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Abstract
Amodel for aMEMSdevice, consisting of a fixed bottom plate and an elastic plate, is studied.
It was derived in a previous work as a reinforced limit when the thickness of the insulating
layer covering the bottom plate tends to zero. This asymptotic model inherits the dielectric
properties of the insulating layer. It involves the electrostatic potential in the device and the
deformation of the elastic plate defining the geometry of the device. The electrostatic potential
is given by an elliptic equation with mixed boundary conditions in the possibly non-Lipschitz
region between the two plates. The deformation of the elastic plate is supposed to be a critical
point of an energy functional which, in turn, depends on the electrostatic potential due to
the force exerted by the latter on the elastic plate. The energy functional is shown to have a
minimizer giving the geometry of the device. Moreover, the corresponding Euler–Lagrange
equation is computed and the maximal regularity of the electrostatic potential is established.

Mathematics Subject Classification 35J50 · 49Q10 · 49J40 · 35R35 · 35Q74

1 Introduction

Themodeling and analysis of microelectromechanical systems (MEMS) has attracted a lot of
interest in recent years, see, e.g., [10,11,19,20,30,31,35] and the references therein. Idealized
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devices often consist of a rigid dielectric ground plate above which an elastic dielectric plate
is suspended. Applying a voltage difference between the two plates induces a competition
between attractive electrostatic Coulomb forces and restoring mechanical forces, the latter
resulting from the elasticity of the upper plate.When electrostatic forces dominatemechanical
forces, the two plates may come into contact, a phenomenon usually referred to as pull-in
instability or touchdown. From a mathematical point of view, this phenomenon may be
accounted for in different ways. In fact, in most mathematical models considered so far in
the MEMS literature, the pull-in instability is revealed as a singularity in the corresponding
mathematical equations which coincides with a breakdown of the model, see [10,19,31] and
the references therein. There is a close connection between the singular character of the
touchdown and the fact that the modeling does not account for the thickness of the plates.
Indeed, coating the ground plate with a thin insulating layer prevents a direct contact of the
plates, so that a touchdown of the elastic plate on the insulating layer does not interrupt the
operation of the device [6,21,24,25]. Due to the presence of this layer, the MEMS device
features heterogeneous dielectric properties (with a jump of the permittivity at the interface
separating the coated ground plate and the free space beneath the elastic plate) and the
electrostatic potential solves a free boundary transmission problem in the non-smooth domain
enclosed between the two plates [21]. The shape of the domain itself is given by a partial
differential equation governing the deflection of the elastic plate from rest, which, in turn,
involves the electrostatic force exerted on the latter. The mathematical treatment of such a
model is rather complex, see [21, Sect. 5] and [22]. It is thus desirable to derive simpler and
more tractable models. As the modeling involves two small spatial scales – the aspect ratio ε
of the device and the thickness d of the insulating layer – a variety of reduced models may be
obtained. For instance, the assumption of a vanishing aspect ratio of the device, when either
the ratio d/ε has a positive finite limit [2,6,18,24,25] or converges to zero, see [10,30,31] and
the references therein, leads to a model which no longer involves a free boundary. Indeed,
in that case, the electrostatic potential can be computed explicitly in terms of the deflection
of the elastic plate and the model reduces to a single equation for the deflection, with the
drawback that some important information on the electrostatic potential may thus be lost.

For this reason an intermediate model is derived in [16] by letting only the thickness of the
insulating layer d go to zero (keeping the aspect ratio of the device of order one). Assuming
an appropriate scaling of the dielectric permittivity in dependence on the layer’s thickness
(in order to keep relevant information of the dielectric heterogeneity of the device) and using
a Gamma convergence approach, the resulting energy, which is the building block of the
model, is computed. The next step is the mathematical analysis of the thus derived model, in
which stationary solutions correspond to critical points of the energy, while the dynamics is
described by the gradient flow associated with the energy. The aim of the present work is to
show the existence of a particular class of stationary solutions, which are additionally energy
minimizers, and to identify the corresponding Euler–Lagrange equations.

Let us provide beforehand a more precise description of the MEMS configuration under
study.We consider an idealizedMEMSdevice composed of two rectangular two-dimensional
dielectric plates: a fixed ground plate above which an elastic plate, with the same shape at
rest, is suspended and clamped in only one direction while free in the other. We assume that
the device is homogeneous in the free direction and that it is thus sufficient to consider a
cross-section of the device orthogonal to the free direction. The shape of the ground plate and
that of the elastic plate at rest are then represented by D := (−L, L) ⊂ R, the ground plate
being located at z = −H with H > 0 and covered with an infinitesimally thin dielectric
layer (in consistency with the aforementioned limit). The vertical deflection of the elastic
plate from its rest position at z = 0 is described by a function u : D̄ → [−H ,∞) satisfying
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Fig. 1 Geometry of �(u) for a state u = v with empty coincidence set (green) and a state u = w with
non-empty coincidence set (blue) (color figure online)

the clamped boundary conditions

u(±L) = ∂xu(±L) = 0 , (1.1)

so that its graph

G(u) := {(x, u(x)) : x ∈ D̄}
represents the elastic plate and

�(u) := {(x, z) ∈ D × R : −H < z < u(x)}
is the free space between the elastic plate and the ground plate. Since we do not exclude the
possibility of contact between the two plates, we introduce the coincidence set

C(u) := {x ∈ D : u(x) = −H}
and let

�(u) := {(x,−H) : x ∈ D, u(x) > −H} = (
D \ C(u)

)× {−H}
be the part of the ground plate which is not in contact with the elastic plate. A touchdown of
the elastic plate on the ground plate corresponds to a non-empty coincidence set, in which
case �(u) is a strict subset of D × {−H}. Note that the free space �(u) then has a different
geometry with at least two connected components, which may not be Lipschitz domains due
to cusps (independent of the smoothness of the function u). In Fig. 1 the different situations
with empty and non-empty coincidence sets are depicted.

As already mentioned, the building block of the model studied in this paper is the total
energy E(u) of the device at a state u given by

E(u) := Em(u) + Ee(u)

and derived in [16] in the limit of an infinitesimally small insulating layer. It consists of the
mechanical energy Em(u) and the electrostatic energy Ee(u). The former is given by

Em(u) := β

2
‖∂2x u‖2L2(D) +

(τ
2

+ α

4
‖∂xu‖2L2(D)

)
‖∂xu‖2L2(D)
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with β > 0 and τ, α ≥ 0, taking into account bending and external- and self-stretching
effects of the elastic plate. The electrostatic energy is

Ee(u) := −1

2

∫

�(u)

∣
∣∇ψu

∣
∣2 d(x, z) − 1

2

∫

D
σ(x)

∣
∣ψu(x,−H) − hu(x)

∣
∣2 dx , (1.2)

where ψu is the electrostatic potential in the device and solves the elliptic equation with
mixed boundary conditions

�ψu = 0 in �(u) , (1.3a)

ψu = hu on ∂�(u) \ �(u) , (1.3b)

−∂zψu + σ(ψu − hu) = 0 on �(u) . (1.3c)

In (1.3), the function σ represents the properties of the dielectric permittivity inherited from
the insulating layer while the functions hu and hu determining the boundary values of ψu on
∂�(u) are of the form

hu(x, z) := h(x, z, u(x)) , (x, z) ∈ D̄ × [−H ,∞) , (1.4)

hu(x) := h(x, u(x)) , x ∈ D̄ ,

for some prescribed functions

h : D̄ × [−H ,∞) × [−H ,∞) → R , h : D̄ × [−H ,∞) → R .

The main results of this work are the existence of at least one minimizer of the total
energy E and the derivation of the corresponding Euler–Lagrange equation. This requires, of
course, first to study the well-posedness of the elliptic problem (1.3) subject to its mixed
boundary conditions. A first step in that direction is to guarantee that the electrostatic
energy Ee is well-defined, which turns out to require some care. Indeed, it should be pointed
out that �(u) is a non-smooth domain with corners and possibly features turning points,
for instance when C(u) includes an interval, see Fig. 1. Thus, �(u) might consist of several
components no longer having a Lipschitz boundary, so that traces have first to be given a
meaning. Once this matter is settled, the existence of a variational solutionψu to (1.3) readily
follows from the Lax-Milgram Theorem and the electrostatic energy is then well-defined.
This paves the way to the proof of the existence of minimizers of the total energy by the
direct method of calculus of variations but does not yet allow us to conclude. Indeed, since E
involves two contributions with opposite signs, it might be unbounded from below. We over-
come this difficulty by adding a penalization term to the total energy. This additional term can
be removed afterwards, thanks to an a priori upper bound on the minimizers which follows
from the corresponding Euler–Lagrange equation. However, it turns out that the derivation of
the latter requires additional regularity of the electrostatic potential ψu . Such a regularity is
actually not obvious, as the highest expected smoothness of the boundary of�(u) is Lipschitz
regularity (when the coincidence set C(u) is empty). Consequently, one needs to establish
sufficient regularity for ψu both for states u with empty and with non-empty coincidence
sets C(u). In particular, this will ensure a well-defined normal trace of the gradient of ψu on
�(u) as required by (1.3c) and on the part of G(u) lying above �(u) as required by (2.6a)
below. The above mentioned difficulties are actually not the only ones that we face in the
forthcoming analysis. To name but a few, the electrostatic energy Ee(u) features a nonlocal
and intricate dependence upon the state u and appropriate continuity properties are needed
in the minimizing procedure. This requires a thorough understanding of the dependence of
ψu on the state u, this dependence being due to the domain�(u) as well as the functions hu
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and hu . Also, due to the prescribed constraint u ≥ −H , the Euler–Lagrange equation solved
by minimizers is in fact a variational inequality.

2 Main results

Throughout this work we shall assume that

σ ∈ C2(D̄) , σ (x) > 0 , x ∈ D̄ . (2.1a)

As for the functions hu and hu appearing in (1.3) we shall assume in the following that

h ∈ C2(D̄ × [−H ,∞) × [−H ,∞)) , h ∈ C1(D̄ × [−H ,∞)) , (2.1b)

satisfy

∂zh(x,−H , w) = σ(x)
[
h(x,−H , w) − h(x, w)

]
, (x, w) ∈ D × [−H ,∞) .(2.1c)

Assumption (2.1c) allows us later to rewrite (1.3) as an elliptic equation with homogeneous
boundary conditions. In the following, we shall use the notation introduced in (1.4).

A simple example of boundary functions (h, h) satisfying (2.1b) and (2.1c)may be derived
from [21, Example 5.5] with the scaling from [16]:

Example 2.1 Let V > 0 and set

h(x, z, w) := V
1 + σ(x)(H + z)

1 + σ(x)(H + w)
, (x, z, w) ∈ D̄ × [−H ,∞) × [−H ,∞) ,

and h ≡ 0. Then (h, h) clearly satisfies (2.1b) and (2.1c), the former being a consequence of
the regularity (2.1a) of σ . Note that hu(x, u(x)) = V , x ∈ D, for a given state u; that is, in
this example the electrostatic potential is kept at a constant value V along the elastic plate,
see (1.3b).

2.1 The electrostatic potential

We first turn to the existence of an electrostatic potential for a given state u. To have an
appropriate functional setting for u we introduce

S̄ := {u ∈ H2(D) ∩ H1
0 (D) : −H ≤ u in D} (2.2)

and point out that C(u) = ∅ if and only if u belongs to the interior of S̄; that is, u ∈ S, where

S := {u ∈ H2(D) ∩ H1
0 (D) : −H < u in D} .

Note that H2(D) is embedded in C(D̄) so that �(u) is well-defined for u ∈ S̄. Regarding
the well-posedness of (1.3) we shall prove the following result.

Theorem 2.2 Suppose (2.1). For each u ∈ S̄ there exists a unique strong solution ψu ∈
H2(�(u)) to (1.3). Moreover, given κ > 0 and r ∈ [2,∞), there are c(κ) > 0 and
c(r , κ) > 0 such that

‖ψu‖H2(�(u)) + ‖∂xψu(·,−H)‖L2(D\C(u)) ≤ c(κ) , ‖∂zψu(·, u)‖Lr (D\C(u)) ≤ c(r , κ)

for each u ∈ S̄ with ‖u‖H2(D) ≤ κ .

Theorem 2.2 is an immediate consequence of Lemma 3.1, Theorems 3.2, and (3.6) below.
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2.2 Existence of energyminimizers

Owing to Theorem 2.2, the total energy is well-defined on the set

S̄0 := {u ∈ H2(D) : u(±L) = ∂xu(±L) = 0 , −H ≤ u in D} ⊂ S̄ ,

taking into account the clamped boundary conditions (1.1). We shall now focus on the exis-
tence of energy minimizers on S̄0. We have already observed that the total energy E is the
sum of two terms Em and Ee with different signs. Hence, the coercivity of E is not obvious.
However, if α > 0, the first order term in the mechanical energy Em is quartic and thus domi-
nates the negative contribution coming from the electrostatic energy Ee. This property allows
us to follow the lines of [21, Sect. 5] to derive the coercivity of E based on the following
growth assumption for h: there is a constant K > 0 such that

|∂xh(x, z, w)| + |∂zh(x, z, w)| ≤ K

√
1 + w2

H + w
, |∂wh(x, z, w)| ≤ K√

H + w
, (2.3a)

for (x, z, w) ∈ D̄ × [−H ,∞) × [−H ,∞) and

|h(x,−H , w)| + |h(x, w)| ≤ K , (x, w) ∈ D̄ × [−H ,∞) . (2.3b)

This approach no longer works if α = 0 and the coercivity of E is not granted. To remedy
this drawback, we shall use a regularized energy functional (see (6.1) below), which includes
a penalization term ensuring its coercivity if, in addition to (2.3), we assume that

|h(x, w,w)| + |h(±L, z, w)| ≤ K , (x, z, w) ∈ D̄ × [−H ,∞) × [−H ,∞) , (2.4a)

and

|∂xh(x, w,w)| + |∂zh(x, w,w)| + |∂wh(x, w,w)| + |∂wh(x, w)| ≤ K (2.4b)

for (x, w) ∈ D×[−H ,∞). We complete the analysis when α = 0 by showing that minimiz-
ers of the regularized energy functional for a suitable choice of the penalization parameter
give rise to a minimizer of E , establishing indirectly that E is bounded from below in that
case as well. Consequently, in both cases we can prove the existence of at least one energy
minimizer as stated in the next result.

Theorem 2.3 Assume (2.1) and (2.3) and, either α > 0, or α = 0 and (2.4). Then the total
energy E has at least one minimizer u∗ in S̄0; that is, u∗ ∈ S̄0 and

E(u∗) = min
S̄0

E . (2.5)

At this point, no further qualitative information on energy minimizers u∗ is available, and
a particularly interesting question, which is yet left unanswered by our analysis, is whether
the coincidence set C(u∗) is empty or not. Another interesting open issue is the uniqueness of
minimizers. The proof of Theorem 2.3 is given in Sect. 6 for α = 0 and in Sect. 7 for α > 0.

2.3 Euler–Lagrange equation

We next aim at deriving the Euler–Lagrange equation satisfied by minimizers of the total
energy E . Recalling the prescribed constraint u ≥ −H for u ∈ S̄0, we are dealing with
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an obstacle problem and the resulting equation is actually a variational inequality. For the
precise statement we introduce, for a given u ∈ S̄, the function g(u) : D → R by setting

g(u)(x) :=1

2
(1 + |∂xu(x)|2)

[
∂zψu − (∂zh)u − (∂wh)u

]2
(x, u(x))

+ σ(x)
[
ψu(x,−H) − hu(x)

]
(∂wh)u(x)

− 1

2

[∣
∣(∂xh)u

∣
∣2 + (

(∂zh)u + (∂wh)u
)2]

(x, u(x))

(2.6a)

for x ∈ D \ C(u) while setting

g(u)(x) :=1

2
|(∂wh)u |2(x,−H) + σ(x)

[
h(x,−H ,−H) − hu(x)

]
(∂wh)u(x)

− 1

2

[∣
∣(∂xh)u

∣
∣2 + (

(∂zh)u + (∂wh)u
)2]

(x,−H)

(2.6b)

for x ∈ C(u). In fact, g(u) represents the electrostatic force exerted on the elastic plate and is
computed as the differential (in a suitable sense) of the electrostatic energy Ee(u)with respect
to u. We emphasize here that the regularity properties of ψu established in Theorem 2.2 are
of utmost importance to guarantee that g(u) is well-defined on D \ C(u), since it features the
trace of ∂zψu on G(u). With this notation, we are able to identify the variational inequality
solved (in a weak sense) by energy minimizers.

Theorem 2.4 Assume (2.1). Assume that u ∈ S̄0 is a minimizer of E on S̄0. Then g(u) ∈
L2(D) and u is an H2-weak solution to the variational inequality

β∂4x u − (τ + α‖∂xu‖2L2(D))∂
2
x u + ∂IS̄0(u) � −g(u) in D , (2.7)

where ∂IS̄0 denotes the subdifferential of the indicator function IS̄0 of the closed convex subset

S̄0 of H2(D); that is,
∫

D

{
β∂2x u ∂

2
x (w − u) + [

τ + α‖∂xu‖2L2(D)

]
∂xu ∂x (w − u)

}
dx ≥ −

∫

D
g(u)(w − u) dx

for all w ∈ S̄0.

At this point, we do not know whether minimizers of E in S̄0 are the only solutions to
(2.7), a question closely connected to the uniqueness issue for (2.7). It is, however, expected
that the set of solutions to (2.7) exhibits a complex structure. Indeed, in the much simpler
situation studied in [18], the minimizer may coexist with other steady states, depending on
the boundary values of the electrostatic potential.

