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Abstract

A model fora MEMS device, consisting of a fixed bottom plate and an elastic plate, is studied.
It was derived in a previous work as a reinforced limit when the thickness of the insulating
layer covering the bottom plate tends to zero. This asymptotic model inherits the dielectric
properties of the insulating layer. It involves the electrostatic potential in the device and the
deformation of the elastic plate defining the geometry of the device. The electrostatic potential
is given by an elliptic equation with mixed boundary conditions in the possibly non-Lipschitz
region between the two plates. The deformation of the elastic plate is supposed to be a critical
point of an energy functional which, in turn, depends on the electrostatic potential due to
the force exerted by the latter on the elastic plate. The energy functional is shown to have a
minimizer giving the geometry of the device. Moreover, the corresponding Euler-Lagrange
equation is computed and the maximal regularity of the electrostatic potential is established.

Mathematics Subject Classification 35J50 - 49Q10 - 49J40 - 35R35 - 35Q74

1 Introduction

The modeling and analysis of microelectromechanical systems (MEMS) has attracted a lot of
interest in recent years, see, e.g., [10,11,19,20,30,31,35] and the references therein. Idealized
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devices often consist of a rigid dielectric ground plate above which an elastic dielectric plate
is suspended. Applying a voltage difference between the two plates induces a competition
between attractive electrostatic Coulomb forces and restoring mechanical forces, the latter
resulting from the elasticity of the upper plate. When electrostatic forces dominate mechanical
forces, the two plates may come into contact, a phenomenon usually referred to as pull-in
instability or touchdown. From a mathematical point of view, this phenomenon may be
accounted for in different ways. In fact, in most mathematical models considered so far in
the MEMS literature, the pull-in instability is revealed as a singularity in the corresponding
mathematical equations which coincides with a breakdown of the model, see [10,19,31] and
the references therein. There is a close connection between the singular character of the
touchdown and the fact that the modeling does not account for the thickness of the plates.
Indeed, coating the ground plate with a thin insulating layer prevents a direct contact of the
plates, so that a touchdown of the elastic plate on the insulating layer does not interrupt the
operation of the device [6,21,24,25]. Due to the presence of this layer, the MEMS device
features heterogeneous dielectric properties (with a jump of the permittivity at the interface
separating the coated ground plate and the free space beneath the elastic plate) and the
electrostatic potential solves a free boundary transmission problem in the non-smooth domain
enclosed between the two plates [21]. The shape of the domain itself is given by a partial
differential equation governing the deflection of the elastic plate from rest, which, in turn,
involves the electrostatic force exerted on the latter. The mathematical treatment of such a
model is rather complex, see [21, Sect. 5] and [22]. It is thus desirable to derive simpler and
more tractable models. As the modeling involves two small spatial scales — the aspect ratio &
of the device and the thickness d of the insulating layer — a variety of reduced models may be
obtained. For instance, the assumption of a vanishing aspect ratio of the device, when either
the ratio d /¢ has a positive finite limit [2,6,18,24,25] or converges to zero, see [10,30,31] and
the references therein, leads to a model which no longer involves a free boundary. Indeed,
in that case, the electrostatic potential can be computed explicitly in terms of the deflection
of the elastic plate and the model reduces to a single equation for the deflection, with the
drawback that some important information on the electrostatic potential may thus be lost.

For this reason an intermediate model is derived in [16] by letting only the thickness of the
insulating layer d go to zero (keeping the aspect ratio of the device of order one). Assuming
an appropriate scaling of the dielectric permittivity in dependence on the layer’s thickness
(in order to keep relevant information of the dielectric heterogeneity of the device) and using
a Gamma convergence approach, the resulting energy, which is the building block of the
model, is computed. The next step is the mathematical analysis of the thus derived model, in
which stationary solutions correspond to critical points of the energy, while the dynamics is
described by the gradient flow associated with the energy. The aim of the present work is to
show the existence of a particular class of stationary solutions, which are additionally energy
minimizers, and to identify the corresponding Euler-Lagrange equations.

Let us provide beforehand a more precise description of the MEMS configuration under
study. We consider an idealized MEMS device composed of two rectangular two-dimensional
dielectric plates: a fixed ground plate above which an elastic plate, with the same shape at
rest, is suspended and clamped in only one direction while free in the other. We assume that
the device is homogeneous in the free direction and that it is thus sufficient to consider a
cross-section of the device orthogonal to the free direction. The shape of the ground plate and
that of the elastic plate at rest are then represented by D := (—L, L) C R, the ground plate
being located at z = —H with H > 0 and covered with an infinitesimally thin dielectric
layer (in consistency with the aforementioned limit). The vertical deflection of the elastic
plate from its rest position at z = 0 is described by a function u : D — [—H, 00) satisfying
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Fig. T Geometry of 2 (u) for a state # = v with empty coincidence set (green) and a state ¥ = w with
non-empty coincidence set (blue) (color figure online)

the clamped boundary conditions
u(£L) = dyu(£L) =0, (1.1)
so that its graph
®u) := {(x,u(x)) : x € D}
represents the elastic plate and
Q) :={(x,2)e DxR : —H <z <ux)}

is the free space between the elastic plate and the ground plate. Since we do not exclude the
possibility of contact between the two plates, we introduce the coincidence set

Cu)={xeD :ulkx)=—-H}
and let
Tw):={(x,—H) : x €D, u(x) > —H} = (D \ Cw)) x {(—H}

be the part of the ground plate which is not in contact with the elastic plate. A touchdown of
the elastic plate on the ground plate corresponds to a non-empty coincidence set, in which
case X (u) is a strict subset of D x {—H}. Note that the free space 2 (u) then has a different
geometry with at least two connected components, which may not be Lipschitz domains due
to cusps (independent of the smoothness of the function #). In Fig. 1 the different situations
with empty and non-empty coincidence sets are depicted.

As already mentioned, the building block of the model studied in this paper is the total
energy E(u) of the device at a state u given by

E(u) := E;(u) + Ec.(u)

and derived in [16] in the limit of an infinitesimally small insulating layer. It consists of the
mechanical energy E,, (1) and the electrostatic energy E.(u). The former is given by

A 2

. 2,112 d 2 2
En(u) = E“aXuHLz(D) + (2 + leaxulle(D)) ||8xu||L2(D)
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with B > 0 and 7, > 0, taking into account bending and external- and self-stretching
effects of the elastic plate. The electrostatic energy is

1 1
Eo(u) == —5/9()|wu|2d(x,z)— E/Do(x>|wu(x,—m—hu<x>|2dx, (1.2)

where v, is the electrostatic potential in the device and solves the elliptic equation with
mixed boundary conditions

Ay, =0 in Q), (1.3a)
Y, =h, on IQw)\ ), (1.3b)
=0 Yy +o(Wy —hy) =0 on X(u). (1.3¢)

In (1.3), the function o represents the properties of the dielectric permittivity inherited from
the insulating layer while the functions %, and b, determining the boundary values of ¥, on
902 (u) are of the form

hy(x,2) :=h(x,z,ulx)), (x,2) € D x [—H, o0), (1.4)
bu(x) == h(x,u(x)), xeD,

for some prescribed functions
h:f)x[—H,oo)x[—H,oo)—)R, h:Dx[—H,oo)—)R.

The main results of this work are the existence of at least one minimizer of the total
energy E and the derivation of the corresponding Euler-Lagrange equation. This requires, of
course, first to study the well-posedness of the elliptic problem (1.3) subject to its mixed
boundary conditions. A first step in that direction is to guarantee that the electrostatic
energy E, is well-defined, which turns out to require some care. Indeed, it should be pointed
out that Q2 (u) is a non-smooth domain with corners and possibly features turning points,
for instance when C(«) includes an interval, see Fig. 1. Thus, €2 () might consist of several
components no longer having a Lipschitz boundary, so that traces have first to be given a
meaning. Once this matter is settled, the existence of a variational solution ¥, to (1.3) readily
follows from the Lax-Milgram Theorem and the electrostatic energy is then well-defined.
This paves the way to the proof of the existence of minimizers of the total energy by the
direct method of calculus of variations but does not yet allow us to conclude. Indeed, since £
involves two contributions with opposite signs, it might be unbounded from below. We over-
come this difficulty by adding a penalization term to the total energy. This additional term can
be removed afterwards, thanks to an a priori upper bound on the minimizers which follows
from the corresponding Euler-Lagrange equation. However, it turns out that the derivation of
the latter requires additional regularity of the electrostatic potential ¥,,. Such a regularity is
actually not obvious, as the highest expected smoothness of the boundary of €2 () is Lipschitz
regularity (when the coincidence set C(u) is empty). Consequently, one needs to establish
sufficient regularity for v, both for states u with empty and with non-empty coincidence
sets C(u). In particular, this will ensure a well-defined normal trace of the gradient of v, on
3 (u) as required by (1.3c) and on the part of &(u) lying above X (u) as required by (2.6a)
below. The above mentioned difficulties are actually not the only ones that we face in the
forthcoming analysis. To name but a few, the electrostatic energy E.(u) features a nonlocal
and intricate dependence upon the state u and appropriate continuity properties are needed
in the minimizing procedure. This requires a thorough understanding of the dependence of
Y, on the state u, this dependence being due to the domain €2 (u) as well as the functions #/,,
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and b,. Also, due to the prescribed constraint u > — H, the Euler-Lagrange equation solved
by minimizers is in fact a variational inequality.

2 Main results

Throughout this work we shall assume that
ceC*D), o(x)>0, xeD. (2.1a)
As for the functions &, and b, appearing in (1.3) we shall assume in the following that
heC*Dx[-H,00) x [-H,00)), heCYDx[-H,x)), (2.1b)
satisfy
dh(x,—H,w) =ox)[h(x,—H,w) —hx,w)], (x,w) e D x[—H,00).(2.1¢)

Assumption (2.1c) allows us later to rewrite (1.3) as an elliptic equation with homogeneous
boundary conditions. In the following, we shall use the notation introduced in (1.4).

A simple example of boundary functions (%, h) satisfying (2.1b) and (2.1c) may be derived
from [21, Example 5.5] with the scaling from [16]:

Example 2.1 Let V > 0 and set

I+o(x)(H+72)

l+o(x)(H+w)’
and b = 0. Then (h, b) clearly satisfies (2.1b) and (2.1c¢), the former being a consequence of
the regularity (2.1a) of o. Note that 4, (x, u(x)) = V,x € D, for a given state u; that is, in

this example the electrostatic potential is kept at a constant value V along the elastic plate,
see (1.3b).

hix,z,w):=V (x,z,w) € D x [-H, 00) x [-H, 00),

2.1 The electrostatic potential

We first turn to the existence of an electrostatic potential for a given state u. To have an
appropriate functional setting for # we introduce
S:={ue H*D)NH}(D) : —H <u in D} (2.2)
and point out that C(u) = ¢ if and only if u belongs to the interior of S: thatis, u € S, where
S:={ueH*(D)NH}(D) : —H <u in D}.

Note that H2(D) is embedded in C(D) so that € (1) is well-defined for u € S. Regarding
the well-posedness of (1.3) we shall prove the following result.

Theorem 2.2 Suppose (2.1). For each u € S there exists a unique strong solution V, €
H2(Q)) to (1.3). Moreover, given k > 0 and r € [2,00), there are c(k) > 0 and
c(r, k) > 0 such that

1l g2y + 105 ¥u G —ED Ly p\eay < cle), 104G w)llL(p\ewy) < c(r, k)
for each u € § with lullg2py < «.

Theorem 2.2 is an immediate consequence of Lemma 3.1, Theorems 3.2, and (3.6) below.

@ Springer



16 Page6of 51 Ph. Laurencot et al.

2.2 Existence of energy minimizers

Owing to Theorem 2.2, the total energy is well-defined on the set
So:={u e H*(D) : u(xL) = du(xL)=0, —H <u in D} C S,

taking into account the clamped boundary conditions (1.1). We shall now focus on the exis-
tence of energy minimizers on Sy. We have already observed that the total energy E is the
sum of two terms E,, and E, with different signs. Hence, the coercivity of E is not obvious.
However, if @ > 0, the first order term in the mechanical energy E,, is quartic and thus domi-
nates the negative contribution coming from the electrostatic energy E.. This property allows
us to follow the lines of [21, Sect. 5] to derive the coercivity of E based on the following
growth assumption for /: there is a constant K > 0 such that

, X, W aZ‘Z X, Z,w = Ii ’ a nx, z, w = ) 233
: H + w v A/ H + u

for (x,z,w) € D x [-H, 00) x [—H, c0) and

|h(x, —H, w)| + [h(x, w)| < K, (x,w)e D x[—H,o0). (2.3b)

This approach no longer works if &« = 0 and the coercivity of E is not granted. To remedy
this drawback, we shall use a regularized energy functional (see (6.1) below), which includes
a penalization term ensuring its coercivity if, in addition to (2.3), we assume that

lh(x, w, w)| + [A(£L,z, w)| < K, (x,z,w) € D x [-H, 00) x [-H, 00), (2.4a)
and
[0xh(x, w, w)| + |0:h(x, w, w)| + |0wh(x, w, w)| + [dyh(x, w)| < K (2.4b)

for (x, w) € D x[—H, 00). We complete the analysis when « = 0 by showing that minimiz-
ers of the regularized energy functional for a suitable choice of the penalization parameter
give rise to a minimizer of E, establishing indirectly that £ is bounded from below in that
case as well. Consequently, in both cases we can prove the existence of at least one energy
minimizer as stated in the next result.

Theorem 2.3 Assume (2.1) and (2.3) and, e_ither o >0, or o= 0 and (2.4). Then the total
energy E has at least one minimizer u, in So; that is, u, € So and

E(uy) = min E . 2.5)
So

At this point, no further qualitative information on energy minimizers u, is available, and
a particularly interesting question, which is yet left unanswered by our analysis, is whether
the coincidence set C(u,) is empty or not. Another interesting open issue is the uniqueness of
minimizers. The proof of Theorem 2.3 is given in Sect. 6 for « = 0 and in Sect. 7 for & > 0.

