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Abstract

We consider the homogenization of a Poisson problem or a Stokes system in a randomly
punctured domain with Dirichlet boundary conditions. We assume that the holes are spherical
and have random centres and radii. We impose that the average distance between the balls
is of size ¢ and their average radius is €%, & € (1; 3). We prove that, as in the periodic case
(Allaire, G., Arch. Rational Mech. Anal. 113(113):261-298, 1991), the solutions converge
to the solution of Darcy’s law (or its scalar analogue in the case of Poisson). In the same
spirit of (Giunti, A., Hofer, R., Ann. Inst. H. Poincare’- An. Nonl. 36(7):1829-1868, 2019;
Giunti, A., Hofer, R., Velazquez, J.J.L., Comm. PDEs 43(9):1377-1412, 2018), we work
under minimal conditions on the integrability of the random radii. These ensure that the
problem is well-defined but do not rule out the onset of clusters of holes.

Mathematics Subject Classification 35B27 - 35J57 - 35Q35 - 60K35

We are interested in the effective behaviour of a Stokes system or a Poisson equation in
a bounded domain D® C R3, perforated by many random small holes H®. We impose
Dirichlet boundary conditions on the boundary of the holes and of the domain. Problems
like the one studied in this paper arise mostly in fluid-dynamics where a Stokes system in
a punctured domain models the flow of a viscous and incompressible fluid through many
disjoint obstacles. We focus on the regime where the effective equation is given by Darcy’s
law or its scalar analogue in the case of the Poisson problem. For the latter, this corresponds to
the case where the average density of harmonic capacity of the holes H® goes to infinity in the
limit e | 0. In the case of Stokes the same is true, this time with the harmonic capacity being
replaced by the so-called Stokes capacity. This is a vectorial version of the harmonic capacity
where the class of minimizers further satisfies the incompressibility constraint (see (4.8)).

We construct the randomly punctured domain D? as follows: Given & € (1,3) and a
bounded C'!-domain D C R3, we define

Df:=D\H*, H*:= | ] Bew(e2). (0.1)
zednlD
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Here, the set of centres @ is a Poisson point process of intensity A > 0 and the set éD =
{x € R®: ex € D}. The radii R = {pz}ze@ < [1; +00) are independent and identically
distributed random variables satisfying for a constant C < +o00

E I:p%] <cC. 0.2)

This condition is minimal in order to ensure that, P-almost surely, the sets H® cannot asymp-
totically fully cover the domain D, hence implying that D® = {J (see Lemma 1.1). However,
condition (0.2) does not prevent that, with high probability, the balls in H¢ do overlap.

For ¢ > 0 and D¢ as above, we consider the (weak) solution to either

—Au, = f in Df 03)
us =0 on 0 D*
or to
—Augs +Vpe, = f in D*
Vou,=0 in D® 04
us =0 on dD*
In the case of the Stokes system, we further assume that
3
E [p&ﬂg] < C, forsome B > 0. 0.5)

We refer to the next section for a more detailed discussion on what conditions (0.2) and (0.5)
entail in terms of the geometric properties of the set H®.

It is easy to see that in the case of spherical periodic holes having distance ¢ and radius
&% a € (1, 3], the density of harmonic capacity of H? is asymptotically of order g3+ The
same is true in the case of the Stokes capacity. When o = 3 these limits are thus finite. In the
case of the Poisson problem, the solutions to (0.3) thus converge to the solution u € H(} (D)
to —Au + pu = f in D, where the constant i > 0 is the limit of the capacity density
[7]. Similarly, the limit problem for (0.4) is given by a Brinkmann system, namely a Stokes
system in D with no-slip boundary conditions and with the additional term jiu in the system
of equations [1]. The term &t > 0 is as well strictly related to the limit of the Stokes capacity
density. We also mention that, for holes that are periodic but not spherical, the term /& is
a positive-definite matrix. For @ € (1; 3) as in the present paper, the solutions to (0.3) or
(0.4) need to be rescaled by the factor e 3+ in order to converge to a non-trivial limit. The
effective equations, in this case, are either u = kf in D or Darcy’s law u = K(f — Vp) in
D [2,26]. Here, k, K are related to the rescaled limit of the density of capacity and admit a
representation in terms of a corrector problem solved in the exterior domain R3\ B (0).

