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Abstract
We propose a new foliation of asymptotically Euclidean initial data sets by 2-spheres of
constant spacetime mean curvature (STCMC). The leaves of the foliation have the STCMC-
property regardless of the initial data set in which the foliation is constructed which asserts
that there is a plethora of STCMC 2-spheres in a neighborhood of spatial infinity of any
asymptotically flat spacetime. The STCMC-foliation can be understood as a equivariant
relativistic generalization of the CMC-foliation suggested by Huisken and Yau (Invent Math
124:281–311, 1996). We show that a unique STCMC-foliation exists near infinity of any
asymptotically Euclidean initial data set with non-vanishing energy which allows for the
definition of a new notion of total center of mass for isolated systems. This STCMC-center of
mass transforms equivariantly under the asymptotic Poincaré group of the ambient spacetime
and in particular evolves under the Einstein evolution equations like a point particle in Special
Relativity. The new definition also remedies subtle deficiencies in the CMC-approach to
defining the total center of mass suggested by Huisken and Yau (Invent Math 124:281–311,
1996) which were described by Cederbaum and Nerz (Ann Henri Poincaré 16:1609–1631,
2015).
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1 Introduction and goals

In General Relativity, isolated (gravitating) systems are individual or clusters of stars, black
holes, or galaxies that do not interact with any matter or gravitational radiation outside the
system under consideration. Intuitively, they should have a total center of mass which should
in a suitable sense behave as a point particle in Special Relativity. In this paper, we suggest
a definition of total center of mass for suitably isolated systems and argue that this center
of mass notion indeed behaves as a point particle in Special Relativity in a suitable sense
(meaning it transforms equivariantly under the asymptotic Poincaré group of the ambient
spacetime). In particular, we will show that the center of mass notion we suggest evolves in
time under the Einstein evolution equations like a point particle in Special Relativity.

The main idea of our approach is to modify the definition of center of mass given by
Huisken andYau [29] for asymptotically EuclideanRiemannianmanifolds—using an asymp-
totic foliation by 2-spheres of constant mean curvature (CMC), see Sect. 2—by staging it in
a Lorentzian (spacetime) setting or in other words by staging it in asymptotically Euclidean
initial data sets. More specifically, we will prove existence and uniqueness of an asymp-
totic foliation by 2-spheres of constant spacetime mean curvature under optimal asymptotic
decay assumptions. Here, “spacetime constant mean curvature (STCMC)” means that the
co-dimension 2 mean curvature vector �H of each 2-sphere has constant Lorentzian length
H .

It is straightforward to see that this STCMC-condition can be reformulated in terms of
initial data sets, namely as the product of the inner and outer “expansions” (or “null mean
curvatures”, see Remark 7) with respect to any given null frame along a 2-surface. On the
other hand, the STCMC-condition is naturally independent of the initial data set in which the
foliation is constructed. Our result thus asserts that there is a plethora of STCMC-surfaces
in a neighborhood of spatial infinity of any asymptotically flat spacetime.

Furthermore, the new construction of a center of mass will be shown to remedy the subtle
deficiencies of the Huisken and Yau approach [29] described by Cederbaum and Nerz [11].
Last but not least, we will provide an asymptotic flux integral formula for the center of mass
extending that of Beig and Ó Murchadha [4]. The analytic techniques in our proofs rely on
and unify and simplify those developed by Metzger [35] and Nerz [40,41].

Concluding this introduction, we would like to point out that the notion of spacetime
mean curvature of 2-surfaces in initial data sets has independently been considered in other
contexts, both before and after the results of this paper had been announced. For example,
the inverse spacetime mean curvature flow has been studied by Frauendiener [24], by Bray,
Hayward, Mars, and Simon in [6], and by Xu [47].

The STCMC-condition is (trivially) satisfied by marginally outer/inner trapped surfaces
(MOTS/MITS), extremal surfaces (see e.g. [23]), and generalized apparent horizons (see e.g.
[34], [7]), with spacetime mean curvature H = 0 in all those cases.

More generally, 2-surfaces with constant spacetime mean curvature are critical points for
the area functional inside the future-directed null-cone, with mean curvature vector pointing
in the direction in which the expansion of the surface is extremal. The aforementioned
generalized apparent horizons are area outer-minimizing which is appealing in the view
of the spacetime Penrose Inequality. We would like to point the reader to the interesting
work by Carrasco and Mars [10] giving insights into the (over-)generality of H = 0 as a
condition for a horizon. In a recent paper of Cha and Khuri [12], the area A of the outermost
STCMC-surface with H = 2 appears in the conjectured Penrose Inequality m ≥ √

A/16π
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On center of mass and foliations by constant spacetime mean curvature Page 3 of 57 214

expected to hold for an asymptotically anti-de Sitter initial data set of mass m satisfying the
dominant energy condition.

Because of the spacetime geometry nature of the STCMC-condition, we expect that
STCMC-surfaces and STCMC-foliations will have a number of applications beyond the
definition of a center of mass of an isolated system as well as beyond the setting of asymp-
totically Euclidean initial data sets. For example, a special subfamily of STCMC-surfaces
foliating a null hypersurface implicitly appears in recent work by Klainerman and Szeftel
[31] as a gauge condition—namely surfaces with in particular both constant outer and inner
expansions. It is conceivable that STCMC-surfaces will be useful more generally as a gauge
condition in analyzing dynamic stability.

Structure of the paper. In Sect. 2,wewill summarize the necessary definitions and notations
as well as more details on the background and existing work on the total center of mass of
isolated systems. In Sect. 3, wewill state ourmain results and very briefly explain the strategy
of our proofs. The following sections will be dedicated to the more technical components of
the proof with Sect. 4 focusing on a priori estimates for STCMC-surfaces, Sect. 5 discussing
the linearization of spacetime mean curvature, Sect. 6 asserting existence of the STCMC-
foliation, Sect. 7 introducing the coordinate expression of the center of mass associated
with the STCMC-foliation, and Sect. 8 proving the claimed law of time evolution under
the Einstein evolution equations. Appendix 1 collects results such as Sobolev Inequalities
on 2-surfaces, while Appendix 2 studies STCMC-surfaces in normal geodesic coordinates.
Finally, in Sect. 9, we will discuss an exemplary initial data set highlighting the differences
between the newly suggested notion of center of mass and the existing one suggested by
Huisken and Yau.

2 Preliminaries

Recall that an initial data set for the Einstein equations is a tuple (M3, g, K , μ, J ) where
(M3, g) is a smooth Riemannian manifold and K is a smooth symmetric (0, 2)-tensor field
on M3 playing the role of the second fundamental form of M3 in an ambient Lorentzian
spacetime. The (scalar) local energy density μ and the (1-form) local momentum density J
defined on M3 can be read off from the constraint equations

Scal − |K |2 + (tr K )2 = 2μ (1a)

div(K − (tr K )g) = J . (1b)

Here, tr, div, and | · | denote the trace, the divergence, and the tensor norm with respect to g,
respectively, and Scal denotes its scalar curvature. Sometimes we will find it convenient to
use the conjugate momentum tensor π := (tr K )g − K .

The constraint equations (1) arise as a consequence of theGauss–Codazzi–Mainardi equa-
tions from theEinstein equationsRic− 1

2 Scal g = T satisfied by a given spacetime (M1,3, g)

with energy-momentum tensorT,where g is theRiemannianmetric inducedby theLorentzian
metric g on the spacelike hypersurface M3 and K is the induced second fundamental form.
Letting η denote the timelike future unit normal to the initial data set (M3, g, K , μ, J ), the
energy and momentum density are derived fromT viaμ = T(η, η), and J = T(η, ·), and the
stress tensor S on M3 is defined by S = T(·, ·). The constraint equations (1) thus necessarily
hold on any spacelike hypersurface (or "initial data set") (M3, g, K , μ, J ) in the spacetime
(M1,3, g).
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In order to model an "isolated system", we will assume that the ambient spacetime
(M1,3, g) with its energy-momentum tensor T and the choice of initial data set (M3, g,
K , μ, J ) are such that the initial data set is "asymptotically Euclidean", a notion made pre-
cise in the following standard definition.

Definition 1 (Asymptotically Euclidean initial data sets) Let ε ∈ (0, 1
2 ] and let (M3, g,

K , μ, J ) be a smooth initial data set. Assume there is a smooth coordinate chart �x : M3\B →
R
3\BR(0) defined in the region exterior to a compact setB ⊂ M3.We say thatI := (M3, g,

K , μ, J ) is a C2
1/2+ε-asymptotically Euclidean initial data set (with respect to �x) if there is

a constant C = C(I , �x) such that, in the coordinates �x = (x1, x2, x3) ∈ R
3 \ BR(0), we

have the pointwise estimates

|gi j − δi j | + |�x ||∂kgi j | + |�x |2|∂k∂l gi j | ≤ C |�x |− 1
2−ε (2a)

|Ki j | + |�x ||∂k Ki j | ≤ C |�x |− 3
2−ε (2b)

|μ| + |Ji | ≤ C |�x |−3−ε (2c)

for all �x ∈ R
3\BR(0) and for all i, j, k, l ∈ {1, 2, 3}. Here, slightly abusing notation, we have

silently pushed forward all tensor fields on M3 (including scalars) and written gi j := (�x∗g)i j
as well as Ki j := (�x∗K )i j , etc. The Kronecker delta δi j denotes the components of the
Euclidean metric with respect to the coordinates �x . By another slight abuse of notation, we
will refer to the above constant C as CI , suppressing the dependence on the chart �x .

Asymptotically Euclidean initial data sets are well-known to possess well-defined total
energy, linear momentum, and mass. More precisely, if I = (M, g, K , μ, J ) is a C2

1/2+ε-
asymptotically Euclidean initial data set for any ε > 0 (naturally extending the definition to
ε > 1

2 ), its (ADM-)energy E and its (ADM-)linear momentum �P = (P1, P2, P3) are given
by

E := 1

16π
lim
r→∞

ˆ

|�x |=r

∑

i, j

(∂i gi j − ∂ j gii )
x j

r
dμδ, (3)

P j := 1

8π
lim
r→∞

ˆ

|�x |=r

∑

i

πi j
x i

r
dμδ, (4)

respectively, where dμδ denotes the areameasure induced on the Euclidean coordinate sphere
{|�x | = r} by the Euclidean metric δ and ADM stands for Arnowitt–Deser–Misner [1]. The
quantities E and �P are well-defined under the asymptotic conditions imposed here for arbi-
trary ε > 0 [3,18]—meaning the expressions converge and E is asymptotically independent
of the chart �x while �P is asymptotically covariant under chart deformations in a suitable way.
From them, one defines the (ADM-)mass by

m :=
√
E2 − | �P|2 (5)

whenever this expression makes sense, that is whenever the energy-momentum 4-vector
(E, �P) is causal with respect to the Minkowski metric of Special Relativity.

Remark 1 (Bounds on ε) For ε ≤ 0 in the above definition, one can find an asymptotic chart
�x (meaning a coordinate transformation outside a compact set) on the canonical Euclidean
initial data setIEucl. = (R3, δ, K ≡ 0, μ ≡ 0, J ≡ 0)with respect to whichIEucl. isC2

1/2+ε-
asymptotically Euclidean but the expression E does not vanish as it should for Euclidean
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space, see Denisov and Soloviev [21]. This explains the suggestive notation of the decay
order as 1

2 + ε.
On the other hand, if ε > 1

2 for an initial data set I , a simple computation shows that it
has E = �P = 0 which is non-desirable in the context of discussing the center of mass and
asymptotic foliations by constant mean curvature. This explains why we exclude this case in
Definition 1.

Remark 2 (Asymptotically Euclidean Riemannian manifolds) If a Riemannian manifold
(M3, g) (with asymptotic chart �x ) satisfies (2a) and if its scalar curvature satisfies |Scal| ≤
C |�x |−3−ε for all �x ∈ R

3 \ BR(0), we say that (M3, g) is a C2
1/2+ε-asymptotically Euclidean

manifold. This is called the “Riemannian case”, the reason being that one can reinterpret this
as saying that the “trivially extended initial data set” (M3, g, K ≡ 0, μ = 1

2 Scal, J ≡ 0)
satisfies (2a)–(2c). In the Riemannian case, the notions “mass"m and “energy" E can be and
are used interchangeably.

2.1 Center of mass

We now proceed to discussing the total center of mass of an asymptotically Euclidean initial
data setI = (M3, g, K , μ, J ) with energy E �= 0. The assumption E �= 0 is both technical
(as many definitions of center of mass explicitly divide by E) and physically reasonable when
considering the center of mass.

First, let us remark that our field knows many definitions of center of mass for isolated
systems. The first definitions were given in terms of asymptotic flux integral expressions in
coordinates, similar to those of energy and linear momentum above, see (6) below and the
text surrounding it. In 1996, Huisken and Yau [29] proved existence and uniqueness of a
foliation by constant mean curvature 2-spheres near infinity of an asymptotically Euclidean
Riemannian manifold of positive energy E > 0 and related it to a definition of center of mass
in a way described below and in more detail in Sect. 7. More recently, Chen, Wang, and Yau
[14] suggested a new definition of center of mass for isolated systems which is constructed
from optimal isometric embeddings into the flat Minkowski spacetime of Special Relativity.
For a brief, non-complete summary of other definitions of center of mass, please see [11].

Flux integral definition.Themost prominent flux integral notion of center ofmass �CBÓM =
(C1

BÓM
,C2

BÓM
,C3

BÓM
) for asymptotically Euclidean initial data sets was introduced by Beig

and Ó Murchadha [4] as the asymptotic flux integral

C l
BÓM

:= 1

16πE
lim
r→∞

ˆ

|�x |=r

⎡

⎣xl
∑

i, j

(∂i gi j − ∂ j gii )
x j

r
−

∑

i

(
gil

xi

r
− gii

xl

r

)⎤

⎦ dμδ,

(6)

a definition going back in parts to Regge and Teitelboim [44]. See Szabados [46] for valuable
critical comments on this definition, and see Sect. 7 for a covariant generalization of this
formula following from our work.

The center of mass integral �CBÓM will in general not converge for initial data sets (M3, g,
K , μ, J )which are merelyC2

1/2+ε-asymptotically Euclidean with respect to some chart �x and
have E �= 0. It will however converge once one assumes that the initial data set satisfies
certain asymptotic symmetry conditions in the given chart �x , as for example the Regge–
Teitelboim conditions introduced in [44], see [4,19,27] and Definition 3 below.We also point
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out that the expression for �CBÓM does not explicitly depend on the second fundamental form
K of the initial data set.

Definitions via foliations. Several authors define the center of mass of an initial data set
I = (M3, g, K , μ, J ) via a foliation by 2-spheres near infinity. Following Cederbaum and
Nerz [11], we will call such definitions “abstract” in contrast to the more explicit “coordinate
definitions” of center of mass, see below.

The first abstract definition of center of mass was given in 1996 by Huisken and Yau
[29], who proved existence and uniqueness of a foliation near the asymptotic end of an
asymptotically Euclidean Riemannian manifold by closed, stable 2-spheres of constant mean
curvature, the CMC-foliation. This goes back to an idea of Christodoulou and Yau [17]. In
2006, Metzger [35] considered a foliation by 2-spheres of constant null mean curvature (also
called constant expansion) and concluded that this foliation is not fully suitable for defining a
center of mass. For a more detailed review of foliations suggested to study in this context and
of recent progress in terms of necessary and sufficient asymptotic decay conditions, please
see [11].

Huisken and Yau [29] also assign a coordinate center to their foliation. It is constructed
from the abstract CMC-center as a “Euclidean center” of the CMC-foliation as follows: First,
any closed, oriented 2-surface � ↪→ R

3 has a Euclidean coordinate center �c (�) defined by

�c (�) :=
 

�

�x dμδ := 1

|�|δ
ˆ

�

�x dμδ. (7)

Picking a fixed asymptotically flat coordinate chart �x : M3 \B → R
3 \ BR(0), this definition

can naturally be extended to closed, oriented 2-surfaces � ↪→ M3 \ B by pushing �

forward toR3 and identifying �c (�) := �c (�x(�)), slightly abusing notation. We will also call
this center Euclidean center of � (with respect to �x). This naturally extends to asymptotic
foliations:

Definition 2 (Coordinate center of a foliation) Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-

asymptotically Euclidean initial data set for a chart �x : M3 \B → R
3 \ BR(0). Let {�σ }σ>σ0

be a foliation of the asymptotic end M3 \B of M3 with area radius r(�σ ) = √|�σ |/4π of �σ

diverging to∞ as σ → ∞. Denote by �c (�σ ) the Euclidean coordinate center of the leaf�σ

with respect to �x . Then the (Euclidean) coordinate center �C = (C1,C2,C3) of the foliation
{�σ }σ>σ0 (with respect to the asymptotic chart �x) is given by

�C := lim
σ→∞ �c (�σ ), (8)

in case the limit exists. Otherwise, we say that the coordinate center of the foliation {�σ }σ>σ0

diverges (with respect to the asymptotic chart �x).
The vector �C can be pictured to describe a point in the target R3 of the asymptotically flat

coordinate chart �x : M3 \ B → R
3 \ BR(0), but it need not lie in the image of the chart �x ,

and indeed will often lie inside BR(0). This means it cannot necessarily be pulled back into
M3. Moreover, �C depends on the choice of asymptotic chart �x — at least a priori.

Coming back to the CMC-foliation constructed by Huisken and Yau [29], it is well-
known that the coordinate center �CHY of the CMC-foliation of a suitably asymptotically flat
Riemannian manifold (M3, g) or initial data set (M3, g, K , μ, J ) of non-vanishing energy
E with respect to a given asymptotic chart �x coincides with the Beig–Ó Murchadha center
of mass vector �CBÓM defined by (6), provided that some additional symmetry assumptions
are satisfied, see Huang [28], Eichmair and Metzger [22], and Nerz [38]. The most optimal
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On center of mass and foliations by constant spacetime mean curvature Page 7 of 57 214

result to date [40, Theorem 6.3] states that for C2
1/2+ε-asymptotically Euclidean Riemannian

manifolds with E �= 0 satisfying the C2
1+ε-Regge–Teitelboim condition (see Definition 3

below), we have �CHY = �CBÓM whenever both definitions converge, and that divergence of
one implies divergence of the other. Again, let us point out that the construction of �CHY

does not explicitly depend on the second fundamental form K of the initial data set under
consideration.

We furthermore note that the product E �CBÓM is sometimes referred to as the “center of
mass charge" in the literature, even when E = 0. We will not follow this usage here.

In this paper, we construct a novel geometric foliation {�σ }σ>σ0 of the asymptotically flat
end M3 \B of a givenC2

1/2+ε-asymptotically Euclidean initial data set (M3, g, K , μ, J )with
non-vanishing energy E �= 0, namely a foliation with “constant spacetime mean curvature
(STCMC)"-leaves, see Sect. 3. The general approach to define the coordinate center of a
foliation {�σ }σ>σ0 described above will then be applied to this new foliation to obtain a
new definition of the coordinate center of mass of an initial data set as well as a coordinate
expression analogous to and extending (6), see Sect. 7.

2.2 Miscellannea

Here we collect some other definitions for future reference.
Regge–Teitelboim condition for initial data sets. With the exception of the later part of

Sect. 7, wewill not assume that the initial data sets under consideration satisfy any asymptotic
symmetry assumptions, in particular the Regge–Teitelboim conditions. However, it will be
useful in our discussion to refer to those conditions which is why we define them here.

Definition 3 (Regge–Teitelboim conditions for initial data sets) We say that a C2
1/2+ε-

asymptotically Euclidean initial data set I = (M3, g, K , μ, J ) satisfies the C2
γ+ε-Regge–

Teitelboim conditions for γ > 1
2 (with respect to the given chart �x with respect to which it is

C2
1/2+ε-asymptotically Euclidean) if there is a constant C = C(I , �x, γ ) such that

∣∣∣goddi j

∣∣∣ + |�x |
∣∣∣∂k(goddi j )

∣∣∣ + |�x |2
∣∣∣∂k∂l(goddi j )

∣∣∣ ≤ C |�x |−γ−ε (9a)

|πeven
i j | + |�x ||∂k(πeven

i j )| ≤ C |�x |−1−γ−ε (9b)

|μodd| + |(J j )odd| ≤ C |�x |− 5
2−γ−ε (9c)

holds for all �x ∈ R
3 \ BR(0) and for all i, j, k, l ∈ {1, 2, 3}. Here, as usual, we have denoted

the even and odd parts of any continuous function f : R3 \ BR(0) → R by

f odd(�x) := 1

2
( f (�x) − f (−x)), f even(�x) := 1

2
( f (�x) + f (−�x)). (10)

Remark 3 (Regge–Teitelboim conditions for Riemannian manifolds) We say that a C2
1/2+ε-

asymptotically Euclidean Riemannian manifold (M3, g) satisfies the (Riemannian) C2
γ+ε-

Regge–Teitelboim conditions on R3 \ BR(0) for γ > 1
2 if the above inequalities are satisfied

for π ≡ K ≡ 0, i.e. if (9a) holds and if |Scalodd| ≤ C |�x |− 5
2−γ−ε for all �x ∈ R

3 \ BR(0).

