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Abstract
In this article we prove a Harnack inequality for non-negative weak solutions to doubly
nonlinear parabolic equations of the form

∂t u − divA(x, t, u, Dum) = div F,

where the vector fieldA fulfills p-ellipticity andgrowth conditions.We treat the slowdiffusion
case in its full range, i.e. all exponents m > 0 and p > 1 with m(p − 1) > 1 are included in
our considerations.

Mathematics Subject Classification 35K55 · 35K65 · 35B45 · 35B65

1 Introduction and results

Let � ⊂ R
n , n ≥ 2, be a bounded open domain and (0, T ) with 0 < T < ∞ a finite time

interval. In the following, �T := � × (0, T ) denotes the related space-time cylinder. The
prototype of the doubly nonlinear equations we are concerned with is
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∂t u − div
(|Dum |p−2Dum

) = 0 in �T (1.1)

for non-negative solutions u : �T → R≥0 with parameters m ∈ (0,∞) and p ∈ (1,∞). If
m = 1, (1.1) reduces to the parabolic p-Laplace equation, whereas for p = 2 we retrieve the
porous medium equation. Doubly nonlinear equations of type (1.1) are classified as doubly
degenerate if m > 1 and p > 2, singular-degenerate if m > 1 and p ∈ (1, 2), degenerate-
singular if m ∈ (0, 1) and p > 2 and doubly singular if m ∈ (0, 1) and p ∈ (1, 2).
Furthermore, depending on the behavior of solutions, we distinguish between slow diffusion
equations withm(p−1) > 1 and fast diffusion equations withm(p−1) < 1. The qualitative
difference between both cases stems from the fact that in the former one solutions might have
a compact support, while this is not possible in the latter one. In the present paper, we treat
the complete slow diffusion range p(m−1) > 1, which includes the doubly degenerate case
and the singular-degenerate and degenerate-singular slow diffusion case.

In the literature, (1.1) often appears in equivalent forms; cf. [17–20,28,33].More precisely,
we note that formally (1.1) is a transformation of

∂t u
m̂ − div

(|Du|p−2Du
) = 0

with m̂ := 1
m and

∂t u − c(�, p) div
(
u�|Du|p−2Du

) = 0

where � := (m − 1)(p − 1). These representations of (1.1) can be shown to be equivalent.
Let us also note that form > 1 there are two different notions of weak solutions to the porous
medium equation and doubly nonlinear equations in the literature. The first one assumes that

u
m+1
2 is weakly differentiable with respect to the space variable, whereas the second one

claims this for um (in the case m < 1 only the latter one makes sense). For the prototype
porous medium equation the equivalence of both notions of solutions has been shown in
[6]. It is still an open problem if the same is true for doubly nonlinear equations and porous
medium type equations with a general structure.

Harnack estimates play a crucial role in the regularity theory of partial differential equa-
tions. In the elliptic setting, essential contributions are due to Moser [25] for linear elliptic
equations andSerrin [29] andTrudinger [31] for quasilinear elliptic equations. In the parabolic
setting, the first results have been obtained by Hadamard [16] and Pini [27] for non-negative
solutions of the heat equation. For the heat equation Harnack’s inequality takes the form

c−1 sup
B�(xo)

u
(·, to − �2) ≤ u (xo, to) ≤ c sup

B�(xo)
u
(·, to + �2)

with waiting time �2. Moser [26] showed that this result is true for linear parabolic equations
as well and demonstrated the necessity of the waiting time. Later, Trudinger [32] proved Har-
nack inequalities for quasilinear parabolic equations and the homogeneous doubly nonlinear
equation

∂t
(
u p−1)− div

(|Du|p−2Du
) = 0

with p > 1. Using an approach based on mean value inequalities for suitable De Giorgi
classes, Gianazza and Vespri [14] gave a proof that extends to more general operators
A(x, t, u, Du) instead of |Du|p−2Du. Finally, simplifying an approach originally introduced
by Moser, Kinnunen & Kuusi [22] obtained Harnack’s inequality for the homogeneous dou-
bly nonlinear equation, where the Lebesgue measure is replaced by a more general Borel
measure. In the case of non-homogeneous nonlinear equations, the situation ismore involved.
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DiBenedetto [7] proved that non-negativeweak solutions of the parabolic p-Laplace equation
and the porous medium equation satisfy an intrinsic Harnack inequality of the form

c−1 sup
B�(xo)

u (·, to − tw) ≤ u (xo, to) ≤ c inf
B�(xo)

u (·, to + tw)

with tw = cu(xo, to)2−p�p for the parabolic p-Laplace equation and tw = cu(xo, to)1−m�2

for the porous medium equation. These Harnack inequalities are called intrinsic, because the
waiting times depend on the solution itself. Loosely speaking, solutions of non-homogeneous
equations behave like solutions of the heat equation in an intrinsic time scale. A counterex-
ample [11] shows that a Harnack estimate with tw independent of u is false. Since the proof in
[7] relies on comparison with explicit solutions, it cannot be adapted for general quasilinear
equations. Nearly 20 years later, this problem was overcome by DiBenedetto, Gianazza &
Vespri [9], whose proof only uses measure theoretical tools. The main novelty is the so-
called Expansion of Positivity. The same method was used by Kuusi [23] to obtain weak
Harnack estimates for super-solutions of nonlinear degenerate parabolic equations. For an
extensive overview regarding the parabolic p-Laplace equation and the porousmedium equa-

tion with the definition of weak solution involving u
m+1
2 , we refer to the monograph [10]

by DiBenedetto, Gianazza and Vespri and the survey [11] by Düzgün, Fornaro and Vespri.
Harnack’s inequality for the prototype doubly nonlinear equation

∂t u − div
(|u|m−1|Du|p−2Du

) = 0 (1.2)

has first been proved by Vespri [33] for the full range of parameters p > 1 and m + p >

max{2, 3 − p
n }. The proof uses explicit constructions involving the Barenblatt solution and

therefore cannot be applied tomore general structures. For the doubly degenerate caseFornaro
and Sosio [12] generalized the result to weak solutions of

∂t u − divA(x, t, u, Du) = B(x, t, u, Du),

where the operators A and B fulfill the conditions
⎧
⎪⎨

⎪⎩

A(x, t, u, ξ) · ξ ≥ c0�(|u|)|ξ |p − cp,

|A(x, t, u, ξ)| ≤ c1�(|u|)|ξ |p−1 + cp−1�(|u|) 1
p ,

|B(x, t, u, ξ)| ≤ c2�(|u|)|ξ |p−1 + c2cp−1�(|u|) 1
p

with p ≥ 2, positive constants c0, c1, c2, c and a function � satisfying an (m − 1)-growth

condition with m ≥ 1. They used a definition of weak solution involving u
m+1
2 . A weak

Harnack inequality for super-solutions can be found in [24]. For the case of fast diffusion
equations, we refer to the articles by Fornaro, Sosio and Vespri [13] and Vespri and Vestberg
[34].

In this paper we prove Harnack’s inequality for the entire slow diffusion range and thereby
close the gap for the by now missing singular-degenerate and degenerate-singular slow dif-
fusion cases. Furthermore, we work with a definition of weak solution involving um , which
is new even for the doubly degenerate case and the slow diffusion porous medium equation.

1.1 Setting

We consider non-negative weak solutions to the doubly nonlinear equation

∂t u − divA
(
x, t, u, Dum

) = div F in �T (1.3)
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with m > 0. For the vector field A : �T × R × R
n → R

n we assume that A is measurable
with respect to (x, t) ∈ �T for all (u, ξ) ∈ R×R

n and continuous with respect to (u, ξ) for
a.e. (x, t) ∈ �T . Moreover, we assume that A satisfies the following growth and ellipticity
conditions

A(x, t, u, ξ) · ξ ≥ ν|ξ |p and |A(x, t, u, ξ)| ≤ L|ξ |p−1, (1.4)

for p > 1 and structure constants 0 < ν ≤ L < ∞. We demand that

F ∈ Lσ (�T ,Rn) (1.5)

for some σ >
n+p
p−1 and that the parameters m and p satisfy m(p − 1) > 1 which means that

we are in the slow diffusion range. In the following we abbreviate

d := m(p − 1) − 1 > 0.

We now give the precise definition of weak solution to (1.3) that we use throughout the paper.

Definition 1.1 Assume that the vector field A satisfies (1.4). A non-negative measurable
function u : �T → R≥0 in the class

u ∈ C0
(
(0, T ); Lm+1

loc (�)
)
with um ∈ L p

loc

(
0, T ;W 1,p

loc (�)
)

is a non-negative weak sub(super)-solution to the doubly nonlinear equation (1.3) if and only
if the identity

∫∫

�T

[− u · ∂tϕ + A(x, t, u, Dum) · Dϕ
]
dxdt

(≥)

≤
∫∫

�T

F · Dϕ dxdt (1.6)

holds true for any testing function ϕ ∈ C∞
0 (�T ,R≥0). If u is a weak sub- and super-solution

it is called a weak solution.

We are now in the position to formulate the main result of our paper:

Theorem 1.2 Let m > 0, p > 1 with m(p − 1) > 1 and u be a continuous, non-negative,
weak solution to (1.3) in the sense of Definition 1.1, where the vector field A satisfies (1.4)
and F satisfies (1.5). Moreover, let (xo, to) ∈ �T such that u(xo, to) > 0. Then, there
exist constants co, γ > 1 depending only on n,m, p, L, ν and σ such that for all cylinders
B9�(xo) × (to − 4θ�p, to + 4θ�p) � �T , with

θ =
(

co
u(xo, to)

)d

we either have

‖F‖Lσ (�T )�
p−1− n+p

σ ≥ 1
γ
u (xo, to)

d+1− d
σ (1.7)

or
(
2γ 2)−1

sup
B�(xo)

u
(
·, to − (2γ )−dθ�p

)
≤ u (xo, to) ≤ γ inf

B�(xo)
u
(·, to + θ�p) . (1.8)

Note that the continuity assumption in Theorem1.2 is not restrictive. TheHarnack inequal-
ity continues to hold for a.e. point (xo, to) ∈ �T if we state it for an arbitrary non-negative,
weak solution to (1.3). However, for the sake of a neater exposition of the result, we prefer
to state it for continuous solutions.
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1.2 Plan of the paper

In Sect. 2 we collect some auxiliary tools. Using um − am for some level a as test function
in (a mollified version of) the definition of weak sub- and super-solutions, we derive certain
Caccioppoli inequalities in Sect. 3. For convenience of the reader we state all intermediate
results forweak sub- respectively super-solutions instead ofweak solutions, so that it becomes
clear what the minimal assumptions are. Next, in Sect. 4 we show that weak sub-solutions to
(1.3) are locally bounded and give a quantitative estimate. In Sect. 5 we prove so-called De
Giorgi type lemmas. Loosely speaking, the first lemma shows that if a super-solution u to
(1.3) is smaller than some level M only on a small enough proportion of a suitable cylinder,
then u is larger than M

2 a.e. on a smaller cylinder contained in the first one. The second lemma
gives an analogous statement for sub-solutions in the case that u is larger than a fixed level
only on a small enough proportion of the bigger cylinder and consequently smaller than a
fraction of the level on the smaller cylinder. The proofs of the statements rely in particular
on the Caccioppoli estimates. In Sect. 6 we prove Expansion of Positivity of non-negative
weak super-solutions. The conclusion of the section is that if

|{u(to) ≥ M} ∩ B�(xo)| ≥ α|B�(xo)|
for a level M > 0, α ∈ (0, 1) and a suitable ball B�(xo), then u ≥ κM a.e. in B2�(xo)×

(
to+

1
2b(κM)−d�p, to + b(κM)−d�p

]
. Here, the constants b, κ ∈ (0, 1) depend only on the data

and α. In the proof, the Caccioppoli estimates and the first De Giorgi type lemma are used.
Finally, in Sect. 7 we deduce the intrinsic Harnack inequality stated in Theorem 1.2. To show
the forward inequality, i.e. the second inequality in (1.8), after a transformation we use the
second De Giorgi type lemma and iteratively apply Expansion of positivity. Subsequently,
we prove that the forward inequality implies the backward Harnack inequality, i.e. the first
inequality in (1.8). Actually, a more general version of the backward Harnack inequality is
shown in Sect. 7.