2.3 Euler-Lagrange equation

We next aim at deriving the Euler-Lagrange equation satisfied by minimizers of the total
energy E. Recalling the prescribed constraint u > —H for u € Sp, we are dealing with
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an obstacle problem and the resulting equation is actually a variational inequality. For the
precise statement we introduce, for a given u € S, the function g(u) : D — R by setting

1 5 2
80 () =3 (14 [ () P) [0 = @l — Guh)u] (e, 1)
+ 0 ([ (v, —H) = 5,00 ] @) () (2.60)
1
= 5 [ @l + (@ + @) ] (x )

for x € D\ C(u) while setting

1
gu)(x) ::§|(awh)u|2(x, —H) + 0 @) [h(x, =H, —H) = b, (x) ] (@wh)u (x)
(2.6b)

1 2 2

=5 [J@m + (@ + @uha)*] .~ )

for x € C(u). In fact, g(u) represents the electrostatic force exerted on the elastic plate and is
computed as the differential (in a suitable sense) of the electrostatic energy E, (1) with respect
to u. We emphasize here that the regularity properties of i, established in Theorem 2.2 are
of utmost importance to guarantee that g(u) is well-defined on D \ C(u), since it features the
trace of d;v,, on &(u). With this notation, we are able to identify the variational inequality
solved (in a weak sense) by energy minimizers.

Theorem 2.4 Assume (2.1). Assume that u € So is a minimizer of E on So. Then g(u) e
L>(D) and u is an H?*-weak solution to the variational inequality

Bofu — (x + al|dyull7, p)d7u + 9lg (u) > —gu) in D, 2.7)

M:here ol S denotes the subdifferential of the indicator function I 3 of the closed convex subset
So of H*(D); that is,

/D{ﬂafu 02 (w — ) + [t + lldeull3 |0t 0 (w — u)} dx > —/Dg(u)(w —u)dx

forallw € Sp.

At this point, we do not know whether minimizers of E in Sy are the only solutions to
(2.7), a question closely connected to the uniqueness issue for (2.7). It is, however, expected
that the set of solutions to (2.7) exhibits a complex structure. Indeed, in the much simpler
situation studied in [18], the minimizer may coexist with other steady states, depending on
the boundary values of the electrostatic potential.

The proof of Theorem 2.4 is given in Sect. 6 for « = 0 and in Sect. 7 for ¢ > 0. It relies on
the computation of the shape derivative of the electrostatic energy E, (), which is performed
in Sect. 5.

Remark 2.5 1t is also possible to minimize the total energy E on the set S (instead on Sp).
Then the corresponding minimizer in S satisfies instead of the clamped boundary conditions
(1.1) the Navier or pinned boundary conditions u(£L) = Bfu(:l:L) = 0. With this change,
the statements of Theorem 2.3 and Theorem 2.4 remain true when So is replaced everywhere
by S.

Now, combining Theorem 2.3 and Theorem 2.4 we obtain the existence of a stationary
configuration of the MEMS device given as a solution to the force balance (2.7):
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Corollary 2.6 Assume (2.1) and (2.3) and, either o > 0, or &« = 0 and (2.4). Then there is a
solution u, € Sy to the variational inequality (2.7).

The subsequent sections are dedicated to the proofs of the results stated in this section.

Throughout the paper, we impose assumptions (2.1) and set

Opmin = mDin{a} >0, o= ||‘7||C2([)) < 0. (2.8)

3 Existence and H?-regularity of the electrostatic potential y,,

This section is dedicated to the proof of Theorem 2.2; that is, to the existence and regularity of
a unique solution ¥, to (1.3). We first recall some basic properties of the boundary function
h, which are established in [21, Lemma 3.10] and rely on the properties (2.1b) and (2.1c) of
h and b.

Lemma 3.1 Let_M > 0.
(a) Given v € S satisfying —H < v(x) < M — H for x € D, the function h, belongs to
H*(Q(v)) and
ol 20y < CD(1+ 1070117, p)) »
070 (. —H)l Loy < CM)(1 4 [0l L5(D)) » (3.1
1070 (-, VL, 0y < C(M), rell, o0].

(b) Consider a sequence (v,)p>1 in Sand v € 8 such that

—H<v,(x),v(x) <M—-H, xeD, v,—vin H(D). (3.2)
Let Q(M) := D x (—H, M). Then
hy, — hy in HY(Q(M)), (3.3)
By, (-, —H) = hy(-, —H) in La(D), (3.4)
by, = by in La(D). (3.5)

Proof Integrating

3Xv(x):8xv(y)+/ Zv(z)dz, (x,y) e[-L, L],

y

with respect to y € [—L, L] and taking into account the boundary condition v(+L) = 0, we
obtain

L X
2L, v(x) =/ / 32v(z)dzdy, xe[-L,L].
—LJy
Hence, by Holder’s inequality we get

180l L0y < V2L11820] Ly (D) -

Using this inequality and the fact that & and its derivatives up to second order are bounded
onD x [—H, M] x[—H, M] we derive

I8l g2y < €1+ 10xvll 3Dy + 19:0]l Lo ) 13x V1l oDy + 107011 25(D))
< CM)(1+ [107vll ) + 1920117,y -
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whi_ch yields (a). As for (b) we first note that (3.2) and the compact embedding of H YD) in
C (D) ensure that

v, > v in C(D).

Combining this convergence with (3.2) and the continuity properties (2.1b) of & and f readily
gives (3.4) and (3.5), as well as (3.3) with the additional use of (3.2), see [21, Lemma 3.10].
]

We shall now prove Theorem 2.2 and thus focus on (1.3), which is more conveniently
considered with homogeneous boundary conditions. To this end, we introduce

Xv =Yy — Iy 3.6)

for a given and fixed function v € S.Due to assumption (2.1c¢), problem (1.3) (with v instead
of u) is then equivalent to

—Axy = Ahy in Q), (3.7a)
Xxv =0 on dQ2(w)\ X(v), (3.7b)
—0. Xy +0xy =0 on Z(v). 3.7¢)

Hence, the next result can be seen as a reformulation of Theorem 2.2 in terms of .
Theorem 3.2 Consider a function v € § and let k > 0 be such that
vl g2 py =« (3.3)

Then there exists a unique strong solution x, € H2(Q(v)) to (3.7) and there is C (k) > 0
depending only on o and « such that

X0l 2y + 118x X0 s —HD Ly (p\cv)) < C k) . (3.9

Moreover, for any r € [2, 00), there is C(k) > 0 depending only on o and k such that

10; v (G, WL, (p\cwy) < rCk) . (3.10)

The remainder of this section is devoted to the proof of Theorem 3.2.

3.1 Variational solution to (3.7)

We first _establish the existence of a variational solution to (3.7). To this end, we introduce
for v € S the space H)g(Q(v)) as the closure in H'(2(v)) of the set

Cp(QW)) == [9 e C'(QW) : 0(x,v(x)) =0, x € D, O(£L,2) =0, z € (—H,O)],
and shall then minimize the functional

1
G)[9] = f/ V(@ + hy)?d(x, 2)
2 Jaw)
1
+§/ o ()| (x, —H) + hy(x, —H) — b, (x)[* dx (3.11)
D
with respect to ¥ € H 11;(52 (v)). Let us recall from [16, Lemma 2.2] that the trace
9(-, —H) € Ly(D) is well-defined for 9 € Hllg(Q(v)) (see also Lemma 3.7 below for a

complete statement), while Lemma 3.1 ensures that 4, € H 1(€2(v)) and that &, (-, —H) and
by belong to Lo (D). Thus, G(v)[¢] is well-defined for ¥ € H}; (2®W)).
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Proposition3.3 Let v € S. There is a unique variational solution x, € H};(Q(v)) to (3.7)
given as the unique minimizer of the functional G(v) on HII; (R2(v)). Moreover, x, is also the
unique minimizer on H}i (2(v)) of the functional G p(v) defined by

1
|w|2d(x,z)+5/ ol|9(, —H)|? dx—/ O Ahy d(x, 2) .
D Q

1
GpW)[P] == f/
P 2 )

Q(v)
Proof As noted above, G(v) and Gp(v) are both well-defined on H I]S(Q(v)). Moreover,
owing to the Poincaré inequality established in [16, Lemma 2.2], the functional G(v) is
coercive on H é (2(v)). It thus readily follows from the Lax-Milgram Theorem that there is a
unique minimizer x, € Hé (2(v)) of the functional G(v) on Hllg (2(v)).Letv € H}; (2)).
Since each connected component of €2 (v) has at most two singular points, we infer from [15,
Folgerung 7.5] that we may apply Gauf3’ Theorem on each connected component of €2 (v)
and deduce from (2.1c¢) that

1
Gv] = 5/

1
VY - Vh,d(x, z) + = / |Vhy|*d(x, 2)
Q(v) 2

Vo> d(x, 7) +/
Q(v)

Q(v)

+1/ ol|v(, —H)|2dx+/ o (-, —H)[hy(-, —H) — b,]dx
2Jp D

+1f oThy( —H) — by dx
2 Jp

=GD(v)[ﬁ]+/ DAy d(x, 2)
Q)

—/(ﬁazhv)(x,—H)dx—/ O Ahyd(x, 2)

D Q)

+1/ |VhU|2d(x,z)+/ o (-, —H)[hy(-, —H) — b]dx
2 Jaw D

+1/ o[hy(-, —H) — 1% dx
2Jp

1
— GpWIP] + 5/

1
VAo dx, 2) + 5/ olhy (- —H) — byl dx.
Q) D

Consequently, x, is also the unique minimizer of the functional Gp(v) on H é (Qw)). 0O

For further use we state the following weak maximum principle.

Lemma3.4 Letv € S. Then hy € C(2(v)), by € C(D), and

min{ min A, , minhv] < Xy + hy < max { max h,, max hv} .
aQ (v) ) Q2(v) D

Proof We first observe that v € C (D) which ensures, together with (2.1b), that

:= min{ min A, , min } and " := max | max h,, max ]
Mo {BQ(U) v B by 12 300 v . by

are well-defined and finite. Next, since x, is the minimizer of G(v) on H 113 (R2(v)), it satisfies

/ V(xv +hy) - VI d(x, 2) +/ ol(xv +hy)(, —H) = h]9(-, —H)dx =0
Q(v) D
(3.12)
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forall ¥ € HL(Q(v)).
Now, it follows from the definition of ;* that 9* := (x, +hy —pu*)+ belongs to Hé (R2(v))
with VI* = sign__ (xv + hy — ")V (xv + hy — p*). Consequently, by (3.12),

0= / V(xo +hy) - VO*d(x, 2) +/ o[(xv +ho) (-, —H) — b, 19%(-, —H) dx
Q(v) D
=/ |W*|2d<x,z>+f 0[O + ho)(, —H) — p* + p* — b,10*(, —H) dx
Q(v) D
z/ |Vz9*|2d<x,z>+f o[0* (-, —H)*dx,
Q) D

where we have used the non-negativity of both u* — b, and 9* to derive the last inequality.
We have thereby proved that Vi* = 0 in L, (€2 (v)), which implies that 9* = 0 in L2 (2(v))
thanks to the Poincaré inequality established in [16, Lemma 2.2]. In other words, x, + h, —
n* < 0ae.in Q(v) as claimed.

Finally, a similar argument with 9, := (u« — xv — hy)+ leads to the inequality pty — xy —
hy < 0ae.in Q(v) and completes the proof. O

We now improve the regularity of x, as stated in Theorem 3.2 and show that yx, belongs
to H2(S2(v)). Once this is shown, it then readily follows that x, is a strong solution to (3.7)
(see [16, Theorem 3.5]).

As pointed out previously, for a general v € S, the set Q(v) may consist of several
connected components without Lipschitz boundaries when the coincidence set C(v) is non-
empty. The global H2(S2(v))-regularity of x, is thus clearly not obvious. The main idea is
to write the open set D \ C(v) as a countable union of disjoint open intervals (/) jes, see [1,
IX.Proposition 1.8], and to establish the H>-regularity for ., first locally on each component
{(x, 2)el; xR : -H<z< v(x)}. This local regularity is performed in Sect. 3.2. The
global H?( (v))-regularity is subsequently established in Sect. 3.3.

3.2 Local H?-regularity

Let I := (a, b) be an open interval in D and consider
ve H*(I) with v(x) > —H, xel. (3.13)
We define the open set O; (v) by
Or(w):={(x,2) eIl xR : —H <z <v(x)} (3.14)
and split its boundary 900 (v) = 00, p(v) U ¥, with

307, p(v) == ({a} x [-H, v(@)]) U ({b} x [-H, v(b)]) UB;(v), (3.15)
¥/ :=[a,b] x (—-H}, (3.16)

where ¥; := I x {—H}, and &; (v) denotes the closure of the graph & (v) of v, defined by
Gr(w) :={(x,vx)) : xel}. (3.17)

We emphasize that O (v) has no Lipschitz boundary when v(a) + H = d,v(a) = 0 or
v(b) + H = d,v(b) = 0, as these correspond to cuspidal boundary points, see Fig. 2.
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Or(v) Or(v)

Q
<
S
<>

Or(v)

a b

Fig.2 Geometry of O (v) according to the boundary values of v

Let f € L2(Oj(v)) be a fixed function. The aim is to investigate the auxiliary problem

—Ag = f in O(v), (3.18a)
¢y =0 on d0; p(v), (3.18b)
=05y + 06, =0 on Xj. (3.18¢)

We shall show the existence and uniqueness of a variational solution &, := ¢;, € H Lorw))
to (3.18) and then prove its H>-regularity. The main difficulty encountered here is the just
mentioned possible lack of Lipschitz regularity of Oj(v). Indeed, the trace of functions in
H'(O;(v)) on 80, (v) have no meaning yet in that case, and so (3.18b) and (3.18c) are not
well-defined. We shall thus first give a precise meaning to traces for functions in H Lorw)).

Remark 3.5 Clearly, if v € S, I = D, and f = h,, then x, = {p.y, so that Theorem 3.2
follows from Theorem 3.9 below in that case. Furthermore, if I = (a, b) is a strict subinterval
of D, f = hy,and v € S is such that v(a) = v(b) = —H, ora = —L and v(—L) =
v(b)+ H =0,0orb = Land v(a) + H = v(L) = 0, then ¢; , coincides — at least formally
— with the restriction of x, to I and we shall also deduce Theorem 3.2 from Theorem 3.9.
We thus do not impose that v(a) = —H or v(b) = —H in (3.13), so as to be able to handle
simultaneously the above mentioned different cases also depicted in Fig. 2.