Weighted Sobolev spaces. In this paper, we use the following definition of Sobolev spaces,
which is well-suited for keeping track of fall-off rates of different quantities associated with
our foliation. Suppose that (�, g�) is a closed (compact without boundary), oriented 2-
surface in an asymptotically Euclidean 3-manifold (M3, g) of suitable regularity. For p ∈

123



214 Page 8 of 57 C. Cederbaum, A. Sakovich

[1,∞), theLebesgue space L p(�) is defined as the set of allmeasurable functions f : � → R

such that their L p-norm

‖ f ‖L p(�) :=
(ˆ

�

| f |p dμ

) 1
p

is finite. Recall also that the L∞-norm of a measurable f : � → R is defined by

‖ f ‖L∞(�) := ess sup
�

| f |.

Then for p ∈ [1,∞] and k = 0, 1, . . ., the Sobolev norms are defined as follows:

‖ f ‖W 0,p(�) := ‖ f ‖L p(�), ‖ f ‖Wk+1,p(�) := ‖ f ‖L p(�) + r
∥∥∇� f

∥∥
Wk,p(�)

,

where r := √|�|/4π is the area radius of �. The Sobolev space Wk,p(�) is the set of all
functions with finiteWk,p-norm. This definition naturally extends to the case of tensor fields
on�. Appendix 1 in particular collects some Sobolev Inequalities for functions on 2-surfaces
(�, g�) embedded in Euclidean space.

3 Main results, motivation, and the strategy of the proof

Given a 2-dimensional surface � in an initial data set (M3, g, K , μ, J ), we denote its mean
curvature inside the Riemannian manifold (M3, g) with respect to the outward pointing unit
normal1 by H and set P := tr� K , as usual. The spacetime mean curvature (STMC) H of
� is defined by the length of the spacetime mean curvature vector �H ,

H =
√
H2 − P2. (11)

We will suggestively write H σ
τ to denote the spacetime mean curvature of a surface called

�σ
τ etc, H̃ to denote the spacetime mean curvature of a surface called �̃ etc., whenever

the initial data set inducing the intrinsic and extrinsic geometry on the surface is clear from
context.

In this paper we prove the following theorems.

Theorem 2 (Existence of STCMC-foliation) Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-

asymptotically Euclidean initial data set with non-vanishing energy E �= 0. Then there
is a constant σI > 0 depending only on ε, CI , and E, a compact setK ⊂ M3, and a bijec-
tive C1-map 
 : (σI ,∞) × S

2 → M3 \ K such that each of the surfaces �σ := 
(σ,S2)

has constant spacetime mean curvature H (�σ ) ≡ 2/σ provided that σ > σI .

Theorem 4 (Uniqueness of STCMC-foliation) Let a ∈ [0, 1), b ≥ 0, and η ∈ (0, 1] be
constants and let I = (M3, g, K , μ, J ) be a C2

1/2+ε-asymptotically Euclidean initial data
set with non-vanishing energy E �= 0. Then there is a constant σI depending only on ε, a,
b, η, CI , and E, such that for all σ > σI , there is a unique surface �σ ∈ A (a, b, η) with
constant spacetime mean curvature H (�σ ) ≡ 2/σ with respect to I .

Here, A (a, b, η) is an a priori class of “asymptotically centered” spheres introduced in
Sect. 4. It has been shown in particular by Brendle and Eichmair [8] that such an a priori
condition is necessary to obtain uniqueness of CMC-surfaces in general, see the discussion

1 Please note that we use the convention for the sign of the second fundamental form ensuring that H = 2
with respect to the outward pointing unit normal for the unit round sphere in R

3.
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On center of mass and foliations by constant spacetime mean curvature Page 9 of 57 214

in Sect. 6.3. As STCMC-surfaces generalize CMC-surfaces, their observation applies here,
too.

We also obtain a coordinate expression �CSTCMC for the STCMC-center ofmass, see below.
It differs from the Beig–Ó Murchadha formula �CBÓM given in (6) by a term �Z , as stated in
the following theorem.

Theorem 5 (STCMC-coordinate expression) Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-

asymptotically Euclidean initial data set for some ε > 0 and with respect to an asymptotic
coordinate chart �x : M3 \ B → R

3 \ BR(0) and decay constant CI , with non-vanishing
energy E �= 0. Assume in addition that

|K | ≤ CI |�x |−2

for all �x ∈ R
3\BR(0) and that g satisfies the RiemannianC2

3/2+ε-Regge–Teitelboim condition.

Then the coordinate center �CSTCMC of the unique foliation by surfaces of constant spacetime
mean curvature is well-defined if and only if the correction term

Zi := 1

32πE
lim
r→∞

ˆ
S2r

x i
(∑

k,l πkl xk xl
)2

r3
dμδ

limits exist for i = 1, 2, 3. In this case, we have

�CSTCMC = �CBÓM + �Z ,

where �CBÓM is the Beig–ÓMurchadha center of mass and �Z = (Z1, Z2, Z3), or equivalently

Ci
STCMC = 1

16πE
lim
r→∞

⎡

⎣
ˆ
S2r

⎛

⎝xi
∑

k,l

(∂kgkl − ∂l gkk)
xl

r
−

∑

k

(
gki

xk

r
− gkk

xi

r

)⎞

⎠ dμδ

+
ˆ
S2r

x i
(∑

k,l πkl xk xl
)2

2r3
dμδ

]
, i = 1, 2, 3.

An example of an initial data set with �CSTCMC �= �CBÓM or in other words with �Z �= 0
will be discussed in Sect. 9. The above formula for �CSTCMC allows to compute the STCMC-
center of mass of an initial data set explicitly, once an asymptotic chart �x has been picked.
However, as the assumptions of Theorem5 suggest, this formula cannot be expected to always
converge. See Conjecture 1 and the text above of it for a discussion of when the coordinate
expression for �CSTCMC should converge, without reference to �CBÓM and �Z and without any
Regge–Teitelboim conditions nor additional decay assumptions on K .

We get the following theorem on the time-evolution of the STCMC-foliation and -center
of mass. Equivariance of the STCMC-foliation and -center of mass under the asymptotic
Poincaré group is discussed in Sect. 8.2.

Theorem 6 (Time-evolution of STCMC-foliation) Let (R × M3, g) be a smooth, globally
hyperbolic Lorentzian spacetime satisfying the Einstein equations with energy momentum
tensor T. Suppose that, outside a set of the form R × K , K ⊂ M3 compact, there is a
diffeomorphism IdR × �x : R×(M3 \K ) → R×(R3 \BR(0))which gives rise to asymptotic
coordinates (t, �x ) on R × (M3 \ K ).

Assume that I0 = ({0} × M3, g, K , μ, J ) ↪→ (R × M3, g) is a C2
1/2+ε-asymptotically

Euclidean initial data set with respect to the coordinate chart �x and with E �= 0, and
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suppose additionally that K = O1(|�x |−2) with constant CI as |�x | → ∞. Now consider
the C1-parametrized family of C2

1/2+ε-asymptotically Euclidean initial data sets

I (t) = ({t} × M3, g(t), K (t), μ(t), J (t)) ↪→ (R × M3, g)

with respect to �x which starts fromI (0) = I0, and which exists for all t ∈ (−t∗, t∗) for some
t∗ > 0. Assume furthermore that the constants CI (t) are uniformly bounded on (−t∗, t∗),
without loss of generality such that CI (t) ≤ CI0 .

Assume the foliationI (t) has initial lapse N = 1+O2(|�x |− 1
2−ε) as |�x | → ∞with decay

measuring constant denoted by CN and initial shift X = 0, and suppose furthermore that

the initial stress tensor S of I0 satisfies S = O(|�x |− 5
2−ε) as |�x | → ∞. There is a constant

t > 0, depending only on ε, CI0 , CN , and E(0) such that the following holds: If the initial
data set I0 has well-defined STCMC-center of mass �CSTCMC (0) then the STCMC-center of
mass �CSTCMC (t) of I (t) is also well-defined for |t | < t . Furthermore, the initial velocity at
t = 0 is given by

d

dt

∣∣∣∣
t=0

�CSTCMC = �P
E

.

Moreover, we have that d
dt

∣∣
t=0 E = 0 and d

dt

∣∣
t=0

�P = �0.

3.1 Strategy of the proofs of Theorems 2 and 4

The underlying structure of the proofs of Theorems 2 and 4 presented in Sect. 6 and several
of the lemmas proved in the same section is a method of continuity inspired by Metzger
[35,36]. Given an initial data setI = (M3, g, K , μ, J ), we will consider the one-parameter
family of initial data sets Iτ = (M3, g, τK , μτ , τ J ), τ ∈ [0, 1], with μτ given through the
constraint Eq. (1) as

2μτ := Scal − |τK |2 + (tr(τK ))2. (12)

For τ = 0, we thus consider the Riemannian manifold (M3, g)with 2μ = 2μ0 = Scal while
for τ = 1, we study the original initial data set I = (M3, g, K , μ, J ) with μ = μ1. It is
straightforward to see that if the original initial data setI isC2

1/2+ε-asymptotically Euclidean

with respect to an asymptotical chart �x : M3\B → R
3\BR(0) then all initial data setsIτ are

alsoC2
1/2+ε-asymptoticallyEuclideanwith respect to the samechart and comparable constants.

In particular, the Riemannian manifold (M3, g) is C2
1/2+ε-asymptotically Euclidean in this

chart. This is what will allows us to drop the explicit mention of the chart in the proofs. More-
over, we note that the energy Eτ computed for the initial data setIτ = (M3, g, τK , μτ , τ J )

does in fact not depend on τ and can and will thus be called E . We globally assume in this
paper that E �= 0 and we will fix the background Riemannian manifold (M3, g) once and
for all.

For second fundamental form K = 0, the desired STCMC-foliation coincides with the
classical CMC-foliation. FromNerz’ work [40], we thus know that the theorems and lemmas
we will prove for initial data sets hold in the Riemannian setting under the Riemannian
version of our assumptions, see also Remark 2. In other words, we know that our claims hold
for τ = 0 in the method of continuity approach described above. In Sect. 6, we will recall
Nerz’ corresponding theorems in our notation.
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As usual, we will appeal to the Implicit Function Theorem in order to show openness of
the interval in the method of continuity. Closedness follows from a standard convergence
argument.

4 A priori estimates on STCMC-surfaces

When deforming the foliation by 2-surfaces of constant mean curvature to the foliation by
2-surfaces of constant spacetime mean curvature, we need to keep track of how the geometry
of the leaves changes. For this, following [36] and [40], we will now introduce an a priori
class of closed, oriented 2-surfaces having the properties that their “area radius”, “coordinate
radius”, and “mean curvature radius” as defined below are comparable in a certain sense.

In this section, we will not make explicit reference to the asymptotic coordinate chart
�x : M3 \ B → R

3 \ BR(0) in most estimates, however the asymptotic coordinates �x will
be used in order to compute the coordinate radius and the center of mass of a given 2-
surface � ↪→ M3 (or “� ↪→ I ”). We will always and mostly tacitly assume that � ↪→
M3 \ B so that it lies in the domain of the asymptotic coordinate chart.

Definition 4 Let (M3, g) be aC2
1/2+ε-asymptotically flatmanifoldwith asymptotic coordinate

chart �x : M3\B → R
3\BR(0). Given any closed, oriented 2-surface� ↪→ M3\B, we define

its area radius r = r(�) and (Euclidean) coordinate center �z = �z (�), with components
�z = (z1, z2, z3), by

r :=
√ |�|g

4π
, and zi := 1

|�|δ
ˆ

�

xi dμδ, for i = 1, 2, 3, (13)

respectively, where dμδ denotes the area element on � induced by the Euclidean metric δ.
Given constants a ∈ [0, 1), b ≥ 0, and η ∈ (0, 1], we say that � belongs to the a priori class
of (M3, g)-asymptotically centered surfaces,

� ∈ A (a, b, η), (14)

if its area radius r , coordinate center �z, coordinate radius |�x |, and mean curvature H satisfy
the following estimates

|�z | ≤ ar + br1−η, r2+η ≤ min
�

|�x | 52+ε,

ˆ
�

H2 dμ − 16π(1 − γ ) ≤ b

rη
, (15)

where γ denotes the genus of �.

Remark 4 We will use the same a priori classes in the context of asymptotically Euclidean
initial data sets I = (M3, g, K , μ, J ), where the definition of A (a, b, η) only depends
on the Riemannian manifold part (M3, g). This will later be important when we consider
families of initial data sets of the form Iτ = (M3, g, τK , μτ , τ J ), see Sect. 6 and (12).

Remark 5 Note that for r > 1, 0 ≤ a ≤ a < 1, 0 ≤ b ≤ b, and 0 < η ≤ η ≤ 1, we have
A (a, b, η) ⊆ A (a, b, η).

Example 1 Let (M3, g) be a C2
1/2+ε-asymptotically Euclidean manifold with non-vanishing

energy E �= 0. Then the unique leaves of the constant mean curvature foliation {�σ }σ>σ0

constructed in [40] are asymptotically centered in this sense. More specifically, there are
constants b > 0 and σ0 > 0 depending only on CI such that one has �σ ∈ A (a =
0, b, η = ε) for σ > σ0. See [40, Section 5] for details.
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Proposition 1 Suppose that a ∈ [0, 1), b ≥ 0, η ∈ (0, 1], and assume that 0 ≤ a ≤ a,
0 ≤ b ≤ b, and η ≤ η ≤ 1. LetI = (M3, g, K , μ, J ) be a C2

1/2+ε-asymptotically Euclidean

initial data set. Then there exist constants σ and C depending only on ε, a, b, η, and CI

such that the following a priori conclusions hold for any closed, oriented 2-surface � ↪→ I
with � ∈ A (a, b, η): Suppose that � has constant spacetime mean curvature H ≡ 2/σ in
I for some σ > σ . Then � is a topological sphere and the tracefree part Å of its second
fundamental form satisfies

r−1‖ Å‖W 1,2(�) + ‖ Å‖L∞(�) ≤ Cr− 3
2−ε. (16)

Furthermore, there exists a function f : S2r (�z ) → R such that � is the graph of f and

‖ f ‖W 2,∞(S2r (�z )) ≤ Cr
1
2−ε, (17)

as well as a conformal parametrization ψ : S2r (�z ) → � which satisfies

‖ψ − Id ‖W 2,2(S2r (�z )) ≤ Cr
3
2−ε, (18)

where Id denotes the trivial embedding (S2r (�z ), gS
2
r (�z )) ↪→ (R3, δ). Finally, the Euclidean

distance to the coordinate origin |�x | (on �), the area radius r , and the spacetime mean
curvature radius σ are comparable in the following sense:

(1 − a)r − Crmax{ 12−ε,1−η} ≤ |�x | ≤ (1 + a)r + Crmax{ 12−ε,1−η}, (19)

|r − σ | ≤ Cr
1
2−ε. (20)

Remark 6 The conclusions of this theorem are mostly the same as those in [40, Proposition
4.4], only for STCMC- rather than CMC-surfaces. However, we cannot directly refer to this
result because, roughly speaking, it assumes that the mean curvature H of � falls off like

H − 2
σ

= Or− 3
2−ε), whereas the relation

H2 = H 2 + P2 =
(
2

σ

)2

+ P2,

recalling P = tr� K , and the definition of the a priori class A (a, b, η) — which coincides
with that in [40] —, only ensure via the second inequality in (15) that

|H − 2

σ
| =

∣∣∣∣∣∣

√(
2

σ

)2

+ P2 − 2

σ

∣∣∣∣∣∣
≤ |P| ≤ C(min

�
|�x |)− 3

2−ε ≤ Cr−1− η
2 (21)

which does not a priori give us H − 2
σ

= O(r− 3
2−ε). We will thus need to extend the result

and its proof to our setting.

Proof Within this proof, C will always be a generic constant depending only on σ , a, b, η,
and CI . With Remark 6 in mind, we need to improve the estimate in (21). For this purpose,
we first note that by the definition of (M3, g) being C2

1/2+ε-asymptotically Euclidean and by
the second inequality in (15), we have

|Scal| ≤ C |�x |− 5
2−ε ≤ Cr−2−η,
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which implies ‖Scal‖L1(�) ≤ Cr−η. Similarly, with ν denoting the unit normal of � in
(M3, g), we get ‖Ric(ν, ν)‖L1(�) ≤ Cr−η. Combining this with the last inequality of (15),
we conclude by the Gauss Equation and the Gauss–Bonnet Theorem thatˆ

�

| Å|2 dμ =
ˆ

�

(
Scal − Scal� − 2Ric(ν, ν) + 1

2
H2

)
dμ

= 1

2

ˆ
�

H2 dμ − 4π(2 − 2γ ) + O(r−η)

= O(r−η),

hence ‖ Å‖L2(�) ≤ Cr− η
2 . Then by Lemma 11 we also have ‖ Åδ‖L2(�,δ�) ≤ Cr− η

2 , where
δ� is the induced metric of the embedding (�, δ�) ↪→ (R3, δ). We are now in a position
to apply the result of De Lellis and Müller [20, Theorem 1.1] (see also [36, Section 2.3]
where this result is reformulated in a scale invariant form) to conclude that� is a topological
sphere, with a conformal parametrization ψ : S2r (�z ) → � satisfying

‖ψ − Id ‖W 2,2(S2r (�z )) ≤ Cr2‖ Åδ‖L2(�,δ�) ≤ Cr2−
η
2 . (22)

In order to prove that σ and r are comparable, we estimate

2
√

πr |1
r

− 1

σ
| = 1√

2

∥∥∥(
1

r
− 1

σ
)g�

∥∥∥
L2(�)

≤ 1√
2

(∥∥∥
1

r
δ� − 1

σ
g�

∥∥∥
L2(�)

+
∥∥∥
1

r
(δ� − g�)

∥∥∥
L2(�)

)

≤ 1√
2

(∥∥∥
1

r
δ� − Aδ

∥∥∥
L2(�)

+
∥∥∥Aδ − A

∥∥∥
L2(�)

+
∥∥∥A − 1

σ
g�

∥∥∥
L2(�)

)

+ O(r− η
2 )

where we have used (2) and the second inequality in (15) in the last line. Here, we have
∥∥∥
1

r
δ� − Aδ

∥∥∥
L2(�)

≤ C‖ Åδ‖L2(�,δ�) = O(r− η
2 )

by [20, Theorem 1.1] (see also (2.4) in [36]), and

‖Aδ − A‖L2(�) ≤ Cr− η
2 (1 + ‖A‖L2(�))

= Cr− η
2

(
1 +

√
‖ Å‖2

L2(�)
+ 1

2
‖H‖2

L2(�)

)

≤ Cr− η
2 ,

by Lemma 11 combined with (15), and
∥∥∥A − 1

σ
g�

∥∥∥
L2(�)

≤
∥∥∥A − H

2
g�

∥∥∥
L2(�)

+
∥∥∥(

1

σ
− H

2
)g�

∥∥∥
L2(�)

≤ ‖ Å‖L2(�) + ‖H − 2

σ
‖L2(�)

= O(r− η
2 )

by (21). Summing up, we conclude that

| r
σ

− 1| ≤ Cr− η
2 . (23)
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To prove that |�x | and r are comparable, note that by the first inequality in (15) and because

0 < 1− a ≤ 1− a, the coordinate origin �0 lies inside S2r (�z ) for r >
(

b
1−a

) 1
η
. For such large

radii, we thus elementarily find

min
S2r (�z )

|�x | ≥ (1 − a)r − br1−η,

max
S2r (�z )

|�x | ≤ (1 + a)r + br1−η,

with the help of the first inequality in (15). By (22) and the Sobolev Inequality in the form of
Lemma 12, it follows that |ψ − Id | ≤ C |�x |1− η

2 . Combining this with the above inequalities,
we conclude that, on �, we have

(1 − a)r − Cr1−
η
2 ≤ |�x | ≤ (1 + a)r + Cr1−

η
2 , (24)

provided that the area radius r of � is sufficiently large. Via (23), we can alternatively state
that (24) holds if the spacetime mean curvature radius σ satsifies σ > σ for a suitably large
σ only depending on ε, a, b, η, and CI .

Bootstrapping.With these newbounds (23) and (24) at hand,we can apply [40, Proposition
4.1] with κ chosen as 3

2 + ε > 1, η chosen as our η
2 > 0, and c1, c2 chosen as our generic

constant C . As all the estimates going into verifying the assumptions from [40, Proposition
4.1] hold pointwise in our case, the assumptions are indeed satisfied for any p > 2. Note
that the existence of the uniform Sobolev Inequality assumed in [40, Proposition 4.1] is well-
established in our setting, and goes back to [29, Proposition 5.4] which holds for surfaces in
asymptotically Euclidean manifolds with general asymptotics as described in Sect. 2. Again
via (23), this gives us (16) for σ > σ , with suitably enlarged σ only depending on ε, a, b, η,
and CI .

As a consequence of (16), the estimate (22) improves, andwe get (18). Similarly, repeating
the above argument that we used to derive (23) and (24), we obtain the improved radius
comparison (19) and (20).

Finally, now thatwehave a pointwise boundon the tracefree part of the second fundamental
form Å accompanying the pointwise estimate (21) for the mean curvature H , it follows that
� is the graph of a function f ∈ W 2,∞(S2r (�z )) such that (17) holds for σ > σ , for again
suitably enlarged σ only depending on ε, a, b, η, and CI , see e.g. [40, Corollary E.1], which
adapts [20, Theorem 1.1] to our setting. To be more precise, [40, Corollary E.1] is only not
stated invariantly under scaling but with |�| = 4π , but it is straightforward to adapt it to
include the area radius for our purposes. This finishes the proof of Proposition 1. ��

5 The linearization of spacetimemean curvature

In this section, we will introduce the spacetime mean curvature map H in a given initial
data set I = (M3, g, K , μ, J ). We will analyze its properties in a neighborhood of a given
2-surface� having constant spacetimemean curvature.Wewill show that the linearization of
the mapH is invertible when the linearization is computed with respect to normal variations
within the given initial data setI . This will later be used to ensure that the CMC-foliation of
(M3, g) constructed in [40] can be pushed via a method of continuity to an STCMC-foliation
of I .

