a function g ∈ �(Vm)

it has a unique extension h to X�m which is edge-wise linear, h ∈ ELm . In particular, if
f ∈ Hm(K ) is an m-piecewise harmonic function on the p.c.f. self-similar set K then its
pointwise restriction f |X�m

to X�m is a member of ELm , and E�m ( f |X�m
) = E( f ). Since

any such f ∈ Hm(K ) is uniquely determined by its values on Vm ⊂ X�m , this restriction
map is injective, and Assumption 5.3 (i) is seen to be satisfied. Assumption 5.3 (ii) is verified
in the following lemma. By ν

(m)
f we denote the energy measures associated with the form

(E�m , Ẇ 1,2(X�m )).

Lemma 6.1 For any f ∈ F we have ν f = limm→∞ ν
(m)
Hm ( f )|X�m

weakly on K .

Proof For f ∈ F and nonnegative g ∈ C(K ) we have
∣
∣
∣
∣
∣

(∫

K
gdν f

) 1
2 −
(∫

K
gdνHm ( f )

) 1
2

∣
∣
∣
∣
∣
≤ ‖g‖sup E( f − Hm( f )),

see [27, Section 3.2]. This implies the relation
∫

K g dν f = limm
∫

K g dνHm ( f ), which by the
standard decomposition g = g+ − g− remains true for arbitrary g ∈ C(K ). For any m we
have

∫

K
g dνHm ( f ) =

∑

w∈Wm

r−1
w

∑

e∈Em ,e⊂Kw

l2e (Hm( f )′e)2ge(i(e))

by (4), here Hm( f )′e ∈ R denotes the slope of the restriction Hm( f )e of Hm( f ) to e. On the
other hand,

∫

K
g dν

(m)
Hm ( f )|X�m

=
∑

w∈Wm

r−1
w

∑

e∈Em ,e⊂Kw

le(Hm( f )′e)2
∫ le

0
ge(t)dt,
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and given ε > 0 we have supe∈Em
sups,t∈e |g(s) − g(t)| < ε whenever m is large enough,

and in this case,
∣
∣
∣
∣

∫

K
g dνHm ( f ) −

∫

K
g dν

(m)
Hm ( f )|X�m

∣
∣
∣
∣
≤ ε
∑

w∈Wm

r−1
w

∑

e∈Em ,e⊂Kw

l2e (Hm( f )′e)2

= ε E�m (Hm( f )|X�m
) ≤ ε E( f ).

Combining, it follows that limm
∫

K g dν f = limm
∫

K g dνHm ( f )|X�m
. ��

We verify condition (53) in Assumption 5.4 in the present setup. It states that the small
oscillations on the interior of individual edges in X�m subside uniformly for sequences of
functions with a uniform energy bound.

Lemma 6.2 Let ( fm)m bea sequenceof functions fm ∈ Ẇ 1,2(X�m ) such that supm E�m ( fm) <

+∞ and fm |Vm = 0 for all m. Then limm ‖ fm‖sup,X�m
= 0.

Proof By (88) we have

sup
t∈e

| ( fm)e (t)|2 ≤ le

∫ le

0

((

f ′
m

)

e (t)
)2

dt

on each e ∈ Em and consequently

‖ fm‖2sup,X�m
≤
∑

e∈Em

sup
t∈e

| ( fm)e (t)|2 ≤ (max
j∈S r j )

m sup
n

E�n ( fn).

��
By H�m we denote the orthogonal projection in Ẇ 1,2(X�m ) onto ELm . Given fm ∈

Ẇ 1,2(X�m ) it clearly follows that fm−H�m fm ∈ Ẇ 1,2(X�m ), we have
(

fm − H�m fm
) |Vm =

0 and E�m ( fm − H�m fm) ≤ E�m ( fm). We verify (54) in Assumption 5.4.

Lemma 6.3 Given f , g ∈ Hn(X), we have

lim
m→∞ E�m

(

f |X�m
g|X�m

− H�m

(

f |X�m
g|X�m

)) = 0.