3.2.1 Traces

As already noticed in [27], one can take advantage of the particular geometry of Oy (v), which
lies between the graphs of two continuous functions, in order to define traces for functions
in H'(O;(v)) along these graphs. More precisely, one can derive the following result [16,
Lemma 2.1].

Lemma3.6 [16, Lemma 2.1] Assume that v satisfies (3.13) and set M := | H 4+ vl L 1)-

(@) There is a linear bounded operator

Uiy € L(HY(O[(), La(I, (H + v)dx))
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such that T'y ,¥ = U (-, v) for ¥ € CY(O;(v)) and

/, DD PCH + ) dx < 1912, 00 oy + 2My 191125005 0 1820 13(0r 0 -

(3.19)
(b) There is a linear bounded operator
Viw € L(H'(O1()), La(I, (H + v)dx))
such that yr ,0 = 9(-, —H) for v € CY(O;(v)) and
/1 lyro? P(H + ) dx < (1911750, ) + 2Moll? 220, ) 1029 2205 )) -
(3.20)

For simplicity, for & € H 1(O;(v)), we use the notation
P(x,v(x)) :=T0(x), O, —H):=y,0x), xel.

We next introduce the variational setting associated with (3.18) and define the space
H}(O;(v)) as the closure in H'(O;(v)) of the set

cl (m) = {9 ec! (m) O(x,v(x) =0, x e 1,

and 6(x,2) =0, (x,2) € {a, b} x (—H, O]] .

Note that this is consistent with the previous definition of H é (Q))whenI = Dandv € §.
We have already established in [16, Lemma 2.2] a Poincaré inequality in H 113 (O1(v)), as well
as refined properties of the trace on I x {—H}, which we recall now.

Lemma 3.7 [16, Lemma 2.2] Assume that v satisfies (3.13) and consider ¥ € Hé (O (v)).
Setting M, := ||H + v|lr, 1), there holds

19 20 v)) < 2ZMul10:0 1Ly 0; (v)) » (3.21)

and the trace operator ¥ — 9 (-, —H) maps Hé(@l (v)) to Lo (1) with

[ACH —H)Iliz(l) =20 L0 p 1929 | Ly (0 (v)) - (3.22)

3.2.2 Variational solution to (3.18)

Thanks to Lemma 3.7, the trace on I x {—H} of a function in H 113 (Og (v)) is well-defined in
L, (1) and, thus, so is the functional

1
Gr)[v]:= 5/

1
|v0|2d(x,z)+—/am(-,—H)Fdx—/ £9 d(x, 2)
O, () 2 Jr o

1(v)
(3.23)

forv e H 113 (O (v)). We now derive the existence of a unique variational solution to (3.18),
or, equivalently, of a unique minimizer of G;(v) on H }, (O1(v)).

@ Springer



16 Page 14 of 51 Ph. Laurencot et al.

Lemma 3.8 There is a unique variational solution &, = {1, € Hé (O1(v)) to (3.18) which
satisfies

18013710,y T 2V GC =D, 1y < 16M (1+4M7) 1 £ 17,0, > (324

where My, := |H + vl|lL )

Proof Tt readily follows from (2.8), Lemma 3.7, and the Lax-Milgram Theorem that there is
a unique variational solution ¢, € H}g (O (v)) to (3.18) in the sense that

GiWIL] <GB, ¥ € Hy(Or(v)). (3.25)

Taking ¢ = 0 in the previous inequality, we deduce from (3.21) and Holder’s and Young’s
inequalities that

IVEllZ 50,0 + INTE G —EDIL, 0y < 20 a0 anlgol Lo )
< AMy|l f Ly 0;0) IVl Ly 0) )

1 2 2 2
= EHVCUHLZ(O[(U)) + SMv”f”Lz(Oz(v)) :
Hence,

IVEllZ, 0, T 21V 8¢ =D, 0y < 16MA1LFIIT, 0,0 -

Combining the Poincaré inequality (3.21) and the above inequality completes the proof. O

3.2.3 H2-regularity of ¢,

We next investigate the regularity of the variational solution ¢, to (3.18); that is, we establish
a local version of Theorem 3.2.

Theorem 3.9 Consider a function v satisfying (3.13) and let k > 0 be such that
Ioll 2y < & - (3.26)

The variational solution &, = {1, € H]_,l3 (O1(v)) to (3.18) given by Lemma 3.8 belongs to
H? (O1(v)), and there is C1(k) > 0 depending only on o and « such that

12oll 120, oy + 18x80 o —ED a1y < CLOO f L5010 - (3.27)

Moreover, there is C2(k) > 0 depending only on o and k such that, for any r € [2, 00),
10280 C, VL, 1y < rC2C)N fllLa 05wy - (3.28)

Several difficulties are encountered in the proof of Theorem 3.9, due to the low regularity
of the domain Oy (v) which has a Lipschitz boundary if v(a¢) > —H and v(b) > —H but
may have cusps otherwise, see Fig. 2, and due to the mixed boundary conditions (3.18b)
and (3.18c). As in [12, Sect. 3.3], to remedy these problems requires to construct suitable
approximations of Oy (v) and to pay special attention to the dependence of the constants on v
and / in the derivation of functional inequalities and estimates. To be more precise, we shall
begin with the case where v satisfies

ve W2 (I) and minv > —H , (3.29)
a,

@ Springer



Energy minimizers for an asymptotic MEMS model... Page 150f51 16

an assumption which is obviously stronger than (3.13). Then O;(v) is a Lipschitz domain
with a piecewise Wgo—smooth boundary and the H2-regularity of ¢, is guaranteed by [5,
Theorem 2.2], see Lemma 3.10 below. Next, transforming Oy (v) to the rectangle R; :=
I x (0, 1), we shall adapt the proof of [12, Lemma 4.3.1.3] to establish the identity

/ 922,02¢, d(x,z)zf |axaz<;v|2d(x,z)+f(axgvaxw;v» (n—H)dx
01 (v) Or(v) I (3.30)

1
- Efla§v|az<:v(~,v)|2 dx

in Lemma 3.11. We then shall show that the last two integrals on the right-hand side of (3.30)
are controlled by the H2-norm of ¢, with a sublinear dependence, a feature which will allow
us to derive (3.27) when v satisfies (3.29). To this end, we shall use the embedding of the
subspace

Px,—H)=0, xel,

H}y (01 (v)) = {P e ©wn g T T

} (3.31)

of HY(O;(v)) in L, (O;(v)) and the continuity of the trace operator from H‘}VS(OI(U)) to
L,(®;(v)) forr € [1, 00), which involves constants that do not depend on min, ) {v + H},
see Lemmas C.1-C.3 in Appendix C. After this preparation, we will be left with relaxing
the assumption (3.29) to (3.13) and this will be achieved by an approximation argument, see
Sect. 3.2.5.

3.2.4 H?-regularity of ¢, when v satisfies (3.29)

Throughout this section, we assume that v satisfies (3.29) and fix M > 0 such that
M = max {1, |H + vl ). 19z} - (3.32)

We also denote positive constants depending only on o by C and (C;);>3. The dependence
upon additional parameters will be indicated explicitly.

We begin with the H?-regularity of the variational solution ¢, to (3.18), which follows
from the analysis performed in [3-5].

Lemma3.10 ¢, € H2(O;(v)).

Proof We first recast the boundary value problem (3.18) in the framework of [5]. Owing to
(3.29), the boundary of the domain Oy (v) includes four Wgo—smooth edges (I';)1<i<4 given
by

N:=Ix{-H}, T3:=6;0v),
Iy:=1{b} x (—H,v(b)), T4:={a}x(—H,v(a),

and four vertices (S;)1<j<4
S;: =T NTa=b,—H), S3:=T3NT4=(a,v)),
Sy :=TrNT3=(b,vb), S4:=T4NT|=(,—H).
We set

Dr:=1{2,3,4}, Nr:={1},
D:={2,3}, Mp:={4}, My :={1}, N:=0,
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and note that Dr # ¢ as required in [5].
Since v € Wgo(l ), the measure w; of the angle at S; taken towards the interior of O (v)
satisfies

0 = w4 = % . (@ w3) € (0,7)2. (333)

For 1 <i < 4, we denote the outward unit normal vector field and the corresponding unit
tangent vector field by v; and t;, respectively. According to the geometry of O;(v),

(=0yv, D

Vi :(07_1)9 v2:(1’0)5 V3= ——, V4:(—1,0),
V14|80
-1, -0
T=(10), 1= (0.1), 13 = 0,1y,
V1+[0,v]?
We also define
myi=vy, i =T, ie {2» 374} s (334)

and note that the measure ¥; € [0, ] of the angle between p; and 7;, 1 <i < 4, is given
by

qq:%, W, =0, i€f234]. (3.35)
We also set
Yi=¢r=¢3=¢4=0. (3.36)
We finally define the boundary operator
By :=—-0;,4+0id on I x {—H}.

Now, on the one hand, the regularity of o implies that [5, Assumption (1.5)] is satisfied,
while [5, Assumption (1.6)] obviously holds since A/ = . On the other hand, we note that
r1(S1) = —po(S1) and pmy(Ss) = p1(Ss), so that [5, Assumption (2.1)] is satisfied for
i € {1,4} (butnotfori € {2,3}). Wethensete; = —1 and ¢4 = 1. We are left with checking
[5, Assumptions (2.3)-(2.4)] but this is obvious due to (3.36). We finally observe that

Ki={G.mye{l,...;44 XZ : Ajm <€ (—1,0)}

is empty, since

W, — W
D = 2T 1 ¢ (—1,0),
w1
V3 — W) +mm mim
b = 22T T 1 0),
w2 w2
Yy — V3 +mm mi
hag = BT T 0y,
w3 w3
W -0
D = AT AT 41 ¢ (—1,0)
w4

for any m € Z. We then infer from [5, Theorem 2.2] that ¢, has no singular part and thus
belongs to H2((91 (v)). m]
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We now investigate the quantitative dependence of the just established H2-regularity of
¢y on v and derive an H 2_estimate, which is related to the regularity of v. To this end, we
need the following identity.

Lemma 3.11

f 020,9%¢, d(x. 2) = / 19c0:202 d(x. 2) + / (32809 (040)) (- —H) dx
Or(v) O;(v) I
- 1fa§v|az;v<~, Wl dx .
2 J;

The identity of Lemma 3.11 is reminiscent of [21, Lemma 3.5]. Its proof is rather technical
and thus postponed to Appendix B.

The next step of the analysis is to show that the two integrals over / on the right-hand
side of the identity stated in Lemma 3.11 can be controlled by the H2-norm of ¢, with a
mild dependence on v. To this end, we need some auxiliary functional and trace inequalities
which are established in Appendix C. With this in hand, we begin with an estimate of the last
integral.

Lemma 3.12 There is C3(M) > O such that, for any r € [2, 00),
1 ~1
18c0C 0l ) < rC DI 0,0 IV 280l 20r0m + 1 a0,00)
(3.37)

In particular, there is C4(M) > 0 such that

1/2 3/2
‘ /1 07v19:2y (-, V)1 dx| < CaMD1I0F V] Ly (1) [nfu/z(o,(v))Hvaz:vn/z(o,(v))+ ||fn%2(o,(v»] :

(3.38)

Proof To lighten notation, we set O = Oj(v) and introduce P := 9,{, — 0¢&y. Since
Ly € H2(0) by Lemma 3.10 and o € C2(1), the function P belongs to H'(0) and satisfies
(C.2) by (3.18b) and (3.18c). In addition, we observe that P (-, v) = 9,;¢,(:, v) by (3.18b). It
then follows from Lemma C.3 that

.
1960, 0L, 4y = 1P I, 0y = (47VM) 1P IV P o, -
Moreover, by (2.8) and Lemma 3.8,

1PllLy0) < 19:80llL,0) + 0 l1ullL0) < (T 4+0) 15l g1 o)
<4|H + vlle(I)\/l +HH Iy A+0) 1 fllLao) < CDI fllra0)

and

VP L0y < 10x PllLyo) + 110: PllL, o)
< 19x9:80 L2+ 19280l 20) +5 160 ll Lo () F 1820 L, (0) +5 1880 [ 1, (0)
= V2IV3:8u a0 + 6 (V2IVa a0 + 1 l2©))
< V2IV8.80ll1,0) + COD I 1y 0) -
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Collecting the previous estimates, we end up with

r r—1
10:60C, 01, 1y = (4r/M) CODIS a0y (V2IVDLLa0) + CODIF a0 )

-1
< C) N fllao) (IV3:8u o) + 1 f o)

from which (3.37) follows. We next deduce from (3.37) (with r = 4) and Holder’s inequality
that

/8$v|azgu(-,v>|2dx
1

2 2
= oy vl 1980 (5 I, 1y

1/2 3/2
< 16C3 (M [2v ]l Ly | £ Il oy (190280 20 + 1 £ la0))
1/2 3/2 3/2
= CODOR L 150y (IVO6IT o) + 1£1750) ) -

and the proof is complete. O

We are now in a position to derive quantitative estimates in H? for z,, which only depends
on the H2-norm of v, even though v is assumed to be more regular.

Lemma 3.13 There is C5(M) > O such that

1V0:50113 0,0 + WGl =D = ) (14 10200,y ) 1 30,00 -
(3.39a)

1978011750,y < Cs(M) (1 + ||a,%v||iz(,)) 1A 170050 -
(3.39b)

Proof To lighten notation, we set O := Oy (v). We infer from (3.18a) and Lemma 3.11 that
- f [2¢ydix,2) = f (072,028, + 10720 1) d(x, 2)
0] 1)
= IV3:5012,0) + f 0xCu (- —H)dx (0¢0) (-, —H) dx
I

1
- E/Ia;?vwz;v(-, v)* dx .