When o = 1, namely when the distance between holes and their size have the same
order ¢, the effective equations for (0.3) and (0.4) are as in the case « € (1, 3); the effective
constants k, K obtained in the limit, however, are determined by a corrector problem of
different nature. In this case indeed, there is only one microscopic scale ¢ and the relative
distance between the connected components of the holes H® does not tends to infinity for
& — 0. This yields that the corrector equations are solved in the periodic cell and not in the
exterior domain R3\B 1(0) [3].

For holes that are not periodic, the extremal regimes « € {1, 3} have been rigorously
studied both in deterministic and random settings. For « = 3 we mention, for instance
[6,9,16-18,23-25] and refer to the introductions in [12] and [14] for a detailed overview of
these results. We stress that the homogenization of (0.3) and (0.4) when H¥ is as in (0.1) with
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a = 3 has been studied in the series of papers [12—14]. These works prove the convergence
to the effective equation under the minimal assumption that H* has finite averaged capacity
density. There is no additional condition on the minimal distance between the balls in the set
of H®.

There are many works devoted also to the regime o = 1. For periodic holes, we refer to
[20,21] for the homogenization of compressible and incompressible Navier-Stokes systems,
respectively. In the random setting, we refer to [4] where (0.3) and (0.4) are studied for
a very general class of stationary and ergodic punctured domains. For these domains, the
formulation of the corrector equation for the the effective quantities k, K is solved in the
probability space (€2, F, IP) generating the holes.

There is fewer mathematical literature concerning the homogenization of (0.3) or (0.4) in
the regime o € (1; 3). For periodic holes, this has been studied in [2,26]. These results have
been extended for certain regimes to compressible Navier-Stokes systems [15] or to elliptic
systems in the context of linear elasticity [19]. We are not aware of analogous results when
the holes H? are not periodic. The present paper considers this problem when H? is random
and, in the same spirit of [12,14], the balls in H® may overlap and cluster.

The main result of this paper is the following:

Theorem 0.1 Let o, = 873%” and let H® and DF be the random sets defined in (0.1).

(a) Let u, € HO1 (D?) solve (0.3) with f € LY(D) for q € (2; +o<). Then, if the marked
point process (®, R) satisfies (0.2), for every p € [1; 2) we have that

limE [/ lo2u; — kf|1’] =0, withk := @rrE[p]) "

el0 D
Here, and in the rest of the paper, E [ - ] denotes the expectation under the probability
measure for (P, R).

(b) Let u, € Hi(D%;R3) solve (0.4) with f € LY(D;R3) for ¢ € (2; +o0l. If (®,R)
satisfies (0.5), then for every p € [1; 2) we have

liﬁ}E |:/ |052u5 —K(f — Vp*)|p:| =0, withK := (6xAE[p])~"
3 D

and p* € H' (D) (weakly) solving

V- (Vp*=f)=0 inD ][ *_o
Vp —f)v=0 ondaD Jp© "

As mentioned above, condition (0.2) is minimal in order to ensure that the set D? is non-
empty for P-almost every realization. A lower stochastic integrability assumption for the
radii, indeed, yields that, in the limit ¢ | 0 and P-almost surely H?, covers the full set D (see
Lemma 1.1 in the next section). By the Strong Law of the Large Numbers, condition (0.2)
implies that the density of capacity is almost surely of order 3¢ as in the periodic case.
As already remarked in [12] in the case o = 3, with (0.4) we require that the radii satisfy the
slightly stronger assumption (0.5). While (0.2) seems to be the optimal condition in order
to control the density of harmonic capacity, the lack of subadditivity of the Stokes capacity
calls for a better control on the geometry of the set H®.