Throughout this section, we will assume thatI = (M3, g, K , μ, J ) is a C2
1/2+ε-asympto-

tically Euclidean initial data set with non-vanishing energy E �= 0 and with fixed asymptotic
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coordinates �x . Furthermore, it will be assumed that � is a fixed 2-surface of constant space-
time mean curvature H (�) ≡ 2/σ which has sufficiently large mean curvature radius σ and
which for some fixed a ∈ [0, 1), b ≥ 0, and η ∈ (0, 1] belongs to the a priori classA (a, b, η),
see Definition 4. In this setting, we know from Proposition 1 that � is a topological sphere,
and that its coordinate radius, area radius, andmean curvature radius are comparable as stated
in (19), (20). This in particular implies that

P = tr� K = O1(σ
− 3

2−ε),

H =
√
H 2 + P2 = 2

σ
+ O1(σ

−2−2ε),

P

H
= O1(σ

− 1
2−ε)

(25)

for σ > σ , where σ and the constants hidden in the O-notation only depend on ε, a, b, η,
CI .

5.1 Stability operators associated with prescribed (spacetime) mean curvature
surfaces

In a neighborhood of �, we introduce normal geodesic coordinates y : � × (−ξ, ξ) → M3

for some ξ > 0, such that y(·, 0) = Id� , and
∂ y
∂t = ν�t , with ν�t being the outward unit

normal to �t := y(�, t). For a function f ∈ C∞(�) with | f | < ξ , we define the graph of
f over � as

graph f = {y(q, f (q)) : q ∈ �}. (26)

Then, slightly abusing notation, let H : C∞(�) → C∞(�) be the operator which assigns
to a function f the spacetime mean curvature H ( f ) of graph f (with respect to the fixed
initial data set I ). The linearization of this map H is computed in the following lemma.

Lemma 1 Let � ↪→ M3 be a closed, oriented 2-surface. Let V : � × (−ξ, ξ) → M3 be

the normal variation with V (·, 0) = Id� and ∂V
∂t

∣∣∣
t=0

= f ν for f ∈ C∞(�). Then the

linearization LH of the spacetime mean curvature map at � is given by

LH f := ∂H (V (·, t))
∂t

∣∣∣∣
t=0

= H
(−�� f − (|A|2 + Ric(ν, ν)) f

) − P
(
(∇ν tr K − ∇νK (ν, ν)) f − 2K (∇� f , ν)

)
√
H2 − P2

,

where �� , ∇� denote the Laplacian and covariant gradient on (�, g�), respectively.

Proof This follows from the definition of spacetime mean curvature H = √
H2 − P2 and

the well-known formulas for ∂H(V (·,t))
∂t

∣∣∣
t=0

and ∂P(V (·,t))
∂t

∣∣∣
t=0

, see Metzger [36, Lemma

5.1]. ��
The map LH naturally extends to a bounded mapping LH : W 2,2(�) → L2(�). In

Sect. 5.3, we will prove that this mapping has a bounded inverse, for which it is convenient
to rewrite the above expression for LH in the form

LH f = L f√
1 − ( P

H

)2 ,
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where

L f := − �� f − (|A|2 + Ric(ν, ν)) f

− P

H

(
(∇ν tr K − ∇νK (ν, ν)) f − 2K (∇� f , ν)

)
.

(27)

Since the denominator is clearly bounded and bounded away from zero by our assumptions
on�, the (bounded) invertibility of LH : W 2,2(�) → L2(�)will follow once we show that
L : W 2,2(�) → L2(�) is invertible with bounded inverse.

Remark 7 Recall that the H ± P-stability operator LH±P of the map H ± P (surfaces of
constant expansion or null mean curvature) is given by

LH±P f = ∂(H ± P)(V (·, t))
∂t

∣∣∣∣
t=0

= −�� f − (|A|2 + Ric(ν, ν)) f ± (
(∇ν tr K − ∇νK (ν, ν)) f − 2K (∇� f , ν)

)
,

see [36]. As it turns out, the analytic properties of LH±P imply that constant expansion
foliations do not provide an adequate notion of center of mass, in contrast to the STCMC-
foliation studied here. The main difference is that the contribution of the second fundamental
form K in the H ± P-stability operator is large, while it is rescaled by a factor P/H in the
STCMC-stability operator. The largeness of the contribution of K in the H ± P-stability
operator will cause the geometric centers of the surfaces of the foliation to drift away in the
direction of the linear momentum �P in general, see Metzger [36, Section 7]. This can only be
avoided by imposing very fast fall-off conditions on K to ensure that �P = 0. Furthermore,
a certain smallness assumption on K is also directly required to ensure the invertibility of
LH±P , and hence the existence of the constant expansion foliation, see [41, Theorem 3.1].

As a consequence of the factor P/H in the STCMC-stability operator, no smallness assump-
tion on K will be needed to ensure the existence of the foliation by surfaces of constant
spacetime mean curvature. Furthermore, we will see that the leaves of this foliation do not
translate as their spacetime mean curvature approaches zero, provided that the standard
asymptotic symmetry conditions are imposed.

As we will see, the operator L , and consequently the operator LH , is in many respects
similar to the standard (CMC-)stability operator of �, namely to

LH f = ∂H(V (·, t))
∂t

∣∣∣∣
t=0

= −�� f − (|A|2 + Ric(ν, ν)) f .

This operator has been intensively studied, see e.g. [2].

5.2 Eigenvalues and eigenfunctions of−16

In preparation for proving the invertibility of the operator L , we summarize the spectral
properties of the operator −�� , the Laplacian calculated with respect to the metric g�

induced by (�, g�) ↪→ (M3, g). For this, let us first consider the operator −�S
2
r , the

Laplacian calculatedwith respect to the standard roundmetric δS
2
r onS2r = S

2
r (

�0 ) ↪→ (R3, δ).

The eigenvalues of −�S
2
r are l(l + 1)/r2 for l ≥ 0, and the eigenspace corresponding to l(l + 1)/r2

is given by the space of homogeneous harmonic polynomials of degree l restricted to S
2
r ,

see e.g. [13, Chapter II.4]. In particular, the first non-zero eigenvalue of −�S
2
r is 2/r2, the

corresponding eigenspace is spanned by the restrictions to S
2
r of the coordinate functions
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x1, x2, x3 on R
3. In the following, we enumerate the eigenvalues of −�S

2
r counting their

multiplicity by

0 = λδ
0 < λδ

i ≤ λδ
i+1, i = 1, 2, . . . , (28)

and we denote the associated complete L2(S2r )-orthonormal system of eigenfunctions by
{ f δ

i }∞i=0. Without loss of generality, we may assume that the chosen enumeration is such that

f δ
i =

√
3

4πr4
xi for i = 1, 2, 3. (29)

Note that the tracefree part of the Hessian of each of these functions vanishes, and that we
have

〈∇S
2
r f δ

i ,∇S
2
r f δ

j 〉 − 3δi j
4πr4

+ f δ
i f δ

j

r2
= 0 for i = 1, 2, 3,

where ∇S
2
r denotes the gradient with respect to δS

2
r .

In order to describe the eigenvalues and eigenfunctions of the operator −�� , note that
by Proposition 1 there is a vector �z ∈ R

3 and a conformal parametrization ψ : S2r (�z ) → �

such that

‖ψ∗g� − δS
2
r (�z )‖W 2,2(S2r (�z )) ≤ Cr

1
2−ε,

where r is the area radius of (�, g�). As all spheres of radius r in Euclidean space are
isometric, we can easily “translate” ψ to a conformal parametrization ψ : S2r → � such that

‖ψ ∗
g� − δS

2
r ‖W 2,2(S2r )

≤ Cr
1
2−ε, (30)

where r still denotes the area radius of (�, g�).
We will now describe a complete orthonormal system in L2(�) consisting of the eigen-

functions { fi }∞i=0 such that −�� fi = λi fi , with 0 = λ0 < λi ≤ λi+1, i = 1, 2, . . ., again
counted with multiplicity. The eigenfunctions fi will be chosen so that ψ

∗
fi is asymptotic

to f δ
i for each i = 1, 2, . . . . For simplicity of notation, in what follows we will identify

fi : � → Rwith its pullback ψ
∗
fi without further ado. This enumeration and identification

will also allow us to prove useful estimates for the eigenvalues and eigenfunctions of −�� .

Lemma 2 Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data set.

Let a ∈ [0, 1), b ≥ 0, η ∈ (0, 1], and consider a 2-surface� ↪→ I such that� ∈ A (a, b, η)

with respect to I . Then there exist constants C > 0 and σ > 0 depending only on ε, a, b,
η, and CI such that if � has constant spacetime mean curvature H ≡ 2/σ for σ > σ , then
there is a complete orthonormal system in L2(�) consisting of the eigenfunctions { fi }∞i=0
such that

−�� fi = λi fi

with 0 = λ0 < λi ≤ λi+1, i = 1, 2, . . ., counted with multiplicity,
and such that for i = 1, 2, 3 the following estimates hold

|λi − λδ
i | ≤ Cσ− 5

2−ε, (31)

‖ fi − f δ
i ‖W 2,2(�) ≤ Cσ− 1

2−ε, (32)
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‖ ◦
Hess� fi‖L2(�) ≤ Cσ− 5

2−ε, (33)

∥∥∥∥〈∇� fi ,∇� f j 〉 − 3δi j
σ 2|�| + fi f j

σ 2

∥∥∥∥
L1(�)

≤ C

σ
5
2+ε

. (34)

Furthermore, λ0 = 0 and

λi >
5

σ 2 for i = 4, 5, . . . . (35)

Proof By (30) and Lemma 12 we have

‖ψ ∗
g� − δS

2
r ‖L∞(S2r )

≤ Cr− 1
2−ε.

Applying the Rayleigh Theorem (see e.g. [13, Chapter II.5]), we see from the above estimate
and (20) that

λi = inf
f

ˆ
�

|∇� f |2 dμ = λδ
i (1 + O(r− 1

2−ε)), i = 1, 2, 3,

where the infimum is taken over all f ∈ W 1,2(�) with
´
�

f dμ = 0 and ‖ f ‖L2(�) = 1.
Of course, the O-term constant and the lower bound on σ coming from this calculation only
depend on ε, a, b, μ, and CI . We will now construct the respective eigenfunctions fi , for
which we will use the fact that these functions are solutions to the equation

−�S
2
r ( fi − f δ

i ) − λδ
i ( fi − f δ

i )

= (�� − �S
2
r ) fi + (λi − λδ

i ) fi , i = 1, 2, 3,
(36)

where λδ
i = 2/r2 for i = 1, 2, 3. Noting that the right hand side of the equation equals

−�S
2
r fi−λδ

i fi , andusing integrationbyparts it is straightforward to check that it is orthogonal
in L2(S2r ) to any element in the kernel of the self-adjoint differential operator in the left hand
side. Thus, by the Fredholm Alternative [5, Appendix I, Theorem 31], for every i = 1, 2, 3
there is a unique solution fi− f δ

i ∈ W 2,2(S2r )orthogonal in L
2(S2r ) to the linear space spanned

by f δ
i , i = 1, 2, 3. Note that we may without loss of generality assume that ‖ fi‖L2(�) = 1 so

that ‖�� fi‖L2(�) = λi = O(r−2). Since Scal� = 2
σ 2 +O(σ− 5

2−ε) as a consequence of the
Gauss Equation (see e.g. (42) below), in view of (20) and Lemma 13 we have ‖ fi‖W 2,2(�) =
O(1) as f i = 0. With the above estimates at hand, it is now straightforward to check that

‖(�� − �S
2
r ) fi + (λi − λδ

i ) fi‖L2(S2r )
≤ Cr− 5

2−ε, i = 1, 2, 3,

so by standard elliptic regularity (see e.g. [5, Appendix H, Theorem 27]2) applied to the
operator on the left hand side of (36), we have

‖ fi − f δ
i ‖W 2,2(S2r )

≤ Cr− 1
2−ε, i = 1, 2, 3, (37)

whenever σ > σ , for suitably large C > 0 and σ > 0 depending only on ε, a, b, ν, and CI .
This defines the eigenfunctions fi , i = 1, 2, 3, up to applying the Gram-Schmidt process
in the case of multiple eigenvalues. Note that (37) with (20), (30), and the properties of the
functions f δ

i implies (33) and (34).
We have λ0 = 0 by definition. Using again the Rayleigh Theorem and (20), it is also

straightforward to check that λi > 5/σ 2 for i = 4, 5, . . . , since the respective eigenvalues of

2 We cite this result for the unit sphere and apply rescaling to extend it to spheres of radius r > 0.
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−�S
2
r satisfy λδ

i ≥ 6/r2, whenever σ > σ for suitably large σ only depending on ε, a, b, μ,
and CI . This concludes the proof. ��

We can now give amore detailed characterization of the lowest eigenvalues λi , i = 1, 2, 3.
More specifically, in the following lemma we show that these eigenvalues are computed in
terms of the Hawking mass

mH (�) :=
√ |�|
16π

(
1 − 1

16π

ˆ
�

H 2 dμ

)
(38)

of � in the initial data set I . We will drop the explicit reference to � later and will write
mH instead of mH (�). This lemma and its proof are very similar to [40, Lemma 4.5], but
rephrased in the spacetime setting.

Lemma 3 Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data set

with energy E. Suppose that a ∈ [0, 1), b ≥ 0, η ∈ (0, 1], and that � ∈ A (a, b, η) with
respect to I is a surface with Hawking mass mH (�). Then there exist constants C > 0
and σ > 0, depending only on ε, a, b, η, |E |, and CI such that if � has constant spacetime
mean curvature H ≡ 2/σ for σ > σ then the following estimates hold

∣∣∣∣λi −
(

2

σ 2 + 6mH (�)

σ 3 +
ˆ

�

Ric(ν, ν) f 2i dμ

)∣∣∣∣ ≤ C

σ 3+ε
for i = 1, 2, 3, (39)

and
∣∣∣∣
ˆ

�

Ric(ν, ν) fi f j dμ

∣∣∣∣ ≤ C

σ 3+ε
for i �= j, with i, j = 1, 2, 3. (40)

Proof A polarized version of the standard Bochner formula (see for example Proposi-
tion 33(3) in [42, Chapter 3]) in dimension 2 applied to the eigenfunctions fi and f j for
i, j = 1, 2, 3 reads

1

2
��

〈∇� fi ,∇� f j
〉

= 〈
Hess� fi ,Hess

� f j
〉

+ 1

2

(〈∇� fi ,∇��� f j
〉 + 〈∇��� fi ,∇� f j

〉) + 1

2
Scal�

〈∇� fi ,∇� f j
〉

=
〈 ◦
Hess� fi ,

◦
Hess� f j

〉
+ 1

2
λiλ j fi f j − 1

2

(
λi + λ j − Scal�

) 〈∇� fi ,∇� f j
〉
.

Integrating this identity, using theDivergenceTheoremon the closed surface�, integrating
by parts, and recalling (33), we obtain

∣∣∣∣λ
2
i δi j −

ˆ
�

Scal�
〈∇� fi ,∇� f j

〉
dμ

∣∣∣∣ ≤ Cσ−5−2ε (41)

for some constant C > 0 and all σ > σ > 0, with C and σ only depending on ε, a, b, η, and
CI . Next, the Gauss Equation combined with (16) and (25) gives us

Scal� = Scal − 2Ric(ν, ν) − | Å|2 + H2

2

= Scal − 2Ric(ν, ν) + 2

σ 2 + O(σ−3−2ε),

(42)

possibly enlarging C > 0 and σ > 0 without introducing new dependencies.
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Substituting this into (41) and using (34), (31) together with the fact that our initial data
set is C2

1/2+ε-asymptotically Euclidean we conclude that, by partial integration, we get

∣∣∣∣

(
λ2i − 2

σ 2 λi

)
δi j −

ˆ
�

(Scal − 2Ric(ν, ν))

(
3δi j

σ 2|�| − fi f j
σ 2

)
dμ

∣∣∣∣ ≤ C

σ 5+2ε
. (43)

When i �= j , i, j = 1, 2, 3, this gives us (40) once we recall that Scal = O(σ−3−ε) as
a consequence of Definition 1 with possibly enlarged C > 0 and σ > 0. In the case i = j ,
i, j = 1, 2, 3, one arrives at (39) by combining (43), (20), (31), and the fact that our initial
data set is C2

1/2+ε-asymptotically Euclidean, as well as using

∣∣∣∣
r

16π

ˆ
�

(Scal − 2Ric(ν, ν)) dμ − mH (�)

∣∣∣∣

=
∣∣∣∣∣

r

16π

ˆ
�

(
Scal� − H2

2
+ ‖ Å‖2

)
dμ −

√ |�|
16π

(
1 − 1

16π

ˆ
�

(H2 − P2) dμ

)∣∣∣∣∣

≤ C

σ 2ε . (44)

This last inequality follows from (42), the Gauss-Bonnet Theorem, and the definition of r , σ ,
and mH (�) with possibly enlarged C > 0 and σ > 0. This proves the claims of the lemma.

��

Remark 8 Since P2 = O(σ−3−2ε) in (44), this lemma remains valid if we replace the Hawk-
ing massmH (�) by the Geroch massmH (�) (also sometimes referred to as “(Riemannian)
Hawking mass”) given by

mH (�) =
√ |�|
16π

(
1 − 1

16π

ˆ
�

H2 dμ

)
. (45)

The same remark will hold true for the subsequent results. However, we choose to use
mH (�), and not mH (�), throughout to emphasize the spacetime nature of our result.

5.3 Invertibility of the operatorL

Section 5.2 above provides the following description of the eigenvalues of the Laplacian
−�� :

• λ0 = 0,
• for i = 1, 2, 3 the eigenvalues λi are characterized by formula (39),
• for i = 4, 5, . . . we have λi > 5/σ 2.

It turns out to be useful to decompose functions h ∈ L2(�) with respect to the L2(�)-
complete orthonormal system { f0, f1, f2, f3, . . . } of eigenfunctions corresponding to −��

when analyzingL h and the L2(�)-adjointL ∗h (the latter being of interest as we are aiming
for a FredholmAlternative argument).More specifically, it is useful to split any given function
h ∈ L2(�) into its mean value

h0 :=
 

�

h dμ = f0

ˆ
�

h f0 dμ, (46)
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its translational part

ht :=
3∑

i=1

fi

ˆ
�

h fi dμ, (47)

and the difference part3

hd := h − ht . (48)

Proposition 2 Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data

set with energy E. Suppose that a ∈ [0, 1), b ≥ 0, η ∈ (0, 1], and that � ∈ A (a, b, η) with
respect to I is a surface with non-vanishing Hawking mass mH (�) �= 0. Then there exist
constants C > 0 and σ > 0, with C depending only on ε, a, b, η, and CI and σ in addition
depending on |E | in (53), such that if � has constant spacetime mean curvature H ≡ 2/σ

for σ > σ , the following estimates

‖L ht‖L2(�) ≤ C

σ
5
2+ε

‖ht‖L2(�) (49)

∣∣∣∣
ˆ

�

(L ht1)h
t
2 dμ − 6mH (�)

σ 3

ˆ
�

ht1h
t
2 dμ

∣∣∣∣ ≤ C

σ 3+ε
‖ht1‖L2(�)‖ht2‖L2(�) (50)

∣∣∣∣
ˆ

�

hdL fi dμ

∣∣∣∣ ≤ C

σ
5
2+ε

‖hd‖L2(�) (51)

3

2σ 2 ‖hd‖L2(�) ≤ ‖L hd‖L2(�) (52)

3|mH (�)|
σ 3 ‖h‖L2(�) ≤ ‖L h‖L2(�) (53)

hold for any h, h1, h2 ∈ W 2,2(�). The same estimates apply to the L2(�)-adjoint L ∗.
Moreover, the Hawking mass mH (�) and the energy E are related by

|E − mH (�)| ≤ Cσ−ε. (54)

In particular, the operator L : W 2,2(�) → L2(�) is invertible as long as the energy E of
the initial data set does not vanish and σ is sufficiently large, depending only on ε, a, b, η,
and CI .

Proof In this proof, C > 0 and σ > 0 denote generic constants that may vary from line to
line, but depend only on ε, a, b, η, and CI , and, in the case of (53), also on |E |.

Proving (49). By definition of L in (27), we have

L ht = − ��ht −
(

| Å|2 + H2

2
+ Ric(ν, ν)

)
ht

− P

H

(
(∇ν tr K − ∇νK (ν, ν)) ht − 2K

(∇�ht , ν
))

.

It follows from Proposition 1 that | Å|2 = O(σ−3−ε), and we know from Eq. (25) that

H2 = 4σ−2 + O(σ−3−2ε), and that P
H = O(σ− 1

2−ε). Furthermore, the definition of

3 We do not call hd the “deformational part” as some other authors do, because hd also contains the mean
value information. In other words, we primarily use this splitting to distinguish between the eigenfunctions
corresponding to eigenvalues of different magnitude.
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C2
1/2+ε-asymptotically Euclidean initial data sets implies that Ric(ν, ν) = O(σ− 5

2−ε) and

that ∇ν tr K − ∇νK (ν, ν) = O(σ− 5
2−ε). Hence,

L ht = −��ht − 2

σ 2 h
t + 2P

H
K (∇�ht , ν) + O(σ− 5

2−ε)ht .