Hence, thanks to (2.8), Lemma 3.12, and Holder’s and Young’s inequalities,

X = [IV3:5 7,0 + INT0 (. — DI,
1
= _/ fazzgv d(x,z) — / 0x0 ($p0x &) (-, —H) dx + = f a)%vlaz{v('s U)|2 dx
o i 2 )y

< ||f||L2(O)||32§u lL,0) +0l5u G —H) L, 10xSo (-, —H) | Ly (1)

c4< )
+ 1020l Loy [IIfIILz(O)IIVB &olo) + 110
< ||32§v||L2((9) + ||f||L2((9) + \/7”;11( H)”Lz(l)”\/gava(" —H)”Lg(l)
VAL oy + €O (10201 + 1020l ) 11
4 z2SvllL,(0) x VIl Ly (1) x VILo (1) Ly(O)
1 1 52
< IVt 0) + 5 IVOGC =D,y + 5 — (- —i)Z,)

+C) (1410201, ) 1/ B0, -
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Consequently, using once more Young’s inequality,

6’2

X <

min

Now, since ¢, € HI]?(O), it follows from (2.8), (3.32), and Lemma 3.8 that

oG =EDI 1y + €D (14 18201E,1)) 11140 -

20minl16o - —HDI3, 1y < 16M>(1+ 4MD) | 113 o) -

Combining the above two estimates gives (3.39a).
To complete the proof of Lemma 3.13, we simply notice that (3.18a) ensures that

19220117500y = ILf + 82801750y < 210280117500y + 21 £ 12,5 0)
and deduce (3.39b) from (3.39a). m]

Summarizing, we have established the following result:

Proposition 3.14 Consider v € H*(I) satisfying (3.29); that is,

v E WSO(I) and minv > —H ,
[a,b]

and fix k > 0 such that
1ol g2y <. (3.40)

Then the elliptic boundary value problem (3.18) has a unique strong solution ¢, € H2(O;(v))
which satisfies

1Sull 20, )y + 10x 80 s —HDLy1) < CoCON f a0 ) (3.41)

10:80Co VL, 1) S rCet)N fllL 0wy, 7 €l2,00). (3.42)

Proof The existence and uniqueness of a strong solution ¢, € H 2(0;(v)) to (3.18) are

consequences of Lemma 3.8 and Lemma 3.10. Next, it readily follows from (3.40) and the
continuous embedding of H 2() in WOIO(I ) that there is M > 1 depending on « such that

1H +vllLo) + 10xvll Loy <M. (3.43)
Due to (3.43), we deduce (3.41) from (2.8), (3.40), Lemma 3.8, and Lemma 3.13, while
(3.42) follows from (3.41) and Lemma 3.12. O

We emphasize that, though derived for functions v € H?(I) satisfying the additional
assumption (3.29), the estimates stated in Proposition 3.14 only depend on the H?-norm of
v and, neither on its Wgo -norm, nor on the value of its minimum (provided that it stays above
— H). The outcome of Proposition 3.14 is thus likely to extend to any configuration depicted
in Fig. 2 under the sole assumption (3.13) and this will be shown in the next section by an
approximation argument.

3.2.5 H2-regularity: Proof of Theorem 3.9

We now prove the H>-regularity of ¢, as stated in Theorem 3.9. We thus assume that v
satisfies (3.13); that is,

UEHZ(I) such that v(x) > —H , xel,
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and fix k¥ > 0 such that ||v]|y2(;y < . Owing to the density of C*®([a, b]) in H(I) and
since v satisfies (3.13), we employ classical approximation arguments to construct a sequence
(Un)n>1 of functions in C*°([a, b]) with the following properties:

lim |[vy, = vllg2gy =0, sup{llvnll g2t < 1+« (3.44a)
n—o00 n>1
1
Uy > v+ —, n>1. (3.44b)
n

A first consequence of (3.44a) and the continuous embedding of H 2(I)in Wolo(l ) is that

1H 4+ vallLooy + 10xVallLoy <Clk), n>1, (3.45)
nlggo lvn = vllwy )y =0 '

According to (3.13) and (3.44b), the function v,, satisfies (3.29) for each n > 1 and, since
Or(v) C Of(vy), we infer from Proposition 3.14 that the strong solution ¢, to (3.18) with
v, instead of v (and f replaced by its trivial extension to Oy (v,,)) satisfies

18v, 120, 0y) T 10x 60, G —HD Ly 1) < C7C)N L0, ) » (3.46)
10:8v, Co v,y S rCrNflly oy s r€[2,00). (3.47)

Using again the inclusion O;(v) C Oj(v,), we deduce from (3.46) that (&y,)n>1 is
bounded in HZ(O; (v)). Consequently, recalling that H Lo w)) is compactly embedded
in L(Oj(v)) (despite the non-Lipschitz character of Oy (v), see [23, Theorem 11.21] or [28,
L. Theorem 1.4]), there are a subsequence of (¢y,),>1 (not relabeled) and ¢ € H 2 (O1(v))
such that

Co,—¢ in HX(O;(v)) ,

1 (3.48)
Sv, — ¢ in H (O[(v)) .

Let us first check that ¢ € H 113 (O (v)). On the one hand, since both ¢ and ¢,, belong to
H'(O;(v)), we infer from (3.19) that

,/[ ‘((ﬁ - gvn)('a v)’2 (H + U) dx S C(K)Hd) - ;Un ”?‘11(01(1))) .
Hence, by (3.48),
lim / | — o) 0)|* (H +v) dx = 0.
n—0o0 1

On the other hand, since ¢,, € Hé((’), (vy)) and v, > v, it follows from Lemma A.1 and
(3.46) that

/I|cvn<~,v>}2(H+v) dx=/I|;v,,(-,v>—;v,l(-,vn)|2(H+v) dx

SN —=v)(H + V) Lo (1) 19280, 11504 (wa))
S CWNv—=vallLo I fllL20;)) -

Hence, by (3.45),

lim / ¢, o) (H +v) dx = 0.
1

n—oo
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Combining the previous two limits, we deduce
/|¢(-, V> (H+v)dx =0,
I

so that ¢ € Hllg (O1(v)). In particular, for n > 1, due to the inclusion Oy (v) C Oy (vy), the
function ¢ also belongs to H llg (Op(vy)) and we infer from (3.22) and (3.48) that

lim / Gy — ), —H)[Pdx = 0. (3.49)
n—oo I

We next recall that ¢, is the unique solution in H é (O1(vy)) to

1(vn)

/ Vi, - VO d(x, 2) +/0§vn(-, —H)O(-, —H) dx =/ o dx  (3.50)
01w 1 o

for all & € HY(O;(vy)). Now, since HY(O;(v)) C HL(O;(vy)), we can take ¥ €
H}; (Or(v)) in (3.50) and use the convergences (3.48) and (3.49) to pass to the limit n — oo
and conclude that ¢ € H llg (O (v)) satisfies the variational formulation of (3.18). Therefore,
Lemma 3.8 guarantees that ¢ = ¢,,. We have thus shown that {, € H 2(O;(v)) and it follows
from (3.46) and (3.48) that
1ol 20,0 = linrgio%f v, | 520, 09

= liminf 16, I 520, ) = C1N fllL2 01 0) - (3.51)
A further consequence of (3.20) and (3.48) is that (9x¢y,(-, —H)),>1 converges to
0xCy(-, —H) in Lo(I, (H + v)dx), which, together with the positivity of H + v in I,
implies that (9x¢y, (-, —H)),>1 converges to 0x¢y(-, —H) in La(a + &, b — ¢) for any
e € (0, (b —a)/2). Combining this convergence with (3.46) and using Fatou’s lemma to
take the limit ¢ — 0 give

10580 (-, —HD Loy < C1ON fll L2005 0)) - (3.52)
Finally, by (3.19) and (3.46),
2
/ |08, — 3:20) (. 0| (H +v) dx < C00)13:20, — 080l 2050 -
I
Hence, by (3.48),
n—oo

lim / (080, — 3.2) (o 0)|* (H +v) dx = 0. (3.53)
1

Moreover, owing to Lemma A.1, (3.46), and the properties ¢,, € H ,_1; (O (vy)) and v, > v,

J

and it follows from (3.45) that

2
0280, (- V) = 0280, (V) |” (H + ) dx < (| — v) (H 4+ W)l 2000 1920, 17,0, (0

<CMv—=vallLe) »

. 2
lim / 9280, (- v) = 8280, (v |* (H +v) dx = 0. (3.54)
n— I
Gathering (3.53) and (3.54) leads us to
lim / 10,2, (-, V) = 0,20, (- v)|* (H 4+ v) dx = 0. (3.55)
n—o0 1
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Since H + v > 0 in I, we may extract a further subsequence (not relabeled) such that
(9;v, (-, Vp))n>1 converges a.e. in 1 to 9;¢y (-, v). We then use Fatou’s lemma to pass to the
limit n — o0 in (3.47) and conclude that

10:80 o L, () S rCT) N fllL ;) » 7 €12,00),

thereby completing the proof of Theorem 3.9.

3.3 Global H2-regularity of y,: Proof of Theorem 3.2 and Theorem 2.2

Finally, we prove Theorem 3.2 and Theorem 2.2 for which we consider an arbitrary function
vin S and k > 0 satisfying (3.8). According to [1, IX.Proposition 1.8] we can write the open
set D\ C(v) as a countable union of disjoint open intervals (/) jey; that s,

D\cw =|]1I;.
jeJ
Hence, €2(v) is the disjoint union of the open domains Oy; (v). Now recall from Proposi-
tion 3.3 that x, € H}g(Q (v)) is the unique minimizer on H}; (2 (v)) of the functional

1
GpW)[¥] = 5/

1
|Vz9|2d(x,z)+f/ o9, —H)|* dx
Q) 2Jp

—/ O Ah, d(x,z), 9 € HYy(Q)).
Q(v)

Furthermore, since Ah, belongs to L7(2(v)) by Lemma 3.1, it follows from the definition
of H}(Q2(v)) that

GpI¥ =) Gr,w¥], v e Hy(QW),
jeJ
where G, (VY] isdefined by (3.23) with f := Ahvlolj (v)- Restrictingto 9 HII; Or;(v)),
it thus readily follows that leo,j (v) 1s a minimizer of Gy;(v) on Hé (Or; (v)). Consequently,
leOzj ® =8I by Lemma 3.8. Hence Theorem 3.9 yields
Il + 19510 G =EDlaay) < CLOIA Ly, @)
and
10z xu (5 VL, 1) = rC20) ARl L0501 s 7 € 12,00,

with constants Cj(«x) and C(x) not depending on /;. Therefore, summing with respect to
j € J,weconcludethat x, € H?(2(v)) and satisfies (3.9) and (3.10), since || A/, L Q) <
c(k) by Lemma 3.1. Therefore, as in [16, Theorem 3.5], we may use the version of Gauf3’
Theorem stated in [15, Folgerung 7.5] in the variational characterization of x, featuring G(v)
to deduce that x, € H?(2(v)) is indeed a strong solution to (3.7). This proves Theorem 3.2.
Owing to (3.6) and Lemma 3.1, this also entails Theorem 2.2.

4 Continuity of }, with respecttov

In this section we derive continuity properties of x, and its gradient trace 9, x, (-, v) with
respect to v € S. The latter will also yield the continuity of the function g defined in
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(2.6). Throughout this section we denote positive constants depending only on o by C. The
dependence upon additional parameters will be indicated explicitly.

4.1 H-Continuity: -convergence of G

Let us recall that, according to Proposition 3.3, x, is the unique minimizer on H é (2(v)) of
the functional G(v) introduced in (3.11) as

Gw[v] = %/Q( ) V(@ +hu)|2d(x,z)+% /DU(X)Iﬁ(x, —H) + hy(x, —H)—b, (x)|* dx

ford € H 113 (€2(v)). Now, in order to derive continuity properties of x, (and ¥,) with respect
tov € §, we first prove a I'—convergence result for the set of functionals {G(v), v € S}.
More precisely, given M > 0 we set as before (M) := D x (—H, M) and, forv € S such
that v < M — H, we extend the functional G(v) to L(2(M)) by defining

GW)P] =00, ¥ € Ly(QM))\ Hp(R()).

With these notations we have:

Proposition 4.1 Let M > 0 and consider a sequence (v,),>1 in S and v € S such that
—H<v,(x),vx) <M—H, xeD, v,—vin H(D). .1
Then

['— lim G(v,) =G(v) in La(Q(M)).

Proof The proof is very similar to that of [21, Proposition 3.11].
(i) Asymptotic weak lower semi-continuity. Given a sequence (9,),>1 in L2 (£2(M)) and
¥ € Ly(Q2(M)) satisfying

Uy — O in Ly(QM)), (4.2)
we shall show that
G)[P] < liminf G(vy)[D] . (4.3)
n—o00
We may assume without loss of generality that

Oy € Hy(Qy), n>1, Goo:i= su};Q(vn)[l?n] < 0. 4.4
n>

Let n > 1 and denote the extension by zero of ¥, to Q(M) \ Q(v,) by ¥,. Then ¥, €
H 11; (2(M)) and it follows from (4.1), (4.2), (4.4), and Lemma 3.1 (b) that the sequence
(Un)n>1 1s bounded in H};(Q (M)). Since 2(M) is a Lipschitz domain, the compactness of
the embedding of HY(Q(M)) in H3/4(Q (M)) [12, Theorem 1.4.3.2], the continuity of the
trace operator from H3/4(S2(M)) to Lr(0Q2(M)) (see, e.g., [12, Theorem 1.5.1.2], [26], or
[34, Satz 8.7]) and (4.2) ensure that there is a subsequence of (¢,),>1 (not relabeled) such
that

O,—0 in HY(QM)), 4.5)
Oy — ¥ in Ly(dQ(M)). (4.6)
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In particular, ¥ € HY(Q(v)) and its trace 9 (-, v) is well-defined in Lo(D, (H + v)dx)
according to Lemma 3.6. Similarly, foreachn > 1, ¢ € H'(Q2(vy)) and its trace 9 (-, v,) is
well-defined in L, (D, (H + v,) dx). Consequently, forn > 1,

f<H+v)(H+vn)|19(-,v)|2dx szf<H+v)(H+vn)|z9(-,v)—ﬁ(-,vnnzdx
D D

4.7
+ 2/ (H +v)(H + v)[9 (-, v)|* dx
D
On the one hand, by Lemma A.1 and (4.1),
f (H + v)(H + v) [0 (-, v) — (-, v,) > dx

D

< I(H 4+ v)(H + v)® = )|l Lo 10917, 2 (a1

< M v = vl L) 132917 2 a1 - (4.8)

On the other hand, since ¥, € H 113 (R2(vy)), we infer from (4.1) and Lemma 3.6 that

