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Abstract
We develop and study a theory of optimal transport for vector measures. We resolve in the
negative a conjecture of Klartag, that given a vector measure on Euclidean space with total
mass zero, the mass of any transport set is again zero. We provide a counterexample to
the conjecture. We generalise the Kantorovich–Rubinstein duality to the vector measures
setting. Employing the generalisation, we answer the conjecture in the affirmative provided
there exists an optimal transport with absolutely continuous marginals of its total variation.

Mathematics Subject Classification Primary: 49K21 · 49Q20 · 46E30 · 90C25; Secondary:
28A50 · 60D05 · 46E40

1 Introduction

In this note we develop theory of optimal transport of vector measures. Let us first briefly
describe the topic of classical optimal transport.

1.1 Optimal transport

In 1781 Gaspard Monge (see [19]) asked the following question: given two probability
distributions μ, ν on a metric space (X , d), how to transfer one distribution onto the other in
an optimal way. The criterion of optimality was to minimise the average transported distance.
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Since then the topic has been developed extensively and much of this development has been
done recently.We refer the reader to the books of Villani (see [25] and [26]) and to the lecture
notes of Ambrosio (see [1]) for a thorough discussion, history and applications of the optimal
transport problem.

The modern mathematical treatment of the problem has been initiated in 1942 by Kan-
torovich [14,15]. He proposed to consider a relaxed problem of optimising

∫
X×X

d(x, y)dπ(x, y)

among all transference plans π between μ and ν, i.e., the set ˙(μ, ν) of Borel probability
measures on X × X with respective marginal distributions equal to μ and to ν. The existence
of an optimal transference plan is a straightforward consequence of the Prokhorov’s theorem,
provided that X is separable.

The main question that has attracted a lot of attention is whether there exists an optimal
transport plan, i.e., a Borel map T : X → X such that T#μ = ν and the integral

∫
X
d(x, T (x))dμ(x)

is minimal. If we knew that an optimal transference plan is concentrated on a graph of a
Borel measurable function then we could infer the existence of an optimal transport plan. The
first complete answer on Euclidean space, under regularity assumptions on the considered
measures, was presented in a seminal paper [13] of Evans and Gangbo. However, before
that, Sudakov in [23] presented a solution of the problem that contained a flaw. The flaw
has been remedied by Ambrosio in [1] and later by Trudinger and Wang in [24] for the
Euclidean distance and by Caffarelli, Feldman and McCann in [5] for distances induced
by norms that satisfy certain smoothness and convexity assumptions. In [6] Caravenna has
carried out the original strategy of Sudakov for general strictly convex norms and eventually
Bianchini and Daneri in [4] accomplished the plan of a proof of Sudakov for general norms
on finite-dimensional normed spaces.

Let us describe briefly the strategy of Sudakov in the context of Euclidean spaces. We
assume that the two Borel probability measures μ, ν on R

n are absolutely continuous with
respect to the Lebesgue measure.

Let us recall that the paramount Kantorovich–Rubinstein duality formula tells that

sup

{∫
Rn

ud(μ − ν) | u is 1-Lipschitz

}
(1)

is equal to

inf

{∫
Rn×Rn

‖x − y‖dπ(x, y) | π ∈ ˙(μ, ν)

}
. (2)

Let us take an optimal u and an optimal π in the two above optimisation problems. We may
infer that

u(x) − u(y) = ‖x − y‖ for π -almost every (x, y) ∈ X × X . (3)

Consider the maximal sets on which u is an isometry, called the transport rays. We see that
all transport has to occur on these sets. Careful analysis of the Lipschitz function u shows
that the transport rays form a foliation of the underlying space R

n into line segments, up
to Lebesgue measure zero. Moreover, the so-called mass balance condition holds true. This
is to say, for any Borel set A that is a union of some collection of transport rays there is
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μ(A) = ν(A); see e.g. [13]. Using the mass balance condition, we may construct an optimal
transport by gluing together optimal maps for each of the transport rays; see e.g. [1].

This is one of the important observations that is employed in the localisation technique,
which allows to reduce the dimension of a considered problem; see a paper of Klartag [17]
for application of the technique to weighted Riemannian manifolds satisfying the curvature-
dimension condition in the sense of Bakry and Émery [2,3] and papers of Cavalletti, Mondino
[7,8] for application in the setting of metric measure spaces. The localisation technique stems
from convex geometry, but its generalisations have been employed to prove many novel
results concerning functional inequalities, e.g. isoperimetric inequality in the metric measure
spaces satisfying the synthetic curvature-dimension condition (see [7,8]). The latter notion
was introduced in the foundational papers by Sturm [21,22] and by Lott and Villani [18] and
allowed for development of a far-reaching, vast theory of metric measure spaces.We refer the
reader to [12] and references therein for a broader description of the localisation technique
and its history.

1.2 Optimal transport of vector measures

The purpose of this article is to investigate multi-dimensional generalisation of the optimal
transport problem and its connections with the localisation technique, as proposed by Klartag
in [17, Chapter 6].

We shall consider finite-dimensional linear spaces equipped with Euclidean norm and
1-Lipschitz maps u : Rn → R

m . A leaf S of a 1-Lipschitz map u : Rn → R
m is a maximal

set, with respect to the order induced by inclusion, such that the restriction u|S is an isometry.
This is to say, S is a leaf, whenever for any x, y ∈ S there is

‖u(x) − u(y)‖ = ‖x − y‖
and for any z /∈ S there exists x ∈ S such that

‖u(x) − u(z)‖ < ‖x − z‖.
The notion of leaves is a multi-dimensional generalisation of the notion of transport rays,
see Sect. 1.1, of the one-dimensional optimal transport theory. We refer the reader to [12]
for a thorough study of such leaves. Let us mention that such leaves form a convex partition
of Rn , up to Lebesgue measure zero. Moreover, any two such leaves may intersect only by
their relative boundaries; see [12] for the proofs.

Suppose now thatwe are given aBorel probabilitymeasureμ onRn , absolutely continuous
with respect to the Lebesgue measure, that satisfies m linear constrains. This is to say,∫

Rn
f dμ = 0 (4)

for some integrable function f : Rn → R
m with finite first moments, i.e.,∫

Rn
‖ f (x)‖‖x‖dμ(x) < ∞.