2 Preliminaries

2.1 Notation

First, we introduce some notation used throughout the paper. For functions defined on �T ,
we denote the time slice at time t ∈ (0, T ) by v(t) := v(·, t). For zo = (xo, to) ∈ R

n × R

we define space-time cylinders

Q−
�,θ (zo) := B�(xo) × �−

θ (to) := B�(xo) × (to − θ, to]
Q+

�,θ (zo) := B�(xo) × �+
θ (to) := B�(xo) × (to, to + θ ]

with a radius � > 0 and time length θ > 0 and let

Q�,θ (zo) := Q−
�,θ (zo) ∪ Q+

�,θ (zo)

As usual, we let

(u − a)+ := max{u − a, 0}, (u − a)− := max{−(u − a), 0},
for u, a ∈ R. Furthermore, for u, a ≥ 0 we define the boundary term

b
[
um, am

] := m
m+1

(
am+1 − um+1)− u · (am − um

)
. (2.1)
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2.2 Mollification in time

Since weak solutions do not possess a time derivative in general we have to use mollification.
To this end, for v ∈ L1(�T ,RN ) and h > 0 we define the following mollification in time

[[v]]h := 1
h

∫ t

0
e
s−t
h v(x, s) ds, (2.2)

which formally satisfies the ordinary differential equation

∂t [[v]]h = − 1
h

([[v]]h − v
)
. (2.3)

Basic properties of [[·]]h are provided in the following lemma. For its proof and further
information, we refer to [21, Lemma 2.2] and [5, Appendix B].

Lemma 2.1 Suppose that X is a separable Banach space. If v ∈ Lr (0, T ; X) for some r ≥ 1,
then themollification [[v]]h defined in (2.2) fulfills [[v]]h ∈ Lr (0, T ; X) and for any to ∈ (0, T ]
there holds

‖[[v]]h‖Lr (0,to;X) ≤ ‖v‖Lr (0,to;X) .

Moreover, in the case r < ∞ we have [[·]]h → v in Lr (0, T ; X) as h ↓ 0.

Using the same technique as in [30, Lemma 3.6], we conclude that any sub(super)-solution
to (1.3) in the sense of Definition 1.1 satisfies the mollified version of (1.6),

∫∫

�T

[
∂t [[u]]hϕ + [[A(x, t, u, Dum)]]h · Dϕ

]
dxdt

(≥)

≤
∫∫

�T

[[F]]h · Dϕ dxdt + 1
h

∫

�

u(0)
∫ T

0
e− s

h ϕ dsdx (2.4)

for any ϕ ∈ C∞
0 (�T ,R≥0).

2.3 Transformation

The following Lemma is an easy consequence of a change of variables.

Lemma 2.2 Let T > 0, I ⊂ R be an open interval and � : I → (0, T ) an increasing
C∞-diffeomorphism. Then, u is a weak sub(super)-solution to (1.3) associated to A, F in
B� × (0, T ) if and only if the function w(x, τ ) := u(x,�(τ)) is a sub(super)-solution to
(1.3) associated to the vector field

Ã(x, τ, u, ξ) := �′(τ )A
(
x,�(τ), u, ξ

)

and right-hand side F̃(x, τ ) := �′(τ )F(x,�(τ)) in B� × I .

The next Lemma shows that the product of a non-negative weak super-solution u with a
non-decreasingC1-function γ is a super-solution to a modified equation. A similar argument
has already been used in [9].

Lemma 2.3 Let� ⊂ R
n be bounded and open and I ⊂ R an open interval. Assume that u is a

non-negative weak super-solution to (1.3) in�× I associated toA, F and γ ∈ C1(I )∩C0(I )
is non-decreasing and satisfies 1

C ≤ γ ≤ C on I for a constant C ≥ 1. Then, the function
ũ := γ u is a non-negative weak super-solution to (1.3) in�× I associated to the vector-field

Ã(x, t, u, ξ) := γ (τ)A
(
x, t, u

γ (t) ,
ξ

γ (t)m

)
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and inhomogeneity F̃ := γ F.

Proof In the following we abbreviate �I := � × I . Let ϕ ∈ C∞
0 (�I ,R≥0). Then

γ ϕ ∈ C1
0(�I ,R≥0). By assumption γ ′, u and therefore also [[u]]h are non-negative. By

an approximation argument we may use γ ϕ as testing function in the mollified weak formu-
lation (2.4) on the interval I instead of (0, T ). This leads to

−
∫∫

�I

[[u]]hγ ∂tϕ dxdt =
∫∫

�I

∂t ([[u]]hγ )ϕ dxdt =
∫∫

�I

[
∂t [[u]]hγ ϕ + [[u]]hγ ′ϕ

]
dxdt

≥
∫∫

�I

∂t [[u]]hγ ϕ dxdt

≥ −
∫∫

�I

[[A(x, t, u, Dum)]]h · D(γ ϕ) dxdt

+
∫∫

�I

[[F]]h · D(γ ϕ) dxdt + 1
h

∫

�

u(0)
∫

I
e− s

h (γ ϕ) dsdx .

Passing to the limit h ↓ 0 with the help of Lemma 2.1 and taking into account that spt(γ ϕ)

is compact in the last term on the right-hand side, this leads to
∫∫

�I

[−γ u∂tϕ + γA(x, t, u, Dum) · Dϕ
]
dxdt ≥

∫∫

�I

γ F · Dϕ dxdt

for every ϕ ∈ C∞
0 (�I ,R≥0), which is in view of the definition of ũ and F̃ equivalent to

∫∫

�I

[
−ũ∂tϕ + γA

(
x, t, ũ

γ
, Dũm

γm

)
· Dϕ

]
dxdt ≥

∫∫

�I

F̃ · Dϕ dxdt .

Recalling the definition of Ã, this yields the claim. 
�
Combining the last two lemmata leads to the following statement, which is used in the

proof of the expansion of positivity.

Corollary 2.4 Let T > 0 and u a non-negative weak super-solution to (1.3) in B� × (0, T )

associated to A and F. Further, assume that I ⊂ R is an open interval, that � : I → (0, T )

is an increasing C∞-diffeomorphism and that γ ∈ C1(I ) ∩ C0(I ) is non-decreasing and
satisfies 1

C ≤ γ ≤ C on I for some constant C ≥ 1. Then, the function v(x, τ ) := γ (τ) ·
u(x,�(τ)) is a non-negative weak super-solution to (1.3) in B� × I associated to the vector-
field

Â(x, τ, u, ξ) := γ (τ)�′(τ )A
(
x,�(τ), u

γ (τ)
,

ξ
γ (τ )m

)

and inhomogeneity F̂(x, τ ) := γ (τ)�′(τ )F(x,�(τ)).

2.4 Auxiliary lemmata

For a function v ∈ W 1,1 and k < � the next lemma gives a local estimate for the product of
the measures of superlevel sets {v > �} and sublevel sets {v < k} in terms of the L1-norm of
Dv on the intersection of their complements, cf. [8, Chap. I.2, Lemma 2.2 and Remark 2.3].

Lemma 2.5 Let v ∈ W 1,1(B�(xo)) and k, � ∈ R with k < �. Then, there exists a constant c
depending on n such that

(� − k)|B�(xo) ∩ {v < k}| ≤ c�n+1

|B�(xo) ∩ {v > �}|
∫

B�(xo)∩{k<v<�}
|Dv| dx .
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The following lemma can be found in the literature; cf. [1, Lemma 2.2] for α ∈ (0, 1) and
[15, inequality (2.4)] for α > 1.

Lemma 2.6 For any α > 0, there exists a constant c = c(α) such that, for all a, b ≥ 0, the
following inequality holds true:

1
c |bα − aα| ≤ (|a| + |b|)α−1|b − a| ≤ c|bα − aα|.

The next lemma summarizes all properties we need concerning the boundary term b

defined in (2.1).

Lemma 2.7 Let m > 0. There exists a constant c = c(m) such that for every u, a ≥ 0 we
have

(i) 1
c

∣
∣u

m+1
2 − a

m+1
2
∣
∣2 ≤ b[um, am] ≤ c

∣
∣u

m+1
2 − a

m+1
2
∣
∣2.

(ii) 1
c |um − am |2 ≤ (u + a)m−1 b[um, am] ≤ c|um − am |2.

Proof The proof of (i) can be found in [4, Lemma 2.3] for m ≥ 1 and in [3, Lemma 3.4] for
0 < m < 1. The inequalities in (ii) are a consequence of (i) and Lemma 2.6. 
�
The following iteration lemma is a well known result and can be found for instance in [8,
Chap. I.4, Lemma 4.1].

Lemma 2.8 Let (Yi )i∈N0 be a sequence of non-negative numbers satisfying

Yi+1 ≤ κ biY 1+γ

i for all i ∈ N0

with some positive constants κ, γ and b > 1. If

Y0 ≤ κ
− 1

γ b
− 1

γ 2 ,

then Yi → 0 as i → ∞.

Finally, we recall a parabolic version of the Gagliardo–Nirenberg inequality, see [8, Chap-
ter I, Proposition 3.1] or [2, Lemma 3.1].

Lemma 2.9 Let Q−
�,θ (zo) ⊂ R

n+1 be a parabolic cylinder and 1 < p, r < ∞. For every

u ∈ L∞ (
to − θ, to; Lr (B� (xo)

)) ∩ L p (to − θ, to,W
1,p (B� (xo)

))

we have u ∈ Lq(Q−
�,θ (zo)) for q = p(1 + r

n ) with the estimate
∫∫

Q−
�,θ (zo)

|u|q dxdt

≤ c

(
sup

t∈(to−θ,to)

∫

B�(xo)×{t}
|u|r dx

) p
n
∫

Q−
�,θ (zo)

[
|Du|p +

∣∣∣
u

�

∣∣∣
p
]
dxdt,

where c = c(n, p, r).

3 Caccioppoli inequalities

In this section we derive energy estimates that are crucial in the course of the paper. We start
with the energy estimates for weak super-solutions.
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Lemma 3.1 Let m > 0, p > 1 with m(p − 1) > 1 and u be a non-negative weak super-
solution to (1.3) in the sense of Definition 1.1, where the vector-field A fulfills the growth
and ellipticity assumptions (1.4). Then, there exists a constant c = c(p, ν, L) such that on
any cylinder Q−

�,θ (zo) � �T with �, θ > 0, and for any 0 < r < �, 0 < s < θ and a ≥ 0
the following energy estimates

sup
t∈�−

s (to)

∫

{u<a}∩Br (xo)×{t}
b[um, am] dx +

∫∫

{u<a}∩Q−
r,s (zo)

|Dum |p dxdt

≤ c
∫∫

{u<a}∩Q−
�,θ (zo)

[
b[um, am]

θ − s
+ |um − am |p

(� − r)p
+ |F | p

p−1

]
dxdt (3.1)

and

sup
t∈�−

s (to)

∫

{u<a}∩Br (xo)×{t}
b
[
um, am

]
dx ≤

∫

{u<a}∩B�(xo)×{to−s}
b
[
um, am

]
dx

+ c
∫∫

{u<a}∩Q−
�,θ (zo)

[ |um − am |p
(� − r)p

+ |F | p
p−1

]
dxdt (3.2)

hold true, where b[·, ·] is defined in (2.1).

Proof Throughout the proof we abbreviate Q−
�,θ ≡ Q−

�,θ (zo) and B� ≡ B�(xo). Since
the claimed estimates are local in nature, we may assume without loss of generality that
u ∈ C0([0, T ); Lm+1(�)).An approximation argument shows that themollifiedweak formu-

lation (2.4) extends to non-negative testing functions ϕ ∈ L p(0, T ;W 1,p
0 (�)) ∩ L

m+1
m (�T )

with compact support, since [[u]]h ∈ C0([0, T ); Lm+1(�)), [[A(x, t, u, Dum)]]h , [[F]]h ∈
L

p
p−1 (�T ) and u(0) ∈ Lm+1(�) by the assumptions on u, growth condition (1.4) and

Lemma 2.1. We therefore find that
∫∫

�T

[
∂t [[u]]hϕ + [[A(x, t, u, Dum)]]h · Dϕ

]
dxdt

≥
∫∫

�T

[[F]]h · Dϕ dxdt + 1
h

∫

�

u(0)
∫ T

0
e− s

h ϕ dsdx (3.3)

holds true for any ϕ ∈ L p(0, T ;W 1,p
0 (�,R≥0)) ∩ L

m+1
m (�T ) with compact support. For

ε > 0 and t1 ∈ �s(to) = (to − s, to) we define cutoff functions η ∈ W 1,∞(B�(xo), [0, 1]),
ζ ∈ W 1,∞(�θ (to), [0, 1]) and ψε ∈ W 1,∞(�θ (to), [0, 1]) which satisfy

η(x) =
{
1, for x ∈ Br (xo),

0, for x ∈ � \ B�(xo),
and |Dη| ≤ 2

� − r
,

ζ(t) =
{
1, for t ∈ (to − s, to + θ),
t−to+θ

θ−s , for t ∈ (to − θ, to − s),

ψε(t) =

⎧
⎪⎨

⎪⎩

1, for t ∈ (to − θ, t1],
1 − 1

ε
(t − t1), for t ∈ (t1, t1 + ε),

0, for t ∈ [t1 + ε, to).