The proof of Theorem 2.4 is given in Sect. 6 for α = 0 and in Sect. 7 for α > 0. It relies on
the computation of the shape derivative of the electrostatic energy Ee(u), which is performed
in Sect. 5.

Remark 2.5 It is also possible to minimize the total energy E on the set S̄ (instead on S̄0).
Then the corresponding minimizer in S̄ satisfies instead of the clamped boundary conditions
(1.1) the Navier or pinned boundary conditions u(±L) = ∂2x u(±L) = 0. With this change,
the statements of Theorem 2.3 and Theorem 2.4 remain true when S̄0 is replaced everywhere
by S̄.

Now, combining Theorem 2.3 and Theorem 2.4 we obtain the existence of a stationary
configuration of the MEMS device given as a solution to the force balance (2.7):
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Corollary 2.6 Assume (2.1) and (2.3) and, either α > 0, or α = 0 and (2.4). Then there is a
solution u∗ ∈ S̄0 to the variational inequality (2.7).

The subsequent sections are dedicated to the proofs of the results stated in this section.

Throughout the paper, we impose assumptions (2.1) and set

σmin := min
D̄

{σ } > 0 , σ̄ := ‖σ‖C2(D̄) < ∞ . (2.8)

3 Existence and H2-regularity of the electrostatic potential Ãu

This section is dedicated to the proof of Theorem 2.2; that is, to the existence and regularity of
a unique solution ψu to (1.3). We first recall some basic properties of the boundary function
hv which are established in [21, Lemma 3.10] and rely on the properties (2.1b) and (2.1c) of
h and h.

Lemma 3.1 Let M > 0.
(a) Given v ∈ S̄ satisfying −H ≤ v(x) ≤ M − H for x ∈ D, the function hv belongs to
H2(�(v)) and

‖hv‖H2(�(v)) ≤ C(M)
(
1 + ‖∂2x v‖2L2(D)

)
,

‖∂xhv(·,−H)‖L2(D) ≤ C(M)
(
1 + ‖∂xv‖L2(D)

)
,

‖∂zhv(·, v)‖Lr (D) ≤ C(M) , r ∈ [1,∞] .
(3.1)

(b) Consider a sequence (vn)n≥1 in S̄ and v ∈ S̄ such that

− H ≤ vn(x) , v(x) ≤ M − H , x ∈ D , vn → v in H1
0 (D) . (3.2)

Let �(M) := D × (−H ,M). Then

hvn → hv in H1(�(M)) , (3.3)

hvn (·,−H) → hv(·,−H) in L2(D) , (3.4)

hvn → hv in L2(D) . (3.5)

Proof Integrating

∂xv(x) = ∂xv(y) +
∫ x

y
∂2x v(z) dz , (x, y) ∈ [−L, L]2 ,

with respect to y ∈ [−L, L] and taking into account the boundary condition v(±L) = 0, we
obtain

2L∂xv(x) =
∫ L

−L

∫ x

y
∂2x v(z) dz dy , x ∈ [−L, L] .

Hence, by Hölder’s inequality we get

‖∂xv‖L∞(D) ≤ √
2L‖∂2x v‖L2(D) .

Using this inequality and the fact that h and its derivatives up to second order are bounded
on D̄ × [−H ,M] × [−H ,M] we derive

‖hv‖H2(�(v)) ≤ C(M)
(
1 + ‖∂xv‖L2(D) + ‖∂xv‖L∞(D)‖∂xv‖L2(D) + ‖∂2x v‖L2(D)

)

≤ C(M)
(
1 + ‖∂2x v‖L2(D) + ‖∂2x v‖2L2(D)

)
,
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which yields (a). As for (b) we first note that (3.2) and the compact embedding of H1(D) in
C(D̄) ensure that

vn → v in C(D̄) .

Combining this convergence with (3.2) and the continuity properties (2.1b) of h and h readily
gives (3.4) and (3.5), as well as (3.3) with the additional use of (3.2), see [21, Lemma 3.10].

��
We shall now prove Theorem 2.2 and thus focus on (1.3), which is more conveniently

considered with homogeneous boundary conditions. To this end, we introduce

χv := ψv − hv (3.6)

for a given and fixed function v ∈ S̄. Due to assumption (2.1c), problem (1.3) (with v instead
of u) is then equivalent to

−�χv = �hv in �(v) , (3.7a)

χv = 0 on ∂�(v) \ �(v) , (3.7b)

−∂zχv + σχv = 0 on �(v) . (3.7c)

Hence, the next result can be seen as a reformulation of Theorem 2.2 in terms of χv .

Theorem 3.2 Consider a function v ∈ S̄ and let κ > 0 be such that

‖v‖H2(D) ≤ κ . (3.8)

Then there exists a unique strong solution χv ∈ H2(�(v)) to (3.7) and there is C(κ) > 0
depending only on σ and κ such that

‖χv‖H2(�(v)) + ‖∂xχv(·,−H)‖L2(D\C(v)) ≤ C(κ) . (3.9)

Moreover, for any r ∈ [2,∞), there is C(κ) > 0 depending only on σ and κ such that

‖∂zχv(·, v)‖Lr (D\C(v)) ≤ rC(κ) . (3.10)

The remainder of this section is devoted to the proof of Theorem 3.2.

3.1 Variational solution to (3.7)

We first establish the existence of a variational solution to (3.7). To this end, we introduce
for v ∈ S̄ the space H1

B(�(v)) as the closure in H1(�(v)) of the set

C1
B

(
�(v)

) :=
{
θ ∈ C1(�(v)

) : θ(x, v(x)) = 0 , x ∈ D , θ(±L, z) = 0 , z ∈ (−H , 0)
}
,

and shall then minimize the functional

G(v)[ϑ] := 1

2

∫

�(v)

|∇(ϑ + hv)|2 d(x, z)

+1

2

∫

D
σ(x)|ϑ(x,−H) + hv(x,−H) − hv(x)|2 dx (3.11)

with respect to ϑ ∈ H1
B(�(v)). Let us recall from [16, Lemma 2.2] that the trace

ϑ(·,−H) ∈ L2(D) is well-defined for ϑ ∈ H1
B(�(v)) (see also Lemma 3.7 below for a

complete statement), while Lemma 3.1 ensures that hv ∈ H1(�(v)) and that hv(·,−H) and
hv belong to L2(D). Thus, G(v)[ϑ] is well-defined for ϑ ∈ H1

B(�(v)).
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Proposition 3.3 Let v ∈ S̄. There is a unique variational solution χv ∈ H1
B(�(v)) to (3.7)

given as the unique minimizer of the functional G(v) on H1
B(�(v)). Moreover, χv is also the

unique minimizer on H1
B(�(v)) of the functional GD(v) defined by

GD(v)[ϑ] := 1

2

∫

�(v)

|∇ϑ |2 d(x, z) + 1

2

∫

D
σ |ϑ(·,−H)|2 dx −

∫

�(v)

ϑ�hv d(x, z) .

Proof As noted above, G(v) and GD(v) are both well-defined on H1
B(�(v)). Moreover,

owing to the Poincaré inequality established in [16, Lemma 2.2], the functional G(v) is
coercive on H1

B(�(v)). It thus readily follows from the Lax-Milgram Theorem that there is a
unique minimizer χv ∈ H1

B(�(v)) of the functional G(v) on H1
B(�(v)). Let ϑ ∈ H1

B(�(v)).
Since each connected component of�(v) has at most two singular points, we infer from [15,
Folgerung 7.5] that we may apply Gauß’ Theorem on each connected component of �(v)

and deduce from (2.1c) that

G(v)[ϑ] = 1

2

∫

�(v)

|∇ϑ |2 d(x, z) +
∫

�(v)

∇ϑ · ∇hv d(x, z) + 1

2

∫

�(v)

|∇hv|2 d(x, z)

+ 1

2

∫

D
σ |ϑ(·,−H)|2 dx +

∫

D
σϑ(·,−H)[hv(·,−H) − hv] dx

+ 1

2

∫

D
σ [hv(·,−H) − hv]2 dx

= GD(v)[ϑ] +
∫

�(v)

ϑ�hv d(x, z)

−
∫

D
(ϑ∂zhv)(x,−H) dx −

∫

�(v)

ϑ�hv d(x, z)

+ 1

2

∫

�(v)

|∇hv|2 d(x, z) +
∫

D
σϑ(·,−H)[hv(·,−H) − hv] dx

+ 1

2

∫

D
σ [hv(·,−H) − hv]2 dx

= GD(v)[ϑ] + 1

2

∫

�(v)

|∇hv|2 d(x, z) + 1

2

∫

D
σ [hv(·,−H) − hv]2 dx .

Consequently, χv is also the unique minimizer of the functional GD(v) on H1
B(�(v)). ��

For further use we state the following weak maximum principle.

Lemma 3.4 Let v ∈ S̄. Then hv ∈ C(�(v)), hv ∈ C(D̄), and

min
{
min
∂�(v)

hv , min
D̄

hv

}
≤ χv + hv ≤ max

{
max
∂�(v)

hv , max
D̄

hv

}
.

Proof We first observe that v ∈ C(D̄) which ensures, together with (2.1b), that

μ∗ := min
{
min
∂�(v)

hv , min
D̄

hv

}
and μ∗ := max

{
max
∂�(v)

hv , max
D̄

hv

}

are well-defined and finite. Next, since χv is the minimizer of G(v) on H1
B(�(v)), it satisfies

∫

�(v)

∇(χv + hv) · ∇ϑ d(x, z) +
∫

D
σ [(χv + hv)(·,−H) − hv]ϑ(·,−H) dx = 0

(3.12)
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for all ϑ ∈ H1
B(�(v)).

Now, it follows from the definition ofμ∗ thatϑ∗ := (χv+hv−μ∗)+ belongs to H1
B(�(v))

with ∇ϑ∗ = sign+(χv + hv − μ∗)∇(χv + hv − μ∗). Consequently, by (3.12),

0 =
∫

�(v)

∇(χv + hv) · ∇ϑ∗ d(x, z) +
∫

D
σ [(χv + hv)(·,−H) − hv]ϑ∗(·,−H) dx

=
∫

�(v)

|∇ϑ∗|2 d(x, z) +
∫

D
σ [(χv + hv)(·,−H) − μ∗ + μ∗ − hv]ϑ∗(·,−H) dx

≥
∫

�(v)

|∇ϑ∗|2 d(x, z) +
∫

D
σ [ϑ∗(·,−H)]2 dx ,

where we have used the non-negativity of both μ∗ − hv and ϑ∗ to derive the last inequality.
We have thereby proved that ∇ϑ∗ = 0 in L2(�(v)), which implies that ϑ∗ = 0 in L2(�(v))

thanks to the Poincaré inequality established in [16, Lemma 2.2]. In other words, χv + hv −
μ∗ ≤ 0 a.e. in �(v) as claimed.

Finally, a similar argument with ϑ∗ := (μ∗ −χv −hv)+ leads to the inequality μ∗ −χv −
hv ≤ 0 a.e. in �(v) and completes the proof. ��

We now improve the regularity of χv as stated in Theorem 3.2 and show that χv belongs
to H2(�(v)). Once this is shown, it then readily follows that χv is a strong solution to (3.7)
(see [16, Theorem 3.5]).

As pointed out previously, for a general v ∈ S̄, the set �(v) may consist of several
connected components without Lipschitz boundaries when the coincidence set C(v) is non-
empty. The global H2(�(v))-regularity of χv is thus clearly not obvious. The main idea is
to write the open set D \ C(v) as a countable union of disjoint open intervals (I j ) j∈J , see [1,
IX.Proposition 1.8], and to establish the H2-regularity for χv first locally on each component{
(x, z) ∈ I j × R : −H < z < v(x)

}
. This local regularity is performed in Sect. 3.2. The

global H2(�(v))-regularity is subsequently established in Sect. 3.3.

3.2 Local H2-regularity

Let I := (a, b) be an open interval in D and consider

v ∈ H2(I ) with v(x) > −H , x ∈ I . (3.13)

We define the open set OI (v) by

OI (v) := {(x, z) ∈ I × R : −H < z < v(x)} (3.14)

and split its boundary ∂OI (v) = ∂OI ,D(v) ∪ �I with

∂OI ,D(v) := ({a} × [−H , v(a)]) ∪ ({b} × [−H , v(b)]) ∪ GI (v) , (3.15)

�I := [a, b] × {−H} , (3.16)

where�I := I × {−H}, andGI (v) denotes the closure of the graphGI (v) of v, defined by

GI (v) := {(x, v(x)) : x ∈ I } . (3.17)

We emphasize that OI (v) has no Lipschitz boundary when v(a) + H = ∂xv(a) = 0 or
v(b) + H = ∂xv(b) = 0, as these correspond to cuspidal boundary points, see Fig. 2.
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a b

OI(v)

a b

OI(v)

a b

OI(v)

Fig. 2 Geometry of OI (v) according to the boundary values of v

Let f ∈ L2(OI (v)) be a fixed function. The aim is to investigate the auxiliary problem

−�ζv = f in OI (v) , (3.18a)

ζv = 0 on ∂OI ,D(v) , (3.18b)

−∂zζv + σζv = 0 on �I . (3.18c)

We shall show the existence and uniqueness of a variational solution ζv := ζI ,v ∈ H1(OI (v))

to (3.18) and then prove its H2-regularity. The main difficulty encountered here is the just
mentioned possible lack of Lipschitz regularity of OI (v). Indeed, the trace of functions in
H1(OI (v)) on ∂OI (v) have no meaning yet in that case, and so (3.18b) and (3.18c) are not
well-defined. We shall thus first give a precise meaning to traces for functions in H1(OI (v)).

Remark 3.5 Clearly, if v ∈ S, I = D, and f = hv , then χv = ζD,v , so that Theorem 3.2
follows fromTheorem 3.9 below in that case. Furthermore, if I = (a, b) is a strict subinterval
of D, f = hv , and v ∈ S̄ is such that v(a) = v(b) = −H , or a = −L and v(−L) =
v(b) + H = 0, or b = L and v(a) + H = v(L) = 0, then ζI ,v coincides – at least formally
– with the restriction of χv to I and we shall also deduce Theorem 3.2 from Theorem 3.9.
We thus do not impose that v(a) = −H or v(b) = −H in (3.13), so as to be able to handle
simultaneously the above mentioned different cases also depicted in Fig. 2.

3.2.1 Traces

As already noticed in [27], one can take advantage of the particular geometry ofOI (v), which
lies between the graphs of two continuous functions, in order to define traces for functions
in H1(OI (v)) along these graphs. More precisely, one can derive the following result [16,
Lemma 2.1].

Lemma 3.6 [16, Lemma 2.1] Assume that v satisfies (3.13) and set Mv := ‖H + v‖L∞(I ).

(a) There is a linear bounded operator

�I ,v ∈ L
(
H1(OI (v)), L2(I , (H + v)dx)

)
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such that �I ,vϑ = ϑ(·, v) for ϑ ∈ C1(OI (v)) and
∫

I
|�I ,vϑ |2(H + v) dx ≤ ‖ϑ‖2L2(OI (v))

+ 2Mv‖ϑ‖L2(OI (v))‖∂zϑ‖L2(OI (v)) .

(3.19)

(b) There is a linear bounded operator

γI ,v ∈ L
(
H1(OI (v)), L2(I , (H + v)dx)

)

such that γI ,vϑ = ϑ(·,−H) for ϑ ∈ C1(OI (v)) and
∫

I
|γI ,vϑ |2(H + v) dx ≤ ‖ϑ‖2L2(OI (v))

+ 2Mv‖ϑ‖L2(OI (v))‖∂zϑ‖L2(OI (v)) .

(3.20)

For simplicity, for ϑ ∈ H1(OI (v)), we use the notation

ϑ(x, v(x)) := �I ,vϑ(x) , ϑ(x,−H) := γI ,vϑ(x) , x ∈ I .

We next introduce the variational setting associated with (3.18) and define the space
H1
B(OI (v)) as the closure in H1(OI (v)) of the set

C1
B

(
OI (v)

)
:=
{
θ ∈ C1

(
OI (v)

)
: θ(x, v(x)) = 0 , x ∈ I ,

and θ(x, z) = 0 , (x, z) ∈ {a, b} × (−H , 0]
}
.

Note that this is consistent with the previous definition of H1
B(�(v))when I = D and v ∈ S̄.

We have already established in [16, Lemma 2.2] a Poincaré inequality in H1
B(OI (v)), as well

as refined properties of the trace on I × {−H}, which we recall now.

Lemma 3.7 [16, Lemma 2.2] Assume that v satisfies (3.13) and consider ϑ ∈ H1
B(OI (v)).

Setting Mv := ‖H + v‖L∞(I ), there holds

‖ϑ‖L2(OI (v)) ≤ 2Mv‖∂zϑ‖L2(OI (v)) , (3.21)

and the trace operator ϑ �→ ϑ(·,−H) maps H1
B(OI (v)) to L2(I ) with

‖ϑ(·,−H)‖2L2(I ) ≤ 2‖ϑ‖L2(OI (v))‖∂zϑ‖L2(OI (v)) . (3.22)

3.2.2 Variational solution to (3.18)

Thanks to Lemma 3.7, the trace on I × {−H} of a function in H1
B(OI (v)) is well-defined in

L2(I ) and, thus, so is the functional

GI (v)[ϑ] := 1

2

∫

OI (v)

|∇ϑ |2 d(x, z) + 1

2

∫

I
σ |ϑ(·,−H)|2 dx −

∫

OI (v)

f ϑ d(x, z)

(3.23)

for ϑ ∈ H1
B(OI (v)). We now derive the existence of a unique variational solution to (3.18),

or, equivalently, of a unique minimizer of GI (v) on H1
B(OI (v)).
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Lemma 3.8 There is a unique variational solution ζv := ζI ,v ∈ H1
B(OI (v)) to (3.18) which

satisfies

‖ζv‖2H1(OI (v))
+ 2‖√σζv(·,−H)‖2L2(I ) ≤ 16M2

v

(
1 + 4M2

v

) ‖ f ‖2L2(OI (v))
, (3.24)

where Mv := ‖H + v‖L∞(I ).