Let u : Rn → R
m be a 1-Lipschitz map such that∫

Rn
〈u, f 〉dμ = sup

{ ∫
Rn

〈v, f 〉dμ | v : Rn → R
m is 1-Lipschitz

}
. (5)

Existence of u follows by the Arzelà–Ascoli theorem.
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A Borel subset A of Rn shall be called a transport set associated to u, whenever for any
x ∈ A that belongs to a unique leaf of u and any y ∈ R

n such that

‖x − y‖ = ‖u(x) − u(y)‖,
there is y ∈ A. In other words, a transport set is a Borel union of a collection of leaves of u.
In [17, Chapter 6] it is conjectured that for any transport set A of u∫

A
f dμ = 0. (6)

This is a generalisation of the mass balance condition, mentioned in Sect. 1.1. The affirmative
answer to the conjecturewould imply that onemay decompose anyBorel probabilitymeasure
μ, satisfying m linear constraints of the form (4), into a mixture of measures, concentrated
on pairwise disjoint convex subsets of Rn of dimension at most m, satisfying the same linear
constraints; see also [12] for a discussion of the decomposition.

If m = 1 then (5) is precisely the dual problem to the optimal transport problem for
measures ρ1, ρ2 given by formulae dρ1 = f+dμ and dρ2 = f−dμ. As we see in (1), the
dual problem, depends merely on the difference of measures, and therefore, it makes sense
to consider the optimal transport for signed measures with total mass zero.

Inspired by this observation, in Sect. 2 we develop a theory of optimal transport with
metric cost of vector measures of total mass zero and study its basic properties. The rôle of
a vector measure in the problem considered above is played by the measure with density f
with respect to the measure μ.

The precise formulation of the optimal transport problem for an Rm-valued measure η on
a metric space (X , d) that we deal with is as follows:

inf

{∫
X×X

d(x, y)d‖π‖(x, y) | P1π − P2π = η

}
. (7)

Here P1π and P2π stand for the first and the second marginal of the Rm-valued measure π

respectively. The assumption on η is that∫
X
d(x, x0)d‖μ‖(x) < ∞ for some x0 ∈ X and η(X) = 0.

The above problem form = 1 simplifies to the original optimal transport problem, as follows
readily by the Kantorovich–Rubinstein formula. We prove that form > 1 an analogue of this
formula holds with (1) replaced by

sup

{∫
X
〈u, dη〉 | u : X → R

m is 1-Lipschitz

}
(8)

and with (2) replaced by (7). This is a content of Theorem 2. We also develop a theory of the
Wasserstein space W(X ,Rm) of vector-valued measures. We identify its dual space as the
space of vector-valued Lipschitz maps; see Theorem 1. Theorem 3 provides an analogue of
(3) in the new setting.

The conjecture of Klartag (see [17, Chapter 6]) in the language of our theory of optimal
transport of vector measures may be restated as follows. Suppose that we are given a vector
measure μ onRn , with μ(Rn) = 0, which is absolutely continuous with respect to Lebesgue
measure. Let u : Rn → R

m be a 1-Lipschitz map, with respect to Euclidean norms, that
attains the supremum

sup

{∫
Rn

〈v, dμ〉 | v : Rn → R
m is 1-Lipschitz

}
. (9)
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It is claimed in [17] that the following mass balance condition holds true

μ(A) = 0 for any Borel set A that is a union of a family of leaves of u. (10)

Using the developed theory, in Sect. 3 we resolve the conjecture in the affirmative, provided
that there exists an optimal transport with marginals of its total variation that are absolutely
continuous with respect to the Lebesgue measure; see Theorem 4. Note that in the one-
dimensional setting, the existence of such optimal transport is clear; see (1) and (2).

We provide a counterexample to the conjecture, for the case m > 1; see Theorem 5. It
shows that, in general, the mass balance condition (10) fails to be true. It follows that it may
happen that an optimal transport with absolutely continuous marginals do not exist, unlike
in the one-dimensional case.

More generally, let F be any subset of 1-Lipschitz maps that is locally uniformly closed.
We prove that the mass balance condition (10) fails to be true, even when the variational
problem (9) is replaced by

sup

{∫
Rn

〈v, dμ〉 | v ∈ F
}

, (11)

unless F is trivial, i.e. consists merely of affine maps. This is shown for also any norm on
R
n and any strictly convex norm on Rm ; see Theorem 6.
Note that the outline of a proof of the conjecture suggested in [17] has a gap, as follows

by the results of [11].
Let us mention here that in [12] the generalisation of the localisation technique to multiple

constraints is studied. In there, a partition associated to any 1-Lipschitz map u : Rn → R
m ,

m ≤ n, is studied thoroughly. It is established that any log-concave measure on R
n may

be disintegrated with respect to this partition and that the resulting conditional measures,
associated to leaves ofmaximal dimension, are again log-concave.This result is also presented
in the context of spaces satisfying the curvature-dimension conditionCD(κ, N ), thus partially
confirming another conjecture of Klartag [17, Chapter 6].

Let us also mention the existence of another approach to optimal transport of vector
measures that differs from ours developed by Chen, Georgiou, Tannenbaum, Tyu, Li, Osher,
Haber, Yamamoto (see [9,10] and [20]).

1.3 Outline of the paper

Section 2 is devoted to development and study of the optimal transport theory of vector
measures. We define a Wasserstein space and in Theorem 1 we identify its dual. Theorem 2
provides an analogue of the Kantorovich–Rubinstein duality formula.

In Sect. 3 we study the mass balance condition for vector measures. In Theorem 4 we
answer in the affirmative the a conjecture of Klartag, provided there exists an optimal trans-
port with absolutely continuous marginals of its total variation. In Theorem 5 we provide
a counterexample to the conjecture, in the Euclidean setting. In Theorem 6 we resolve the
conjecture in the negative in the general setting.

2 Optimal transport of vector measures

In this section we develop the theory of optimal transport of vector measures.
Let X be a metric space with metric d . Let μ be R

m-valued Borel measure on X . If π

is a Rm-valued Borel measure on X × X , we write P1π for the first marginal of π , i.e. the
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measure given by
P1π(A) = π(A × X),

for all Borel A ⊂ X , and P2π for the second marginal of π ,

P2π(B) = π(X × B),

for all Borel B ⊂ X . We shall consider a variational problem

I(μ) = inf

{∫
X×X

d(x, y)d‖π‖(x, y) | π ∈ Γ (μ)

}
. (12)

Here Γ (μ) is the set of all Rm-valued Borel measures π on X × X such that

μ = P1π − P2π.

To check whether (12) defines a meaningful quantity, we have to check whether Γ (μ) is
non-empty.

We shall need the following definition.