We choose

ϕ(x, t) = ηp(x)ζ(t)ψε(t)
(
um(x, t) − am

)
−
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as testing function in the mollified version (3.3) of the differential equation. For the first term
on the left hand side we have

∫∫

�T

∂t [[u]]hϕ dxdt

= −
∫∫

{u<a}∩Q−
�,θ

ηpζψε∂t [[u]]h
([[u]]mh − am

)
dxdt

−
∫∫

{u<a}∩Q−
�,θ

ηpζψε∂t [[u]]h
(
um − [[u]]mh

)
dxdt

≤ −
∫∫

{u<a}∩Q−
�,θ

ηpζψε∂t [[u]]h
([[u]]mh − am

)
dxdt

= −
∫∫

{u<a}∩Q−
�,θ

ηpζψε∂t

(
1

m+1 [[u]]m+1
h + m

m+1a
m+1 − am[[u]]h

)
dxdt

= −
∫∫

{u<a}∩Q−
�,θ

ηpζψε∂tb
[[[u]]mh , am

]
dxdt

=
∫∫

{u<a}∩Q−
�,θ

ηp(ζψ ′
ε + ψεζ

′)b
[[[u]]mh , am

]
dxdt,

where we used in turn (2.3), the fact that (u − [[u]]h)(um − [[u]]mh ) ≥ 0 by monotonicity of
s �→ sm and the definition of b. Since [[u]]h → u in Lm+1

loc (�T ) in the limit h ↓ 0, we get

lim sup
h↓0

∫∫

�T

∂t [[u]]hϕ dxdt

≤
∫∫

{u<a}∩Q−
�,θ

ηp(ζψ ′
ε + ψεζ

′)b[um, am] dxdt =: Iε + IIε, (3.4)

where the meaning of Iε and IIε is clear in this context. We let h ↓ 0 also in the diffusion
term. For the resulting integral we use assumptions (1.4) and Young’s inequality to obtain

lim
h↓0

∫∫

�T

[[A(x, t, u, Dum)]]h · Dϕ dxdt

=
∫∫

�T

A(x, t, u, Dum) · Dϕ dxdt

= −
∫∫

{u<a}∩Q−
�,θ

A(x, t, u, Dum) · D(ηpζψε(u
m − am)

)
dxdt

= −
∫∫

{u<a}∩Q−
�,θ

A(x, t, u, Dum) · [ηpζψεDum + pηp−1ζψε(u
m − am)Dη

]
dxdt

≤
∫∫

{u<a}∩Q−
�,θ

[
− νηpζψε|Dum |p + pLηp−1ζψε|Dη||um − am ||Dum |p−1

]
dxdt

≤ − ν
2

∫∫

{u<a}∩Q−
�,θ

ηpζψε|Dum |p dxdt + c
∫∫

{u<a}∩Q−
�,θ

|um − am |p
(� − r)p

dxdt,

where c = c(p, ν, L). The second term on the right hand side of (3.3) vanishes in the limit
h ↓ 0, since ϕ(0) ≡ 0. In the first integral we pass to the limit h ↓ 0 and then apply Young’s
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inequality. This yields

lim
h↓0

∫∫

�T

[[F]]h · Dϕ dxdt

≥ −
∫

{u<a}∩Q−
�,θ

[
ηpζψε|F ||Dum | + |F ||um − am ||Dη|

]
dxdt

≥ −
∫

{u<a}∩Q−
�,θ

[
ν
4ηpζψε|Dum |p + |um − am |p

(� − r)p
+ c(p, ν)|F | p

p−1

]
dxdt .

Inserting the preceding estimates into (3.3), we conclude that

− Iε + ν
4

∫∫

{u<a}∩Q−
�,θ

ηpζψε|Dum |p dxdt

≤ IIε + c(p, ν, L)

∫∫

{u<a}∩Q−
�,θ

[ |um − am |p
(� − r)p

+ |F | p
p−1

]
dxdt .

Now, we pass to the limit ε ↓ 0 in the preceding inequality. Since u ∈ C0([0, T ]; Lm+1(�)),
for any t1 ∈ �s(to) we obtain

lim
ε↓0 (−Iε) = lim

ε↓0 −
∫ t1+ε

t1

∫

{u<a}∩B�×{t}
ηpb[um, am] dxdt

=
∫

{u<a}∩B�×{t1}
ηpb[um, am] dx

≥
∫

{u<a}∩Br×{t1}
b[um, am] dx .

Further, we have

lim
ε↓0

∫∫

{u<a}∩Q−
�,θ

ηpζψε|Dum |p dxdt ≥
∫∫

{u<a}∩Br×(to−s,t1)
|Dum |p dxdt

and

IIε ≤
∫∫

{u<a}∩Q−
�,θ

b[um, am]
θ − s

dxdt .

Altogether, we deduce the estimate

∫

{u<a}∩Br×{t1}
b[um, am] dx + ν

4

∫∫

{u<a}∩Br×(to−s,t1)
|Dum |p dxdt

≤ c(p, ν, L)

∫∫

{u<a}∩Q−
�,θ

[ |um − am |p
(� − r)p

+ b[um, am]
θ − s

+ |F | p
p−1

]
dxdt

for any t1 ∈ �s(to). Finally, taking the supremum over t1 ∈ �s(to) in the first term and
passing to the limit t1 ↑ to in the second term yields inequality (3.1).
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In order to prove (3.2) we choose ϕ(x, t) = ηp(x)ψε(t)(um(x, t) − am)− as testing
function in (3.3), where η is defined as before and

ψε(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, for t ∈ (to − θ, t1 − ε],
t−t1+ε

ε
, for t ∈ (t1 − ε, t1),

1, for t ∈ [t1, t2],
t2−t+ε

ε
, for t ∈ (t2, t2 + ε),

0, for t ∈ [t2 + ε, to),

for to − s ≤ t1 < t2 < to and ε > 0 small enough. The term involving the time derivative of
[[u]]h is treated as in (3.4). Thus, we find that

lim
ε↓0

[
lim sup

h↓0

∫∫

�T

∂t [[u]]hϕ dxdt

]

≤ lim
ε↓0

∫∫

{u<a}∩Q−
�,θ

ηpψ ′
εb[um, am] dxdt

=
∫

{u<a}∩B�×{t1}
ηpb[um, am] dx −

∫

{u<a}∩B�×{t2}
ηpb[um, am] dx

≤
∫

{u<a}∩B�×{t1}
b[um, am] dx −

∫

{u<a}∩Br×{t2}
b[um, am] dx

for any to − s ≤ t1 < t2 < to. For the diffusion term and the right side the same arguments
as in the proof of (3.1) are applicable. Therefore by passing to the limits h ↓ 0 and ε ↓ 0 we
obtain

∫

{u<a}∩Br×{t2}
b[um, am] dx + ν

2

∫∫

{u<a}∩Br×(t1,t2)
|Dum |p dxdt

≤
∫

{u<a}∩B�×{t1}
b[um, am] dx

+ c(p, ν, L)

∫∫

{u<a}∩Q−
�,θ

[ |um − am |p
(� − r)p

+ |F | p
p−1

]
dxdt

for any to − s ≤ t1 < t2 < to. Omitting the second term on the left side, choosing t1 = to − s
and taking the supremum over t2 ∈ �s(to) leads to (3.2). 
�

Similarly, we obtain energy estimates for sub-solutions. However, in the course of the
paper we only need the analogue of (3.1).

Lemma 3.2 Under the assumptions of Lemma 3.1 we obtain for any non-negative weak sub-
solution to (1.3) the energy estimate

sup
t∈�−

s (to)

∫

{u>a}∩Br (xo)×{t}
b[um, am] dx +

∫∫

{u>a}∩Q−
r,s (zo)

|Dum |p dxdt

≤ c
∫∫

{u>a}∩Q−
�,θ (zo)

[
b[um, am]

θ − s
+ |um − am |p

(� − r)p
+ |F | p

p−1

]
dxdt, (3.5)

for a constant c = c(p, ν, L).
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Proof The proof is analogous to the one of the energy estimate (3.1). Here, we choose the
testing function

ϕ(x, t) = ηp(x)ζ(t)ψε(t)
(
um(x, t) − am

)
+

with the positive part of um − am instead of the negative one. Similar arguments as in the
proof of (3.1) then lead us to inequality (3.5). 
�

4 Local boundedness of non-negative weak sub-solutions

In this section we establish that non-negative weak sub-solutions to (1.3) are locally bounded.
We argue by a parabolic version of De Giorgi classes.

Theorem 4.1 Let m > 0 and p > 1with m(p−1) > 1. Assume that u is a non-negative weak
sub-solution to (1.3) in the sense of Definition 1.1 and F ∈ Lσ (�T ) with σ >

n+p
p−1 . Then u

is locally bounded in �T and for any cylinder Q0 := Q−
�,θ (zo) � �T with 0 < �, θ ≤ 1 the

quantitative estimate

sup
1
2 Q0

u ≤ c
( 1

�p + 1
θ

) n+p
p(m+1)

[
‖u‖

mp
m+1
Lmp(Q0)

+ ‖F‖
σ

m+1
Lσ (Q0)

+ 1
]

holds true, where 1
2Q0 := Q−

�
2 , θ

2
(zo) and c is a constant depending on n,m, p, ν, L and σ .

Proof Let m′ := m+1
m denote the conjugate Hölder exponent of m + 1. For i ∈ N0 we define

radii �i and times θi by

�i := 1
2

(
1 + 2−i

)
� and θi := 1

2

(
1 + 2−i

)
θ.

Throughout the proof, we use the short-hand notation

Qi := Q−
�i ,τi

(zo) ⊂ Q0.

Furthermore, for a quantity k ≥ 1 to be chosen later on, we consider levels

ki := (1 − 2−i )
1
m k

and the sequence of integrals

Yi :=
∫∫

Qi

(
um − kmi

)p
+ dxdt .

Since um ∈ L p(�T ) by definition, Yi is finite for any i ∈ N0. The idea of proof is to show a
recursive estimate for Yi . To this aim we first use Hölder’s inequality to obtain

Yi+1 ≤
(∫∫

Qi+1

(
um − kmi+1

) p(n+m′)
n+ dxdt

) n
n+m′ ∣∣{u > ki+1} ∩ Qi+1

∣∣1− n
n+m′

=: I n
n+m′ · ∣∣{u > ki+1} ∩ Qi+1

∣∣1− n
n+m′ , (4.1)

where the definition of I is clear in this context. First, by the Gagliardo–Nirenberg inequality
from Lemma 2.9 we infer

I ≤ c

[

sup
t∈(to−θi+1,to)

∫

B�i+1 (xo)×{t}
(
um − kmi+1

)m+1
m+ dx

] p
n

123



  215 Page 14 of 35 V. Bögelein et al.

·
∫∫

Qi+1

[
∣
∣D
(
um − kmi+1

)
+
∣
∣p + (um − kmi+1)

p
+

�p

]

dxdt,

for a constant c = c(n,m, p). We now consider the integrand in the first integral on the
right-hand side. For u ≥ ki+1 we have with the abbreviation

k̃mi := 1
2

(
kmi + kmi+1

)
< ki+1

that

um + k̃mi ≤ 2um ≤ 2kmi+1

kmi+1 − k̃mi

(
um − k̃mi

)
≤ 2i+3

(
um − k̃mi

)

+

and

um + k̃mi ≥ um − k̃mi .

Therefore, in view of Lemma 2.7 (ii) we obtain

(
um − kmi+1

)m+1
m+ =

(
um + k̃mi

) 1−m
m

+

(
um + k̃mi

)m−1
m

+
(
um − kmi+1

)m+1
m+

≤ c 2
(m−1)+

m i
(
u + k̃i

)1−m

+

(
um − k̃mi

)m−1
m

+
(
um − kmi+1

)m+1
m+

≤ c 2
(m−1)+

m i
(
u + k̃i

)1−m

+

(
um − k̃mi

)2

+
≤ c 2

(m−1)+
m ib

[
um, k̃mi

]
χ{

u>k̃i
}.