The ideas used in the proof of Theorem 0.1 are an adaptation of the techniques used in
[2,7] for the periodic case. They are combined with the tools developed in [12,14] to tackle
the case of domains having holes that may overlap. As shown in [2], the uniform bounds
on the sequences {062148} e>0s {0 Vg }e~0 are obtained by means of a Poincaré’s inequality

@ Springer



172 Page4of 30 A. Giunti

for functions that vanish on dD¢. If v € HO1 (D¥?), since the function vanishes on the holes
HE, the constant in the Poincaré’ s inequality is of order 05_1 << 1.Ifv e HO1 (D), this
would instead be of order 1 (dependent on the domain D). Note that, as for « = 3 we have
oz = 1, there is no gain in using a Poincaré’s inequality in HOl (D¥?) instead of in HOl (D) in
this regime. In the case of centres of H* that are distributed like a Poisson point process, the is
a low probability that some regions of D? have few holes, thus leading to a worse Poincaré’s
constant. This causes the lack of uniform bounds for the family {ogzu ele>0 1N LZ(D).
Equipped with uniform bounds for the rescaled solutions of (0.3), one may prove Theorem
0.1, (a) by constructing suitable oscillating test functions {w, }¢0. These allow to pass to the
limit in the equation and identify the effective problem. We stress that a crucial ingredient in
these arguments is given by the quantitative bounds obtained in [11] in the case « = 3. These
bounds may indeed also be extended to the current setting so that the rate of convergence of the
measures —GE’ZAwE e H-Y(D)is quantified. This allows to control the convergence of the
duality term (—Awg; ug) -1 (D):H} (D)" In contrast with the periodic case, the unboundedness

of {oezug}p() in L2(D) requires a careful study of the duality term above. For the precise
statements, we refer to (3.3) in Lemma 3.1 and Lemma 3.3. The same ideas sketched here
apply also to the case of solutions to (0.4). This time, the oscillating test functions {w;}¢~0
are replaced by the reduction operator R, of Lemma 4.1.

Remark 0.2 We comment below on some variations and corollaries of Theorem 0.1:
(i) If ® = Z4 or is a stationary point process satisfying for a finite constant C < +o0

max |z; —z;j| < C P — almost surely,
2,2, €D

then the convergence of Theorem 0.1 holds also with p = 2. In this case, indeed, we

may drop the logarithmic factor in the bounds of Lemma 2.1.

The assumption R C [1; +00) may be also weakened to R C [0; +00), provided that

E [,ofy] < 400,

for an exponent y € (1; +oc]. In this case, the convergence of Theorem 0.1 holds in
LP(D) for p € [1; p) with p = p(y) € [1;2) such that p(y) — 2 when y — 4o00.
(ii) A careful inspection of the proof of Theorem 0.1 yields that, under assumption (0.5)
and for a source f € W1, the convergences in both (@) and (b) may be upgraded to

E[/ |a§u£—u|f’] < e,
D

for an exponent ¥ > 0 depending on «, f.

(iii) The quenched version of Theorem 0.1, namely the P-almost sure convergence of the
families in L? (D), holds as well provided that we restrict to any vanishing sequence
{£)} jen that converges fast enough. For instance, it suffices that j %“8 j—>0,e>0.
It is a technical but easy argument to observe that, under this assumption, limits (3.3)
of Lemma 3.1 and (4.1)-(4.2) of Lemma 4.1 vanish also P-almost surely. From these,
the quenched version of Theorem 0.1 may be shown as done in the annealed case.
To control the limits in (3.3), (4.1) and (4.2) without taking the expectation, one may
follow the same lines of the current proof and control most of the terms by the Strong
Law of Large Numbers. Condition j 3+e gj — 0 on the speed of the convergence for
{£}jen is needed in order to obtain quenched bounds for the term in (3.31) by means
of Borel-Cantelli’s Lemma.
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(iv) The analogue of Theorem 0.1 holds also for a general dimension d > 3 if we consider
d
the values o € (1; (ﬁ) and rescale the solutions by 052 = £~ @27% In this case, (0.2)
and (0.5) hold with the exponent g replaced by g

The paper is structured as follows: In the next section we describe the setting and introduce
the notation that we use throughout the proofs. Subsection 1.2 is devoted to discussing the
minimality of assumption (0.2) and what condition (0.5) implies on the geometry of the holes
HE?.In Sect. 2, we show the uniform bounds on the family {o§u5}5>0, with u, solving (0.3)
or (0.4). In Sect. 3 we argue Theorem 0.1 in case (a), while in Sect. 4 we adapt it to case
(b). The proof of case () is conceptually similar to the one for (a), but it is technically more
challenging. It heavily relies on the geometric properties of the holes implied by condition
(0.5). Finally, Sect. 5 contains the proof of the main auxiliary results used throughout the

paper.