/D(H + 0)(H + v,) |9, v)|> dx
= [D(H + V) (H + v,)[9 (- va) — P (-, va) [ dx
< M/D(H U v) — D, o) dx
= M 19 = a1 @0y + 2N H + Ol 19 = Pl L@ 100 = 9 L2 |

<MY = FullL,@my) |:sup 1% — Pl Loy + 2M sup [|0;(F — ﬂm)lle(Q(M)):|
m>1 m>1
<2M1+ MO — Il |:||19||H1(Q(M)) + sup ||19m||H|(Q(M))j| . 4.9)
m>1

Now, it readily_ follows from (4.1), (4.2), (4.5), (4.8), (4.9), and the continuous embedding of
Hé (D) in C(D) that the right-hand side of (4.7) converges to zero as n — oo. Therefore,

lim | (H 4 v)(H 4+ v)|9C, v)[>dx =0,
D

n—00
and we use Fatou’s lemma to conclude that
#(,v)=0 in LoD, (H +v)>dx).
Combining this result with (4.5) and (4.6) implies that
9 € Hy(Q(v)). (4.10)
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Now, we infer from (3.3), (4.1), (4.5), (4.10), and the continuous embedding of HO1 (D) in
C (D) that

/ |V<ﬂ+hv>|2d<x,z>=/ |V(z9+hu>|2d(x,z)—f Vo d(x. 2)
Q(v) QM) QM)\Q(v)

< liminf/ V(0 + hy,)?d(x, 2)
QM)

n—oo

- lim/ |Vhy, [>d(x, 2)
n=oe Jon\Q ()

:liminf/ IV (9, + hy)? d(x, 2).
Q(vp)

n—00

Also, from (4.6) and Lemma 3.1 we deduce that

lim [ o |@ + hy,) (. —H) = by,
D

n—oo

2 4 :/ 19 + ho) (-, —H) — by|? dx.
D

Gathering the outcome of the above analysis gives (4.3). B
(ii) Recovery sequence. Consider ¥ € H é (€2(v)) and introduce the function ¥ defined on

QM) :=D x (=2H — M, M)

by
0, xeD,v(x)<z<M,
1_9()6 )= ¥(x,2), xeD, —H <z=<v(x),
VT Y9, —2H —2), xeD, —2H —v(x) <z < —H,
0, xeD, 2H—-—M <z<-2H —v(x),

which is the extension of ¥ by zero in S} (M) \ 2 (v) and the reflection of_the thus obtained
functionto Dx (—2H—M, —H).Then? € HO1 (Q(M)),sothat F := —A9 € H- ' (Q(M)).
Letn > 1. Since

Qua) == Q) U (D x (=2H — M, —H]) C (M),

the distribution F can also be considered as an element of H ! (fZ(vn)) by restriction. Then
there is a unique variational solution ¥, EHO1 (R2(vy)) C Ho1 (Q(M)) to

A%, =F in Q,), 9,=0 on 9Q(v,).
Owing to (4.1) and the continuous embedding of H] (D) in C(D),

dir (€200, QW) = v = VllLoip) = 0,

where dy stands for the Hausdorff distance in fZ(M), see[14, Sect.2.2.3]. Since Q(M)\Q(vn)
has a single connected component for all n > 1, it follows from [33, Theorem 4.1] and [14,
Theorem 3.2.5] that 19,, —din HOl (fZ(M)), where ﬁn eHO] (fZ(M)) is the unique variational
solution to

—Ad=F in QM), ©®=0 on dQ(M).

Clearly, & = © by uniqueness, so that 9, — ¥ in Hy (S(M)). Setting 9, := D,1qq,) €
H'(Q(M)), n > 1, this convergence implies that

9y — 0 in HY(QM)). 4.11)
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Since ¥, = 0in Q (M) \ 2 (v,) we obtain from (3.3), (4.1), and (4.11) that

f |V(z9+hv>|2d(x,z>=f (|v5|2+2v5-vm)d<x,z)+/ |Vhy|*d(x, 2)
Q(v) QM) Q(v)

= lim (V9> + 2V, - Vhy,) d(x, 2)
n— 00 QM)
+ lim |Vhy, |?d(x, 2)

n—00 Q2 (vy)

n—oo

- lim/ IV (0, + hy,)|*d(x, 2) .
Q2 (vy)

Moreover, the continuity of the trace from H L(Q(M)) to Ly(D x {—H}) and (4.11) entail
that

Ou(n—H) — 9(,—H) =9(,—H) in LyD).
These two properties, along with (3.4) and (3.5), imply that
G = lim G(vy)[Pnl;
n—o0
that is, (9%,),>1 is a recovery sequence for ¢ and the claim is proved. o

The Fundamental Theorem of F—convergenc_e, see [9, Corollary 7.20], then yields the
following continuous dependence of x, on v € S:

Corollary 4.2 Suppose (4.1) and assume further that there is k > O such that
lvllg2py <« and lvpllgzpy <k, n>=1. 4.12)
Then
lim G(vn)[xv, | = GW)[xv] (4.13)
n—o00
and, forr € [1, 00),

Tim s, = ol @an = Ml G —H) = xuG —HllLm) =0.  (“4.14)

Proof Tt readily follows from (4.1), (4.12), and Theorem 3.2 that
(Xv,)n>1 1is bounded in HY(Q(M)) 4.15)

and thus relatively compact in L, (£2(M)) by [12, Theorem 1.4.5.2]. According to Proposi-
tion4.1, we deduce from the Fundamental Theorem of I'-convergence, see [9, Corollary 7.20],
that any cluster point of ()y,)n>1 in L2(2(M)) is a minimizer of G(v) and thus coincides
with yx, by Proposition 3.3. Therefore,

nll)ﬂolo lxv, — xvllLamy) =0, 4.16)

and, using once more [9, Corollary 7.20], we obtain (4.13).

We are left with proving (4.14). To this end, we first observe that, since 2 (M) is a Lipschitz
domain, [12, Theorem 1.4.3.2, Theorem 1.4.5.2] imply that H'(Q(M)) compactly embeds
in Wq3 /24 (2(M)) for g > 2. Thus, the continuity of the trace operator from Wq3 /24 (2(M))
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to Ly (382(M)) (see [12, Theorem 1.5.1.2] and [26]), along with (4.15) and (4.16), ensure
that there is a subsequence of (), )n>1 (not relabeled) such that

Xo,—Xv in Hy(QM)), (4.17)
X, —H) = xu(-,—H) in Ly(D), ¢ >2. (4.18)

Notice that (4.18) yields the second assertion of (4.14). It now follows from (3.3), (3.4), (3.5),
(4.13), and (4.18) that

Jim 19 Gt + )Wy = Jm 19 Gt + o) o0
+ lim [ Vhy, ”%Z(Q(M)\Q(v,,))
= IV00 + h)lL @) + IV @omew)
= IVt + ) 13 2y -

This property, along with (3.3) and (4.17), guarantees that (V x,, ),>1 converges to V y, in
L>(S2(M)) and the proof of (4.14) is complete. ]

4.2 Continuity of 8, ¥, (-, v) with respect to v
Finally, in order to establish the continuity of the function g defined in (2.6) we need also

to investigate the continuous dependence of the gradient trace . x, (-, v) on v € S, the main
difficulty arising when C(v) # . In this regard we note:

Proposition 4.3 Consider v € Sanda sequence (Vy)y>1 in S such that

vl g2(py + sup lvnll g2(py < & and  lim |lv, = vllg1py =0. (4.19)
l’lZl n—oo

Then
L(vy,) = L(v) in L.(D) for re[l,00), (4.20)
where £(v) is given by

A xv(x,v(x)), x € D\C(v),

to)@) = {0, xecw).

Proof Thanks to (4.19) and the continuous embedding of H 2(D) in Loo(D), we may fix
M > H (only depending on «) such that

—H <v,(x),v(x) <M—-H, xeD, n>1. 4.21)
Step 1. We first establish an estimate ensuring that there is no concentration of 9, x, (-, v) on

small subsets of D\C(v). Indeed, since x, € H>(S2(v)) we have x, (x, -) € H2((—H,v(x)))
for a.a. x € D\ C(v), so that it follows from the boundary conditions (3.18b) and (3.18c)
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that

v(x)
9z xw (x, v(x)) =3zxu(x,—H)+/ 32 xo(x, 2) dz
—H

v(x) )
=0 (x) xu(x, —H) +f 07 xv(x, z)dz
—H

v(x) v(x)
o(x) (xv<x,v(x>)— f azxv<x,z)dz) + / 92 xo(x, 2) dz
—H

v(x)
= / ., (02 x0(x, 2) — 0 () x (x, 2)) dz

fora.a. x € D\ C(v). Thus, for an arbitrary measurable subset £ C D \ C(v), we infer from
Holder’s inequality that

f 19 10 (6, v(x))] dx
E

v(x)
5// (182 x0(x, )] + 0 (018 X0 (x, 1) dzdx
EJ—-H

172

1/2
< (/ (H+v)(x>dx) (/ (2|a§xu(x,z)|2+2||o||§o|azxu(x,z)|2)d<x,z>>
E Q(v)

1/2

Clearly, the same proof implies that, for any n > 1 and arbitrary measurable subset £ C
D\ C(vn),

12
f [0z Xv, (X, v (x))|dx < C ([ (H 4 v,)(x) dx) I X, | 22 0)) - (4.22b)
E E

Step 2. We next handle the behavior of 9, x, (-, v) where v stays away from — H . To this end,
let e € (0, H/2) and define

A(e):={xeD : v(x)>—H + 2¢}, (4.23)

which is a non-empty open subset of D, since v € C (D) with v(£L) = 0. We can thus write
it as a countable union of disjoint open intervals (A ;(¢)) ey, see [1, IE(.Proposition 1.8].
Also, owing to (4.19) and the continuous embedding of H 1(D) in C(D), there is n, > 1
such that

v(x) —e <v,(x) <vx)+e, xeD, n>ng. (4.24)
A straightforward consequence of (4.23) and (4.24) is that
{(x,z2) e A(e) x [-H,0) : —H <z <v(x)—¢}CQy), n>ne. (4.25)
Therefore, the function X, ., given by
Xne(x) 1= 0,60 (x, v(X) — &) — 97y, (x, V(x) — &), x € A(e), n>ng,
is well-defined. Let j € J and n > n,. Since 9, x, and 9, x,, belong to HI(OAJ.(S)(U —¢)),
the set OA/.(E) (v —¢) being defined in (3.14), it follows from (3.19), (4.21), and the definition
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of A(e) that

& f | X e (x)]* dx
Aj(e)

< / | X ()2 (H 4+ v(x) — &) dx
Aj(e)
< 19:00 = X 17504, 01
+20H + v = ell oo @) 19: 0w = X0 122004 oy -0 192 0w = X0 1120y 0-20)
<1006 = Xu) WL, 1)
+ COON0t0 = X022 i1 (1020012000 + 18200 200, runn) )
Summing the above inequality over j € J and noticing that

Z 10z (v = Xv ) L2 (O ;6 (1)) (||812Xv||L2((’)Aj(5)(v)) + 1192 X, ||L2(OAj(g)(vn)))
jeJ
1/2

IA

2
218200 = X020, 000
jeJ ’
1/2

2
2 2
X E (”aZXv“Lz(OAj(g)(v))“‘”aZXvn”Lz(OAj(S)(vn)))

jed
172
2. 12 2 2
= V200: 0 = ) la@in | D2 (18200000, o + 10200 104 000
jes
< V2010 Ot = xw) Loy (197 60 lza@ ) + 102 10, I 2 @w,0)
< CUN0z(xv — X ) lLa@ )
by Cauchy-Schwarz’ inequality, (4.19), and Theorem 3.2, we obtain
£ / X, 0> dx < 110 (o — Xu) 17 yay) + COON0: Ot — Xu) ILa@(ar)) -
A(e)
We now infer from (4.14) and the above inequality that
lim |Xp.e(x)>dx =0. (4.26)
n—=00 J A (g)
We next set
Yu(x) := 0 0 (x, v(x)) = 0z x0, (X, va (X)),  x €A(e), n=ne.
Using (4.24) and Holder’s and Young’s inequalities, we obtain, for j € J,
v 2 Up 2
YallLia;@) < N1 Xnellia; e +/ / 97 xv(+, 2)dz —/ 97 Xv, (-, 2) dz| dx
vV—E€ v—E€

Aj(e

v
< Xl + / / 1920 (- 2)| dzdx
Aj(e) Jv—e
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Un
+/ /IBZZXUn(-,Z)Idzdx
Aj(e) Jv—e
v 1/2
s||Xn,a||Ll<A,.<g>>+‘/e|A,~(s)|(/ f |afxv<-,z>|2dzdx)
Aj(e) Jv—e

. 1/2
+ /2¢|A (o) / / 182 %, (-, 2| dzdx
! ( Aj(e) Jv—e e

< ||X"8”LI(A/(6))+ [|A i(e )|+7/ / |82XU( Z)|2dde
Aj(e)

+£|A (&) + e / ' |322Xv,,(-,z)|2d2dx~
-H

Aj(e)

Summing over j € J and using (4.19) and Theorem 3.2 give

1YullL ae) < 1 XnellLyae) + NOINGIES \/g”Xu”HZ(Q(y)) + \/EHXU,, I 52w,
< I XnellLyace) + C)Ve.

Owing to (4.26), we may take the limit » — oo in the previous inequality and obtain

limsup |Yullz,(ae) < C(k)/E.

n—o00

Since A(e) C A(S) forall § € (0, €), we infer from the above inequality that

lim sup [[¥a 2, ey = lim sup [ ¥all 2 aey) = Cli)V/'8

n—oo

and we may pass to the limit § — 0 to conclude that
lim |Yallz,(a@) =0, €€(0,H/2). (4.27)
n—o0
Step 3. Finally, we infer from (4.19), (4.21), (4.22), and Theorem 3.2 that
[1€(vn) — €)ILy (D)

< / [£(vy) — £(v)] dx +/ [£(vy)] dx +/ [£(v)|dx
Ale) D\A(e) D\A(e)

= ”Yn”Ll(A(a)) “l‘/ |asz,,('7 vp)|dx + / [0: v (-, v)| dx
(D\A(e)\C(vn) (D\A(e)\C(v)

1/2
< YullLyae) +C (/ (H + vy)(x) dx) v, 1220,
D\A(e)\C(vn)

1/2
+C </ (H +v)(x) dx) X 12 vy
(D\A(eN\C(v)

12
< N YullL ae) + C) (];) (H +v)(x) dx)

\A(e)
1/2
+ C(x) (/ (H + v,)(x) dx) .
D\A(e)
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Since0 < H+v <2¢and0 < H+ v, <3ein D\ A(¢e) forn > n, by (4.23) and (4.24),
we further obtain

1€(vn) — €Ly p) < 1YullLiace) + CVE.

