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Abstract
We prove local pointwise second derivative estimates for positive W 2,p solutions to the σk-
Yamabe equation on Euclidean domains, addressing both the positive and negative cases.
Generalisations for augmented Hessian equations are also considered.

Mathematics Subject Classification 35B65 · 35D35 · 35J15 · 35J60 · 53C21

1 Introduction

Let Ω ⊂ R
n (n ≥ 3) be a domain. In this paper, we obtain local pointwise second derivative

estimates for positive W 2,p solutions to the equations

σ
1/k
k (Au(x)) = f (x, u(x),∇u(x)) > 0, λ(Au(x)) ∈ Γ +

k for a.e. x ∈ Ω (1.1+)

and

σ
1/k
k (−Au(x)) = f (x, u(x),∇u(x)) > 0, λ(−Au(x)) ∈ Γ +

k for a.e. x ∈ Ω. (1.1−)

Throughout the paper, Au denotes the symmetric matrix-valued function

Au = ∇2u − |∇u|2
2u

I ,
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where I is the n × n identity matrix and σk is the k’th elementary symmetric polynomial,
defined on a symmetric matrix A with eigenvalues λ(A) = (λ1, . . . , λn) by

σk(A) = σk(λ1, . . . , λn):=
∑

1≤i1<···<ik≤n

λi1 · · · λik .

Note that σ1(A) is the trace of A and σn(A) is the determinant of A. We also denote by Γ +
k

the open convex cone

Γ +
k = {(λ1, . . . , λn) ∈ R

n : σ j (λ1, . . . , λn) > 0 for all 1 ≤ j ≤ k}.
It is well-known that the equations (1.1±) are elliptic. Furthermore, σ 1/k

k is a concave function
on the set of symmetric matrices with eigenvalues in Γ +

k .
Themotivation behind (1.1±) comes from conformal geometry: if gi j = u−2δi j is ametric

conformal to the flat metric on a domain Ω ⊂ R
n , then uAu is the (1, 1)-Schouten tensor of

g, and the σk-Yamabe equation in the so-called positive/negative (±) case is given by

σk(±uAu) = 1, λ(±Au) ∈ Γ +
k , u > 0. (1.2)

The Eq. (1.2) and their counterparts on Riemannian manifolds were first studied by Via-
clovsky in [63]. Since then, these equations have been addressed by various authors – for a
partial list of references, see [1–3,8–12,14,16–19,24,27,28,31–33,35,39–41,43,44,46,47,53,
54,56,64,65] in the positive case and [13,23,25,29,30,42,45,55] in the negative case. When
k = 1, these equations reduce to the original Yamabe equation. When k ≥ 2, they are fully
nonlinear and elliptic at a solution (although, a priori, not necessarily uniformly elliptic).
Fully nonlinear elliptic equations involving eigenvalues of the Hessian were first considered
by Caffarelli et al. in [6].

A priori local first and second derivative estimates play an important role in the study of
the σk-Yamabe equation, and were established in the positive case by Chen [14], Guan and
Wang [27], Jin, Li and Li [39], Li and Li [40], Li [43] and Wang [65]. In the negative case,
an a priori (global) C1 estimate is proven by Gursky and Viaclovsky [30], but it is unknown
whether a priori C2 estimates hold. In this paper, we are concerned with the local regularity
of positive W 2,p solutions to the equations (1.1±). More precisely, for 2 ≤ k ≤ n we derive
local pointwise boundedness of second derivatives, provided p > kn/2 in the positive case
and p > (k + 1)n/2 in the negative case. To simplify the discussion, we do not include the
case k = 1, in which the equations (1.1±) are semilinear. We prove:

Theorem 1.1 Let Ω be a domain in R
n (n ≥ 3) and let f ∈ C1,1

loc (Ω × (0,∞) × R
n) be

a positive function. Suppose that 2 ≤ k ≤ n, p > kn/2 and u ∈ W 2,p
loc (Ω) is a positive

solution to (1.1+). Then u ∈ C1,1
loc (Ω), and for any concentric balls BR ⊂ B2R � Ω we have

‖∇2u‖L∞(BR) ≤ C,

where C is a constant depending only on n, p, R, f and an upper bound for ‖ ln u‖W 2,p(B2R).

Theorem 1.2 Let Ω be a domain in R
n (n ≥ 3) and let f ∈ C1,1

loc (Ω × (0,∞) × R
n) be a

positive function. Suppose that 2 ≤ k ≤ n, p > (k + 1)n/2 and u ∈ W 2,p
loc (Ω) is a positive

solution to (1.1−). Then u ∈ C1,1
loc (Ω), and for any concentric balls BR ⊂ B2R � Ω we have

‖∇2u‖L∞(BR) ≤ C,

where C is a constant depending only on n, p, R, f and an upper bound for ‖ ln u‖W 2,p(B2R).
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Remark 1.3 As noted above, it is unknown whether a priori C2 estimates hold for solutions
to the σk-Yamabe equation in the negative case. We also note that for the closely related σk-
Loewner-Nirenberg problem, there exist locally Lipschitz but non-differentiable viscosity
solutions – see [45]. As far as the authors are aware, Theorem 1.2 currently provides the
only available local second derivative estimate for solutions to the σk-Yamabe equation in
the negative case.

To put things in perspective, we note that our estimates in Theorem 1.1 are closely related
to certain analytical aspects in the work of Chang, Gursky and Yang in [12]. In [12], under
natural conformally invariant conditions on a Riemannian 4-manifold (M4, g0), the authors
established the existence of a metric in the conformal class [g0] whose Schouten tensor has
eigenvalues in Γ +

2 . An important part of the proof in [12] was to obtain W 2,s estimates for
4 < s < 5 on smooth solutions to a one-parameter family of regularisedσ2-equations (see Eq.
(A.1) in Appendix A) which are uniform with respect to the parameter. This was achieved
by first obtaining a uniform W 1,4 estimate (see Theorem 3.1 in [12]), and subsequently
carrying out an integrability improvement argument (see Sections 5 and 6 in [12]). With the
W 2,s estimate in hand, the authors then applied a heat flow argument to obtain the desired
conformal metric.

Remark 1.4 Anatural question to ask iswhether the heat flow argument in [12] can be avoided
by instead taking the regularisation parameter directly to zero. One application of Theorem
1.1 above and [46, Proposition 5.3] is that this can be achieved when (M4, g0) is locally
conformally flat. We refer the reader to Appendix A for the details.

Our work is also closely related to the work of Urbas in [60], where local pointwise second
derivative estimates for W 2,p solutions to the k-Hessian equation

σ
1/k
k (∇2u(x)) = f (x) > 0, λ(∇2u(x)) ∈ Γ +

k

were established on domains in R
n . At the heart of Urbas’ proof is also an integrability

improvement argument, assuming an initial lower bound of p > kn/2 (see also [15,49,58,
61,62]). By an application of Moser iteration, the C1,1

loc estimate is then obtained. We note
that Moser iteration has previously been utilised in the context of the σk-Yamabe equation
to establish local boundedness of solutions, see for instance [21,22,33].

We will in fact prove a more general version of Theorems 1.1 and 1.2, and consider an
operator of the form

AH [u]:=∇2u − H [u] (1.3)

in place of ±Au . Here, H [u](x) = H(x, u(x),∇u(x)) for a given matrix-valued function
H = H(x, z, ξ) ∈ C1,1

loc (Ω ×R×R
n ; Symn(R)), where Symn(R) denotes the space of real

symmetric n × n matrices. Rather than (1.1±), we consider the equation

σ
1/k
k

(
AH [u](x)) = f (x, u(x),∇u(x)) > 0, λ(AH [u](x)) ∈ Γ +

k for a.e. x ∈ Ω,

(1.4)

where f ∈ C1,1
loc (Ω × R × R

n).
It is clear that if u satisfies (1.1+) with u ≥ 1

C > 0, then u satisfies (1.4) provided

H(x, z, ξ) = |ξ |2
2z I for z ≥ 1

C . Likewise, if u ∈ W 2,p
loc (Ω) is a solution to (1.1−) with right

hand side (RHS) f and u ≥ 1
C > 0, then w:= − u ∈ W 2,p

loc (Ω) satisfies (1.4) with RHS

f̃ (x, z, ξ):= f (x,−z,−ξ), provided H(x, z, ξ) = |ξ |2
2z I for z ≤ − 1

C . Therefore, for the
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purpose of obtaining Theorems 1.1 and 1.2, it will suffice to consider the case that H is a
multiple of the identity matrix:

Theorem 1.5 Let Ω be a domain in Rn (n ≥ 3), f ∈ C1,1
loc (Ω ×R×R

n) a positive function

and H ∈ C1,1
loc (Ω ×R×R

n ; Symn(R)). Suppose 2 ≤ k ≤ n, p ≥ 1 and u ∈ W 2,p
loc (Ω) is a

solution to (1.4), and that one of the following conditions holds:

1. H(x, z, ξ) = H1(x, z)|ξ |2 I with H1 ≥ 0 and p > kn
2 ,

2. H(x, z, ξ) = H2(x, z, ξ)I and p >
(k+1)n

2 .

Then u ∈ C1,1
loc (Ω), and for any concentric balls BR ⊂ B2R � Ω we have

‖∇2u‖L∞(BR) ≤ C, (1.5)

where C is a constant depending only on n, p, R, f , H and an upper bound for ‖u‖W 2,p(B2R).

Remark 1.6 The constant C in (1.5) depends only on n, p, R and upper bounds for
‖u‖W 2,p(B2R), ‖H‖C1,1(Σ) and ‖ ln f ‖C1,1(Σ), where Σ :=B2R × [−M, M] × BM (0) ⊂
Ω × R × R

n and M ≥ ‖u‖C1(B2R). Note that since p > n in Theorem 1.5, an upper bound
for ‖u‖W 2,p(B2R) implies an upper bound for ‖u‖C1(B2R), in light of the Morrey embedding
theorem.

Remark 1.7 When H ≡ 0 and f = f (x), Theorem 1.5 was proved in [60, Theorem 1.6].

Thematrix AH [u] introduced in (1.3) is sometimes referred to as an augmentedHessian of
u. The corresponding augmented Hessian equations have been extensively studied in recent
years – see [36–38] and the references therein. In this vein, it is therefore of interest to
generalise Theorem 1.5 to arbitrary H ∈ C1,1

loc . As we will see, the proof of Theorem 1.5 uses
some favourable divergence structure in the case that H is a multiple of the identity matrix.
However, when k = 2, a similar divergence structure holds for general H and we obtain the
following:

Theorem 1.8 Let Ω be a domain in Rn (n ≥ 3), f ∈ C1,1
loc (Ω ×R×R

n) a positive function

and H ∈ C1,1
loc (Ω ×R×R

n ; Symn(R)). Suppose p > 3n
2 and u ∈ W 2,p

loc (Ω) is a solution to

(1.4) with k = 2. Then u ∈ C1,1
loc (Ω), and for any concentric balls BR ⊂ B2R � Ω we have

‖∇2u‖L∞(BR) ≤ C,

where C is a constant depending only on n, p, R, f , H and an upper bound for ‖u‖W 2,p(B2R).

Remark 1.9 In [36–38] and the references therein, it is usually assumed that H satisfies a so-
called co-dimension one convexity condition, which is known to be a necessary and sufficient
condition to obtain C1 estimates – see [50,51,57]. We point out that we do not assume a
co-dimension one convexity condition in our treatment of second derivative estimates (the
exception is Case 1 of Theorem 1.5, where we have convexity in ξ ).

Under a stronger assumption on p, we will also obtain an extension of Theorem 1.8 to the
case k ≥ 3—see Sect. 6.