Proof Wefirst note that for anym ≥ n the functions fe and ge are linear on any fixed e ∈ Em ,

fe(t) = fe(0) + f ′
e · t and ge(t) = ge(0) + g′

e · t, t ∈ [0, le],
with slopes f ′

e ∈ R and g′
e ∈ R, respectively. Therefore Ee( fe) = le

(

f ′
e

)2 for each such e
and

l2e
(

f ′
e

)2 ≤
∑

|w|=m

∑

e∈Em ,e∈Kw

l2e
(

f ′
e

)2 ≤ (max
i

ri )
m sup

m≥n
E�m

(

f |X�m

) = (max
i

ri )
m E( f ),

(90)

similarly for the function g. Since

( f g)e (t) = fe(t)ge(t) = fe(0)ge(0) + ge(0) f
′
e · t + fe(0)g

′
e · t + f ′

eg
′
e · t2

and therefore in particular

H�m (( f g)|e) (t) = fe(0)ge(0) + t

le
( fe(le)ge(le) − fe(0)ge(0))

= fe(0)ge(0) + t

le

(

f ′
eg

′
el
2
e + ( fe(0)g′

e + ge(0) f
′
e

)

le
)
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we obtain
(

( f g)e − H�m (( f g)|e)
)

(t) = f ′
eg

′
et

2 − f ′
eg

′
elet, t ∈ [0, le].

This implies that for any edge e ∈ Em we have

Ee
((

( f g)e − H�m (( f g)|e)
)

(t)
) = ( f ′

eg
′
e

)2
∫ le

0
(2t − le)

2 dt = 1

3

(

f ′
eg

′
e

)2
l3e , t ∈ [0, le].

Summing up over e ∈ Em and using (90), we see that

E�m ( f |X�m
g|X�m

− H�m

(

f |X�m
g|X�m

)

)

=
∑

|w|=m

r−1
w

∑

e∈Em ,e⊂Kw

leEe( f |X�m
g|X�m

− H�m

(

f |X�m
g|X�m

)

)

≤ 1

3

∑

|w|=m

r−1
w

∑

e∈Em ,e⊂Kw

l4e ( f
′
e)

2(g′
e)

2

≤ 1

3
(max

i
ri )

m E( f )
∑

|w|=m

r−1
w

∑

e∈Em ,e⊂Kw

l2e g
′2
e

= 1

3
(max

i
ri )

m E( f ) E(g).

��
In what follows letμ be a finite Borel measure on K so that V (m) := inf |w|=m μ(Kw) > 0

for each m. Given an edge e ∈ Em we set

ψe,m(x) := 1

degm(i(e))
ψi(e),m(x) + 1

degm( j(e))
ψ j(e),m(x), x ∈ K , (91)

to obtain a function ψe,m which satisfies
∑

e∈Em

〈

ψe,m, 1
〉

L2(K ,μ)
=
∑

p∈Vm
ψp,m(x) = 1, x ∈ K . (92)

We endow the space X�m with the measure μ(m) := μ�m which on each individual edge
e ∈ Em equals

1

le

(∫

K
ψe,m(x)μ(dx)

)

λ1|e,

here λ1 denotes the one-dimensional Lebesgue measure. Writing X (m)
w for X�m ∩ Kw =

Vw =⋃e∈Em ,e⊂Kw
e, we see that

μ�m (X (m)
w ) =

∑

e∈Em ,e⊂Kw

∫

K
ψe,m(x)μ(dx) ≥

∫

Kw

ψe,m(x)μ(dx) = μ(Kw) ≥ V (m),

so part (i) of Assumption 5.5 is satisfied. The remaining conditions in Assumption 5.5 (ii)-
(iv) now follow from results in [48]: If for each m we consider the linear operator �m :
L2(X�m , μ�m ) → L2(K , μ) defined by

�mu(t) =
∑

e∈Em

1e(t)

〈

u, ψe,m
〉

L2(K ,μ)
(∫

K ψe,mdμ
) , u ∈ L2(K , μ),
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then (55) and (56) are satisfied by [48, Prop. 4.1] (there the operator �m is denoted by J ∗
0,m),

and a proof of (57) is provided in [48, Lemma C.3]. Condition (58) follows from Lemma
[48, Lemma C.2] (there the pointwise restriction ofm-harmonic functions to X�m is denoted
by J̃1,m). For the operators Extm H�m : Ẇ 1,2(X�m ) → Hm(K ) (denoted by J1,m in Lemma
[48, Lemma C.2]) we can use [48, Lemma C.2] and [48, Prop. 4.1] to see that if ( fm)m is a
sequence of functions fm ∈ Ẇ 1,2(X�m ) with supm E�m ( fm) < ∞ then

‖Extm H�m fm‖L2(K ,μ) ≤ ‖ fm‖L2(X�m ,μ�m ) + C(max
i

ri )
m/2 sup

m
E�m ( fm)1/2

with a positive constant C depending only on N . Consequently also (59) is satisfied.