Definition 1 Let σ be anRm-valued Borel measure on X and let θ be a Borel signed measure
on X . A unique Borel Rm-valued measure σ ⊗ θ such that

〈σ ⊗ θ, v〉 = 〈σ, v〉 ⊗ θ

for all v ∈ R
m we shall call a product measure. Here 〈σ, v〉 ⊗ θ is the usual product measure

of R-valued measures.

Remark 1 It is clear that the product measure exists. Analogously we define the product
measure θ ⊗ σ for a Borel signed measure σ and a Borel Rm-valued measure θ .

Proposition 1 Γ (μ) is non-empty if and only if

μ(X) = 0. (13)

Proof Clearly, if there exists π ∈ Γ (μ), then

μ(X) = P1π(X) − P2π(X) = π(X × X) − π(X × X) = 0,

so the condition (13) is satisfied. Conversely, assume that (13) holds true. Let ν be any Borel
probability measure on X . Set

π = μ ⊗ ν.

Here μ ⊗ ν is the product measure; see Definition 1. Then for any Borel set A ⊂ X and any
vector v ∈ R

m , we have

〈π(A × X) − π(X × A), v〉 = 〈μ(A), v〉 − 〈μ(X), v〉ν(A) = 〈μ(A), v〉.
This is to say, P1π − P2π = μ. ��

The quantity defined by (12) we shall call the Kantorovich–Rubinstein norm of μ.

Proposition 2 Assume that μ(X) = 0. Then I(μ) < ∞ provided that∫
Rn

d (x, x0) d‖μ‖(x) < ∞ (14)

for some (equivalently: any) x0 ∈ X.

123



Optimal transport of vector measures Page 7 of 22 230

Proof Define
π = μ ⊗ δx0 .

Here δx0 is a probability measure such that δx0({x0}) = 1. Then π ∈ Γ (μ) and∫
X×X

d(x, y)d‖π‖(x, y) ≤
∫
X
d (x, x0) d‖μ‖(x). (15)

This shows that I(μ) < ∞, provided that (14) is satisfied. The equivalence of finiteness of∫
Rn

d(x, y)d‖μ‖(x) < ∞

for any y ∈ X follows by the triangle inequality. ��
Definition 2 We define theWasserstein spaceW(X ,Rm) of all Borel measures μ on X with
values in R

m such that

μ(X) = 0 and
∫
X
d(x, x0)d‖μ‖(x) < ∞

for some x0 ∈ X . We endow it with a norm ‖μ‖W(X ,Rm ) = I(μ).

Before we proceed let us recall the following definition.
We say that a non-negative Borel measure μ on X is inner regular if for any Borel set

B ⊂ X we have
μ(B) = sup{μ(K ) | K ⊂ B, K is a compact set}.

Let us note that Ulam’s lemma tells that any finite Borel measure on a Polish space is
inner regular.

Lemma 1 Suppose that X is a Polish space. Let μ be a R
m-valued Borel measure in

W(X ,Rm). Suppose that for any Lipschitz function u : X → R
m

∫
X
〈u, dμ〉 = 0.

Then μ = 0.

Proof We may assume that m = 1. Let μ = μ+ − μ− be the Hahn–Jordan decomposition
of μ. There exists two disjoint, Borel sets A, B ⊂ X with μ+(Ac) = 0 and μ−(Bc) = 0.
Choose any Borel set E ⊂ A. As any finite measure on X is inner regular, for any ε > 0,
there exists a compact set K ⊂ E such that

μ+(E) ≤ μ+(K ) + ε.

Define a function uε by the formula

uε(x) = (1 − 1

ε
dist(x, K )) ∨ 0.

Then uε is Lipschitz, equal to one on K and equal to zero on the complement of

Kε = {x ∈ X | dist(x, K ) ≤ ε}.
Thus

0 =
∫
X
uεdμ = μ+(K ) +

∫
Kε\K

uεdμ,

123



230 Page 8 of 22 K. J. Ciosmak

Therefore, by the above,

μ+(E) ≤ ε + μ+(K ) ≤ ε + μ− (Kε \ K ) .

Letting ε tend to zero, we get μ+(E) = 0. It follows that μ+ = 0. Analogously, μ− = 0.
This is to say, μ = 0. ��
Remark 2 In what follows, we shall always assume that underlying space X is a Polish space.

Proposition 3 The function W(X ,Rm) � μ �→ ‖μ‖W(X ,Rm ) ∈ R is a norm.

Proof Let us first check that

‖μ‖W(X ,Rm ) = 0 if and only if μ = 0. (16)

If μ = 0, then π = 0 belongs to Γ (μ), so ‖μ‖W(X ,Rm ) = 0. Conversely, assume that
‖μ‖W(X ,Rm ) = 0. Choose any L-Lipschitz function

u : X → R
m .

Then for any π ∈ Γ (μ) we have
∣∣∣
∫
X
〈u, dμ〉

∣∣∣ =
∣∣∣
∫
X×X

〈u(x) − u(y), dπ(x, y)〉
∣∣∣ ≤ L

∫
X×X

d(x, y)d‖π‖(x, y).

Therefore if ‖μ‖W(X ,Rm ) = 0, then ∫
X
〈u, dμ〉 = 0.

It follows by Lemma 1, that μ = 0. Homogeneity of ‖·‖W(X ,Rm ) is clear. Let us show that
the triangle inequality holds. For this choose measures μ, ν ∈ W(X ,Rm) and any measures
π ∈ Γ (μ) and ρ ∈ Γ (ν). Then

μ + ν = P1(π + ρ) − P2(π + ρ),

so that π + ρ ∈ Γ (μ + ν). It follows that

‖μ + ν‖W(X ,Rm ) ≤
∫
X×X

d(x, y)d‖π + ρ‖(x, y) ≤

≤
∫
X×X

d(x, y)d‖π‖(x, y) +
∫
X×X

d(x, y)d‖ρ‖(x, y).

Taking infimum over all π, ρ we see that the triangle inequality holds true. ��
Proposition 4 The linear space U of measures of the form

n∑
i=1

δxi vi

for xi ∈ X and vi ∈ R
m, i = 1, . . . , n, such that

∑n
i=1 vi = 0, is dense in W(X ,Rm).

Proof Choose any measure μ ∈ W(X ,Rm). Choose any ε > 0. Choose any point x0 ∈ X
and a compact set K such that ∫

Kc
d (x, x0) d‖μ‖(x) ≤ ε.
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Choose pairwise disjoint Borel sets A1, A2, . . . , Ak ⊂ K such that the diameter of each is
at most ε and

K =
k⋃

i=1

Ai .