In adapting the methods of [60] to prove Theorems 1.5 and 1.8, we will need to deal with
the term H [u] which, whilst being of lower order in the definition of AH [u], creates new
higher order terms in our estimates. Roughly speaking, the two terms which are formally
problematic consist of:
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(i) a contraction of the linearised operator

F[u]i j :=∂σk(AH [u])
∂(AH [u])i j (1.6)

with double difference quotients of H [u]i j (this arises as a result of taking difference
quotients of (1.4) twice), and

(ii) the divergence of F[u]i j multiplied by a term formally of third order in u (this arises
after integrating by parts).

In [60], neither of these terms exist since F[u]i j is divergence-free when H ≡ 0. In the
more general case that we are considering, it is unclear whether these third order terms
have a favourable sign individually. However, we will estimate them so as to show that,
when combined, they yield a cancellation phenomenon that ensures the overall higher order
contribution is positive. For the estimates of the higher order terms arising from the divergence
of F[u]i j , see Lemmas 4.4 and 4.5, and for those arising from the double difference quotients
of H [u], see Lemma 4.10. For the resulting cancellation phenomena, see Corollaries 4.12,
4.13 and 4.14.

We close the introduction by noting that in Theorems 1.1 and 1.2, we do not knowwhether
our lower bounds on p to obtainC1,1

loc regularity are sharp, and it would be interesting to deter-
mine the sharp lower bounds. In the case of the k-Hessian equation for 3 ≤ k ≤ n, it is shown
by Urbas in [59] that there existW 2,p-strong solutions with p <

k(k−1)
2 which fail to beC1,α

loc

for any α > 1 − 2
k . Other lower bounds on p leading to C1,1

loc regularity for k-Hessian equa-
tions have been studied in [15,49,58,61,62], for instance.

The plan of the paper is as follows. We begin in Sect. 2 with an outline of the proof of
Theorems 1.5 and 1.8. This prompts us to consider the divergence structure of the linearised
operator, whichwe address in Sect. 3, and alsomotivate the estimates established fromSect. 4
onwards. In Sect. 4 we carry out the main body of our integral estimates. In Sect. 5, we
use these estimates and the Moser iteration technique to obtain the desired C1,1

loc estimates,
completing the proofs of Theorems 1.5 and 1.8. In Sect. 6, we give the aforementioned
extension of Theorem 1.8 to the case k ≥ 3.

2 Outline of the proofs of Theorems 1.5 and 1.8

Our proofs of Theorems 1.5 and 1.8 use an integrability improvement argument, from which
the C1,1

loc estimate is obtained by the Moser iteration technique. In Case 1 of Theorem 1.5, we

will obtain, for a solution u ∈ W 2,q+k−1
loc (Ω) to (1.4) with q > kn

2 − k + 1, the estimate

( ∫

BR+ρ

(Δu + C1)
βq

)1/β

≤ Cq

ρ2

∫

BR+3ρ

(Δu + C1)
q+k−1, (2.1)

where ρ ∈ (0, R
3 ], β = kn

kn−2k+2 and C1 is a positive constant ensuring Δu + C1 ≥ 1 a.e.
(see the paragraph after Remark 2.3 for the justification of the existence of C1). Similarly, in
Case 2 of Theorem 1.5 and in Theorem 1.8, we will obtain, for a solution u ∈ W 2,q+k

loc (Ω)

to (1.4) with q >
(k+1)n

2 − k, the estimate

( ∫

BR+ρ

(Δu + C1)
βq

)1/β

≤ Cq

ρ2

∫

BR+3ρ

(Δu + C1)
q+k, (2.2)

123
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now with β = (k+1)n
(k+1)n−2(k+1)+2 . The estimates (2.1) and (2.2) then yield an improvement in

integrability under the respective lower bounds on q , which can then be iterated to yield the
desired C1,1

loc estimates.1

In the rest of this section we explain how the estimates (2.1) and (2.2) are obtained. Due to
the lack of regularity, we derive our estimates through taking difference quotients of the Eq.
(1.4). For an index l ∈ {1, . . . , n} and increment h ∈ R\{0}, we recall the first order difference
quotient ∇h

l u(x):=h−1(u(x + hel) − u(x)) and the second order difference quotient

Δh
llu(x):=∇h

l (∇−h
l u(x)) = u(x + hel) − 2u(x) + u(x − hel)

h2
. (2.3)

We also denote

vh(x):=
n∑

l=1

Δh
llu(x).

The above expressions are well-defined for x ∈ Ωh :={y ∈ Ω : dist(y, ∂Ω) > |h|}.
It is well-known (see, for instance, [20, Lemma 7.23]) that

‖∇h
l u‖Ls (Ω ′) ≤ ‖∇l u‖Ls (Ω) for all s ≥ 1 and Ω ′ � Ω s.t. dist(Ω ′, ∂Ω) > |h|. (2.4)

It follows from (2.3) and (2.4) that there exists a constant C = C(n) such that

‖vh‖Ls (Ω ′) ≤ C‖∇2u‖Ls (Ω) for all s ≥ 1. (2.5)

We will also use the following fact – see Appendix B for a proof:

Lemma 2.1 Suppose u ∈ W 2,s(Ω) for some s ≥ 1. Then vh → Δu in Ls
loc(Ω) as h → 0.

We assume now that both the increment h and our solution u are fixed, and write
v as shorthand for vh . Taking difference quotients of the equation σ

1/k
k (AH [u](x)) =

f [u](x):= f (x, u(x),∇u(x)) and appealing to the concavity of σ
1/k
k in Γ +

k , we will derive
(at the start of Sect. 4) the pointwise estimate

∑

l

k( f [u])k−1Δh
ll f [u] ≤ F[u]i j∇i∇ jv −

∑

l

F[u]i jΔh
ll(H [u])i j a.e. in Ωh . (2.6)

Here, F[u]i j = ∂σk(AH [u])/∂(AH [u])i j is the linearised operator.

Remark 2.2 In (2.6), and from this point onwards, summation notation is employed only over
repeated indices which appear in both upper and lower positions. Positioning of indices is
purely to indicate whether summation convention is being utilised; since we are working
with the Euclidean metric, we are free to raise and lower indices at will. For instance, Ai j ,

Ai
j , A

j
i and Ai j all denote the (i, j)-entry of a symmetric matrix A. Similarly, we do not

distinguish between the derivatives ∇ i and ∇i when using index notation.

Remark 2.3 Since u is fixed, we write f [u], H [u], AH [u], F[u]i j etc. to emphasise that
these are to be considered as functions of x . If it is clear from the context (e.g. if there are no
derivatives involved), we will simply write f , H , AH , Fi j etc.

1 One might ask whether a reverse Hölder-type inequality for a single second derivative ∇l∇l u, similar to
(2.1) and (2.2), can be established. We have been unable to show this.
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The estimates (2.1) and (2.2) are derived by testing (2.6) against suitable test functions.
First fix a ball B2R � Ωh . Since λ(AH ) ∈ Γ +

2 is equivalent to tr(AH ) = Δu − tr(H) > 0
and σ2(AH ) > 0, there exists a constantC1 ≥ 0 (depending on an upper bound for ‖H‖C0(Σ)

– see Remark 1.6) for which Δu + C1 ≥ 1 and |∇2u| ≤ Δu + C1 a.e. in B2R . We define
ṽ:=v + C1, and for a small parameter δ > 0 (that we eventually take to zero) we denote

Qδ :=
(
(ṽ+)2 + δ2

)1/2
.

For ρ ∈ (0, R
3 ] we also let η ∈ C∞

c (BR+2ρ) be a standard non-negative cutoff function.

Testing (2.6) against ηQq−1
δ (where q > 1) then yields

∑

l

∫

BR+2ρ

kηQq−1
δ f k−1Δh

ll f [u]

≤
∫

BR+2ρ

ηQq−1
δ Fi j∇i∇ j ṽ −

∑

l

∫

BR+2ρ

ηQq−1
δ Fi jΔh

ll(H [u])i j (2.7)

for all q > 1 and u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω) solving (1.4).
For ease of outlining our argument, let us suppose that f = f (x, z) (the general case

f = f (x, z, ξ) will only require minor changes - see Sect. 5.3). Then the integrand on the
left hand side (LHS) of (2.7) is a lower order term, whereas the integrands on the RHS of
(2.7) involve higher order terms, formally of fourth and third order in the limit h → 0, and
thus need to be treated.

In Sect. 4, we integrate by parts in the first integral on the RHS of (2.7), using a result
of Sect. 3 that tells us ∇i F[u]i j is a regular distribution belonging to L(q+k−1)/(k−1)

loc (Ω)

if u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω). After taking δ → 0 and carrying out some further
calculations (see Lemmas 4.2 and 4.3), we will obtain the estimate

q − 1

Cq2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

tr(AH )
+

∫

BR+2ρ

η(ṽ+)q−1∇i F[u]i j∇ j ṽ

+
∑

l

∫

BR+2ρ

η(ṽ+)q−1Fi jΔh
ll(H [u])i j

≤ C

ρ2

( ∫

BR+2ρ

(ṽ+)q+k−1 +
∫

BR+3ρ

(Δu + C1)
q+k−1

)
, (2.8)

where C is a constant independent of h, q and ρ.
Whilst the first integral on the LHS of (2.8) is a favourable positive higher order term, the

other two integrals on the LHS (which we denote by (I2)h and (I3)h , respectively) involve
higher order terms which are, a priori, of unknown sign. Treating (I2)h and (I3)h is the most
technical part of our proof.

Now, ifwemomentarily assume sufficiently high regularity onu, sayu ∈ W 2,q+2k−1
loc (Ω)∩

W 1,∞
loc (Ω) (q > 1), the issue of dealing with (I2)h and (I3)h is largely simplified. As will be

detailed in the proof of Theorem 6.1, one may apply the Cauchy inequality to each of the
integrands and absorb the resulting third order terms into the positive term on the LHS of
(2.8). Under the stated integrability assumption, this crude estimation is sufficient to show

q − 1

q2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

tr(AH )
≤ C

ρ2

( ∫

BR+2ρ

(ṽ+)q+2k−1 +
∫

BR+3ρ

(Δu + C1)
q+2k−1

)
.
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An estimate analogous to (2.1) and (2.2) can then be obtained, assuming q > kn − 2k + 1.
The difficulty is to therefore deal with (I2)h and (I3)h under the weaker integrability

assumptions of Theorems 1.5 and 1.8. At this point, we make the distinction between the
various cases. In each case, we estimate (I2)h and (I3)h so as to produce a cancellation
phenomenon when combined, leaving only lower order terms; see Lemmas 4.4 and 4.5 for
the estimates on (I2)h , Lemma 4.10 for the estimates on (I3)h , and Corollaries 4.12, 4.13
and 4.14 for the resulting cancellations. It will then follow from (2.8) that, in Case 1 of
Theorem 1.5 with the relaxed assumption u ∈ W 2,q+k−1

loc (Ω) ∩ W 1,∞
loc (Ω) (q > 1), we have

the estimate

q − 1

q2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

tr(AH )
≤ C

ρ2

( ∫

BR+2ρ

(ṽ+)q+k−1 +
∫

BR+3ρ

(Δu + C1)
q+k−1

)
.

(2.9)

Similarly, in the remaining cases with u ∈ W 2,q+k
loc (Ω) ∩W 1,∞

loc (Ω) (q > 1), we will obtain

q − 1

q2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

tr(AH )
≤ C

ρ2

( ∫

BR+2ρ

(ṽ+)q+k +
∫

BR+3ρ

(Δu + C1)
q+k

)
.

(2.10)

To obtain (2.1) from (2.9) (resp. (2.2) from (2.10)), we proceed as follows (the details can
be found in Sect. 5). We first obtain an integral estimate for

∣∣∇(
(ṽ+)q/2

)∣∣2, to which we can
apply the Sobolev inequality. We then justify taking the limit h → 0 and impose the lower
bound q + k − 1 > kn

2 (resp. q + k >
(k+1)n

2 ), from which we obtain (2.1) (resp. (2.2)).

3 Divergence structure of the linearised operator F[u]ij

In this section we derive a divergence formula for the linearised operator F[u]i j (defined in
(1.6)), which we will use at various stages of our proof.

