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Abstract
Westudy a nonlocal parametric problemdriven by the fractional Laplacian operator combined
with a Kirchhoff-type coefficient and involving a critical nonlinearity term in the Sobolev
embedding sense. Our approach is of variational and topological nature. The obtained results
can be viewed as a nontrivial extension to the nonlocal setting of some recent contributions
already present in the literature.

Mathematics Subject Classification 35S15 · 35J20

1 Introduction

The equation that goes under the name ofKirchhoff equationwas proposed in [17] as a model
for the transverse oscillation of a stretched string in the form

ρh ∂2t t u −
(
p0 + Eh

2L

∫ L

0
|∂xu|2 dx

)
∂2xxu + δ ∂t u + f (x, u) = 0 (1)

for t ≥ 0 and 0 < x < L , where u = u(t, x) is the lateral displacement at time t and at
position x , E is the Young modulus, ρ is the mass density, h is the cross section area, L the
length of the string, p0 is the initial stress tension, δ the resistance modulus and g the external
force. Kirchhoff actually considered only the particular case of (1) with δ = f = 0.
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Through the years, this model was generalized in several ways that can be collected in the
form

∂2t t u − M(‖u‖2)Δu = f (t, x, u), x ∈ Ω (2)

for a suitable function M : [0,∞) → R, called Kirchhoff function. The set Ω is a bounded
domain of RN , and ‖u‖2 = ‖∇u‖22 denotes the Dirichlet norm of u. The basic case corre-
sponds to the choice

M(t) = a + btγ−1, a ≥ 0, b ≥ 0, γ ≥ 1.

When M(0) = 0, i.e. a = 0, the equation is called degenerate. Stationary solutions to (3)
solve the equation

{
−M(‖u‖2)Δu = f (x, u), x ∈ Ω

u = 0 on ∂Ω
(3)

We refer to [26] for a recent survey of the results connected to this model.
The existence and multiplicity of solutions to Kirchhoff problems under the effect of a

critical nonlinearity f have received considerable attention. The term critical refers here to
the rough assumption that f (u) ∼ |u|2∗−2u with 2∗ = 2N/(N − 2). The natural setting of
the corresponding equation in H1

0 (Ω) yields a lack of compactness, since the embedding of
H1
0 (Ω) into L2∗

(Ω) is only continuous. Straightforward techniques of Calculus of Variations
fail, and more advanced results from Critical Point Theory must be used. In particular, P.-
L. Lions’ Concentration-Compactness appears as a natural tool for the analysis of the loss
of compactness.

The relevant outcome is that the Kirchhoff function M interacts with the critical growth of
the nonlinearity g: the validity of the Palais–Smale compactness condition holds only under
a condition like

a
N−4
2 b ≥ C2(N ),

and a similar inequality ensures that the associated Euler functional is weakly lower semi-
continuous. For some very recent results on Kirchhoff-type problems, see [15,18] as well as
[27] for related topics.

In a very recent paper, Faraci and Silva (see [13]) obtained several quantitative results for
the problem

⎧⎨
⎩

−
(
a + b

∫
Ω

|∇u|2 dx
)

Δu = |u|2∗−2u + λg(x, u) in Ω

u = 0 on ∂Ω

(4)

where Ω is an open bounded subset of RN , N > 4, a and b a repositive fixed numbers,
λ is a parameter and g is a Carathéodory function that satisfies suitable growth conditions.
By using a fibering-type approach, the authors of [13] investigate existence, non-existence
and multiplicity of solutions to (4). In a previous paper, see [14], Faraci, Farkas and Kristály
studied Eq. (4) with g(x, u) = 0 and under suitable assumptions on the parameters a and
b they proved that the functional associated to the problem is sequentially weakly lower
semicontinuous, satisfies the Palais–Smale condition and is convex.
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The purpose of the present paper is to extend part of these results to the fractional coun-
terpart of the Kirchhoff problem
⎧⎨
⎩
(
a + b

∫
Q

|u(x) − u(y)|2
|x − y|n+2s dx dy

)
(−Δ)su = |u|2∗

s−2u + λg(x, u) in Ω

u = 0 in R
N \ Ω

(Pλ
a,b)

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary ∂Ω , Q = R

2N \ O
and O = Ωc × Ωc, a and b are strictly positive real numbers, s ∈ (0, 1), N > 4s and
2∗
s := 2N/(N − 2s) denotes the critical exponent for the Sobolev embedding of Hs(RN )

into Lebesgue spaces. g is a function that satisfies hypothesis similar to the one in (4) adapted
to the non local case. The fractional Laplacian in (Pλ

a,b) is defined as

(−Δ)su(x) = KN ,s lim
ε→0+

∫
RN \Bε (0)

u(x) − u(y)

|x − y|N+2s dy

where

1

KN ,s
:=
∫
RN

1 − cos ζ1

|ζ |N+2s dζ.

Since the parameter s is given, we will work with a rescaled version of the operator and
this enables us to assume that KN ,s = 1. For references about the fractional Laplacian we
refer to [11], [1] and to the monograph [23]. We define the space X as the set of functions
u : RN → R such that u|Ω ∈ L2(Ω) and{

(x, y) �→ u(x) − u(y)

|x − y|N/2+s

}
∈ L2(Q),

endowed with the norm

‖u‖X = ‖u‖L2(Ω) +
(∫

Q

|u(x) − u(y)|2
|x − y|N+2s dx dy

) 1
2

. (5)

We also set

Xs
0(Ω) :=

{
u ∈ X : u = 0 a.e. in R

N \ Ω
}

.

We introduce the best Sobolev constant as

SN ,s := inf
u∈Xs

0(Ω)

‖u‖2
‖u‖22∗

s

(6)

where

‖u‖2 :=
∫
Q

|u(x) − u(y)|2
|x − y|N+2s dx dy.

The norm introduced in the previous equation is induced by the scalar product

〈u, v〉Xs
0(Ω) :=

∫
Q

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dx dy for all u, v ∈ Xs
0(Ω)

and we recall that in Xs
0(Ω) it is equivalent to (5). For further details we refer the reader to

[28, Lemma 6]. As it is easy to check, looking for solution of (Pλ
a,b) is equivalent to finding

the critical points of the functional Iλ
a,b : Xs

0(Ω) → R associated to the problem:
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Iλ
a,b(u) := a

2
‖u‖2 + b

4
‖u‖4 − 1

2∗
s
‖u‖2∗

s
2∗
s
− λ

∫
Ω

G(x, u) dx

where we denote with G(x, t) = ∫ t0 g(x, ω)dω. Arguing as in [30, Proposition 1.12], we get

(Iλ
a,b

)′
(u) [v] = (a + b‖u‖2) 〈u, v〉Xs

0(Ω) −
∫

Ω

|u|2∗
s−2uv dx − λ

∫
Ω

g(x, u)v dx (7)

for all u, v ∈ Xs
0(Ω). When we have g(x, u) = 0 we will use the notation

Ia,b(u) := a

2
‖u‖2 + b

4
‖u‖4 − 1

2∗
s
‖u‖2∗

s
2∗
s

and we point out that Ia,b is a C2-functional.
The interest in generalizing to the fractional case the model introduced by Kirchhoff does

not arise only for mathematical purposes. In fact, following the ideas of [6] and the concept
of fractional perimeter, Fiscella and Valdinoci proposed in [16] an equation describing the
behaviour of a string constrained at the extrema in which appears the fractional length of
the rope. The interested reader can also consult [7–9] and the references therein for further
motivations and applications of operators similar to the one proposed in (Pλ

a,b).
Recently, problem similar to (5) has been extensively investigated by many authors using

different techniques and producing several relevant results. In [16] Fiscella and Valdinoci
showed the existence of a non-negative solution of mountain pass type for an equation with
a critical term perturbed with a subcritical nonlinearity. With the same spirit of the previous
one, in their seminal paper [4], Autuori, Fiscella and Pucci generalize these results to the
degenerate case, i.e M(0) = 0, without requiring monotonicity assumption on the function
M . We stress that in these two articles the operator taken into account is more general to the
one we consider here, but the two coincide making a particular choice on the kernel; see also
the paper [24] due to Molica Bisci and Vilasi. In the recent [21], Liu, Squassina and Zhang
studied ground state solutions for the Kirchhoff equation plus a potential with a non linear
term asymptotic to a power with critical growth in low dimension. It is also worth mentioning
[22] where Mingqi, Rǎdulescu and Zhang proved the existence of nontrivial radial solutions
in the non-degenerate and degenerate cases for the non local Kirchhoff problem in which the
fractional Laplacian is replaced by the fractional magnetic operator.