Consider the restrictions μi = μ|Ai of the measure μ to the sets Ai , i = 1, 2, . . . , k. Choose
any points xi ∈ Ai . Then, as

πi = μi ⊗ δxi ∈ Γ
(
μi − μi (X)δxi

)
,

we have

‖μi − μi (X)δxi ‖W(X ,Rm ) ≤
∫
X
d (y, xi ) d‖μi‖(y) ≤ ε‖μ‖(Ai ).

Let A0 = Kc and let μ0 = μ|A0 . Then

π0 = μ0 ⊗ δx0 ∈ Γ
(
μ0 − μ0(X)δx0

)
,

so

‖μ0 − μ0(X)δx0‖W(X ,Rm ) ≤
∫
X
d (x, x0) d‖μ0‖(x) ≤ ε.

Set

ν =
k∑

i=0

μ (Ai ) δxi .

Then ν ∈ U . By the triangle inequality

‖μ − ν‖W(X ,Rm ) ≤
k∑

i=0

‖μi − μi (X)δxi ‖W(X ,Rm ) ≤

≤ ε

k∑
i=1

‖μ(Ai )‖ + ε ≤ ε (‖μ‖(X) + 1) .

This concludes the proof. ��
Corollary 1 If X is separable, then so is the Wasserstein space W(X ,Rm).

Proof Fix n ∈ N. Choose a countable dense subset A ⊂ X and a set

B ⊂
{

(w1, . . . , wn) ∈ R
m × . . .Rm |

n∑
i=1

wi = 0

}
(17)

which is countable and dense in the set on the right-hand side of (17). Consider a measure μ

given by

μ =
n∑

i=1

δxi vi

for xi ∈ X and vi ∈ R
m , i = 1, . . . , n, such that

∑n
i=1 vi = 0. Choose ε > 0 and x̃i ∈ A,

i = 1, . . . , n, and (ṽi )
n
i=1 ∈ B, such that for i = 1, . . . , n

d (xi , x̃i ) < ε and ‖vi − ṽi‖ < ε and
n∑

i=1

ṽi = 0.
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Set

μ̃ =
n∑

i=1

δx̃i ṽi .

Then

‖μ − μ̃‖W(X ,Rm ) ≤
∥∥∥

n∑
i=1

δxi (vi − ṽi )

∥∥∥W(X ,Rm )
+

∥∥∥
n∑

i=1

(
δxi − δx̃i

)
vi

∥∥∥W(X ,Rm )

Choose any x0 ∈ X . Taking

π =
n∑

i=1

δxi ⊗ δx0 (vi − ṽi ) and ρ =
n∑

i=1

(
δxi ⊗ δx̃i

)
vi

we see that ∥∥∥
n∑

i=1

δxi (vi − ṽi )

∥∥∥W(X ,Rm )
≤ ε

n∑
i=1

d (xi , x0)

and ∥∥∥
n∑

i=1

(
δxi − δx̃i

)
vi

∥∥∥W(X ,Rm )
≤ ε

n∑
i=1

‖vi‖.

The conclusion follows now from Proposition 4. ��
Definition 3 Choose any x0 ∈ X . Define

L (
X ,Rm) = {

u : X → R
m | u is Lipschitz and u(x0) = 0

}
,

i.e. the Banach space of Rm-valued Lipschitz functions on X taking value zero at x0, with
norm

‖u‖L(X ,Rm ) = sup

{‖u(x) − u(y)‖
d(x, y)

| x, y ∈ X , x �= y

}
.

Theorem 1 Define
T : L (

X ,Rm) → W (
X ,Rm)∗

and
S : W (

X ,Rm)∗ → L (
X ,Rm)

by

T (u)(μ) =
∫
X
〈u, dμ〉 (18)

and
〈S(λ)(x), w〉 = λ

((
δx − δx0

)
w

)
, (19)

for any w ∈ R
m. Then S, T are mutual reciprocals and establish an isometric isomorphism

of L(X ,Rm) and W(X ,Rm)∗.

Proof Choose any π ∈ Γ (μ). Then P1π − P2π = μ. Thus, if u is a Lipschitz map, then
∣∣∣∣
∫
X
〈u, dμ〉

∣∣∣∣ =
∣∣∣∣
∫
X
〈u(x) − u(y), dπ(x, y)〉

∣∣∣∣ ≤ ‖u‖L(X ,Rm )

∫
X
d(x, y)d‖π‖(x, y).
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Taking infimum over all π ∈ Γ (μ), we see that
∣∣∣∣
∫
X
〈u, dμ〉

∣∣∣∣ ≤ ‖u‖L(X ,Rm )‖μ‖W(X ,Rm ).

The above calculation shows that the formula (18) defines a continuous functional of norm
at most ‖u‖L(X ,Rm ). If w ∈ R

m if of norm one and x, y ∈ X , x �= y, then for

μx,y,w = δx − δy

d(x, y)
w (20)

we have ‖μx,y,w‖W(X ,Rm ) ≤ 1 and for any u ∈ L(X ,Rm)

∫
Rn

〈u, dμx,y,w〉 = 〈w, u(x) − u(y)〉
d(x, y)

.

Thus
‖u‖L(X ,Rm ) = ‖T (u)‖.

We shall now show that T ◦ S = Id. Take any functional λ ∈ W(X ,Rm)∗. Set

σx,w = (
δx − δx0

)
w.

Then S(λ) : X → R
m is defined by the formula

〈S(λ)(x), w〉 = λ
(
σx,w

)
.

It is clear that the above formula defines S(λ) uniquely. Then we claim that map v = S(λ)

is ‖λ‖-Lipschitz. Indeed
‖v(x) − v(y)‖ = sup

{〈v(x) − v(y), w〉 | w ∈ R
m, ‖w‖ = 1

}
,

and as
〈v(x) − v(y), w〉 = λ

(
σx,w − σy,w

) ≤ ‖λ‖‖σx,w − σy,w‖W(X ,Rm )

we see that

‖v(x) − v(y)‖ ≤ ‖λ‖d(x, y), since ‖σx,w − σy,w‖W(X ,Rm ) ≤ d(x, y).

Suppose that ν = (δx − δy)z. We compute

T (v)(ν) =
∫
X
〈v, dν〉 =

∫
X
〈v, z〉d (

δx − δy
) = λ

(
σx,z − σy,z

) = λ(ν).