Proof It readily follows from (2.8), Lemma 3.7, and the Lax-Milgram Theorem that there is
a unique variational solution ζv ∈ H1

B(OI (v)) to (3.18) in the sense that

GI (v)[ζv] ≤ GI (v)[ϑ] , ϑ ∈ H1
B(OI (v)) . (3.25)

Taking ϑ ≡ 0 in the previous inequality, we deduce from (3.21) and Hölder’s and Young’s
inequalities that

‖∇ζv‖2L2(OI (v))
+ ‖√σζv(·,−H)‖2L2(I ) ≤ 2‖ f ‖L2(OI (v))‖ζv‖L2(OI (v))

≤ 4Mv‖ f ‖L2(OI (v))‖∇ζv‖L2(OI (v))

≤ 1

2
‖∇ζv‖2L2(OI (v))

+ 8M2
v‖ f ‖2L2(OI (v))

.

Hence,

‖∇ζv‖2L2(OI (v))
+ 2‖√σζv(·,−H)‖2L2(I ) ≤ 16M2

v‖ f ‖2L2(OI (v))
.

Combining the Poincaré inequality (3.21) and the above inequality completes the proof. ��

3.2.3 H2-regularity of �v

We next investigate the regularity of the variational solution ζv to (3.18); that is, we establish
a local version of Theorem 3.2.

Theorem 3.9 Consider a function v satisfying (3.13) and let κ > 0 be such that

‖v‖H2(I ) ≤ κ . (3.26)

The variational solution ζv = ζI ,v ∈ H1
B(OI (v)) to (3.18) given by Lemma 3.8 belongs to

H2(OI (v)), and there is C1(κ) > 0 depending only on σ and κ such that

‖ζv‖H2(OI (v))
+ ‖∂xζv(·,−H)‖L2(I ) ≤ C1(κ)‖ f ‖L2(OI (v)) . (3.27)

Moreover, there is C2(κ) > 0 depending only on σ and κ such that, for any r ∈ [2,∞),

‖∂zζv(·, v)‖Lr (I ) ≤ rC2(κ)‖ f ‖L2(OI (v)) . (3.28)

Several difficulties are encountered in the proof of Theorem 3.9, due to the low regularity
of the domain OI (v) which has a Lipschitz boundary if v(a) > −H and v(b) > −H but
may have cusps otherwise, see Fig. 2, and due to the mixed boundary conditions (3.18b)
and (3.18c). As in [12, Sect. 3.3], to remedy these problems requires to construct suitable
approximations ofOI (v) and to pay special attention to the dependence of the constants on v
and I in the derivation of functional inequalities and estimates. To be more precise, we shall
begin with the case where v satisfies

v ∈ W 3∞(I ) and min[a,b] v > −H , (3.29)
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an assumption which is obviously stronger than (3.13). Then OI (v) is a Lipschitz domain
with a piecewise W 3∞-smooth boundary and the H2-regularity of ζv is guaranteed by [5,
Theorem 2.2], see Lemma 3.10 below. Next, transforming OI (v) to the rectangle RI :=
I × (0, 1), we shall adapt the proof of [12, Lemma 4.3.1.3] to establish the identity

∫

OI (v)

∂2x ζv∂
2
z ζv d(x, z) =

∫

OI (v)

|∂x∂zζv|2 d(x, z) +
∫

I
(∂xζv∂x (σζv)) (·,−H) dx

− 1

2

∫

I
∂2x v|∂zζv(·, v)|2 dx

(3.30)

in Lemma 3.11. We then shall show that the last two integrals on the right-hand side of (3.30)
are controlled by the H2-norm of ζv with a sublinear dependence, a feature which will allow
us to derive (3.27) when v satisfies (3.29). To this end, we shall use the embedding of the
subspace

H1
WS(OI (v)) :=

{
P ∈ H1(OI (v)) : P(x,−H) = 0 , x ∈ I ,

P(a, z) = 0 , z ∈ (−H , v(a)) ,

}
(3.31)

of H1(OI (v)) in Lr (OI (v)) and the continuity of the trace operator from H1
WS(OI (v)) to

Lr (GI (v)) for r ∈ [1,∞), which involves constants that do not depend on min[a,b]{v + H},
see Lemmas C.1-C.3 in Appendix C. After this preparation, we will be left with relaxing
the assumption (3.29) to (3.13) and this will be achieved by an approximation argument, see
Sect. 3.2.5.

3.2.4 H2-regularity of �v when v satisfies (3.29)

Throughout this section, we assume that v satisfies (3.29) and fix M > 0 such that

M ≥ max
{
1, ‖H + v‖L∞(I ), ‖∂xv‖L∞(I )

}
. (3.32)

We also denote positive constants depending only on σ by C and (Ci )i≥3. The dependence
upon additional parameters will be indicated explicitly.

We begin with the H2-regularity of the variational solution ζv to (3.18), which follows
from the analysis performed in [3–5].

Lemma 3.10 ζv ∈ H2(OI (v)).

Proof We first recast the boundary value problem (3.18) in the framework of [5]. Owing to
(3.29), the boundary of the domain OI (v) includes four W 3∞-smooth edges (�i )1≤i≤4 given
by

�1 := I × {−H} , �3 := GI (v) ,

�2 := {b} × (−H , v(b)) , �4 := {a} × (−H , v(a)) ,

and four vertices (Si )1≤i≤4

S1 := �1 ∩ �2 = (b,−H) , S3 := �3 ∩ �4 = (a, v(a)) ,

S2 := �2 ∩ �3 = (b, v(b)) , S4 := �4 ∩ �1 = (a,−H) .

We set

D� := {2, 3, 4} , N� := {1} ,
D := {2, 3} , M12 := {4} , M21 := {1} , N := ∅ ,
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and note that D� �= ∅ as required in [5].
Since v ∈ W 3∞(I ), the measure ωi of the angle at Si taken towards the interior of OI (v)

satisfies

ω1 = ω4 = π

2
, (ω2, ω3) ∈ (0, π)2 . (3.33)

For 1 ≤ i ≤ 4, we denote the outward unit normal vector field and the corresponding unit
tangent vector field by νi and τ i , respectively. According to the geometry of OI (v),

ν1 = (0,−1) , ν2 = (1, 0) , ν3 = (−∂xv, 1)√
1 + |∂xv|2

, ν4 = (−1, 0) ,

τ 1 = (1, 0) , τ 2 = (0, 1) , τ 3 = (−1,−∂xv)√
1 + |∂xv|2

, τ 4 = (0,−1) .

We also define

μ1 := ν1 , μi := τ i , i ∈ {2, 3, 4} , (3.34)

and note that the measure �i ∈ [0, π ] of the angle between μi and τ i , 1 ≤ i ≤ 4, is given
by

�1 = π

2
, �i = 0 , i ∈ {2, 3, 4} . (3.35)

We also set

ψ1 = φ2 = φ3 = φ4 = 0 . (3.36)

We finally define the boundary operator

B1 := −∂z + σ id on I × {−H} .
Now, on the one hand, the regularity of σ implies that [5, Assumption (1.5)] is satisfied,

while [5, Assumption (1.6)] obviously holds since N = ∅. On the other hand, we note that
μ1(S1) = −μ2(S1) and μ4(S4) = μ1(S4), so that [5, Assumption (2.1)] is satisfied for
i ∈ {1, 4} (but not for i ∈ {2, 3}). We then set ε1 = −1 and ε4 = 1. We are left with checking
[5, Assumptions (2.3)-(2.4)] but this is obvious due to (3.36). We finally observe that

K := {
(i,m) ∈ {1, . . . , 4} × Z : λi,m ∈ (−1, 0)

}

is empty, since

λ1,m := �2 − �1 + mπ

ω1
= 2m − 1 /∈ (−1, 0) ,

λ2,m := �3 − �2 + mπ

ω2
= mπ

ω2
/∈ (−1, 0) ,

λ3,m := �4 − �3 + mπ

ω3
= mπ

ω3
/∈ (−1, 0) ,

λ4,m := �1 − �4 + mπ

ω4
= 2m + 1 /∈ (−1, 0) ,

for any m ∈ Z. We then infer from [5, Theorem 2.2] that ζv has no singular part and thus
belongs to H2(OI (v)). ��
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We now investigate the quantitative dependence of the just established H2-regularity of
ζv on v and derive an H2-estimate, which is related to the regularity of v. To this end, we
need the following identity.

Lemma 3.11
∫

OI (v)

∂2x ζv∂
2
z ζv d(x, z) =

∫

OI (v)

|∂x∂zζv|2 d(x, z) +
∫

I
(∂xζv∂x (σζv)) (·,−H) dx

− 1

2

∫

I
∂2x v|∂zζv(·, v)|2 dx .

The identity of Lemma 3.11 is reminiscent of [21, Lemma 3.5]. Its proof is rather technical
and thus postponed to Appendix B.

The next step of the analysis is to show that the two integrals over I on the right-hand
side of the identity stated in Lemma 3.11 can be controlled by the H2-norm of ζv with a
mild dependence on v. To this end, we need some auxiliary functional and trace inequalities
which are established in Appendix C. With this in hand, we begin with an estimate of the last
integral.

Lemma 3.12 There is C3(M) > 0 such that, for any r ∈ [2,∞),

‖∂zζv(·, v)‖Lr (I ) ≤ rC3(M)‖ f ‖1/rL2(OI (v))

(‖∇∂zζv‖L2(OI (v)) + ‖ f ‖L2(OI (v))

)(r−1)/r
.

(3.37)

In particular, there is C4(M) > 0 such that

∣
∣∣
∣

∫

I
∂2x v|∂zζv(·, v)|2 dx

∣
∣∣
∣ ≤ C4(M)‖∂2x v‖L2(I )

[
‖ f ‖1/2L2(OI (v))

‖∇∂zζv‖3/2L2(OI (v))
+ ‖ f ‖2L2(OI (v))

]
.

(3.38)

Proof To lighten notation, we set O := OI (v) and introduce P := ∂zζv − σζv . Since
ζv ∈ H2(O) by Lemma 3.10 and σ ∈ C2( Ī ), the function P belongs to H1(O) and satisfies
(C.2) by (3.18b) and (3.18c). In addition, we observe that P(·, v) = ∂zζv(·, v) by (3.18b). It
then follows from Lemma C.3 that

‖∂zζv(·, v)‖rLr (I ) = ‖P(·, v)‖rLr (I ) ≤
(
4r

√
M
)r ‖P‖L2(O)‖∇P‖r−1

L2(O) .

Moreover, by (2.8) and Lemma 3.8,

‖P‖L2(O) ≤ ‖∂zζv‖L2(O) + σ̄‖ζv‖L2(O) ≤ (1 + σ̄ ) ‖ζv‖H1(O)

≤ 4‖H + v‖L∞(I )

√
1 + 4‖H + v‖2L∞(I ) (1 + σ̄ ) ‖ f ‖L2(O) ≤ C(M)‖ f ‖L2(O)

and

‖∇P‖L2(O) ≤ ‖∂x P‖L2(O) + ‖∂z P‖L2(O)

≤ ‖∂x∂zζv‖L2(O)+σ̄‖∂xζv‖L2(O)+σ̄‖ζv‖L2(O)+‖∂2z ζv‖L2(O)+σ̄‖∂zζv‖L2(O)

≤ √
2‖∇∂zζv‖L2(O) + σ̄

(√
2‖∇ζv‖L2(O) + ‖ζv‖L2(O)

)

≤ √
2‖∇∂zζv‖L2(O) + C(M)‖ f ‖L2(O) .
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Collecting the previous estimates, we end up with

‖∂zζv(·, v)‖rLr (I ) ≤
(
4r

√
M
)r

C(M)‖ f ‖L2(O)

(√
2‖∇∂zζv‖L2(O) + C(M)‖ f ‖L2(O)

)r−1

≤ (rC(M))r‖ f ‖L2(O)

(‖∇∂zζv‖L2(O) + ‖ f ‖L2(O)

)r−1
,

from which (3.37) follows. We next deduce from (3.37) (with r = 4) and Hölder’s inequality
that
∣∣
∣
∣

∫

I
∂2x v|∂zζv(·, v)|2 dx

∣∣
∣
∣ ≤ ‖∂2x v‖L2(I )‖∂zζv(·, v)‖2L4(I )

≤ 16C3(M)2‖∂2x v‖L2(I )‖ f ‖1/2L2(O)

(‖∇∂zζv‖L2(O) + ‖ f ‖L2(O)

)3/2

≤ C(M)‖∂2x v‖L2(I )‖ f ‖1/2L2(O)

(
‖∇∂zζv‖3/2L2(O) + ‖ f ‖3/2L2(O)

)
,

and the proof is complete. ��
We are now in a position to derive quantitative estimates in H2 for ζv , which only depends

on the H2-norm of v, even though v is assumed to be more regular.

Lemma 3.13 There is C5(M) > 0 such that

‖∇∂zζv‖2L2(OI (v))
+ ‖√σ∂xζv(·,−H)‖2L2(I ) ≤ C5(M)

(
1 + ‖∂2x v‖4L2(I )

)
‖ f ‖2L2(OI (v))

,

(3.39a)

‖∂2x ζv‖2L2(OI (v))
≤ C5(M)

(
1 + ‖∂2x v‖4L2(I )

)
‖ f ‖2L2(OI (v))

.

(3.39b)

Proof To lighten notation, we set O := OI (v). We infer from (3.18a) and Lemma 3.11 that

−
∫

O
f ∂2z ζv d(x, z) =

∫

O

(
∂2x ζv∂

2
z ζv + |∂2z ζv|2

)
d(x, z)

= ‖∇∂zζv‖2L2(O) +
∫

I
∂xζv(·,−H)∂x (σζv)(·,−H) dx

− 1

2

∫

I
∂2x v|∂zζv(·, v)|2 dx .

Hence, thanks to (2.8), Lemma 3.12, and Hölder’s and Young’s inequalities,

X := ‖∇∂zζv‖2L2(O) + ‖√σ∂xζv(·,−H)‖2L2(I )

= −
∫

O
f ∂2z ζv d(x, z) −

∫

I
∂xσ(ζv∂xζv)(·,−H) dx + 1

2

∫

I
∂2x v|∂zζv(·, v)|2 dx

≤ ‖ f ‖L2(O)‖∂2z ζv‖L2(O) + σ̄‖ζv(·,−H)‖L2(I )‖∂xζv(·,−H)‖L2(I )

+C4(M)

2
‖∂2x v‖L2(I )

[
‖ f ‖1/2L2(O)‖∇∂zζv‖3/2L2(O) + ‖ f ‖2L2(O)

]

≤ 1

4
‖∂2z ζv‖2L2(O) + ‖ f ‖2L2(O) + σ̄√

σmin
‖ζv(·,−H)‖L2(I )‖

√
σ∂xζv(·,−H)‖L2(I )

+1

4
‖∇∂zζv‖2L2(O) + C(M)

(
‖∂2x v‖4L2(I ) + ‖∂2x v‖L2(I )

)
‖ f ‖2L2(O)

≤ 1

2
‖∇∂zζv‖2L2(O) + 1

2
‖√σ∂xζv(·,−H)‖2L2(I ) + σ̄ 2

2σmin
‖ζv(·,−H)‖2L2(I )

+C(M)
(
1 + ‖∂2x v‖4L2(I )

)
‖ f ‖2L2(O) .
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Consequently, using once more Young’s inequality,

X ≤ σ̄ 2

σmin
‖ζv(·,−H)‖2L2(I ) + C(M)

(
1 + ‖∂2x v‖4L2(I )

)
‖ f ‖2L2(O) .

Now, since ζv ∈ H1
B(O), it follows from (2.8), (3.32), and Lemma 3.8 that

2σmin‖ζv(·,−H)‖2L2(I ) ≤ 16M2(1 + 4M2)‖ f ‖2L2(O) .

Combining the above two estimates gives (3.39a).
To complete the proof of Lemma 3.13, we simply notice that (3.18a) ensures that

‖∂2x ζv‖2L2(O) = ‖ f + ∂2z ζv‖2L2(O) ≤ 2‖∂2z ζv‖2L2(O) + 2‖ f ‖2L2(O)

and deduce (3.39b) from (3.39a). ��
Summarizing, we have established the following result:

Proposition 3.14 Consider v ∈ H2(I ) satisfying (3.29); that is,

v ∈ W 3∞(I ) and min[a,b] v > −H ,

and fix κ > 0 such that

‖v‖H2(I ) ≤ κ . (3.40)

Then the elliptic boundary value problem (3.18) has a unique strong solution ζv ∈ H2(OI (v))

which satisfies

‖ζv‖H2(OI (v))
+ ‖∂xζv(·,−H)‖L2(I ) ≤ C6(κ)‖ f ‖L2(OI (v)) , (3.41)

‖∂zζv(·, v)‖Lr (I ) ≤ rC6(κ)‖ f ‖L2(OI (v)) , r ∈ [2,∞) . (3.42)

Proof The existence and uniqueness of a strong solution ζv ∈ H2(OI (v)) to (3.18) are
consequences of Lemma 3.8 and Lemma 3.10. Next, it readily follows from (3.40) and the
continuous embedding of H2(I ) in W 1∞(I ) that there is M ≥ 1 depending on κ such that

‖H + v‖L∞(I ) + ‖∂xv‖L∞(I ) ≤ M . (3.43)

Due to (3.43), we deduce (3.41) from (2.8), (3.40), Lemma 3.8, and Lemma 3.13, while
(3.42) follows from (3.41) and Lemma 3.12. ��

We emphasize that, though derived for functions v ∈ H2(I ) satisfying the additional
assumption (3.29), the estimates stated in Proposition 3.14 only depend on the H2-norm of
v and, neither on itsW 2∞-norm, nor on the value of its minimum (provided that it stays above
−H ). The outcome of Proposition 3.14 is thus likely to extend to any configuration depicted
in Fig. 2 under the sole assumption (3.13) and this will be shown in the next section by an
approximation argument.