6.3 Short remarks on possible generalizations

Although not covered by the above results, we conjecture that under suitable additional con-
ditions one can produce similar results for p.c.f. self-similar sets with non-regular harmonic
structures, diamond lattice fractals [1,3,35], Laaksø spaces [90], and compact fractafolds
[91]. Well-known general results [65, Proposition 2.10 and Theorem 2.14], motivate the
question how to implement discrete or metric graph approximations for the Sierpinski carpet,
endowed with its standard energy form. Another question is how to establish approximations
by graph-likemanifolds [87], for non-symmetric forms of type (21), and a transparent discus-
sion of drift and divergence terms should be quite interesting. A further open question is how
to establish approximations in energy norm. This would most likely have to involve second
order splines as for instance discussed in [94] for the case of the Sierpinski gasket endowed
with its standard energy form and the self-similar Hausdorff measure. Several tools used in
the present paper rely heavily on the use of linear and harmonic functions, and second order
versions are not so straightforward to see. A question in a different direction, particularly
interesting in connection with probability [16], is how to approximate equations involving
nonlinear first order terms. There are results on the convergence of certain non-linear opera-
tors along varying spaces [98], but they do not cover these cases.

7 Restrictions of vector fields

As mentioned in Remark 5.4, a finitely ramified cell structure also permits a restriction
operation for specific vector fields. As discussed in [48] the spaces Im ∂ and F/ ∼ are
isometric as Hilbert spaces, and similarly for Im ∂(m) and F (m)/ ∼. Recall also that for each
m the pointwise restriction u �→ u|X (m) is an isometry from Hm(X)/ ∼ onto Hm(X (m))/ ∼.
Therefore (67) and (68) give rise to a well defined restriction of gradients of n-harmonic
functions: Given f ∈ Hn(X) and m ≥ n we can define the restriction of ∂ f to X (m) by

(∂ f )|X (m) := ∂(m)( f |X (m) ), (93)

and this operation is an isometry from ∂(Hm(X)) onto ∂(m)(Hm(X (m))), see for instance [48,
Subsection 4.4]. In the sequel we assume, in addition to the assumptions made in Sect. 5, that
for each m and each α ∈ Am the form Eα(u) = 1

2

∑

p∈Vα

∑

q∈Vα
c(m; p, q)(u(p) − u(q))2,

u ∈ F , is irreducible on Vα . Following [55] we define subspaces Hm of H by

Hm :=
{
∑

α∈Am

1Xα ∂hα : hα ∈ Hm(X) for all α ∈ Am

}

.
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Then Hm ⊂ Hm+1 for all m, [55, Lemma 5.3], and
⋃

m≥0 Hm is dense in H [55, Theorem
5.6]. To generalize (93) we now define a pointwise restriction of elements ofHm to X (m) by

(
∑

α∈Am

1Xα ∂hα

)

|X (m) :=
∑

α∈Am

1
X (m)

α
∂(m)(hα|X (m) ), (94)

and clearly this restriction operation maps Hm into H(m). Thanks to the finitely ramified
cell structure of X it is straightforward to see that this definition is correct. The following
auxiliary result is parallel to Corollary 5.4.

Lemma 7.1 For any b ∈ Hn and any g ∈ C(X) we have

lim
m

∥
∥g|X (m) · b|X (m)

∥
∥H(m) = ‖g · b‖H . (95)

Proof Let ε > 0. Choose ng ≥ n sufficiently large such that

sup
β∈Ang

sup
x,y∈Xβ

|g(x)2 − g(y)2| <
ε

5
∑

α∈An
E(hα)

.

For allβ ∈ Ang choose xβ ∈ Xβ\Vng and define g̃(x) := g(xβ) if x ∈ Xβ\Vng and g̃(x) := 0
if x ∈ Vng . Then we we have

sup
β∈Ang

sup
x∈Xβ\Vng

|g(x)2 − g̃(x)2| <
ε

5
∑

α∈An
E(hα)

and therefore
∣
∣
∣
∣

∑

α∈An

∫

Xα\Vng
g|2X (m)dν

(m)
hα |X(m)

−
∫

Xα\Vng
g̃|2X (m)dν

(m)
hα |X(m)

∣
∣
∣
∣
<

ε

5
(96)

for all m and also
∣
∣
∣
∣

∑

α∈An

∫

Xα\Vng
g2dνhα −

∫

Xα\Vng
g̃2dνhα

∣
∣
∣
∣
<

ε

5
. (97)

The energy measures νhα are nonatomic, hence by (50) and the Portmanteau lemma we can
find a positive integer mε ≥ ng so that for all m ≥ mε and all α ∈ An we have

ν
(m)
hα |X(m)

(Vng ) <
ε

2|An |2 ‖g‖2sup
(98)

and
∣
∣
∣
∣
ν

(m)
hα |X(m)