We now first let n — oo with the help of (4.27) and then take the limit ¢ — 0 to conclude
that

lim [[€(v,) —£W)llL,p) =0. (4.28)
n—0o0

Finally, given r € [1, c0), we infer from Holder’s inequality, Lemma 3.1, (3.10), and (4.19)
that
1/@2r—1) 20r=1)/@2r=1)

1) — L)L, ) < 1€ — €I e — L)}l )
1/2r—1 2(r—=1)/2r—1 2(r—=1)/2r—1
< llewn) = G (le@n 7y ) & ey ) @)
1/2r—1
< Cle. L) — L)/

and the assertion follows from (4.28). O

Summarizing the outcome of this section, we have obtained continuity properties of the
electrostatic energy E, and the function g introduced in (2.6).

Theorem 4.4 The electrostatic energy E, : S — R is continuous for the weak topology of
H2%(D). The function g : S — L, (D) is continuous for each r € [1, 00), the set S being still
endowed with the weak topology of H?(D).

Proof Let us first recall that, if (vs)n>1 is a sequence in S converging weakly in H2(D) to
v € §, then there is ¥ > 0 such that (4.12) and (4.19) hold true. Consequently, we infer from
Corollary 4.2 that

lim E.(v,) = _nli)ngo G xw,] = —GW)x] = Ec(v),

n—oo

thereby establishing the stated continuity of E,. Next, let v € S. Since 3,v = 0 a.e. in C(v),
it follows from (2.6) and Proposition 4.3 that

1 2 2
gW)(x) = F (A + [0 v (X)) [¢) () = @uwh)u(x, v(x))]
+ 00 [xu(e, —H) + hy(x, —=H) = by(0) ] Bwh)y (x)

1 2 2
= 5 [|@m* + (@) + @) ] (x v
for x € D. The stated continuity of g then readily follows from Proposition 4.3 and the
C! -regularity of 7 and b (see also Lemma 3.1(b)). O

5 Shape derivative of the electrostatic energy

In this section we investigate differentiability properties of the electrostatic energy

1
E.(u) = _5/9( : |V1//u’2d(x,z)

1
—5/ o () [ (v, —H) = b, (x)| dx
D
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with respect to u € S, where v, is the strong solution to (1.3), see Theorem 2.2. Owing
to the dependence of v, on the domain 2 (u) this resembles the computation of a shape
derivative, a topic which has received considerable attention in recent years, see [8,14,32]
and the references therein. Note that we may write alternatively E,(u) = —G ) [V, — hy],
since x, = ¥, — h, is the strong solution to (3.7) (with v = u) given by Theorem 3.2.

As might be expected, the switch between boundary conditions for ¥, when C(u) # ¢
generates additional difficulties and we begin with the differentiability of v, with respect to
ues.

Lemma 5.1 Letu € S be fixed and define, for v € S, the transformation ®, : Q2 (u) — 2(v)
by

v(x) —u(x)

By(x,7) = <x,z+ H+u(x)

(z+ H)) . (.2 eQM).
Then there exists a neighborhood U of u in S such that the mapping
U — Hp(Qu)), v xyo00,

is continuously differentiable, where x, = Y, — hy € Hllg(Q(v)) solves (3.7), see Theo-
rem 3.2, and S is endowed with the H*(D)-topology.

Proof The proof follows the lines of [14, Theorem 5.3.2], a similar proof is given in [21,
Lemma 4.1]. We thus only provide a very brief sketch here. Let u € S and v € S. Setting
&, 1= xp o ®, and performing a change of variables (x, z7) = O, (x, z), the weak formulation
(3.12) satisfied by yx, (as a critical point of G(v)) can be written in the form

[ Jo (DO (DOT)'VE,) - Vo d(x. 2) + / o (5u6) (- —H) dx

Q(u) D

—_ / Jo (DO (Vhy 0 ©,)) - Vo d(x. 2) 5.1)
Q(u)

+Aa[hv — hy(, —H)]¢(, —H)dx

for ¢ € H}?(Q(u)), where J,, := |det(D®,)|. Therefore, (5.1) is equivalent to
Fw,§)=0, ves, (5.2)
for some Fréchet differentiable function
F:Sx Hy(Qw) — (Hy(Qw) .
One then uses the Implicit Function Theorem to derive that &, depends smoothly on v. 0O

As a next step we establish the Fréchet differentiability of E, on the open set S. Foru € §
recall that g(u) is given by (2.6a) since C(u) = ¢ in this case.

Proposition 5.2 Let S be endowed with the H?(D)-topology. Then the electrostatic energy
E. : S — R is continuously Fréchet differentiable with

3uEe(u)[l9]=/ g(u)v dx
D

foru € Sand® € H*(D) N H} (D).
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Proof In this proof we shall use the notation from Lemma 5.1. We fix u € S and recall from
Lemma 5.1 that the mapping v — &, = x, o ©®, is continuously differentiable with respect
to v in a neighborhood U of u in S and takes values in HI]?(Q(M)). With ¥, = xy + hy,
Jy = |det(D®,)|, and the change of variables (x, 7) = ®,(x, z), we obtain that, for v € U,

1 1
Ee(v>=—5/m)|wv|2d(x,z)—5/l)a|wu<x, _H) — () dx

_ 1/
2 Jaw

1
—5/ o1 + o) (6, —H) — by ()2 dx
D

2
(DONYTIVE, + Vh, 00, J,d(x,2)

We introduce the functions

j) = (DO 'VE, + Vh, 00, inQ),
m(v) == (& +hy)(.—H) —b, inD.

Then, recalling that / and § are C'-functions in all their arguments by (2.1b), we conclude
that the Fréchet derivative of E, at u applied to 9 € H*(D) N H(} (D) is given by

WE(u)[P0] = 0 Ec(V)[D]ly=u = _/

Qu

1
—5/ j ) (av-]v[ﬁ“v:u)d(xvz)_/ o m(u) (dym)[?]y=y) dx .
Q(u) D

) J@) - 0y j()[P]y=y) Ju d(x, 2)

On the one hand, we argue as in the proof of [21, Equation (4.12)] to show that

1
—/ J@) - (3 j ([P lv=u) Ju d(x,2) — 5/ 1 @)1 @y Jy[9]]v=u) d(x, 2)
Q(u) Q(u)

= _/ VWM ' v(avsv[ﬁﬂu:u + (awh)uﬁ) d(X, Z)
Q(u)

+/ Vi - [azxu v <(Z + H”’) _ L HWV((azh)u)] d(x, 2)
Q(u)

H+u H+u
—%/m |wfu|2HL+u d(x, 7).
On the other hand, since m () = ¥, (-, —H) — b, in D and
Dm0 lv=u = @&s[9]lv=u) (. —H) + @wh)u (. —H) ¥ — (), ? in D,
we see that
- /D o m(u) (Fym()[9]|y=y) dx

= —/DU[%(', _H) - hu][(avgv[ﬁ“v:u)(" _H)+(awh)u(', _H) U - (8wh)u 19] dx.
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The above two identities yield

duEe(w)[0] = _/ Vi - v(avgv[ﬁﬂv:u + (8wh)u19) d(x, 2)
Q(u)

@+ H)Y\ (@+H)D
+A(M) V'(l/u . [aquV( H+u >_ Htu V((azh)u)i| d(X,Z)

1 ?
- = Vi ?———d(x,
2/Q(u)l Vul g, 4. 2)

- /Do'[l//u('v —H) - hu][(avé:v[ﬁ“v:u)('a —H)

+ @uh)u (-, —H) O — (h), 9] dx .

(5.3)

Next we shall simplify the right-hand side of (5.3). Using Gauf3’ Theorem, the fact that , is
a strong solution to (1.3a), ¥ = 0 on d D, and the fact that 9,&,[¥]|,=, belongs to H113 (RQ(w)),
the first integral on the right-hand side of (5.3) can be rewritten in the form

- /Q VY VBB Noma + (G0)a?) 4052
_ /D @) (. 1(0)) D (O[B4 — Bt D] (x, u(x)) dx
+ /D (@&l ) (. — H) + Buh) (o —H) ()] 023 (x, —H) dx
Since, due to (1.3c),
Vu(x, —H) = o (x)[Yu(x, —H) — b, (x)], x €D,

it follows that
- /Q(M) V- V(00 [0 lv=u + (Bwh)u?) d(x, 2)

- /D ﬁ(x)[(awh)u(azwu — 8x1ﬁu)](x, u(x)) dx (5.4)

+ /D o () [Yu(x, —H) — by ()] [0u&o[#][v=u) (x, —H) 4+ @wh)u(x, —H) 9 (x)] dx .

We next proceed as in [21, p. 486] to simplify the second integral on the right-hand side of
(5.3) and show that it can be written

(z+ H)Y (z+ H)Y
/gw)w”'[a“”( — )— e V((azh)u)}d(x,z)

=5 [ vl - 5 [ 0019 e
2o HFu TN E TR, o

+ /D 2.0) [ (3= — @A) (03 — Bt 1) | o, ) v
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Combining this identity with (5.3) and (5.4) yields
By Eow)[9] = fD 900 [ (09 = @k = @) (v — Do d.9) |6, 1)) d
- %f 9 () [V, (x, u(x))]* dx (5.5)
D
+/DG(X)[1/fu(x, —H) — b (x)] (9wh)u (x) ¥ (x) dx .

Since (1.3b) entails ¥, (x, u(x)) = h(x, u(x), u(x)), x € D, we have
B Y (6, w(x)) = (B (x, u(x)) — dxu () [0 9 — @k — @) ](x, u(x)), x € D,
and hence, for x € D,

1

S IV ) = [0 = @k = @) (0 — dr ) |, o))

1
= _5(1 + |axu(x)|2) [azwu = (0;h)u — (awh)u]z(xa u(x))
1
+ S [1@hyul + (@:hyu + @) Joxux))
Inserting this identity into (5.5) gives
1
0 Ec()[9] = 5 /D (14 101 () ) [0:% — (1) — Buh)a]” (x, u(x)) 9 (x) dx
1 2 2
3 /D [10xh)ul” + (2R 4+ Bwh)u)® J(x, u(x)) 9 (x) dx
+/DG(X)[%()€, —H) — b, (x)] () (x) 9 (x) dx
= / gu)(x) ¥ (x)dx,
D

according to (2.6a). Finally, the continuity of
dE.: S — L(H*(D)N Hy (D), R)
readily follows from Theorem 4.4. O

We finally provide the differentiability property of E, on the closed set S. More precisely,
we show that E, admits a directional derivative at a point # € S in any direction of —u + S,
which is given by g(u) defined in (2.6). Recall that C(#) may be non-empty in this case.

Proposition 5.3 Letfu € S and w € S. Then

lim : [Ee(u +s(w —u)) — Ee(u)] = / gw)(w —u)dx.
+ D

s—>0t §

Proposition 5.3 is a rather immediate consequence of Theorem 4.4, Proposition 5.2, and
the observation that u +s(w —u) = (1 —s)u +sw € Sforallu € S, w € S,and s € (0, 1].
We refer to [21, Corollary 4.3] for a detailed proof.

@ Springer



16 Page 36 of 51 Ph. Laurencot et al.

6 Proofs of Theorem 2.3 and Theorem 2.4fora =0

In this section we deal with the case @ = 0 and recall that the total energy is then given by
E(u) = Ep(u) + E(u)
with mechanical energy
B T
Ep () = S102uL, p) + 5 10:lZ )

and electrostatic energy

1 2
Eo(u) = —5/ |V | d(x, 2)
Q(u)

|
_5/ o ()Y (x, —H) — b, (x| dx .
D

6.1 Existence of a minimizer of a regularized energy

As already noted in [21], the boundedness from below of the functional E is a priori unclear
since o = 0. To cope with this issue, we work with the regularized functional given by

A _
Ex(u) = E@) + 1w = b4,y € So. ©6.1)

for k > H, where

K4
A= 8<? +21<2) ,

and the constant K is introduced in (2.4).

Lemma 6.1 For each k > H, the functional & is bounded from below with

Bazup2 A Ol — etk
Er(u) = 4 Haxu”Lz(D) + 4 Il (u )+||L2(D) c(k)
for some constant c(k) > 0.

Proof By (2.3), (2.8), and Proposition 3.3,

—Ec(u) =Gy — hy] = Gw)[0]

= l/ Ithlzd(x,Z)+1/ U(X)[hu(x,—H)—hu(x)]zdx
2 Jaw 2Jp

IA

/ [(@:h); + |3xul*(@wh)} + (3;1)3] dx
Q)
+5 / [t =] + [0 ]
D

1 2 9 2
< K2/ <2 FuC)” | 10 >d(x,z)+26K2|D|
Q(u)

HA4+ulx) H4+ulx)
< K2 (21D + 21l ) + 1013, ) + 26K D]

=2(146)|DIK* + 2K |[ull} , p) + K*10:ull7,p) -
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Now, since u € S,

f |9,ul* dx = —/ udZudx < ull o) 102ull Lo (D) »
D D
and we further obtain with the help of Young’s inequality that
—Ec(u) <2(14+6)|DIK* + 2K |lull},p) + K*lull Ly 1971l L, 0)
4
B

3 K
<2(1+5)|DIK*+ (? + 2K2> lullf,py + "

Using this estimate in the definition of & (u) along with

2 12
||3x’4||L2(D)-

||u||'{2(D)=/Duzl(km)(u)dx+/Du21[_H,k](u)dx

<20l — k4117, p) + 2k /D 1k.00) () dx + &2 /D 11—y 1 (u) dx
<2l — k1117, p) + 2K*ID],

we derive
B2 12 - , (K* 2 2
E(u) > Z”axu”Lz(D) —2(1+0)|D|IK” — 7/3 +2K ||14||L2(D)

A
S (R OR AP

B

>
4

o2u|? (k é21(—421@ k)42
[ x”lle(D)_c()+ 7~ B + [l (e — +||L2(D)

B A
> TI0%ulli, ) + 7 1@ =Rz, ) — ),
thereby completing the proof. O

Due to the weak lower semicontinuity of E,, in H 2(D) and the continuity of E, with
respect to the weak topology of H 2(D) (see Theorem 4.4), Lemma 6.1 allows us to apply
tpe direct method of the calculus of variations to derive the existence of a minimizer of & in
So.