3.2.5 H2-regularity: Proof of Theorem 3.9

We now prove the H2-regularity of ζv as stated in Theorem 3.9. We thus assume that v
satisfies (3.13); that is,

v ∈ H2(I ) such that v(x) > −H , x ∈ I ,
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and fix κ > 0 such that ‖v‖H2(I ) ≤ κ . Owing to the density of C∞([a, b]) in H2(I ) and
since v satisfies (3.13), we employ classical approximation arguments to construct a sequence
(vn)n≥1 of functions in C∞([a, b]) with the following properties:

lim
n→∞ ‖vn − v‖H2(I ) = 0 , sup

n≥1
{‖vn‖H2(I )} ≤ 1 + κ , (3.44a)

vn ≥ v + 1

n
, n ≥ 1 . (3.44b)

A first consequence of (3.44a) and the continuous embedding of H2(I ) in W 1∞(I ) is that

‖H + vn‖L∞(I ) + ‖∂xvn‖L∞(I ) ≤ C(κ) , n ≥ 1 ,

lim
n→∞ ‖vn − v‖W 1∞(I ) = 0 .

(3.45)

According to (3.13) and (3.44b), the function vn satisfies (3.29) for each n ≥ 1 and, since
OI (v) ⊂ OI (vn), we infer from Proposition 3.14 that the strong solution ζvn to (3.18) with
vn instead of v (and f replaced by its trivial extension to OI (vn)) satisfies

‖ζvn‖H2(OI (vn))
+ ‖∂xζvn (·,−H)‖L2(I ) ≤ C7(κ)‖ f ‖L2(OI (v)) , (3.46)

‖∂zζvn (·, vn)‖Lr (I ) ≤ rC7(κ)‖ f ‖L2(OI (v)) , r ∈ [2,∞) . (3.47)

Using again the inclusion OI (v) ⊂ OI (vn), we deduce from (3.46) that (ζvn )n≥1 is
bounded in H2(OI (v)). Consequently, recalling that H1(OI (v)) is compactly embedded
in L2(OI (v)) (despite the non-Lipschitz character ofOI (v), see [23, Theorem 11.21] or [28,
I.Theorem 1.4]), there are a subsequence of (ζvn )n≥1 (not relabeled) and φ ∈ H2(OI (v))

such that

ζvn⇀φ in H2(OI (v)) ,

ζvn −→ φ in H1(OI (v)) .
(3.48)

Let us first check that φ ∈ H1
B(OI (v)). On the one hand, since both φ and ζvn belong to

H1(OI (v)), we infer from (3.19) that
∫

I

∣∣(φ − ζvn )(·, v)
∣∣2 (H + v) dx ≤ C(κ)‖φ − ζvn‖2H1(OI (v))

.

Hence, by (3.48),

lim
n→∞

∫

I

∣∣(φ − ζvn )(·, v)
∣∣2 (H + v) dx = 0 .

On the other hand, since ζvn ∈ H1
B(OI (vn)) and vn ≥ v, it follows from Lemma A.1 and

(3.46) that
∫

I

∣∣ζvn (·, v)
∣∣2 (H + v) dx =

∫

I

∣∣ζvn (·, v) − ζvn (·, vn)
∣∣2 (H + v) dx

≤ ‖(v − vn)(H + v)‖L∞(I )‖∂zζvn‖L2(OI (vn))

≤ C(κ)‖v − vn‖L∞(I )‖ f ‖L2(OI (v)) .

Hence, by (3.45),

lim
n→∞

∫

I

∣∣ζvn (·, v)
∣∣2 (H + v) dx = 0 .
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Combining the previous two limits, we deduce
∫

I
|φ(·, v)|2 (H + v) dx = 0 ,

so that φ ∈ H1
B(OI (v)). In particular, for n ≥ 1, due to the inclusion OI (v) ⊂ OI (vn), the

function φ also belongs to H1
B(OI (vn)) and we infer from (3.22) and (3.48) that

lim
n→∞

∫

I

∣
∣(ζvn − φ)(·,−H)

∣
∣2 dx = 0 . (3.49)

We next recall that ζvn is the unique solution in H1
B(OI (vn)) to

∫

OI (vn)

∇ζvn · ∇ϑ d(x, z) +
∫

I
σζvn (·,−H)ϑ(·,−H) dx =

∫

OI (vn)

f ϑ dx (3.50)

for all ϑ ∈ H1
B(OI (vn)). Now, since H1

B(OI (v)) ⊂ H1
B(OI (vn)), we can take ϑ ∈

H1
B(OI (v)) in (3.50) and use the convergences (3.48) and (3.49) to pass to the limit n → ∞

and conclude that φ ∈ H1
B(OI (v)) satisfies the variational formulation of (3.18). Therefore,

Lemma 3.8 guarantees that φ = ζv . We have thus shown that ζv ∈ H2(OI (v)) and it follows
from (3.46) and (3.48) that

‖ζv‖H2(OI (v))
≤ lim inf

n→∞ ‖ζvn‖H2(OI (v))

≤ lim inf
n→∞ ‖ζvn‖H2(OI (vn))

≤ C7(κ)‖ f ‖L2(OI (v)) . (3.51)

A further consequence of (3.20) and (3.48) is that (∂xζvn (·,−H))n≥1 converges to
∂xζv(·,−H) in L2(I , (H + v)dx), which, together with the positivity of H + v in I ,
implies that (∂xζvn (·,−H))n≥1 converges to ∂xζv(·,−H) in L2(a + ε, b − ε) for any
ε ∈ (0, (b − a)/2). Combining this convergence with (3.46) and using Fatou’s lemma to
take the limit ε → 0 give

‖∂xζv(·,−H)‖L2(I ) ≤ C7(κ)‖ f ‖L2(OI (v)) . (3.52)

Finally, by (3.19) and (3.46),
∫

I

∣∣(∂zζvn − ∂zζv)(·, v)
∣∣2 (H + v) dx ≤ C(κ)‖∂zζvn − ∂zζv‖L2(OI (v)) .

Hence, by (3.48),

lim
n→∞

∫

I

∣∣(∂zζvn − ∂zζv)(·, v)
∣∣2 (H + v) dx = 0 . (3.53)

Moreover, owing to Lemma A.1, (3.46), and the properties ζvn ∈ H1
B(OI (vn)) and vn ≥ v,

∫

I

∣∣∂zζvn (·, v) − ∂zζvn (·, vn)
∣∣2 (H + v) dx ≤ ‖(v − vn)(H + v)‖L∞(I )‖∂2z ζvn‖2L2(OI (vn))

≤ C(κ)‖v − vn‖L∞(I ) ,

and it follows from (3.45) that

lim
n→∞

∫

I

∣∣∂zζvn (·, v) − ∂zζvn (·, vn)
∣∣2 (H + v) dx = 0 . (3.54)

Gathering (3.53) and (3.54) leads us to

lim
n→∞

∫

I

∣∣∂zζv(·, v) − ∂zζvn (·, vn)
∣∣2 (H + v) dx = 0 . (3.55)
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Since H + v > 0 in I , we may extract a further subsequence (not relabeled) such that
(∂zζvn (·, vn))n≥1 converges a.e. in I to ∂zζv(·, v). We then use Fatou’s lemma to pass to the
limit n → ∞ in (3.47) and conclude that

‖∂zζv(·, v)‖Lr (I ) ≤ rC7(κ)‖ f ‖L2(OI (v)) , r ∈ [2,∞) ,

thereby completing the proof of Theorem 3.9.

3.3 Global H2-regularity of �v: Proof of Theorem 3.2 and Theorem 2.2

Finally, we prove Theorem 3.2 and Theorem 2.2 for which we consider an arbitrary function
v in S̄ and κ > 0 satisfying (3.8). According to [1, IX.Proposition 1.8] we can write the open
set D \ C(v) as a countable union of disjoint open intervals (I j ) j∈J ; that is,

D \ C(v) =
⋃

j∈J

I j .

Hence, �(v) is the disjoint union of the open domains OI j (v). Now recall from Proposi-
tion 3.3 that χv ∈ H1

B(�(v)) is the unique minimizer on H1
B(�(v)) of the functional

GD(v)[ϑ] = 1

2

∫

�(v)

|∇ϑ |2 d(x, z) + 1

2

∫

D
σ |ϑ(·,−H)|2 dx

−
∫

�(v)

ϑ�hv d(x, z) , ϑ ∈ H1
B(�(v)) .

Furthermore, since �hv belongs to L2(�(v)) by Lemma 3.1, it follows from the definition
of H1

B(�(v)) that

GD(v)[ϑ] =
∑

j∈J

G I j (v)[ϑ] , ϑ ∈ H1
B(�(v)) ,

whereGI j (v)[ϑ] is defined by (3.23)with f := �hv1OI j (v)
. Restricting toϑ ∈ H1

B(OI j (v)),

it thus readily follows that χv1OI j (v)
is a minimizer ofGI j (v) on H1

B(OI j (v)). Consequently,
χv1OI j (v)

= ζI j ,v by Lemma 3.8. Hence Theorem 3.9 yields

‖χv‖H2(OI j (v))
+ ‖∂xχv(·,−H)‖L2(I j ) ≤ C1(κ)‖�hv‖L2(OI j (v))

and

‖∂zχv(·, v)‖Lr (I j ) ≤ rC2(κ)‖�hv‖L2(OI j (v))
, r ∈ [2,∞) ,

with constants C1(κ) and C2(κ) not depending on I j . Therefore, summing with respect to
j ∈ J ,we conclude thatχv ∈ H2(�(v)) and satisfies (3.9) and (3.10), since‖�hv‖L2(�(v)) ≤
c(κ) by Lemma 3.1. Therefore, as in [16, Theorem 3.5], we may use the version of Gauß’
Theorem stated in [15, Folgerung 7.5] in the variational characterization of χv featuring G(v)
to deduce that χv ∈ H2(�(v)) is indeed a strong solution to (3.7). This proves Theorem 3.2.
Owing to (3.6) and Lemma 3.1, this also entails Theorem 2.2.

4 Continuity of �v with respect to v

In this section we derive continuity properties of χv and its gradient trace ∂zχv(·, v) with
respect to v ∈ S̄. The latter will also yield the continuity of the function g defined in
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(2.6). Throughout this section we denote positive constants depending only on σ by C . The
dependence upon additional parameters will be indicated explicitly.

4.1 H1-Continuity: 0-convergence ofG

Let us recall that, according to Proposition 3.3, χv is the unique minimizer on H1
B(�(v)) of

the functional G(v) introduced in (3.11) as

G(v)[ϑ] = 1

2

∫

�(v)

|∇(ϑ + hv)|2 d(x, z)+ 1

2

∫

D
σ(x)|ϑ(x,−H) + hv(x,−H)−hv(x)|2 dx

for ϑ ∈ H1
B(�(v)). Now, in order to derive continuity properties of χv (andψv) with respect

to v ∈ S̄, we first prove a �–convergence result for the set of functionals {G(v) , v ∈ S̄}.
More precisely, given M > 0 we set as before �(M) := D × (−H ,M) and, for v ∈ S̄ such
that v ≤ M − H , we extend the functional G(v) to L2(�(M)) by defining

G(v)[ϑ] := ∞ , ϑ ∈ L2(�(M)) \ H1
B(�(v)) .

With these notations we have:

Proposition 4.1 Let M > 0 and consider a sequence (vn)n≥1 in S̄ and v ∈ S̄ such that

− H ≤ vn(x) , v(x) ≤ M − H , x ∈ D , vn → v in H1(D) . (4.1)

Then

� − lim
n→∞G(vn) = G(v) in L2(�(M)) .

Proof The proof is very similar to that of [21, Proposition 3.11].
(i) Asymptotic weak lower semi-continuity. Given a sequence (ϑn)n≥1 in L2(�(M)) and
ϑ ∈ L2(�(M)) satisfying

ϑn → ϑ in L2(�(M)) , (4.2)

we shall show that

G(v)[ϑ] ≤ lim inf
n→∞ G(vn)[ϑn] . (4.3)

We may assume without loss of generality that

ϑn ∈ H1
B(�(vn)) , n ≥ 1 , G∞ := sup

n≥1
G(vn)[ϑn] < ∞ . (4.4)

Let n ≥ 1 and denote the extension by zero of ϑn to �(M) \ �(vn) by ϑn . Then ϑn ∈
H1
B(�(M)) and it follows from (4.1), (4.2), (4.4), and Lemma 3.1 (b) that the sequence

(ϑn)n≥1 is bounded in H1
B(�(M)). Since �(M) is a Lipschitz domain, the compactness of

the embedding of H1(�(M)) in H3/4(�(M)) [12, Theorem 1.4.3.2], the continuity of the
trace operator from H3/4(�(M)) to L2(∂�(M)) (see, e.g., [12, Theorem 1.5.1.2], [26], or
[34, Satz 8.7]) and (4.2) ensure that there is a subsequence of (ϑn)n≥1 (not relabeled) such
that

ϑn⇀ϑ in H1
B(�(M)) , (4.5)

ϑn → ϑ in L2(∂�(M)) . (4.6)
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In particular, ϑ ∈ H1(�(v)) and its trace ϑ(·, v) is well-defined in L2(D, (H + v) dx)
according to Lemma 3.6. Similarly, for each n ≥ 1, ϑ ∈ H1(�(vn)) and its trace ϑ(·, vn) is
well-defined in L2(D, (H + vn) dx). Consequently, for n ≥ 1,

∫

D
(H + v)(H + vn)|ϑ(·, v)|2 dx ≤ 2

∫

D
(H + v)(H + vn)|ϑ(·, v) − ϑ(·, vn)|2 dx

+ 2
∫

D
(H + v)(H + vn)|ϑ(·, vn)|2 dx .

(4.7)

On the one hand, by Lemma A.1 and (4.1),

∫

D
(H + v)(H + vn)|ϑ(·, v) − ϑ(·, vn)|2 dx
≤ ‖(H + v)(H + vn)(v − vn)‖L∞(D)‖∂zϑ‖2L2(�(M))

≤ M2‖v − vn‖L∞(D)‖∂zϑ‖2L2(�(M)) . (4.8)

On the other hand, since ϑn ∈ H1
B(�(vn)), we infer from (4.1) and Lemma 3.6 that

∫

D
(H + v)(H + vn)|ϑ(·, vn)|2 dx

=
∫

D
(H + v)(H + vn)|ϑ(·, vn) − ϑn(·, vn)|2 dx

≤ M
∫

D
(H + vn)|ϑ(·, vn) − ϑn(·, vn)|2 dx

≤ M
[
‖ϑ − ϑn‖2L2(�(vn))

+ 2‖H + vn‖L∞(D)‖ϑ − ϑn‖L2(�(vn))‖∂z(ϑ − ϑn)‖L2(�(vn))

]

≤ M‖ϑ − ϑn‖L2(�(M))

[

sup
m≥1

‖ϑ − ϑm‖L2(�(M)) + 2M sup
m≥1

‖∂z(ϑ − ϑm)‖L2(�(M))

]

≤ 2M(1 + M)‖ϑ − ϑn‖L2(�(M))

[

‖ϑ‖H1(�(M)) + sup
m≥1

‖ϑm‖H1(�(M))

]

. (4.9)

Now, it readily follows from (4.1), (4.2), (4.5), (4.8), (4.9), and the continuous embedding of
H1
0 (D) in C(D̄) that the right-hand side of (4.7) converges to zero as n → ∞. Therefore,

lim
n→∞

∫

D
(H + v)(H + vn)|ϑ(·, v)|2 dx = 0 ,

and we use Fatou’s lemma to conclude that

ϑ(·, v) = 0 in L2(D, (H + v)2 dx) .

Combining this result with (4.5) and (4.6) implies that

ϑ ∈ H1
B(�(v)) . (4.10)
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Now, we infer from (3.3), (4.1), (4.5), (4.10), and the continuous embedding of H1
0 (D) in

C(D̄) that
∫

�(v)

|∇(ϑ + hv)|2 d(x, z) =
∫

�(M)

|∇(ϑ + hv)|2 d(x, z) −
∫

�(M)\�(v)

|∇hv|2 d(x, z)

≤ lim inf
n→∞

∫

�(M)

|∇(ϑn + hvn )|2 d(x, z)

− lim
n→∞

∫

�(M)\�(vn)

|∇hvn |2 d(x, z)

= lim inf
n→∞

∫

�(vn)

|∇(ϑn + hvn )|2 d(x, z) .

Also, from (4.6) and Lemma 3.1 we deduce that

lim
n→∞

∫

D
σ
∣
∣(ϑn + hvn )(·,−H) − hvn

∣
∣2 dx =

∫

D
σ |(ϑ + hv)(·,−H) − hv|2 dx .