By (31), we have
∥∥∥∥−��ht − 2

σ 2 h
t
∥∥∥∥
L2(�)

≤ C

σ
5
2+ε

‖ht‖L2(�),

whereas (34) implies by a Cauchy–Schwarz Inequality that
∥∥∥∥
2P

H
K (∇�ht , ν)

∥∥∥∥
L2(�)

≤ C

σ 3+ε
‖ht‖L2(�)

recalling that ht ∈ Span( f1, f2, f3). This proves (49).
Proving (50). Arguing as above, by Proposition 1, Lemma 2, and our decay assumptions

on the initial data set, we have that
ˆ

�

(L fi ) f j dμ =
(

λi − 2

σ 2

)
δi j −

ˆ
�

Ric(ν, ν) fi f j dμ + O(σ−3−2ε)

for any i, j = 1, 2, 3. It then follows by Lemma 3 that
∣∣∣∣
ˆ

�

(L fi ) f j dμ

∣∣∣∣ ≤ C

σ 3+ε
for i �= j, i, j = 1, 2, 3,

and
∣∣∣∣
ˆ

�

(L fi ) fi dμ − 6mH (�)

σ 3

∣∣∣∣ ≤ C

σ 3+ε
for i = 1, 2, 3.

In particular, we see that (50) holds for ht1, h
t
2 ∈ { f1, f2, f3}. The general case follows by

bilinearity and by the Cauchy–Schwarz Inequality on R3.
Proving (51). By definition of L , we have that

L fi = −�� fi −(| Å|2 + H2

2
+ Ric(ν, ν) + P

H
[∇ν tr K − ∇νK (ν, ν)]) fi

+ 2P

H
K (∇� fi , ν).

Next, by (25), we have

−�� fi − H2

2
fi = (λi − H2

2
) fi = (λi − 2

σ 2 ) fi + O(σ−3−2ε) fi ,

while theC2
1/2+ε-asymptotic decay assumptions aswell as (25), (34), and theCauchy–Schwarz

Inequality lead to

P

H
[∇ν tr K − ∇νK (ν, ν)] = O(σ−3−2ε),

∥∥∥∥
2P

H
K (∇� fi , ν)

∥∥∥∥
L2(�)

≤ Cσ−3−2ε .
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Proposition 1 gives us that | Å|2 = O(σ−3−2ε). Summarizing, we found
∣∣∣∣
ˆ

�

udL fi dμ

∣∣∣∣ ≤ C

σ 3+2ε ‖ud‖L2(�) +
∣∣∣∣
ˆ

�

Ric(ν, ν)ud fi dμ

∣∣∣∣

≤ C

σ
5
2+ε

‖ud‖L2(�),

recalling that ud is L2(�)-orthogonal to fi for i = 1, 2, 3.
Proving (52). We will use the following manifest relation for the linear operator L

‖L hd‖2L2(�)
= ‖L (hd − h0)‖2L2(�)

+ ‖L h0‖2L2(�)
+ 2

ˆ
�

L (hd − h0)L h0 dμ. (55)

Arguing similarly to how we argued above, we now integrate by parts and use Proposition 1,
(25), and (35) giving λi > 5/σ 2 for i = 4, 5, . . . , and the asymptotic decay conditions on I
to estimate from below the expression

ˆ
�

(hd − h0)L (hd − h0) dμ

=
ˆ

�

[
−(hd − h0)��(hd − h0) −

(
H2

2
+ | Å|2 + Ric(ν, ν)

)
(hd − h0)2

]
dμ

−
ˆ

�

[
P

H
(∇ν tr K − ∇νK (ν, ν)) + div�

(
P

H
K (ν, ·)

)]
(hd − h0)2 dμ

=
ˆ

�

[
−(hd − h0)��(hd − h0) −

(
2σ−2 + O(σ− 5

2−ε)
)

(hd − h0)2
]
dμ

≥
(
3σ−2 + O(σ− 5

2−ε)
) ˆ

�

(hd − h0)2 dμ

≥ 7

4σ 2

ˆ
�

(hd − h0)2 dμ

as hd − h0 ∈ Span( f4, f5, . . . ). Here, the factor 7
4 < 3 is chosen for later convenience.

Hence by a Cauchy–Schwarz Inequality on
´
�

(hd − h0)L (hd − h0) dμ, we obtain

‖L (hd − h0)‖L2(�) ≥ 7

4σ 2 ‖hd − h0‖L2(�). (56)

Note also that h0 is a constant, so that

L h0 = −
(
H2

2
+ | Å|2 + Ric(ν, ν) + P

H
(∇ν tr K − ∇νK (ν, ν))

)
h0

= −
(
2σ−2 + O(σ− 5

2−ε)
)
h0,

(57)

and thus

‖L h0‖L2(�) ≥ 7

4σ 2 ‖h0‖L2(�), (58)

where again, the factor 7
4 < 2 is chosen for later convenience. Using (57), integration by

parts and finally Young’s Inequality, one can also check with the same decay arguments as
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above that
ˆ

�

(L h0)L (hd − h0) dμ

= −2σ−2
ˆ

�

h0L (hd − h0) dμ +
ˆ

�

O(σ− 5
2−ε)h0L (hd − h0) dμ

= −2σ−2
ˆ

�

h0
(
2
P

H
K (∇�(hd − h0), ν) + O(σ− 5

2−ε)(hd − h0)

)
dμ

+
ˆ

�

O(σ− 5
2−ε)h0L (hd − h0) dμ

=
ˆ

�

O(σ− 9
2−ε)h0(hd − h0) dμ +

ˆ
�

O(σ− 5
2−ε)h0L (hd − h0) dμ

≥ −Cσ− 9
2−ε

ˆ
�

∣∣∣hd − h0
∣∣∣
∣∣h0

∣∣ dμ − Cσ− 5
2−ε

ˆ
�

∣∣h0
∣∣
∣∣∣L (hd − h0)

∣∣∣ dμ

≥ −Cσ− 9
2−ε(‖hd − h0‖2L2(�)

+ ‖h0‖2L2(�)
) − Cσ− 1

2−ε‖L (hd − h0)‖2L2(�)
.

Combing this estimate with (56) and (58), (52) follows from (55) once we recall that hd −h0

is L2(�)-orthogonal to h0.
Proving (54). To see that E and mH (�) are as close as claimed, we recall the well-

known fact that the Geroch mass mH (�) of sufficiently round large surfaces in a C2
1/2+ε-

asymptotically flat initial data setI is close to the energy E ofI . More specifically, Lemma
A.1 in [40] (relying on [26] and [37]) and (44) imply that

|E − mH (�)| ≤
∣∣∣∣E − r

16π

ˆ
�

(Scal − 2Ric(ν, ν)) dμ

∣∣∣∣

+
∣∣∣∣

r

16π

ˆ
�

(Scal − 2Ric(ν, ν)) dμ − mH (�)

∣∣∣∣

≤Cσ−ε.

Thus mH (�) �= 0 if E �= 0 as long as σ > σ with C > 0 and σ > 0 sufficiently large,
depending only on ε, a, b, η, and CI .

Proving (53). We pick a number κ > 0 such that 1 − 4ε < 2κ < 1 and consider two
cases. In this part, we will abbreviate mH (�) =: mH .

Case 1. Suppose that ‖hd‖2
L2(�)

≥ σ− 1
2−κ‖h‖2

L2(�)
. As a consequence, using (49), (52),

and Young’s Inequality, we obtain for any 0 < α < 1, e.g. α = 1
2 , that

‖L h‖2L2(�)
=
ˆ

�

(
(L hd)2 + 2(L hd)(L ht ) + (L ht )2

)
dμ

≥ (1 − α)
(
‖L hd‖2L2(�)

− α−1‖L ht‖2L2(�)

)

≥ (1 − α)

(
9

4σ 4 ‖hd‖2L2(�)
− C

σ 5+2ε
‖ht‖2L2(�)

)

≥ (1 − α)

(
9

4σ
9
2+κ

‖h‖2L2(�)
− C

σ 5+2ε
‖h‖2L2(�)

)

≥ 9|mH |2
σ 6 ‖h‖2L2(�)
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provided that σ > σ , where now σ may actually depend on E as we used (54) in the last

step. Thus (53) holds in case ‖hd‖2
L2(�)

≥ σ− 1
2−κ‖h‖2

L2(�)
.

Case 2. Now assume that ‖hd‖2
L2(�)

≤ σ− 1
2−κ‖h‖2

L2(�)
. In this case,

∣∣∣∣
ˆ

�

hL h dμ

∣∣∣∣ ≥
∣∣∣∣
ˆ

�

htL ht dμ

∣∣∣∣ −
∣∣∣∣
ˆ

�

hdL h dμ

∣∣∣∣ −
∣∣∣∣
ˆ

�

htL hd dμ

∣∣∣∣ , (59)

where by (50), (54), and because ht and hd are L2(�)-orthogonal, we see that for σ > σ , σ
suitably large depending now in addition on E , we have

∣∣∣∣
ˆ

�

htL ht dμ

∣∣∣∣ ≥ 6|mH | − Cσ−ε

σ 3 ‖ht‖2L2(�)

= 6|mH | − Cσ−ε

σ 3

(
‖h‖2L2(�)

− ‖hd‖2L2(�)

)

≥ 6|mH | − Cσ−ε

σ 3

(
1 − 1

σ
1
2+κ

)
‖h‖2L2(�)

≥ 6|mH | − Cσ−ε

σ 3 ‖h‖2L2(�)
,

where we used that ε ≤ 1
2 by definition. Moreover, using the Cauchy–Schwarz Inequality

and the assumption ‖hd‖2
L2(�)

≤ σ− 1
2−κ‖h‖2

L2(�)
, we estimate

∣∣∣∣
ˆ

�

hdL h dμ

∣∣∣∣ ≤ Cσ− 1
4− κ

2 ‖h‖L2(�)‖L h‖L2(�).

Further, arguing oncemore as above with the explicit form ofL in (27), using the asymptotic
decay conditions of I , (16), (25), and integration by parts, one confirms that

∣∣∣∣
ˆ

�

htL hd dμ

∣∣∣∣ ≤ Cσ− 5
2−ε‖ht‖L2(�)‖hd‖L2(�) ≤ Cσ− 11

4 −ε− κ
2 ‖h‖2L2(�)

,

using again the assumption ‖hd‖2
L2(�)

≤ σ− 1
2−κ‖h‖2

L2(�)
and the fact that ‖ht‖L2(�) ≤

‖h‖L2(�) in the last step. It then follows from (59), the Cauchy–Schwarz Inequality, and the

bounds on κ that (53) also holds when ‖hd‖2
L2(�)

≤ σ− 1
2−κ‖h‖2

L2(�)
.

Combining Case 1 and Case 2, we have thus shown (53). To conclude the proof, it only
remains to show that L ∗ also satisfies the estimates (49)–(53) and that L is invertible
provided that the initial data setI has non-vanishing energy E �= 0 and the spacetime mean
curvature radius σ of � is sufficiently large, σ > σ , σ depending on E .

Invertibility of L and estimates onL ∗. The operatorL is not self-adjoint, but its L2(�)-
adjoint L ∗ has very similar structure, differing only in the last term. In L h, this term reads
2P
H K (∇�h, ν), while in L ∗h, this term becomes − div�

( 2P
H K (·, ν)

)
h. Recall that

2P

H
K (·, ν) = O1(σ

−2−2ε). (60)

Going back to the proofs of (49)–(53), we see that all of them work if we replace L by
L ∗ modulo exchanging the performance of partial integration with the decay estimate (60)
and vice versa. This, in particular (53), implies that the L2(�)-kernel of L ∗ is trivial, and
hence L : W 2,2(�) → L2(�) is invertible by the Fredholm Alternative [5, Appendix I,
Theorem 31], as long as mH (�) �= 0 which is guaranteed from E �= 0 and (54). The

123



214 Page 26 of 57 C. Cederbaum, A. Sakovich

Fredholm Alternative applies asL is clearly a linear elliptic operator as its symbol is that of
the Laplacian −�� and because � is compact. ��
Corollary 1 For every h ∈ W 2,2(�), we have

‖h‖W 2,2(�) ≤ C
(
σ 2‖L h‖L2(�) + ‖h‖L2(�)

) ≤ Cσ 3‖L h‖L2(�),

‖hd‖W 2,2(�) ≤ Cσ 2‖L hd‖L2(�)

for σ > σ and with C > 0, σ > 0 only depending on ε, a, b, η, CI , and E.

Proof Note by (42) we have Scal� = 2
σ 2 + O(σ− 5

2−ε), hence, in the view of (20), Lemma
13 applies to �. Combined with the Cauchy–Schwarz Inequality and (20), this result gives
us

‖h‖W 2,2(�) ≤ Cσ 2‖��h‖L2(�) + ‖h‖L2(�). (61)

Recalling the definition of the operator L (see (27)) and the fall-off properties of the initial
data set, we further find that

‖��h‖L2(�) ≤ ‖L h‖L2(�) +
(

2

σ 2 + O(σ− 5
2−ε)

)
‖h‖L2(�) + O(σ−2)‖∇�h‖L2(�)

≤ ‖L h‖L2(�) +
(

2

σ 2 + O(σ− 5
2−ε)

)
‖h‖L2(�) + O(σ−2)‖h��h‖L1(�)

≤ ‖L h‖L2(�) + O(σ−2)‖h‖L2(�) + O(σ−2)‖��h‖L2(�)

hence

‖��h‖L2(�) ≤ ‖L h‖L2(�) + Cσ−2‖h‖L2(�)

Combining (61) with this estimate and (53) we thereby obtain

‖h‖W 2,2(�) ≤ C
(
σ 2‖L h‖L2(�) + ‖h‖L2(�)

)

≤ C

(
σ 2‖L h‖L2(�) + σ 3

3|mH (�)| ‖L h‖L2(�)

)

≤ Cσ 3‖L h‖L2(�).

This proves the estimate for h. The estimate for hd is proven similarly, using (52) instead of
(53). ��

6 Existence and uniqueness of the STCMC-foliation

In this section, we will prove that any C2
1/2+ε-asymptotically Euclidean initial data set

I = (M3, g, K , μ, J ) is foliated (i.e., roughly speaking, covered without gaps or over-
laps), outside a compact set, by 2-surfaces of constant spacetime mean curvature (STCMC).
We also prove a uniqueness result for STCMC-surfaces.

6.1 Existence of the STCMC-foliation

In [40], Nerz proved the following result, rephrased here in our notation. Note that because
of time symmetry K ≡ 0, the CMC-foliation constructed by Nerz can be viewed as a special
case of the STCMC-foliation under consideration here.
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Theorem 1 (Nerz 2015) Let (M3, g) be a C2
1/2+ε-asymptotically Euclidean Riemannian man-

ifold viewed as a C2
1/2+ε-asymptotically Euclidean initial data set I0 = (M3, g, K ≡ 0,

μ = 1
2Scal, J ≡ 0), with non-vanishing energy E �= 0. Then there is a constant σI0 > 0

depending only on ε, CI0 , and E, a compact set K0 ⊂ M3, and a bijective C1-map


0 : (σI0 ,∞) × S
2 → M3 \ K0

such that each of the surfaces �σ
0 := 
0(σ,S2) has constant mean curvature H(�σ

0 ) ≡ 2/σ

provided that σ > σI0 .

This result is a starting point for proving the following theorem, which is essentially the
main result of this paper. For the sake of clarity of exposition, we provide the proof of the
following theorem right away, saving the verification of some preliminary lemmas for later.
We state Theorem 2 here in a notation convenient for its proof.

Theorem 2 (Existence of STCMC-foliation) Let I1 = (M3, g, K , μ, J ) be a C2
1/2+ε-

asymptotically Euclidean initial data set with non-vanishing energy E �= 0. Then there
is a constant σI1 > 0 depending only on ε, CI1 , and E, a compact set K1 ⊂ M3, and a
bijective C1-map


1 : (σI1 ,∞) × S
2 → M3 \ K1

such that each of the surfaces �σ
1 := 
1(σ,S2) has constant spacetime mean curvature

H (�σ
1 ) ≡ 2/σ1 provided that σ > σI1 .

Remark 9 As the proof of Theorem 2 will show, the surfaces �σ
1 are in fact asymptotically

centered in the sense of Definition 4, more specifically, they satisfy �σ
1 ∈ A (0, bI1 , ηI1)

for all σ > σI1 , with constants bI1 > 0, ηI1 ∈ (0, 1], and σI1 > 0 defined in the proof of
Theorem 2, and depending only on ε, CI1 , and E .

Proof The family of closed, oriented 2-surfaces {�σ
1 }σ>σI 1

will be constructed via a method
of continuity, see also Sect. 3. Roughly speaking, we will deform the constant (automatically
spacetime) mean curvature foliation {�σ

0 }σ>σI 0
of the initial data set I0 from Theorem

1 along the curve of initial data sets {Iτ }τ∈[0,1], where Iτ := (M3, g, τK , μτ , τ J ) is as
described in Sect. 3.1, arriving at the foliation of the initial data setI1 by constant spacetime
mean curvature surfaces {�σ

1 }σ>σI 1
. In order to make this idea more precise, we introduce

the following construction.

By Theorem 1, we know that for every σ > σI0 there is a closed, oriented 2-surface
�σ

0 ↪→ M3 with constant spacetime mean curvature H (�σ
0 ) ≡ 2/σ with respect to the

initial data setI0. Furthermore, the proof of this result in [40] shows that there are constants
bI0 ≥ 0 and 1 ≥ ηI0 > 0 such that �σ

0 ∈ A (0, bI0 , ηI0) for all σ > σI0 . We recall
from [40] that bI0 and ηI0 only depend on ε, CI0 , and E which can be restated as saying
that they only depend on ε, CI1 , and E by our construction. Set bI1 := 4bI0 > bI0 and
ηI0 > ηI1 := ηI 0

4 > 0. From Section 5 and by the definition of bI1 and ηI1 , we know
that there are constants C and σ depending only on ε, CI1 , and E such that the operator
L : W 2,2(�) → L2(�) is invertible whenever � ∈ A (0, bI1 , ηI1) is a surface of constant
spacetime mean curvature H (�) ≡ 2/σ with respect to the initial data set I1 for σ ≥ σ ,
and whenever in addition the estimates of Proposition 2 and Corollary 1 are available on �.
Without loss of generality, we may also assume that C and σ are such that the regularity
result in Proposition 1 as well as a supplementary result stated in Lemma 8 (see Section
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6.2 below) apply with a = a = 0, b = bI 1
2 , b = bI1 , η = 2ηI1 , η = ηI1 . We set

σI1 := max{σ , 4σI0}, and note that by their definition σI1 , bI1 , and ηI1 only depend on
ε, CI1 , and E .

Now fix σ∗ > σI1 for the rest of the argument until we start discussing the foliation
property when applying Lemma 9. Let Y σ∗ ⊆ [0, 1] be the maximal subset such that there is
a C1-map

F σ∗ : Y σ∗ × S
2 → M3

with the following properties for every τ ∈ Y σ∗ :

(i) The surface�
σ∗
τ := F σ∗(τ,S2) has constant spacetimemean curvatureH (�

σ∗
τ ) ≡ 2/σ∗

with respect to the initial data set Iτ .
(ii) ∂τF

σ∗(τ, q) is orthogonal to �
σ∗
τ for every q ∈ S

2.
(iii) The surface �

σ∗
τ is asymptotically centered in the sense �

σ∗
τ ∈ A (0, bI1 , ηI1).

Maximality of Y σ∗ is understood here as follows: if the above conditions are satisfied
for some Ỹ σ∗ ⊆ [0, 1] and a map F̃ σ∗ : Ỹ σ∗ × S

2 → M3, then Ỹ σ∗ ⊆ Y σ∗ as well as
F σ∗ |Ỹ σ∗ ≡ F̃ σ∗ .

Note that for τ = 0, Condition (i) is ensured by the assumptions in Theorem 1. The same is
true for Condition (iii) once one takes into account that A (0, bI0 , ηI0) ⊆ A (0, bI1 , ηI1).
However, Condition (ii) is not automatically satisfied for τ = 0 as we do not even know
whether the map F σ∗ exists. The following lemma ensures that Y σ∗ contains an interval
[0, τ0) for some τ0 > 0. In particular, Condition (ii) is satisfied a posteriori for τ = 0. More
generally, this result shows that Y σ∗ is open around any τ∗ ∈ Y σ∗ such that�σ∗

τ∗ ∈ A (0, b, η)

for 0 ≤ b < bI1 and ηI1 < η ≤ 1.

Lemma 4 Let 0 ≤ b < b ≤ bI1 and ηI1 ≤ η < η ≤ 1. For any τ∗ ∈ [0, 1] for which there
exists a smooth surface �

σ∗
τ∗ ∈ A (0, b, η) satisfying H (�

σ∗
τ∗ ) ≡ 2/σ∗, there exists an open,

connected neighborhoodUτ∗ of τ∗ inside [0, 1] and a unique C1-mapF σ∗ : Uτ∗ ×S
2 → M3

with�
σ∗
τ∗ = F σ∗(τ∗, ·) such that (i) and (ii) are satisfied for�

σ∗
τ := F σ∗(τ, ·), and such that

�
σ∗
τ ∈ A (0, b, η) for all τ ∈ Uτ∗ .