Despite all the results cited above, to the best of our knowledge, in literature there are
still no articles summarizing the situation of different kind of solutions at different level of
energy for the fractional Kirchhoff problem. Furthermore, even if some of the results we are
going to prove are known, we present a proof based on a adaptation to the fractional case due
to Palatucci and Pisante ([25]) of the Lions second concentration-compactness principle; for
the original version of the lemma we refer to [20], as well as [19].

For the reader’s convenience, we collect here our main results.

Theorem 1 Define

LN ,s := 4s(N − 4s)
N−4s
2s

N
N−2s
2s S

N
2s
N ,s

, PSN ,s := 2s(N − 4s)
N−4s
2s

(N − 2s)
N−2s
2s S

N
2s
N ,s

,

and

CN ,s := 2s(N − 4s)
N−4s
2s (N + 2s)

N−2s
2s

(N − 2s)
N−2s

s S
N
2s
N ,s

.
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The following assertions holds true:

(i) the energy functional Ia,b is sequentially weakly lower semicontinuous on Xs
0(Ω) if

and only if a
N−4s
2s b ≥ LN ,s .

(i i) If a(N−4s)/2sb ≥ PSN ,s , the functional Ia,b satisfies the compactness Palais–Smale
condition at level c ∈ R.

(i i i) If a(N−4s)/2sb ≥ CN ,s , then the functional Ia,b is convex on Xs
0(Ω).

Theorem 1 guarantees the validity of some crucial properties such as the sequentially
weakly lower semicontinuity and the Palais–Smale condition. As we are going to see in the
next statement, these facts enable us to use traditional variational methods to completely
describe the situation for problem (Pλ

a,b). We begin providing two results about the existence
of global minimizers at different level of energy.

Theorem 2 Let a, b ∈ R
+ such that a(N−4s)/2sb ≥ LN ,s and set

ιsλ := inf
{Iλ

a,b(u) | u ∈ Xs
0(Ω) \ {0}} for any λ > 0.

There exists λ
s
0 ≥ 0 such that for any λ > λ

s
0 it is possible to find usλ ∈ Xs

0(Ω) \ {0} such
that Iλ

a,b(u
s
λ) = ιsλ < 0.

Theorem 3 Let λ = λ
s
0. The following statements hold:

(i) if a(N−2s)/2sb > LN ,s then there exists usλ ∈ Xs
0(Ω) \ {0} such that ιs

λ
s
0

= Iλ
s
0

a,b = 0;

(i i) if a(N−2s)/2sb = LN ,s , then u = 0 in the only minimizer for ιs
λ
s
0
.

In the next Theorem we give some information on what happens when we do not keep
fixed the parameters a, and b. It asserts we have some kind of stability when the product
a(N−4s)/2sb becomes close to LN ,s .

Theorem 4 Let (ak)k , (bk)k be a sequence of real positive numbers such that ak → a,
bk → b and a(N−4s)/2s

k bk ↘ LN ,s . Setting λk := λ
s
0(ak, bk) we have that λk → 0 as

k → ∞. Furthermore, if (uk)k ⊂ Xs
0(Ω) \ {0} such that λk = λs0(uk) then uk⇀0 and

‖uk‖22∗
s

‖uk‖2 → SN ,s .

Next statement shows the existence of solution of mountain pass type when λ ≥ λ
s
0.

Theorem 5 If λ ≥ λ
s
0, then there exists a vsλ ∈ Xs

0Ω \ {0} such that Iλ
a,b(v

s
λ) = csλ and(

Iλ
a,b

)′
(vsλ) = 0 where

csλ := inf
h∈Γ s

λ

max
ζ∈[0,1] I

λ
a,b(h(ζ ))

and

Γ s
λ :=

{
h ∈ C

(
[0, 1] , Xs

0(Ω)
) | h(0) = 0, h(1) = us

λ
s
0

}
.

Finally we focus on the case λ ∈ (λ
s
0 − δ, λ

s
0) for some δ > 0 small.
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Theorem 6 Set

ι̂sλ := inf{Iλ
a,b(u) | u ∈ Xs

0(Ω), ‖u‖ ≥ r}
for some r > 0. There exist δ, r > 0 such that for any λ ∈ (λ

s
0−δ, λ

s
0) the value ι̂sλ is attained

at a function ws
λ ∈ Xs

0(Ω) satisfying ‖ws
λ‖ > r .

Theorem 7 For any λ ∈ (λ
s
0 − δ, λ

s
0) there is vsλ ∈ Xs

0(Ω) \ {0} such that Iλ
a,b(v

s
λ) = csλ and(

Iλ
a,b

)′
(vsλ) = 0 where

csλ := inf
h∈Γ s

λ

max
ζ∈[0,1] I

λ
a,b(h(ζ ))

and

Γ s
λ := {h ∈ C

(
[0, 1] , Xs

0(Ω)
) : h(0) = 0, h(1) = ws

λ}
Our paper is organized as follows: in Sect. 1 we present the classic Kirchhoff model, its

generalization to the non local case and we collect in a synthetic way our main results. In
Sect. 2 we prove for the functional associated to the problemwith g(x, u) = 0 the weak lower
semicontinuity, the validity of the Palais–Smale condition and the convexity under suitable
assumption on the parameters a and b. Since the perturbation gwill have a subcritical growth,
we decided to prove these conditions for the problem with the pure power in order to ease
notation. We stress that the functional associated to the perturbed problem still verifies these
properties and proofs need only minor adjustments. In Sect. 3 we prove the existence of
global minimizers, local minimizers and mountain pass type solutions with different energy
level at varying of the parameter λ. At the end of Sect. 3, strengthening the hypothesis on the
non linear term g, we are able to give also a non existence result for problem (Pλ

a,b).

2 Semicontinuity and the validity of the Palais–Smale condition

In this sectionwe completely describe the range of parametersa and b forwhich the functional
Ia,b associated to the problem

⎧⎨
⎩
(
a + b

∫
Q

|u(x) − u(y)|2
|x − y|n+2s dx dy

)
(−Δ)su = |u|2∗

s−2u in Ω

u = 0 in R
N \ Ω

(Pa,b)

is (sequentially) weakly lower semicontinuous.