Using this inequality above and applying the Caccioppoli inequality (3.5) from Lemma 3.2,
yields

I ≤ c

[

sup
t∈(to−θi+1,to)

∫

{u>k̃i }∩B�i+1 (xo)×{t}
b[um, k̃mi ] dx

] p
n

·
∫∫

{u>k̃i }∩Qi+1

⎡

⎢
⎣|Dum |p +

(
um − k̃mi

)p

�p

⎤

⎥
⎦ dxdt

≤ c

⎡

⎢
⎣
∫∫

{u>k̃i }∩Qi

⎡

⎢
⎣
2

(m−1)+
m ib

[
um, k̃mi

]

θi − θi+1
+
(
um − k̃mi

)p

(�i − �i+1)
p + |F | p

p−1

⎤

⎥
⎦ dxdt

⎤

⎥
⎦

n+p
n

,

for a constant c = c(n,m, p, ν, L). For u > k̃i we now estimate the b-term with the help of
Lemma 2.7 (i), the assumption m + 1 ≤ mp and the fact that ki < k̃i < k with k ≥ 1. In this
way we obtain

b[um, k̃mi ] ≤ ∣∣u
m+1
2 − k̃

m+1
2

i

∣∣2 ≤ 2um+1 ≤ 2
(
ump + 1

)

≤ c
[(

um − k̃mi

)p + kmp
]

= c
[(

um − k̃mi

)p + 2(i+2)p
(
k̃mi − kmi

)p]

≤ c 2i p
(
um − kmi

)p
,
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with c = c(p), so that

I ≤ c

[∫∫

{u>k̃i }∩Qi

[
2
i
(
p+ (m−1)+

m

) (
1
�p + 1

θ

) (
um − kmi

)p + |F | p
p−1

]
dxdt

] n+p
n

≤ c

[
2
i
(
p+ (m−1)+

m

) (
1
�p + 1

θ

)
Yi + ‖F‖

p
p−1
Lσ (Q0)

∣
∣{u > k̃i } ∩ Qi

∣
∣1− p

σ(p−1)

] n+p
n

,

where c = c(n,m, p, ν, L). Further, we have that

∣
∣{u > k̃i } ∩ Qi

∣
∣(k̃mi − kmi

)p
+ ≤

∫∫

{u>k̃i }∩Qi

(
um − kmi

)p
+ dxdt ≤ Yi ,

which together with k ≥ 1 implies that

∣
∣{u > k̃i } ∩ Qi

∣
∣ ≤ 2(i+2)p

kmp
Yi ≤ 2(i+2)pYi . (4.2)

Finally, the preceding computations together with 0 < � ≤ 1 and Yi ≤ ‖u‖mp
Lmp(Q0)

lead to

I ≤ c

[

2
i
(
p+ (m−1)+

m

)
( 1

�p + 1
θ

)(‖u‖
mp2

σ(p−1)
Lmp(Q0)

+ ‖F‖
p

p−1
Lσ (Q0)

)
Y
1− p

σ(p−1)
i

] n+p
n

,

with a constant c = c(n,m, p, ν, L). Inserting this inequality into (4.1) and using (4.2), we
conclude that

Yi+1 ≤ c

[
2
i
(
p+ (m−1)+

m

)
( 1

�p + 1
θ

)(‖u‖
mp
σ

Lmp(Q0)
+ ‖F‖Lσ (Q0)

) p
p−1

Y
1− p

σ(p−1)
i

] n+p
n+m′

·
[
2i p

kmp
Yi

] m′
n+m′

≤ κbiY 1+γ

i ,

where we used the abbreviations

κ :=
c
( 1

�p + 1
θ

) n+p
n+m′

k
p(m+1)
n+m′

(
‖u‖

mp
σ

Lmp(Q0)
+ ‖F‖Lσ (Q0)

) p(n+p)
(p−1)(n+m′)

,

b := 2

(
p+ (m−1)+

m

)
(n+p)+pm′

n+m′ ,

γ := p
n+m′

(
1 − n+p

σ(p−1)

)
.

Since σ >
n+p
p−1 , we have that γ > 0. Choosing k ≥ 1 large enough, such that

k ≥ c
( 1

�p + 1
θ

) n+p
p(m+1) ‖u‖

mp
m+1

(
1− n+p

σ(p−1)

)

Lmp(Q0)

(
‖u‖

mp
σ

Lmp(Q0)
+ ‖F‖Lσ (Q0)

) n+p
(p−1)(m+1)

with a suitable constant c = c(n,m, p, ν, L, σ ), we find that

Y0 =
∫∫

Q0

ump dxdt ≤ κ
− 1

γ b
− 1

γ 2 .

Thus, the assumptions of Lemma 2.8 are satisfied. Consequently we find that Yi → 0 as
i → ∞, which implies u ≤ k a.e. in 1

2Q0. The claim of the theorem now follows by an
application of Young’s inequality. 
�
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5 De Giorgi type lemmas

In this section we will prove certain De Giorgi type lemmata for weak sub- and super-
solutions. We start with the one for super-solutions.

Lemma 5.1 Let m > 0, p > 1 with m(p − 1) > 1 and u be a bounded non-negative weak
super-solution to (1.3) in the sense of Definition 1.1, where the vector-field A satisfies (1.4)
and F ∈ Lσ (�T ) for some σ >

n+p
p−1 . Moreover, consider zo ∈ �T and �, θ, M > 0 such

that

Q−
2�,2pτ (zo) � �T , where τ := θM−d�p.

Then, there exists ν1 ∈ (0, 1) depending only on n,m, p, ν, L, σ and θ , such that: If
∣
∣{u < M} ∩ Q−

2�,2pτ (zo)
∣
∣ ≤ ν1|Q−

2�,2pτ (zo)|
‖F‖Lσ (�T ) ≤ (Mm

�

)p−1|Q−
�,τ (zo)|

1
σ , (5.1)

then

u ≥ M
2 a.e. in Q−

�,τ (zo)

holds true.

Proof For i ∈ N0 define radii �i and times τi by

�i := �
(
1 + 2−i

)
and τi := θM−d�

p
i

as well as levels

ki := M
2

(
1 + 2−i

)
.

To shorten notation, we introduce

Qi := Q−
�i ,τi

(zo) , Ai := {u < ki } ∩ Qi and Yi := |Ai |
|Qi | ≤ 1.

At this stage, we use the Caccioppoli inequality (3.1). Since 0 ≤ u < ki on Ai and M
2 ≤

ki ≤ M and by Lemma 2.7 (ii), we estimate the term involving b on the left-hand side by

b
[
um, kmi

] ≥ 1
c(m)

(ki + u)1−m (um − kmi
)2
− ≥ 1

c(m)
M1−m (um − kmi

)2
− ,

while for the one on the right-hand side we obtain by Lemma 2.7 (i) that

b
[
um, kmi

] ≤ c(m)

(
u

m+1
2 − k

m+1
2

i

)2

−
.

Thus, we conclude that

sup
t∈(to−τi+1,to)

∫

B�i+1×{t}
M1−m (um − kmi

)2
− dx +

∫∫

Qi+1

|D (um − kmi
)
− |p dxdt

≤ c
∫∫

Ai

⎡

⎢⎢⎢
⎣
2(i+1)p

(
um − kmi

)p
−

�p
+ 2i pMd

(
u

m+1
2 − k

m+1
2

i

)2

−
θ�p

+ |F | p
p−1

⎤

⎥⎥⎥
⎦

dxdt
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≤ c 2i p
[
Mmp

�p

(
1 + 1

θ

) |Ai |
p

σ(p−1) + ‖F‖
p

p−1
Lσ (�T )

]
|Ai |1−

p
σ(p−1)

≤ c 2i pMmp

�p

[(
1 + 1

θ

)|Ai |
p

σ(p−1) + |Qi |
p

σ(p−1)

]
|Ai |1−

p
σ(p−1)

≤ c 2i pMmp

�p
|Qi |

p
σ(p−1) |Ai |1−

p
σ(p−1) ,

where in the second last line we used assumption (5.1). Note that c = c(m, p, ν, L, θ). Next,
we use Hölder’s inequality with exponents n+2

n and n+2
2 , the Gagliardo–Nirenberg inequality

from Lemma 2.9 with r = 2 and p and the preceding estimate. This leads to
∫∫

Ai+1

(um − kmi )
p
− dxdt

≤
(∫∫

Ai+1

(
um − kmi

) p(n+2)
n− dxdt

) n
n+2 |Ai | 2

n+2

≤ c

(

sup
t∈(to−τi+1,to)

∫

B�i+1×{t}
(
um − kmi

)2
− dx

) p
n+2

·
(∫∫

Qi+1

|D (um − kmi
)
− |p +

(
um − kmi

)p
−

�
p
i+1

dxdt

) n
n+2

|Ai | 2
n+2

≤ c 2i p
n+p
n+2 M

p(m−1)
n+2

[
Mmp

�p
|Qi |

p
σ(p−1) |Ai |−

p
σ(p−1)

] n+p
n+2 |Ai |1+

p
n+2

with a constant c = c(n,m, p, ν, L). Moreover, due to Lemma 2.6 we have
(
kmi − kmi+1

) = (M
2

)m (
(1 + 2−i )m − (1 + 2−(i+1))m

)

≥ 1
c(m)

(M
2

)m (
2 + 2−i + 2−(i+1)

)m−1
2−(i+1) ≥ 1

c(m)
2−i Mm,

so that
∫∫

Ai+1

(
um − kmi

)p
− dxdt ≥ (

kmi − kmi+1

)p |Ai+1| ≥ 1
c(m,p) 2

−i pMmp|Ai+1|.

Combing the preceding estimates yields

|Ai+1| ≤ c 2
i p
(
1+ n+p

n+2

)

M
p(m−1)
n+2 −mp

[
Mmp

�p
|Qi |

p
σ(p−1) |Ai |−

p
σ(p−1)

] n+p
n+2 |Ai |1+

p
n+2

with a constant c = c(n,m, p, ν, L, θ). Dividing the above inequality by |Qi+1|, using the
fact that |Qi ||Qi+1| = c(n, p) shows that

Yi+1 ≤ c 2
i p
(
1+ n+p

n+2

)

M
p(m−1)
n+2 −mp|Qi |

p
n+2

[
Mmp

�p

] n+p
n+2

Y
1+ p

n+2− p(n+p)
σ (n+2)(p−1)

i

≤ c 2
i p
(
1+ n+p

n+2

)

Y
1+ p

n+2− p(n+p)
σ (n+2)(p−1)

i ,

where c depends only on n,m, p, ν, L, θ . This brings us into the position to apply Lemma 2.8

with κ = c, b = 2
p
(
m+ n+p

n+2

)

and γ = p
n+2 − p(n+p)

σ (n+2)(p−1) > 0 (since σ >
n+p
p−1 ), where
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ν1 ∈ (0, 1) can be chosen in dependence on the data. This shows Yi → 0 as i → ∞, which
yields the claim. 
�

Now we turn our attention to the De Giorgi type lemma for sub-solutions.

Lemma 5.2 Let m > 0, p > 1 with m(p − 1) > 1 and u be a bounded non-negative weak
sub-solution to (1.3) in the sense of Definition 1.1, where the vector-field A satisfies (1.4)
and F ∈ Lσ (�T ) for some σ >

n+p
p−1 . Moreover, consider zo ∈ �T , �, θ, M, μ+ > 0 and

a, ζ ∈ (0, 1), such that

Q−
2�,2pτ (zo) � �T , where τ := θM−d�p

and

sup
Q−
2�,2pτ

(zo)

u ≤ M ≤ μ+. (5.2)

Then, there exists ν2 ∈ (0, 1) depending only on n,m, p, ν, L, σ, θ, a and ζ such that: If
∣
∣{um ≥ μm+ − ζMm} ∩ Q−

2�,2pτ (zo)
∣
∣ ≤ ν2|Q−

2�,2pτ (zo)| (5.3)

and

‖F‖Lσ (�T ) ≤ (Mm

�

)p−1|Q−
�,τ (zo)|

1
σ , (5.4)

then

um ≤ μm+ − aζMm a.e. in Q−
�,τ (zo). (5.5)

Proof As before, we define for i ∈ N0

�i := �
(
1 + 2−i

)
and τi := θM−d�

p
i

as well as levels

kmi := μm+ − ( 1−a
2i

+ a
)
ζMm

and sets

Qi := Q−
�i ,τi

(zo) and Ai := {u > ki } ∩ Qi .