We note that in the case that AH [u] = ∇2u or AH [u] = Au , the divergence properties
of F[u]i j are well-documented (for smooth u). In the former case, F[u]i j is divergence-free
with respect to the flat metric (see [52]), and in the latter case, u1−k F[u]i j is divergence-free
with respect to the conformal metric gi j = u−2δi j (see [63]). For related discussions, see
also [4,5,26,34,53].

For A ∈ Symn(R) and 1 ≤ k ≤ n, define the k’th Newton tensor of A inductively by

Tk(A):=σk(A)I − Tk−1(A)A, T0(A)i j :=δi j . (3.1)

It is well-known (see [52]) that

∂σk(A)

∂Ai j
= Tk−1(A)i j (3.2)

and

tr(Tk(A)) = (n − k)σk(A), (3.3)

and moreover Tk−1(A)i j is positive definite when λ(A) ∈ Γ +
k (see [6]). In particular, by

(1.6) and (3.2), F[u]i j = Tk−1(AH [u])i j .
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Lemma 3.1 Let Ω ⊂ R
n be a domain and u ∈ C3(Ω). Then for H ∈ C1(Ω × R ×

R
n ; Symn(R)) and 2 ≤ k ≤ n,

∇i F[u]i j =
k−1∑

p=1

(−1)p+1Tk−p−1(AH )ab
(
∇a(H [u])cb − ∇c(H [u])ab

)
(Ap−1

H )
j
c=:V [u] j .

(3.4)

Moreover, if H(x, z, ξ) = H2(x, z, ξ)I , then

∇i F[u]i j = −(n − k + 1)∇i (H2[u]) Tk−2(AH )i j . (3.5)

Proof The identity (3.4) will follow once we show that for 1 ≤ k ≤ n − 1,

∇i Tk(AH [u])i j =
k∑

p=1

(−1)p+1Tk−p(AH )ab
(
∇a(H [u])cb − ∇c(H [u])ab

)
(Ap−1

H )
j
c in Ω.

(3.6)

Similarly, (3.5) will follow once we show that for 1 ≤ k ≤ n − 1 and H(x, z, ξ) =
H2(x, z, ξ)I ,

∇i Tk(AH [u])i j = −(n − k)∇i (H2[u]) Tk−1(AH )i j in Ω. (3.7)

To this end, we take the divergence of both sides in (3.1), which yields

∇i Tk(AH [u])i j = ∇ jσk(AH [u]) − ∇i
(
Tk−1(AH [u])il(AH [u]) jl

)

= ∂σk(AH )

∂(AH )il
∇ j (AH [u])il − ∇i (Tk−1(AH [u]))il(AH )

j
l

− Tk−1(AH )il∇i (AH [u]) jl
(3.2)= Tk−1(AH )il

(∇ j (AH [u])il − ∇i (AH [u]) jl
) − ∇i (Tk−1(AH [u]))il(AH )

j
l

= Tk−1(AH )il
(∇i (H [u]) jl − ∇ j (H [u])il

) − ∇i
(
Tk−1(AH [u]))il(AH )

j
l .

(3.8)

Then (3.6) is readily seen by applying (3.8) iteratively.
We now turn to (3.7), for which we apply an induction argument on k using (3.8). The

base case k = 1 is clear. We suppose that for some k ≥ 2 we have the identity

∇i Tk−1(AH [u])i j = −(n − k + 1)∇i (H2[u]) Tk−2(AH )i j , (3.9)

and we show that (3.7) then follows. First observe that, by (3.9) and the fact Hi j = H2δi j ,
(3.8) simplifies to

∇i Tk(AH [u])i j = ∇i (H2[u])Tk−1(AH )i j − ∇ j (H2[u])tr(Tk−1(AH ))

+ (n − k + 1)∇i (H2[u])(Tk−2(AH )AH )i j . (3.10)

After substituting (3.1) and (3.3) into the last term and the penultimate term in (3.10), respec-
tively, we arrive at (3.7). 
�

Note that V [u] j (defined in (3.4)) contains at most second order derivatives of u. As a
consequence, ∇i F[u]i j is a regular distribution for u ∈ W 2,q+k−1

loc (Ω) ∩ W 1,∞
loc (Ω). More

precisely, we have:
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Lemma 3.2 Let Ω ⊂ R
n be a domain and u ∈ W 2,q+k−1

loc (Ω) ∩ W 1,∞
loc (Ω) with q > 1 and

2 ≤ k ≤ n. Then for H ∈ C0,1
loc (Ω ×R×R

n;Symn(R)) and φ ∈ W 1,s
0 (Ω;Rn), s:= q+k−1

q ,
we have

∫

Ω

F[u]i j∇iφ j = −
∫

Ω

V [u] jφ j , (3.11)

where V [u] j is defined in (3.4). In particular, ∇i F[u]i j = V [u] j ∈ L(q+k−1)/(k−1)
loc (Ω) and

∣∣∇i F[u]i j ∣∣ ≤ C
(
1 + |∇2u|k−1) a.e. in B2R, (3.12)

where C is a constant depending on an upper bound for ‖H‖C0,1(Σ).

Proof It is clear that u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω) implies V [u] j ∈ L(q+k−1)/(k−1)
loc (Ω).

Since 1
s + k−1

q+k−1 = 1, it suffices to prove (3.11) for φ ∈ C∞
0 (Ω;Rn). Let u(m) ∈ C3(Ω) be

such that u(m) → u in W 2,q+k−1
loc (Ω). Then by (3.4), we have for each m ∈ N the identity

∇i F[u(m)]i j = V [u(m)] j , and it follows that
∫

Ω

F[u(m)]i j∇iφ j = −
∫

Ω

V [u(m)] jφ j . (3.13)

Now, since u(m) → u in W 2,q+k−1
loc (Ω), we have both Fi j [u(m)] → Fi j [u] and V [u(m)] →

V [u] in L(q+k−1)/(k−1)
loc (Ω). In particular, we can take m → ∞ in (3.13) to get (3.11). The

estimate (3.12) follows from the definition of V [u] j . 
�

4 Main estimates

In this section we prove our main estimates, which will then be used in the proof of our
main results in Sect. 5. Largely, our estimates will be concerned with terms involving the
contraction of the linearised operator F = (Fi j ) and its divergencewith various other tensors,
such as ∇2ṽ, ∇ṽ and (Δh

ll H [u]i j ).

4.1 Initial integral estimates: isolating higher order terms

The following lemma provides the starting point for our integral estimates:

Lemma 4.1 Suppose f ∈ C0(Ω × R × R
n) is positive, H ∈ C0(Ω × R × R

n ; Symn(R))

and u is a solution to (1.4). Then for fixed h,

∑

l

k f k−1Δh
ll f [u] ≤ Fi j∇i∇ jv −

∑

l

Fi jΔh
ll(H [u])i j a.e. in Ωh . (4.1)

Proof The proof follows [60], with some adjustments. For A ∈ Symn(R), let Gi j (A) =
∂σ

1/k
k (A)/∂Ai j = k−1σk(A)(1−k)/k Fi j (A), and denote Gi j :=Gi j (AH [u]). Fix l ∈

{1, . . . , n} and h ∈ R\{0}. Then there exists a set Sh,l ⊂ Ωh withL (Ωh\Sh,l) = 0 (whereL
is the Lebesgue measure) such that λ(AH [u](x)), λ(AH [u](x ± hel)) ∈ Γ +

k for all x ∈ Sh,l .

By concavity of σ
1/k
k in Γ +

k , it follows that for x ∈ Sh,l we have

σ
1/k
k

(
AH [u](x ± hel)

) − σ
1/k
k (AH [u](x)) ≤ Gi j (x)

(
AH [u](x ± hel) − AH [u](x))i j .

(4.2)
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Adding the two equations in (4.2), dividing through by h2 and summing over l, we have

∑

l

Δh
llσ

1/k
k

(
AH [u](x)) ≤

∑

l

Gi j (x)Δh
ll

(
AH [u](x))i j for all x ∈ Sh :=

n⋂

l=1

Sh,l ,

(4.3)

with Sh clearly satisfying L (Ωh\Sh) = 0. Substituting the definition of Gi j into (4.3) and
recalling that AH [u] = ∇2u − H [u], we obtain

∑

l

kσ
k−1
k

k (AH )Δh
llσ

1/k
k (AH [u]) ≤

∑

l

Fi jΔh
ll

(∇2u − H [u])i j in Sh . (4.4)

Substituting the equation σ
1/k
k (AH ) = f into the LHS of (4.4), and commuting difference

quotients with derivatives on the RHS of (4.4), we arrive at (4.1). 
�
As outlined in Sect. 2, we proceed to derive a series of integral estimates by multiplying

(4.1) by suitable test functions and integrating by parts using the divergence structure proved
in Lemma 3.2. Recall that for a fixed increment h > 0, we defined v(x) = ∑

l Δ
h
llu(x),

and that we fixed a ball B2R � Ωh and a constant C1 (depending on an upper bound for
‖H‖C0(Σ)) such thatΔu+C1 ≥ 1 and |∇2u| ≤ Δu+C1 a.e. in B2R . The existence of such a
constant is guaranteed by the assumption λ(AH ) ∈ Γ +

2 . We then defined ṽ = v+C1, and for

a small parameter δ > 0 (that we eventually take to zero) we defined Qδ = (
(ṽ+)2 + δ2

)1/2.
For ρ ∈ (0, R

3 ], we also fix a cutoff function η ∈ C∞
c (BR+2ρ) satisfying 0 ≤ η ≤ 1, η ≡ 1

on BR+ρ and |∇lη| ≤ C(n)ρ−l for l = 1, 2.

Suppose u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1) is a solution to (1.4). Multiplying (4.1)

by ηQq−1
δ and integrating over the domain BR+2ρ , we see

∑

l

∫

BR+2ρ

kηQq−1
δ f k−1Δh

ll f [u]

≤
∫

BR+2ρ

ηQq−1
δ Fi j∇i∇ j ṽ −

∑

l

∫

BR+2ρ

ηQq−1
δ Fi jΔh

ll(H [u])i j , (4.5)

which is just the estimate (2.7) in Sect. 2, repeated here for convenience.
We are now in a position to prove our first integral estimate. In what follows, let

J (s)
h :=

∫

BR+2ρ

(ṽ+)s +
∫

BR+3ρ

(Δu + C1)
s .

Roughly speaking, if u ∈ W 2,s
loc (Ω) then J (s)

h should be interpreted as a lower order term,

and terms bounded by J (s)
h are consequently considered ‘good terms’.