Proof of Theorem 1 (i) We assume that a
N−4s
2s b ≥ LN ,s , and we choose a sequence (un)n ⊂

Xs
0(Ω) such that un⇀u. Since the embedding Xs

0(Ω) ↪→ L p(Ω) is compact (see for instance
[29, Lemma 9]), un converges to u strongly in L p(Ω) for any p ∈ [1, 2∗

s

)
. We notice that

‖un − u‖2 + 2〈un − u, u〉Xs
0(Ω) = 〈un, un〉Xs

0(Ω) + 〈u, u〉Xs
0(Ω) − 2〈un, u〉Xs

0(Ω)

+2〈un, u〉Xs
0(Ω) − 2〈u, u〉Xs

0(Ω) = ‖un‖2 − ‖u‖2. (8)

Hence

‖un‖2 − ‖u‖2 = ‖un − u‖2 + 2〈un − u, u〉Xs
0(Ω) = ‖un − u‖2 + o(1)
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as n → ∞. After that, we compute

‖un‖4 − ‖u‖4 = (‖un‖2 − ‖u‖2) (‖un‖2 + ‖u‖2)
= (‖un − u‖2 + o(1)

) (‖un − u‖2 + 2‖u‖2 + o(1)
)
. (9)

Finally, using the Brezis-Lieb Lemma (see [5, Theorem 1]), we have

‖un − u‖2∗
s

2∗
s

= ‖un‖2
∗
s

2∗
s
− ‖u‖2∗

s
2∗
s
+ o(1) (10)

as n → ∞. Putting together (8), (9), (10) and the Sobolev inequality (6) we obtain

Ia,b(un) − Ia,b(u) = a

2

(‖un‖2 − ‖u‖2)+ b

4

(|un‖4 − ‖u‖4)− 1

2∗
s

(
‖un‖2

∗
s

2∗
s
− ‖u‖2∗

s
2∗
s

)

= a

2
‖un − u‖2 + b

4

(‖un − u‖4 + 2‖u‖2‖un − u‖2)

− 1

2∗
s
‖un − u‖2∗

s
2∗
s
+ o(1)

≥ a

2
‖un − u‖2 + b

4
‖un − u‖4 − S

− 2∗s
2

N ,s

2∗
s

‖un − u‖2∗
s + o(1)

= ‖un − u‖2
[
a

2
+ b

4
‖un − u‖2 − SN ,s

2∗
s

‖un − u‖2∗
s−2
]

+ o(1) (11)

as n → ∞. At this point, we introduce the auxiliary function

fN ,s(ζ ) = a

2
+ b

4
ζ 2 − S

− 2∗s
2

N ,s

2∗
s

ζ 2∗
s−2, ζ ≥ 0.

It is easy to verify that the function fN ,s attains its minimum at the point

mN ,s =
(
b

2

2∗
s

2∗
s − 2

S
2∗s
2
N ,s

) 1
2∗s −4

,

and that

a
N−4s
2s b ≥ LN ,s ⇔ fN ,s(mN ,s) = 1

2

(
a − b− 2s

N−4s L
2s

N−4s
N ,s

)
≥ 0 (12)

From (11) and (12) it follows that

lim inf
n→∞

(Ia,b(un) − Ia,b(u)
) ≥ lim inf

n→∞ ‖un − u‖2 fN ,s(‖un − u‖) ≥ 0,

which concludes this part of the proof.

Conversely, we proceed by contradiction, assuming that the functional Ia,b is sequentially
weakly lower semicontinuous but

a
N−4s
2s b < LN ,s (13)

Let {un}n ⊂ Xs
0(Ω) be a minimizing sequence for SN ,s . By homogeneity we may assume

furthermore that ‖un‖2∗
s

= 1 for every n, so that we deduce that the sequence {un}n must
be bounded. Up to a subsequence, we have that un⇀u in Xs

0(Ω) for some u ∈ Xs
0(Ω) \

{0}. Besides, exploiting the weak lower semicontinuity of the norm, we have that ‖u‖ ≤
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lim infn→∞ ‖un‖ =: L and there exists a subsequence {unk }k such that L = limk→∞ ‖unk‖.
We point out that L > 0, since u �= 0. Now N > 4s implies that 0 < 2∗

s − 2 < 2, and
limx→+∞ fN ,s(x) = +∞. As we have already seen, the function fN ,s attains its minimum
at the pointmN ,s and this, together with (13), implies fN ,s(mN ,s) < 0. Set c = mN ,s/L > 0.
We notice that

lim inf
n→∞ Ia,b(cun) ≤ lim inf

k→∞ Ia,b(cunk )

= lim inf
k→∞ ‖cunk‖2 fN ,s(‖cunk‖) = (cL)2 fN ,s(cL)

= (cL)2 fN ,s(mN ,s) ≤ ‖cu‖2 fN ,s(mN ,s) ≤ ‖cu‖2 fN ,s(‖cu‖). (14)

We also have that

‖cu‖2 fN ,s(‖cu‖) = a

2
‖cu‖2 + b

4
‖cu‖4 − S

2∗
s /2

N ,s

2∗
s

‖cu‖

≤ a

2
‖cu‖2 + b

4
‖cu‖4 − 1

2∗
s

∫
Ω

|cu|2∗
s dx = Ia,b(cu). (15)

Comparing (13) with (14) we get

lim inf
n→∞ Ia,b(cun) ≤ Ia,b(cu). (16)

We claim that a strict inequality holds in (16). Indeed, if we had equality, the function cu
would attain the minimum in (6). This is impossible, sinceΩ �= R

N (see [10, Theorem 1.1]).
The proof is complete. ��
Proof of Theorem 1 (i i) Let {un}n ⊂ Xs

0(Ω) be a (PS)c sequence, i.e. Ia,b(un) → c and
I ′
a,b(un) → 0 as n → ∞. Recalling (6), we observe that

Ia,b(u) = a‖u‖2 + b‖u‖4 −
∫

Ω

|u|2∗
s dx ≥ a‖u‖2 + b‖u‖4 − S

− 2∗s
2

N ,s ‖u‖2∗
s .

Since 2∗
s < 4 we have that Ia,b is coercive, and from that we can deduce the boundedness of

the sequence {un}n . From [29, Lemma 9], up to a subsequence, we have⎧⎪⎨
⎪⎩
un⇀u in Xs

0(Ω)

un → u in L p(Ω) for all p ∈ [1, 2∗
s

)
un → u a.e inRN .

Using theHölder inequality, it is straightforward to see that the sequence {un}n is also bounded
in the space M(Ω), thus there exists two finite measures μ and ν such that

(−Δ)sun⇀
∗μ and |un |2∗

s ⇀∗ν inM(Ω)

From [25, Theorem 1.5], it follows that either un → u in L2∗
s (Ω) or there exist a set J at

most countable, two real sequences {μ j } j∈J , {ν j } j∈J and distinct points {x j } j∈J ⊂ R
N such

that

ν = |u|2∗
s +

∑
j∈J

ν jδx j (17)

and

μ = (−Δ)su + μ̃ +
∑
j∈J

μ jδx j (18)
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for some positive finite measure μ̃, where

ν j ≤ SN ,sμ
2∗
s
j . (19)

Claim: the set J is empty.

If not, there exists an index j0 such that ν j0 �= 0 at x j0 . Fix ε > 0 and consider a cut-off
function ϑε such that ⎧⎪⎨

⎪⎩
0 ≤ ϑε ≤ 1 inΩ

ϑε = 1 in B(x j0 , ε)

ϑε = 0 inΩ \ B(x j0 , 2ε).

Since the sequence {unϑε}n is still bounded in Xs
0(Ω), we have that

lim
n→∞ Ia,b(un) [unϑε] = 0,

thus

o(1) = I ′
a,b(un) [unϑε] = (a + b‖un‖2

) 〈un, unϑε〉Xs
0(Ω) −

∫
Ω

|un |2∗
s ϑε dx

=
[(
a + b‖un‖2

) ∫
Q
un(y)

(un(x) − un(y))(ϑε(x) − ϑε(y))

|x − y|N+2s dx dy

+
∫
Q

ϑε(x)
(un(x) − un(y))2

|x − y|N+2s dx dy

]
−
∫

Ω

|un |2∗
s ϑε dx . (20)

as n → ∞. By using the Hölder inequality, we estimate the first term of (20)

(
a + b‖un‖2

) ∫
Q
un(y)

(un(x) − un(y))(ϑε(x) − ϑε(y))

|x − y|N+2s dx dy

≤
∫
Q

(un(x) − un(y))2

|x − y|N+2s dx dy
∫
Q
u2n(y)

(ϑε(x) − ϑε(y))2

|x − y|N+2s dx dy

C
∫
Q
u2n(y)

(ϑε(x) − ϑε(y))2

|x − y|N+2s dx dy

for some C > 0. As in [3, Lemma 2.1], we have that

lim
ε→0

lim sup
n→∞

∫
Q

|un(y)|2 |ϑε(x) − ϑε(y)|2
|x − y|N+2s dx dy = 0. (21)

Regarding the second term of (20), recalling (18), we get

lim
n→∞

(
a + b‖un‖2

) ∫
Q

ϑε(x)
(un(x) − un(y))2

|x − y|N+2s dx dy

≥ lim
n→∞

[
a
∫
R2N \B(x j0 ,2ε)c×Ωc

ϑε(x)
(un(x) − un(y))2

|x − y|N+2s dx dy

+b

(∫
Q

ϑε(x)
(un(x) − un(y))2

|x − y|N+2s dx dy

)2
]

≥ a
∫
R2N \B(x j0 ,2ε)c×Ωc

ϑε(x)
(u(x) − u(y))2

|x − y|N+2s dx dy + aμ j0
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+b

(∫
Q

ϑε(x)
(u(x) − u(y))2

|x − y|N+2s dx dy

)2

+ bμ2
j0 .