In the following we will apply the Caccioppoli inequality (3.5) from Lemma 3.2. Using the
definition of Ai and Lemma 2.7 (i), (ii) and the fact that 1

c(ζ )
M ≤ ki ≤ u ≤ M on Ai , we

estimate the terms involving b by

1
c(m,ζ )

M1−m (um − kmi
)2
+ ≤ (ki + u)1−m (um − kmi

)2
+

≤ c(m)b
[
um, kmi

]

≤ c(m)

(
u

m+1
2 − k

m+1
2

i

)2

+
.

Thus, by the Caccioppoli inequality (3.5) and assumption (5.4), we obtain

sup
t∈(to−τi+1,to)

∫

B�i+1×{t}
M1−m (um − kmi

)2
+ dx +

∫∫

Qi+1

|D (um − kmi
)
+ |p dxdt
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≤ c
∫∫

Ai

⎡

⎢
⎢
⎢
⎣
2(i+1)p

(
um − kmi

)p
+

�p
+ 2i pMd

(
u

m+1
2 − k

m+1
2

i

)2

+
θ�p

+ |F | p
p−1

⎤

⎥
⎥
⎥
⎦

dxdt

≤ c 2i p
[
Mmp

�p
+ ‖F‖

p
p−1
Lσ (�T )|Ai |−

p
σ(p−1)

]
|Ai |

≤ c 2i pMmp

�p
|Qi |

p
σ(p−1) |Ai |1−

p
σ(p−1) ,

for a constant c = c(m, p, ν, L, θ, ζ ). Similarly as before, we use Hölder’s inequality, the
Gagliardo–Nirenberg inequality from Lemma 2.9 with r = 2 and p and the last estimate to
conclude

∫∫

Ai+1

(
um − kmi

)p
+ dxdt

≤
(∫∫

Ai+1

(
um − kmi

) p(n+2)
n+ dxdt

) n
n+2 |Ai | 2

n+2

≤ c

(

sup
t∈(to−τi+1,to)

∫

B�i+1×{t}
(
um − kmi

)2
+ dx

) p
n+2

·
(∫∫

Qi+1

|D(um − kmi )+|p +
(
um − kmi

)p
+

�
p
i+1

dxdt

) n
n+2

|Ai | 2
n+2

≤ c 2i p
n+p
n+2 M

p(m−1)
n+2

[
Mmp

�p
|Qi |

p
σ(p−1) |Ai |−

p
σ(p−1)

] n+p
n+2 |Ai |1+

p
n+2

for a constant c = c(n,m, p, ν, L, θ, ζ ). Notice that
∫∫

Ai+1

(
um − kmi

)p
+ dxdt ≥ (

kmi+1 − kmi
)p |Ai+1| = 2−(i+1)p(1 − a)pζ pMmp|Ai+1|.

Combining the preceding two estimates leads to

|Ai+1| ≤ c 2
i p
(
1+ n+p

n+2

)

M
p(m−1)
n+2 −mp

[
Mmp

�p
|Qi |

p
σ(p−1) |Ai |−

p
σ(p−1)

] n+p
n+2 |Ai |1+

p
n+2 ,

with a constant c = c(n,m, p, ν, L, θ, a, ζ ). By completely the same reasoning as in the
proof of Lemma 5.1 we infer that Yi → 0 as i → ∞, provided we choose ν2 ∈ (0, 1) small
enough in dependence on the data. 
�

6 Expansion of positivity

In this section, we prove the so called Expansion of Positivity of a non-negative weak super-
solution u. The Expansion of Positivity is crucial in the proof of Harnack’s inequality. In a
first step we show the following lemma, which ensures a certain propagation of positivity in
measure.

Lemma 6.1 Let m > 0, p > 1 with m(p − 1) > 1 and u a non-negative weak super-
solution to (1.3), and let α ∈ (0, 1] and M > 0. Then, there exist ε = ε(m, α) ∈ (0, 1) and
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δ = δ(m, p, ν, L, α) ∈ (0, 1) such that the following holds: Whenever zo = (xo, to) ∈ �T

and � > 0 such that Q+
�,δM−d�p (zo) ⊂ �T and

∣
∣{u(to) ≥ M} ∩ B�(xo)

∣
∣ ≥ α|B�(xo)| (6.1)

and

‖F‖Lσ (�T ) ≤
(
Mm

�

)p−1 |Q+
�,δM−d�p (zo)|

1
σ , (6.2)

are satisfied, then
∣
∣{u(t) ≥ εM} ∩ B�(xo)

∣
∣ ≥ α

2 |B�(xo)| for all t ∈ [to, to + δM−d�p). (6.3)

Proof In the following we abbreviate Q0 := Q+
�,δM−d�p (zo) with δ ∈ (0, 1) to be chosen

later. The idea of the proof is to show that if (6.1) and (6.2) are valid, then
∣
∣{u(t) < εM} ∩ B�(xo)

∣
∣ ≤ (

1 − α
2

) |B�(xo)|
holds true for all t ∈ [to, to + δM−d�p), which is equivalent to (6.3). Therefore in a first step
we let s ∈ (0, 1) and compute

|{u(t) < εM} ∩ B�(xo)|
≤ |{u(t) < εM} ∩ B(1−s)�(xo)| + |B�(xo) \ B(1−s)�(xo)|
≤ |{u(t) < εM} ∩ B(1−s)�(xo)| + ns|B�(xo)|. (6.4)

To estimate the first term on the right hand side we use the Caccioppoli inequality (3.2) from
Lemma 3.1. Taking r = (1 − s)� and a = M leads to

∫

{u<M}∩B(1−s)�(xo)×{t}
b[um, Mm] dx

≤
∫

{u<M}∩B�(xo)×{to}
b[um, Mm] dx + c

∫∫

{u<M}∩Q0

|um − Mm |p
(s�)p

dxdt

+ c
∫∫

{u<M}∩Q0

|F | p
p−1 dxdt

=: I + II + III

for any t ∈ [to, to+δM−d(1−s)p�p)with a constant c = c(p, ν, L). Recalling the definition
of the boundary term b from (2.1) we estimate the left hand side by

∫

{u<M}∩B(1−s)�(xo)×{t}
b[um, Mm] dx

≥
∫

{u<εM}∩B(1−s)�(xo)×{t}
b[um, Mm] dx

=
∫

{u<εM}∩B(1−s)�(xo)×{t}
m

m+1M
m+1 − Mmu + 1

m+1u
m+1

︸ ︷︷ ︸
≥0

dx

≥
∫

{u<εM}∩B(1−s)�(xo)×{t}
m

m+1M
m+1 − εMm+1 dx

≥ m
m+1M

m+1 (1 − εm+1
m

) ∣∣{u(t) < εM} ∩ B(1−s)�(xo)
∣∣
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for ε ∈ (0, m
m+1 ) to be chosen later. For the first term on the right-hand side, we use again

the definition of b and assumption (6.1) to obtain

I =
∫

{u<M}∩B�(xo)×{to}
m

m+1M
m+1 −Mmu + 1

m+1u
m+1

︸ ︷︷ ︸
≤0

dx

≤ m
m+1M

m+1|{u(to) < M} ∩ B�(xo)|
≤ m

m+1M
m+1(1 − α)|B�(xo)|.

Further, we have that

II ≤ cMmp(s�)−p|Q0| = c δs−pMm+1|B�(xo)|
and in view of assumption that (6.2) we obtain

III ≤ c‖F‖
p

p−1
Lσ (�T )|Q0|1−

p
σ(p−1) ≤ c

(Mm

�

)p|Q0| = c δMm+1|B�(xo)|.
Altogether this leads to

m
m+1M

m+1 (1 − εm+1
m

) ∣∣{u(t) < εM} ∩ B(1−s)�(xo)
∣∣

≤
[

m
m+1M

m+1(1 − α) + cMm+1δ
(
s−p + 1

)] |B�(xo)|,
which is the same as

∣∣{u(t) < εM} ∩ B(1−s)�(xo)
∣∣ ≤ 1

1 − εm+1
m

[
1 − α + cδ m+1

m (s−p + 1)
] |B�(xo)|.

Combining the last estimate with (6.4), and taking into account that 0 < 1 − εm+1
m < 1, we

get

∣∣{u(t) < εM} ∩ B�(xo)
∣∣ ≤ 1

1 − εm+1
m

[
1 − α + cδ m+1

m

(
s−p + 1

)+ ns
] |B�(xo)|

for any t ∈ [to, to + δM−d�p) with c = c(p, ν, L). Now we choose s = α
8n ∈ (0, 1) and

thereafter δ = δ(m, p, ν, L, α) small enough to ensure cδ m+1
m (s−p + 1) ≤ α

8 . This leads to

∣∣{u(t) < εM} ∩ B�(xo)
∣∣ ≤ 1

1 − εm+1
m

(
1 − 3α

4

) |B�(xo)|

for all t ∈ [to, to + δM−d�p). Choosing

ε ≤ m

m + 1

(

1 − 1 − 3α
4

1 − α
2

)

∈ (0, 1),

we conclude the proof. 
�

Remark 6.2 From the proof of Lemma 6.1 we observe that ε and δ are monotonically increas-
ing with respect to α.

The preceding lemma at hand, we are now able to prove the Expansion of Positivity for
non-negative weak super-solutions to the doubly degenerate equation (1.3).
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Proposition 6.3 (Expansion of Positivity) Let m > 0, p > 1 with m(p − 1) > 1 and u
be a non-negative weak super-solution to (1.3). For fixed α ∈ (0, 1] there exist constants
b, κ ∈ (0, 1) and c ≥ 1 depending only on n, m, p, ν, L, σ and α such that the following
holds true: We consider zo = (xo, to) ∈ �T , M > 0 and

� ∈ (0, �0], where �0 := min

⎧
⎨

⎩
1
8 dist (xo, ∂�) ,

[
(T − to)(κM)d

b

] 1
p

⎫
⎬

⎭
. (6.5)

Supposed that
∣
∣{u(to) ≥ M} ∩ B�(xo)

∣
∣ ≥ α|B�(xo)| (6.6)

and

‖F‖Lσ (�T ) ≤ 1
c

(
Mm

�

)p−1 ∣
∣Q+

�,M−d�p (zo)
∣
∣
1
σ , (6.7)

are satisfied, then we have

u ≥ κM a.e. in B2�(xo) × (
to + 1

2b(κM)−d�p, to + b(κM)−d�p].

Proof The proof of Proposition 6.3 is divided into several steps. Throughout the proof we
denote by ε = ε(m, α) ∈ (0, 1) and δ = δ(m, p, ν, L, α) ∈ (0, 1) the constants from
Lemma 6.1.

6.1 Application of lemma 6.1

For j� ∈ N to be chosen later in dependence on n, m, p, ν, L , σ and α we define

�0 := min
{ 1
8 dist(xo, ∂�), �1

}
, where �1 :=

[
(T − to)Md

δ
exp

(
− 22p+ j�d

δεd

)] 1
p

and

s0 := 1

M

(
δ�

p
1

T − to

) 1
d

= exp

(
− 22p+ j�d

δdεd

)
< 1.

Note that

B8�(xo) × [
to, to + δ(sM)−d�p) ⊂ �T for all � ∈ (0, �0] and s ∈ [s0, 1].

Now we fix � ∈ (0, �0] and assume that (6.6) is satisfied and that

‖F‖Lσ (�T ) ≤
(

(s0M)m

�

)p−1 ∣∣Q+
�,δM−d�p (zo)

∣∣
1
σ . (6.8)

Then, the assumptions of Lemma 6.1 are fulfilled with M replaced by sM for any s ∈ [s0, 1].
Thus, we find that

∣∣{u(t) ≥ εsM} ∩ B�(xo)
∣∣ ≥ α

2 |B�(xo)|
for all s ∈ [s0, 1] and all t ∈ [to, to + δ(sM)−d�p).
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6.2 Transforming to another problem

For τ ≥ 0 we let s(τ ) := e− τ
d . Then, we have s(τ ) ∈ [s0, 1] for τ ∈ [0, τ0], where

τ0 := d ln
(

1
s0

)
= 22p+ j�d

δεd
.

Next, we define

�̃(τ ) := δ
(
s(τ )M

)−d
�p = δM−d�peτ for τ ∈ [0, τ0].