We will first address the case f = f (x, z) for simplicity and postpone the more general
case until Sect. 5.3. The relevant equation is therefore

σ
1/k
k

(
AH [u](x)) = f (x, u(x)) > 0, λ(AH [u](x)) ∈ Γ +

k for a.e. x ∈ Ω. (4.6)

Throughout Sect. 4, unless otherwise stated, C will denote a generic positive constant
which may vary from line to line, depending only on n, R, f , H and an upper bound for
‖u‖W 1,∞(B2R). In particular, C is independent of h, q and ρ, and any norm of ∇2u. In addi-
tion, we will often use the inequalities Δu +C1 ≥ 1 and |∇2u| ≤ Δu +C1 without explicit
reference.
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Lemma 4.2 Suppose f ∈ C1,1
loc (Ω ×R) is positive, H ∈ C0,1

loc (Ω ×R×R
n ; Symn(R)) and

u ∈ W 2,q+k−1
loc (Ω)∩W 1,∞

loc (Ω) (q > 1) is a solution to (4.6). Then for R > 0with B2R � Ω ,
ρ ∈ (0, R

3 ] and |h| sufficiently small, we have

(q − 1)
∫

BR+2ρ

η(ṽ+)q−2Fi j∇i ṽ∇ j ṽ +
∫

BR+2ρ

η(ṽ+)q−1∇i F[u]i j∇ j ṽ

+
∑

l

∫

BR+2ρ

η(ṽ+)q−1Fi jΔh
ll(H [u])i j ≤ Cρ−2 J (q+k−1)

h . (4.7)

Proof Appealing to Lemma 3.2 with φ j = ηQq−1
δ ∇ j ṽ, and noting that

∇iφ j = Qq−1
δ ∇iη∇ j ṽ + (q − 1)ṽ+Qq−3

δ ∇i ṽ∇ j ṽ + ηQq−1
δ ∇i∇ j ṽ,

we have
∫

BR+2ρ

Fi j
(
Qq−1

δ ∇iη∇ j ṽ + (q − 1)ṽ+Qq−3
δ ∇i ṽ∇ j ṽ + ηQq−1

δ ∇i∇ j ṽ
)

= −
∫

BR+2ρ

ηQq−1
δ ∇i F[u]i j∇ j ṽ. (4.8)

Rearranging (4.8) to get the desired integration by parts formula for
∫
BR+2ρ

ηQq−1
δ Fi j∇i∇ j ṽ,

and substituting this back into (4.5), we obtain

(q − 1)
∫

BR+2ρ

ηṽ+Qq−3
δ Fi j∇i ṽ∇ j ṽ +

∫

BR+2ρ

ηQq−1
δ ∇i F[u]i j∇ j ṽ

+
∑

l

∫

BR+2ρ

ηQq−1
δ Fi jΔh

ll(H [u])i j ≤ −
∫

BR+2ρ

Qq−1
δ Fi j∇iη∇ j ṽ

−
∑

l

∫

BR+2ρ

kηQq−1
δ f k−1Δh

ll f [u]. (4.9)

We now take δ → 0 in (4.9), using Fatou’s lemma for the first integral (which is positive) and
the dominated convergence theorem elsewhere (which is justified since q > 1). This yields

(q − 1)
∫

BR+2ρ

η(ṽ+)q−2Fi j∇i ṽ∇ j ṽ +
∫

BR+2ρ

η(ṽ+)q−1∇i F[u]i j∇ j ṽ

+
∑

l

∫

BR+2ρ

η(ṽ+)q−1Fi jΔh
ll(H [u])i j ≤ −

∫

BR+2ρ

(ṽ+)q−1Fi j∇iη∇ j ṽ

−
∑

l

∫

BR+2ρ

kη(ṽ+)q−1 f k−1Δh
ll f [u]. (4.10)

To conclude the proof of Lemma 4.2, we must bound the RHS of (4.10) from above by
Cρ−2 J (q+k−1)

h . We begin with the first integral on the RHS of (4.10). Appealing again to
Lemma 3.2, now with φ j = 1

q (ṽ+)q∇ jη and ∇iφ j = (ṽ+)q−1∇i ṽ∇ jη + 1
q (ṽ+)q∇i∇ jη, we

have
∫

BR+2ρ

Fi j
(
(ṽ+)q−1∇iη∇ j ṽ + 1

q
(ṽ+)q∇i∇ jη

)
= − 1

q

∫

BR+2ρ

(ṽ+)q∇i F[u]i j∇ jη.
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Therefore,
∣∣∣∣
∫

BR+2ρ

(ṽ+)q−1Fi j∇iη∇ j ṽ

∣∣∣∣

≤
∣∣∣∣
1

q

∫

BR+2ρ

(ṽ+)q Fi j∇i∇ jη

∣∣∣∣ +
∣∣∣∣
1

q

∫

BR+2ρ

(ṽ+)q∇i F[u]i j∇ jη

∣∣∣∣

≤ C

ρ2

∫

BR+2ρ

(ṽ+)q |F | + C

ρ

∫

BR+2ρ

(ṽ+)q
∣∣divF[u]∣∣, (4.11)

where F = (Fi j ). Recalling |F | ≤ C(Δu +C1)
k−1 and applying Hölder’s inequality to the

penultimate integral in (4.11), we see that
∫
BR+2ρ

(ṽ+)q |F | ≤ C J (q+k−1)
h . The final integral

in (4.11) satisfies the same estimate, since |divF[u]| ≤ C(Δu + C1)
k−1 by (3.12).

It remains to estimate the second term on the RHS of (4.10). Keeping in mind that f =
f (x, z) ∈ C1,1

loc (Ω × R), we apply Hölder’s inequality followed by (2.5) to obtain
∣∣∣∣
∑

l

∫

BR+2ρ

kη(ṽ+)q−1 f k−1Δh
ll f [u]

∣∣∣∣

≤ C

( ∫

BR+2ρ

(ṽ+)q
) q−1

q
( ∫

BR+2ρ

∣∣∣∣
∑

l

Δh
ll f [u]

∣∣∣∣
q) 1

q

(2.5)≤ C

( ∫

BR+2ρ

(ṽ+)q
) q−1

q
( ∫

BR+3ρ

∣∣Δ f [u]∣∣q
) 1

q ≤ C J (q)
h . (4.12)

This concludes the proof. 
�
To clear up notation, we denote the three integrals on the LHS of (4.7) involving higher

order terms by

(I1)h :=(q − 1)
∫

BR+2ρ

η(ṽ+)q−2Fi j∇i ṽ∇ j ṽ,

(I2)h :=
∫

BR+2ρ

η(ṽ+)q−1∇i F[u]i j∇ j ṽ and

(I3)h :=
∑

l

∫

BR+2ρ

η(ṽ+)q−1Fi jΔh
ll(H [u])i j .

The terms (I1)h , (I2)h and (I3)h will be considered in turn. In Sect. 4.2, we prove an
estimate for (I1)h . In Sect. 4.3.1, we estimate (I2)h in the case that H is a multiple of the
identity, and in Sect. 4.3.2 we estimate (I2)h for general H when k = 2. The estimate for
(I3)h in the general case is slightly involved, so for illustrative purposes we first address the
simpler case when H(x, z, ξ) = H1(x, z)|ξ |2 I with H1 ≥ 0, which includes the σk-Yamabe
equation in the positive case. This is done in Sect. 4.4.1. The estimate for (I3)h in the general
case is proved in Sect. 4.4.2. In the process, we will prove the cancellation phenomenon
between (I2)h and (I3)h alluded to earlier – see Corollaries 4.12, 4.13 and 4.14.

4.2 A pointwise lower bound for F[u]ij∇iṽ∇jṽ

The term Fi j∇i ṽ∇ j ṽ in (I1)h can be bounded in the same way as in [60] (see Eq. (3.6)
therein). We reproduce the argument here for the reader’s convenience.
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Lemma 4.3 Suppose f ∈ C0(Ω × R) is positive, H ∈ C0(Ω × R × R
n ; Symn(R)) and u

is a solution to (4.6). Then for q > 0,

(v+)q−2Fi j∇i ṽ∇ j ṽ ≥ 4 f k

q2

∣∣∇(
(ṽ+)q/2

)∣∣2

Δu − tr(H)
a.e. in Ωh . (4.13)

In particular, for R > 0 with B2R � Ω , ρ ∈ (0, R
3 ], q > 1 and |h| sufficiently small, we

have

(I1)h ≥ q − 1

Cq2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)
. (4.14)

Proof Denote by M+
k ⊂ Symn(R) the set of symmetric matrices M with λ(M) ∈ Γ +

k . For

1 ≤ l ≤ n, denote by Fi j
(l)(A) the matrix with entries ∂σl(A)/∂Ai j . Using the concavity of

σk(A)/σk−1(A) on M+
k , we have

Fi j
(k)(A)

σk(A)
≥ Fi j

(k−1)(A)

σk−1(A)
for all A ∈ M+

k (4.15)

(see e.g. [48,60]). Applying (4.15) inductively, it follows that

Fi j
(k)(A)

σk(A)
≥ · · · ≥ Fi j

(1)(A)

σ1(A)
= δi j

tr(A)
for all A ∈ M+

k . (4.16)

Taking A = AH [u] in (4.16), where u is a solution to (4.6), we obtain

F[u]i j (x)
f k[u](x) ≥ δi j

Δu(x) − tr(H [u](x)) for a.e. x ∈ Ω,

from which (4.13) is readily seen. The estimate (4.14) then follows from properties of η. 
�

4.3 Integral estimates for∇iF[u]ij∇jṽ

In this section we obtain estimates for the term (I2)h = ∫
BR+2ρ

η(ṽ+)q−1∇i F[u]i j∇ j ṽ. The
case in which H is a multiple of the identity matrix will be dealt with first, in Sect. 4.3.1.
The case for general H when k = 2 will then be addressed in Sect. 4.3.2.

4.3.1 The case H = H2(x, z, �)I

In what follows we denote tr(F) = ∑
i F

ii . We prove the following two lemmas which
address the case that H is a multiple of the identity:

Lemma 4.4 Suppose f ∈ C0(Ω × R) is positive, H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)) with

H(x, z, ξ) = H1(x, z)|ξ |2 I , and that u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1) is a solution
to (4.6). Then for R > 0 with B2R � Ω , ρ ∈ (0, R

3 ] and |h| sufficiently small, we have

(I2)h ≥ −
∫

BR+2ρ

η(ṽ+)q−1tr(F)
∂(H1|ξ |2)

∂ξa
[u]∇a ṽ − Cρ−1 J (q+k−1)

h . (4.17)

123



Local second derivative estimates for the σk -Yamabe equation Page 15 of 33 177

Lemma 4.5 Suppose H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)) with H(x, z, ξ) = H2(x, z, ξ)I ,

and that u ∈ W 2,q+k
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1). Then for R > 0 with B2R � Ω , ρ ∈ (0, R
3 ]

and |h| sufficiently small, we have

(I2)h ≥ −
∫

BR+2ρ

η(ṽ+)q−1tr(F)
∂H2

∂ξa
[u]∇a ṽ − Cρ−1 J (q+k)

h . (4.18)

Remark 4.6 Note that in Lemma 4.5, we do not assume that u solves (4.6). In contrast, the
fact that Lemma 4.4 holds under a weaker integrability assumption uses both the fact that u
solves (4.6) and that H2 depends quadratically on ∇u.

Remark 4.7 The first term on the RHS of (4.17) and (4.18) will later be shown to cancel with
a term arising from our estimate for (I3)h .

Proof of Lemmas 4.4 and 4.5 The proof consists of three steps. In Step 1, we prove a prelim-
inary estimate assuming only u ∈ W 2,q+k−1

loc (Ω) ∩ W 1,∞
loc (Ω) and H = H2(x, z, ξ)I , but

we do not assume at this point that u necessarily solves (4.6). Only in Steps 2 and 3 will we
appeal to the specific hypotheses of Lemmas 4.4 and 4.5.

Our starting point is the following expression for (I2)h , which follows from (3.5):

(I2)h = −(n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1∇ j (H2[u]) Tk−2(AH )i j∇i ṽ.

Step 1: In this step, we show that for every u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω),

(I2)h ≥ −
∫

BR+2ρ

η(ṽ+)q−1tr(F)
∂H2

∂ξa
[u]∇a ṽ

− n − k + 1

q

∫

BR+2ρ

η(ṽ+)q Fi
a

∂2H2

∂ξa∂ξb
[u](AH )ib − Cρ−1 J (q+k−1)

h . (4.19)

Note that the first integral on the RHS of (4.19) is the desired term seen in (4.17) and (4.18).
First observe that by the chain rule,

(I2)h = −(n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂x j
[u] Tk−2(AH )i j∇i ṽ

− (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂z
[u] Tk−2(AH )i j∇ j u∇i ṽ

− (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Tk−2(AH )i j∇ j∇au ∇i ṽ. (4.20)

Denote the top two lines of the RHS of (4.20) collectively by L1, and the bottom line by L2.
Recalling that ∇ j∇au = H2δ ja + (AH ) ja and, in view of (3.1) and (3.3), that

(
Tk−2(AH )AH

)
ia = −Fia + 1

n − k + 1
tr(F)δia, (4.21)
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we have

L2 = −(n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Tk−2(AH )ia H2∇ i ṽ

− (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] (Tk−2(AH )AH

)
ia∇ i ṽ

= (4.21)− (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Tk−2(AH )ia H2∇ i ṽ

+ (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Fia∇ i ṽ

−
∫

BR+2ρ

η(ṽ+)q−1tr(F)
∂H2

∂ξa
[u] ∇a ṽ.