Hence

lim
ε→0

lim
n→∞

(
a + b‖un‖2

) ∫
Q

ϑε(x)
(un(x) − un(y))2

|x − y|N+2s dx dy ≥ aμ j0 + bμ2
j0 . (22)

Finally, exploiting (17) we have

lim
ε→0

lim
n→∞

∫
Ω

|un |2∗
s ϑε dx = lim

ε→0

∫
Ω

|u|2∗
s ϑε dx + ν j0 = ν j0 . (23)

Putting together (21), (22) and (23), and using (19), we obtain

0 ≥ aμ j0 + bμ2
j0 − ν j0 ≥ aμ j0 + bμ2

j0 − S
− 2∗s

2
N ,s μ

2∗s
2
j0

= μ j0

(
a + bμ j0 − S

− 2∗s
2

N ,s μ
2∗s
2 −1
j0

)
.

We define

f̃N ,s(ζ ) = a + bζ − S
− 2∗s

2
N ,s ζ

2∗s
2 −1 for ζ ≥ 0.

At this point, noting that the condition a(N−4s)/2sb > PSN ,s implies f̃N ,s(x) > 0, we deduce

a + bμ j0 − S
− 2∗s

2
N ,s μ

2∗s
2 −1
j0

> 0.

Hence μ j0 = 0, and recalling (19) ν j0 = 0 as well.
So the set J = ∅, and using the Brezis-Lieb lemma (see [5, Theorem 1]) we can rewrite

(17) as

lim
n→∞

∫
Ω

|un |2∗
s dx =

∫
Ω

|u|2∗
s dx .

Hence un → u in L2∗
s (Ω) and

lim
n→∞

∫
Ω

|un |2∗
s−2un(u − un) dx = 0. (24)

Coupling (24) and the fact that I ′
a,b(un) → 0 as n → ∞ we get

0 = lim
n→∞ I ′

a,b(un) [un − u] = lim
n→∞

[(
a + b‖un‖2

) 〈un, un − u〉Xs
0(Ω)

−
∫

Ω

|un |2∗
s−2un(un − u) dx

]

= lim
n→∞

(
a + b‖un‖2

) 〈un, un − u〉Xs
0(Ω).

From the last chain of equalities, recalling that {un}n ⊂ Xs
0(Ω) is bounded, we obtain

lim
n→∞〈un, un − u〉Xs

0(Ω) = 0. (25)

To conclude the proof it suffices to notice that thanks to (25) and un⇀u we have

‖un − u‖2 = 〈un, un − u〉Xs
0(Ω) − 〈u, un − u〉Xs

0(Ω) → 0

as n → ∞. ��
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Proof of Theorem 1 (i i i) In order to establish the convexity we will show that

I ′′
a,b(u) [v, v] ≥ 0 for all u, v ∈ Xs

0(Ω).

Differentiating (7) we notice that

I ′′
a,b(u) [v, v] = a‖v‖2 + b‖u‖2‖v‖2 − (2∗

s − 1)
∫

Ω

|u|2∗
s−2v2 dx . (26)

Using the Hölder and the Sobolev inequalities we get
∫

Ω

|u|2∗
s−2v2 dx ≤ ‖u‖2∗

s−2
2∗
s

‖v‖22∗
s

≤ S
− 2∗s

2
N ,s ‖u‖2∗

s−2‖v‖2. (27)

Putting together (26) and (27) we obtain

I ′′
a,b(u) [v, v] ≥ ‖v‖2

[
a + b‖u‖2 − (2∗

s − 1)S
− 2∗s

2
N ,s ‖u‖2∗

s−2
]

.

At this point we set

f̂N ,s(ζ ) = a + bζ 2 − (2∗
s − 1)S

2∗s
2
N ,sζ

2∗
s−2 for all ζ ≥ 0,

and we want to prove that it is positive on [0,∞). Indeed, with a simple computation it is
possible to show that f̂N ,s attains its global minimum at

m̂N ,s =
⎛
⎜⎝ 2bS

2∗s
2
N ,s

(2∗
s − 1)(2∗

s − 2)

⎞
⎟⎠

1
2∗s −4

and that

f̂N ,s(ζ ) ≥ 0 ⇔ a
N−4s
2s b ≥ CN ,s

for all ζ ≥ 0. ��
Remark 1 It is clear from the proof that the functional Ia,b is strictly convex provided that
a(N−4s)/2sb > CN ,s .

3 Application to a perturbed Kirchhoff problem

This section is devoted to study an application of Theorem 1. More precisely we want to
study the set of solutions of the perturbed problem
⎧⎨
⎩
(
a + b

∫
Q

|u(x) − u(y)|2
|x − y|n+2s dx dy

)
(−Δ)su = |u|2∗

s−2u + λg(x, u) in Ω

u = 0 in R
N \ Ω

(Pλ
a,b)

where as before a, b are real positive parameter, Ω is a bounded domain and λ > 0. As for
g, we generalize to the fractional case the assumptions present in [13]. Namely, we make the
following assumptions:

(H1) g : Ω × R → R is a Carathéodory function such that g(x, 0) = 0 a.e. in Ω;
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209 Page 12 of 23 L. Appolloni et al.

(H2) g(x, t) > 0 for every t > 0 and g(x, t) < 0 for every t < 0 a.e. in Ω . In addition,
we require that there is a μ > 0 such that g(x, t) ≥ μ > 0 a.e in Ω and for every
t ∈ I , where I is some open interval of (0,∞);

(H3) there is a constant c > 0 and p ∈ (2, 2∗
s ) such that g(x, t) ≤ c(1+ |t |p−1) a.e. in Ω;

(H4) limt→0 g(x, t)/|t | = 0 uniformly with respect to x ∈ Ω .

Using a variational approach, we investigate the existence of critical points of the func-
tional defined on the space Xs

0(Ω)

Iλ
a,b(u) := a

2
‖u‖2 + b

4
‖u‖4 − 1

2∗
s
‖u‖2∗

s
2∗
s
− λ

∫
Ω

G(x, u) dx

where we denote with G(x, t) =
∫ t

0
g(x, ω)dω.

We begin the treatment of our problem by proving a series of technical results that will
be useful throughout this section.

Remark 2 Before starting, let us recall the functions

fN ,s(ζ ) := a

2
+ b

4
ζ 2 − S

− 2∗s
2

N ,s

2∗
s

ζ 2∗
s−2

and

f̃N ,s(ζ ) = a + bζ − S
− 2∗s

2
N ,s ζ

2∗s
2 −1

defined in the proofs of Theorems 1 (i) and 1 (i i). As we have already seen these functions
have a unique local minimizer attained respectively at

mN ,s =
[
b

2

2∗
s

2∗
s − 2

S
2∗s
2
N ,s

] 1
2∗s −4

,

and

m̃N ,s =
[

2b

2∗
s − 2

S
2∗s
2
N ,s

] 1
2∗s −4

.

Furthermore, fN ,s(mN ,s) > 0 if and only if a
N−4s
2s b > LN ,s and fN ,s(mN ,s) = 0 when

a
N−4s
2s b = LN ,s . Analogously f̃N ,s(m̃N ,s) > 0 if and only if a(N−4s)/2sb > PSN ,s and

f̃N ,s(m̃N ,s) = 0 when a(N−4s)/2sb = PSN ,s .