Corollary 6.2 Foreach k > H, the functional & has at least one minimizer uy € 5'0; that is,
Er(ux) = min & . (6.2)

So

6.2 Derivation of the Euler-Lagrange equation for the regularized energy

We shall nextidentify the Euler-Lagrange equation satisfied by a minimizer of the regularized
energy & on Sp.

Proposition 6.3 Letk > H and letu € So be a minimizer of & on So. Then u is an H*-weak
solution to the variational inequality

Bofu — Td7u+ A — k)4 + dlg (u) > —g() in D, (6.3a)
where 91 S, is the subdifferential of the indicator function HSO of the closed convex subset S

of H*(D); that is,
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f {B82u 92 (w — u) + Ty 3, (w — u) + A(u — k)4 (w — u)} dx

b (6.3b)

> —/ gw)(w —u)dx
D

forall w € Sp.

Proof Letk > H be fixed. C_onsider aminimizeru € Spof & on Spand fixw € Sp := SyNS.
Owing to the convexity of Sp, the function u + s(w — u) = (1 — s)u + sw belongs to Sy for
all s € (0, 1] and the minimizing property of u guarantees that

0 < liminf 1(gk(u +s(w —u) — & u)).

s—>0t 8

Sinceu € Sy c Sandw € Sy C S, Proposition 5.3 implies that

0< / {BOFu 87 (w — u) + Tdyu de(w — u) + A(u — k)4 (w — u)} dx
D

+/ gu)(w —u)dx
D

for all w € Sp. Since Sy is dense in So and (u, g(u)) belongs to H2(D) x Ly(D), this
inequality also holds for any w € Sp. O

Proposition 6.4 There is kg > H depending only on K such that, ifu € Sp is any solution
to the variational inequality (6.3) with k > H, then |u| L. (p) < Kko.

Proof Owing to the continuous embedding of HOI(D) in C(D), the function u belongs to
C(D) with u(+L) = 0. Consequently, the set {x € D : u(x) > —H} is a non-empty open
subset of D and we can write it as a countable union of disjoint open intervals (/) je;, see
[1, IX.Proposition 1.8]. Using once more the property u(+L) = 0 > —H, we may assume
without loss of generality that Iy = (—L, ag) and I1 = (bg, L) forsome —L < ag < bg < L,
and I; C (=L, L) for j € J with j > 2.

Step 1: Thanks to (2.3b) and (2.4a), we infer from Lemma 3.4 that [, | < K in Q(u).
Combining this bound with (2.3), (2.4), (2.6), and (2.8) readily gives

gu)(x) > —26K>— K> =: -Gy, xeD. (6.4)

Step 2: Consider first j € J with j > 2 and let & € D(/;). Since u > —H in the support of
0, the function u =+ 50 belongs to Sp for § > 0 small enough. We thus infer from (6.3b) that

15/ {BOZu 820 + tdu 3.0 + A(u — k)4 0} dx > :Fa/ gw)f dx
I; I;

hence

/ [BOZu 330 + dxu 9,0 + A — k) 40} dx = —/ gw)f dx .
1; 1;

Consequently, using the function S;; defined in Proposition D.1, we realize that u — Sj; €
H*(I j) is a weak solution to the boundary value problem

Botw — 102w = —Go — gu) — A(u — k)4 in I, (6.52)
w=dw=0 in dl;, (6.5b)
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the boundary conditions (6.5b) being a consequence of the definitionof I}, j > 2,the H 2(D)-
regularity of u, and the constraint u > — H. Taking into account that g(u) + A(u — k)+ €
Ly (1) by Theorem 4.4, classical elliptic regularity theory implies thatu — S;; € H ‘a j)is
a strong solution to (6.5). Since the right hand side of (6.5a) is non-positive due to (6.4), it
now follows from a version of Boggio’s comparison principle [7,13,17,29] that u — S, <0
in I, so that u(x) < ko for x € I_j and j > 2 by Proposition D.1.

Step 3: We next handle the case j = 0 in which Iy = (—L, ap). We first argue as in the
previous step to conclude that

/ {BO2u 20 + 18,1 8,0 + A(u — k) 40} dx = —/ g(u)0 dx (6.6)
1o Io

for all @ € D(lp) and that u(—L) = d,u(—L) = u(ap) + H = d,u(ap) = 0. Consequently,
we infer from (6.6) and Proposition D.1 that u — S;, € H 2(Io) is a weak solution to the
boundary value problem

Botw — 182w = —Go — gu) — A(u — k)4 in I,
w=0dw=0 on 9.
We then argue as in Step 2 to establish that u — Sy, < 0in Iy = (—L, ap). Hence, u < ko
in [—L, ap] by Proposition D.1.

Step 4: For j = 1 (I} = (bo, L)), we proceed as in Step 3 using Proposition D.1 to deduce
that u < k¢ in [bg, L]. This completes the proof. ]

6.3 Proof of Theorem 2.3 fora =0
Let k > H and consider a minimizer u; € Sp of the functional & on Sy as provided by

Corollary 6.2. Then, —H < uj < ko in D according to Proposition 6.4. Therefore, if £ > ko,
then

E(up) = Equr) = Eup) < () = EQ) + %n(v ~ 413,00y, vES. 6.7
Now, it follows from Lemma 6.1 and the fact that O e 50 that, for k > «y,
gnaﬁukniz(m < & (r) + (k) < Ex(0) + c(ko) = E(0) + c(ko) .
Therefore, (uy)r>, is bounded in H 2(D) and there is a subsequence of (uy)>«, (not rela-
beled) which converges weakly in H?(D) and strongly in H'(D) towards some u, € Sp.

Due to the weak lower semicontinuity of E,, in H 2(D) and the continuity of E, with respect
to the weak topology of H2(D) (see Theorem 4.4), we readily infer from (6.7) that

E(,) <E(@), veS,
after taking into account that

lim |(v =K+l =0, v e LaD).
k—00
Consequently, i, € Sy is a minimizer of E on Sy. This proves Theorem 2.3.
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6.4 Proof of Theorem 2.4fora =0

Let u € S be any minimizer of E on Sp. Proceeding as in the proof of Proposition 6.3, this
implies that u € So is an H?-weak solution to the variational inequality

Boju — tdju + +9lg (u) > —g(u) in D,

which completes the proof of Theorem 2.4.

7 Proofs of Theorem 2.3 and Theorem 2.4 fora > 0

Consider now « > 0. In that case, the total energy is given by
E(u) = En(u) + E.(u)

with mechanical energy

T

B
En() = S103u13,0) + (3

o
+ S0l ) N5l

and electrostatic energy

1 2
E.(u) = _5/ |VWL¢| d(x, 2)
Q)

1
—5/ o ()| (x, —H) — b, (x)|* dx .
D

Observe that, since @ > 0, the mechanical energy E,, features a super-quadratic term in
l0xullz,(py which has the following far-reaching consequence, which is shown as in the
proof of [21, Theorem 5.1], with the help of (2.3), (2.8), and Proposition 3.3 for the derivation
of an appropriate upper bound on —E, (1), see the proof of Lemma 6.1.

Lemma 7.1 The functional E is bounded from below with

B

E@) = J10%ulL,p) — ¢

for some constant ¢ > 0.

Once Lemma 7.1 is established, the existence of a minimizer of E on So follows from the
weak lower semicontinuity of E,, in H2(D) and the continuity of E, with respect to the weak
topology of H2(D) (see Corollary 4.2) by the direct method of the calculus of variations,
hence Theorem 2.3 for « > 0 (see also [21, Theorem 5.1]). As for the proof of Theorem 2.4
for @ > 0, it is the same as that for « = 0, see Sect. 6.4.
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Appendix A: A technical lemma

LemmaA.1 Let I and J be two bounded intervals in ]R,_ and let U l_7e a bounded open subset
of I x J. Consider v € HY\(U) and functions v € C(I), w € C(I), and p € C(1), p > 0,
such that

(a) x = U (x,v(x)) and x — U (x, w(x)) are well-defined and belor_zg to Lr(1, pdx);
(b) {(x,z) € I xJ :min{v(x), wx)} <z < max{v(x), wx)}} C U.

Then

f 96 0) — 90 w)Podr < 1w — ol 2012, g
1

Proof Owing to (b) we have, fora.a. x € I,

2
v(x)
|l9(x,v(x))—z9(x,w(x))|2= (/ azﬂ(x,z)dz) .

(x)

Integrating with respect to x € I after multiplication by p(x) and using Holder’s inequality
give

v(x)
/ 10,9 (x, 2)|%dz| p(x)dx

w(x)

/[|0<x,v(x>)—0<x,w(x>>|2p<x>dx sf1|v(x>—w(x>|

< ||p<v—w>||Loou)/U|azz9<x,z)|2d(x,z>

and the proof is complete. O

Appendix B: Proof of Lemma 3.11

The proof of Lemma 3.11 relies on the following result, which can be seen as an extension
of [12, Lemma 4.3.1.3] to include Robin boundary conditions.

LemmaB.1 Let I := (a,b) and set Ry = I x (0, 1). Consider ¢ € H*(R) and n € C(I)
such that

pla,m) =¢b,n) =0, ne(,1), (B.1a)
px, 1) = —=0,0(x,0) + nx)e(x,0) =0, xel. (B.1b)

Then

/ 020020 d(x. 1) = / 193y dCx. ) + / (300, (1)) (-, 0) dx .
Ri Ry 1

Proof We put £(x, ) := e "™®gp(x, n) and p(x, ) := ™ for (x,n) € R;. Owing to
the regularity of ¢ and u, the function & belongs to H 2(R;) and, for (x,n) € Ry,

A&, ) = e ™) [3,0(x, ) — ndep(X)p(x, M1
e, ) = e MO [3,00x, 1) — u()ex, )] .
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Consequently, the functions F and G, defined for (x, n) € R; by

F(x,n) = p(x,n)0x&(x, n) = dxp(x, n) — ndcu(x)p(x,n),
G(x,n) == p(x,n)dpé(x, n) = dyex, n) — nwx)ex, n),

satisfy

Ga,n=Gb,n=0, ne(l)),
Fx,1)=G(x,0)=0, xel,

since, by (B.1),

a?’lq)(a’ 77) = a?’)q)(b’ 77) = O ’ n € (07 1) ’

(B.2)
0yp(x,1) =0, xel.
We then infer from [12, Lemma 4.3.1.3] that
/ 0x (00x§) 0y (03y§) d(x, ) = f 0 F0,G d(x,n) =/ 0y FoxG d(x,n)
Ry Ry Ry
= [ 008,008,006 dcx.
R
that is,
3
0= [ [s0520 ~ ctngP] ace.m+ 31 (83)
Ri i
j=1
where

I :

/ [0, (1)320 + 3, (u)dr 0] dx. ).

Ri

L= /7; [—3x(’7§03xﬂ)3%¢? + 3n(ﬂ§03xﬂ)3x3n¢>] d(x,n),
I = /R [0x (n@dx )0y (T) — 0y (Ndx )0y (T)]| d(x, 1)
1

First, integrating by parts and using the boundary values (B.1) of ¢ give

1 x=b n=1
I = / [nwaxuﬁn(mp)] dn — / [ngoaxuax(mp)] dx =0
0 x=a I n=0

and

x=b

n=1 !
L= —/ [ax(waxu)anw]n 04X +/ [an(”waxﬂ)a"g”] a1
I = 0

X=a

1
= —/Iﬁxuax¢(~, 1Doye, 1) dx +/0 0y (n@dx ) (b, )0y (b, -) dn

1
- /0 Oy (npdyu)(a, -)oye(a,-) dn .
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Owing to (B.2) we conclude that I = 0. Finally, we deduce from (B.1) and (B.2) after
integrating by parts that

1 x=b n=1
L=- f [onuorng| — dn+ / [0:(uordeg] ax
0 x=a I n=0
1

1
—_ /0 (BB, Yaye(b, ) dn + /0 (@ (a, Hdyp(a, ) dn
+ /1 0, (1) (-, D (-, 1) dx — /[ 3 (1) (- 00, (-, 0) dx

= —/3X(M¢)(-,0)3x<ﬂ(-,0) dx .
I
Collecting (B.3) and the formulas for /;, 1 < j < 3, completes the proof. O

Proof of Lemma 3.11 For (x, n) € R, we define

D(x,n) = (x, —H +n(H +v(x))), (B4
or, equivalently,
(x )—@(xﬂ> (x,2) € 01 (v)
folr2) = TH4+vx) )’ < R

Since ¢, € H%(O;(v)) by Lemma 3.10 and v € HZ(I), the function ® belongs to HX(R))
and we infer from (3.18b) and (3.18c¢) that

Q@@ n) =20b.n=0, ne@]l),

B.5
P(x,1)=—-0,P(x,0) +0x)(H+v)(x)P(x,0) =0, xel. (B-5)
Next,
3
= [ e =Y, B.6)
01() P
where
d(x,
Ji ;:/ 202 o m
Ry H+v
Ay of v N o | d )
Jy = —2n———0,0,D —— ) 3D 0D ,
? /R:|: "H o T <H+U> Tl HAw
av \> 02 d(x,
J3::/ n 2( xU) % 3,]@35@ (x 7]).
Ry H+v H+v H+v
Since

32< ® )_ 9D dyv 13( dyv )q)
NVH+v) VH+v H+v)2" 0 27 \(H+v)2)

we further obtain
3
Ji = Z Jui s
i=1
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where

J11:=/ 32( ¢ )32( CD )d(x,n),
’ JH+v) "\VH +v

J -—/ _ v @32<L> d(x, 1)
1,2 .= R, (H+U)3/2 X n /;H—{—U >N

J ~—1/a( O >¢az< ¢ )d(x)
1’3._2 R, x (H +v)3/2 n m -

We first infer from (B.5) and Lemma B.1 (with ¢ = ®/+/H + v and u = o (H + v)) that

2

]
Jl,l :/RI ax8n< %H—I—v) d(x, 77)
[
+/;3x (Jﬁ) (,0) 0x (GVH-i‘U@) (,0) dx
_/ Md( ) — / 873.;1)33@(1( )
=)o Htu X, n o, (Ht 02" x,n
1 (05 V) 5
+ - LAH+ﬁW|dwm
+/ax< CD )(-,O)ax(a«/H—f—vd))(-,O)dx.
I ~vH +v

Next, we integrate by parts and use the boundary values (B.5) of ® to obtain

OV
J,—/ 78®8®d(xr])
P27, (H +0)?