Proof In order to prove this lemma, suppose that τ∗ ∈ [0, 1], and that b and η are such as in the
statement. As discussed in Sect. 5.1, in a neighborhood of each�

σ∗
τ∗ , wemay introduce normal

geodesic coordinates y : �
σ∗
τ∗ × (−ξ, ξ) → M3 near �

σ∗
τ∗ . Now let U 2,2

ξ (�
σ∗
τ∗ ) ⊆ W 2,2(�

σ∗
τ∗ )

be an open neighborhood of 0 ∈ W 2,2(�
σ∗
τ∗ ) such that f ∈ U 2,2

ξ (�
σ∗
τ∗ ) implies | f | < ξ ; such

a neighborhood exists by Lemma 12.
Next, we consider the graphical spacetime mean curvature map

hσ∗ : [0, 1] ×U 2,2
ξ (�σ∗

τ∗ ) → L2(�σ∗
τ∗ )

which assigns, to every τ ∈ [0, 1] and every f ∈ U 2,2
ξ (�

σ∗
τ∗ ), the spacetime mean curvature

H (graph f ) of the geodesic graph, graph f = {y(q, f (q)) : q ∈ �
σ∗
τ∗ }, with respect to the

initial data setIτ . The Fréchet derivative of the map hσ∗ with respect to the second argument
f at the point (τ∗, 0) is the operator LH : W 2,2(�

σ∗
τ∗ ) → L2(�

σ∗
τ∗ ) given by Lemma 1, where

all geometric quantities are computed with respect to the initial data set Iτ∗ . As shown in
Sect. 5, the linearized operator LH : W 2,2(�

σ∗
τ∗ ) → L2(�

σ∗
τ∗ ) is continuously invertible,

because σ∗ > σI1 .
By the Implicit Function Theorem, there thus exists a relatively open neighborhood Ũτ∗ ⊆

[0, 1] of τ∗ and a unique C1-map γ σ∗ : Ũτ∗ → U 2,2
ξ (�

σ∗
τ∗ ) such that γ σ∗(τ∗) = 0 and

hσ∗(τ, γ σ∗(τ )) = hσ∗(τ∗, γ σ∗(τ∗)) ≡ 2/σ∗ for all τ ∈ Ũτ∗ .
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Thus, by construction, for every τ ∈ Ũτ∗ , the surface �
σ∗
τ = graph γ σ∗(τ ) has constant

spacetime mean curvature 2/σ∗ with respect to the initial data set Iτ .
Recall that the surface �

σ∗
τ∗ is a graph over some round sphere by our assumptions and by

Proposition 1, recalling again the a priori bounds on σ∗, b, and η. As �
σ∗
τ was defined as a

graph over �
σ∗
τ∗ for every τ ∈ Ũτ∗ , composition of these two graphical representations gives

us that �σ∗
τ is parametrized over a round sphere.

Thus, we may now define the mapF σ∗ : Ũτ∗ × S
2 → M3 by settingF σ∗(τ,S2) := �

σ∗
τ ,

and defining the parametrization of �
σ∗
τ by requesting that ∂τF

σ∗ be orthogonal to �τ
σ∗ for

all τ ∈ Ũτ∗ .
By continuity of F σ∗ and because 0 ≤ b < b, 0 < η < η ≤ 1 and �

σ∗
τ∗ ∈ A (0, b, η),

there exists an open neighborhood Uτ∗ ⊆ Ũτ∗ of τ∗ such that

�σ∗
τ ∈ A

(
0, b, η

)
(62)

holds for all τ ∈ Uτ∗ as desired. This proves Lemma 4. ��
Choosing b = bI0 , b = 2bI0 = bI 1

2 , and η = ηI0 , η = ηI 0
2 = 2ηI1 , Lemma 4 shows

directly via Theorem 1 that 0 ∈ Y σ∗ and that Y σ∗ is relatively open near 0. Now we let Xσ∗

be the maximal connected subinterval of Y σ∗ containing τ = 0. As we have just seen by
Lemma 4, Xσ∗ is relatively open near τ = 0. Set τ ∗ := sup Xσ∗ . In Lemma 5 below we will
show that τ ∗ ∈ Xσ∗ , so that Xσ∗ = [0, τ ∗] is closed, where 0 < τ ∗ ≤ 1.

Lemma 5 The interval Y σ∗ ⊆ [0, 1] is closed.
Proof Closedness of Y σ∗ can be addressed by following the arguments given in [40,
Lemma 5.6] and [41, Lemma 3.14], as the necessary preliminaries are available in the form
of Lemma 6 and Lemma 7 below. Alternatively, one may rely on a more standard method
used in [36, Proof of Proposition 6.1], which we describe below. The Sobolev spaces we
use throughout the paper are weighted, however, for a given closed, oriented 2-surface, the
weighted Sobolev norms are equivalent to the traditional unweighted ones; we will thus
switch to the usual unweighted ones for this proof in order to allow us to use standard results
on Sobolev spaces on 2-surfaces.

Let {τn}∞n=1 ⊂ Y σ∗ be a sequence of real numbers with limn→∞ τn =: τ ∈ [0, 1] and let
�

σ∗
τn ∈ A (0, bI1 , ηI1) be a surface with constant spacetime mean curvatureH (�

σ∗
τn ) ≡ 2/σ∗

with respect to the initial data set Iτn . By Proposition 1 we know that there are functions
fn : Srn (�zn) → R such that �

σ∗
τn = graph fn where rn and �zn are the area radius and the

coordinate center of �
σ∗
τn . By the first inequality of (15) and by (20), we know that the

sequences {rn}∞n=1 and {�zn}∞n=1 are uniformly bounded, so we may assume (up to passing
to a subsequence) that limn→∞ rn = r and limn→∞ �zn = �z. Consequently, in view of
(17), we may assume that there is a sequence { f̃ n}∞n=1, such that f̃ n : Sr (�z ) → R and
�

σ∗
τn = graph f̃ n . Again in the view of (17), we may assume that this sequence is uniformly

bounded in W 2,∞(S2r (�z )) and hence in C1,β(S2r (�z )) for any 0 < β < 1. Recalling that �σ∗
τn

are surfaces of constant spacetime mean curvature, we see that the functions f̃ n satisfy a
linear elliptic PDE of the form

2∑

β,γ=1

aβγ
n ∂β∂γ f̃ n +

2∑

β=1

bβ
n ∂β f̃ n = Fn, (63)

with uniformly bounded coefficients aβγ
n , bβ

n , Fn ∈ C0,β(S2r (�z )), see Appendix 2 for details.
A standard argument using Schauder estimates (see e.g. [25, Theorem9.19] and [30, Theorem
10.2.1]) allows us to conclude that the functions f̃ n ∈ C2,β(S2r (�z )) are uniformly bounded
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in C2,β(S2r (�z )), and consequently, up to passing to a subsequence, we may assume that
{ f̃ n}∞n=1 converges in C2,α(S2r (�z )) to a limit f ∈ C2,α(S2r (�z )) for some fixed 0 < α < 1.
As a consequence of (63) and the asserted C2,α-convergence, we see that �

σ∗
τ := graph f

has constant spacetime mean curvature H (�
σ∗
τ ) ≡ 2/σ ∗.

Finally, we confirm that �σ∗
τ = graph f ∈ A (0, bI1 , ηI1) by passing to the limit in the

respective inequalities of (15) for�σ∗
τn = graph f̃ n ∈ A (0, bI1 , ηI1). Again, this is possible

in the view of the C2,α-convergence of the graph functions. ��
Continuing the proof of Theorem 2, we will now use Lemma 8 below to show that τ ∗ = 1,

arguing by contradiction. Suppose instead that τ ∗ < 1. Then �
σ∗
τ ∈ A (0, bI1 , ηI1) for

all τ ∈ [0, τ ∗], whereas �
σ∗
0 ∈ A (0, bI0 , ηI0). Applying Lemma 8, we see that in fact

�
σ∗
τ ∈ A (0,

bI 1
2 , 2ηI1).As a consequence,wemayapplyLemma4withb = bI 1

2 ,b = bI1 ,
η = 2ηI1 , and η = ηI1 to show that [0, τ ∗ + ρ) ⊆ Y σ∗ for some ρ > 0. This contradicts
the maximality of the intervals Xσ∗ , hence τ ∗ = 1 and Y σ∗ = [0, 1].

Summing up, we have shown that for each σ > σI1 there is a surface �σ
1 = F σ (1,S2)

such that its spacetime mean curvature in the initial data set I1 is precisely H (�σ
1 ) ≡ 2/σ .

We may now define 
1 : (σI1 ,∞) × S
2 → M3 by setting


1(σ, ·) := F σ (1, ·). (64)

The only remaining thing to check is that the family {�σ
1 }σ>σI 1

is a foliation, which will

be the case if 
1 is a bijective C1-map onto the exterior region M3 \ K1 of a suitably large
compact setB ⊆ K1 ⊂ M3. This is proven in Lemma 9. Note that in this step, we may need
to increase σI1 , albeit without introducing new dependencies. ��

6.2 Supplementary lemmas

We will now prove the supplementary lemmas that were used in the proof of Theorem 2
above.

Lemma 6 Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data set

with non-vanishing energy E �= 0, with �x : M3 \ B → R
3 \ BR(0) denoting the asymp-

totic coordinate chart. Assume in addition that K satisfies the potentially stronger decay
assumptions |K | ≤ CI |�x |−δ−ε for some δ ≥ 3

2 and all �x ∈ R
3 \ BR(0).

Let ∅ �= U ⊆ [0, 1] be an open subset of [0, 1] and define Iτ as in the proof of Theorem
2 for each τ ∈ U. Let a ∈ [0, 1), b ≥ 0, η ∈ (0, 1] be fixed. Then there exist constants
σ > 0 and C > 0, depending only on ε, δ, a, b, η, CI , and E such that the following holds
for any σ > σ : Assume there exists a C1-map F σ : U × S

2 → M3 such that for every
τ ∈ U the surface �σ

τ := F σ (τ,S2) is in the a priori class A (a, b, η) and has constant
spacetime mean curvature H (�σ

τ ) ≡ 2/σ with respect to the initial data set Iτ . Assume
further that F σ is a normal variation map in the sense that there exists a continuous lapse
function u = uσ

τ : �σ
τ → R such that ∂τF

σ = u ν, where ν = νσ
τ is the unit normal to �σ

τ

in (M3, g). Then we have

‖u‖W 2,2(�σ
τ ) ≤ Cσ 5−2δ−2ε, ‖ud‖W 2,2(�σ

τ ) ≤ Cσ
9
2−2δ−3ε, (65)

and L u = O(σ 1−2δ−2ε).

Proof In this proof, C > 0 and σ > 0 denote generic constants that may vary from line to
line, but depend only on ε, δ, a, b, η, CI , and E . The surfaces �σ

τ have constant spacetime
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mean curvature H (�σ
τ ) ≡ 2/σ in the initial data set Iτ . For clarity, we will write this

constant spacetime mean curvature with an explicit reference to the initial data set Iτ as
H (�σ

τ ,Iτ ) ≡ 2/σ for all τ ∈ U . Hence

∂τH (�σ
τ ,Iτ ) = 0,

which gives us the following linear elliptic PDE on the closed surface �σ
τ for the a priori

only continuous lapse function u = uσ
τ : �σ

τ → R:

L u = τ (tr�σ
τ
K )2

H(�τ
σ )

, (66)

where the elliptic operator L is (up to a certain factor) the linearization of the spacetime
mean curvature operator for the surface �σ

τ in the initial data set Iτ , defined in (27). Then
Proposition 2 implies that u ∈ W 2,2(�σ

τ ), and that such a u is unique. Together with (25)
and P = O(σ−δ−ε), (66) implies that

L u = O(σ 1−2δ−2ε). (67)

As a consequence, by Corollary 1 and (49), we get

‖ud‖W 2,2(�σ
τ ) ≤ Cσ 2‖L ud‖L2(�σ

τ )

≤ Cσ 2
(
‖L u‖L2(�σ

τ ) + ‖L ut‖L2(�σ
τ )

)

≤ Cσ 2
(
σ 2−2δ−2ε + ‖L ut‖L2(�σ

τ )

)

≤ Cσ 4−2δ−2ε + σ− 1
2−ε‖ut‖L2(�σ

τ ).

(68)

In order to estimate ‖ut‖L2(�σ
τ ), note that by (50) we have for i = 1, 2, 3

∣∣∣∣∣

ˆ
�σ

τ

u fi dμ − σ 3

6mH

ˆ
�σ

τ

uL fi dμ

∣∣∣∣∣

≤
∣∣∣∣∣

ˆ
�σ

τ

ut fi dμ − σ 3

6mH

ˆ
�σ

τ

utL fi dμ

∣∣∣∣∣ + σ 3

6|mH |

∣∣∣∣∣

ˆ
�σ

τ

udL fi dμ

∣∣∣∣∣

≤ Cσ−ε‖ut‖L2(�σ
τ ) + σ 3

6|mH |

∣∣∣∣∣

ˆ
�σ

τ

udL fi dμ

∣∣∣∣∣ ,

where we again use mH = mH (�σ
τ ) as an abbreviation for the Hawking mass and the fact

that mH �= 0 as E �= 0 and |mH − E | ≤ Cσ−ε by Proposition 2. By (51), we have
∣∣∣∣
ˆ

�

udL fi dμ

∣∣∣∣ ≤ C

σ
5
2+ε

‖ud‖L2(�).

Using the Cauchy–Schwarz Inequality, integration by parts, and (34), together with fi ≈√
3

4πr4
xi , (20), and (67) we obtain

∣∣∣∣∣

ˆ
�σ

τ

uL fi dμ

∣∣∣∣∣ ≤
∣∣∣∣∣

ˆ
�σ

τ

fiL u dμ

∣∣∣∣∣ + 2

∣∣∣∣∣

ˆ
�σ

τ

P

H
K

(
u∇�σ

τ fi − fi∇�σ
τ u, ν

)
dμ

∣∣∣∣∣

≤ Cσ 2−2δ−2ε + Cσ−2δ−2ε‖u‖L2(�σ
τ ).
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Combining the last three estimates with a Triangle Inequality, it follows that

‖ut‖L2(�σ
τ ) ≤ σ 3

6|mH |

∣∣∣∣∣

ˆ
�σ

τ

uL fi dμ

∣∣∣∣∣ + Cσ−ε‖ut‖L2(�σ
τ ) + σ 3

6|mH |

∣∣∣∣∣

ˆ
�σ

τ

udL fi dμ

∣∣∣∣∣

≤Cσ 5−2δ−2ε + Cσ−ε‖ut‖L2(�σ
τ ) + Cσ

1
2−ε‖ud‖L2(�σ

τ ),

so that

‖ut‖L2(�σ
τ ) ≤ Cσ 5−2δ−2ε + Cσ

1
2−ε‖ud‖L2(�σ

τ ).

Recalling (68), we now get a W 2,2-estimate for ud , namely

‖ud‖W 2,2(�σ
τ ) ≤ Cσ

9
2−2δ−3ε.

From this, as a consequence of (67) and Corollary 1, we also have

‖ut‖W 2,2(�σ
τ ) ≤ ‖ud‖W 2,2(�σ

τ ) + ‖u‖W 2,2(�σ
τ )

≤ ‖ud‖W 2,2(�σ
τ ) + Cσ 3‖L u‖L2(�σ

τ ) ≤ Cσ 5−2δ−2ε.

��

Lemma 6 enables us to prove the following result.

Lemma 7 Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data set

with non-vanishing energy E �= 0, with �x denoting the asymptotic coordinate chart. Let
∅ �= U ⊆ [0, 1] be an open subset of [0, 1] and define Iτ as in the proof of Theorem 2 for
each τ ∈ U. Let a ∈ [0, 1), b ≥ 0, η ∈ (0, 1] be fixed. Then there exist constants σ > 0
and C > 0, depending only on ε, a, b, η, CI , and E such that the following holds for any
σ > σ : Assume there exists a C1-map F σ : U × S

2 → M3 such that for every τ ∈ U the
surface �σ

τ := F σ (τ,S2) is in the a priori class A (a, b, η) and has constant spacetime
mean curvature H (�σ

τ ) ≡ 2/σ with respect to the initial data set Iτ . Assume further that
F σ is a normal variation map in the sense explained in Lemma 6. Then

∣∣∂τ

(|�x | ◦ F σ
)∣∣ ≤ Cσ 1−ε, (69)

∣∣∂τ |�σ
τ |∣∣ ≤ Cσ

3
2−ε, (70)

|∂τ (�z ◦ F σ )| = O(σ 1−2ε). (71)

Proof In this proof, C > 0 and σ > 0 denote generic constants that may vary from line to
line, but depend only on ε, a, b, η, andCI , and E . Let u : �σ

τ → R denote the lapse function
as in Lemma 6. Then Lemma 6 applied with δ = 3

2 and the Sobolev Embedding Theorem
in the form of Lemma 12 imply that |∂τF

σ | = |u| ≤ Cσ 1−ε. Then (69) is proved by the
elementary estimate

∣∣∂τ

(|�x | ◦ F σ
)∣∣ =

∣∣∣
∑3

i=1(x
i ◦ F σ )(∂τF

σ )

∣∣∣
|�x | ◦ F σ

≤ Cσ 1−ε.

In order to prove (70), we first recall that the mean curvature of �σ
τ satisfies H = 2

σ
+

O(σ−2−ε), see (25). The first variation of area formula, the fact that the eigenfunctions
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used to span L2(�σ
τ ) are L2(�σ

τ )-orthogonal so that in particular we have
´
�σ

τ
ut dμ = 0,

combined with Lemma 6 for δ = 3
2 lead to

∣∣∂τ |�σ
τ |∣∣ =

∣∣∣∣∣

ˆ
�σ

τ

Hu dμ

∣∣∣∣∣

≤
∣∣∣∣∣

ˆ
�σ

τ

Hud dμ

∣∣∣∣∣ +
∣∣∣∣∣

ˆ
�σ

τ

(H − 2

σ
)ut dμ

∣∣∣∣∣

≤ C‖ud‖L2(�σ
τ ) + Cσ−1−ε‖ut‖L2(�σ

τ )

≤ Cσ
3
2−ε,

where we also used the Cauchy–Schwarz Inequality.

A very similar analysis demonstrates
∣∣∂τ |�σ

τ |δ
∣∣ ≤ Cσ

3
2−ε . Finally, we prove (71): By

definition,

zi ◦ F σ = 1

|�σ
τ |δ

ˆ
�σ

τ

xi dμδ.

Using the variation of area formula, the Cauchy–Schwarz Inequality, (19), (20), and Lemma
6 with δ = 3

2 we compute

∂τ (z
i ◦ F σ ) = 1

|�σ
τ |δ

(ˆ
�σ

τ

uνi dμδ +
ˆ

�σ
τ

xi uH dμδ

)
− 1

|�σ
τ |2δ

∂τ |�σ
τ |δ

= O(σ 1−2ε).

This proves (71). ��
Lemma 8 Let I = (M3, g, K , μ, J ) be a C2

1/2+ε-asymptotically Euclidean initial data set
with non-vanishing energy E �= 0. Let ∅ �= U ⊆ [0, 1] be an open, connected subset of [0, 1]
and define Iτ as in the proof of Theorem 2 for each τ ∈ U.

Let a, a ∈ [0, 1), b, b ∈ [0,∞), η ∈ (0, 2ε), and η ∈ (0, 1]. Then there exists a constant
σ > 0, depending only on ε, a, a, b, b, η, η, CI , and E such that the following holds
for any σ > σ : Assume there exists a C1-map F σ : U × S

2 → M3 such that for every
τ ∈ U the surface �σ

τ := F σ (τ,S2) is in the a priori class A (a, b, η) and has constant
spacetime mean curvature H (�σ

τ ) ≡ 2/σ with respect to the initial data set Iτ . Assume
further thatF σ is a normal variation map in the sense explained in Lemma 6. Now suppose
in addition that �σ

τ0
∈ A (a, b, η) for some τ0 ∈ U. Then in fact �σ

τ ∈ A (a, bτ , ητ ) with
bτ = b + O(σ−min{2ε−η,ε}) and ητ = η + O(σ−ε) for any τ ∈ U. Here, the constants in
the O-notation depend only on ε, a, a, b, b, η, η, CI , and E.

Remark 10 Note that the assumption η ∈ (0, 2ε) of the lemma is not restrictive as the
inclusionA (a, b, η1) ⊆ A (a, b, η2) for 0 < η2 < η1 ≤ 1 implies that we may without loss
of generality decrease η ∈ (0, 1] to achieve η ∈ (0, 2ε).

Proof Wedrop the explicit reference toσ for notational convenience, asσ will not bemodified
in this proof. Let rτ and �zτ denote the area radius and the coordinate center of�τ , respectively,
and let (slightly abusing notation) �xτ denote the restriction of the coordinate vector �x to �τ ,
where �x denotes the asymptotic coordinate chart. The mean curvature of �τ is denoted by
Hτ . In this proof σ > 0, C > 0 and constants involved in the O-notation may vary from line
to line but depend only on ε, a, a, b, b, η, η, CI , and E .
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Wefirst show that there exists ητ = η+O(σ−ε) such that the second inequality describing
the fact that �τ ∈ A (a, bτ , ητ ) in (15) holds, namely

(rτ )
2+ητ ≤ |�xτ | 52+ε. (72)

Since �τ ∈ A (a, b, η) for all τ ∈ U , by the Mean Value Theorem combined with (70) and
(20) we have

4π(rτ )
2 = |�τ | = |�τ0 | + O(σ

3
2−ε) = 4π(rτ0)

2(1 + O(σ− 1
2−ε)),

hence

rτ = rτ0(1 + O(σ− 1
2−ε)). (73)

Similarly, combining (69) with (19) and (20) we conclude that

|�xτ | = |�xτ0 |(1 + O(σ−ε)). (74)

Since �τ0 ∈ A (a, b, η) we have

(rτ0)
2+η ≤ |�xτ0 |

5
2+ε,

which in the view of (73) and (74) can be written as

(rτ (1 + O(σ−1/2−ε)))2+η ≤ (|�xτ |(1 + O(σ−ε))
) 5
2+ε

.