Gathering the outcome of the above analysis gives (4.3).
(ii) Recovery sequence. Consider ϑ ∈ H1

B(�(v)) and introduce the function ϑ̄ defined on

�̂(M) := D × (−2H − M,M)

by

ϑ̄(x, z) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 , x ∈ D , v(x) < z < M ,

ϑ(x, z) , x ∈ D , −H < z ≤ v(x) ,
ϑ(x,−2H − z) , x ∈ D , −2H − v(x) < z ≤ −H ,

0 , x ∈ D , −2H − M < z ≤ −2H − v(x) ,

which is the extension of ϑ by zero in �(M) \ �(v) and the reflection of the thus obtained
function to D×(−2H−M,−H). Then ϑ̄ ∈ H1

0 (�̂(M)), so that F := −�ϑ̄ ∈ H−1(�̂(M)).
Let n ≥ 1. Since

�̂(vn) := �(vn) ∪ (D × (−2H − M,−H ]) ⊂ �̂(M) ,

the distribution F can also be considered as an element of H−1(�̂(vn)) by restriction. Then
there is a unique variational solution ϑ̂n ∈H1

0 (�̂(vn)) ⊂ H1
0 (�̂(M)) to

−�ϑ̂n = F in �̂(vn) , ϑ̂n = 0 on ∂�̂(vn) .

Owing to (4.1) and the continuous embedding of H1
0 (D) in C(D̄),

dH
(
�̂(vn), �̂(v)

)
≤ ‖vn − v‖L∞(D) → 0 ,

wheredH stands for theHausdorff distance in �̂(M), see [14, Sect. 2.2.3]. Since �̂(M)\�̂(vn)
has a single connected component for all n ≥ 1, it follows from [33, Theorem 4.1] and [14,
Theorem 3.2.5] that ϑ̂n →ϑ̂ in H1

0 (�̂(M)), where ϑ̂n ∈H1
0 (�̂(M)) is the unique variational

solution to

−�ϑ̂ = F in �̂(M) , ϑ̂ = 0 on ∂�̂(M) .

Clearly, ϑ̂ = ϑ̄ by uniqueness, so that ϑ̂n → ϑ̄ in H1
0 (�̂(M)). Setting ϑn := ϑ̂n1�(vn) ∈

H1(�(M)), n ≥ 1, this convergence implies that

ϑn → ϑ̄ in H1(�(M)) . (4.11)
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Since ϑn = 0 in �(M) \ �(vn) we obtain from (3.3), (4.1), and (4.11) that
∫

�(v)

|∇(ϑ + hv)|2 d(x, z) =
∫

�(M)

(|∇ϑ̄ |2 + 2∇ϑ̄ · ∇hv
)
d(x, z) +

∫

�(v)

|∇hv|2 d(x, z)

= lim
n→∞

∫

�(M)

(|∇ϑn |2 + 2∇ϑn · ∇hvn
)
d(x, z)

+ lim
n→∞

∫

�(vn)

|∇hvn |2 d(x, z)

= lim
n→∞

∫

�(vn)

|∇(ϑn + hvn )|2 d(x, z) .

Moreover, the continuity of the trace from H1(�(M)) to L2(D × {−H}) and (4.11) entail
that

ϑn(·,−H) → ϑ̄(·,−H) = ϑ(·,−H) in L2(D) .

These two properties, along with (3.4) and (3.5), imply that

G(v)[ϑ] = lim
n→∞G(vn)[ϑn] ;

that is, (ϑn)n≥1 is a recovery sequence for ϑ and the claim is proved. ��
The Fundamental Theorem of �-convergence, see [9, Corollary 7.20], then yields the

following continuous dependence of χv on v ∈ S̄:

Corollary 4.2 Suppose (4.1) and assume further that there is κ > 0 such that

‖v‖H2(D) ≤ κ and ‖vn‖H2(D) ≤ κ , n ≥ 1 . (4.12)

Then

lim
n→∞G(vn)[χvn ] = G(v)[χv] (4.13)

and, for r ∈ [1,∞),

lim
n→∞ ‖χvn − χv‖H1(�(M)) = lim

n→∞ ‖χvn (·,−H) − χv(·,−H)‖Lr (D) = 0 . (4.14)

Proof It readily follows from (4.1), (4.12), and Theorem 3.2 that

(χvn )n≥1 is bounded in H1(�(M)) (4.15)

and thus relatively compact in L2(�(M)) by [12, Theorem 1.4.5.2]. According to Proposi-
tion 4.1,wededuce from theFundamental Theoremof�-convergence, see [9,Corollary 7.20],
that any cluster point of (χvn )n≥1 in L2(�(M)) is a minimizer of G(v) and thus coincides
with χv by Proposition 3.3. Therefore,

lim
n→∞ ‖χvn − χv‖L2(�(M)) = 0 , (4.16)

and, using once more [9, Corollary 7.20], we obtain (4.13).
We are left with proving (4.14). To this end,we first observe that, since�(M) is a Lipschitz

domain, [12, Theorem 1.4.3.2, Theorem 1.4.5.2] imply that H1(�(M)) compactly embeds
in W 3/2q

q (�(M)) for q ≥ 2. Thus, the continuity of the trace operator from W 3/2q
q (�(M))
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to Lq(∂�(M)) (see [12, Theorem 1.5.1.2] and [26]), along with (4.15) and (4.16), ensure
that there is a subsequence of (χvn )n≥1 (not relabeled) such that

χvn⇀χv in H1
B(�(M)) , (4.17)

χvn (·,−H) → χv(·,−H) in Lq(D) , q ≥ 2 . (4.18)

Notice that (4.18) yields the second assertion of (4.14). It now follows from (3.3), (3.4), (3.5),
(4.13), and (4.18) that

lim
n→∞ ‖∇(χvn + hvn )‖2L2(�(M)) = lim

n→∞ ‖∇(χvn + hvn )‖2L2(�(vn))

+ lim
n→∞ ‖∇hvn‖2L2(�(M)\�(vn))

= ‖∇(χv + hv)‖2L2(�(v)) + ‖∇hv‖2L2(�(M)\�(v))

= ‖∇(χv + hv)‖2L2(�(M)) .

This property, along with (3.3) and (4.17), guarantees that (∇χvn )n≥1 converges to ∇χv in
L2(�(M)) and the proof of (4.14) is complete. ��

4.2 Continuity of@z�v(·, v)with respect to v

Finally, in order to establish the continuity of the function g defined in (2.6) we need also
to investigate the continuous dependence of the gradient trace ∂zχv(·, v) on v ∈ S̄, the main
difficulty arising when C(v) �= ∅. In this regard we note:

Proposition 4.3 Consider v ∈ S̄ and a sequence (vn)n≥1 in S̄ such that

‖v‖H2(D) + sup
n≥1

‖vn‖H2(D) ≤ κ and lim
n→∞ ‖vn − v‖H1(D) = 0 . (4.19)

Then

�(vn) → �(v) in Lr (D) for r ∈ [1,∞) , (4.20)

where �(v) is given by

�(v)(x) :=
{
∂zχv(x, v(x)) , x ∈ D \ C(v) ,
0 , x ∈ C(v) .

Proof Thanks to (4.19) and the continuous embedding of H2(D) in L∞(D), we may fix
M > H (only depending on κ) such that

− H ≤ vn(x), v(x) ≤ M − H , x ∈ D̄ , n ≥ 1 . (4.21)

Step 1.We first establish an estimate ensuring that there is no concentration of ∂zχv(·, v) on
small subsets of D\C(v). Indeed, sinceχv ∈ H2(�(v))we haveχv(x, ·) ∈ H2((−H , v(x)))
for a.a. x ∈ D \ C(v), so that it follows from the boundary conditions (3.18b) and (3.18c)
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that

∂zχv(x, v(x)) = ∂zχv(x,−H) +
∫ v(x)

−H
∂2z χv(x, z) dz

= σ(x) χv(x,−H) +
∫ v(x)

−H
∂2z χv(x, z) dz

= σ(x)

(

χv(x, v(x)) −
∫ v(x)

−H
∂zχv(x, z)dz

)

+
∫ v(x)

−H
∂2z χv(x, z) dz

=
∫ v(x)

−H

(
∂2z χv(x, z) − σ(x)∂zχv(x, z)

)
dz

for a.a. x ∈ D \ C(v). Thus, for an arbitrary measurable subset E ⊂ D \ C(v), we infer from
Hölder’s inequality that
∫

E
|∂zχv(x, v(x))| dx

≤
∫

E

∫ v(x)

−H

(|∂2z χv(x, z)| + σ(x)|∂zχv(x, z)|
)
dzdx

≤
(∫

E
(H + v)(x) dx

)1/2 (∫

�(v)

(
2|∂2z χv(x, z)|2 + 2‖σ‖2∞|∂zχv(x, z)|2

)
d(x, z)

)1/2

≤ C

(∫

E
(H + v)(x) dx

)1/2

‖χv‖H2(�(v)) . (4.22a)

Clearly, the same proof implies that, for any n ≥ 1 and arbitrary measurable subset E ⊂
D \ C(vn),

∫

E
|∂zχvn (x, vn(x))| dx ≤ C

(∫

E
(H + vn)(x) dx

)1/2

‖χvn‖H2(�(vn))
. (4.22b)

Step 2.We next handle the behavior of ∂zχv(·, v)where v stays away from −H . To this end,
let ε ∈ (0, H/2) and define

�(ε) := {x ∈ D : v(x) > −H + 2ε} , (4.23)

which is a non-empty open subset of D, since v ∈ C(D̄)with v(±L) = 0. We can thus write
it as a countable union of disjoint open intervals (� j (ε)) j∈J , see [1, IX.Proposition 1.8].
Also, owing to (4.19) and the continuous embedding of H1(D) in C(D̄), there is nε ≥ 1
such that

v(x) − ε ≤ vn(x) ≤ v(x) + ε , x ∈ D̄ , n ≥ nε . (4.24)

A straightforward consequence of (4.23) and (4.24) is that

{(x, z) ∈ �(ε) × [−H ,∞) : −H < z < v(x) − ε} ⊂ �(vn) , n ≥ nε . (4.25)

Therefore, the function Xn,ε, given by

Xn,ε(x) := ∂zχv(x, v(x) − ε) − ∂zχvn (x, v(x) − ε), x ∈ �(ε) , n ≥ nε ,

is well-defined. Let j ∈ J and n ≥ nε . Since ∂zχv and ∂zχvn belong to H1(O� j (ε)(v − ε)),
the setO� j (ε)(v−ε) being defined in (3.14), it follows from (3.19), (4.21), and the definition
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of �(ε) that

ε

∫

� j (ε)

|Xn,ε(x)|2 dx

≤
∫

� j (ε)

|Xn,ε(x)|2(H + v(x) − ε) dx

≤ ‖∂z(χv − χvn )‖2L2(O� j (ε)(v−ε))

+ 2‖H + v − ε‖L∞(� j (ε))‖∂z(χv − χvn )‖L2(O� j (ε)(v−ε))‖∂2z (χv − χvn )‖L2(O� j (ε)(v−ε))

≤ ‖∂z(χv − χvn )‖2L2(O� j (ε)(M))

+ C(κ)‖∂z(χv − χvn )‖L2(O� j (ε)(M))

(
‖∂2z χv‖L2(O� j (ε)(v))

+ ‖∂2z χvn‖L2(O� j (ε)(vn))

)
.

Summing the above inequality over j ∈ J and noticing that
∑

j∈J

‖∂z(χv − χvn )‖L2(O� j (ε)(M))

(
‖∂2z χv‖L2(O� j (ε)(v))

+ ‖∂2z χvn‖L2(O� j (ε)(vn))

)

≤
⎛

⎝
∑

j∈J

‖∂z(χv − χvn )‖2L2(O� j (ε)(M))

⎞

⎠

1/2

×
⎛

⎝
∑

j∈J

(
‖∂2z χv‖L2(O� j (ε)(v))

+ ‖∂2z χvn‖L2(O� j (ε)(vn))

)2
⎞

⎠

1/2

≤ √
2‖∂z(χv − χvn )‖L2(�(M))

⎛

⎝
∑

j∈J

(
‖∂2z χv‖2L2(O� j (ε)(v))

+ ‖∂2z χvn‖2L2(O� j (ε)(vn))

)
⎞

⎠

1/2

≤ √
2‖∂z(χv − χvn )‖L2(�(M))

(‖∂2z χv‖L2(�(v)) + ‖∂2z χvn‖L2(�(vn))

)

≤ C(κ)‖∂z(χv − χvn )‖L2(�(M))

by Cauchy-Schwarz’ inequality, (4.19), and Theorem 3.2, we obtain

ε

∫

�(ε)

|Xn,ε(x)|2 dx ≤ ‖∂z(χv − χvn )‖2L2(�(M)) + C(κ)‖∂z(χv − χvn )‖L2(�(M)) .

We now infer from (4.14) and the above inequality that

lim
n→∞

∫

�(ε)

|Xn,ε(x)|2 dx = 0 . (4.26)

We next set

Yn(x) := ∂zχv(x, v(x)) − ∂zχvn (x, vn(x)), x ∈ �(ε) , n ≥ nε .

Using (4.24) and Hölder’s and Young’s inequalities, we obtain, for j ∈ J ,

‖Yn‖L1(� j (ε)) ≤ ‖Xn,ε‖L1(� j (ε)) +
∫

� j (ε)

∣∣∣∣

∫ v

v−ε

∂2z χv(·, z) dz −
∫ vn

v−ε

∂2z χvn (·, z) dz
∣∣∣∣ dx

≤ ‖Xn,ε‖L1(� j (ε)) +
∫

� j (ε)

∫ v

v−ε

|∂2z χv(·, z)| dzdx
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+
∫

� j (ε)

∫ vn

v−ε

|∂2z χvn (·, z)| dzdx

≤ ‖Xn,ε‖L1(� j (ε)) +
√
ε|� j (ε)|

(∫

� j (ε)

∫ v

v−ε

|∂2z χv(·, z)|2 dzdx
)1/2

+
√
2ε|� j (ε)|

(∫

� j (ε)

∫ vn

v−ε

|∂2z χvn (·, z)|2 dzdx
)1/2

≤ ‖Xn,ε‖L1(� j (ε)) +
√
ε

2
|� j (ε)| +

√
ε

2

∫

� j (ε)

∫ v

−H
|∂2z χv(·, z)|2 dzdx

+
√
ε

2
|� j (ε)| + √

ε

∫

� j (ε)

∫ vn

−H
|∂2z χvn (·, z)|2 dzdx .

Summing over j ∈ J and using (4.19) and Theorem 3.2 give

‖Yn‖L1(�(ε)) ≤ ‖Xn,ε‖L1(�(ε)) + √
ε|�(ε)| + √

ε‖χv‖H2(�(v)) + √
ε‖χvn‖H2(�(vn))

≤ ‖Xn,ε‖L1(�(ε)) + C(κ)
√
ε .

Owing to (4.26), we may take the limit n → ∞ in the previous inequality and obtain

lim sup
n→∞

‖Yn‖L1(�(ε)) ≤ C(κ)
√
ε.

Since �(ε) ⊂ �(δ) for all δ ∈ (0, ε), we infer from the above inequality that

lim sup
n→∞

‖Yn‖L1(�(ε)) ≤ lim sup
n→∞

‖Yn‖L1(�(δ)) ≤ C(κ)
√
δ

and we may pass to the limit δ → 0 to conclude that

lim
n→∞ ‖Yn‖L1(�(ε)) = 0, ε ∈ (0, H/2). (4.27)

Step 3. Finally, we infer from (4.19), (4.21), (4.22), and Theorem 3.2 that

‖�(vn) − �(v)‖L1(D)

≤
∫

�(ε)

|�(vn) − �(v)| dx +
∫

D\�(ε)

|�(vn)| dx +
∫

D\�(ε)

|�(v)| dx

= ‖Yn‖L1(�(ε)) +
∫

(D\�(ε))\C(vn)
|∂zχvn (·, vn)| dx +

∫

(D\�(ε))\C(v)
|∂zχv(·, v)| dx

≤ ‖Yn‖L1(�(ε)) + C

(∫

(D\�(ε))\C(vn)
(H + vn)(x) dx

)1/2

‖χvn‖H2(�(vn))

+ C

(∫

(D\�(ε))\C(v)
(H + v)(x) dx

)1/2

‖χv‖H2(�(v))

≤ ‖Yn‖L1(�(ε)) + C(κ)

(∫

D\�(ε)

(H + v)(x) dx

)1/2

+ C(κ)

(∫

D\�(ε)

(H + vn)(x) dx

)1/2

.
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Since 0 ≤ H + v ≤ 2ε and 0 ≤ H + vn ≤ 3ε in D \ �(ε) for n ≥ nε by (4.23) and (4.24),
we further obtain

‖�(vn) − �(v)‖L1(D) ≤ ‖Yn‖L1(�(ε)) + C(κ)
√
ε .

We now first let n → ∞ with the help of (4.27) and then take the limit ε → 0 to conclude
that

lim
n→∞ ‖�(vn) − �(v)‖L1(D) = 0 . (4.28)

Finally, given r ∈ [1,∞), we infer from Hölder’s inequality, Lemma 3.1, (3.10), and (4.19)
that

‖�(vn) − �(v)‖Lr (D) ≤ ‖�(vn) − �(v)‖1/(2r−1)
L1(D)

‖�(vn) − �(v)‖2(r−1)/(2r−1)
L2r (D)

≤ ‖�(vn) − �(v)‖1/(2r−1)
L1(D)

(
‖�(vn)‖2(r−1)/(2r−1)

L2r (D)
+‖�(v)‖2(r−1)/(2r−1)

L2r (D)

)

≤ C(κ, r)‖�(vn) − �(v)‖1/(2r−1)
L1(D)

and the assertion follows from (4.28). ��
Summarizing the outcome of this section, we have obtained continuity properties of the

electrostatic energy Ee and the function g introduced in (2.6).

Theorem 4.4 The electrostatic energy Ee : S̄ → R is continuous for the weak topology of
H2(D). The function g : S̄ → Lr (D) is continuous for each r ∈ [1,∞), the set S̄ being still
endowed with the weak topology of H2(D).