Proposition 1 Let u ∈ Xs
0(Ω) \ {0}. We have that:

(i) for every ζ > 0 it holds

a

2
‖u‖2 + b

4
ζ 2‖u‖4 − 1

2∗
s
ζ 2∗

s−2 > fN ,s(ζ‖u‖)‖u‖2;

(i i) for every ζ > 0 it holds

a‖u‖2 + bζ 2‖u‖4 − ‖u‖2∗
s

2∗
s
ζ 2∗

s−2 > f̃N ,s(ζ‖u‖)‖u‖2.
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Proof From the boundedness of Ω it follows as in [10] that

ζ 2
[
a

2
‖u‖2 + b

4
ζ 2‖u‖4 − 1

2∗
s
ζ 2∗

s−2‖u‖2∗
s

2∗
s

]
= a

2
(ζ‖u‖)2 + b

4
(ζ‖u‖)4 −

‖u‖2∗
s

2∗
s

‖u‖2∗
s

(ζ‖u‖)2∗
s

2∗
s

>
a

2
(ζ‖u‖)2 + b

4
(ζ‖u‖)4 − S

− 2∗s
2

N ,s
(ζ‖u‖)2∗

s

2∗
s

(28)

where in the last expression we used the Sobolev inequality. Dividing by ζ 2 we get the first
statement. (i i) follows similarly. ��

As we did in the previous section, we show in the following lemma that the functional
Iλ
a,b is sequentially lower semicontinuous and satisfies the Palais–Smale condition for a and

b sufficiently large.

Lemma 1 Let a, b ∈ R
+, (uk)k ⊂ Xs

0(Ω) and λk → λ ≥ 0 as k → ∞:

(1) if a(N−4s)/2sb ≥ LN ,s and uk⇀u in Xs
0(Ω) then

Iλ
a,b(u) ≤ lim inf

k→∞ Iλ
a,b(uk);

(2) if a(N−4s)/2sb > PSN ,s , Iλ
a,b(uk) → c and

(
Iλ
a,b

)′
(uk) → 0 then (uk)k is convergent

to some u in Xs
0(Ω) up to subsequence.

Proof The proof follows closely the arguments of Theorem 1 (i) and (i i)withminor changes.
��

Now choose λ ≥ 0 and u ∈ Xs
0(Ω). For every ζ > 0 we introduce the fiber map

J λ,u
a,b (ζ ) := Iλ

a,b(ζu) = a

2
ζ 2‖u‖2 + b

4
ζ 4‖u‖4 − ζ 2∗

s

2∗
s

‖u‖2∗
s

2∗
s
−
∫

Ω

G(x, ζu) dx .

Proposition 2 Let λ ∈ R be nonnegative and u ∈ Xs
0(Ω \ {0}. Then there exists a neigh-

bourhood Vλ of 0 such that J λ,u
a,b (ζ ) > 0 for every ζ ∈ Vλ ∩ (0,∞). We also have that

J λ,u
a,b (ζ ) → ∞ as ζ → ∞.

Remark 3 The previous proposition shows indirectly that the map J λ,u
a,b (ζ ) is bounded from

below

Proof Fix ε > 0. Exploiting (H4), for ζ small enough, we get

J λ,u
a,b (ζ ) = ζ 2

(
a

2
‖u‖2 + b

4
ζ 2‖u‖4 − ζ 2∗

s−2

2∗
s

‖u‖2∗
s

2∗
s
− λ

∫
Ω

G(x, ζu)

ζ 2 dx

)

≥ ζ 2

(
a

2
‖u‖2 + b

4
ζ 2‖u‖4 − ζ 2∗

s−2

2∗
s

‖u‖2∗
s

2∗
s
− λ

ε

2
‖u‖22

)
.

Using the Sobolev inequality, taking ε appropriately and choosing ζ even smaller if necessary
we obtain the first part of the statement. In order to complete the proof, it is sufficient to
remember that G has subcritical growth and to notice that 2 < p < 2∗

s < 4. ��
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Now we choose u ∈ Xs
0(Ω) and we consider the system⎧⎪⎨
⎪⎩
J λ,u
a,b (ζ ) = 0

(J λ,u
a,b )′(ζ ) = 0

J λ,u
a,b (ζ ) = inf�>0 J λ,u

a,b (�)

(29)

in the unknowns λ and ζ .

Proposition 3 Let T and Z be two topological space, and assume that Z is compact. Let
h : T × Z → R be a continuous function. Then the function ĥ(t) := inf z∈Z h(t, z) is
continuous on T .

Proof We first observe that for any t ∈ T the function ĥ is well defined since Z is compact
and the infimum is always attained at some point z(t) ∈ Z . Recalling that the sets (−∞, a)

and (b,∞) for some a, b ∈ R form a subbase of R, our proof is reduced to the following:
Claim: ĥ−1 (−∞, a) and ĥ−1 (b,∞) are open in T .
We start showing the truthfulness of the claim for (−∞, a). Denote with πT : T × Z →
T the usual projection and remember that is a map continuous and open. Noticing that
ĥ−1(−∞, a) = (

πT ◦ h−1
)
(−∞, a) it is straightforward to conclude. On the other hand,

consider an half line (b,∞) for some b ∈ R. If t ∈ T is such that ĥ(t) > b then h(t, z) > b
for any z ∈ Z . In other words if t ∈ ĥ−1(b,∞) then (t, z) ∈ h−1(b,∞) for any z ∈ Z . Since
h is continuous and (b,∞) is open, for any (t, z) ∈ ĥ−1(b,∞) × Z it is possible to find a
neighbourhood Ut,z × Vt,z such that

(t, z) ∈ Ut,z × Vt,z ⊂ h−1(b,∞).

Hence
{
Vt,z
}
z∈Z is an open covering of Z . Exploiting the compactness of Z , we can extract

a finite subcovering indexed by a finite set K(t) with the property

{t} × Z ⊂
⋂

i∈K(t)

Ut,zi × Z ⊂ h−1(b,∞).

Thus, we can conclude observing that

ĥ−1 (b,∞) =
⋃

t∈ĥ−1(b,∞)

⋂
i∈K(t)

U(t,zi ). (30)

��
Remark 4 We can even strengthen the result above for functions defined on non compact
spaces requiring divergence at infinity. For instance, suppose h : (R+)2 → R is continuous
and such that limz→∞ h(t, z) = ∞ for any t ∈ R+. The proof for sets as (−∞, a) is the
same. As regard sets of the type (b,∞) we observe that ĥ−1(b,∞) can be written as in (30)
plus an half line due to the divergence of the function at infinity.

Proposition 4 Let a, b ∈ R
+ such that a(N−4s)/2sb ≥ LN ,s . For any u ∈ Xs

0(Ω) \ {0} there
is a unique λ = λs0(u) that solves (29).

Proof Define the continuous function h(λ, ζ ) := J λ,u
a,b (ζ ). We start pointing out that h(0, ζ )

is positive on (0,∞) (see Remark 2) and goes to+∞ as ζ → ∞. By continuity we have that
for λ small h(λ, ζ ) is nonnegative for all ζ ∈ R

+. Moreover, from Proposition 2 it follows
that for any λ ≥ 0 there is a neighbourhood Vλ such that h(λ, ζ ) > 0 for all ζ ∈ Vλ ∩ (0,∞).
We also have that h(λ, ζ ) → −∞ as λ → ∞ for any ζ > 0. At this point we define the
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continuous function (refer to Proposition 3) i(λ) = infζ∈[0,∞) h(λ, ζ ). From the previous
considerations, we can deduce that for λ sufficiently large the function i is negative, while if
we restrict λ it is equal to zero. This is due to the fact that the function h(λ, ζ ) for λ big enough
has a global minimizer in the variable ζ at a negative level. Shrinking λ, and remembering
that all continuous functions are homotopically equivalent, this minimizer becomes local and
attained at a positive level. All these arguments ensure us the existence of the desired λs0(u)

that solves (29). ��

Corollary 1 Let u ∈ Xs
0(Ω) \ {0}. The number λs0(u) is the only parameter such that

infζ∈(0,∞) J λs0(u),u
a,b (ζ ) = 0. In addition,

inf
ζ∈(0,∞)

J λ,u
a,b (ζ )

{
< 0 if λ > λs0(u)

= 0 if 0 ≤ λ ≤ λs0(u).