From Step 6.1 we deduce that for any τ ∈ [0, τ0] there holds
[
to, to + �̃(τ )

) ⊂ (0, T )

and
∣
∣{u(t) ≥ εs(τ )M} ∩ B�(xo)

∣
∣ ≥ α

2 |B�(xo)| for all t ∈ [to, to + �̃(τ )
)
.

In particular, letting

�(τ) := to + �̃(τ ) for τ ∈ [0, τ0],
we have that

∣∣{u(�(τ)) ≥ εs(τ )M
} ∩ B�(xo)

∣∣ ≥ α
2 |B�(xo)| for all τ ∈ [0, τ0]. (6.9)

Finally, we let γ (τ) := �̃(τ )
1
d . Then, Corollary 2.4 ensures that

v(x, τ ) := γ (τ)u(x,�(τ))

is a non-negative weak super-solution to

∂tv − div Â
(
x, τ, v, Dvm

) = div F̂ in B4� × (0, τ0)

with

Â(x, τ, v, ξ) := γ (τ)�′(τ )A
(
x,�(τ), v

γ (τ)
,

ξ
γm (τ )

)

and

F̂(x, τ ) := γ (τ)�′(τ )F(x,�(τ)).

Using the growth assumptions (1.4) of A together with the definition of the functions � and
γ we compute that Â satisfies the growth and ellipticity conditions

Â(x, τ, u, ξ) · ξ ≥ ν
2 |ξ |p and |Â(x, τ, u, ξ)| ≤ L

2 |ξ |p−1.

Defining

k0 := ε
(
δ�p) 1d ,

we observe that k0 = εγ (τ)s(τ )M for any τ ∈ [0, τ0] and therefore inequality (6.9) can be
rewritten as

∣∣{v(τ) ≥ k0} ∩ B�(xo)
∣∣ ≥ α

2 |B�(xo)| for all τ ∈ [0, τ0]. (6.10)
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6.3 Gradient estimates on intrinsic sublevel sets

Next, we define

ϑ :=
(
2 j�

k0

)d

= 1

δ�p

(
2 j�

ε

)d

and consider cylinders

Qϑ
r := Qϑ

r (zo) = Br (xo) × [0, ϑr p),
qQϑ
r := qQϑ

r (zo) = Br (xo) × [0, ϑ( r2 )
p),

Q̂ϑ
r := Q̂ϑ

r (zo) = Br (xo) × [ϑ( r2 )
p, ϑr p)

for 0 < r ≤ 8�. Moreover, for j = 1, . . . , j�, we let

k j := 2− j k0, A j (τ ) := {v(τ) < k j } ∩ B4�(xo), A j := {v < k j } ∩ Q̂ϑ
4�

and observe that

|A j | =
∫ ϑ(4�)p

ϑ(2�)p
|A j (τ )| dτ.

Further, a simple computation shows that

Q̂ϑ
� ⊂ qQϑ

2� and qQϑ
8� ⊂ B8� × [0, τ0).

By definition of F̂ and Hölder’s inequality, we obtain for q ∈ [1, σ ] that
∫∫

qQϑ
8�

|F̂ |q dxdτ =
∫∫

qQϑ
8�

∣∣γ (τ)�′(τ )F(x,�(τ))
∣∣q dxdτ

≤ ∥∥γ (τ)q�′(τ )q(1− 1
σ

)
∥∥
L∞(0,ϑ(4�)p)

∫∫

qQϑ
8�

�′(τ )
q
σ

∣∣F(x,�(τ))
∣∣q dxdτ

≤
(
δM−d�peϑ(4�)p

)q
(
1+ 1

d − 1
σ

) ( ∫∫

qQϑ
8�

�′(τ )
∣∣F(x,�(τ))

∣∣σ dxdτ

) q
σ | qQϑ

8�|1− q
σ

≤ c

[(
M−d�p)1+ 1

d − 1
σ | qQϑ

8�|− 1
σ ‖F‖Lσ (�T )

]q
| qQϑ

8�|,

where in the second last line we used the area formula and the fact that ϑ(4�)p = 4p
δ

( 2
j�

ε
)d ,

so that c = c(n,m, p, ν, L, σ, α, j�). Assuming that

‖F‖Lσ (�T ) ≤ 1
c�

(Mm

�

)p−1|Q+
�,M−d�p (zo)|

1
σ (6.11)

for some constant c� ≥ 1 to be chosen later, we further estimate
∫∫

qQϑ
8�

|F̂ |q dxdτ ≤ c

cq�

[
�1+ p

d − p
σ ϑ− 1

σ

]q | qQϑ
8�| ≤ c

c�

(kmj�
�

)q(p−1)

| qQϑ
8�|,

again with a constant c = c(n,m, p, ν, L, σ, α, j�). Therefore, we may choose c� in depen-
dence on n,m, p, ν, L, σ, α and j� in such a way that

∫∫

qQϑ
8�

|F̂ |q dxdτ ≤
(kmj�
2�

)q(p−1)

| qQϑ
4�| (6.12)
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holds true for any q ∈ [1, σ ]. Note that we replaced � by 2� in the denominator and | qQϑ
8�|

by | qQϑ
4�| for later purpose. We observe that

Q̂ϑ
4� = Q−

4�,ϑ(4p−2p)�p

(
xo, ϑ(4�)p

)
and qQϑ

8� = Q−
8�,ϑ(4�)p

(
xo, ϑ(4�)p

)
.

Thus, the Caccioppoli inequality (3.1) fromLemma 3.1 together with Lemma 2.7 (i), estimate
(6.12) with q = p

p−1 and the fact that | qQϑ
8�|/|Q̂ϑ

4�| = c(n) implies

∫∫

A j

|Dvm |p dxdτ =
∫∫

{v<k j }∩Q̂ϑ
4�

|Dvm |p dxdτ

≤ c
∫∫

{v<k j }∩ qQϑ
8�

[ |vm − kmj |p
(4�)p

+ b[vm, kmj ]
ϑ(2�)p

+ |F̂ | p
p−1

]
dxdτ

≤ c

[
kmp
j

(4�)p
| qQϑ

8�| + km+1
j

ϑ(4�)p
| qQϑ

8�| + kmp
j�

�p
| qQϑ

8�|
]

≤ c
kmp
j

�p
|Q̂ϑ

4�|, (6.13)

with c = c(n,m, p, ν, L).

6.4 Measure estimates for intrinsic sublevel sets

Now, we exploit the estimate

kmj − kmj+1 =
(
2− jmkm0 − 2−( j+1)mkm0

)
= 2− jm (1 − 2−m) km0 ≥ c(m)kmj

with c(m) ∈ (0, 1) together with Lemma 2.5 and inequality (6.10) to obtain

c(m)kmj |A j+1(τ )| ≤
(
kmj − kmj+1

)
|A j+1(τ )|

≤ c(n)�n+1

|B4�(xo) \ A j (τ )|
∫

B4�(xo)∩{kmj+1<vm (τ )<kmj }
|Dvm(τ )| dx

≤ c(n)�
α

∫

A j (τ )\A j+1(τ )

|Dvm(τ )| dx

for all j = 0, . . . , j� and all τ ∈ (0, ϑ(4�)p). We integrate this inequality with respect to τ

over (ϑ(2�)p, ϑ(4�)p), apply Hölder’s inequality on the right-hand side and use the gradient
bound (6.13) to get

kmj |A j+1| ≤ c(n,m)�

α

∫

A j \A j+1

|Dvm | dxdτ

≤ c(n,m)�

α

(∫

A j

|Dvm |p dxdτ
) 1

p |A j \ A j+1|
p−1
p

≤ c(n,m,p,ν,L)
α

kmj |A j \ A j+1|
p−1
p |Q̂ϑ

4�| 1p .
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Dividing both sides by kmj > 0 and summing over j = 0, . . . , j� − 1, we find that

j�|A j� |
p

p−1 ≤
j�∑

j=1

|A j |
p

p−1 ≤ c

α
p

p−1
|Q̂ϑ

4�| 1
p−1

j�−1∑

j=0

|A j \ A j+1| ≤ c

α
p

p−1
|Q̂ϑ

4�| p
p−1 ,

so that
∣
∣{v < k j�} ∩ Q̂ϑ

4�

∣
∣ = |A j� | ≤ α−1( c

j�

) p−1
p |Q̂ϑ

4�| (6.14)

for a constant c depending only on n, m, p, ν and L .

6.5 Application of De Giorgi type lemma 5.1

At this stage,weexploitLemma5.1.Observe that the cylinder Q̂ϑ
4� = Q−

4�,ϑ(4p−2p)�p (xo, ϑ(4�)p)

satisfies the requirements of the Lemmawith �, θ andM replaced by 2�, 4
p−2p
4p and k j� . Then,

the constant ν1 from Lemma 5.1 depends only on n, m, p, ν, L and σ , but is independent of
j�. Note that (5.1) is implied by (6.12) applied with q = σ . Thus, choosing j� large enough,
so that

(
c
j�

) p−1
p ≤ αν1,

all assumptions of Lemma 5.1 are satisfied and we conclude that

v ≥ 1
2k j� a.e. in B2�(xo) × ((

4p − 2p + 1
)
ϑ�p, ϑ(4�)p

)
. (6.15)

Note that j� depends on n,m, p, ν, L, σ and α. This also fixes c� in (6.11) in dependence on
n,m, p, ν, L, σ and α. In turn, we choose c ≥ 1 in dependence on n,m, p, ν, L, σ and α in
such a way that condition (6.7) implies the validity of (6.11) and (6.8).

6.6 Returning to the original problem and conclusion

Finally we use the definition of v and k0 to rewrite (6.15) as

u(x,�(τ)) ≥ 2−( j�+1)e− τ
d εM ≥ κM

for a.e. (x, τ ) ∈ B2� × ((4p − 2p + 1)ϑ�p, ϑ(4�)p
]
, where

κ = κ(n,m, p, ν, L, α) := 2−( j�+1)εe− ϑ(4�)p

d .

Returning to the original time variable, we obtain

u ≥ κM a.e. in B2� × (
to + βb(κM)−d�p, to + b(κM)−d�p]

with b := δεd2−( j�+1)d ∈ (0, 1) and β := e−(2p−1)ϑ�p
depending only on the data. Note that

by the definitions of b and κ we have 1
δ
exp

( − 22p+ j�d

δεd

) = κd

b , so that �0 can be re-written

exactly as in (6.5). Since β ≤ 1
2 this completes the proof of Proposition 6.3. 
�

Remark 6.4 From the proof of Proposition 6.3 we observe that

b

κd
= δ exp

(
4p

δ

(
2 j�

ε

)d
)

> 4pδ exp
( 1

δ

)
> 4p.
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Moreover, the parameter b in Proposition 6.3 is monotonically increasing with respect to α.
This can be seen from the definition b = δεd2−( j�+1)d , where j� is decreasing and ε and δ

are increasing with respect to α; see Remark 6.2.

7 Harnack’s inequality

We are now ready to prove our main result, Theorem 1.2. In the following section, the second
(forward in time) inequality of (1.8) is shown. In a subsequent step, we ensure the validity
of the first (backward in time) inequality of (1.8).

7.1 Forward inequality

Let co ≥ 1 to be fixed later, consider (xo, to) ∈ �T with u(xo, to) > 0 and define

θ =
(

co
u(xo, to)

)d

.

Moreover, assume that � > 0 is small enough so that B9�(xo)×(to−2θ�p, to+2θ�p) � �T .
Note that the stronger assumption B9�(xo) × (to − 4θ�p, to + 4θ�p) � �T will only be
needed in the proof of the backward Harnack inequality. Finally, we define the rescaled
function

v(x, t) := 1
u(xo,to)

u
(
x̃(x), t̃(t)

)
in B9(0) ×

(
−2cdo , 2c

d
o

)
, (7.1)

where (x̃, t̃) : �̂T → �T with �̂T := {(x, t) ∈ R
n+1 : (x̃, t̃) ∈ �T } is defined by

x̃(x) := xo + �x and t̃(t) := to + t�p

u(xo, to)d
.

A straightforward computation shows that v is a bounded, continuous, non-negative weak
super-solution of

∂tv − div Ã
(
x, t, v, Dvm

) = div F̃

in B9(0) × (−2cdo , 2c
d
o ) in the sense of Definition 1.1 with

Ã(x, t, v, ζ ) = �p−1

u (xo, to)d+1 A
(
x̃, t̃, u(xo, to)v,

u(xo,to)m

�
ζ
)

and

F̃(x, t) = �p−1

u(xo, to)d+1 F(x̃, t̃).