We see that T (S(λ)) and λ are equal on the set spanned by (δx − δy)z, where x, y ∈ X ,
z ∈ R

m . By Proposition 4, we see that T (S(λ)) and λ are equal on W(X ,Rm).
Let us show also that S ◦ T = Id. Choose any w ∈ R

m and any map u ∈ L(X ,Rm). Then

〈S(T (u))(x), w〉 = T (u)
((

δx − δx0
)
w

) =
∫
X
〈u, d

(
δx − δx0

)
w〉 = 〈u(x), w〉,

as u(x0) = 0. Therefore S(T (u)) = u. ��
Theorem 2 For any μ ∈ W(X ,Rm)

sup

{∫
X
〈u, dμ〉 | u : X → R

m is 1-Lipschitz

}
= ‖μ‖W(X ,Rm ). (21)
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Moreover, there exists 1-Lipschitz function u0 such that

sup

{∫
X
〈u, dμ〉 | u : X → R

m is 1-Lipschitz

}
=

∫
X
〈u0, dμ〉. (22)

Proof Notice first that the left-hand side of (21) is clearly at most the right-hand side of (21).
Take any μ ∈ W(X ,Rm). Then by the Hahn–Banach theorem there exists a continuous
linear functional λ of norm one such that

λ(μ) = ‖μ‖W(X ,Rm ).

By Theorem 1, we know that λ is of the form

λ(μ) =
∫
X
〈u0, dμ〉

for some Lipschitz map u0. The Lipschitz constant of u0 is equal to one, as

‖u0‖L(X ,Rm ) = ‖λ‖ = 1.

This completes the proof. ��

Definition 4 Any 1-Lipschitz function u : X → R
m such that (22) holds we shall call an

optimal potential of measure μ.

Definition 5 A measure π ∈ Γ (μ) such that

‖μ‖W(X ,Rm ) =
∫
X×X

d(x, y)d‖π‖(x, y)

we shall call an optimal transport for μ.

Theorem 3 Let μ ∈ W(X ,Rm). Let u ∈ L(X ,Rm) be a 1-Lipschitz map. Let π ∈ Γ (μ).
The following conditions are equivalent:

(i)
∫
X
〈u, dμ〉 =

∫
X×X

d(x, y)d‖π‖(x, y) = ‖μ‖W(X ,Rm ),

(ii)
∫
A
〈u(x) − u(y), dπ(x, y)〉 =

∫
A
d(x, y)d‖π‖(x, y)

for any Borel set A ⊂ X × X,
(iii) ∫

X
〈u, dμ〉 =

∫
X×X

d(x, y)d‖π‖(x, y),

(iv) u is an optimal potential for μ and π is an optimal transport for μ.

Moreover, if the above conditions hold, then

‖u(x) − u(y)‖ = d(x, y)

‖π‖-almost everywhere.
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Proof Assume that (iii) holds. Observe that∫
X
〈u, dμ〉 =

∫
X×X

〈u(x) − u(y), dπ(x, y)〉.

As ∫
X
〈u, dμ〉 ≤ ‖μ‖W(X ,Rm ) ≤

∫
X×X

d(x, y)d‖π‖(x, y),

then by (iii) we see that in the above inequalities we have equalities. This is to say, (i) holds
true.

Suppose now that (i) holds. Clearly∫
A
〈u(x) − u(y), dπ(x, y)〉 ≤

∫
A
d(x, y)d‖π‖(x, y).

If we had strict inequality in (ii) for some Borel set A ⊂ X × X , then the above computations
show that we would get strict inequality in (i). Condition (iv) is reformulation of (i). The last
part of the theorem follows readily from (ii). ��

We say that a measure μ ∈ M(Z ,Rm) is concentrated on a subset X ⊂ Z if there is
‖μ‖(Z \ X) = 0.

Proposition 5 Assume thatRn,Rm are equippedwith Euclidean norms. Letμ ∈ W(Rn,Rm)

be concentrated on a set X ⊂ R
n. Then

‖μ‖W(Rn ,Rm ) = ‖μ‖W(X ,Rm ).

Proof The assertion is that

sup

{∫
Rn

〈u, dμ〉 | u : Rn → R
m is 1-Lipschitz

}

is equal to

sup

{∫
X
〈u, dμ〉 | u : X → R

m is 1-Lipschitz

}
.

By the Kirszbraun theorem (see e.g. [16]) any 1-Lipschitz function u : X → R
m extends to

a 1-Lipschitz function ũ : Rn → R
m . Clearly, for any such extension∫
Rn

〈ũ, dμ〉 =
∫
X
〈u, dμ〉.

The assertion follows. ��

3 Mass balance condition

Let us first provide an affirmative answer to the conjecture of Klartag, under the provision of
the existence of optimal transport with absolutely continuous marginals of its total variation.

Definition 6 A leaf S of a 1-Lipschitz map u : Rn → R
m is a maximal set, with respect to

the order induced by inclusion, such that the restriction u|S is an isometry. This is to say, S
is a leaf, whenever for any x, y ∈ S there is

‖u(x) − u(y)‖ = ‖x − y‖
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and for any z /∈ S there exists x ∈ S such that

‖u(x) − u(z)‖ < ‖x − z‖.
It is proven in [12] that leaves of a map u that is 1-Lipschitz with respect to Euclidean

norms are closed and convex sets. Two distinct leaves may intersect at most by their relative
boundaries.

Definition 7 Let u : Rn → R
m be a 1-Lipschitz map of Euclidean spaces. We say that a

Borel set A ⊂ R
n is a transport set associated with u if it enjoys the following property: if

x ∈ A is contained in a unique leaf of u and y ∈ R
n is such that

‖u(x) − u(y)‖ = ‖x − y‖,
then y ∈ A.

Let us remark that a Borel set A ⊂ R
n that is a union of leaves of u is a transport set.

We shall denote by B(u) the set of all points x ∈ R
n such that there exist at least two

distinct leaves S1,S2 of u such that x ∈ S1 ∩ S2. In [12, Corollary 2.15] it is proven that
B(u) is of Lebesgue measure zero.

Suppose that μ ∈ W(Rn,Rm). The following theorem shows that if there exists an
optimal transport for μ such that its total variation has absolutely continuous marginals, then
the conjecture of Klartag holds true. Note that such existence is clear for m = 1, whenever
μ is absolutely continuous with respect to the Lebesgue measure λ.

Theorem 4 Assume that R
n,Rm are equipped with Euclidean norms. Suppose that

μ ∈ W(Rn,Rm). Let u be an optimal potential for μ. Suppose that there exists an opti-
mal transport π of μ such that

P1‖π‖ �,P2‖π‖ � λ. (23)

Then for any transport set A associated with u:

(i) μ(A) = 0,
(ii) π |A×A ∈ Γ (μ|A) is an optimal transport of μ|A
(iii) u is an optimal potential of μ|A.
Proof By [12, Corollary 2.15] it follows that

λ(B(u)) = 0.