1 Setting and notation

Let D C R3 be an open set having C!!-boundary. We assume that D is star-shaped with
respect to a point xo € R>. This assumption is purely technical and allows us to give an easier
formulation for the set of holes H®. With no loss of generality we assume that xo = 0.

The process (®; R) is a stationary marked point process on R? having identically and
independent distributed marks on [1 + 00). In other words, (®; R) may be seen as a Poisson
point process on the space R3 x [1; +-00), having intensity (x, p) = A f(p). The expectation
in (0.2) or (0.5) is therefore taken with respect to the measure f (p)dp. We denote by (2; F, P)
the probability space associated to (®, R), so that the random sets in (0.1) and the random
fields solving (0.3) or (0.4) may be written as H* = H®(w), D° = D*(w) and u,(w; -),
respectively. The set of realizations 2 may be seen as the set of atomic measures ), . 8(z,,. pn)
in R3 x [1; +00) or, equivalently, as the set of (unordered) collections {(z,, pn)}nen <
R3 x [1; 400).

We choose as F the smallest o -algebra such that the random variables N(B) : 2 — N,
w — #{w N B} are measurable for every set B € R* the Borel o-algebra Bg4. Here and
throughout the paper, # stands for the cardinality of the set considered. Forevery p € [1; 4-00)
we define the space L?(2) as the space of (F-measurable) random variables F : @ — R
endowed with the norm E [|F(a))|1’]%. For p = 400, we set L®(2) as the space of P-
essentially bounded random variables. We denote by L” (2 x D), p € [1; +00), the space
of random fields F : Q@ x R? — IR that are measurable with respect to the product o'-algebra
and such that E [ [, | F (o, x)|”dx]% < 400. The spaces L”(2), L? (2 x R3) are separable
for p € [1, 400) and reflexive for p € (1, +o00) (see e.g. [5][Section 13,4]). The same
definition, with obvious modifications, holds in the case of the target space R replaced by
R3.

We often appeal to the Strong Law of Large Numbers (SLLN) for averaged sums of the
form

#H@NBr) D X,
ze®NBg

where {X}.coe(p) are identically distributed random variables that have sufficiently decay-
ing correlations. Here, we send the radius of the ball Bg, to infinity. It is well-known that such
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results hold and we refer to [14][Section 5] for a detailed proof of the result that is tailored
to the current setting.

1.1 Notation

We use the notation < or 2 for < C or > C where the constant depends only on «, A, D
and, in case (b), also on 8 in (0.5). Given a parameter p € R, we use the notation <, if the
implicit constant also depends on the value p. For r > 0, we write B, for the ball of radius
r centred in the origin of R3. We denote by (-; -) the duality bracket between the spaces
H~Y(D) and H] (D).

When no ambiguity occurs, we skip the argument w € 2 in all the random objects
considered in the paper. If (®; R) is as in the previous subsection, for a set A C RY, we
define

PE(A)i={ze®: ez € A}, N°(A):=#d°(A).

For x € R3, we define the random variables

1 1
dy:=—min|z — x|, Ry:=minjdy, = ¢, dey:=¢&dy, R¢y:=¢R\. (1.1)
2 zib 2 ’ ’
IFX

1.2 On the assumptions on the radii

In this subsection we discuss the choice of assumptions (0.2) and (0.5) in Theorem 0.1. We
postpone to the Appendix the proofs of the statements. The next result states that assumption
(0.2) is sufficient to have only microscopic holes whose size vanishes in the limit ¢ | 0.
Moreover, it is also necessary in order to have that holes H¢ do not cover the full domain D.

Lemma 1.1 The following conditions are equivalent:

(i) The process satisfies (0.2);
(ii) For P-almost every realization and for every & small enough the set D® # .

Furthermore, (i)( or (ii)) implies that for P-almost realization limg o | D®| = |D|.

In the following result we provide the geometric information on H? that may be inferred
by strengthening condition (0.2) to (0.5). Roughly speaking, the next lemma tells that, under
condition (0.5), we have a control on the maximum number of holes of comparable size that
intersect. More precisely, we may discretize the range of the size of the radii {o;};c¢¢(p) and
partition the set of centres ®¢ (D) according to the order of magnitude of the associated radii.
The next statement says that there exists an M € N (that is independent from the realization
o € 2) such that, provided that the step-size of the previous discretization is small enough,
each sub-collection contains at most M holes that overlap when dilated by a factor 4. This
result allows to treat also the case of the Stokes system in Theorem 0.1, (b) and motivates
the need of the stronger assumption (0.5) in that setting.