Consequently, we have

(rτ )
2+η(1 − Cσ−ε) ≤ |�xτ | 52+ε.

Choosing

ητ := η + logrτ (1 − Cσ−ε), (75)

(72) follows. Note that by (19) we have

ητ = η + ln(1 − Cσ−ε)

ln rτ
= η + O(σ−ε(ln σ)−1) = η + O(σ−ε).

We will now apply a similar method and adjust the value of the constant bτ so that the
first and the third inequality in (15) describing the fact that �τ ∈ A (a, bτ , ητ ), that is

|�zτ | ≤ arτ + bτ (rτ )
1−ητ (76)

and ˆ
�τ

H2
τ dμ − 16π ≤ bτ

(rτ )ητ
, (77)

hold with ητ as defined in (75).
First, we deal with (76). Since �τ0 ∈ A (a, b, η) we have

|�zτ0 | ≤ arτ0 + b(rτ0)
1−η.

Combining this with (73) and (71) we obtain

|�zτ | + O(σ 1−2ε) ≤ arτ + O(σ
1
2−ε) + b(rτ + O(σ

1
2−ε))1−η,
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which in the view of (20) may be further rewritten as

|�zτ | ≤ arτ + (b + O(σ η−2ε) + O(σ η− 1
2−ε))(rτ )

1−η.

Since ε ≤ 1
2 , we conclude that

|�zτ | ≤ arτ + (rτ )
1−η(b + O(σ η−2ε)).

Recall that by our definition (75) of ητ we have η = ητ − logrτ (1 − Cσ−ε). Hence

|�zτ | ≤ arτ + r1−ητ
τ (1 − Cσ−ε)(b + O(σ η−2ε)).

Consequently, we have

|�zτ | ≤ arτ + (rτ )
1−ητ (b + Cσ−min{2ε−η,ε}). (78)

Next, we address (77). We recall that H2
τ = H 2−τ 2P2 = 4

σ 2 −τ 2P2 which implies that

∂τ H2
τ = O(σ−3−2ε). Consequently, we may compute using the variation of area formula

and (65) with δ = 3
2 that

∂τ

ˆ
�τ

H2
τ dμ =

ˆ
�τ

∂τ H
2
τ dμ +

ˆ
�τ

uH3
τ dμ = O(σ−2ε). (79)

Again, since �τ0 ∈ A (a, b, η) we have
ˆ

�τ0

H2
τ0
dμ − 16π ≤ b

(rτ0)
η
.

As before, we use the Mean Value Theorem, (79), and (73) to rewrite this asˆ
�τ

H2
τ dμ − 16π + O(σ−2ε) ≤ b(rτ + O(σ

1
2−ε))−η

which in the view of (20) may be further rewritten as
ˆ

�τ

H2
τ dμ − 16π ≤ (rτ )

−η(b + O(σ− 1
2−ε) + O(σ η−2ε)).

Substituting η = ητ − logrτ (1 − Cσ−ε) in the view of ε ≤ 1
2 gives

ˆ
�τ

H2
τ dμ − 16π ≤ (rτ )

−ητ (1 − Cσ−ε)(b + O(σ η−2ε)).

Consequently, we have
ˆ

�τ

H2
τ dμ − 16π ≤ (rτ )

−ητ (b + Cσ−min{2ε−η,ε}). (80)

Together, the inequalities (78) and (80) imply the existence of the constant bτ = b +
O(σ−min{2ε−η,ε}) such that (76) and (77) hold. This concludes the proof as we can choose
aτ = a as the above computations show. ��
Lemma 9 Under the assumptions of Theorem2, there exists a constantσ > 0, depending only
on ε, a, b, η, CI1 , and E, and a compact setK ⊂ M3 such that the map
1 : (σ ,∞)×S

2 →
M3 \ K defined by (64) is a bijective C1-map.
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Proof To prove the claim, we need to show that 
1 is C1, injective, and surjective onto a
suitably chosen exterior region of M3. We already proved in Theorem 2 that F σ and thus

1 is C1 with respect to the S

2-component. The differentiability with respect to σ can be
proven following the Implicit Function Theorem argument of Lemma 4, where the graphical
spacetime mean curvature map is to be interpreted as a function of σ ∈ (σ ,∞) instead of as
a function of τ ∈ [0, 1]. This is to be viewed in light of the uniqueness results in Sect. 6.3.

Injectivity. In order to show injectivity of 
1, we need to assert that �
σ1
1 ∩ �

σ2
1 = ∅ for

any choice of σ1 �= σ2, σ1, σ2 > σ . This can be done by analyzing the lapse function of the
variation 
1 : (σ ,∞) × S

2 → M3 with respect to σ , namely u = uσ
1 := g(∂σ 
1, ν), where

ν = νσ
1 denotes the outward unit normal of �σ

1 ↪→ (M3, g). If u > 0 on (σ ,∞) × S
2, we

can conclude that 
1 is injective.

We will in fact show that u = 1 + O(σ− 1
2−ε). Again, C > 0 and σ > 0 denote generic

constants that may vary from line to line, but depend only on ε, a, b, η, CI1 , and E . First,
we note that since the spacetime mean curvature of �σ

1 in the initial data set I1 is constant,
H (�σ

1 ) ≡ 2/σ , we have

L u =
√

1 −
(
P

H

)2

∂σH (�σ
1 )

= (1 + O(σ−1−ε)) ∂σ

(
2

σ

)

= − 2

σ 2 + O(σ−3−ε),

(81)

which uniquely determines u ∈ W 2,2(�σ
1 ) by Proposition 2. Furthermore, by (81), (25),

(16), and the asymptotic decay assumptions on I1, we have

L (u − 1) = L u + |A|2 + Ric(ν, ν) + P

H
(∇ν trg K − ∇νK (ν, ν))

= − 2

σ 2 + O(σ−3−ε) + H2

2
+ | Å|2 + Ric(ν, ν) + P

H
(∇ν trg K − ∇νK (ν, ν))

= Ric(ν, ν) + O(σ−3−ε),

(82)

where H = H(�σ
1 ), P = P(�σ

1 ). This shows that L (u − 1) = O(σ− 5
2−ε) which is not

sufficient for concluding that u = 1 + O(σ−ε) and thus u > 0 via Corollary 1 and Lemma
12: such an argument would require L (u − 1) = O(σ−3−ε) which we obviously do not
have.

Instead, we argue as in the proof of Lemma 6. For v := u − 1, the above computation

shows that L v = O(σ− 5
2−ε), which in combination with Corollary 1 and (49) gives

‖vd‖W 2,2(�σ
1 ) ≤ Cσ 2‖L vd‖L2(�σ

1 )

≤ Cσ 2
(
‖L v‖L2(�σ

1 ) + ‖L vt‖L2(�σ
1 )

)

≤ Cσ 2
(
σ− 3

2−ε + ‖L vt‖L2(�σ
1 )

)

≤ Cσ
1
2−ε + σ− 1

2−ε‖vt‖L2(�σ
1 ).

(83)
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In addition, for i = 1, 2, 3, by adding a rich zero and using the orthogonality of vd and fi ,
we have

∣∣∣∣∣

ˆ
�σ
1

v fi dμ

∣∣∣∣∣ ≤ σ 3

6|mH |

∣∣∣∣∣

ˆ
�σ
1

vL fi dμ

∣∣∣∣∣ +
∣∣∣∣∣

ˆ
�σ
1

vt fi dμ − σ 3

6mH

ˆ
�σ
1

vtL fi dμ

∣∣∣∣∣

+ σ 3

6|mH |

∣∣∣∣∣

ˆ
�σ
1

vdL fi dμ

∣∣∣∣∣ ,

where
∣∣∣∣∣

ˆ
�σ
1

vt fi dμ − σ 3

6mH

ˆ
�σ
1

vtL fi dμ

∣∣∣∣∣ ≤ C

σε
‖vt‖L2(�σ

1 )

by (50), and
∣∣∣∣∣

ˆ
�σ
1

vdL fi dμ

∣∣∣∣∣ ≤ C

σ
5
2+ε

‖vd‖L2(�σ
1 )

by (51). Using the fact that L v = Ric(ν, ν) + O(σ−3−ε) by (82), Lemma A.3 from [40]
(a result showing that

´
�σ
1
Ric(ν, ν)xi dμ = O(σ−ε) which is fully Riemannian and thus

directly carries over to our spacetime context), and integration by parts, we obtain as in
Lemma 6 that

∣∣∣∣∣

ˆ
�σ
1

vL fi dμ

∣∣∣∣∣ ≤
∣∣∣∣∣

ˆ
�σ
1

fiL v dμ

∣∣∣∣∣ + 2

∣∣∣∣∣

ˆ
�σ
1

P

H
K

(
v∇�σ

1 fi − fi∇�σ
1 v, ν

)
dμ

∣∣∣∣∣

≤ Cσ−2−ε + Cσ−3−ε‖v‖L2(�σ
1 ).

Combining these estimates, we get, again grouping terms as in Lemma 6, that

‖vt‖L2(�σ
1 ) ≤ Cσ

1
2−ε‖vd‖L2(�σ

1 ) + Cσ 1−ε,

which, together with (83), gives

‖vd‖W 2,2(�σ
1 ) ≤ Cσ

1
2−ε, ‖vt‖L2(�σ

1 ) ≤ Cσ 1−ε.

Finally, Corollary 1 gives us

‖v‖W 2,2(�σ
1 ) ≤ C

(
σ 2‖L v‖L2(�σ

1 ) + ‖v‖L2(�σ
1 )

)
≤ Cσ 1−ε.

Then ‖v‖W 2,2(�σ ) ≤ Cσ 1−ε, so by Lemma 12 we get that u = 1 + v = 1 + O(σ−ε) is
strictly positive for all σ > σ . This shows that 
1 is indeed injective.

Surjectivity. By construction, the STCMC-surfaces �σ = 
1(σ,S2) for σ > σ are in
the class of asymptotically centered surfaces A (0, b, η) for some b > 0 and η ∈ (0, 1]. In
particular, recalling Proposition 1, each�σ can be written as a graph over a sphere enclosing
the interior region of M3. Suppose p ∈ M3 is in the exterior region of some �σ with
σ > σ . By comparability of the coordinate and mean curvature radii for surfaces in the class
A (0, b, η) (see (19) and (20)), we can find σ̃ > σ such that p lies in the region enclosed
by �σ̃ , and hence in the annulus Aσ,̃σ between �σ = 
1(σ,S2) and �σ̃ = 
1(̃σ ,S2).
Since 
1 : [σ,∞) × S

2 → M3 is continuous it follows that Aσ,̃σ = 
1([σ, σ̃ ] × S
2) hence

p = 
1(σ̂ , q) for some σ̂ ∈ [σ, σ̃ ] and q ∈ S
2. As σ > σ was arbitrary, this proves

surjectivity. ��
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6.3 Uniqueness of STCMC-surfaces

We close this section by proving that the constant spacetime mean curvature surfaces are
unique in the a priori class of asymptotically centered surfaces A (a, b, η). As Brendle and
Eichmair [8] constructed examples of asymptotically Euclidean Riemannian manifolds with
“off-center” (i.e. not included in the a priori class) CMC-surfaces provided Scal ≥ 0 is
violated, we will restrict our uniqueness statements to the a priori class—at least when not
assuming the dominant energy conditionμ ≥ |J |g . To the best knowledge of the authors, it is
not known whether such examples can also be constructed if the dominant energy condition
or its Riemannian analog Scal ≥ 0 are satisfied.

The uniqueness result is proven in a similar way as the existence result of Sect. 6.1, namely
by the method of continuity. The “starting point" of the method of continuity is the following
result from [40], again adapted to our notation.

Theorem 3 (Nerz 2015) Let a ∈ [0, 1), b ≥ 0, and η ∈ (0, 1] be constants and let (M3, g)
be a C2

1/2+ε-asymptotically Euclidean manifold viewed as a C
2
1/2+ε-asymptotically Euclidean

initial data set I0 = (M3, g, K ≡ 0, μ = 1
2Scal, J ≡ 0) with non-vanishing energy

E �= 0. Then there is a constant σI0 depending only on ε, a, b, η, CI0 , and E, such that
for all σ > σI0 , there is a unique surface �σ

0 ∈ A (a, b, η) with constant mean curvature
H(�σ

0 ) ≡ 2/σ with respect to I0.

Our uniqueness result generalizes this to STCMC-surfaces in the spacetime context.

Theorem 4 (Uniqueness of STCMC-foliation) Let a ∈ [0, 1), b ≥ 0, and η ∈ (0, 1] be
constants and let I1 = (M3, g, K , μ, J ) be a C2

1/2+ε-asymptotically Euclidean initial data
set with non-vanishing energy E �= 0. Then there is a constant σI1 depending only on ε, a,
b, η, CI1 , and E, such that for all σ > σI1 , there is a unique surface �σ

1 ∈ A (a, b, η) with
constant spacetime mean curvature H (�σ

1 ) ≡ 2/σ1 with respect to I1.

Proof We rely on the same type of argument as in the proof of Theorem 2. Fix a surface �σ
1

as in the assumptions, with σ > σI1 . We now drop the explicit reference to σ for notational
convenience, as σ will not be modified in this proof. Let Z ⊆ [0, 1] be a maximal subset
such that there is a C1-map � : Z × S

2 → M3 with the following properties for all τ ∈ Z :

(i) �(1,S2) = �1,
(ii) �τ := �(τ,S2) has constant spacetime mean curvature H (�τ ) ≡ 2/σ with respect to

the initial data set Iτ , where Iτ is defined as in the proof of Theorem 2,
(iii) ∂τ� is orthogonal to �τ .

Maximality is understood as in the proof of Theorem 2. Arguing as in the proof of Theorem
2, we conclude that Z = [0, 1] and that there are constants aI1 ∈ [0, 1), bI1 ≥ 0 and
ηI1 ∈ (0, 1] such that �τ ∈ A (aI1 , bI1 , ηI1) for every τ ∈ [0, 1], if σI1 suitably large,
depending only on ε, a, b, η, CI1 , and E . In particular, we see that �0 ∈ A (aI1 , bI1 , ηI1)

is a surface with constant mean curvature H(�0) ≡ 2/σ with respect to I0
4. By Theorem 3,

such a surface is unique in this class. By the method of continuity approach and the local
uniqueness in the Implicit Function Theorem, the map � is uniquely determined also by its
start value �(0,S2) = �0. It follows directly that �1 = �(1,S2) is uniquely determined by
its spacetime mean curvature in I1. ��
4 Note that although it was assumed throughout the proof of Theorem 2 that a = 0, this proof extends
straightforwardly to deal with the general case a ∈ [0, 1). In fact, in the view of Lemma 8, we may set
aI1

= a.
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Remark 11 As pointed out in Sect. 3, uniqueness of STCMC-surfaces in asymptotically
Euclidean initial data sets — even those with positive energy E > 0 — cannot hold without
further assumptions on the surfaces as was shown by Brendle and Eichmair [8] (for CMC-
surfaces in asymptotically Euclidean Riemannian manifolds, and hence by definition for
STCMC-surfaces in time-symmetric asymptotically Euclidean initial data sets). As Theo-
rem4 asserts, the condition that an STCMC-surface�σ withH (�σ ) ≡ 2/σ be asymptotically
centered in the sense that �σ ∈ A (a, b, η) is a (strong) sufficient condition guaranteeing
uniqueness of �σ .

For CMC-surfaces in asymptotically Euclidean Riemannian manifolds, uniqueness has
been proven under much weaker assumptions on the CMC-surfaces �σ with H(�σ ) ≡ 2/σ

than �σ ∈ A (a, b, η) (but under stronger asymptotic decay assumptions than C2
1/2+ε-

asymptotic flatness), most notably by Ye [48], Qing and Tian [43], Ma [33], Carlotto,
Chodosh, and Eichmair [9], and Chodosh and Eichmair [15]. It would certainly be interesting
to understand uniqueness of STCMC-surfaces under weaker assumptions on the surfaces;
note however that STCMC-surfaces do not naturally arise from a variational principle and
in particular that the STCMC-stability operator LH derived in Lemma 1 is non-selfadjoint.
This rules out some of the elegant methods used in the proofs of the aforementioned results.
Such weaker uniqueness properties of STCMC-surfaces will be investigated in future work.

7 The coordinate center of the STCMC-foliation

Let {�σ }σ>σ be a foliation of a C2
1/2+ε-asymptotically Euclidean initial data set (M3, g,

K , μ, J ) for which�σ grows to the round sphere at infinity as σ → ∞. Then we may define
the coordinate center of this foliation as the limit limσ→∞ �z σ , where �z σ = �z (�σ ) is the
coordinate center of �σ as defined in Definition 4, provided that this limit exists (in R3). We
would like to draw the attention of the reader to the fact that, while the foliations considered
here do not depend on the choice of asymptotic coordinates �x , the coordinate centers �z σ and
as a consequence also their limit, do depend on �x . We will discuss the subtle consequences
of this within this section, too.

Let us first consider the case of the CMC-foliation: In this case, {�σ }σ>σI 0
is the unique

foliation of a given C2
1/2+ε-asymptotically Euclidean manifold (M3, g) or initial data set

I0 = (M3, g, K ≡ 0,Scal, J ≡ 0) by surfaces of constant mean curvature constructed in
[29,36,40] and discussed in Section 6 above. Under the additional assumption that (M3, g)
satisfies the RiemannianC2

1+ε-Regge–Teitelboim condition (see Definition 3), the coordinate
center of this foliation is well-defined if and only if the Beig–Ó Murchadha center of mass
�CBÓM given by (6) is well-defined as was shown by [28,40]. They also show that in this case,
one has

�CCMC := lim
σ→∞ �z σ = �CBÓM. (84)

Now suppose that {�σ }σ>σI 1
is the unique foliation of aC2

1/2+ε-asymptotically Euclidean

initial data set I = (M3, g, K , μ, J ) by surfaces of constant spacetime mean curvature as
constructed in Theorem 2. One cannot in general expect that (84) also holds for the STCMC-
foliation because the foliation is defined in terms of K , whereas the Beig–Ó Murchadha
center of mass is a purely Riemannian quantity, i.e. independent of K . One can only expect
that (84) will hold if K falls off very fast, in particular faster than the optimal decay assumed
in this paper. In this section we will confirm that this is indeed the case.
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7.1 A variational formula for STCMC-surfaces

The following proposition generalizes [40, Proposition 6.5] to the spacetime case.

Proposition 3 For b ≥ 0 and η ∈ (0, 1], let � ∈ A (0, b, η) be a closed, oriented constant
spacetime mean curvature 2-surface with spacetime mean curvature H ≡ 2/σ , with outer
unit normal denoted by ν, in a C2

1/2+ε-asymptotically Euclidean initial data setI = (M3, g,

K , μ, J ). Consider a C1-map F : (−s0, s0) × � → M3 such that F (0, ·) = Id� . For
each s ∈ (−s0, s0), we let �zs = (z1s , z

2
s , z

3
s ) denote the coordinate center of the surface

�s = F (s, �) and consider the lapse u := g((∂sF ) | s=0 , ν) of the foliation.
Then there are constants C > 0 and σ > 0 depending only on ε, b, η, CI such that

∣∣∣∣ (∂s z
i
s)

∣∣∣
s=0

− 3

|�|
ˆ

�

uνi dμ

∣∣∣∣ ≤ C

σ
3
2+ε

‖u‖L2(�), i = 1, 2, 3, (85)

provided that σ > σ .

Proof Since the coordinate center of a surface is invariant under tangential diffeomorphisms
(along �), we may without loss of generality assume thatF is a normal variation of �, such
that in particular (∂sF )|s=0 = uν holds on �.

By definition,

zis = 1

|�s |δ
ˆ

�s

x is dμδ.

Using the variation of area formula and adding rich zeroes in the third and the fourth lines,
we compute, dropping the explicit reference to δ in the denominator,

(∂s z
i
s)

∣∣∣
s=0

= 1

|�|
(ˆ

�

uνi dμδ +
ˆ

�

xi uH δ dμδ − 1

|�|
ˆ

�

xi dμδ

ˆ
�

uH δ dμδ

)

= 1

|�|
(ˆ

�

uνi dμδ +
ˆ

�

(xi − zi )uH δ dμδ

)

= 1

|�|
(ˆ

�

uνi dμδ + 2
ˆ

�

xi − zi

r
u dμδ +

ˆ
�

(xi − zi )u

(
H δ − 2

r

)
dμδ

)

= 1

|�|
(
3
ˆ

�

uνi dμδ + 2
ˆ

�

(
xi − zi

r
− νi

)
u dμδ +

ˆ
�

(xi − zi )u

(
H δ − 2

r

)
dμδ

)
.