Suppose that (23) holds true. Then

‖π‖ (
B(u) × R

n) = 0 and ‖π‖ (
R
n × B(u)

) = 0.

Let
I = {

(x, y) ∈ R
n × R

n | ‖u(x) − u(y)‖ = ‖x − y‖} .

By Theorem 3, ‖π‖(I c) = 0. Thus π is concentrated on the set

C = I ∩ (
B(u)c × B(u)c

)
.

Suppose that (x, y) ∈ C . Then, as A is a transport set, by the definition of B(u),

x ∈ A if and only if y ∈ A. (24)

Let η = π |A×A. To prove (ii), it is enough to show that η is an optimal transport and that

η ∈ Γ (μ|A) .
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For this, let D ⊂ R
n be any Borel set. Using the fact that π ∈ Γ (μ) and the fact that

‖π‖(Cc) = 0 and (24), we have

μ(A ∩ D) =
∫
Rn×Rn

(1A∩D(x) − 1A∩D(y)) dπ(x, y)

=
∫
Rn×Rn

1A×A(x, y) (1D(x) − 1D(y)) dπ(x, y)

=
∫
Rn×Rn

(1D(x) − 1D(y)) dη(x, y) = P1η(D) − P2η(D).

It follows that π |A×A ∈ Γ (μ|A). Then
∫
A
〈u, dμ〉 =

∫
Rn×Rn

1C (x, y)
〈
1A(x)u(x) − 1A(y)u(y), dπ(x, y)

〉
. (25)

Therefore, by (24),
∫
A
〈u, dμ〉 =

∫
Rn×Rn

1A×A(x, y)
〈
u(x) − u(y), dπ(x, y)

〉
.

By condition (ii) of Theorem 3 we see that
∫
A
〈u, dμ〉 =

∫
A×A

‖x − y‖d‖π‖(x, y).

Theorem 3, condition (iii), tells us that π |A×A is an optimal transport and u is an optimal
potential. Also μ(A) = 0, as π |A×A ∈ Γ (μ|A). This completes the proof. ��

We shall now provide necessary tools for the aforementioned counterexample to the con-
jecture of Klartag.

In fact we shall provide a more general theorem for which we shall consider locally
uniformly closed subsets subsets F of 1-Lipschitz maps of Rn to R

m endowed with norms
which are not necessarily Euclidean. Suppose that a measure μ belongs to W(Rn,Rm). We
consider supremum of integrals ∫

Rn
〈u, dμ〉 (26)

taken over all u ∈ F . An optimal u0 ∈ F , i.e. the map that satisfies
∫
Rn

〈u0, dμ〉 = sup

{∫
Rn

〈u, dμ〉 | u ∈ F
}

,

we shall call an F-optimal potential of μ.

Lemma 2 Let X ⊂ R
n be a compact set. Suppose that (μk)

∞
k=1 ⊂ W(Rn,Rm) are all

supported on X and converge weakly* to μ0 ∈ W(Rn,Rm), i.e. for any continuous and
bounded function g : Rn → R

m we have

lim
k→∞

∫
Rn

〈g, dμk〉 =
∫
Rn

〈g, dμ0〉.

Suppose that for k = 1, 2, . . . , uk ∈ F is an F-optimal potential of μk and that uk converge
locally uniformly to u0 : Rn → R

m. Then u0 is an F-optimal potential of μ0.
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Proof By the assumption, for any continuous and bounded map g : Rn → R
m , we have

lim
k→∞

∫
Rn

〈g, d(μk − μ0)〉 = 0.

In particular, as μk are all supported on X , we have

lim
k→∞

∫
Rn

〈u0, d (μk − μ0)〉 = 0.

By the Banach–Steinhaus theorem, the sequence (μk)
∞
k=1 is bounded in the total variation

norm. Hence, by uniform convergence on X ,

lim
k→∞

∫
Rn

〈uk − u0, dμk〉 = 0.

It follows that ∫
Rn

〈uk, dμk〉 =
∫
Rn

〈u0, dμk〉 +
∫
Rn

〈uk − u0, dμk〉

converges to
∫
Rn 〈u0, dμ0〉. As for any 1-Lipschitz map h ∈ F we have

∫
Rn

〈h, dμk〉 ≤
∫
Rn

〈uk, dμk〉.

we also have ∫
Rn

〈h, dμ0〉 ≤
∫
Rn

〈u0, dμ0〉.

The proof is complete. ��
Below we shall denote by B(x, ε) an open ball of radius ε > 0 centred at x ∈ R

n .

Lemma 3 Let m ≤ n. Let μ ∈ W(Rn,Rm) and let u be an optimal potential of μ. Let A be
the union of all leaves of dimension at least one. Then A is Borel measurable. Suppose that
there exists an optimal transport π for μ or that any transport set of u is of μ-measure zero.
Then

‖μ‖(Ac) = 0.

Proof Observe that

A =
∞⋃
n=1

{
x ∈ R

n | sup
{‖u(x) − u(y)‖

‖x − y‖ | y ∈ clB(x, n) \ B(x, 1/n)

}
= 1

}
.

The function

R
n � x �→ sup

{‖u(x) − u(y)‖
‖x − y‖ | y ∈ clB(x, n) \ B(x, 1/n)

}
∈ R

is lower semi-continuous, hence Borel measurable. Thus, A is Borel measurable. Suppose
that there exists an optimal transport π for μ. By Theorem 3, π is supported on the set

I = {
(x, y) ∈ R

n × R
n | ‖u(x) − u(y)‖ = ‖x − y‖} .

As μ = P1π − P2π , for any Borel set B ⊂ Ac, we have

μ(B) = π
(
B × R

n) − π
(
R
n × B

) = 0,

123



Optimal transport of vector measures Page 17 of 22 230

for if B ⊂ Ac, then
(
B × R

n) ∩ I ⊂ {
(x, x) | x ∈ R

n} and
(
R
n × B

) ∩ I ⊂ {
(x, x) | x ∈ R

n} .

Suppose now that any transport set for u is of μ measure zero. Observe that any Borel set
B ⊂ Ac is a transport set. The conclusion follows. ��

In the theorem below we shall provide a counterexample to the conjecture of Klartag.

Theorem 5 Assume that m > 1. There exists an absolutely continuous measure
μ ∈ W(Rn,Rm) for which there exists a transport set associated with an optimal potential
of μ with non-zero measure μ.