Proof The statement follows immediately from the proof of Proposition 4. ��

Now we define a suitable parameter independent from u that will play a crucial role in the
following. More precisely, we set

λ
s
0 := inf

u∈Xs
0(Ω)\{0}

λs0(u).

The next Proposition shows how the parameter λ
s
0 could vary depending on the choice made

on a and b.

Proposition 5 The following statements hold:

(i) if a(N−4s)/2sb > LN ,s then λ
s
0 > 0;

(i i) if a(N−4s)/2sb = LN ,s then λ
s
0 = 0. Furthermore, if (uk)k ⊂ Xs

0(Ω) \ {0} is a

sequence such that λs0(uk) → λ
s
0 as k → ∞, we have that uk⇀0 and

‖uk‖22
‖uk‖22∗s

→ SN ,s .

Proof (i) As a first step we observe that the function u → λs0(u) is well defined and homo-
geneous of degree zero. In fact, taking a couple (ζ, λs0(u)) that solves (29) and μ > 0, since

J λ,μu
a,b (ζ ) = J λ,u

a,b (μζ ) and
(
J λ,μu
a,b

)′
(ζ ) =

(
J λ,u
a,b

)′
(μζ )wehave that also (

ζ
μ
, λs0) is a solu-

tion of (29). From the uniqueness of the parameter λs0(μu) it follows that λs0(μu) = λs0(u).
Now, assume by contradiction that λ

s
0 = 0. If that, there is a sequence (uk)k ⊂ Xs

0(Ω) \ {0}
such that λk := λs0(uk) → 0. By homogeneity, we may assume that ‖uk‖ = 1. From

Proposition 4 it follows that there exists ζk > 0 such that J λk ,uk
a,b (ζk) = 0, that is

a

2
+ b

2
ζ 2
k − 1

2∗
s
‖uk‖2

∗
s

2∗
s
ζ
2∗
s−2

k − λk

∫
Ω

G(x, ζku)

ζ 2
k

dx = 0.

Recalling Remark 2, we get that

fN ,s(ζk) <
a

2
+ b

2
ζ 2
k − 1

2∗
s
‖uk‖2

∗
s

2∗
s
ζ
2∗
s−2

k = λk

∫
Ω

G(x, ζku)

ζ 2
k

dx . (31)

Hypotheses H3 and H4 implies that for any ε > 0 there exists a positive constant c > 0 such
that |G(x, t)| < ε

2 t
2 + c

p |t |p for all x ∈ Ω and all t ∈ R. So, the sequence (ζk)k must be

123



209 Page 16 of 23 L. Appolloni et al.

bounded, and up to subsequence converges to some ζ > 0. At this point, letting k → ∞,
(31) becomes

0 < fN ,s(ζ ) = lim
k→∞ λk

∫
Ω

G(x, ζkuk)

ζ 2
k

dx = 0

which is clearly a contradiction.
(i i) Up to a translation, we can suppose that 0 ∈ Ω . Take a nonnegative cut-off function

such that ϕ(x) = 1 in BR(0) for some R > 0. Fix ε > 0 and consider

vε(x) := ϕ(x)(
ε + |x |2) N−2s

2

.

We set uε := vε/‖vε‖ and we notice that from [29, Propositions 21 and 22] it follows that

‖uε‖ = 1, ‖uε‖2
∗
s

2∗
s

≥ S
− 2∗s

2
N ,s + O(ε

N−2s
2 ), ‖vε‖ ≤ ε− N−2s

4 C1 + O(1)

as ε → 0 for some C1 > 0. In virtue of the previous estimates, we get

J λ,uε

a,b (ζ ) = a

2
ζ 2 + b

4
ζ 4 − ζ 2∗

s

2∗
s

‖uε‖2
∗
s

2∗
s
− λ

∫
Ω

G(x, ζuε) dx

≤ ζ 2 fN ,s(ζ ) − ζ 2∗
s

2∗
s
O(ε

N−2s
2 ) − λ

∫
Ω

G(x, ζuε) dx .

Choosing as ζ = mN ,s we obtain

J λ,uε

a,b (mN ,s) = −m
2∗
s
N ,s

2∗
s

O(ε
N−2s
2 ) − λ

∫
Ω

G(x,mN ,suε) dx . (32)

Claim: There exists a constant C2 > 0 such that
∫
Ω
G(x,mN ,suε) dx ≥ C2ε

N
2 as ε → 0.

assumptions H2 implies the existence of μ > 0 such that g(x, t) ≥ χI where I is an
open interval of (0,∞) and χI is its characteristic function. So, there exists β > 0 such that
G(x, t) ≥ G̃(t) := μ

∫ t
0 χI (ω)dω ≥ β for any t ≥ α where α := inf I is positive. At this

point, we have

∫
Ω

G(x,mN ,suε) dx ≥
∫

|x |≤R
G(x,mN ,suε) dx =

∫
|x |≤R

G

(
x,

mN ,s

‖vε‖(ε + |x |2) N−2s
2

)
dx

≥
∫

|x |≤R
G̃

(
mN ,s

‖vε‖(ε + |x |2) N−2s
2

)
dx (33)

=
∫ R

0
G̃

(
mN ,s

‖vε‖(ε + w2)
N−2s
2

)
wN−1 dw

≥
∫ √

εR

0
G̃

(
mN ,s

‖vε‖(ε + w2)
N−2s
2

)
wN−1 dw. (34)

We emphasize that if

mN ,s

‖vε‖(ε + w2)
N−2s
2

≥ α
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then
∫ √

εR

0
G̃

(
mN ,s

‖vε‖(ε + w2)
N−2s
2

)
wN−1 dw ≥ β

∫ √
εR

0
wN−1 dw = C2ε

N
2 .

Since w ∈ [0,√εR
]
, we have

mN ,s

‖vε‖(ε + w2)
N−2s
2

≥ mN , s

ε− N−2s
4

(
C1 + O(ε

N−2s
4 )
) (

ε + R2ε
) N−2s

2

= mN , s

ε
N−2s
4

(
C1 + O(ε

N−2s
4 )
) (

1 + R2
) N−2s

2

≥ α

as ε → 0 proving the claim.
As a consequence of the claim and (33) we obtain

J λ,uε

a,b (mN ,s) ≤ ε
N−2s
2

(
− 1

2∗
s
O(1) − λC2ε

s
)

< 0.

Hence, λs0(uε) < λ. We can now let λ → 0 and we get λ
s
0 = 0 as desired. In order to see the

last part, let (uk)k ⊂ Xs
0(Ω) \ {0} be a sequence such that λk := λs0(uk) → λ

s
0 = 0. As we

did in part i), we suppose ‖uk‖ = 1, uk⇀u and that there exists ζk > 0 such that

a

2
+ b

4
ζ 2
k + ζ 2∗

s−2

2∗
s

‖uk‖2
∗
s

2∗
s
− λk

∫
Ω

G(x, ζkuk)

ζ 2
k

dx = 0. (35)

Combining assumptions H3, H4 and (35), we can deduce that, up to subsequence, ζk → ζ

and ‖uk‖2
∗
s

2∗
s

→ γ as k → ∞. Passing to the limit in (35), we get

a

2
+ b

4
ζ
2 − ζ

2∗
s−2

2∗
s

γ = 0.