Now subtract and add the component (νδ)i of the δ-outward unit normal νδ to� in the bracket
of the second term and recall the fact that � can be written as a graph over S2r (�z ) with graph

function f satisfying ‖ f ‖W 2,∞ = O(r
1
2−ε) by Proposition 1. Then, by comparability of |�x |

and r as established in Proposition 1, we find, recalling a = 0 in our case,

�ν δ = �x − �z
|�x − �z| + O(σ− 1

2−ε) = �x − �z
r

+ O(σ− 1
2−ε). (86)

Applying the Cauchy–Schwarz Inequality to the above identity for (∂s zis) | s=0 and using
(86), Lemma 11, and (25) to estimate the individual terms, respectively, we obtain (85). ��
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7.2 STCMC-center of mass

In Sect. 6, we constructed the unique STCMC-foliation of a C2
1/2+ε-asymptotically Euclidean

initial data set I = (M3, g, K , μ, J ), i.e. the unique foliation by surfaces {�σ
1 }σ>σ1 of

constant spacetime mean curvature H (�σ
1 ) ≡ 2/σ , provided it has non-vanishing energy

E �= 0. This was achieved by deforming the constant mean curvature foliation {�σ
0 }σ>σ0

of the C2
1/2+ε-asymptotically Euclidean manifold (M3, g) from Theorem 1 along the curve

of initial data sets {Iτ }τ∈[0,1], where the initial data set Iτ = (M3, g, τK , μτ , τ J ) is as
described in Sect. 3.1. We will now apply Proposition 3 to find how the coordinate center of
a leaf changes under this particular deformation. As a result, we prove Lemma 10 relating
the respective coordinate centers �z σ

0 and �z σ
1 of the surfaces �σ

0 and �σ
1 . Note that for the

proof of this result, it is necessary to assume that the fall-off rate of K is K = O(|�x |−2),
which is faster than we originally assumed in Definition 1 and in particular faster than one
needs for existence and uniqueness of the foliation. See also Conjecture 1 below.

Lemma 10 Let I = (M3, g, K , μ, J ) be an STCMC-foliated C2
1/2+ε-asymptotically

Euclidean initial data set with non-vanishing energy E �= 0. Assume in addition that

|K | ≤ CI |�x |−2 (87)

for �x ∈ R
3 \ BR(0), with �x the asymptotic chart.

Then there exist constants C > 0, σ > 0 depending only on ε, CI , and E such that for
i = 1, 2, 3 we have for all σ > σ

∣∣∣∣∣(z
σ
1 )i − (zσ0 )i − 1

32πE

ˆ
S2σ

xi
(∑

k,l πkl xk xl
)2

σ 3 dμδ

∣∣∣∣∣ ≤ C

σε
, (88)

where (zσ0 )i and (zσ1 )i denote the components of the coordinate centers �z σ
0 and �z σ

1 of the
STCMC-surfaces �σ

0 and �σ
1 with respect to I0 and I1 as defined above, respectively.

Remark 12 Instead of assuming K = O(|�x |−2), one could also assume Regge–Teitelboim
conditions on K by carefully tracking all even and odd parts or identify other sufficient decay
conditions, as necessary for what one wants to do. For our purposes, it is enough to assume
K = O(|�x |−2).

Remark 13 Assumption (87), Equation (93) in the proof below, and theMeanValue Theorem
imply that there exists a constant C > 0 depending only on ε, CI , and E such that

|�z σ
1 − �z σ

0 | ≤ C for any σ > σ.

However, either or both of the limits

�CCMC = lim
σ→∞ �z σ

0 and �CSTCMC := lim
σ→∞ �z σ

1 ,

may fail to exist. On the other hand, �CSTCMC = limσ→∞ �z σ
1 converges if and only if

lim
σ→∞

{
�z σ
0 − 1

32πE

ˆ
S2σ

(∑
k,l πkl xk xl

)2 �x
σ 3 dμδ

}

converges. This in particular shows that K can in a sense “compensate” for the diverging
coordinate center of the CMC-foliation. See Sect. 9 for more details on this.
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Proof First, note that the constantsCIτ are uniformly bounded by the constantCI . Second,
pick constants b ≥ 0 and η ∈ (0, 1] that will remain fixed in this argument and always use
the class A (0, b, η) in what follows. Also, C > 0 and σ > 0 denote generic constants that
may vary from line to line, but depend only on ε, CI , and |E | (as well as on our global
choice of b and η). From now on we assume that σ > σ is fixed. For our choice of σ and for
τ ∈ [0, 1], we let ziτ = (zστ )i , i = 1, 2, 3, denote the components of the coordinate center
�z (�σ

τ ) of the unique surface �σ
τ of constant spacetime mean curvatureH (�σ

τ ) ≡ 2/σ in the
initial data set Iτ (see Sect. 6 for details). Since the index σ is assumed to be fixed, it will
be suppressed in the remainder of this proof.

According to Proposition 3, the variation of the coordinate center with respect to τ is given
by the formula

∣∣∣∣∂τ z
i
τ − 3

|�τ |
ˆ

�τ

uτ ν
i
τ dμ

∣∣∣∣ ≤ C

σ
3
2+ε

‖uτ‖L2(�τ ), (89)

where uτ is the respective lapse function for an arbitrary τ ∈ [0, 1] and ντ is the outward
pointing unit normal to �τ ↪→ (M3, g). In order to pass from (89) to (88), we will apply
Lemma 6 with δ = 2−ε ≥ 3

2 . By this, we have thatL uτ = O(σ−3), ‖(uτ )
t‖W 2,2(�τ ) ≤ Cσ

and ‖(uτ )
d‖W 2,2(�τ ) ≤ Cσ

1
2−ε .

Next, by (32) and Lemma 11 we have
∥∥∥∥∥

√
3

|�τ | νiτ − f iτ

∥∥∥∥∥
L2(�τ )

≤ C

σ
1
2+ε

, (90)

where f iτ denotes the i-th eigenfunction of the operator −��τ , see Sect. 5.2. Then we may
rewrite (89) by a Cauchy–Schwarz Inequality and Lemma 6 with δ = 2 − ε as

∣∣∣∣∣∂τ z
i
τ −

√
3

|�τ |
ˆ

�τ

uτ f iτ dμ

∣∣∣∣∣ ≤ C

σ
3
2+ε

‖uτ‖L2(�τ ) ≤ C

σ
1
2+ε

.

At the same time, Proposition 2 implies that
∣∣∣∣∣

√
3

|�τ |
ˆ

�τ

uτ f iτ dμ − σ 3

2
√
3mH

√|�τ |
ˆ

�τ

f iτ L (uτ )
t dμ

∣∣∣∣∣ ≤ C

σε

‖(uτ )
t‖L2(�τ )√|�τ | ≤ C

σε
,

where mH is the Hawking mass of �τ with respect to Iτ . Recall that |mH − E | ≤ Cσ−ε

by Proposition 2 so that mH �= 0 follows from E �= 0. Thus,
∣∣∣∣∂τ z

i
τ − σ 3

2
√
3mH

√|�τ |
ˆ

�τ

f iτ L (uτ )
t dμ

∣∣∣∣ ≤ C

σε
. (91)

Note that a computation in the proof of Lemma 6 shows thatˆ
�τ

f iτ L (uτ )
d dμ =

ˆ
�τ

(uτ )
dL f iτ dμ + Cσ−4‖ud‖L2(�τ )

≤ C

σ
5
2+ε

‖ud‖L2(�τ ) ≤ Cσ−2−2ε,

hence
´
�τ

f iτ L (uτ )
t dμ = ´

�τ
f iτ L uτ dμ + O(σ−2−2ε). Consequently, in view of (66)

and (90) and the Cauchy–Schwarz Inequality, (91) is equivalent to
∣∣∣∣∂τ z

i
τ − σ

8πmH

ˆ
�τ

τ(tr�τ K )2

H�τ

νiτ dμ

∣∣∣∣ ≤ C

σε
. (92)
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Since the expression in the integral is of order O(σ−3) as mentioned above, and since

tr�τ K = tr K − K (ντ , ντ ) = π(ντ , ντ ),

using as before the fact that mH = E + O(σ−ε) along the STCMC-foliation, we conclude
by Lemma 11 that

∣∣∣∣∣∂τ z
i
τ − τ

16πE

ˆ
S2σ

xi
(∑

k,l πkl xk xl
)2

σ 3 dμδ

∣∣∣∣∣ ≤ C

σε
. (93)

Integrating this with respect to τ over [0, 1], we obtain (88). ��
Theorem 5 (STCMC-coordinate expression) Let I = (M3, g, K , μ, J ) be a C2

1/2+ε-
asymptotically Euclidean initial data set for some ε > 0 and with respect to an asymptotic
coordinate chart �x : M3 \ B → R

3 \ BR(0) and decay constant CI , with non-vanishing
energy E �= 0. Assume in addition that

|K | ≤ CI |�x |−2 (94)

for all �x ∈ R
3\BR(0) and that g satisfies the RiemannianC2

3/2+ε-Regge–Teitelboim condition.

Then the coordinate center �CSTCMC of the unique foliation by surfaces of constant space-
time mean curvature is well-defined if and only if the correction term

Zi := 1

32πE
lim
r→∞

ˆ
S2r

x i
(∑

k,l πkl xk xl
)2

r3
dμδ

limits exist for i = 1, 2, 3. In this case, we have

�CSTCMC = �CBÓM + �Z , (95)

where �CBÓM is the Beig–ÓMurchadha center of mass and �Z = (Z1, Z2, Z3), or equivalently

Ci
STCMC = 1

16πE
lim
r→∞

⎡

⎣
ˆ
S2r

⎛

⎝xi
∑

k,l

(∂kgkl − ∂l gkk)
xl

r
−

∑

k

(
gki

xk

r
− gkk

xi

r

)⎞

⎠ dμδ

+
ˆ
S2r

x i
(∑

k,l πkl xk xl
)2

2r3
dμδ

]
, i = 1, 2, 3.

Proof Since g satisfies the Riemannian C2
3/2+ε-Regge–Teitelboim condition, �CCMC is well-

defined and equal to �CBÓM, see [40, Theorem 6.3]. The result is then a direct consequence
of Lemma 10. ��
Remark 14 We expect that the coordinate center �CSTCMC of the spacetime mean curvature
foliation translates in a certain sense to the center of mass �CSz as defined by Szabados
[46]. Similar to (95), the definition of Szabados takes form �CSz = �CBÓM + �S, where �S
is characterized by the extrinsic curvature K of the initial data set and the time function t
which realizes this initial data set as a slice in an asymptotically Minkowskian spacetime.
The relation between �CSTCMC, �CSz, and the Chen–Wang–Yau-center of mass defined via
optimal isometric embeddings in Minkowski spacetime (see [14]) will be studied in detail in
our forthcoming work.
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Definition 5 We suggest to call the expression �CmBÓM := �CBÓM + �Z the modified Beig–Ó
Murchadha center of mass.

In Sect. 9, we will give an example that shows that the contribution of the correction term
�Z is indeed relevant and fixes a problem of the CMC-center of mass uncovered in [11].

Remark 15 It is not obviouswhichdecay conditions onI (e.g. versions ofRegge–Teitelboim,
faster decay assumptions on K , etc.) are sufficient to ensure convergence of the correction
term �Z without forcing it to vanish entirely. This will be studied in detail in our forthcoming
work. More importantly, sufficient conditions for convergence of �CSTCMC that do not force
vanishing of �Z in accordance with the example studied in Sect. 9 will also be studied in our
forthcoming work.

We conjecture the following necessary condition, in linewith Bartnik’s [3] andChruściel’s
[18] corresponding results for convergence of ADM-energy andADM-linearmomentum, see
also Cederbaum and Nerz [11].

Conjecture 1 We conjecture that there is a geometric condition on asymptotic coordinates �x
ensuring that the coordinate expression we derived will converge for asymptotic coordinates
�x if μxi ∈ L1(M3). This condition plays the role of identifying center of mass coordinates
in the Newtonian sense.

8 Time-evolution and Poincaré-equivariance of the STCMC-center of
mass

8.1 Evolution

In this section, we will study the evolution of the coordinate center of the unique foliation
by surfaces of constant spacetime mean curvature under the Einstein evolution equations.
We will show that the STCMC-center of mass has the same evolution properties as a point
particle in special relativity, evolving according to the formula

d

dt
�CSTCMC = �P

E
.

Note that the analogous formula is valid for the CMC-center of mass and also for Chen–
Wang–Yau’s center of mass, although under stronger decay assumptions, see [38] and [14],
respectively.

Theorem 6 (Time-evolution of STCMC-foliation) Let (R × M3, g) be a smooth, globally
hyperbolic Lorentzian spacetime satisfying the Einstein equations with energy momentum
tensor T. Suppose that, outside a set of the form R × K , K ⊂ M3 compact, there is a
diffeomorphism IdR × �x : R×(M3 \K ) → R×(R3 \BR(0))which gives rise to asymptotic
coordinates (t, �x) on R × (M3 \ K ).

Assume that I0 = ({0} × M3, g, K , μ, J ) ↪→ (R × M3, g) is a C2
1/2+ε-asymptotically

Euclidean initial data set with respect to the coordinate chart �x and with E �= 0, and
suppose additionally that K = O1(|�x |−2) with constant CI as |�x | → ∞. Now consider
the C1-parametrized family of C2

1/2+ε-asymptotically Euclidean initial data sets

I (t) = ({t} × M3, g(t), K (t), μ(t), J (t)) ↪→ (R × M3, g)
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with respect to �x which starts fromI (0) = I0, and which exists for all t ∈ (−t∗, t∗) for some
t∗ > 0. Assume furthermore that the constants CI (t) are uniformly bounded on (−t∗, t∗),
without loss of generality such that CI (t) ≤ CI0 .

Assume the foliationI (t) has initial lapse N = 1+O2(|�x |− 1
2−ε) as |�x | → ∞with decay

measuring constant denoted by CN and initial shift X = 0, and suppose furthermore that

the initial stress tensor S of I0 satisfies S = O(|�x |− 5
2−ε) as |�x | → ∞. There is a constant

t > 0, depending only on ε, CI0 , CN , and E(0) such that the following holds: If the initial
data set I0 has well-defined STCMC-center of mass �CSTCMC (0) then the STCMC-center of
mass �CSTCMC (t) of I (t) is also well-defined for |t | < t . Furthermore, the initial velocity at
t = 0 is given by

d

dt

∣∣∣∣
t=0

�CSTCMC = �P
E

. (96)

Moreover, we have that d
dt

∣∣
t=0 E = 0 and d

dt

∣∣
t=0

�P = �0.
Remark 16 In fact, one gets more information about the evolution of the STCMC-center of
mass from the proof of Theorem 6: Not only the coordinate expression �CSTCMC evolves
according to (96), but also the individual leaves of the <STCMC-foliation evolve in a way

more and more close to a translation in direction
�P
E according to formula (105).

Remark 17 We expect that the evolution of the leaves of the STCMC-foliation as well as
the evolution of �CSTCMC can actually be understood when replacing the condition K =
O1(|�x |−2) by more natural conditions related to integrability criteria on the constraints when
integrated against �x . We will investigate this in our forthcoming work, see also Remark 15
and Conjecture 1.

Remark 18 It is straightforward to prove a version of this theorem allowing for non-vanishing
shift. As this is not of primary interest here and can also be fixed by a suitable gauge, we will
not go in this direction.

Proof Throughout this proof, dotted quantities like for example Ė will denote time derivatives
at t = 0, e.g. Ė = d

dt E
∣∣
t=0. Moreover, σ > 0, t > 0, and C > 0 denote generic constants

that may vary from line to line, but depend only on ε, CI0 , and E(0) as well as on CN (0),
the constant in the O-term of N . The Einstein evolution equations with zero shift are given
at t = 0 by

ġi j :=
d

dt

∣∣∣∣
t=0

gi j = 2NKi j
∣∣
t=0 = O(|�x |− 3

2−ε), (97)

K̇ i j := d

dt

∣∣∣∣
t=0

Ki j

= {Hessi j N + N (Rici j − Rici j + 2Kk
i K jk − tr KKi j )}

∣∣∣
t=0

= O(|�x |− 5
2−ε), (98)

whereRic is the Ricci tensor of the spacetime (R× M3, g), which is completely determined
by the stress-energy tensor T through the Einsteins equations

Ric − 1

2
Scal g = T.
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Here, we used that Scal = − trg T = O(|�x |− 5
2−ε) and thus Rici j = O(|�x |− 5

2−ε). In
particular, we see from the ADM-formulas (3) and (4) respectively that the energy and linear

momentum satisfy Ė = 0 and �̇P = �0, with respect to this variation. Also, as E(0) �= 0 and
E(t) is continuous, the initial data sets I (t) have a unique foliation by surfaces of constant
spacetime mean curvature near infinity for |t | < t and mean curvature radii σ > σ . This
foliation depends in a C1-fashion on t for |t | < t which can be seen as follows: Perform a
method of continuity procedure around t = 0 as in the proof of Theorems 2, 4 or in the proof
of Lemma 9. Note that, as the initial shift X was chosen to vanish, X = 0, we in fact know
that the STCMC-surface variation is normal at t = 0. This gives you an STCMC-foliation
of I (t) for each |t | < t which depends on t in a C1-fashion. By Theorem 4, this family of
foliations must coincide with the one studied here and must thus depend on t in aC1-fashion.

Now fix σ > σ and let �t denote the unique leaf of the STCMC-foliation with constant
spacetime mean curvatureH (�t ,I (t)) ≡ 2/σ in the initial data setI (t), where |t | < t . For
this, we use the product rule to see that

0 = d

dt

∣∣∣∣
t=0

H (�t ,I (t)) = d

dt

∣∣∣∣
t=0

H (�t ,I (0)) + d

dt

∣∣∣∣
t=0

H (�0,I (t)). (99)

Thefirst termon the right showshow the spacetimemeancurvature changes if�t is considered
to be a varying surface in the initial data set I (0). As the initial shift vanishes and we thus
have an initially normal variation, this term exactly gives our well-known linearization LH u,
where the operator LH is as defined in Lemma 1 and u is the initial lapse function of the
normal variation. The second term on the right shows how the spacetime mean curvature
changes if � is considered to be a fixed surface in the varying initial data set I (t). More
precisely, this term is

d

dt

∣∣∣∣
t=0

H (�0,I (t)) = H Ḣ − P Ṗ√
H2 − P2

,

where H = H(0) and P = P(0).
In order to compute Ḣ = d

dt

∣∣
t=0 H(�0,I (t)), we introduce geodesic normal coordinates

in a neighborhood U ⊂ M3 of �0, with yn such that ∂n is the outer unit normal to the level
set {yn = const.}, in particular ∂n = ν on �0, and yα , α = 1, 2, are some coordinates on �0

transported to U along the flow generated by ∂n . Note that in this case gnn = 1, gnα = 0,
and

Aαβ = g(∇α∂n, ∂β) = �
γ
αngγβ = �

γ
nβgγα = −�n

αβ, (100)

�n
nα = 0, (101)

�
γ
αβ = (��0)

γ
αβ (102)

in U , for all α, β, γ = 1, 2. We will now drop the index on �0 and just write � instead
for notational convenience. We use the standard formula for the variation of the second
fundamental form when the ambient metric is changing (see e.g. Section 3 in [32]5) and
compute, using first (97) and (98), second the decay properties of N and the decay estimate
for the second fundamental form A = H

2 g
� + Å, with g� the metric induced on � byI (t),

namely

|A| ≤ C

σ

5 Note that our sign convention for the second fundamental form is the opposite of [32].
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from Proposition 1, third adding some rich zeros, fourth because J = O(σ−3−ε) by assump-
tion, fifth (100), (101), (102), and finally (25) and Proposition 1 to obtain

Ḣ = ġαβ Aαβ + gαβ Ȧαβ

= ġαβ Aαβ − 1

2
gαβ(2∇α ġnβ − ∇n ġαβ − Aαβ ġnn)

= −2K αβ Aαβ − 2gαβ∇αKnβ + gαβ∇nKαβ + HKnn + O(σ−3−ε)

= −H tr� K − 2∇ i Kni + ∇n tr K + ∇nKnn + HKnn + O(σ−3−ε)

= −H tr� K − J (ν) − ∇αKnα + HKnn + O(σ−3−ε)

= −H tr� K − (
div� K (·, ν) − K αβ Aαβ + HKnn

) + HKnn + O(σ−3−ε)

= − div� K (·, ν) − 1

σ
tr� K + O(σ−3−ε),

where J is the momentum density defined on page 4.
Further, let η denote the timelike future unit normal vector field to M3 ↪→ (R × M3, g).

Then it is straightforward to check that, by (97), (98), the decay assumptions on the initial
data set and on N , as well as the definition of μ and S from page 4

Ṗ = ġαβKαβ + gαβ K̇ αβ

= −2N |K |2 + tr� K̇

= −2N |K |2 + ��N + Hν(N ) + N tr� Ric − tr� Ric + 2 tr�(K ◦ K ) − tr K tr� K )

= N tr� Ric + O(σ− 5
2−ε)

= N (Scal − Ric(ν, ν) + Ric(η, η)) + O(σ− 5
2−ε)

= N (− trg T − (T(ν, ν) − 1

2
trg T) + (T(η, η) + 1

2
trg T)) + O(σ− 5

2−ε)

= N (−T(ν, ν) + T(η, η)) + O(σ− 5
2−ε)

= N (−S(ν, ν) + μ) + O(σ− 5
2−ε)

= O(σ− 5
2−ε).

Summing up and multiplying by
√
1 − ( P

H )2, it follows from (99) that

L u = −Ḣ + P

H
Ṗ = div� K (·, ν) + 1

σ
(tr K − K (ν, ν)) + O(σ−3−ε), (103)

where the operatorL is given by (27). This uniquely defines u ∈ W 2,2(�) by the invertibility
of L , see Proposition 2 as the right hand side is bounded and thus in L2(�).