In particular, there is no optimal transport π for μ such that

P1‖π‖ � λ and P2‖π‖ � λ.

Proof Choose any v1, . . . , vm+1 ∈ R
m such that

m+1∑
i=1

vi = 0

and that are affinely independent. For ε > 0 set

με = 1

λ(B(0, ε))

m+1∑
i=1

λ|B(xi ,ε)vi ,

where x1, . . . , xm+1 ∈ R
n are pairwise distinct points to be specified later. Here λ denotes the

Lebesgue measure on Rn . Then με ∈ W(Rn,Rm). Suppose that for some sequence (εk)
∞
k=1

converging to zero there is
μεk (Ck) = 0

for any transport setCk of uk , where uk : Rn → R
m is an optimal potential ofμεk . For k ∈ N

and i = 1, . . . ,m+1 consider the union Nik of all non-trivial leaves of uk – i.e. of dimension
at least one – that intersect clB(xi , εk). Then Nik is a transport set. Its Borel measurability
follows by Lemma 3. Indeed, denote B = clB(xi , εk); then the function

R
n \ B � x �→ sup

{‖uk(x) − uk(y)‖
‖x − y‖ | y ∈ B

}
∈ R

is lower semi-continuous and therefore

Nik =
{
x ∈ R

n \ B | sup
{‖uk(x) − uk(y)‖

‖x − y‖ | y ∈ B

}
= 1

}
∪ (B ∩ Ak)

is a Borel set. Here Ak is a set of all leaves of dimension at least one corresponding to uk ,
c.f. Lemma 3. Thus μεk (Nik) = 0. Hence,

m+1∑
j=1

v jλ
(
B

(
x j , εk

) ∩ Nik
) = 0. (27)

As μεk , by Lemma 3, is concentrated on non-trivial leaves of uk , we have for

λ (B (xi , εk) ∩ Nik)

λ (B (0, εk))
vi = μεk (B (xi , εk) ∩ Nik) = μεk (B (xi , εk)) = vi .
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By (27) and assumption on the vectors v1, . . . , vm+1

λ
(
B

(
x j , εk

) ∩ Nik
) = λ (B (0, εk)) for all j = 1, . . . ,m + 1.

Thus we infer that for any k ∈ N and for all r , s = 1, . . . ,m + 1, r �= s, there exist points(
xkrs, x

k
sr

)
∈ B (xr , εk) × B (xs, εk)

such that
‖uk

(
xkrs

)
− uk

(
xksr

)
‖ = ‖xkrs − xksr‖.

Using Arzelà–Ascoli theorem and passing to a subsequence we may assume that maps uk
converge locally uniformly to some 1-Lipschitz map u0. Observe now that

xkrs converges to xr for all r , s = 1, . . . ,m + 1.

Thus, by the locally uniform convergence, u0 is an isometry on {x1, . . . , xm+1}. Observe that

μεk converges weakly* to μ0 =
m+1∑
i=1

δxi vi .

Now, Lemma 2 tells us that u0 is an optimal potential of μ0.
Suppose that points x1, . . . , xm+1 are such that for i �= j , i, j = 1, . . . ,m,

〈 xi − xm+1

‖xi − xm+1‖ ,
x j − xm+1

‖x j − xm+1‖
〉
<

〈 vi

‖vi‖ ,
v j

‖v j‖
〉
. (28)

Then if we define h : {x1, . . . , xm+1} → R
m by

h (xm+1) = 0, h(xi ) = ‖xi − xm+1‖ vi

‖vi‖ for i = 1, . . . ,m,

then h is 1-Lipschitz. By the Kirszbraun theorem we may assume that h is defined on the
entire space. Moreover for

π =
m+1∑
i=1

viδ(xi ,xm+1)

we have
P1π − P2π = μ0

and

π =
m∑
i=1

h (xi ) − h (xm+1)

‖xi − xm+1‖ ‖vi‖δ(xi ,xm+1)

Theorem 3 yields that h is an optimal potential and π is an optimal transport. It follows that

‖μ0‖W(Rn ,Rm ) =
m∑
i=1

‖vi‖‖xi − xm+1‖.

Theorem 3 tells us that also

π =
m∑
i=1

u0 (xi ) − u0 (xm+1)

‖xi − xm+1‖ ‖vi‖δ(xi ,xm+1)

As u0 is an isometry on {x1, . . . , xm+1}, it follows that for i, j = 1, . . . ,m

‖h (xi ) − h
(
x j

)‖ = ‖xi − x j‖
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which is not true, as the inequalities in (28) are strict. The obtained contradiction shows that
there is no such sequence (εk)

∞
k=1, i.e. there exists ε0 > 0 such that for all ε ∈ (0, ε0) there

exists a transport set with non-zero measure με for any optimal potential of με .
By Theorem 4 it follows that for such ε there is is no optimal transport with absolutely

continuous marginals for με . ��
The proof of the following theorem is based on the same idea as the proof of Theorem

5. Note that we do not require below that the norms on R
n and on R

m are Euclidean. For a
1-Lipschitz map u : Rn → R

m a leaf of u is a maximal, with respect to the order induced
by inclusion, set S such that u|S is an isometry. A transport set is defined as a set A that
enjoys the property that if x ∈ A belongs to a unique leaf of u, then for any y ∈ R

n such
that ‖u(y) − u(x)‖ = ‖y − x‖ there is y ∈ A. This is to say, the leaves and transport sets
are defined as in the Euclidean case.

Theorem 6 Let m ≤ n. Suppose that the norm on R
m is strictly convex. Suppose that F is

a locally uniformly closed subset of 1-Lipschitz maps of Rn to R
m. Suppose that F has the

property that for any absolutely continuous measure μ ∈ W(Rn,Rm) and any F-optimal
potential u0 of μ we have μ(A) = 0 for any transport set A of u0. Then either m = 1 or
m > 1 and

(i) m = n, any u ∈ F is affine, and there exists u ∈ F that is an isometry of Rn and of Rm,
(ii) for any absolutely continuousμ, anyF-optimal potential ofμ is an isometry on amaximal

subspace V ⊂ R
n, so that

μ
({
x ∈ R

n | Px ∈ A
}) = 0 for any Borel set A ⊂ W ; (29)

here P denotes a projection onto a complement W of V .

Suppose that the norms are Euclidean. Then, if any F-optimal potential is affine and is an
isometry on a maximal subspace V ⊂ R

n such that (29) holds true, then μ(A) = 0 for any
transport set of its F-optimal potential.