From a(N−4s)/2sb = LN ,s it follows that γ = S
− 2∗s

2
N ,s , thus (uk)k is a minimizing sequence for

SN ,s . Now, by contradiction assume u �= 0. We point out that by the lower semicontinuity
of the norm we have ‖u‖ ≤ 1. Coupling this fact with Remark 2, we obtain

0 ≤ a

2
+ b

4
ζ
2 − S

− 2∗s
2

N ,s

2∗
s

ζ
2∗
s−2‖u‖2∗

s ≤ a

2
+ b

4
ζ
2 − ζ

2∗
s−2

2∗
s

‖u‖2∗
s

2∗
s

≤ lim sup
k→∞

(
a

2
+ b

2
ζ 2
k − ζ

2∗
s

k

2∗
s

‖uk‖2
∗
s

2∗
s
− λk

∫
Ω

G(x, ζkuk)

ζ 2
k

dx

)
= 0,

which cannot happen since Ω is bounded, see [10]. ��
Next proposition summarize the situation of the infimum depending on the choice of the

parameter λ for the functional J λ,u
a,b (ζ ).

Proposition 6 If λ ≤ λ
s
0 then infζ>0 J λ,u

a,b (ζ ) = 0 for any u ∈ Xs
0(Ω) \ {0}. On the other

hand, if λ > λ
s
0 there exists u ∈ Xs

0(Ω) \ {0} such that infζ>0 J λ,u
a,b (ζ ) < 0.
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Proof Take λ ≤ λ
s
0. We have that λ ≤ λ

s
0 ≤ λs0(u) for any u ∈ Xs

0(Ω) \ {0}, then the
conclusion comes from Corollary 1. Instead, let us consider λ ∈ R

∗ such that λ > λ
s
0. By

the definition of infimum, it is possible to find u ∈ Xs
0(Ω) \ {0} such that λ ≥ λs0(u) > λ

s
0.

Again, the assertion it is a consequence of Corollary 1. ��
After some preliminary results we are ready to study the set of solutions of problem (Pλ

a,b).
The first step will consists in giving the proof for Theorems 2 and 3 providing the existence
of global minimizers for λ ≥ λ

s
0.

Proof of Theorem 2 By the use of assumptions (H3) and (H4) it is easy to verify that Iλ
a,b

is coercive. Furthermore, from 1 we also have the lower semicontinuity. At this point, as a
consequence of the well known Weiestrass Theorem, we have that the infimum is attained.
To conclude, we recall that Proposition 6 implies the existence of a function in which the
functional turns out to be negative. ��
Proof of Theorem 3 (i) Let (λk)k ⊂ R

+ a sequence such that λk ↘ λ
s
0. Theorem 2 implies

the existence of a sequence (uk)k ⊂ Xs
0(Ω) \ {0} such that ιsλk = Iλk

a,b(uk) < 0. As we did
in Proposition 5, after fixing ε > 0 we have

|G(x, t)| ≤ ε

2
t2 + c

p
|t |p (36)

for all (x, t) ∈ Ω × R. Hence

a

2
‖uk‖2 + b

4
‖uk‖4 − 1

2∗
s
‖uk‖2

∗
s

2∗
s

< λk

∫
Ω

G(x, uk) dx

≤ λk

(
ε

2
‖uk‖22 + c

p
‖uk‖p

p

)
≤ C̃

(‖uk‖2 + ‖uk‖p) (37)

for some C̃ > 0 since Xs
0(Ω) ↪→ Lq(Ω) continuously for any q ∈ [2, 2∗

s

]
. From 4 > 2∗

s it
follows that (‖uk‖)k must be bounded and it is not restrictive to assume uk⇀u in Xs

0(Ω).
Applying Lemma 1[(1)] we obtain

Iλ
s
0

a,b(u) ≤ lim inf
k→∞ Iλ

s
0

a,b(uk) ≤ 0.

On the other hand , Proposition 6 states that Iλ
s
0

a,b(v) ≥ 0 for any v ∈ Xs
0(Ω), and so

ιs
λ
s
0

= Iλ
s
0

a,b(u) = 0. (38)

It remains only to prove that u is a non trivial minimizer. To see that, observe that

a

2
‖uk‖2 + b

4
‖uk‖4 − S

− 2∗s
2

N ,s

2∗
s

‖uk‖2∗
s ≤ a

2
‖uk‖2 + b

4
‖uk‖4 − 1

2∗
s
‖uk‖2

∗
s

2∗
s

< λk

< λk

∫
Ω

G(x, uk) dx

where we used the fractional Sobolev inequality. Dividing by ‖uk‖2 and exploiting (36), we
get

fN ,s(‖uk‖) ≤ λk

(
ε

2
+ c

p
‖uk‖p

p

)
.
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Were u = 0, recalling that Xs
0(Ω) ↪→ Lq(Ω) for any q ∈ [2, 2∗

s

)
, we would have

fN ,s (‖uk‖) → 0

as k → ∞ since ε > 0 is arbitrary. This fact is in contradiction with

fN ,s (‖uk‖) ≥ fN ,s(mN ,s) > 0

since a(N−2s)/2sb > LN ,s . So u must be different from zero.
(i i) From Proposition 5[(i i)] we have λ

s
0, and so

Iλ
s
0

a,b(u) = a

2
‖u‖2 + b

4
‖u‖4 − 1

2∗
s
‖u‖2∗

s
2∗
s
.

In virtue of Remark 2, we have

Iλ
s
0

a,b(u) = ‖u‖2 fN ,s(‖u‖) > 0

for any u ∈ Xs
0 \ {0}. Since (38) is still valid, we have that the infimum can be attained only

in the case in which u = 0. ��

Corollary 2 If a(N−4s)/2sb > LN ,s and u ∈ Xs
0(Ω) \ {0} is such that ι

λ
s = Iλ

s
0

a,b(u) then

λ
s
0 = λs0(u).

Proof The pair (λ
s
0, u) solve the system (29). The conclusion follows by uniqueness. ��

Proof of Theorem 4 Fix ε > 0 and recall the Aubin-Talenti functions uε defined in Proposi-
tion 5. Choose ζ > 0 and keep λ > 0 free. We have

J λ,uε

ak ,bk
(ζ ) = ak

2
ζ 2 + bk

4
ζ 4 − ζ 2∗

s

2∗
s

‖uk‖2
∗
s

2∗
s
− λ

∫
Ω

G(x, ζuε) dx

= ζ 2 f kN ,s(ζ ) − ζ 2∗
s

2∗
s
O
(
ε

N−2s
2

)
− λ

∫
Ω

G(x, ζuε) dx

where we defined with f kN ,s the map fN ,s depending on the parameters ak , bk . We select

ζ = mk
N ,s (here mk

N ,s is the point point in which f kN ,s attains its minimum), and since

mk
N ,s → mN ,s as k → ∞, we get

lim
k→∞J λ,uε

ak ,bk
(mk

N ,s) = −m
2∗
s
N ,s

2∗
s

O
(
ε

N−2s
2

)
− λ

∫
Ω

G(x,mN ,suε) dx . (39)

Recalling that in Proposition 5 we obtained the estimate∫
Ω

G(x,mN ,suε) dx ≥ C2ε
N
2 ,

from (39) we deduce

lim
k→∞J λ,uε

ak ,bk
(mk

N ,s) ≤ ε
N−2s
2

(
− 1

2∗
s
O(1) − λC2ε

s
)

.

Hence for k sufficiently large and small ε

J λ,uε

ak ,bk
(mk

N ,s) < 0.
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As a consequence of that, we have that λk ≤ λs0(uε) ≤ λ. Letting λ → 0 we obtain that
λk → 0 as k → ∞. Now, exploiting the homogeneity of degree zero of the function λs0(·)
proved in Proposition 5, we suppose ‖uk‖ = 1 and uk⇀u. Arguing similarly as we did to
get (35) we are able to deduce the existence of ζk > 0 such that

ak
2

+ bk
4

ζ 2
k − ζ 2∗

s−2

2∗
s

‖uk‖2
∗
s

2∗
s
− λk

∫
Ω

G(x, ζkuk)

ζ 2
k

dx = 0 (40)

Moreover, from H3, H4 and (40) it follows that ζk → ζ > 0 and that ‖uk‖2∗s
2∗
s
toγ up to a

subsequence as k → ∞. Thus, passing to the limit in (40) we get

a

2
+ b

4
ζ
2 − 1

2∗
s
γ ζ

2∗
s−2 = 0.