Proof Let us first recall that, if (vn)n≥1 is a sequence in S̄ converging weakly in H2(D) to
v ∈ S̄, then there is κ > 0 such that (4.12) and (4.19) hold true. Consequently, we infer from
Corollary 4.2 that

lim
n→∞ Ee(vn) = − lim

n→∞G(vn)[χvn ] = −G(v)[χv] = Ee(v) ,

thereby establishing the stated continuity of Ee. Next, let v ∈ S̄. Since ∂xv = 0 a.e. in C(v),
it follows from (2.6) and Proposition 4.3 that

g(v)(x) = 1

2
(1 + |∂xv(x)|2)

[
�(v)(x) − (∂wh)v(x, v(x))

]2

+ σ(x)
[
χv(x,−H) + hv(x,−H) − hv(x)

]
(∂wh)v(x)

− 1

2

[∣∣(∂xh)v
∣∣2 + (

(∂zh)v + (∂wh)v
)2]

(x, v(x))

for x ∈ D. The stated continuity of g then readily follows from Proposition 4.3 and the
C1-regularity of h and h (see also Lemma 3.1(b)). ��

5 Shape derivative of the electrostatic energy

In this section we investigate differentiability properties of the electrostatic energy

Ee(u) = −1

2

∫

�(u)

∣∣∇ψu
∣∣2 d(x, z)

−1

2

∫

D
σ(x)

∣∣ψu(x,−H) − hu(x)
∣∣2 dx
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with respect to u ∈ S̄, where ψu is the strong solution to (1.3), see Theorem 2.2. Owing
to the dependence of ψu on the domain �(u) this resembles the computation of a shape
derivative, a topic which has received considerable attention in recent years, see [8,14,32]
and the references therein. Note that we may write alternatively Ee(u) = −G(u)[ψu − hu],
since χu = ψu − hu is the strong solution to (3.7) (with v = u) given by Theorem 3.2.

As might be expected, the switch between boundary conditions for ψu when C(u) �= ∅
generates additional difficulties and we begin with the differentiability of ψu with respect to
u ∈ S.

Lemma 5.1 Let u ∈ S be fixed and define, for v ∈ S, the transformation�v : �(u) → �(v)

by

�v(x, z) :=
(
x, z + v(x) − u(x)

H + u(x)
(z + H)

)
, (x, z) ∈ �(u) .

Then there exists a neighborhood U of u in S such that the mapping

U → H1
B(�(u)), v �→ χv ◦ �v

is continuously differentiable, where χv = ψv − hv ∈ H1
B(�(v)) solves (3.7), see Theo-

rem 3.2, and S is endowed with the H2(D)-topology.

Proof The proof follows the lines of [14, Theorem 5.3.2], a similar proof is given in [21,
Lemma 4.1]. We thus only provide a very brief sketch here. Let u ∈ S and v ∈ S. Setting
ξv := χv ◦�v and performing a change of variables (x̄, z̄) = �v(x, z), the weak formulation
(3.12) satisfied by χv (as a critical point of G(v)) can be written in the form

∫

�(u)
Jv
(
(D�v)

−1(D�T
v )

−1∇ξv
) · ∇φ d(x, z) +

∫

D
σ
(
ξvφ

)
(·,−H) dx

= −
∫

�(u)
Jv
(
(D�v)

−1(∇hv ◦ �v)
) · ∇φ d(x, z)

+
∫

D
σ
[
hv − hv(·,−H)

]
φ(·,−H) dx

(5.1)

for φ ∈ H1
B(�(u)), where Jv := |det(D�v)|. Therefore, (5.1) is equivalent to

F(v, ξv) = 0 , v ∈ S , (5.2)

for some Fréchet differentiable function

F : S × H1
B(�(u)) → (H1

B(�(u)))′ .

One then uses the Implicit Function Theorem to derive that ξv depends smoothly on v. ��
As a next step we establish the Fréchet differentiability of Ee on the open set S. For u ∈ S

recall that g(u) is given by (2.6a) since C(u) = ∅ in this case.

Proposition 5.2 Let S be endowed with the H2(D)-topology. Then the electrostatic energy
Ee : S → R is continuously Fréchet differentiable with

∂u Ee(u)[ϑ] =
∫

D
g(u)ϑ dx

for u ∈ S and ϑ ∈ H2(D) ∩ H1
0 (D).
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Proof In this proof we shall use the notation from Lemma 5.1. We fix u ∈ S and recall from
Lemma 5.1 that the mapping v �→ ξv = χv ◦ �v is continuously differentiable with respect
to v in a neighborhood U of u in S and takes values in H1

B(�(u)). With ψv = χv + hv ,
Jv = |det(D�v)|, and the change of variables (x̄, z̄) = �v(x, z), we obtain that, for v ∈ U ,

Ee(v) = −1

2

∫

�(v)

|∇ψv|2 d(x̄, z̄) − 1

2

∫

D
σ
∣
∣ψv(x̄,−H) − hv(x̄)

∣
∣2 dx̄

= −1

2

∫

�(u)

∣
∣
∣(D�T

v )
−1∇ξv + ∇hv ◦ �v

∣
∣
∣
2
Jv d(x, z)

− 1

2

∫

D
σ |(ξv + hv)(x,−H) − hv(x)|2 dx .

We introduce the functions

j(v) := (D�T
v )

−1∇ξv + ∇hv ◦ �v in �(u),

m(v) := (
ξv + hv

)
(·,−H) − hv in D .

Then, recalling that h and h are C1-functions in all their arguments by (2.1b), we conclude
that the Fréchet derivative of Ee at u applied to ϑ ∈ H2(D) ∩ H1

0 (D) is given by

∂u Ee(u)[ϑ] = ∂vEe(v)[ϑ]|v=u = −
∫

�(u)
j(u) · (∂v j(v)[ϑ]|v=u) Ju d(x, z)

− 1

2

∫

�(u)
| j(u)|2 (∂v Jv[ϑ]|v=u) d(x, z) −

∫

D
σ m(u) (∂vm(v)[ϑ]|v=u) dx .

On the one hand, we argue as in the proof of [21, Equation (4.12)] to show that

−
∫

�(u)
j(u) · (∂v j(v)[ϑ]|v=u) Ju d(x, z) − 1

2

∫

�(u)
| j(u)|2 (∂v Jv[ϑ]|v=u) d(x, z)

= −
∫

�(u)
∇ψu · ∇(∂vξv[ϑ]|v=u + (∂wh)uϑ

)
d(x, z)

+
∫

�(u)
∇ψu ·

[
∂zχu ∇

(
(z + H)ϑ

H + u

)
− (z + H)ϑ

H + u
∇((∂zh)u

)]
d(x, z)

− 1

2

∫

�(u)
|∇ψu |2 ϑ

H + u
d(x, z) .

On the other hand, since m(u) = ψu(·,−H) − hu in D and

∂vm(v)[ϑ]|v=u = (∂vξv[ϑ]|v=u)(·,−H) + (∂wh)u(·,−H) ϑ − (∂wh)u ϑ in D ,

we see that

−
∫

D
σ m(u) (∂vm(v)[ϑ]|v=u) dx

= −
∫

D
σ
[
ψu(·,−H) − hu

][
(∂vξv[ϑ]|v=u)(·,−H)+(∂wh)u(·,−H) ϑ − (∂wh)u ϑ

]
dx .
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The above two identities yield

∂u Ee(u)[ϑ] = −
∫

�(u)
∇ψu · ∇(∂vξv[ϑ]|v=u + (∂wh)uϑ

)
d(x, z)

+
∫

�(u)
∇ψu ·

[
∂zχu ∇

(
(z + H)ϑ

H + u

)
− (z + H)ϑ

H + u
∇((∂zh)u

)
]
d(x, z)

− 1

2

∫

�(u)
|∇ψu |2 ϑ

H + u
d(x, z)

−
∫

D
σ
[
ψu(·,−H) − hu

][
(∂vξv[ϑ]|v=u)(·,−H)

+ (∂wh)u(·,−H) ϑ − (∂wh)u ϑ
]
dx .

(5.3)

Next we shall simplify the right-hand side of (5.3). Using Gauß’ Theorem, the fact that ψu is
a strong solution to (1.3a), ϑ = 0 on ∂D, and the fact that ∂vξv[ϑ]|v=u belongs to H1

B(�(u)),
the first integral on the right-hand side of (5.3) can be rewritten in the form

−
∫

�(u)
∇ψu · ∇(∂vξv[ϑ]|v=u + (∂wh)uϑ

)
d(x, z)

= −
∫

D
(∂wh)u(x, u(x)) ϑ(x)

[
∂zψu − ∂xu ∂xψu

]
(x, u(x)) dx

+
∫

D

[
(∂vξv[ϑ]|v=u)(x,−H) + (∂wh)u(x,−H) ϑ(x)

]
∂zψu(x,−H) dx .

Since, due to (1.3c),

∂zψu(x,−H) = σ(x)
[
ψu(x,−H) − hu(x)

]
, x ∈ D,

it follows that

−
∫

�(u)
∇ψu · ∇(∂vξv[ϑ]|v=u + (∂wh)uϑ

)
d(x, z)

= −
∫

D
ϑ(x)

[
(∂wh)u

(
∂zψu − ∂xu ∂xψu

)]
(x, u(x)) dx (5.4)

+
∫

D
σ(x)

[
ψu(x,−H) − hu(x)

][
(∂vξv[ϑ]|v=u)(x,−H) + (∂wh)u(x,−H) ϑ(x)

]
dx .

We next proceed as in [21, p. 486] to simplify the second integral on the right-hand side of
(5.3) and show that it can be written

∫

�(u)
∇ψu ·

[
∂zχu ∇

(
(z + H)ϑ

H + u

)
− (z + H)ϑ

H + u
∇((∂zh)u

)]
d(x, z)

= 1

2

∫

�(u)

ϑ

H + u
|∇ψu |2 d(x, z) − 1

2

∫

D
ϑ(x) |∇ψu(x, u(x))|2 dx

+
∫

D
ϑ(x)

[(
∂zψu − (∂zh)u

)(
∂zψu − ∂xu ∂xψu

)]
(x, u(x)) dx .
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Combining this identity with (5.3) and (5.4) yields

∂u Ee(u)[ϑ] =
∫

D
ϑ(x)

[(
∂zψu − (∂zh)u − (∂wh)u

)(
∂zψu − ∂xu ∂xψu

)]
(x, u(x)) dx

− 1

2

∫

D
ϑ(x) |∇ψu(x, u(x))|2 dx

+
∫

D
σ(x)

[
ψu(x,−H) − hu(x)

]
(∂wh)u(x) ϑ(x) dx .

(5.5)

Since (1.3b) entails ψu(x, u(x)) = h(x, u(x), u(x)), x ∈ D, we have

∂xψu(x, u(x)) = (∂xh)u(x, u(x)) − ∂xu(x)
[
∂zψu − (∂zh)u − (∂wh)u

]
(x, u(x)), x ∈ D,

and hence, for x ∈ D,

1

2

∣
∣∇ψu(x, u(x))

∣
∣2 −

[(
∂zψu − (∂zh)u − (∂wh)u

)(
∂zψu − ∂xu ∂xψu

)]
(x, u(x))

= −1

2
(1 + |∂xu(x)|2)

[
∂zψu − (∂zh)u − (∂wh)u

]2
(x, u(x))

+ 1

2

[∣∣(∂xh)u
∣∣2 + (

(∂zh)u + (∂wh)u
)2]

(x, u(x)) .

Inserting this identity into (5.5) gives

∂u Ee(u)[ϑ] = 1

2

∫

D
(1 + |∂xu(x)|2)

[
∂zψu − (∂zh)u − (∂wh)u

]2
(x, u(x)) ϑ(x) dx

− 1

2

∫

D

[|(∂xh)u |2 + ((∂zh)u + (∂wh)u)
2 ](x, u(x)) ϑ(x) dx

+
∫

D
σ(x)

[
ψu(x,−H) − hu(x)

]
(∂wh)u(x) ϑ(x) dx

=
∫

D
g(u)(x) ϑ(x) dx ,

according to (2.6a). Finally, the continuity of

∂u Ee : S → L
(
H2(D) ∩ H1

0 (D),R
)

readily follows from Theorem 4.4. ��

We finally provide the differentiability property of Ee on the closed set S̄. More precisely,
we show that Ee admits a directional derivative at a point u ∈ S̄ in any direction of −u + S,
which is given by g(u) defined in (2.6). Recall that C(u) may be non-empty in this case.

Proposition 5.3 Let u ∈ S̄ and w ∈ S. Then

lim
s→0+

1

s

[
Ee(u + s(w − u)) − Ee(u)

]
=
∫

D
g(u)(w − u) dx .

Proposition 5.3 is a rather immediate consequence of Theorem 4.4, Proposition 5.2, and
the observation that u + s(w− u) = (1− s)u + sw ∈ S for all u ∈ S̄, w ∈ S, and s ∈ (0, 1].
We refer to [21, Corollary 4.3] for a detailed proof.
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6 Proofs of Theorem 2.3 and Theorem 2.4 for ˛ = 0

In this section we deal with the case α = 0 and recall that the total energy is then given by

E(u) = Em(u) + Ee(u)

with mechanical energy

Em(u) = β

2
‖∂2x u‖2L2(D) + τ

2
‖∂xu‖2L2(D)

and electrostatic energy

Ee(u) = −1

2

∫

�(u)

∣
∣∇ψu

∣
∣2 d(x, z)

−1

2

∫

D
σ(x)

∣
∣ψu(x,−H) − hu(x)

∣
∣2 dx .

6.1 Existence of a minimizer of a regularized energy

As already noted in [21], the boundedness from below of the functional E is a priori unclear
since α = 0. To cope with this issue, we work with the regularized functional given by

Ek(u) := E(u) + A

2
‖(u − k)+‖2L2(D) , u ∈ S̄0 , (6.1)

for k ≥ H , where

A := 8

(
K 4

β
+ 2K 2

)
,

and the constant K is introduced in (2.4).

Lemma 6.1 For each k ≥ H, the functional Ek is bounded from below with

Ek(u) ≥ β

4
‖∂2x u‖2L2(D) + A

4
‖(u − k)+‖2L2(D) − c(k)

for some constant c(k) > 0.

Proof By (2.3), (2.8), and Proposition 3.3,

−Ee(u) = G(u)[ψu − hu] ≤ G(u)[0]
= 1

2

∫

�(u)
|∇hu |2 d(x, z) + 1

2

∫

D
σ(x)

[
hu(x,−H) − hu(x)

]2 dx

≤
∫

�(u)

[
(∂xh)

2
u + |∂xu|2(∂wh)2u + (∂zh)

2
u

]
dx

+ σ̄

∫

D

{[
hu(x,−H)

]2 + [
hu(x)

]2} dx

≤ K 2
∫

�(u)

(
2
1 + u(x)2

H + u(x)
+ |∂xu(x)|2

H + u(x)

)
d(x, z) + 2σ̄K 2|D|

≤ K 2
(
2|D| + 2‖u‖2L2(D) + ‖∂xu‖2L2(D)

)
+ 2σ̄K 2|D|

= 2(1 + σ̄ )|D|K 2 + 2K 2‖u‖2L2(D) + K 2‖∂xu‖2L2(D) .
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Now, since u ∈ S̄,
∫

D
|∂xu|2 dx = −

∫

D
u∂2x u dx ≤ ‖u‖L2(D)‖∂2x u‖L2(D) ,

and we further obtain with the help of Young’s inequality that

−Ee(u) ≤ 2(1 + σ̄ )|D|K 2 + 2K 2‖u‖2L2(D) + K 2‖u‖L2(D)‖∂2x u‖L2(D)

≤ 2(1 + σ̄ )|D|K 2 +
(
K 4

β
+ 2K 2

)
‖u‖2L2(D) + β

4
‖∂2x u‖2L2(D) .

Using this estimate in the definition of Ek(u) along with

‖u‖2L2(D) =
∫

D
u21(k,∞)(u) dx +

∫

D
u21[−H ,k](u) dx

≤ 2‖(u − k)+‖2L2(D) + 2k2
∫

D
1(k,∞)(u) dx + k2

∫

D
1[−H ,k](u) dx

≤ 2‖(u − k)+‖2L2(D) + 2k2|D| ,
we derive

Ek(u) ≥ β

4
‖∂2x u‖2L2(D) − 2(1 + σ̄ )|D|K 2 −

(
K 4

β
+ 2K 2

)
‖u‖2L2(D)

+ A

2
‖(u − k)+‖2L2(D)

≥ β

4
‖∂2x u‖2L2(D) − c(k) +

[
A

2
− 2

(
K 4

β
+ 2K 2

)]
‖(u − k)+‖2L2(D)

≥ β

4
‖∂2x u‖2L2(D) + A

4
‖(u − k)+‖2L2(D) − c(k) ,

thereby completing the proof. ��
Due to the weak lower semicontinuity of Em in H2(D) and the continuity of Ee with

respect to the weak topology of H2(D) (see Theorem 4.4), Lemma 6.1 allows us to apply
the direct method of the calculus of variations to derive the existence of a minimizer of Ek in
S̄0.

Corollary 6.2 For each k ≥ H, the functional Ek has at least one minimizer uk ∈ S̄0; that is,

Ek(uk) = min
S̄0

Ek . (6.2)

6.2 Derivation of the Euler–Lagrange equation for the regularized energy

Weshall next identify the Euler–Lagrange equation satisfied by aminimizer of the regularized
energy Ek on S̄0.

Proposition 6.3 Let k ≥ H and let u ∈ S̄0 be a minimizer of Ek on S̄0. Then u is an H2-weak
solution to the variational inequality

β∂4x u − τ∂2x u + A(u − k)+ + ∂IS̄0(u) � −g(u) in D , (6.3a)

where ∂IS̄0 is the subdifferential of the indicator function IS̄0 of the closed convex subset S̄0
of H2(D); that is,
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∫

D

{
β∂2x u ∂

2
x (w − u) + τ∂xu ∂x (w − u) + A(u − k)+(w − u)

}
dx

≥ −
∫

D
g(u)(w − u) dx

(6.3b)

for all w ∈ S̄0.