(Xβ\Vng ) − νhα (Xβ\Vng )
∣
∣
∣
∣
<

ε

2|An | ‖g‖2sup
. (99)

Since (99) implies
∣
∣
∣
∣

∑

α∈An

∑

β∈Ang

g(xβ)2ν
(m)
hα |X(m)

(Xα ∩ Xβ ∩ V c
ng ) −

∑

α∈An

∑

β∈Ang

g(xβ)2νhα (Xα ∩ Xβ ∩ V c
ng )

∣
∣
∣
∣

≤ ‖g‖2sup
∑

β∈Ang

∣
∣
∣
∣
ν

(m)
hα |X(m)

(Xβ\Vng ) − νhα (Xβ\Vng )
∣
∣
∣
∣

≤ ε,

123



19 Page 42 of 47 M. Hinz, M. Meinert

we can use (96) and (97) to obtain
∣
∣
∣
∣

∑

α∈An

∫

Xα\Vng
g|2X (m)dν

(m)
hα |X(m)

−
∑

α∈An

∫

Xα\Vng
g2dνhα

∣
∣
∣
∣
<

3ε

5
. (100)

On the other hand, we have
∥
∥g|X (m) · b|X (m)

∥
∥
2
H(m)

=
∑

α∈An

∫

Xα

g|2X (m)dν
(m)
hα |X(m)

+
∑

α,α′∈An ,α′ �=α

∫

Xα∩Xα′
g|2X (m)dν

(m)
hα |X(m) ,hα′ |X(m)

.

By (98), the Cauchy–Schwarz inequality for energy measures and Definition 5.1 (vi) we see
that the second summand on the right hand side is bounded by

⎛

⎝
∑

α∈An

ν
(m)
hα |X(m)

(Vng )
1/2

⎞

⎠

2

<
ε

5
,

and using (98) once more, we obtain
∣
∣
∣
∣

∥
∥g|X (m) · b|X (m)

∥
∥
2
H(m) −

∑

α∈An

∫

Xα\Vng
g|2X (m)dν

(m)
hα |X(m)

∣
∣
∣
∣
<

2ε

5
. (101)

Combining (100), (101) and the fact that ‖g · b‖2H =∑α∈An

∫

Xα
g2dνhα , we arrive at (95).
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Appendix A: Generalized strong resolvent convergence

The notation in this section is different from that in the main text. We review a special case
of the notion of convergence for bilinear forms as studied in [97] (and, among more general
results, also in [98]). It covers in particular the case of coercive closed forms [78]. The results
in [97] are generalization of results in [38, Section 3] to the framework of varying Hilbert
spaces in [76].

In [76, Subsections 2.2–2.7] a concept of convergence Hm → H of Hilbert spaces Hm to
a Hilbert space H was introduced, including a suitable notion of generalized strong resolvent
convergence for self-ajoint operators, cf. [76, Definition 2.1]. A basic tool of the method in
[76] is a family of identification operators �m defined on a dense subspace C of the limit
space H , each mapping C into one of the spaces Hm . Let H , H1, H2, ... be separable Hilbert
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spaces. The sequence (Hm)m is said to converge to H in KS-sense, limm Hm = H , if there
are a dense subspace C of H and operators

�m : C → Hm (102)

such that

lim
m

‖�mw‖Hm
= ‖w‖H , w ∈ C. (103)

We recall [76, Definitions 2.4, 2.5 and 2.6].

Definition A.1 (i) A sequence (um)m with um ∈ Hm is said to converge KS-strongly to
u ∈ H if there is a sequence (̃um)m ⊂ C such that

lim
n→∞ lim

m→∞ ‖�mũn − um‖Hm
= 0 and lim

n→∞ ‖ũn − u‖H = 0. (104)

(ii) A sequence (um)m with um ∈ Hm is said to converge KS-weakly to u ∈ H if
limm 〈um, vm〉Hm

= 〈u, v〉H for every sequence (vm)m KS-strongly convergent to v.
(iii) A sequence (Bm)m of bounded linear operators Bm : Hm → Hm is said to converge

KS-strongly to a bounded linear operator B : H → H if for any sequence (um)m with
um ∈ Hm converging KS-strongly to u ∈ H the sequence (Bmum)m converges KS-
strongly to Bu.

Remark A.1 In the classical case where Hm ≡ H and �m ≡ idH for all m the strong conver-
gence of bounded linear operators Bm defined in (iii) differs from the classical definition of
strong convergence of bounded linear operators on Hilbert spaces, as pointed out in [76, Sec-
tion 2.3]. However, a sequence (Bm)m of bounded linear operators Bm : H → H admitting
a uniform bound in operator norm supm ‖Bm‖ < +∞ converges KS-strongly to a bounded
linear operator B : H → H if and only if it converges strongly to B in the usual sense, [76,
Lemma 2.8 (1)].