Substituting this identity for L2 into (4.20) yields

(I2)h = L1 − (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Tk−2(AH )ia H2∇ i ṽ

+ (n − k + 1)
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Fia∇ i ṽ

−
∫

BR+2ρ

η(ṽ+)q−1tr(F)
∂H2

∂ξa
[u] ∇a ṽ. (4.22)

We claim that the terms on the top line of the RHS of (4.22) are bounded from below
by −Cρ−1 J (q+k−1)

h . Indeed, as Tk−2(AH )i j = ∂σk−1(AH )/∂Ai j , by Lemma 3.2 we have
|∇i Tk−2(AH [u])i j | ≤ C(Δu+C1)

k−2. It is also clear that |Tk−2(AH )i j | ≤ C(Δu+C1)
k−2.

Thus, after integrating by parts using Lemma 3.2 and applying Hölder’s inequality, the lower
bound for these terms follows.

To estimate the penultimate integral in (4.22), we integrate by parts using Lemma 3.2 and
apply the identity

∇i

(
∂H2

∂ξa
[u](x)

)

=
(

∂2H2

∂ξa∂ξb
[u](x)

)(
(AH )ib + Hib

) +
(

∂2H2

∂z∂ξa
[u](x)

)
∇i u(x) + ∂2H2

∂xi∂ξa
[u](x).

After an application of Hölder’s inequality, this gives
∫

BR+2ρ

η(ṽ+)q−1 ∂H2

∂ξa
[u] Fia∇ i ṽ

≥ − 1

q

∫

BR+2ρ

η(ṽ+)q Fi
a

∂2H2

∂ξa∂ξb
[u] (AH )ib − Cρ−1 J (q+k−1)

h ,

from which (4.19) follows.
Step 2: In this step we prove Lemma 4.5. Indeed, for u ∈ W 2,q+k

loc (Ω) ∩ W 1,∞
loc (Ω) (not

necessarily solving (4.6)) we have the estimate

−n − k + 1

q

∫

BR+2ρ

η(ṽ+)q Fi
a

∂2H2

∂ξa∂ξb
[u] (AH )ib ≥ −C

∫

BR+2ρ

(ṽ+)q |F ||AH |

≥ −C J (q+k)
h ,
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where F = (Fi j ) and the last inequality follows once again from the estimate |F | ≤ C(Δu+
C1)

k−1 and Hölder’s inequality. Substituting this into (4.19) then yields the desired estimate
(4.18).
Step 3: In this step we prove Lemma 4.4. Since we assume in this case that H2(x, z, ξ) =
H1(x, z)|ξ |2 and that u solves (4.6), rather than estimating as in Step 2 we observe

Fi
a

∂2H2

∂ξa∂ξb
[u](AH )ib = 2H1F

i
aδ

ab(AH )ib = 2H1F
i
a(AH )ai = 2H1kσk(AH ) = 2H1k f

k .

(4.23)

Substituting (4.23) into the second integral in (4.19), we arrive at (4.17). 
�

4.3.2 The case k = 2 for general H

In this section we obtain an estimate in the case k = 2 analogous to (4.17) and (4.18). We
do not assume that H is a multiple of the identity and, as in Lemma 4.5, we do not assume
that u solves (4.6):

Lemma 4.8 Suppose H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)), k = 2 and u ∈ W 2,q+2
loc (Ω) ∩

W 1,∞
loc (Ω) (q > 1). Then for R > 0 with B2R � Ω , ρ ∈ (0, R

3 ] and |h| sufficiently small, we
have

(I2)h ≥
∫

BR+2ρ

η(ṽ+)q−1 ∂Hi j

∂ξa
[u] ∇i∇au ∇ j ṽ −

∫

BR+2ρ

η(ṽ+)q−1 ∂tr(H)

∂ξa
[u] tr(AH )∇a ṽ

− Cρ−1 J (q+2)
h . (4.24)

Remark 4.9 The first two terms on the RHS of (4.24) will later be shown to cancel with a
term arising from our estimate for (I3)h (cf. Remark 4.7).

Proof of Lemma 4.8 As k = 2, we have ∇i F[u]i j = ∇i H [u]i j − ∇ j tr(H [u]) (by (3.4)) and
∇ j∇au = tr(AH )δ ja − F ja − H ja . It follows that

(I2)h =
∫

BR+2ρ

η(ṽ+)q−1(∇i H [u]i j − ∇ j tr(H [u]))∇ j ṽ

=
∫

BR+2ρ

η(ṽ+)q−1
(

∂Hi j

∂ξa
[u] ∇i∇au − ∂tr(H)

∂ξa
[u] ∇ j∇au

)
∇ j ṽ

+
∫

BR+2ρ

η(ṽ+)q−1
(

∂Hi j

∂xi
[u] + ∂Hi j

∂z
[u] ∇i u − ∂tr(H)

∂x j
[u] − ∂tr(H)

∂z
[u] ∇ j u

)
∇ j ṽ

=
∫

BR+2ρ

η(ṽ+)q−1
(

∂Hi j

∂ξa
[u] ∇i∇au − ∂tr(H)

∂ξa
[u] tr(AH )δ ja

)
∇ j ṽ

+
∫

BR+2ρ

η(ṽ+)q−1
(

∂Hi j

∂xi
[u] + ∂Hi j

∂z
[u] ∇i u − ∂tr(H)

∂x j
[u] − ∂tr(H)

∂z
[u] ∇ j u

+ ∂tr(H)

∂ξa
[u](F ja + H ja)

)
∇ j ṽ. (4.25)

The integral on the last two lines of (4.25) can be bounded from below by −Cρ−1 J (q+2)
h

in exactly the same way as in the proof of Lemmas 4.4 and 4.5: we integrate by parts using
Lemma3.2, estimate the relevant quantities in terms ofΔu+C1 and applyHölder’s inequality.
The estimate (4.24) then follows. 
�
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4.4 Integral estimates for F[u]ij1h
llH[u]ij

In this sectionweobtain estimates for the quantity (I3)h =∑
l

∫
BR+2ρ

η(ṽ+)q−1Fi jΔh
ll(H [u])i j .

More precisely, we prove the following lemma:

Lemma 4.10 Suppose H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)), R > 0 is such that B2R � Ω

and ρ ∈ (0, R
3 ].

a) If u ∈ W 2,q+k
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1), then for |h| sufficiently small, we have

(I3)h ≥
∫

BR+2ρ

η(ṽ+)q−1Fi j ∂Hi j

∂ξa
[u] ∇a ṽ − C J (q+k)

h . (4.26)

b) If u ∈ W 2,q+k−1
loc (Ω)∩W 1,∞

loc (Ω) (q > 1) and H(x, z, ξ) = H1(x, z)|ξ |2 I with H1 ≥ 0,
then for |h| sufficiently small, we have

(I3)h ≥
∫

BR+2ρ

η(ṽ+)q−1Fi j ∂Hi j

∂ξa
[u] ∇a ṽ − C J (q+k−1)

h . (4.27)

Remark 4.11 Neither estimate in Lemma 4.10 requires u to be a solution to (4.6).

Before proving Lemma 4.10 we first discuss its consequences, namely the resulting can-
cellations between (I2)h and (I3)h . First consider the case H = H1(x, z)|ξ |2 I with H1 ≥ 0:

Corollary 4.12 Suppose f ∈ C1,1
loc (Ω × R) is positive, H ∈ C1,1

loc (Ω × R × R
n ; Symn(R))

with H = H1(x, z)|ξ |2 I and H1 ≥ 0, and that u ∈ W 2,q+k−1
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1) is a
solution to (4.6). Then for R > 0 with B2R � Ω , ρ ∈ (0, R

3 ] and |h| sufficiently small, we
have

(I2)h + (I3)h ≥ −Cρ−1 J (q+k−1)
h . (4.28)

In particular,

q − 1

q2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)
≤ Cρ−2 J (q+k−1)

h . (4.29)

Proof The estimate (4.28) follows from combining the estimates (4.17) and (4.27). The
estimate (4.29) is then obtained by substituting (4.14) and (4.28) into (4.7). 
�

Similarly, we obtain the following in the case that H = H2(x, z, ξ)I :

Corollary 4.13 Suppose H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)) with H = H2(x, z, ξ)I , and

u ∈ W 2,q+k
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1). Then for R > 0 with B2R � Ω , ρ ∈ (0, R
3 ] and |h|

sufficiently small, we have

(I2)h + (I3)h ≥ −Cρ−1 J (q+k)
h . (4.30)

If, in addition, u solves (4.6) for some positive f ∈ C1,1
loc (Ω × R), then

q − 1

q2

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)
≤ Cρ−2 J (q+k)

h . (4.31)
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Proof The estimate (4.30) follows from combining the estimates (4.18) and (4.26). The
estimate (4.31) is then obtained by substituting (4.14) and (4.30) into (4.7). 
�

A similar cancellation also holds in the setting of Theorem 1.8, although this requires a
little more work:

Corollary 4.14 Suppose H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)), k = 2 and u ∈ W 2,q+2
loc (Ω) ∩

W 1,∞
loc (Ω) (q > 1). Then for |h| sufficiently small, we have

(I2)h + (I3)h ≥ −Cρ−2 J (q+2)
h . (4.32)

If, in addition, u solves (4.6) for some positive f ∈ C1,1
loc (Ω × R), then

q − 1

q2

∫

BR+ρ

f 2
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)
≤ Cρ−1 J (q+2)

h . (4.33)

Proof The estimate (4.33) will immediately follow once (4.32) is established, by substituting
(4.14) and (4.32) into (4.7).

Taking k = 2 in Lemma 4.10 a) and using Fi j = tr(AH )δi j − ∇ i∇ j u − Hi j , we see

(I3)h ≥
∫

BR+2ρ

η(ṽ+)q−1tr(AH )
∂tr(H)

∂ξa
[u] ∇a ṽ −

∫

BR+2ρ

η(ṽ+)q−1∇ i∇ j u
∂Hi j

∂ξa
[u] ∇a ṽ

−
∫

BR+2ρ

η(ṽ+)q−1Hi j ∂Hi j

∂ξa
[u] ∇a ṽ − C J (q+2)

h . (4.34)

Now, the first term on the RHS of (4.34) cancels with the second term on the RHS of (4.24),
and the first term on the last line of (4.34) can be estimated by−Cρ−1 J (q+2)

h , after integrating
by parts and applying Hölder’s inequality. Therefore, combining (4.24) and (4.34), we obtain

(I2)h + (I3)h ≥ 1

q

∫

BR+2ρ

η
∂Hi j

∂ξa
[u]

(
∇ i∇au ∇ j (ṽ+)q − ∇ i∇ j u ∇a(ṽ

+)q
)

− Cρ−1 J (q+2)
h .