Proof Let k ≥ H be fixed. Consider aminimizer u ∈ S̄0 of Ek on S̄0 and fixw ∈ S0 := S̄0∩S.
Owing to the convexity of S̄0, the function u + s(w − u) = (1− s)u + sw belongs to S0 for
all s ∈ (0, 1] and the minimizing property of u guarantees that

0 ≤ lim inf
s→0+

1

s

(
Ek(u + s(w − u)) − Ek(u)

)
.

Since u ∈ S̄0 ⊂ S̄ and w ∈ S0 ⊂ S, Proposition 5.3 implies that

0 ≤
∫

D

{
β∂2x u ∂

2
x (w − u) + τ∂xu ∂x (w − u) + A(u − k)+(w − u)

}
dx

+
∫

D
g(u)(w − u) dx

for all w ∈ S0. Since S0 is dense in S̄0 and (u, g(u)) belongs to H2(D) × L2(D), this
inequality also holds for any w ∈ S̄0. ��
Proposition 6.4 There is κ0 ≥ H depending only on K such that, if u ∈ S̄0 is any solution
to the variational inequality (6.3) with k ≥ H, then ‖u‖L∞(D) ≤ κ0.

Proof Owing to the continuous embedding of H1
0 (D) in C(D̄), the function u belongs to

C(D̄) with u(±L) = 0. Consequently, the set {x ∈ D : u(x) > −H} is a non-empty open
subset of D and we can write it as a countable union of disjoint open intervals (I j ) j∈J , see
[1, IX.Proposition 1.8]. Using once more the property u(±L) = 0 > −H , we may assume
without loss of generality that I0 = (−L, a0) and I1 = (b0, L) for some−L < a0 < b0 < L ,
and Ī j ⊂ (−L, L) for j ∈ J with j ≥ 2.
Step 1: Thanks to (2.3b) and (2.4a), we infer from Lemma 3.4 that |ψu | ≤ K in �(u).
Combining this bound with (2.3), (2.4), (2.6), and (2.8) readily gives

g(u)(x) ≥ −2σ̄K 2 − K 2 =: −G0 , x ∈ D . (6.4)

Step 2: Consider first j ∈ J with j ≥ 2 and let θ ∈ D(I j ). Since u > −H in the support of
θ , the function u ± δθ belongs to S0 for δ > 0 small enough. We thus infer from (6.3b) that

±δ

∫

I j

{
β∂2x u ∂

2
x θ + τ∂xu ∂xθ + A(u − k)+θ

}
dx ≥ ∓δ

∫

I j
g(u)θ dx ,

hence
∫

I j

{
β∂2x u ∂

2
x θ + τ∂xu ∂xθ + A(u − k)+θ

}
dx = −

∫

I j
g(u)θ dx .

Consequently, using the function SI j defined in Proposition D.1, we realize that u − SI j ∈
H2(I j ) is a weak solution to the boundary value problem

β∂4xw − τ∂2xw = −G0 − g(u) − A(u − k)+ in I j , (6.5a)

w = ∂xw = 0 in ∂ I j , (6.5b)
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the boundary conditions (6.5b) being a consequence of the definition of I j , j ≥ 2, the H2(D)-
regularity of u, and the constraint u ≥ −H . Taking into account that g(u) + A(u − k)+ ∈
L2(I j ) by Theorem 4.4, classical elliptic regularity theory implies that u − SI j ∈ H4(I j ) is
a strong solution to (6.5). Since the right hand side of (6.5a) is non-positive due to (6.4), it
now follows from a version of Boggio’s comparison principle [7,13,17,29] that u − SI j < 0
in I j , so that u(x) ≤ κ0 for x ∈ Ī j and j ≥ 2 by Proposition D.1.
Step 3: We next handle the case j = 0 in which I0 = (−L, a0). We first argue as in the
previous step to conclude that

∫

I0

{
β∂2x u ∂

2
x θ + τ∂xu ∂xθ + A(u − k)+θ

}
dx = −

∫

I0
g(u)θ dx (6.6)

for all θ ∈ D(I0) and that u(−L) = ∂xu(−L) = u(a0) + H = ∂xu(a0) = 0. Consequently,
we infer from (6.6) and Proposition D.1 that u − SI0 ∈ H2(I0) is a weak solution to the
boundary value problem

β∂4xw − τ∂2xw = −G0 − g(u) − A(u − k)+ in I0 ,

w = ∂xw = 0 on ∂ I0 .

We then argue as in Step 2 to establish that u − SI0 < 0 in I0 = (−L, a0). Hence, u ≤ κ0
in [−L, a0] by Proposition D.1.
Step 4: For j = 1 (I1 = (b0, L)), we proceed as in Step 3 using Proposition D.1 to deduce
that u ≤ κ0 in [b0, L]. This completes the proof. ��

6.3 Proof of Theorem 2.3 for˛ = 0

Let k ≥ H and consider a minimizer uk ∈ S̄0 of the functional Ek on S̄0 as provided by
Corollary 6.2. Then,−H ≤ uk ≤ κ0 in D according to Proposition 6.4. Therefore, if k ≥ κ0,
then

E(uk) = Eκ0(uk) = Ek(uk) ≤ Ek(v) = E(v) + A

2
‖(v − k)+‖2L2(D) , v ∈ S̄0 . (6.7)

Now, it follows from Lemma 6.1 and the fact that 0 ∈ S̄0 that, for k ≥ κ0,

β

4
‖∂2x uk‖2L2(D) ≤ Eκ0(uk) + c(κ0) ≤ Ek(0) + c(κ0) = E(0) + c(κ0) .

Therefore, (uk)k≥κ0 is bounded in H2(D) and there is a subsequence of (uk)k≥κ0 (not rela-
beled) which converges weakly in H2(D) and strongly in H1(D) towards some u∗ ∈ S̄0.
Due to the weak lower semicontinuity of Em in H2(D) and the continuity of Ee with respect
to the weak topology of H2(D) (see Theorem 4.4), we readily infer from (6.7) that

E(u∗) ≤ E(v) , v ∈ S̄0 ,

after taking into account that

lim
k→∞ ‖(v − k)+‖L2(D) = 0 , v ∈ L2(D) .

Consequently, u∗ ∈ S̄0 is a minimizer of E on S̄0. This proves Theorem 2.3.
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6.4 Proof of Theorem 2.4 for˛ = 0

Let u ∈ S̄0 be any minimizer of E on S̄0. Proceeding as in the proof of Proposition 6.3, this
implies that u ∈ S̄0 is an H2-weak solution to the variational inequality

β∂4x u − τ∂2x u + +∂IS̄0(u) � −g(u) in D ,

which completes the proof of Theorem 2.4.

7 Proofs of Theorem 2.3 and Theorem 2.4 for ˛ > 0

Consider now α > 0. In that case, the total energy is given by

E(u) = Em(u) + Ee(u)

with mechanical energy

Em(u) = β

2
‖∂2x u‖2L2(D) +

(τ
2

+ α

4
‖∂xu‖2L2(D)

)
‖∂xu‖2L2(D)

and electrostatic energy

Ee(u) = −1

2

∫

�(u)

∣∣∇ψu
∣∣2 d(x, z)

−1

2

∫

D
σ(x)

∣∣ψu(x,−H) − hu(x)
∣∣2 dx .

Observe that, since α > 0, the mechanical energy Em features a super-quadratic term in
‖∂xu‖L2(D) which has the following far-reaching consequence, which is shown as in the
proof of [21, Theorem 5.1], with the help of (2.3), (2.8), and Proposition 3.3 for the derivation
of an appropriate upper bound on −Ee(u), see the proof of Lemma 6.1.

Lemma 7.1 The functional E is bounded from below with

E(u) ≥ β

4
‖∂2x u‖2L2(D) − c

for some constant c > 0.

Once Lemma 7.1 is established, the existence of a minimizer of E on S̄0 follows from the
weak lower semicontinuity of Em in H2(D) and the continuity of Ee with respect to the weak
topology of H2(D) (see Corollary 4.2) by the direct method of the calculus of variations,
hence Theorem 2.3 for α > 0 (see also [21, Theorem 5.1]). As for the proof of Theorem 2.4
for α > 0, it is the same as that for α = 0, see Sect. 6.4.
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Appendix A: A technical lemma

Lemma A.1 Let I and J be two bounded intervals in R, and let U be a bounded open subset
of I × J . Consider ϑ ∈ H1(U ) and functions v ∈ C( Ī ), w ∈ C( Ī ), and ρ ∈ C( Ī ), ρ ≥ 0,
such that

(a) x �→ ϑ(x, v(x)) and x �→ ϑ(x, w(x)) are well-defined and belong to L2(I , ρ dx);
(b) {(x, z) ∈ I × J : min{v(x), w(x)} < z < max{v(x), w(x)}} ⊂ Ū .

Then
∫

I
|ϑ(·, v) − ϑ(·, w)|2ρ dx ≤ ‖(v − w)ρ‖L∞(I )‖∂zϑ‖2L2(U ).

Proof Owing to (b) we have, for a.a. x ∈ I ,

|ϑ(x, v(x)) − ϑ(x, w(x))|2 =
(∫ v(x)

w(x)
∂zϑ(x, z) dz

)2

.

Integrating with respect to x ∈ I after multiplication by ρ(x) and using Hölder’s inequality
give

∫

I
|ϑ(x, v(x)) − ϑ(x, w(x))|2ρ(x) dx ≤

∫

I
|v(x) − w(x)|

∣∣∣∣∣

∫ v(x)

w(x)
|∂zϑ(x, z)|2dz

∣∣∣∣∣
ρ(x) dx

≤ ‖ρ(v − w)‖L∞(I )

∫

U
|∂zϑ(x, z)|2 d(x, z)

and the proof is complete. ��

Appendix B: Proof of Lemma 3.11

The proof of Lemma 3.11 relies on the following result, which can be seen as an extension
of [12, Lemma 4.3.1.3] to include Robin boundary conditions.

Lemma B.1 Let I := (a, b) and setRI = I × (0, 1). Consider ϕ ∈ H2(RI ) and μ ∈ C2( Ī )
such that

ϕ(a, η) = ϕ(b, η) = 0 , η ∈ (0, 1) , (B.1a)

ϕ(x, 1) = −∂ηϕ(x, 0) + μ(x)ϕ(x, 0) = 0 , x ∈ I . (B.1b)

Then
∫

RI

∂2xϕ∂
2
ηϕ d(x, η) =

∫

RI

|∂x∂ηϕ|2 d(x, η) +
∫

I
(∂xϕ∂x (μϕ)) (·, 0) dx .

Proof We put ξ(x, η) := e−ημ(x)ϕ(x, η) and ρ(x, η) := eημ(x) for (x, η) ∈ RI . Owing to
the regularity of ϕ and μ, the function ξ belongs to H2(RI ) and, for (x, η) ∈ RI ,

∂xξ(x, η) = e−ημ(x) [∂xϕ(x, η) − η∂xμ(x)ϕ(x, η)] ,

∂ηξ(x, η) = e−ημ(x) [∂ηϕ(x, η) − μ(x)ϕ(x, η)
]
.
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Consequently, the functions F and G, defined for (x, η) ∈ RI by

F(x, η) := ρ(x, η)∂xξ(x, η) = ∂xϕ(x, η) − η∂xμ(x)ϕ(x, η) ,

G(x, η) := ρ(x, η)∂ηξ(x, η) = ∂ηϕ(x, η) − μ(x)ϕ(x, η) ,

satisfy

G(a, η) = G(b, η) = 0 , η ∈ (0, 1) ,

F(x, 1) = G(x, 0) = 0 , x ∈ I ,

since, by (B.1),

∂ηϕ(a, η) = ∂ηϕ(b, η) = 0 , η ∈ (0, 1) ,

∂xϕ(x, 1) = 0 , x ∈ I .
(B.2)

We then infer from [12, Lemma 4.3.1.3] that
∫

RI

∂x (ρ∂xξ)∂η(ρ∂ηξ) d(x, η) =
∫

RI

∂x F∂ηG d(x, η) =
∫

RI

∂ηF∂xG d(x, η)

=
∫

RI

∂η(ρ∂xξ)∂x (ρ∂ηξ) d(x, η) ;

that is,

0 =
∫

RI

[
∂2xϕ∂

2
ηϕ − |∂x∂ηϕ|2

]
d(x, η) +

3∑

j=1

I j , (B.3)

where

I1 :=
∫

RI

[−∂η(μϕ)∂
2
xϕ + ∂x (μϕ)∂x∂ηϕ

]
d(x, η) ,

I2 :=
∫

RI

[
−∂x (ηϕ∂xμ)∂

2
ηϕ + ∂η(ηϕ∂xμ)∂x∂ηϕ

]
d(x, η) ,

I3 :=
∫

RI

[
∂x (ηϕ∂xμ)∂η(τϕ) − ∂η(ηϕ∂xμ)∂x (τϕ)

]
d(x, η) .

First, integrating by parts and using the boundary values (B.1) of ϕ give

I3 =
∫ 1

0

[
ηϕ∂xμ∂η(μϕ)

]x=b

x=a
dη −

∫

I

[
ηϕ∂xμ∂x (μϕ)

]η=1

η=0
dx = 0

and

I2 = −
∫

I

[
∂x (ηϕ∂xμ)∂ηϕ

]η=1

η=0
dx +

∫ 1

0

[
∂η(ηϕ∂xμ)∂ηϕ

]x=b

x=a
dη

= −
∫

I
∂xμ∂xϕ(·, 1)∂ηϕ(·, 1) dx +

∫ 1

0
∂η(ηϕ∂xμ)(b, ·)∂ηϕ(b, ·) dη

−
∫ 1

0
∂η(ηϕ∂xμ)(a, ·)∂ηϕ(a, ·) dη .
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Owing to (B.2) we conclude that I2 = 0. Finally, we deduce from (B.1) and (B.2) after
integrating by parts that

I1 = −
∫ 1

0

[
∂η(μϕ)∂xϕ

]x=b

x=a
dη +

∫

I

[
∂x (μϕ)∂xϕ

]η=1

η=0
dx

= −
∫ 1

0
μ(b)∂xϕ(b, ·)∂ηϕ(b, ·) dη +

∫ 1

0
μ(a)∂xϕ(a, ·)∂ηϕ(a, ·) dη

+
∫

I
∂x (μϕ)(·, 1)∂xϕ(·, 1) dx −

∫

I
∂x (μϕ)(·, 0)∂xϕ(·, 0) dx

= −
∫

I
∂x (μϕ)(·, 0)∂xϕ(·, 0) dx .

Collecting (B.3) and the formulas for I j , 1 ≤ j ≤ 3, completes the proof. ��
Proof of Lemma 3.11 For (x, η) ∈ RI , we define

!(x, η) := ζv(x,−H + η(H + v(x))) , (B.4)

or, equivalently,

ζv(x, z) = !

(
x,

H + z

H + v(x)

)
, (x, z) ∈ OI (v) .

Since ζv ∈ H2(OI (v)) by Lemma 3.10 and v ∈ H2(I ), the function ! belongs to H2(RI )

and we infer from (3.18b) and (3.18c) that

!(a, η) = !(b, η) = 0 , η ∈ (0, 1) ,

!(x, 1) = −∂η!(x, 0) + σ(x)(H + v)(x)!(x, 0) = 0 , x ∈ I .
(B.5)

Next,

J :=
∫

OI (v)

∂2x ζv∂
2
z ζv d(x, z) =

3∑

i=1

Ji , (B.6)

where

J1 :=
∫

RI

∂2x!∂2η!
d(x, η)

H + v
,

J2 :=
∫

RI

[

−2η
∂xv

H + v
∂x∂η! + η2

(
∂xv

H + v

)2

∂2η!

]

∂2η!
d(x, η)

H + v
,

J3 :=
∫

RI

η

[

2

(
∂xv

H + v

)2

− ∂2x v

H + v

]

∂η!∂2η!
d(x, η)

H + v
.

Since

∂2x

(
!√
H + v

)
= ∂2x!√

H + v
− ∂xv

(H + v)3/2
∂x! − 1

2
∂x

(
∂xv

(H + v)3/2

)
! ,

we further obtain

J1 :=
3∑

i=1

J1,i ,
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where

J1,1 :=
∫

RI

∂2x

(
!√
H + v

)
∂2η

(
!√
H + v

)
d(x, η) ,

J1,2 :=
∫

RI

∂xv

(H + v)3/2
∂x!∂2η

(
!√
H + v

)
d(x, η) ,

J1,3 := 1

2

∫

RI

∂x

(
∂xv

(H + v)3/2

)
!∂2η

(
!√
H + v

)
d(x, η) .

We first infer from (B.5) and Lemma B.1 (with ϕ = !/
√
H + v and μ = σ(H + v)) that

J1,1 =
∫

RI

∣
∣
∣
∣∂x∂η

(
!√
H + v

)∣∣
∣
∣

2

d(x, η)

+
∫

I
∂x

(
!√
H + v

)
(·, 0) ∂x

(
σ
√
H + v!

)
(·, 0) dx

=
∫

RI

∣
∣∂x∂η!

∣
∣2

H + v
d(x, η) −

∫

RI

∂xv

(H + v)2
∂η!∂x∂η! d(x, η)

+ 1

4

∫

RI

(∂xv)
2

(H + v)3
|∂η!|2 d(x, η)

+
∫

I
∂x

(
!√
H + v

)
(·, 0)∂x

(
σ
√
H + v!

)
(·, 0) dx .