Now suppose that (Am)m is a sequence of linear operators Am : Hm → Hm each of
which generates a C0-semigroup and also A : H → H is the generator of a C0-semigroup.
Suppose that there exist constants ω ∈ R and M > 0 such that the resolvent sets of each
Am and of A contain (ω,+∞) and for any positive integer n and any λ > ω we have
supm
∥
∥(λ − Am)−n

∥
∥ ≤ M(λ − ω)−n and

∥
∥(λ − A)−n

∥
∥ ≤ M(λ − ω)−n . In this situation we

say that the Am converge to A in KS-generalized strong resolvent sense if for some (hence
all) λ > ω the λ-resolvent operators RAm

λ = (λ − Am)−1 of the Am converge KS-strongly to
the λ-resolvent operator RA

λ = (λ − A)−1 of A.

Remark A.2 For any λ > ω the sequence (RAm
λ )m satisfies supm

∥
∥RAm

λ

∥
∥ < M(λ − ω)−1. In

the classical case where Hm ≡ H and �m ≡ idH for all m we therefore observe that the
sequence of operators (Am)m as in (iv) converges to A as in (iv) in the KS-generalized strong
resolvent sense if and only if it converges to A in the usual strong resolvent sense, see [59,
Section 8.1] (or [88, Section VIII.7] for the self-adjoint case).

One can also introduce a generalization of Mosco convergence for coercive closed forms
(not necessarily symmetric). The following definition is a shorted version for coercive closed
forms, [78], of [98,Definition 7.14] (see also [97,Definition 2.43]) sufficient for our purposes.
We use notation (22) to denote the symmetric part of a bilinear form.
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Definition A.2 A sequence ((Q(m),D(Q(m))))m of coercive closed forms (Q(m),D(Q(m)))

on Hm , respectively, with uniformly bounded sector constants, supm Km < +∞, is said to
converge in the KS-generalized Mosco sense to a coercive closed form (Q,D(Q)) on H if
there exists a subset C ⊂ D(Q), dense in D(Q), and the following two conditions hold:

(i) If (um)m KS-weakly converges to u in H and satisfies limm Q̃(m)
1 (um) < ∞, then u ∈

D(Q).
(ii) For any sequence (mk)k with mk ↑ ∞, any w ∈ C, any u ∈ D(Q) and any sequence

(uk)k , uk ∈ Hmk , converging KS-weakly to u and such that supk Q̃(mk )
1 (uk) < ∞, there

exists a sequence (wk)k , wk ∈ Hmk , converging KS-strongly to w and such that

lim
k

Q(mk )(wk, uk) ≤ Q(w, u).

In [38,97,98] one can find further details. The next Theorem is a special case of [98,
Theorem 7.15, Corollary 7.16 and Remark 7.17] (see also [97, Theorem 2.4.1 and Corollary
2.4.1]), which generalize [38, Theorem 3.1].

Theorem A.1 For each m let (Q(m),D(Q(m))) be a coercive closed form on Hm and assume
that the corresponding sector constants are uniformly bounded, supm Km < +∞. Let
(

GQ(m)

α

)

α>0,
(

TQ(m)

t
)

t>0 and (LQ(m)
,D(LQ(m)

)) be the associated resolvent, semigroup and
generator on Hm. Suppose that (Q,D(Q)) is a coercive closed form on H with resolvent
(

GQ
α

)

α>0, semigroup
(

TQ
t
)

t>0 and generator (LQ,D(LQ)). Then the following are equiv-
alent:

(1) The sequence of forms (Q(m),D(Q(m)))m converges to (Q,D(Q)) in the KS-generalized
Mosco sense.

(2) The sequence of operators
(

GQ(m)

α

)

m converges to GQ
α KS-strongly for any α > 0.

(3) The sequence of operators
(

TQ(m)

t
)

m converges to TQ
t KS-strongly for any t > 0.

(4) The sequence of operators (LQ(m)
,D(LQ(m)

)) converges to (LQ,D(LQ)) in the KS-
generalized strong resolvent sense.

Remark A.3 Theorem A.1 and Definition A.2 provide a characterization of convergence in
the (KS-generalized) strong resolvent sense in terms of the associated bilinear forms. In the
case of symmetric forms these conditions differ from those originally used in [80, Definition
2.1.1 and Theorem 2.4.1] and [76, Definition 2.11 and Theorem 2.4], see [38, Remark 3.4]
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