Now, if u were to have enough regularity, we could integrate by parts here, observe that
the third derivatives of u cancel, and obtain (4.32) by estimating the remaining terms in the
usual way. To circumvent the lack of regularity, we instead apply the following lemma:

Lemma 4.15 Let U ⊂ R
n be a smooth bounded domain and let B ∈ L∞(U ;Rn×n) be an

antisymmetric matrix with supp(B) � U. For 1 ≤ p < ∞ and p′:= p
p−1 , consider the

bilinear form B : W 1,p(U ) × W 1,p′
(U ) → R given by

B(g, h) =
∫

U
Ba
j ∇ag∇ j h. (4.35)

If divB ∈ Lq(U ;Rn)with 1
p + 1

q = 1− 1
r for some 1 ≤ q, r ≤ ∞, then we have the estimate

|B(g, h)| ≤
∫

U
|divB||∇g||h| (4.36)

for all g ∈ W 1,p(U ) and h ∈ W 1,p′
(U ) ∩ Lr (U ).
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Before provingLemma4.15,we use it to complete the proof of (4.32): for each i ∈ {1, . . . , n},
taking Ba

j = η
∂Hi j
∂ξa

[u] − η
∂Ha

i
∂ξ j [u], g = ∇i u and h = (ṽ+)q in Lemma 4.15 we obtain

∫

BR+2ρ

η
∂Hi j

∂ξa
[u]

(
∇ i∇au∇ j (ṽ+)q − ∇ i∇ j u∇a(ṽ

+)q
)

(4.36)≤ Cρ−1
∫

BR+2ρ

(Δu + C1)
2(ṽ+)q ≤ Cρ−1 J (q+2)

h .

It remains to prove Lemma 4.15. By a standard approximation argument, it suffices to
prove (4.36) for g, h ∈ C∞(U ). We are then justified in integrating by parts in (4.35), giving

|B(g, h)| =
∣∣∣∣
∫

U

(
∇ j Ba

j ∇ag + Ba
j ∇a∇ j g

︸ ︷︷ ︸
=0

)
h

∣∣∣∣ ≤
∫

U
|divB||∇g||h|,

where we have used antisymmetry of B to assert that Ba
j ∇a∇ j g = 0. 
�

4.4.1 Proof of Lemma 4.10 b)

We now turn our attention back to the proof of Lemma 4.10. Whilst the two estimates (4.26)
and (4.27) can be dealt with simultaneously (see the proof of Lemma 4.10 in Sect. 4.4.2),
for illustrative purposes we first provide a more direct proof of (4.27), which includes the
σk-Yamabe equation in the positive case. Indeed, when H = H1(x, z)|ξ |2 I we are able to
calculate Δh

ll(H [u])i j explicitly by deriving the following discrete version of the Bochner
identity, avoiding the more involved estimates required for the general case. In what follows,
we denote

uhl (x):=u(x + hel).

Lemma 4.16 (Discrete Bochner identity) Suppose H1 ∈ C0(Ω × R) and l ∈ {1, . . . , n}.
Then

Δh
ll

(
H1[u]|∇u|2) = 2H1∇ i u∇iΔ

h
llu + (H1[u])−h

l

∣∣∇∇−h
l u

∣∣2 + (H1[u])hl
∣∣∇∇h

l u
∣∣2

+ ∇−h
l ∇i u∇ i u∇−h

l H1[u] + ∇h
l ∇ i u∇i u∇h

l H1[u]
+ ∇h

l

(
∇i u(∇ i u)−h

l ∇−h
l H1[u]

)
. (4.37)

Assuming the validity of Lemma 4.16, the proof of (4.27) in Lemma 4.10 b) is then
straightforward:

Proof of Lemma 4.10 b) Substituting the discrete Bochner identity (4.37) into the definition
of (I3)h and dropping the two positive terms, we obtain

(I3)h ≥ 2
∫

BR+2ρ

η(ṽ+)q−1tr(F)H1∇ i u∇i ṽ

+
∑

l

∫

BR+2ρ

η(ṽ+)q−1tr(F)

(
∇−h
l ∇i u∇ i u∇−h

l H1[u] + ∇h
l ∇ i u∇i u∇h

l H1[u]

+ ∇h
l

(
∇i u(∇ i u)−h

l ∇−h
l H1[u]

))
. (4.38)
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After applying the difference quotient product rule

∇h
l (uv)(x) = uhl (x)∇h

l v(x) + v(x)∇h
l u(x) (4.39)

to the integrand in the last line of (4.38), we may then estimate the last two lines of (4.38) in
the usual way. Namely, after applying the bound tr(F) ≤ C(Δu + C1)

k−1, using Hölder’s
inequality and appealing to (2.4), we see that the last two lines of (4.38) are collectively
bounded from below by −C J (q+k−1)

h . The estimate (4.27) then follows. 
�
Proof of the discrete Bochner identity (Lemma 4.16) Using the product rule (4.39) to first cal-
culate ∇−h

l (H1[u]|∇u|2), we see

Δh
ll

(
H1[u]|∇u|2) = ∇h

l

(
∇−h
l

(
H1[u]∇ i u∇i u

))

= ∇h
l

(
(H1[u]∇ i u)−h

l ∇−h
l ∇i u

)
+ ∇h

l

(
H1[u]∇i u∇−h

l ∇ i u
)
+ ∇h

l

(
∇i u(∇ i u)−h

l ∇−h
l H1[u]

)
.

On the other hand, noting that ∇h
l u

−h
l u(x) = ∇−h

l u(x) and (∇−h
l u)hl (x) = ∇h

l u(x), we also
have by (4.39) the identities

∇h
l

(
(H1[u]∇ i u)−h

l ∇−h
l ∇i u

)
= H1∇ i u∇h

l ∇−h
l ∇i u + ∇−h

l ∇i u∇−h
l (H1[u]∇ i u)

= H1∇ i u∇iΔ
h
llu + (H1[u])−h

l

∣∣∇∇−h
l u

∣∣2

+ ∇−h
l ∇i u∇ i u∇−h

l H1[u]
and

∇h
l

(
H1[u]∇i u∇−h

l ∇ i u
)

= ∇h
l ∇ i u∇h

l

(
H1[u]∇i u

)
+ H1∇i u∇h

l ∇−h
l ∇ i u

= (H1[u])hl
∣∣∇∇h

l u
∣∣2 + ∇h

l ∇ i u∇i u∇h
l H1[u] + H1∇i u∇ iΔh

llu.

Putting these three identities together, we arrive at (4.37). 
�

4.4.2 Proof of Lemma 4.10 in the general case

We now prove Lemma 4.10 in the general case. To simplify our analysis, we will make use
of the following semi-convexity property of H ∈ C1,1

loc (Ω ×R×R
n;Symn(R)): there exists

a constant CΣ > 0 such that the mapping ξ �−→ H(x, z, ξ) + CΣ |ξ |2 I is convex for all
(x, z, ξ) ∈ Σ (this is an immediate consequence of the C1,1

loc regularity of H ). We will make
use of this property in the form

Hi j (x, z, ξ) ≥ Hi j (x, z, ζ ) + ∂Hi j

∂ξa
(x, z, ζ )(ξ − ζ )a − CΣδi j |ξ − ζ |2 (4.40)

for all (x, z, ξ), (x, z, ζ ) ∈ Σ . Note that in Case 1 of Theorem 1.5, we may take CΣ = 0
in (4.40), as H(x, z, ξ) = H1(x, z)|ξ |2 I is convex with respect to ξ when H1 ≥ 0. The
inequality (4.40) will play a role similar to that of the discrete Bochner identity used in the
previous section (see Lemma 4.16).

Proof of Lemma 4.10 We first prove Lemma 4.10 a). It suffices to show that

Fi jΔh
ll(H [u])i j ≥ Fi j ∂Hi j

∂ξa
[u] ∇aΔ

h
llu + error terms ∀l ∈ {1, . . . , n}, (4.41)
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where the error terms satisfy

∫

BR+2ρ

η(ṽ+)q−1|error terms| ≤ C J (q+k)
h . (4.42)

To keep notation succinct, we denote x± = x ± hel and F = (Fi j ) in what follows.
Step 1: We first prove a lower bound for Fi j (x)Δh

ll(H [u](x))i j , identifying the error terms
in (4.41). Observe that by (4.40) and the fact that Fi j is positive definite in Γ +

k , we have

Fi j (x)

h2

[
(H [u](x±))i j − H(x±, u(x±),∇u(x))i j

]

≥ Fi j (x)

h2
∂Hi j

∂ξa

(
x±, u(x±),∇u(x)

)(∇au(x±) − ∇au(x)
) − CΣ |F |

h2
∣∣∇u(x±) − ∇u(x)

∣∣2

≥ Fi j (x)

h2
∂Hi j

∂ξa
[u](x)(∇au(x±) − ∇au(x)

) − CΣ |F |
h2

∣∣∇u(x±) − ∇u(x)
∣∣2

− C |F |
|h|

∣∣∇u(x±) − ∇u(x)
∣∣ for a.e. x ∈ BR+2ρ,

where to obtain the second inequality we have estimated

∣∣∣∣
∂Hi j

∂ξa

(
x±, u(x±),∇u(x)

) − ∂Hi j

∂ξa
[u](x)

∣∣∣∣ ≤ ‖H‖C1,1(Σ)

(|x± − x | + |u(x±) − u(x)|)

≤ C |h|.

Recalling the definition of Δh
ll(H [u](x))i j , we therefore see that for a.e. x ∈ BR+2ρ ,

Fi j (x)Δh
ll(H [u](x))i j

≥ Fi j (x)
∂Hi j

∂ξa
[u](x)∇aΔ

h
llu(x)

+ Fi j (x)

h2

(
H(x+, u(x+),∇u(x))i j − 2(H [u](x))i j + H(x−, u(x−),∇u(x))i j

)

− CΣ |F ||∇h
l ∇u|2 − CΣ |F ||∇−h

l ∇u|2 − C |F ||∇h
l ∇u| − C |F ||∇−h

l ∇u|. (4.43)

Step 2: To prove (4.26), we need to show that the error terms in last two lines of (4.43)
satisfy (4.42). Formally, these terms behave like |F |(|∇2u|2 +|∇2u|), and so by the estimate
|F | ≤ C(Δu + C1)

k−1, the bound (4.42) is then conceivable. We now give the details.
Denote the terms on the penultimate line of (4.43) collectively by E1, and the terms on the

last line of (4.43) collectively by E2. The error terms in E2 are easier to deal with. Indeed,
by the bound |F | ≤ C(Δu + C1)

k−1, Hölder’s inequality and (2.4), we have

∫

BR+2ρ

η(ṽ+)q−1|F ||∇±h
l ∇u|2 ≤ C(J (q+k)

h )
q+k−2
q+k

( ∫

BR+2ρ

|∇±h
l ∇u|q+k

) 2
q+k ≤ C J (q+k)

h .

(4.44)

In exactly the same way, one can show
∫
BR+2ρ

η(ṽ+)q−1|F ||∇±h
l ∇u| ≤ C J (q+k−1)

h , and

combining these estimates we obtain
∫
BR+2ρ

η(ṽ+)q−1|E2| ≤ C J (q+k)
h .
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We now treat the error terms in E1. We first observe that by the fundamental theorem of
calculus followed by the chain rule, we have the identities

H(x±, u(x±), ξ)i j − H(x, u(x), ξ)i j

=
∫ 1

0

d

dt
H(x ± thel , u(x±), ξ)i j dt +

∫ 1

0

d

dt
H(x, u(x ± thel), ξ)i j dt

= ±h
∫ 1

0

∂Hi j

∂xl
(x ± thel , u(x±), ξ) dt ± h

∫ 1

0

∂Hi j

∂z
(x, u(x ± thel), ξ)∇l u(x ± thel) dt,

and therefore

H(x+, u(x+), ξ)i j − 2H(x, u(x), ξ)i j + H(x−, u(x−), ξ)i j

= h
∫ 1

0

(
∂Hi j

∂z
(x, u(x + thel), ξ)∇l u(x + thel)

− ∂Hi j

∂z
(x, u(x − thel), ξ)∇l u(x − thel)

)
dt

+ h
∫ 1

0

(
∂Hi j

∂xl
(x + thel , u(x+), ξ) − ∂Hi j

∂xl
(x − thel , u(x−), ξ)

)
dt . (4.45)

Now, by the C1,1
loc regularity of H and the Lipschitz regularity of the mapping (x, z, p)

�→ ∂Hi j
∂z (x, z, ξ)pl for fixed ξ and each l ∈ {1, . . . , n}, we can estimate the last line of (4.45)

from above by Ch2 and the middle line of (4.45) from above by

Ch2 + Ch2
∫ 1

0

1

t |h|
∣∣∣∇lu(x + thel) − ∇lu(x − thel)

∣∣∣ dt .