Next, we integrate by parts and use the boundary values (B.5) of ! to obtain

J1,2 =
∫

RI

∂xv

(H + v)2
∂x!∂2η! d(x, η)

=
∫

I

∂xv

(H + v)2

[
∂x!∂η!

]η=1

η=0
dx −

∫

RI

∂xv

(H + v)2
∂η!∂x∂η! d(x, η)

= −
∫

I

σ∂xv

(H + v)
!(·, 0)∂x!(·, 0) dx −

∫

RI

∂xv

(H + v)2
∂η!∂x∂η! d(x, η)

and

J1,3 =
∫

RI

(
∂2x v

2(H + v)2
− 3

4

(∂xv)
2

(H + v)3

)
!∂2η! d(x, η)

=
∫

I

(
∂2x v

2(H + v)2
− 3

4

(∂xv)
2

(H + v)3

)[
!∂η!

]η=1

η=0
dx

−
∫

RI

(
∂2x v

2(H + v)2
− 3

4

(∂xv)
2

(H + v)3

)
|∂η!|2 d(x, η)

= −
∫

I
σ

(
∂2x v

2(H + v)
− 3

4

(∂xv)
2

(H + v)2

)
|!(·, 0)|2 dx

−
∫

RI

(
∂2x v

2(H + v)2
− 3

4

(∂xv)
2

(H + v)3

)
|∂η!|2 d(x, η) .
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Next,

J3 =
∫

RI

2η
(∂xv)

2

(H + v)3
∂η!∂2η!d(x, η) + J3,2

with

J3,2 := −
∫

RI

η∂2x v

2(H + v)2
∂η
(|∂η!|2) d(x, η) .

Integrating by parts and using (B.5) give

J3,2 = −
∫

I

∂2x v

2(H + v)2

[
η|∂η!|2

]η=1

η=0
dx +

∫

RI

∂2x v

2(H + v)2
|∂η!|2d(x, η)

= −
∫

I

∂2x v

2(H + v)2
|∂η!(·, 1)|2 dx +

∫

RI

∂2x v

2(H + v)2
|∂η!|2d(x, η) .

Consequently,

J =
∫

RI

(H + v)

(
∂x∂η!

H + v
− η∂xv

(H + v)2
∂2η! − ∂xv

(H + v)2
∂η!

)2

d(x, η)

+ J4 − 1

2

∫

I

∂2x v

(H + v)2
|∂η!(·, 1)|2 dx ,

(B.7)

where

J4 :=
∫

I

(
∂x!∂x (σ!) − σ∂xv

2(H + v)
!∂x! − ∂xv

2(H + v)
!∂x (σ!)

)
(·, 0) dx

+ 1

2

∫

I
σ

(
(∂xv)

2

(H + v)2
− ∂2x v

H + v

)
|!(·, 0)|2 dx .

Now, since H2(RI ) is continuously embedded in C(RI ) by [12, Theorem 1.4.5.2], we infer
from (B.5) that

!(a, 0) = !(b, 0) = 0 .

Using this property along with an integration by parts, we obtain

−
∫

I

(
σ∂xv

2(H + v)
!∂x! + ∂xv

2(H + v)
!∂x (σ!)

)
(·, 0) dx

= −1

2

∫

I

∂xv

H + v
∂x (σ!

2) dx

= −1

2

[ ∂xv

H + v
σ |!(·, 0)|2

]x=b

x=a
+ 1

2

∫

I

(
∂2x v

H + v
− (∂xv)

2

(H + v)2

)
σ |!(·, 0)|2 dx

= 1

2

∫

I

(
∂2x v

H + v
− (∂xv)

2

(H + v)2

)
σ |!(·, 0)|2 dx ,

so that J4 reduces to

J4 =
∫

I
(∂x!∂x (σ!)) (·, 0) dx . (B.8)
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We then infer from (B.4), (B.7), and (B.8) that

J =
∫

OI (v)

|∂x∂zζv|2 d(x, z) +
∫

I
∂xζv(·,−H)∂x (σζv)(·,−H) dx

−1

2

∫

I
∂2x v|∂zζv(·, v)|2 dx .

Combining (B.6) and the above identity completes the proof. ��

Appendix C: Some functional inequalities

Let I = (a, b) ⊂ D be an open interval and consider v ∈ W 3∞(I ) such that min[a,b] v > −H .
Let M > 0 be such that

M ≥ max
{
1, ‖H + v‖L∞(I ), ‖∂xv‖L∞(I )

}
. (C.1)

We derive in this section functional inequalities for functions in the subspace H1
WS(OI (v)) of

H1(OI (v)) introduced in (3.31). Recall that P ∈ H1
WS(OI (v)) if and only if P ∈ H1(OI (v))

satisfies

P(x,−H) = 0 , x ∈ I , (C.2a)

P(a, z) = 0 , z ∈ (−H , v(a)) , (C.2b)

We begin with Poincaré and Sobolev inequalities and pay special attention to the dependence
of the constants on v.

Lemma C.1 Let P ∈ H1
WS(OI (v)). Then

‖P‖2L2(OI (v))
≤ 2M‖∇P‖L1(OI (v))‖∂z P‖L1(OI (v)) ,

where M is given by (C.1).

Proof For (x, η) ∈ RI = I × (0, 1), we define

Q(x, η) := P(x,−H + η(H + v(x))) , (C.3)

and observe that the regularity of v and P implies that Q ∈ H1(RI ). In addition, we deduce
from (C.2) that

Q(x, 0) = 0 , x ∈ I , (C.4a)

Q(a, η) = 0 , η ∈ (0, 1) . (C.4b)

On the one hand, it follows from (C.4b) that, for a.a. (x, η) ∈ RI ,

|(H + v)(x)Q(x, η)| =
∣∣∣∣

∫ x

a
[(H + v(x∗))∂x Q(x∗, η) + ∂xv(x∗)Q(x∗, η)] dx∗

∣∣∣∣

≤ J1(η) :=
∫

I
|(H + v(x∗))∂x Q(x∗, η) + ∂xv(x∗)Q(x∗, η)| dx∗ .

(C.5)

On the other hand, by (C.4a), we obtain, for a.a. (x, η) ∈ RI ,

|Q(x, η)| =
∣∣∣∣

∫ η

0
∂ηQ(x, η∗) dη∗

∣∣∣∣ ≤ J2(x) :=
∫ 1

0

∣∣∂ηQ(x, η∗)
∣∣ dη∗ . (C.6)
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We then infer from (C.3), (C.5), and (C.6) that

‖P‖2L2(OI (v))
=
∫

RI

(H + v(x))|Q(x, η)|2 d(x, η)

≤
∫

RI

J1(η)J2(x) d(x, η) =
(∫

I
J2(x) dx

)(∫ 1

0
J1(η) dη

)
. (C.7)

Now,
∫

I
J2(x) dx =

∫

RI

|∂ηQ(x, η)| d(x, η) =
∫

OI (v)

|∂z P(x, z)| d(x, z) (C.8)

and

∫ 1

0
J1(η) dη =

∫

RI

|(H + v(x))∂x Q(x, η) + ∂xv(x)Q(x, η)| d(x, η)

=
∫

OI (v)

∣
∣
∣
∣∂x P(x, z) + H + z

H + v(x)
∂xv(x)∂z P(x, z) + ∂xv(x)

(H + v)(x)
P(x, z)

∣
∣
∣
∣ d(x, z) . (C.9)

It further follows from (C.2a) that, for a.a. (x, z) ∈ OI (v),

|P(x, z)| =
∣∣∣∣

∫ z

−H
∂z P(x, z∗) dz∗

∣∣∣∣ ≤
∫ v(x)

−H
|∂z P(x, z∗)| dz∗ .

Hence,
∫

OI (v)

∣∣∣∣
∂xv(x)

(H + v)(x)
P(x, z)

∣∣∣∣ d(x, z) ≤
∫

OI (v)

|∂xv(x)||∂z P(x, z∗)| d(x, z∗) . (C.10)

Since 0 ≤ H + z ≤ H + v(x) for (x, z) ∈ OI (v), we deduce from (C.1), (C.9), and (C.10)
that

∫ 1

0
J1(η) dη ≤

∫

OI (v)

(|∂x P(x, z)| + 2|∂xv(x)||∂z P(x, z)|) d(x, z)

≤ 2M‖∇P‖L1(OI (v)) . (C.11)

Collecting (C.7), (C.8), and (C.11) completes the proof. ��

Since OI (v) is a two-dimensional domain, a classical consequence of Lemma C.1 is the
continuous embedding of H1

WS(OI (v)) in Lr (OI (v)) for r ∈ [1,∞). We stress here once
more that our main concern is the precise dependence of the embedding constant on v.

Lemma C.2 Let P ∈ H1
WS(OI (v)) and r ∈ [2,∞). Then

‖P‖rLr (OI (v))
≤
(
2r

√
M
)r−2 ‖P‖2L2(OI (v))

‖∇P‖(r−2)/2
L2(OI (v))

‖∂z P‖(r−2)/2
L2(OI (v))

,

where M is given by (C.1).

Proof Step 1. Assume first that r ≥ 4. For n ≥ 1, we define the truncation Tn by Tn(s) := s
for s ∈ [−n, n] and Tn(s) := n sign(s) for s ∈ (−∞,−n) ∪ (n,∞). Since Tn is a Lipschitz
continuous function on R with |T ′

n | ≤ 1 and vanishes at zero, the function Tn(P)r/2 also
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belongs to H1
WS(OI (v)). We then infer from Lemma C.1, the bound |T ′

n | ≤ 1, and Hölder’s
inequality that

‖Tn(P)‖rLr (OI (v))
≤ Mr2

2

∥
∥
∥Tn(P)(r−2)/2∇P

∥
∥
∥
L1(OI (v))

∥
∥
∥Tn(P)(r−2)/2∂z P

∥
∥
∥
L1(OI (v))

≤ Mr2‖Tn(P)‖r−2
Lr−2(OI (v))

‖∇P‖L2(OI (v))‖∂z P‖L2(OI (v)) .

Using again Hölder’s inequality, as well as the property |Tn(s)| ≤ |s| for s ∈ R, gives

‖Tn(P)‖r−2
Lr−2(OI (v))

≤ ‖Tn(P)‖r(r−4)/(r−2)
Lr (OI (v))

‖Tn(P)‖4/(r−2)
L2(OI (v))

≤ ‖Tn(P)‖r(r−4)/(r−2)
Lr (OI (v))

‖P‖4/(r−2)
L2(OI (v))

,

since r ≥ 4. Combining the above two inequalities leads us to

‖Tn(P)‖rLr (OI (v))
≤ (Mr2)(r−2)/2‖P‖2L2(OI (v))

‖∇P‖(r−2)/2
L2(OI (v))

‖∂z P‖(r−2)/2
L2(OI (v))

.

Since the right-hand side of the above inequality does not depend on n ≥ 1, we may take the
limit n → ∞ and deduce from Fatou’s lemma that P ∈ Lr (OI (v)) and satisfies the stated
bound for r ≥ 4.
Step 2. Consider now r ∈ [2, 4]. By Hölder’s inequality and Lemma C.2 for r = 4,

‖P‖rLr (OI (v))
≤ ‖P‖2(r−2)

L4(OI (v))
‖P‖4−r

L2(OI (v))

≤ (16M)(r−2)/2‖P‖2L2(OI (v))
‖∇P‖(r−2)/2

L2(OI (v))
‖∂z P‖(r−2)/2

L2(OI (v))
,

and we complete the proof by noticing that 4 ≤ 2r . ��
In the same vein, we derive an estimate for the trace of P ∈ H1

WS(OI (v)) on the graph
GI (v) of v, the trace being here well-defined since the assumption min[a,b] v > −H guar-
antees that OI (v) is a Lipschitz domain.

Lemma C.3 Let P ∈ H1
WS(OI (v)) and r ∈ [2,∞). Then

‖P(·, v)‖rLr (I ) ≤
(
4r

√
M
)r ‖P‖L2(OI (v))‖∇P‖(r−2)/2

L2(OI (v))
‖∂z P‖r/2L2(OI (v))

,

where M is given by (C.1).

Proof By (C.2a) we have, for a.a. x ∈ I ,

|P(x, v(x))|r ≤ r
∫ v(x)

−H
|P(x, z)|r−1|∂z P(x, z)| dz .

Integrating over I and using Hölder’s inequality lead us to

‖P(·, v)‖rLr (I ) ≤ r‖P‖r−1
L2(r−1)(OI (v))

‖∂z P‖L2(OI (v)) .

Since 2(r − 1) ≥ 2 as r ≥ 2, we deduce from Lemma C.2 and the above inequality that

‖P(·, v)‖rLr (I ) ≤ r
(
4(r − 1)

√
M
)r−2 ‖P‖L2(OI (v))‖∇P‖(r−2)/2

L2(OI (v))
‖∂z P‖r/2L2(OI (v))

,

from which Lemma C.3 follows, after using that r
(
4(r − 1)

√
M
)r−2 ≤

(
4r

√
M
)r
. ��
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Appendix D: A uniform bound for an auxiliary stationary problem

Proposition D.1 Consider G0 > 0, β > 0, and τ ≥ 0. Let I = (a, b) ⊂ (−L, L) be an open
interval and let SI be the unique solution to the boundary value problem

βS′′′′
I − τ S′′

I = G0 , x ∈ I , (D.1)

supplemented with inhomogeneous Dirichlet boundary conditions

SI (a) + H = S′
I (a) = SI (b) + H = S′

I (b) = 0 if − L < a < b < L , (D.2)

SI (−L) = S′
I (−L) = SI (b) + H = S′

I (b) = 0 if − L = a < b < L , (D.3)

SI (a) + H = S′
I (a) = SI (L) = S′

I (L) = 0 if − L < a < b = L , (D.4)

or clamped boundary conditions

SI (−L) = S′
I (−L) = SI (L) = S′

I (L) = 0 if − L = a < b = L . (D.5)

There is κ0 > 0 depending only on G0, β, L, H, and τ such that

|SI (x)| ≤ κ0 , x ∈ [a, b] , −L ≤ a < b ≤ L .

Proof Case 1: −L < a < b < L . We set P(y) := SI (a + (b− a)y)+ H for y ∈ [0, 1] and
deduce from (D.1) and (D.2) that P solves the boundary-value problem

βP ′′′′ − τ(b − a)2P ′′ = (b − a)4G0 , y ∈ (0, 1) ,

P(0) = P ′(0) = P(1) = P ′(1) = 0 .
(D.6)

We first infer from (D.6), the positivity ofG0, and a version of Boggio’s comparison principle
[7,13,17,29] that P > 0 in (0, 1). We next multiply (D.6) by P and integrate over (0, 1).
After integrating by parts and using the boundary conditions, we obtain

β‖P ′′‖2L2(0,1) + τ(b − a)2‖P ′‖2L2(0,1) = (b − a)4G0

∫ 1

0
P(y) dy .

Since

|P(y)| =
∣∣∣∣

∫ y

0
(y − y∗)P ′′(y∗) dy∗

∣∣∣∣ ≤ ‖P ′′‖L2(0,1) , y ∈ (0, 1) ,

by (D.6), we infer from these observations that

β‖P‖2L∞(0,1) ≤ β‖P ′′‖2L2(0,1) ≤ (b − a)4G0‖P‖L∞(0,1) ≤ 16L4G0‖P‖L∞(0,1) .

Consequently, 0 ≤ P ≤ 16L4G0/β in [0, 1], hence −H ≤ SI ≤ 16L4G0/β − H in [a, b].
Case 2: −L = a < b < L . Let Q ∈ R4[X ] be such that Q(0) = Q′(0) = Q(1) + H =
Q′(1) = 0; that is, Q(y) = y2(y2 + 2(H − 1)y + 1− 3H). We set P(y) := SI (−L + (b +
L)y) − Q(y) for y ∈ [0, 1] and deduce from (D.1) and (D.3) that P solves the boundary
value problem

βP ′′′′ − τ(b + L)2P ′′ = (b + L)4G0 − βQ′′′′ + τ(b + L)2Q′′ , y ∈ (0, 1) ,

P(0) = P ′(0) = P(1) = P ′(1) = 0 .
(D.7)

Arguing as in Case 1, we are led to

β‖P‖2L∞(0,1) ≤ β‖P ′′‖2L2(0,1) + τ(b + L)2‖P ′‖2L2(0,1)

≤ [
(b + L)4G0 + 24β + 14τ(H + 1)(b + L)2

] ‖P‖L∞(0,1)

≤ [
16L4G0 + 24β + 56τ(H + 1)L2] ‖P‖L∞(0,1) ,
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since Q′′′′ = 24 and

−14(H + 1) ≤ −12y − 6H ≤ Q′′(y) = 12y2 + 12(H − 1)y + 2(1 − 3H)

≤ 14 + 12H ≤ 14(H + 1) .

Consequently,

‖SI ‖L∞(I ) ≤ ‖P‖L∞(0,1) + ‖Q‖L∞(0,1) ≤ 16L4G0 + 24β + 56τ(H + 1)L2

β
+ ‖Q‖L∞(0,1) .

Case 3: −L < a < b = L . We set P(y) := SI (a + y(L − a)) − Q(1 − y) for y ∈ [0, 1]
and proceed as in the previous case to derive the same bound for ‖SI ‖L∞(I ).
Case 4: −L = a < b = L . We set P(y) := SI (−L + 2Ly) for y ∈ [0, 1] and deduce from
(D.1) and (D.5) that P solves the boundary value problem

βP ′′′′ − 4τ L2P ′′ = 16L4G0 , y ∈ (0, 1) ,

P(0) = P ′(0) = P(1) = P ′(1) = 0 .

We then argue as in Case 1 to conclude that 0 ≤ SI ≤ 16L4G0/β in [−L, L]. ��
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