Sincea(N−4s)/2sb = LN ,s itmust beγ = SN ,s and thatmeans (uk)k is aminimizing sequence
for the optimal Sobolev constant. We also have that u = 0. Indeed, if u �= 0, combining
Remark 2, the fact that by the sequentially lower semicontinuity of the norm ‖u‖ ≤ 1 and
Lemma 1[(1)], we obtain

0 ≤ a

2
+ b

4
ζ
2 − S

− 2∗s
2

N ,s

2∗
s

ζ
2∗
s−2‖u‖2∗

s ≤ a

2
+ b

4
ζ
2 − ζ

2∗
s−2

2∗
s

‖u‖2∗
s

2∗
s

≤ lim inf
k→∞

(
ak
2

+ bk
4

ζ 2
k − ζ

2∗
s−2

k

2∗
s

‖uk‖2
∗
s

2∗
s
− λk

∫
Ω

G(x, ζkuk)

ζ 2
k

dx

)
= 0

The conclusion comes from the nonexistence of minimizers for SN ,s in bounded sets as
shown in [10]. ��

Now, we begin to investigate solutions of mountain pass type. As we will see, the situation
changes if λ ≥ λ

s
0 or λ < λ

s
0. The reader should keep in mind that from now to the end of

the section we will consider positive parameters a, b ∈ R such that a(N−4s)/2sb > LN ,s .

Proof of theorem 5 Take ε > 0. Recalling (36) and that Xs
0(Ω) ↪→ Lq(Ω) continuously for

any q ∈ [2, 2∗
s

]
we obtain

Iλ
a,b ≥

(a
2

− λCε
)

‖u‖2 + b

4
‖u‖4 − C‖u‖2∗

s − λC‖u‖p (41)

where C > 0 is a constant chosen adequately. By selecting ε < a/(2λC) there exists Rs
λ

such that

inf
‖u‖=Rs

λ

Iλ
a,b > 0.

Now, observe that Iλ
a,b(0) = 0 and Iλ

a,b(u
s
λ
s
0
) ≤ 0. Indeed, Iλ

a,b(u
s
λ
s
0
) = 0 if λ = λ

s
0 while

Iλ
a,b(u

s
λ
s
0
) < 0 for λ > λ

s
0 by Proposition 6. As a consequence of that, the functional possesses

a mountain pass geometry. Furthermore, recalling Lemma 1[(2)] we have that Iλ
a,b satisfies

the Palais–Smale condition. At this point the conclusion is obtained by applying the classic
mountain pass theorem. ��

Having analysed the situation for λ ≥ λ
s
0, now we draw our attention to the case λ < λ

s
0.

Namely, we will show the existence of non trivial solutions that are local minimizer or of
mountain pass type.
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Proposition 7 If λ ≤ λ
s
0 then it is possible to find r = r(s), M = M(s) > 0 such that

inf
{Iλ

a,b(u) : u ∈ Xs
0(Ω), ‖u‖ = r

} ≥ M . (42)

Proof Given ε > 0, because λ ≤ λ
s
0 and recalling (41), we get

Iλ
a,b ≥

(a
2

− λ
s
0Cε

)
‖u‖2 + b

4
‖u‖4 − C‖u‖2∗

s − λ
s
0C‖u‖p

for any u ∈ Xs
0(Ω). The statement follows by taking ε so that a/2 − λ

s
0Cε > 0. ��

Now, we are able to characterize the infimum in Theorem 6. More precisely, considering
the r > 0 given by the previous Proposition, we can set

ι̂sλ := inf{Iλ
a,b(u) : u ∈ Xs

0(Ω), ‖u‖ ≥ r}.
Remark 5 It is straightforward to see that ι̂s0 → 0 as λ → λ

s
0. Indeed, it suffices to consider

a function u ∈ Xs
0(Ω) such that λ

s
0 = λs0(u) (the existence of a such u is guaranteed by

Theorem 3) and to observe that

0 ≤ ι̂sλ ≤ Iλ
a,b(u) → 0 as λ → λ

s
0.

Remark 6 The function ws
λ obtained in the previous Theorem represents a critical point for

the functional Iλ
a,b and it is a local minimizer.

Proof of Theorem 6 Consider the r , M > 0 given by Proposition 7 and notice that if λ ∈
(λ

s
0 − δ, λ

s
0) we have that ι̂sλ < M for an appropriate δ > 0. As a consequence of that,

if (uk)k is a minimizing sequence there must be a υ > 0 such that ‖uk‖ ≥ M + υ for
k sufficiently large. At this point, invoking the Ekeland’s variational principle (see [12])
we have the existence of a minimizing sequence and the convergence to a local minimizer
ws

λ ∈ Xs
0(Ω) such that ‖ws

λ‖ > M and ι̂sλ = Iλ
a,b(w

s
λ) is established remembering the

validity of the Palais–Smale condition as showed in Lemma 1[(2)]. ��
Finally, we prove Theorem 7 that ensure the existence of mountain pass solutions for

λ < λ
s
0 close enough to λ

s
0. In the following we will denote with δ > 0 the number obtained

in Theorem 6.

Proof of Theorem 7 Notice min{Iλ
a,b(0), Iλ

a,b(w
s
λ)} < M , recall ‖ws

λ‖ > M and (42). So, we
have a mountain pass geometry. Since the Palais–Smale condition is satisfied, we exploit the
the Mountain Pass Theorem (see [2]) to get the conclusion. ��
Remark 7 If in addition to assumptions (H1) − (H4) we require

(H5) for any u ∈ Xs
0(Ω), the function ζ �→

∫
Ω

g(x, ζu(x)) dx is C1 on (0,∞)

we are able to state a non-existence result for problem (Pλ
a,b). Namely, we claim there is

λ
s := λ

s
(a, b) ∈ (0, λ

s
0) such that if λ ∈ (0, λ

s
) then (Pλ

a,b) does not admit non trivial
solutions. Consider the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(
J λ,u
a,b

)′
(ζ ) = 0(

J λ,u
a,b

)′′
(ζ ) = 0(

J λ,u
a,b

)′
(ζ ) = inf�>0

(
J λ,u
a,b

)′
(�).

(43)
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After fixing u ∈ Xs
0(Ω), similarly to proposition 4 it is possible to find a unique λs(u) > 0

that solves (43). We point out that the parameter λs(u) is the unique λ > 0 for which the
fiber map J λ,u

a,b (ζ ) has a critical point with null second derivative. Furthermore, observe that
if 0 < λ < λs(u) then

J λ,u
a,b (ζ ) > J λs (u),u

a,b (ζ ) > 0.

So, J λ,u
a,b (ζ ) has no critical points. As a consequence of that, it is immediate to prove that

λs(u) < λs0(u). (44)

If not, we would have that J λs0(u),u
a,b (ζ ) is increasing contradicting the existence of solutions

for system (29). At this point we set

λ
s := inf

u∈Xs
0(Ω)\{0}

λs(u).

Now, we observe that if a(N−4s)/2sb > PSN ,s then 0 < λ
s

< λ
s
0. In fact, we know from

corollary 2 that there is u ∈ Xs
0(Ω) \ {0} such that λs0 = λs0(u). From (44) it follows that

λ
s ≤ λs(u) < λs0(u) = λ

s
0.

To conclude, we observe that for any λ ∈ (0, λ
s
) the map J λ,u

a,b (ζ ) is increasing and that(
J λ,u
a,b

)′
(ζ ) > 0 for all ζ > 0. Hence u = 0 is the only admissible critical point.
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