/I(Hiiv)z[a ®9 q:]n ;dx—/R (HaJriv)za @3, 3, ® d(x, )

00,V Oy ¥
= —/ D(,0)0,P(-,0)dx — /R, ma @00, @ d(x, n)

1 (H+v)

and

92y 3 (3yv)? 5
T3 = v 2 92 d(x,
1.3 /R, (2(H 102 4(H+ v)3> y @ dle.m)

_ v 3 (@) -
a /I <2(H +v)? 4 (H + v)3) I:Qanq):lnzo dx
afv 3 (3y0)? ,
— /’;?,, <2(H+ v)2 - Z(H + U)3> |ar’q>| d(x, )7)

_ ogv 3(W¥)@(w%
__ﬁ Qw+m AH+v2)

dzv 3 (3e0)° -
_/Rz (2(H+v)2_4(H+v)3> 0 X, 1) .
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Next,
(3 v)?
J3 = 2n 33 ¢‘3 ®d(x,n) + J32
r, (H+v)
with
noZv
J3p = — T 0, ®17)d(x, n) .
3,2 /72,2(H+)2 (18, ®1%) d(x, m)

Integrating by parts and using (B.5) give

J / v [ 19 q>|2]"=1d +/ v 18, ®|2d(x, n)
=— | —— x —* X,
T2 oM o T R 2 02 1

- /82”|a o, 2 dx+/ 827”|a ®2d(x. ) .
= )i 2H + 2 =, 2(H + )27 "

Consequently,

8,0, dy 9 2
J:/ (H+u)<” S L L P P 1 and>) d(x. )
Ri

H+4+v (H+v)?" (H + v)?

(B.7)
+J 1/ G 19,®(-, D] d

-z | = Y X,

T2 ), H 0

where

J '—/<a D3, (0®) — 20V pad OV gy (ocb)> (. 0) dx
4 .= . x ¥ O0x 2(H +v) X 2(H +v) )

1 (8yv)? 32v )
+§£”QH+w2_H+v)®“m|M'

Now, since H2(R;) is continuously embedded in C (R ;) by [12, Theorem 1.4.5.2], we infer
from (B.5) that

P(a,0) =P(b,0)=0.
Using this property along with an integration by parts, we obtain

—/(ﬂcba o4+ 2V gy @))( 0)d
2 o) BT T dH Ay O

= L[ ee?a
2 H+vx0 *

I B = 1 v (Bxw)? 2
__E[H o|eC Ol ]x a+§/,<H+v - (H+v)2)0|¢("0)| dx

1 8)%1) (B¢ v)?
N 5/I (H—i—v B (H+v)2>a|d>(.,0)|2 dx ,

so that J4 reduces to

Jy = / (0x P (0 D)) (-, 0) dx . (B.8)
I
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We then infer from (B.4), (B.7), and (B.8) that

J =/ 1059220 d(X,Z)+/ax{v(‘»_H)ax(U§v)('a_H) dx
Oy (v) 1

1
—Eflaivlazcvc,vnzdx.

Combining (B.6) and the above identity completes the proof. O

Appendix C: Some functional inequalities

Let I = (a, b) C D be an open interval and consider v € Wgo(l ) such thatminy, pjv > —H.
Let M > 0 be such that
M = max {1, [[H + vl Loy 10xv] ooy} - (C.1)

We derive in this section functional inequalities for functions in the subspace H, vlv (01 (v)) of
H'(O;(v)) introduced in (3.31). Recall that P € Hy,(O;(v))ifandonlyif P € H'(O;(v))
satisfies

P(x,—H)=0, xel, (C.2a)
P(a,z) =0, z€(—H,v(a)), (C.2b)

We begin with Poincaré and Sobolev inequalities and pay special attention to the dependence
of the constants on v.

Lemma C.1 Let P € H, (O (v)). Then
IPIZ 0,0 < 2MIV Pl @lld:PllLyo; o) -
where M is given by (C.1).
Proof For (x,n) € Ry =1 x (0, 1), we define
Q(x,n) =P, —H +n(H +v(x))), (C.3)

and observe that the regularity of v and P implies that Q € H'(R;). In addition, we deduce
from (C.2) that

Qx,00=0, «xel, (C.4a)
Q(a, =0, ne1). (C.4b)

On the one hand, it follows from (C.4b) that, for a.a. (x, n) € Ry,

I(H +v)(x)Q(x, )| =

/ [(H + v(x4))0x Q (x4, M) + 0x v (x4) O (x4, n)] dixy

=) = / |(H + v(x:))0x Q (X, 1) + 0x V() Q (s, M| dxse .
I
(C.5)
On the other hand, by (C.4a), we obtain, for a.a. (x, ) € Ry,

n 1
|Q<x,n>|=’/0 3, 00x, 1) dis| < (%) :=/0 8,00, 0| dns. (C.6)
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We then infer from (C.3), (C.5), and (C.6) that

IP1,0,0) =/R (H +v(x)|Q(x, pI* d(x, n)

1
< /R TP ) dGx, ) = ( /, J2(x) dx) ( fo 700 dn) L@

/Jz(X)dX=/ |anQ<x,n)|d<x,n>=/ 9.P(.Dld(x. ) (C8)
1 Ry O (v)

Now,

and

1
/(; Ji(n) dn = .[72 [(H 4+ v(x))dx Q(x, n) + dxv(x) Q(x, M| d(x, n)
1

a /o,<v)

It further follows from (C.2a) that, for a.a. (x, z) € O (v),

H+z dxv(x)
axP(x,Z) + maxv(x)azp(x,z) =+ mP(x,z) d(x,Z) . (C9)

z v(x)
[P(x,2)| = )/ 0 P(x, z4) dzy| < / [0, P(x, z4+)| dz« .
—H —H

Hence,

/(91(11)

Since 0 < H 4+ z < H 4+ v(x) for (x, 2) € Oy (v), we deduce from (C.1), (C.9), and (C.10)
that

¢ v(x)

Htowm &9

d(x.2) s[ 1950CO110: P(x, 23] d(x, 24) - (C.10)
O (v)

1
/ Ji(n) dn < / (10x P(x, 2)| + 2[0yv(x) |9, P(x, 2)|) d(x, 2)
0 O1(v)

S2M|VP|L,o;w) - (C.11)

Collecting (C.7), (C.8), and (C.11) completes the proof. ]

Since Oy (v) is a two-dimensional domain, a classical consequence of Lemma C.1 is the
continuous embedding of H‘}VS(OI (v)) in L,(O;(v)) for r € [1, 00). We stress here once
more that our main concern is the precise dependence of the embedding constant on v.

LemmaC.2 Let P € H},4(O;(v)) and r € [2, 00). Then

r—2
2 (r—=2)/2 (r—=2)/2
IPIL, 0w = (ZrV M) 1P, 0n IV P00, wp 19 Pll L, 0 ) -

where M is given by (C.1).
Proof Step 1. Assume first that » > 4. For n > 1, we define the truncation 7,, by 7,,(s) := s

fors € [—n, n] and 7, (s) := nsign(s) for s € (—oo, —n) U (n, 00). Since 7, is a Lipschitz
continuous function on R with |Z;/| < 1 and vanishes at zero, the function 7, (P)" /2 also
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belongs to H‘}VS((’)[ (v)). We then infer from Lemma C.1, the bound |7,/| < 1, and Holder’s
inequality that

Mr?
1T, 0y = 5 | TP 2PV P |7.(P) 2120, p|

Li(O1()) ‘ L1(O1(v)

< M2 T(P2 0, ap IV PllLy@swn 18- Pll Ly ) -
Using again Holder’s inequality, as well as the property |7, (s)| < |s| for s € R, gives

r(r—4)/(r—-2) 4/(r—2)
1T P2 0,00 < 1T P o P IT P o 0,

r(r—4)/(r—2) 4/(r=2)
= ||7;1(P)||Lr(ol(v)) ”P“Lz(O[(U)) ’

since r > 4. Combining the above two inequalities leads us to

o2 r-2)/2 r-2)/2
1Za (P, 0, = M2 IPIL 0, 1V PIL 0o 13:P 1 0o -

Since the right-hand side of the above inequality does not depend on n > 1, we may take the
limit n — oo and deduce from Fatou’s lemma that P € L,(O;(v)) and satisfies the stated
bound for r > 4.

Step 2. Consider now r € [2, 4]. By Holder’s inequality and Lemma C.2 for r = 4,

2(r=2)
1P, 00 = 1P snn P15, w)

r=2)/2 2)/2 =2)/2
= A6M) 2 2IPIT 0, p IV P oreop 10 P ot -

and we complete the proof by noticing that 4 < 2r. O

In the same vein, we derive an estimate for the trace of P € H‘}V 5(Or(v)) on the graph
& (v) of v, the trace being here well-defined since the assumption miny, ) v > —H guar-
antees that Oy (v) is a Lipschitz domain.

LemmadC.3 Let P € Hvlvs(ol(v)) andr € [2,00). Then

2)/2 2
1PC L, ) = (4r9M) 1P, IV Py 13 P 0 0y

where M is given by (C.1).
Proof By (C.2a) we have, fora.a. x € I,
v(x)
|P(x, v(x)|" Er/ |P(x, )10, P(x,2)| dz .
-H
Integrating over / and using Holder’s inequality lead us to
P, U)”L ) = r”P”LZ(r 1)(01(0))||8ZP||L2((91(U)) .

Since 2(r — 1) > 2 as r > 2, we deduce from Lemma C.2 and the above inequality that

—-2)/2 2
IPCol, =7 (40 = DVM ) 1Pl a0 IV P I s e 3. P12 0, ) -

-2
from which Lemma C.3 follows, after using that r (4(r — D/ M)r < (4r«/ M)r. O
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Appendix D: A uniform bound for an auxiliary stationary problem

Proposition D.1 Consider Gy > 0, 8 > 0, andt > 0. Let [ = (a, b) C (—L, L) be an open
interval and let Sy be the unique solution to the boundary value problem

BS) —1S! =Gy, «xel, (D.1)

supplemented with inhomogeneous Dirichlet boundary conditions
Si@+H=S@=8Sb)+H=S8;(b)=0 if —L<a<b<L, (D.2)
Si(—L)y=Si(-L)y=S;(b)) + H=S;(b))=0 if —L=a<b<L, (D.3)
Si@+H=S(a)=8L)=S;(L)y=0 if —L<a<b=1L, (D.4)

or clamped boundary conditions
Si(—L)y=S;(-L)=S;(L)y=S;(L)=0 if —L=a<b=0L. (D.5)
There is kg > 0 depending only on Gy, B, L, H, and t such that
IS;(x)| <ko, x€la,b], —-L<a<b<lL.

Proof Casel: —L <a <b < L. Weset P(y) := S;(a+ (b—a)y)+ H fory € [0, 1] and
deduce from (D.1) and (D.2) that P solves the boundary-value problem

BP" —t(b—a)’P"=0b-a) Gy, ye(0,1)),

, , (D.6)
PO)=PO)=P()=P(1)=0.

We first infer from (D.6), the positivity of G, and a version of Boggio’s comparison principle
[7,13,17,29] that P > 0O in (0, 1). We next multiply (D.6) by P and integrate over (0, 1).
After integrating by parts and using the boundary conditions, we obtain

1
BIP"13 0.1y + 76— a 1P} 0.1y = (b — “)4G°/0 POYdy-
Since

[Py =

y
/0 (=) P (o) dys| < 1P lLy0,) . ¥y €(0, 1),
by (D.6), we infer from these observations that
BIPIZ 0.1 < BIP" 7,01 < & — @) Goll PllLo0.1) < 16L*Goll PllLoc0.1) -

Consequently, 0 < P < 16L*Go/B in [0, 1], hence —H < S; < 16L*Go/B — H in [a, b].
Case2: —L =a < b < L.Let Q € Ry[X] be such that Q(0) = Q'(0) = Q(1) + H =
Q'(1) = 0; thatis, Q(y) = y>(y*> +2(H — 1)y + 1 —3H). We set P(y) := S;(—L + (b +
L)y) — Q(y) for y € [0, 1] and deduce from (D.1) and (D.3) that P solves the boundary
value problem

BP" =T+ L7P = (b +L1)'Go— Q"+ +L7Q",  ye O,
PO)=P0)=P1)=P1)=0.
Arguing as in Case 1, we are led to
BIPIT o1 < BIP" 7,01 + T+ L72IP'IT, 0.1
<[+ 1)*Go +248 + 14t(H + )b+ L)*] I Pll Loy
< [16L*Go + 24 + 56T(H + DL*] Pl 0.1) »
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since Q" = 24 and
12y — 6H < Q"(y) = 12y% + 12(H — 1)y +2(1 — 3H)
14+12H <14(H+1).

—14(H + 1)

IA

A

Consequently,

16L4Go + 248 + 56T (H + 1)L?
B
Case3: —L <a <b=L.Weset P(y) := Sj(a+ y(L—a))— Q1 —y)fory e [0,]1]
and proceed as in the previous case to derive the same bound for || S; ||z ().
Cased: —L =a <b=L.Weset P(y) := S;(—L +2Ly) for y € [0, 1] and deduce from
(D.1) and (D.5) that P solves the boundary value problem
BP" —4tL*P" =16L*Gy, ye(0,1),
PO)=P0)=P1)=P((1)=0.

ISill Lo () = 1PllLse,1) + 1Ol Loo(0,1) = + 1 QllLs,1) -

We then argue as in Case 1 to conclude that 0 < §; < 16L4G0/,3 in[—L, L]. ]
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