Proof Suppose that m > 1. Choose any pairwise distinct points x1, x2, x3 ∈ R
n and any

affinely independent v1, v2, v3 ∈ R
m such that

∑3
i=1 vi = 0. Let

ν0 =
3∑

i=1

viδxi .

Then ν0 ∈ W(Rn,Rm). For ε > 0 let

νε = 1

λ(B(0, ε)

3∑
i=1

viλ|B(xi ,ε)

Choose respective F-optimal potentials uε for νε . These exist as F is locally uniformly
closed. Observe that, by the assumption, νε(Bε) = 0 for any Borel set Bε consisting of trivial
leaves of uε . Whence, νε is concentrated on non-trivial leaves of uε . Let Niε denote the union
of all non-trivial leaves that intersect Biε = clB(xi , ε) for i = 1, 2, 3 and ε > 0. The map

R
n \ Biε � x �→ sup

{‖u(x) − u(y)‖
‖x − y‖ | y ∈ Biε

}
∈ R

is lower semi-continuous. Note that

Niε =
{
x ∈ R

n \ Biε | sup
{‖u(x) − u(y)‖

‖x − y‖ | y ∈ Biε

}
= 1

}
∪ (Biε ∩ Aε) ,
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where Aε denotes the union of all non-trivial leaves of uε and is Borel measurable by the
argument of Lemma 3. Hence Niε is Borel measurable.

By the assumption,
νε (Niε) = 0,

which implies, as in the proof of Theorem 5, that

‖uε

(
xε
rs

) − uε

(
xε
sr

)‖ = ‖xε
rs − xε

sr‖
for some points

(
xε
rs, x

ε
sr

) ∈ B (xr , ε) × B (xs, ε) , r , s = 1, . . . , 3, r �= s.

By theArzelà–Ascoli theoremandpassing to a subsequencewemay assume thatuε converges
locally uniformly to some u0 ∈ F , which is anF-optimal potential of ν0 by Lemma 2. By the
uniformconvergencewe infer that u0 is isometric on {x1, x2, x3}. Let now x2 = t x1+(1−t)x3
for some t ∈ (0, 1). Then any map f : {x1, x2, x3} → R

m that is isometric satisfies

f (t x1 + (1 − t)x3) = t f (x1) + (1 − t) f (x3) . (30)

Indeed, as f is isometric,

‖ f (x2) − f (x1)‖ = (1 − t)‖x3 − x1‖ and ‖ f (x3) − f (x2)‖ = t‖x3 − x1‖.
As ‖ f (x3) − f (x1)‖ = ‖x3 − x1‖ it follows that we have equality in the triangle inequality

‖ f (x3) − f (x1)‖ ≤ ‖ f (x2) − f (x1)‖ + ‖ f (x3) − f (x2)‖.
By the strict convexity it follows that there is λ > 0 such that

f (x2) − f (x1) = λ ( f (x3) − f (x1)) .

Taking the norms we arrive at (30). A function f that satisfies (30) may be extended to
R
n to an affine map that has derivative of operator norm at most m. This follows by the

Hahn–Banach theorem. As u0 is isometric on {x1, x2, x3}, we infer that
3∑

i=1

〈u0 (xi ) , vi 〉 ≤ sup

{
3∑

i=1

〈 f (xi ) , vi 〉 | f : Rn → R
m is linear and ‖ f ‖ ≤ m

}

Note now that the set of vectors v1, v2, v3 that sum up to zero and are affinely independent
is dense in the set of vectors v′

1, v
′
2, v

′
3 that sum up to zero. Moreover, u0 is an F-optimal

potential for ν0. We conclude that for any u ∈ F and any vectors v1, v2, v3 that sum up to
zero there is

3∑
i=1

〈u(xi ), vi 〉 ≤ sup

{
3∑

i=1

〈 f (xi ), vi 〉 | f : Rn → R
m is linear and ‖ f ‖ ≤ m

}

Take now v2 = v, v1 = −tv and v3 = −(1 − t)v with t ∈ (0, 1) as above and any v ∈ R
m .

We infer that
〈u(x2) − tu(x1) − (1 − t)u(x3), v〉 ≤ 0.

As this holds for any v we infer that u is affine. This proves part of i).
If u is affine then there exists a subspace V ⊂ R

n , possibly trivial, i.e. V = {0}, such that
any set of the form

{x ∈ R
n | Px ∈ A} (31)
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for a Borel measurable set A ⊂ W is a transport set of u. Here P denotes a projection onto
a complement W of V . Indeed, let V ⊂ R

n be a maximal subspace such that u|V is an
isometry. Suppose that V is not a leaf of u. Then there exists y /∈ V such that for all x ∈ V

‖u(y) − u(x)‖ = ‖y − x‖.
It follows that for all non-zero λ ∈ R∥∥∥u(y) − u

( x
λ

) ∥∥∥ =
∥∥∥y − x

λ

∥∥∥
for all x ∈ V . Hence for all λ ∈ R we have ‖u(λy) − u(x)‖ = ‖λy − x‖. As u is affine,
it is also an isometry on V + Ry. This contradiction shows that V is a leaf of u. Thus ii) is
proven.

We shall now provide an example of a vector measureμ such that for any proper subspace
V and any x0 there is c > 0 such that

μ
({
x ∈ R

n | ‖P (x − x0)‖ ≤ c
}) �= 0. (32)

Choose any x1, . . . , xm+1 ∈ R
n affinely independent. Let ε > 0 be a number such that any

set {y1, . . . , ym+1}, with yi ∈ B(xi , ε), i = 1, . . . ,m + 1, is affinely independent. Choose
vectors v1, . . . , vm+1 ∈ R

m that add up to zero and are affinely independent. Let

μ =
m+1∑
i=1

viλ|B(xi ,ε),

where λ denotes the Lebesgue measure. Choose any proper affine subspace V ⊂ R
n . Then

V intersects at most m of the balls B(xi , ε), i = 1, . . . ,m + 1. So does the set
{
x ∈ R

n | ‖P (x − x0)‖ ≤ c
}

provided that c > 0 is sufficiently small. Thus (32) follows. It implies, by ii), that V = R
n .

We have shown that any F-optimal potential of μ has to be an isometry. Hence m = n and
the proof of i) is complete.

To prove the last part of the theorem, it is enough to prove that the translates of V are the
only leaves of an affine map. This holds true, since any point in Rn is covered by a translate
of V and the leaves of a map foliate R

n , up to Lebesgue measure zero, if the considered
norms are Euclidean, c.f. [12]. ��
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