Applying these estimates in (4.45) and taking ξ = ∇u(x), we therefore see that

|E1| ≤ C |F | + C |F |
∫ 1

0
|∇ th

l ∇l u(x)| dt + C |F |
∫ 1

0
|∇−th

l ∇l u(x)| dt . (4.46)

Using (4.46), one readily obtains the estimate
∫
BR+2ρ

η(ṽ+)q−1|E1| ≤ C J (q+k−1)
h , apply-

ing the same line of argument as seen above for E2. For example, by Fubini’s theorem and
Young’s inequality, we have

∫

BR+2ρ

η(ṽ+)q−1|F |
( ∫ 1

0
|∇±th

l ∇l u(x)| dt
)
dx

=
∫ 1

0

∫

BR+2ρ

η(ṽ+)q−1|F ||∇±th
l ∇l u(x)| dx dt

≤ C J (q+k−1)
h + C

∫ 1

0

∫

BR+2ρ

|∇±th
l ∇l u|q+k−1 dx dt

(2.4)≤ C J (q+k−1)
h .

This completes the proof of Lemma 4.10 a).
Step 3: It remains to prove Lemma 4.10 b) (see Sect. 4.4.1 for an alternative proof which
is independent of calculations in Steps 1 and 2 above). Note that in this case, we may take
CΣ = 0 in (4.43) and so the error terms on the last two lines of (4.43) formally behave like
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|F ||∇2u|. By the same argument as in Step 2, the error terms E1 and E2 considered in Step
2 therefore satisfy

∫
BR+2ρ

η(ṽ+)q−1|Ei | ≤ C J (q+k−1)
h , and the conclusion follows. 
�

5 Proof of main results

In this section we use Corollaries 4.12, 4.13 and 4.14 to prove Theorems 1.5 and 1.8, as
outlined at the end of Sect. 2. We will first give a detailed proof of Case 1 of Theorem 1.5
when f = f (x, z) in Sect. 5.1, and then indicate the necessary adjustments for remaining
cases, still when f = f (x, z), in Sect. 5.2. In Sect. 5.3, we extend these results to the case
f = f (x, z, ξ), completing the proofs of Theorems 1.5 and 1.8.

5.1 Proof of Case 1 of Theorem 1.5 when f = f(x, z)

In this case, we recall that by Corollary 4.12 we have the estimate

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)
≤ Cq

ρ2 J (q+k−1)
h , (5.1)

where u ∈ W 2,q+k−1
loc (Ω) ∩W 1,∞

loc (Ω) (q > 1). Let θ ∈ (0, 1) be such that 2−θ
θ

≤ q + k − 1
(we will eventually take θ = 4

kn+2 ). Also denote by (2 − θ)∗:=n(2 − θ)/(n − 2 + θ) the
Sobolev conjugate of 2 − θ . We first obtain from (5.1) the following:

Lemma 5.1 Suppose f ∈ C1,1
loc (Ω ×R) is positive, H = H1(x, z)|ξ |2 I with H1 ∈ C1,1

loc (Ω ×
R) and H1 ≥ 0, and that u ∈ W 2,q+k−1

loc (Ω)∩W 1,∞
loc (Ω) (q > 1) is a solution to (4.6). Then

( ∫

BR+ρ

(Δu + C1)
q(2−θ)∗

2

) 2
(2−θ)∗

≤ Cq

ρ2

( ∫

BR+3ρ

(Δu + C1)
2−θ
θ

) θ
2−θ

∫

BR+3ρ

(Δu + C1)
q+k−1. (5.2)

Proof The estimate (5.2) will follow immediately once we establish the estimate

( ∫

BR+ρ

(ṽ+)
q(2−θ)∗

2

) 2
(2−θ)∗ ≤ Cq

ρ2

∣∣J ( 2−θ
θ

)

h

∣∣ θ
2−θ J (q+k−1)

h , (5.3)

since we can then apply Fatou’s lemma and the fact that ṽ+ → Δu + C1 a.e. as h → 0 to
the term on the LHS of (5.3), and Lemma 2.1 to the terms on the RHS of (5.3).

Keeping in mind the lower bound infB2R f > 1
C > 0, we first observe that by Hölder’s

inequality and (5.1), we have

( ∫

BR+ρ

∣∣∇(
(ṽ+)q/2)∣∣2−θ

) 2
2−θ

≤ C

( ∫

BR+ρ

(Δu − tr(H))
2−θ
θ

) θ
2−θ

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)

(5.1)≤ Cq

ρ2

∣∣J ( 2−θ
θ

)

h

∣∣ θ
2−θ J (q+k−1)

h . (5.4)
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On the other hand, since q(2−θ)
2 ≤ q + k − 1, Hölder’s inequality gives

( ∫

BR+ρ

(ṽ+)
q(2−θ)

2

) 2
2−θ ≤

( ∫

BR+ρ

(ṽ+)
2−θ
θ

) θ
2−θ

∫

BR+ρ

(ṽ+)q−1

≤ ∣∣J ( 2−θ
θ

)

h

∣∣ θ
2−θ J (q+k−1)

h . (5.5)

Applying the Sobolev inequality to (ṽ+)q/2 ∈ W 1,2−θ , and appealing to (5.4) and (5.5), we
arrive at (5.3). 
�

The inequality (5.2) is of reverse Hölder-type if θ satisfies

2 − θ

θ
< q + k − 1 <

q(2 − θ)∗

2
.

For example, if we fix θ = 4
kn+2 and finally impose the assumption q + k − 1 > kn

2 , we see
that (2 − θ)/θ = kn/2 < q + k − 1 and

q(2 − θ)∗

2
− (q + k − 1) >

(
kn

2
− k + 1

)(
kn

2 + kn − 2k
− 1

)
− k + 1 = 0.

In what follows, we denote

β:= (2 − θ)∗

2
= kn

kn + 2 − 2k
> 1.

Proof of Case 1 of Theorem 1.5 when f = f (x, z) With θ = 4
kn+2 , we obtain from (5.2) the esti-

mate
( ∫

BR+ρ

(Δu + C1)
βq

)1/β

≤ Cq

ρ2

∫

BR+3ρ

(Δu + C1)
q+k−1 (5.6)

for all q > kn
2 − k + 1 and ρ ∈ (0, R

3 ]. The constant C in (5.6) and below now depends on∫
BR+3ρ

(Δu + C1)
kn/2, which is finite due to our hypotheses.

We now carry out the Moser iteration argument. Let p > kn
2 be as in the statement of

Theorem 1.5, and define a sequence q j inductively by

q0 = p − k + 1, q j = βq j−1 − k + 1 for j ≥ 1.

Then q j = βq j−1 − (k − 1) = β j q0 − (k − 1)(β j−1 + · · · + β + 1), which implies

q j

β j
= q0 − (k − 1)

(
1 − β− j

β − 1

)
j→∞−→ q0 − k − 1

β − 1
> 0. (5.7)

Note that the limit in (5.7) is positive by definition of β and the fact that q0 > kn
2 − k + 1.

In particular, q j → ∞ as j → ∞.
Applying (5.6) iteratively with q = q j and ρ = 3− j−1R, we have for each j ≥ 0

( ∫

B
(1+3− j−1)R

(Δu + C1)
βq j

)β− j−1

≤
(
9 jCq j

∫

B
(1+3− j )R

(Δu + C1)
βq j−1

)β− j

(5.7)≤
j∏

i=0

(
(9β)iC

)β−i
∫

B2R
(Δu + C1)

p

≤ (9β)
∑∞

i=0 iβ
−i
C

∑∞
i=0 β−i

∫

B2R
(Δu + C1)

p.
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Letting j → ∞ and appealing once again to (5.7), we arrive at

‖Δu + C1‖L∞(BR) ≤ C

( ∫

B2R
(Δu + C1)

p
)(

q0− k−1
β−1

)−1

,

which implies the desired bound on ‖∇2u‖L∞(BR) by the choice of C1. 
�

5.2 Proof of Case 2 of Theorems 1.5 and 1.8 when f = f(x, z)

In these cases, we recall that by Corollaries 4.13 and 4.14 we have the estimate

∫

BR+ρ

f k
∣∣∇(

(ṽ+)q/2
)∣∣2

Δu − tr(H)
≤ Cq

ρ2 J (q+k)
h , (5.8)

where u ∈ W 2,q+k
loc (Ω) ∩ W 1,∞

loc (Ω) (q > 1).

Proof of Case 2 of Theorems 1.5 and 1.8 when f = f (x, z) We let θ ∈ (0, 1) be such that 2−θ
θ

≤
q + k. Following the same arguments as in Sect. 5.1, one readily obtains the following
counterpart to the estimate (5.2):

( ∫

BR+ρ

(Δu + C1)
q(2−θ)∗

2

) 2
(2−θ)∗

≤ Cq

ρ2

( ∫

BR+3ρ

(Δu + C1)
2−θ
θ

) θ
2−θ

∫

BR+3ρ

(Δu + C1)
q+k . (5.9)

Taking θ = 4
(k+1)n+2 and imposing q + k >

(k+1)n
2 , we see

2 − θ

θ
= (k + 1)n

2
< q + k <

q(2 − θ)∗

2
.

We thus obtain from (5.9) the estimate

( ∫

BR+ρ

(Δu + C1)
βq

)1/β

≤ Cq

ρ2

∫

BR+3ρ

(Δu + C1)
q+k,

where

β:= (k + 1)n

(k + 1)n + 2 − 2(k + 1)
> 1

andC now depends on
∫
BR+3ρ

(Δu+C1)
(k+1)n/2. TheMoser iteration argument then follows

through as before, using p >
(k+1)n

2 and defining q j inductively by q0 = p − k and
q j = βq j−1 − k for j ≥ 1. 
�

5.3 Proof of Theorems 1.5 and 1.8 for f = f(x, z, �)

In this section we explain how the preceding arguments may be adjusted to treat the general
case f = f (x, z, ξ), thus completing the proofs of Theorems 1.5 and 1.8:
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Proof of Theorems 1.5 and 1.8 The arguments up until (4.12) remain valid for f = f (x, z, ξ),
but the last term in (4.10) can no longer be estimated as in (4.12). Consequently, under
otherwise the same hypotheses, the conclusion of Lemma 4.2 now reads

(I1)h + (I2)h + (I3)h + (I4)h ≤ Cρ−2 J (q+k−1)
h ,

where (I1)h , (I2)h and (I3)h are as before and

(I4)h :=
∑

l

∫

BR+2ρ

kη(ṽ+)q−1 f k−1Δh
ll f [u].

The estimates for (I1)h , (I2)h and (I3)h are unchanged (see Lemmas 4.3, 4.4, 4.5, 4.8 and
4.10), since they do not involve differentiating f . The integrand of (I4)h was previously a
lower order term, but is now formally of third order in u. However, this can be treated using
some of the ideas already seen in the proof of Lemma 4.10. Indeed, by the same argument
leading to (4.43), we have for each l ∈ {1, . . . , n} and a.e. x ∈ BR+2ρ the estimate

Δh
ll f [u](x)
≥ ∂ f

∂ξa
[u](x)∇aΔ

h
llu(x) − CΣ |∇h

l ∇u|2 − CΣ |∇−h
l ∇u|2 − C |∇h

l ∇u| − C |∇−h
l ∇u|

+ 1

h2

(
f (x+, u(x+),∇u(x)) − 2 f [u](x) + f (x−, u(x−),∇u(x))

)
. (5.10)

As before, the constant CΣ > 0 is such that the mapping ξ �−→ f (x, z, ξ) + CΣ |ξ |2 is
convex for all (x, z, ξ) ∈ Σ . Denoting all but the first term on the RHS of (5.10) as error
terms, it follows from (5.10) that

(I4)h ≥
∫

BR+2ρ

kη(ṽ+)q−1 f k−1 ∂ f

∂ξa
[u]∇a ṽ −

∫

BR+2ρ

kη(ṽ+)q−1 f k−1|error terms|.
(5.11)

Now, in the same way that we dealt with the error terms in Step 2 of the proof of Lemma 4.10,
one readily obtains

∫
BR+2ρ

kη(ṽ+)q−1 f k−1|error terms| ≤ C J (q+1)
h . For the first integral on

the RHS of (5.11), we integrate by parts and apply Hölder’s inequality to obtain
∣∣∣∣
∫

BR+2ρ

kη(ṽ+)q−1 f k−1 ∂ f

∂ξa
[u]∇a ṽ

∣∣∣∣ ≤ Cρ−1 J (q+1)
h .