Themain step towards Theorem 1.2 is the following lemma. After returning to the original
variables this proves the intrinsic forward Harnack inequality, i.e. the second inequality of
(1.8). Indeed, if Lemma 7.1 is valid, we obtain that

‖F‖Lσ (�T ) ≥ γ0|B1(0)| 1
σ �

n+p
σ

−(p−1)u(xo, to)
m(p−1)− d

σ
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or

u (xo, to) ≤ 1
γ1
u
(·, to + θ�p) in B�(xo),

which shows the second inequality of (1.8) for γ = max
{ 1

γ0|B1(0)|1/σ , 1
γ1

}
.

Lemma 7.1 For v, Ã and F̃ as above, there exist constants γ0, γ1 ∈ (0, 1) and co > 1
depending only on the data, but independent of u(xo, to) such that either

‖F̃‖Lσ (�̂T ) ≥ γ0|B1(0)| 1
σ

or

v
(
·, cdo

)
≥ γ1 in B1(0).

Proof In the following we abbreviate Q−
r := Q−

r ,r p (0) = Br (0) × (−r p, 0] for r > 0. For
τ ∈ [0, 1) we consider the family of cylinders {Q−

τ } and the functions M, N : [0, 1) →
[0,∞) defined by

M(τ ) := sup
Q−

τ

v, N (τ ) := (1 − τ)−δ,

with δ > 1 to be chosen later on. Note that the functions M and N are both monotonically
increasing and M0 = 1 = N0, since v(0, 0) = 1. Moreover, as τ ↑ 1, N (τ ) → ∞ while
M(τ ) remains bounded, since v is bounded in Q−

1 . Together with the continuity of v this
ensures that there exist

τ� := max{τ ∈ [0, 1) : M(τ ) = N (τ )}
and (x�, t�) ∈ Q−

τ�
such that

v (x�, t�) = M (τ�) = N (τ�) = (1 − τ�)
−δ . (7.2)

Let ñ ∈ N≥2 such that 21−ñ < 1 − τ� ≤ 22−ñ and define r := 2−ñ . Then τ� + r <

τ� + 1
2 (1 − τ�) = 1+τ�

2 , which implies

(x�, t�) + Q−
r ⊂ Q−

1+τ�
2

⊂ Q−
1 .

Moreover, by definition of M , N and τ� we have

sup
(x�,t�)+Q−

r

v ≤ sup
Q−

1+τ�
2

v = M
(
1+τ�

2

)
≤ N

(
1+τ�

2

)
=
(
1−τ�

2

)−δ ≤ 2ñδ = r−δ =: M�.

Observe that M� > 1. Next, on the cylinder Q−
r ,M−d

� r p
(x�, t�) ⊂ (x�, t�) + Q−

r we apply the

De Giorgi type Lemma 5.2 to v with

ζ = 1 − 2−4δm, a = 1 − 2−3δm

1 − 2−4δm

and (μ+, M, θ, �) replaced by (M�, M�, 1, r
2 ). Indeed, hypothesis (5.2) is satisfied, since

sup
Q−
r,M−d

� r p
(x�,t�)

v ≤ sup
(x�,t�)+Q−

r

v ≤ M�.
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By ν̃ we denote the constant ν2 from Lemma 5.2 depending on n,m, p, ν, L, θ, a, ζ ; hence
ν̃ = ν̃(n,m, p, ν, L, δ). Moreover, observe that

vm (x�, t�) = (1 − τ�)
−δm ≥ 2−2δmr−δm = 2−2δmMm

� > Mm
� − aζMm

� .

This shows that conclusion (5.5) of Lemma 5.2 is false. Hence, either (5.3) or (5.4) is violated.
This means, we either have

‖F̃‖Lσ (�̂T ) >

(
2Mm

�

r

)p−1 ∣
∣Q−

r ,M−d
� r p

(x�, t�)
∣
∣
1
σ (7.3)

or
∣
∣{v ≥ 2−4δM�

} ∩ Q−
r ,M−d

� r p
(x�, t�)

∣
∣ > ν̃

∣
∣Q−

r ,M−d
� r p

(x�, t�)
∣
∣. (7.4)

If (7.4) is satisfied, by Fubini’s theorem there exists t̄� ∈ (t� − M−d
� r p, t�] with

|{v (t̄�
) ≥ 2−4δM�} ∩ Br (x�) | > ν̃|Br (x�) |.

By b̃, κ̃ ∈ (0, 1) and c̃ ≥ 1 we denote the constants b, κ, c from the Expansion of Positivity
in Proposition 6.3 applied with α = ν̃. Note that b̃, κ̃ and c̃ depend on n,m, p, ν, L, σ and
δ. Supposed that

r ≤ min

{
1
8 dist (x�, ∂B9(0)) ,

[(
2cdo − t̄�

) (
2−4δκ̃M�

)d

b̃

] 1
p }

, (7.5)

we are allowed to apply Proposition 6.3 with (F, α, M, �) replaced by (F̃, ν̃, 2−4δM�, r)
and conclude that either

‖F̃‖Lσ (�̂T ) ≥ 1

c̃

((
2−4δM�

)m

r

)p−1
∣∣Q+

r ,(2−4δM�)
−dr p

∣∣
1
σ (7.6)

or

v ≥ 2−4δκ̃M� in B2r (x�) × (
t̄� + 1

2 b̃
(
2−4δκ̃M�

)−d
r p, t̄� + b̃

(
2−4δκ̃M�

)−d
r p
]

holds true. In the second case we find that
∣∣{v(t̃o) ≥ 2−4δκ̃M�} ∩ B2r (x�)

∣∣ = |B2r (x�)|, (7.7)

where t̃o := t̄� + b̃
(
2−4δκ̃M�

)−d
r p . This allows to apply the Expansion of Positivity in the

next step with α = 1. Therefore, by b, κ ∈ (0, 1) and c ≥ 1 we denote the constants b, κ, c
from Proposition 6.3 applied with α = 1. Then, b, κ and c depend on n,m, p, ν, L and σ ,
but not on δ. Supposed that

2r ≤ min

{
1
8 dist (x�, ∂B9(0)) ,

[
(2cdo − t̃o)

(
2−4δκ̃κM�

)d

b

] 1
p
}
, (7.8)

we may apply Proposition 6.3 with (F, α, M, �) replaced by (F̃, 1, 2−4δκ̃M�, 2r) and con-
clude that either

‖F̃‖Lσ (�̂T ) ≥ 1

c

((
2−4δκ̃M�

)m

2r

)p−1
∣∣Q+

2r ,(2−4δ κ̃M�)
−d

(2r)p

∣∣
1
σ (7.9)
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or

v ≥ 2−4δκ̃κM� in B4r (x�) × (
t1 − 1

2b
(
2−4δκ̃κM�

)−d
(2r)p, t1

]

holds true, where t1 := t̃o + b
(
2−4δκ̃κM�

)−d
(2r)p . In the second case, we have

∣
∣{v(t1) > 2−4δκ̃κM�} ∩ B4r (x�)

∣
∣ = |B4r (x�)|.

We recursively define t2, . . . , tñ by

t j := t j−1 + b
(
2−4δκ̃κ j M�

)−d
(2 j r)p

for j ∈ {2, . . . , ñ}. Iterating the procedure of Expansion of Positivity we arrive at the fol-
lowing assertion. Supposed that

2 j r ≤ min

{
1
8 dist(x�, ∂B9(0)),

[
(2cdo − t j−1)(2−4δκ̃κ j M�)

d

b

] 1
p
}
, (7.10)

for every j = 2, . . . , ñ, we find that either

‖F̃‖Lσ (�̂T ) >
1

c

(
(2−4δκ̃κ j−1M�)

m

2 j r

)p−1∣∣Q+
2 j r ,(2−4δ κ̃κ j−1M�)−d (2 j r)p

∣∣
1
σ (7.11)

is satisfied for some j ∈ {2, . . . , ñ} or
v ≥ 2−4δκ̃κ ñM� in B2ñ+1r (x�) × (

tñ − 1
2b
(
2−4δκ̃κ ñM�

)−d
(2ñr)p, tñ

]
. (7.12)

We first ensure that (7.10) is satisfied for ñ. We note that 2ñr = 1. Since x� ∈ B1(0), we
immediately observe that 2ñr = 1 ≤ 1

8 dist(x�, ∂B9(0)). Next, we choose δ > 1 in depen-
dence on n,m, p, ν, L and σ such that 2δκ = 1, which is possible, since κ is independent of
δ. In view of the definition of M� we find that

2−4δκ̃κ ñM� = 2−4δκ̃κ ñ2ñδ = 2−4δκ̃(2δκ)ñ = 2−4δκ̃ =: γ1 ∈ (0, 1).

Note that γ1 depends on n,m, p, ν, L and σ . The second condition in (7.10) is equivalent to
tñ ≤ 2cdo . Therefore, we compute

tñ = t̄� + b̃
(
2−4δκ̃M�

)−d
r p + b

ñ∑

j=1

(
2−4δκ̃κ j M�

)−d (
2 j r
)p

= t̄� + b̃

γ d
1

(
κd

2p

)ñ

+ 2pb

γ d
1 (2p − κd)

[
1 −

(
κd

2p

)ñ]

= t̄� + 2pb

γ d
1 (2p − κd)

− 1

γ d
1

[
2pb

2p − κd
− b̃

](
κd

2p

)ñ

.

We note that due to Remark 6.4 we have b̃ ≤ b and therefore the expression 2pb
2p−κd

− b̃ is
positive. Hence, choosing co such that

2cdo ≥ 1

γ d
1

2pb

(2p − κd)
(7.13)

and taking into account that t̄� ≤ 0 we find that

tñ ≤ t̄� + 2cdo ≤ 2cdo .
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Provided that (7.13) holds true, (7.10) is satisfied for ñ and in turn implies that (7.10) is
satisfied for any j = 2, . . . , ñ and in particular also (7.5) and (7.8) are satisfied.

To summarize, we have now shown that either (7.12) is satisfied or one of the alternatives
(7.6), (7.9) or (7.11) if co is chosen large enough. We start with the former case where (7.12)
is satisfied. Since 2ñr = 1 we have B1(0) ⊂ B2(x�) = B2ñ+1r (x�), so that

v(t) ≥ γ1 in B1(0) for any t ∈ (tñ − 1
2bγ

−d
1 , tñ

]
. (7.14)

Unfortunately, the interval depends on ñ and hence on v. Therefore, we need to find a

subinterval which is independent of ñ. In view of Remark 6.4 we have b
κ̃d

≥ b̃
κ̃d

> 4p and

hence γ d
1 = 2−4δd κ̃d < 2−2p−4δdb < 2−2pb. Therefore, we observe from the preceding

computation of tñ that

tñ ≥ t̄� + 2pb

γ d
1

(
2p − κd

)
[
1 −

(
κd

2p

)ñ]
≥ −1 + 2pb

γ d
1 (2p − κd)

[
1 −

(
κd

2p

)2]

>
2pb

γ d
1 (2p − κd)

− κ2db

2pγ d
1 (2p − κd)

− b

22pγ d
1

.

In the second term on the right-hand side we use κ < 4−pb < 4−p , which once again is a
consequence of Remark 6.4. This leads us to the lower bound

tñ >
2pb

γ d
1 (2p − κd)

− b

23pγ d
1

− b

22pγ d
1

>
2pb

γ d
1 (2p − κd)

− b

22p−1γ d
1

.

For the left interval limit in (7.14) we obtain

tñ − 1
2bγ

−d
1 ≤ 2pb

γ d
1 (2p − κd)

− b

2γ d
1

.

The preceding computations show that with the choice

cdo := 2pb

γ d
1 (2p − κd)

− b

2pγ d
1

> 1

we have

cdo ∈ (tñ − 1
2bγ

−d
1 , tñ

]
.