In order to compute the initial velocity ofI (0), we first need to compute the initial velocity
�̇z of the Euclidean coordinate center

�z (t) = 1

|�t |δ
ˆ

�t

�x dμδ

of �t . We remind the reader that we chose coordinates �x which do not depend on t . Relying
on Proposition 3, we will now compute the variation of the coordinate center, �̇z, starting from
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the variation formula
∣∣∣∣ż

i − 3

|�|
ˆ

�

uνi dμ

∣∣∣∣ ≤ C

σ
3
2+ε

‖u‖L2(�). (104)

The idea is to argue as in the proof of Lemma 10 and pass from u to L u, and from νi to fi
in (104). For this we note that since I is C2

1/2+ε-asymptotically Euclidean, and since K has

faster fall-off K = O1(|�x |−2), we haveL u = O(|�x |−3) by (103). A computation identical
to the one in the proof of Lemma 10 yields

∣∣∣∣ż
i − σ 3

2
√
3E

√|�|
ˆ

�

fi L u dμ

∣∣∣∣ ≤ C

σε
.

Thus, (103) and integration by parts give us
∣∣∣∣ż

i + σ 3

2
√
3E

√|�|
ˆ

�

(
K

(
ν,∇� fi + ν

σ
fi
)

− 1

σ
fi tr K

)
dμ

∣∣∣∣ ≤ C

σε
.

Recall that � is approximated by the coordinate sphere S2σ , as described in Section 4. In
particular, the functions fi , i = 1, 2, 3, are close to the respective eigenfunctions f δ

i of the
Laplacian −�Sσ , see (32). Thus

∣∣∣∣∣ż
i + σ 2

4
√
3πE

ˆ
S2σ

(
K

( �x
σ

,∇S
2
σ f δ

i + �x
σ 2 f δ

i

)
− 1

σ
f δ
i tr K

)
dμ

∣∣∣∣∣ ≤ C

σε
,

where �x
σ
is the unit normal vector to S2σ ↪→ (R3, δ). Furthermore, a computation shows that

∇S
2
σ f δ

i =
√
3√

4πσ 2
∂xi − �x

σ 2 f δ
i .

Since f δ
i =

√
3xi√
4πσ 2 and since gi j = δi j + O(σ− 1

2−ε), we finally arrive at

∣∣∣∣ż
i − 1

8πE

ˆ
|�x |=σ

πi j
x j

σ
dμ

∣∣∣∣ ≤ C

σε
. (105)

Passing to the limit when σ → ∞ we obtain the result. ��

8.2 Poincaré-equivariance and accordance with Special Relativity

As we have seen before, whether or not a given 2-surface is STCMC is in fact independent of
a choice of slice (as well as of a choice of coordinates). In this sense, STCMC-surfaces are
equivariant in the sense of General Relativity. The role of the initial data set then is to select
a unique family of STCMC-surfaces near the asymptotic end of the spacetime, forming
its abstract STCMC-center of mass. In this sense, STCMC-foliations and the associated
(abstract) center of mass are Poincaré-equivariant.

We will now discuss the transformation behavior of the STCMC-coordinate center under
the asymptotic Poincaré group of the ambient spacetime — remaining very sketchy in the
boost case. Dealing with angular momentum and treating the boost case more adequately
will be left for our future work. Let I = (M3, g, K , μ, J ) be an initial data set which is
C2

1/2+ε-asymptotically Euclidean with respect to asymptotic coordinates �x and has E �= 0.

Euclidean motions.Consider the coordinates �y := O �x+ �T , with O an orthogonal rotation
matrix and �T ∈ R

3 a translation vector. In other words, �y arises from �x through a Euclidean
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motion. Then, for each leaf �σ of the STCMC-foliation constructed in Theorem 2, we find
that the Euclidean center of �σ with respect to the �y-coordinates is given by

1

|�σ |δ
ˆ

�σ

�y dμδ = O

(
1

|�σ |δ
ˆ

�σ

�x dμδ

)
+ �T .

Thus, the STCMC-coordinate center

�C �y
STCMC = lim

σ→∞
1

|�σ |δ
ˆ

�σ

�y dμδ

with respect to the coordinates �y converges if and only the STCMC-coordinate center

�C �x
STCMC = lim

σ→∞
1

|�σ |δ
ˆ

�σ

�x dμδ

converges with respect to the coordinates �x converges and if they converge, we find

�C �y
STCMC = O �C �x

STCMC + �T
as one would expect from Euclidean Geometry, Newtonian Gravity, and from the description
of the spacetime position of a point particle in Special Relativity.

Time translations. The transformation behavior of �CSTCMC under asymptotic time trans-
lation corresponds to its evolution behavior under the Einstein equations. In other words,
Theorem 6 tells us under the additional assumption K = O1(|�x |−2) that

d

dt

∣∣∣∣
t=0

�CSTCMC = �P
E

which corresponds precisely to the instantaneous law of motion of a point particle in Special
Relativity.

Boosts. The last constituent of the asymptotic Poincaré group of the spacetime are of
course the asymptotic boosts. In a given (asymptotic region of a) spacetime

(R × M3, g = −N 2(dx0 + Xidx
i )(dx0 + X jdx

j ) + hi j dx
i dx j )

with asymptotic coordinates xα = (x0, xi ) and suitably decaying lapse N , shift X , and
tensor h, a boosted initial data set I = (M3, g, K , μ, J ) ↪→ (R × M3, g) is any spacelike
hypersurface arising as the set {y0 = 0} with respect to a boosted coordinate system yα :=
�α

βx
β , yα = (y0, �y ), meaning that the matrix � is a boost. If the lapse N , the shift X , and

the tensor h decay suitably fast in space and time coordinate directions, the boosted initial
data set {y0 = 0} = I is in fact C1

1/2+ε-asymptotically Euclidean with respect to �y. It is
thus reasonable to ask how the STCMC-coordinate centers of the initial data sets {x0 = 0}
and {y0 = 0} are related (if they converge). The corresponding question was addressed by
Szabados [46] for the BÓM-center of mass although from a slightly different perspective. Of
course, we expect that the STCMC-coordinate center boosts as implied by the equivariant
transformation of relativistic 4-angular momentum in Special Relativity. This can explicitly
be verified for example for a boosted slice (over the canonical slice) in the Schwarzschild
spacetime where in fact the centers both coincide with the center of symmetry �0. In this
example, the deviation �Z introduced in Theorem 5 in fact vanishes, so that the the CMC-
BÓM-center of mass already displays adequate transformation behavior. In view of Sect. 9
below, it is possible to construct examples of boosted slices in the Schwarzschild spacetime
by boosting the example discussed below. One can then see that the STCMC-center of mass
boosts equivariantly as expected from Special Relativity, while the CMC-BÓM-center of
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mass does not. However, the computation is so tedious that we prefer not to show it here as
it is not particularly enlightening.

We will discuss the transformation behavior of the STCMC-center of mass under boosts
more carefully in our future work, incorporating angular momentum, see also Remarks 15,
17.

9 A concrete graphical example in the Schwarzschild spacetime

As briefly sketched in Sects. 2, 3 and analyzed in more detail in Sect. 7, determining the
coordinate center of an asymptotic foliation is tricky and depends on choosing suitable coor-
dinates (see also Conjecture 1). In [11, Section 6], this was illustrated by explicitly computing
the coordinate center of the CMC-foliation of an asymptotically Euclidean “graphical” time-
slice in the Schwarzschild spacetime of mass m �= 0. This example, to be described in more
detail below, satisfies all assumptions in [29], in particular those of Theorem 4.2, but yet its
CMC-coordinate center does not converge. Equivalently, its BÓM-center also does not con-
verge. After a brief introduction to the graphical example discussed in [11], we will compute
that the STCMC-coordinate center (95) does in fact converge in this example and more-
over converges to the origin �0, i.e. to the center of symmetry of the spherically symmetric
spacetime as one would expect.

We consider the Schwarzschild spacetime (R× M3, g) of mass m �= 0 in Schwarzschild
coordinates, meaning that

M3 = (max{0, 2m},∞) × S
2 � (r , �η),

g = −N 2dt2 + g,

g = N−2dr2 + r2d�2,

N (r) =
√
1 − 2m

r
,

where d�2 denotes the canonical metric on S
2. We will freely switch between polar coor-

dinates (r , η) and the naturally corresponding Cartesian coordinates �x defined on M3. A
graphical time-slice in the (automatically vacuum) Schwarzschild spacetime is an initial data
set (M3

T , gT , KT , μT ≡ 0, JT ≡ 0) arising as the graph of a smooth function T : M3 → R

“over” the canonical time-slice {t = 0} (in time-direction), meaning that

MT := {t = T (�x) : �x ∈ M3},

while gT is the Riemannian metric induced on MT ↪→ (R × M3, g) and KT is the second
fundamental form induced by this embedding with respect to the future pointing unit normal.

Computing the CMC-coordinate center of mass (via the BÓM-center of mass). Clearly,
the center of mass of the canonical time-slice {t = 0} of the Schwarzschild spacetime is the
coordinate origin, �CCMC = �CBÓM = �0.Wewill now compute the center ofmass for graphical
time-slices with the asymptotic decay conditions on T chosen such that (M3

T , gT , KT , μT ≡
0, JT ≡ 0) is C2

1 -asymptotically Euclidean with respect to the coordinates �x . To most easily
comply with the asymptotic decay conditions specified in Sect. 2, we will assume that T =
Ok(r0) as r → ∞, with k ≥ 3.
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Now let �y := �x |MT denote the induced coordinates on MT . As computed in [11, Section
6], the metric gT and second fundamental form KT

6 are given by

(gT )i j = gT (∂yi , ∂y j ) = g(∂xi , ∂x j ) − N 2 T,i T, j = gi j − N 2 T,i T, j ,

(KT )i j = T,i N, j + T, j N,i + N∇2
i j T − N 2T,i T, j dN (gradg T )

√
1 − N 2|dT |2g

in the coordinates �y. A straightforward computation shows that the graphical initial data
set (M3

T , gT , KT , μT ≡ 0, JT ≡ 0) is indeed C2
1 -asymptotically Euclidean and in fact has

E = m �= 0.
When evaluating the BÓM-center of mass surface integral on a finite coordinate sphere

with respect to the �y-coordinates in MT , using s := |�y | and �η := �y
s , we find

[ �C
(
S
2
s (

�0 )
)]

l

= 1

16πm

ˆ
S2s (

�0 )

[(
(gT )i j,i − (gT )i i, j

) yl y j

s
−

(
(gT )il

yi

s
− (gT )i i

yl
s

)]
dμδ

= 1

16πm

{ˆ
S2s (

�0 )

[(
gi j,i − gii, j

) yl y j

s
−

(
gil

yi

s
− gii

yl
s

)]
dμδ

−
ˆ
S2s (

�0 )

(
(N 2T,i T, j ),i − (N 2T,i T,i ), j

) yl y j

s
dμδ

+
ˆ
S2s (

�0 )

(
N 2T,i T,l

yi

s
− N 2T,i T,i

yl
s

)
dμδ

}

= 1

16πm

{ˆ
S2s (

�0 )

[
−s�δT T, jη

jηl + s∇2
δ T (gradδ T , �η)ηl

]
dμδ

+
ˆ
S2s (

�0 )

[
T,iη

i T,l − |dT |2δ ηl

]
dμδ

}
+ O(s−1).

As in [11, Section 6]7 , we pick a fixed vector �0 �= �u ∈ R
3 and set

T : R3 \ B2m(�0 ) → R : �x �→ sin (ln r) + �u · �x
r

= O∞
(
r0

)
.

We point out that this choice of T ensures that (M3, gT , μT ≡ 0) satisfies the Riemannian
C2

1/2+ε-Regge–Teitelboim conditions so that [38, Cor. 4.2] or [40, Theorem 6.3] apply and

ensure that �CCMC = �CBÓM or that both diverge. One directly computes from the above

expression for �CBÓM

(
S
2
s (

�0 )
)
that

�CBÓM

(
S
2
s (

�0 )
)

= cos(ln s)

3m
�u + O(s−1)

6 The corresponding formula for the second fundamental form in [11] has a typo which we corrected here.
We thank Axel Fehrenbach for pointing this out to us.
7 In fact, we are using Schwarzschild coordinates, here, while in [11], isotropic coordinates are used. This
allows us to treat the case of m < 0 as well and does not affect the asymptotic computations.
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which diverges as s → ∞. Hence, the BÓM- and thus also the CMC-coordinate center
diverge in this example.

Computing the STCMC-coordinate center of mass (via Formula (95)). In order to check
whether the STCMC-coordinate center of the C2

1 -asymptotically Euclidean initial data set
(M3

T , gT , KT , μT ≡ 0, JT ≡ 0) converges, one needs to compute the STCMC-leaves �σ

and the coordinate averages �z (�σ ) and checkwhether they converge as σ → 0. However, the
proof of Theorem 5 asserts that �CSTCMC converges if and only if the coordinate expression
given in (95) converges, or in other words if and only if

�CSTCMC

(
S
2
s (

�0 )
)

= �CBÓM

(
S
2
s (

�0 )
)

+ �Z
(
S
2
s (

�0 )
)

converges as s → ∞, where we recall that, using E = m and (πT )kl = −(KT )i j +
trgT KT (gT )i j , we know that

Zi
(
S
2
s (

�0 )
)

= 1

32πm

ˆ
S2s (

�0 )

yi
(
(πT )kl yk yl

)2

s3
dμδ

= 1

32πm

ˆ
S2s (

�0 )

s2ηi
(
�δT − ∇2

δ T (�η, �η)
)2

dμδ + O(s−1)

= −cos(ln s)

3m
ui + O(s−1).

Our (diverging) spacetime correction term �Z thus precisely compensates for the divergence
occurring in �CCMC = �CBÓM. Hence the STCMC-coordinate center of the considered graph-
ical slice converges to �0 as desired.
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Appendix 1: Round surfaces in asymptotically Euclideanmanifolds

In this appendix we collect some standard results about closed surfaces in a C2
1/2+ε-

asymptotically Euclidean initial data setI = (M3, g, K , μ, J ) (seeDefinition 1 andRemark
2) that are repeatedly used in this paper.

Lemma 11 Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data set

with asymptotic coordinate chart �x : M3 \ B → R
3 \ BR(0) and let � ↪→ M3 \ B be a

closed, oriented 2-surface. Using the chart �x, we may also view� as a surface inR3 \ BR(0)
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equipped with the Euclidean metric δ, with the induced metric denoted by δ� . Then there
exist positive constants c and C depending only on ε and CI such that the following holds,
provided that the Euclidean distance to the coordinate origin |�x | on � satisfies |�x | ≥ c:

• The normals ν and νδ of � in the metrics g and δ satisfy

|ν − νδ| ≤ C |�x |− 1
2−ε,

|∇ν − ∇δνδ| ≤ C |�x |− 3
2−ε.

• The volume elements dμ and dμδ satisfy

dμ − dμδ = O(|�x |− 1
2−ε) dμ.

• The respective second fundamental forms A and Aδ satisfy

|A − Aδ| ≤ C(|�x |− 3
2−ε + |�x |− 1

2−ε|A|),
and the respective mean curvatures H and H δ are related via

|H − H δ| ≤ C(|�x |− 3
2−ε + |�x |− 1

2−ε|A|).
Furthermore, if ‖H‖L2(�) is a priori bounded, then the respective trace-free parts of the
second fundamental forms satisfy

‖ Åδ‖L2(�,δ�) ≤ C‖ Å‖L2(�,g�) + C |�x |− 1
2−ε

where C also depends on the bound on ‖H‖L2(�).

Proof See [36, Section 2.4] or [35, Section 1.5], where similar estimates are proven. ��
The following result is a Sobolev Embedding Theorem which holds for a very general

class of 2-surfaces. In Sect. 4 this result is applied to � being a large coordinate sphere
S
2
r (�z) ↪→ M3 \ B in the asymptotic end of an asymptotically Euclidean initial data set.

Note that in this case one can without loss of generality replace the area radius
√|�|/4π in

the formulation of Lemma 12 by the coordinate sphere’s radius r as these two radii are
uniformly equivalent. In the subsequent sections, this result is applied to � ↪→ M3 \ B
being an asymptotically centered closed 2-surface with constant spacetime mean curvature.
Here we are using the fact that (106) is available for large asymptotically centered surfaces
in M3 \ B in the form of [29, Proposition 5.4], which applies to asymptotically Euclidean
initial data sets with general asymptotics as described in Sect. 2.

Lemma 12 Let (�, g�) be a closed, oriented 2-surface with area radius r = √|�|/4π. If there
is a constant CS such that for any Lipschitz continuous function f on �, the so-called first
Sobolev Inequality

‖ f ‖L2(�) ≤ CS r
−1‖ f ‖W 1,1(�) (106)

holds, then we also have the Sobolev Inequality8

‖ f ‖L∞(�) ≤ 32C2
S r

−1‖ f ‖W 2,2(�) (107)

for any f ∈ W 2,2(�).

8 Note that the constant in (107) is not necessarily optimal.
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Proof With the first Sobolev Inequality (106) at hand, the following Sobolev Inequalities can
be derived for p > 2:

‖ f ‖L p(�) ≤ CS

2
p r

2
p −1‖ f ‖W 1,2(�) for any f ∈ W 1,2(�),

‖ f ‖L∞(�) ≤ 2
2(p−1)
p−2 CS r

− 2
p ‖ f ‖W 1,p(�) for any f ∈ W 1,p(�),

see e.g. [39, Proposition II.1.3] for details. As a consequence, for any f ∈ W 2,2(�)we have

‖ f ‖L∞(�) ≤ 2
2(p−1)
p−2 CS r

− 2
p ‖ f ‖W 1,p(�)

= 2
2(p−1)
p−2 CS r

− 2
p
(‖ f ‖L p(�) + r‖∇� f ‖L p(�)

)

≤ 2
2(p−1)
p−2 −1 p C2

S r
−1 (‖ f ‖W 1,2(�) + r‖∇� f ‖W 1,2(�)

)

≤ 2
2(p−1)
p−2 p C2

S r
−1‖ f ‖W 2,2(�).

for any p > 2. In particular, for p = 4 we have (107). ��
The following result is well-known, see e.g. [45, Corollary 2.10] (adapted from [16,

Chapter 2]).

Lemma 13 Let (�, g�) be a 2-surface of spherical topology with Gaussian curvature K
satisfying

1

2
≤ r2K ≤ 2,

where r = √|�|/4π is the area radius of �. Then there is a universal constant C such that for
any f ∈ W 2,2(�) we have

‖ f − f ‖W 2,2(�) ≤ Cr2‖�� f ‖L2(�),

where f denotes the mean value of f on �.

Appendix 2: The STCMC-condition in normal geodesic coordinates

Let I = (M3, g, K , μ, J ) be a C2
1/2+ε-asymptotically Euclidean initial data set and let

� ↪→ M3 be a closed, oriented 2-surface. Let (uα) be coordinates on� and let ∂α denote the
respective tangent vectors to �, for α ∈ {1, 2}. Here and in the rest of this appendix, we use
the convention that Greek indices α, β, γ ∈ {1, 2} refer to coordinate vector fields tangential
to �.

In a neighborhood of �, the normal geodesic coordinates y : � × (−ξ, ξ) → M3 are
defined for some ξ > 0, see Sect. 5.1 for details. In this neighborhood we may write g =
dt2 + gt where gt is the induced metric on �t := y(�, t).

Consider a 2-surface S given as the graph of a function f with | f | < ξ over �, i.e.

S = graph f = {y(q, f (q)) : q ∈ �}. (108)

Since the vector −∂t + ∇gt f is normal to S at the point (q, t) = (q, f (q)), the vectors
∂α + (∂α f )∂t are tangent to S at this point. As a consequence, the induced metric on S has
components given by

(gS)αβ = g(∂α + (∂α f )∂t , ∂β + (∂β f )∂t ) = (gt )αβ + ∂α f ∂β f ,
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with the components of the inverse given by

(gS)
αβ = (gt )

αβ − f α f β

1 + |d f |2gt
.

Here and in what follows, 2-dimensional indices α, β, . . . are raised with respect to gt ,
and all quantities are computed at the point (q, t) = (q, f (q)), unless stated otherwise. A
straightforward computation then shows that the mean curvature of S = graph f is given by

H(S) =
(

(gt )
αβ − f α f β

1 + |d f |2gt

)
Hessgtαβ f + (At )αβ + 2(At )

γ
α (∂β f )(∂γ f )

√
1 + |d f |2gt

,

where At is the second fundamental form of �t . We also have

P(S) = trS K =
(

(gt )
αβ − f α f β

1 + |d f |2gt

)
(Kαβ + 2(∂α f )Ktβ + (∂α f )(∂β f )Ktt ).(109)

Proposition 4 If S = graph f is a surface of constant spacetimemean curvatureH (S) ≡ 2/σ

then f satisfies the equation

aαβ∂α∂β f + bα∂α f = F, (110)

where, with P given by (109), we use the shorthands

aαβ :=
(

(gt )
αβ − f α f β

1 + |d f |2gt

)
1√

1 + |d f |2gt
,

bγ := −
(

(gt )
αβ − f α f β

1 + |d f |2gt

)
(�gt )

γ
αβ√

1 + |d f |2gt
,

F := −
(

(gt )
αβ − f α f β

1 + |d f |2gt

)
(At )αβ + 2(At )

γ
α (∂β f )(∂γ f )

√
1 + |d f |2gt

+
√
P2 + 4

σ 2 .
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