Returning to (5.11), we therefore obtain (I4)h ≥ −Cρ−1 J (q+1)
h . As a consequence, the

estimates (5.1) and (5.8) hold, and the arguments of Sect. 5 therefore apply without any
changes. 
�

6 The case k ≥ 3 for general H

In this final section we consider a minor extension of Theorem 1.8. Recall that our proof
of Theorems 1.5 and 1.8 exploited a cancellation phenomenon between higher order terms
arising from (I2)h and (I3)h , where the divergence structure of F

i j played a role in estimating
(I2)h . When 3 ≤ k ≤ n and H is not necessarily a multiple of the identity, the divergence
structure given in (3.4) is more involved and the resulting arguments fall outside the scope
of the present paper. That said, if one assumes higher integrability on ∇2u from the outset,
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the terms (I2)h and (I3)h may be estimated by using Cauchy’s inequality and absorbing the
resulting negative higher order terms into the positive term (I1)h . This avoids the need to
prove any cancellation between (I2)h and (I3)h . We establish:

Theorem 6.1 Let Ω be a domain in R
n (n ≥ 3), f = f (x, z, ξ) ∈ C1,1

loc (Ω × R × R
n) a

positive function and H ∈ C1,1
loc (Ω × R × R

n ; Symn(R)). Suppose 3 ≤ k ≤ n, p > kn

and u ∈ W 2,p
loc (Ω) is a solution to (1.4). Then u ∈ C1,1

loc (Ω), and for any concentric balls
BR ⊂ B2R � Ω we have

‖∇2u‖L∞(BR) ≤ C,

where C is a constant depending only on n, p, R, f , H and an upper bound for ‖u‖W 2,p(B2R).

Proof Following the proof of Theorem 1.8 in Sect. 5.3 but leaving the terms (I2)h and (I3)h
untreated, we have for u ∈ W 2,q+k−1

loc (Ω) ∩ W 1,∞
loc (Ω) (q > 1)

q − 1

Cq2

∫

BR+2ρ

η

∣∣∇(
(ṽ+)q/2

)∣∣2

tr(AH )
+ (I2)h + (I3)h ≤ Cρ−2 J (q+k−1)

h . (6.1)

We now suppose further that ∇2u ∈ Lq+2k−1
loc (Ω) (q > 1). By Cauchy’s inequality and the

bound |divF[u]| ≤ C(Δu + C1)
k−1 in Eq. (3.12), we see that for all δ > 0

(I2)h = 2

q

∫

BR+2ρ

η(ṽ+)q/2∇i F[u]i j∇ j (ṽ
+)q/2

≥ −δ(q − 1)

q2

∫

BR+2ρ

η

∣∣∇(
(ṽ+)q/2

)∣∣2

tr(AH )
− 1

δ(q − 1)

∫

BR+2ρ

η(ṽ+)q tr(AH )
∣∣divF[u]∣∣2

≥ −δ(q − 1)

q2

∫

BR+2ρ

η

∣∣∇(
(ṽ+)q/2

)∣∣2

tr(AH )
− C

δ(q − 1)
J (q+2k−1)
h . (6.2)

By similar reasoning, it also holds that

(I3)h
(4.26)≥

∫

BR+2ρ

η(ṽ+)q−1Fi j ∂Hi j

∂ξa
[u] ∇a ṽ − C J (q+k)

h

≥ −δ(q − 1)

q2

∫

BR+2ρ

η

∣∣∇(
(ṽ+)q/2

)∣∣2

tr(AH )
− C

δ(q − 1)
J (q+2k−1)
h . (6.3)

Taking δ sufficiently small in (6.2) and (6.3), and then substituting these estimates into (6.1),
we obtain

q − 1

q2

∫

BR+2ρ

η

∣∣∇(
(ṽ+)q/2

)∣∣2

tr(AH )
≤ Cρ−2 J (q+2k−1)

h . (6.4)

The argument then proceeds as in Sect. 5.1: we let θ ∈ (0, 1) be such that 2−θ
θ

≤ q + 2k − 1
and obtain from (6.4) the estimate

( ∫

BR+ρ

(Δu + C1)
q(2−θ)∗

2

) 2
(2−θ)∗

≤ Cq

ρ2

( ∫

BR+3ρ

(Δu + C1)
2−θ
θ

) θ
2−θ

∫

BR+3ρ

(Δu + C1)
q+2k−1. (6.5)
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Taking θ = 2
kn+1 and imposing q + 2k − 1 > kn, we see that 2−θ

θ
= kn < q + 2k − 1 <

q(2−θ)∗
2 , and we therefore obtain from (6.5) the estimate

( ∫

BR+ρ

(Δu + C1)
βq

)1/β

≤ Cq

ρ2

∫

BR+3ρ

(Δu + C1)
q+2k−1,

where β:=kn/(kn + 1 − 2k) > 1 and C now depends on
∫
BR+3ρ

(Δu + C1)
kn . The Moser

iteration argument then goes through as before, giving the desired conclusion. 
�
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A A remark on the regularity of solutions to the �2-Yamabe equation
obtained by vanishing viscosity

Let (M4, g0) be a 4-manifold with scalar curvature R0 > 0 and Schouten tensor A0 satisfying∫
M4 σ2(A0) dv0 > 0. In [12], the existence of smooth solutions gwδ = e2wδ g0 with positive

scalar curvature to the fourth order equation

σ2(Agwδ
) = δ

4
Δgwδ

Rgwδ
− 2γ1|η|2gwδ

(A.1)

is established for each δ ∈ (0, 1], where η is any fixed non-vanishing (0, 2)-tensor and γ1 < 0
is the conformal invariant obtained by integrating both sides of (A.1). Moreover, solutions
are shown to satisfy the uniform estimates

‖wδ‖W 2,s (M4,g0) ≤ C for all δ ∈ (0, 1], 1 ≤ s < 5, (A.2)

where the constant C = C(s) is independent of δ. A heat flow argument is then applied to
obtain a conformal metric g with λ(Ag) ∈ Γ +

2 . In this appendix, we show that in the case
that (M4, g0) is locally conformally flat, we may take the limit δ → 0 more directly in (A.1)
to obtain the desired conformal metric with λ(Ag) ∈ Γ +

2 . More precisely, using Theorem 1.1
and a result of [46], we show that, along a subsequence, the solutions wδ converge weakly
to a smooth solution of the equation σ2(Agwδ

) = −2γ1|η|2gwδ
> 0.

To this end, fix 4 < s < 5. We first observe that by (A.2), we can find a sequence
δi → 0 for which wi :=wδi converges weakly in W 2,s(M4, g0), say to w ∈ W 2,s(M4, g0).

By the Morrey embedding W 2,s(M4, g0) ↪→ C1,1− 4
s (M4, g0), we may assume wi → w in

C1,α(M4, g0) for some α > 0. It then follows from [46, Proposition 5.3] and the estimate
(A.2) that for all φ ∈ C0(M4), we have

lim
i→∞

∫

M4
σ2(Agwi

)φ dv0 =
∫

M4
σ2(Agw )φ dv0. (A.3)
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Substituting the Eq. (A.1) into (A.3) and integrating by parts, we therefore see that
∫

M4
σ2(Agw )φ dv0 = lim

i→∞

∫

M4

(
δi

4
Rgwi

Δgwi
φ − 2γ1|η|2gwi

φ

)
dv0

= −
∫

M4
2γ1|η|2gw

φ dv0

for all φ ∈ C2(M4, g0). It follows that w ∈ W 2,s(M4, g0) solves

σ2(Agw ) = −2γ1|η|2gw
> 0 a.e. in M4. (A.4)

Moreover, as Rgwi
> 0 for each i , it follows that Rgw ≥ 0, and by (A.4) we therefore have

Rgw > 0 a.e. If (M4, g0) is locally conformally flat, we therefore obtain from Theorem 1.1
that u:=e−w ∈ C1,1(M4, g0), and consequently (A.4) is uniformly elliptic at w.

At this point, we apply the Evans-Krylov theorem to obtain u ∈ C2,α(M4, g0). Indeed,
by the proof of [7, Theorem 6.6], it suffices to observe that, by Lemmas 4.1 and 4.16,
v = ∑

l Δ
h
llu is a subsolution to a uniformly elliptic linear equation, namely

Fi j∇i∇ jv + Bi Div ≥ C,

where Fi j is uniformly elliptic and Fi j , Bi and C are bounded. Furthermore, since
f (x, u):=−2γ1|η(x)|2

u−2g0
= −2γ1u4|η(x)|2g0 is smooth, standard elliptic regularity ensures

that u (and hence w) belongs to C∞(M4, g0).

B Proof of Lemma 2.1

The proof is a standard argument using Taylor’s theorem. We claim that

‖vh − Δu‖Ls (Ω ′) ≤
n∑

l=1

∫ 1

0

∥∥∥∇l∇l u(x + thel) − ∇l∇l u(x)
∥∥∥
Ls (Ω ′)

dt

+
n∑

l=1

∫ 1

0

∥∥∥∇l∇lu(x − thel) − ∇l∇l u(x)
∥∥∥
Ls (Ω ′)

dt (B.1)

for all u ∈ W 2,s(Ω) and Ω ′ � Ω satisfying |h| < dist(Ω ′, ∂Ω), from which the conclusion
follows by the continuity of the translation operator in Ls(Ω). By density it suffices to prove
(B.1) for u ∈ C2(Ω). Let Ω ′ be as above. Then for each x ∈ Ω ′ and l ∈ {1, . . . , n}, we have
by Taylor’s theorem

u(x ± hel) = u(x) ± h∇lu(x) + h2
∫ 1

0
(1 − t)∇l∇l u(x ± thel) dt,

and thus

vh(x) − Δu(x) =
n∑

l=1

∫ 1

0
(1 − t)

(
∇l∇l u(x + thel) − ∇l∇lu(x)

)
dt

+
n∑

l=1

∫ 1

0
(1 − t)

(
∇l∇l u(x − thel) − ∇l∇lu(x)

)
dt . (B.2)
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Let s′ be such that 1
s + 1

s′ = 1. It follows from (1.2) and Hölder’s inequality that for all

g ∈ Ls′(Ω ′) satisfying ‖g‖Ls′ (Ω ′) ≤ 1, we have

∫

Ω ′

(
vh(x) − Δu(x)

)
g(x) dx

=
n∑

l=1

∫ 1

0
(1 − t)

∫

Ω ′

(
∇l∇l u(x + thel) − ∇l∇l u(x)

)
g(x) dx dt

+
n∑

l=1

∫ 1

0
(1 − t)

∫

Ω ′

(
∇l∇l u(x − thel) − ∇l∇l u(x)

)
g(x) dx dt

≤
n∑

l=1

∫ 1

0

∥∥∥∇l∇l u(x + thel) − ∇l∇l u(x)
∥∥∥
Ls (Ω ′)

dt

+
n∑

l=1

∫ 1

0

∥∥∥∇l∇lu(x − thel) − ∇l∇l u(x)
∥∥∥
Ls (Ω ′)

dt . (B.3)

Taking the supremum over such g in (B.3), we obtain (B.1). 
�
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