Note that co depends on n,m, p, ν, L and σ and a straightforward calculation shows that
(7.13) is satisfied. From (7.14) we now conclude that

v
(
cdo
)

≥ γ1 in B1(0),

which concludes the proof of the lemma in the case that (7.12) is satisfied.
Finally, we are left with the case where one of the alternatives (7.6), (7.9) or (7.11) is

satisfied. In any of these cases we conclude that

‖F̃‖Lσ (�̂T ) ≥ γ0|B1(0)| 1
σ , where γ0 := 1

max{c, c̃}
(

κ̃

24δκ

)d+1− d
σ

(7.15)

is valid. We note that γ0 ∈ (0, 1), since κ̃ ≤ κ by Remark 6.4 and that γ0 depends on
n,m, p, ν, L and σ . This concludes the proof of the lemma. 
�
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7.2 Backward inequality

With the intrinsic forward Harnack inequality on hand, we are able to show the intrinsic
backward Harnack inequality, i.e. the first inequality of (1.8). Actually, in the following we
will prove the more general version

(
c1γ

c2
)−1 sup

B�(xo)
u
(
·, to − (

c1γ
c2−1)−d

θ�p
)

≤ u (xo, to) (7.16)

with positive constants c1, c2 such that c1γ c2−2 > 1, which implies the first inequality of
(1.8) by choosing c1 = c2 = 2. We have already fixed (xo, to) ∈ �T with u(xo, to) > 0.
Now we assume that B9�(xo) × (to − 4θ�p, to + 4θ�p) � �T . Moreover, let c1, c2 > 0 be
positive constants such that c1γ c2−2 > 1 and suppose that alternative (1.7) is not valid, i.e.

‖F‖Lσ (�T )�
p−1− n+p

σ < 1
γ
u(xo, to)

d+1− d
σ . (7.17)

In order to prove the backward Harnack inequality, we consider two alternatives. First, we
assume that

u (xo, t) < c1γ
c2−1u (xo, to) for all t ∈ (to − 2θ�p, to

)
(7.18)

with γ as in the right-hand side of (1.8). Our aim is to prove that (7.18) implies

sup
B�(xo)

u
(
·, to − (

c1γ
c2−1)−d

θ�p
)

< c1γ
c2u (xo, to) . (7.19)

Indeed, assume that (7.19) was not satisfied. Then there exists x� ∈ B�(xo) such that
u(x�, t1) = c1γ c2u(xo, to), where we abbreviated t1 := to − (c1γ c2−1)−dθ�p , since u is
continuous and (7.18) is in force. Let θ� := cdou(x�, t1)−d . A simple calculation shows that

{
t1 − 2θ��

p = to − (
1 + 2γ −d

) (
c1γ c2−1

)−d
θ�p,

t1 + 2θ��
p = to − (

1 − 2γ −d
) (
c1γ c2−1

)−d
θ�p.

Since d > 0, γ > 1 and c1γ c2−1 > 1, this implies (t1 − 2θ��
p, t1 + 2θ��

p) ⊂ (to −
4θ�p, to + 4θ�p) � �T . Thus, we are able to apply the forward Harnack inequality with
(xo, to) replaced by (x�, t1). This leads to

‖F‖Lσ (�T )�
p−1− n+p

σ ≥ 1
γ
u (x�, t1)

d+1− d
σ > 1

γ
u(xo, to)

d+1− d
σ ,

which contradicts (7.17), or

u (x�, t1) ≤ γ inf
B�(x�)

u
(·, t1 + θ��

p) .

In viewof (7.18) and the facts that xo ∈ B�(x�) and t1+θ��
p < to, this yields the contradiction

c1γ
c2u (xo, to) = u (x�, t1) ≤ γ u

(
xo, t1 + θ��

p) < c1γ
c2u (xo, to) .

Therefore (7.18) implies (7.19).
It remains to treat the case where (7.18) is violated. This means that there exists t ∈

(to − 2θ�p, to) such that u(xo, t) = c1γ c2−1u(xo, to). We define τ as the largest value with
this property (note that u is continuous) and let

θτ :=
(

co
u(xo, τ )

)d

= (
c1γ

c2−1)−d
θ.
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We claim that

to − τ > θτ�
p. (7.20)

Indeed, if (7.20) was not valid, there existed 0 < �̃ ≤ � such that

to − τ = θτ �̃
p.

Computing that (τ − 2θτ �̃
p, τ + 2θτ �̃

p) ⊂ (to − 4θ�p, to + 4θ�p), we are allowed to apply
the forward Harnack inequality with (xo, τ ) instead of (xo, to). This gives that either

‖F‖Lσ (�T )�̃
p−1− n+p

σ ≥ 1
γ
u (xo, τ )d+1− d

σ > 1
γ
u (xo, to)

d+1− d
σ ,

or

c1γ
c2−1u (xo, to) = u (xo, τ ) ≤ γ u

(
xo, τ + θτ �̃

p) = γ u (xo, to) .

holds true. The former one contradicts (7.17), while the latter one contradicts c1γ c2−2 > 1.
Therefore, (7.20) is valid. Next, we define

s = to − θτ �
p.

By definition of τ and (7.20), we find that

τ < s < to and u (xo, s) < c1γ
c2−1u (xo, to) .

In the following we show by contradiction that

sup
B�(xo)

u(y, s) < c1γ
c2−1u (xo, to) . (7.21)

Indeed, otherwise by the continuity of u there existed y ∈ B�(xo) with u(y, s) =
c1γ c2−1u(xo, to). For θs := cdou(y, s)−d we have that (s − 2θs�p, s + 2θs�p) ⊂ (to −
4θ�p, to + 4θ�p). Thus, applying the forward Harnack inequality with (y, s) instead of
(xo, to) leads to

‖F‖Lσ (�T )�
p−1− n+p

σ ≥ 1
γ
u(y, s)d+1− d

σ > 1
γ
u(xo, to)

d+1− d
σ ,

which contradicts (7.17), or

u(y, s) ≤ γ inf
B�(y)

u
(·, s + θs�

p) .

Since s + θs�
p = to and y ∈ B�(xo), we obtain the contradiction

c1γ
c2−1u (xo, to) = u(y, s) ≤ γ u (xo, to) .

Therefore (7.21) is valid. Recalling the definition of s, we conclude that the desired backwards
Harnack inequality is in force also in this case. This finishes the proof of inequality (7.16)
and thus the proof of Theorem 1.2.

Acknowledgements V. Bögelein has been supported by the FWF-Project P31956-N32 “Doubly nonlin-
ear evolution equations". A. Herán has been supported by the DFG-Project HA 7610/1-1 “Existenz- und
Regularitätsaussagen für parabolische Quasiminimierer auf metrischen Maßräumen". L. Schätzler has been
supported by Studienstiftung des deutschen Volkes.

Funding Open access funding provided by Austrian Science Fund (FWF).

123



  215 Page 34 of 35 V. Bögelein et al.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case 1<p<2. J. Math.
Anal. Appl. 140(1), 115–135 (1989)

2. Bögelein, V., Lukkari, T., Scheven, C.: Hölder regularity for degenerate parabolic obstacle problems. Ark.
Mat. 55(1), 1–39 (2017)

3. Bögelein, V., Duzaar, F., Kinnunen, J., Scheven, C.: Higher integrability for doubly nonlinear parabolic
systems. J. Math. Pures Appl. 143, 31–72 (2020)

4. Bögelein, V., Duzaar, F., Korte, R., Scheven, C.: The higher integrability of weak solutions of porous
medium systems. Adv. Nonlinear Anal. 8(1), 1004–1034 (2019)

5. Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with p; q-growth: a variational approach. Arch.
Ration. Mech. Anal. 210(1), 219–267 (2013)

6. Bögelein, V., Lehtelä, P., Sturm, S.: Regularity of weak solutions and supersolutions to the porousmedium
equation. Nonlinear Anal. 185, 49–67 (2019)

7. DiBenedetto, E.: Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equa-
tions. Arch. Ration. Mech. Anal. 100(2), 129–147 (1988)

8. DiBenedetto, E.: Degenerate parabolic equations, Springer Science & Business Media (1993)
9. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack estimates for quasi-linear degenerate parabolic dif-

ferential equations. Acta Math. 200(2), 181–209 (2008)
10. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s Inequality for Degenerate and Singular Parabolic

Equations. Springer Monographs in Mathematics. Springer, New York (2012)
11. Düzgün, F.G., Fornaro, S., Vespri, V.: Interior Harnack estimates: the state-of-the-art for quasilinear

singular parabolic equations. Milan J. Math. 83(2), 371–395 (2015)
12. Fornario, S., Sosio, M.: Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic

equations. Adv. Diff. Equ. 13(1–2), 139–168 (2008)
13. Fornario, S., Sosio,M., Vespri, V.: Harnack type inequalities for some doubly nonlinear singular parabolic

equations. Discr. Cont. Dyn. Syst. A 35(12), 5909–5926 (2015)
14. Gianazza, U., Vespri, V.: A Harnack inequality for solutions of doubly nonlinear parabolic equations. J.

Appl. Funct. Anal. 1(3), 271–284 (2006)
15. Giaquinta, M., Modica, G.: Remarks on the regularity of the minimizers of certain degenerate functionals.

Manuscripta Math. 57(1), 55–99 (1986)
16. Hadamard, J.: Extension à l’èquation de la chaleur d’un théorème de A. Harnack. Rend. Circ. Mat.

Palermo 2(3), 337–346 (1954)
17. Ivanov, A.V.: Hölder estimates for a natural class of equations of fast diffusion type, (Russian) Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 229, : Chisl. Metody i Voprosy Organ.
Vychisl. 11(29–62), 322 (1995)

18. Ivanov, A.V.: Hölder estimates for a natural class of equations of fast diffusion type, translation in. J.
Math. Sci. (New York) 89(6), 1607–1630 (1998)

19. Ivanov, A.V.: Hölder estimates for equations of slow and normal diffusion type, (Russian) Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 215, : Differentsial’naya Geom. Gruppy Li i Mekh.
14(130–136), 311 (1994)

20. Ivanov, A.V.: Hölder estimates for equations of slow and normal diffusion type, translation in. J. Math.
Sci. (New York) 85(1), 1640–1644 (1997)

21. Kinnunen, J., Lindqvist, P.: Pointwise behaviour of semicontinuous supersolutions to a quasilinear
parabolic equation. Ann. Mat. Pura Appl. 185(3), 411–435 (2006)

22. Kinnunen, J., Kuusi, T.: Local behaviour of solutions to doubly nonlinear parabolic equations Math.
Annals 337(3), 705–728 (2007)

23. Kuusi, T.: Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) (4), 673–716 (2008)

123

http://creativecommons.org/licenses/by/4.0/


Harnack’s inequality for doubly nonlinear equations Page 35 of 35   215 

24. Li, Q.: Weak Harnack estimates for supersolutions to doubly degenerate parabolic equations. Nonlinear
Anal. 170, 88–122 (2018)

25. Moser, J.: On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14, 577–591
(1961)

26. Moser, J.: AHarnack inequality for parabolic differential equations. Comm. PureAppl.Math. 17, 101–134
(1964)

27. Pini, B.: Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso
parabolico. Rend. Sem. Mat. Univ. Padova 23, 422–434 (1954)

28. Porzio, M.M., Vespri, V.: Hölder estimates for local solutions of some doubly nonlinear degenerate
parabolic equations. J. Diff. Equ. 103(1), 146–178 (1993)

29. Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)
30. Singer, T., Vestberg, M.: Local boundedness of weak solutions to the diffusive wave approximation of

the shallow water equations. J. Diff. Equ. 266(6), 3014–3033 (2019)
31. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations.

Comm. Pure Appl. Math. 20, 721–747 (1967)
32. Trudinger, N.S.: Pointwise estimates and quasilinear parabolic equations. Comm. Pure Appl.Math. 21(3),

205–226 (1968)
33. Vespri, V.: Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations. J.

Math. Anal. Appl. 181(1), 104–131 (1994)
34. Vespri, V., Vestberg, M.: An extensive study of the regularity of solutions to doubly singular equations.

Adv. Calc. Var. (2020). https://doi.org/10.1515/acv-2019-0102

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1515/acv-2019-0102

	Harnack's inequality for doubly nonlinear equations of slow diffusion type
	Abstract
	1 Introduction and results
	1.1 Setting
	1.2 Plan of the paper

	2 Preliminaries
	2.1 Notation
	2.2 Mollification in time
	2.3 Transformation
	2.4 Auxiliary lemmata

	3 Caccioppoli inequalities
	4 Local boundedness of non-negative weak sub-solutions
	5 De Giorgi type lemmas
	6 Expansion of positivity
	6.1 Application of lemma 6.1
	6.2 Transforming to another problem
	6.3 Gradient estimates on intrinsic sublevel sets
	6.4 Measure estimates for intrinsic sublevel sets
	6.5 Application of De Giorgi type lemma 5.1
	6.6 Returning to the original problem and conclusion

	7 Harnack's inequality
	7.1 Forward inequality
	7.2 Backward inequality

	Acknowledgements
	References