Lemma 1.2 Let (D, R) satisfy (0.5). Then:

(i) There exists k = k(a, B) > 0, kax = kmax(a, 8), M = M(«, B) € N and disjoint sets
(L, }fi‘}‘ C ®f(D) such that for P-almost every realization and for every € small enough
it holds

sup &%p, <& (1.2)
2e®#(D)
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and we may rewrite

kmax
H, = U U Bgap (e2), inf &%p, > & sup &%p, fori=1,---, kmax
i=1z€l;, el eli-2e
(1.3)
such that for everyi =1, ... kpax
{Baeop, (62)}zer; ULy ., contains at most M elements that intersect. (1.4)

(ii) For every § > O there exists eg = €9(8) > 0 and a set B € F such that P(B) > 1—§
and for every w € B and ¢ < g inequality (1.2) holds and there exists a partition of H®
satisfying (1.3)—(1.4).

2 Uniform bounds

In this section we provide uniform bounds for the family {afu ete=0 and {0, Vug}e~0, where
ug is as in Theorem 0.1, (a) or (b). We stress that, as in [2], this is done by relying on a
Poincaré’s inequality for functions that vanish in the holes H*. The order of magnitude of
the typical size (i.e. €%*) and distance (i.e. ) of the holes yields that the Poincaré’s constant
scales as the factor o, introduced in Theorem 0.1. This, combined with the energy estimate
for (0.3) or (0.4), allows to obtain the bounds on the rescaled solutions. We mention that the
next results contain both annealed and quenched uniform bounds. The quenched versions are
not needed to prove Theorem 0.1, but may be used to prove the quenched analogue described
in Remark 0.2, (iii).

Lemma 2.1 Let the process (O, R) satisfy (0.2). For e > 0, let ug be as in Theorem 0.1, (a)
or (b). Then for every p € [1;2)

limsupE[/ loe Ve | + |loge| 3|0 2ue)? +/ |a§u8|1’] <p L 2.1
el0 D D

Furthermore, for P-almost every realization, the sequences {agzug}bo and {0,Vug}e~q are
bounded in LP (D), p € (1; 2), and in L3(D), respectively.

This, in turn, is a consequence of

Lemma 2.2 [f (D, R) satisfies (0.2), then for every p € [1; 2] and for every v € H(} (D?) we

have
7 1 1 for p e [1;2)
P ) <c, Vol? 2.2
(/Dlov|> NC(p)(/DI vl) X{|logs|3 ip=2. (2.2)

where the random variables {C¢(p)}e~0 satisfy

limsup Ce(p) Sp 1 P — almost surely,
el0

. 2.3)
limsup E [Cg(p)] Sp 1 forevery g € [1; 400).
el0
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Proofof Lemma 2.2 As first step, we argue that the following Poincaré’s inequality holds: Let
V be a convex domain. Assume that V € B, for some r > 0. Let s < r. Then, for every
g €[l;2]andu € Hl(V\BS) such that u = 0 on d By it holds

w

1 1

q q 2

() =55 ()
V\B; s2 V\ By

The proof of this result is standard and may be easily proven by writing the integrals in
spherical coordinates. We stress that the assumptions on V allows to write the domain V '\ By
as {(w,r) e "1 x R4y, s AR(w) <r < R(w)} for some function R : ST >R satisfying
||R||L0°(32) =r.

As second step, we construct an appropriate random tesselation for D: We consider the
Voronoi tesselation {V.},c¢ associated to the point process ®, namely the sets

VZ:={y€R3: |y—z|=mi£|z—y|}, for every z € ®.
zZ€
We define
1
V&z::{yeR'%: gyevz}, Ag={ze®y: V.. ND #0}.

Note that, by the previous rescaling, we have that, if diam (V;) := r;,thendiam(V; ;) = er;.

It is immediate to see that, for every realization w € €2, the sets {V, ;};c4¢ are essentially
disjoint, convex and cover the set D. Since & is stationary, the random variables {r;},c are
identically distributed. Furthermore, they are distributed as a generalized Gamma distribu-
tion having intensity g(r) = C(A)r8 exp~¢@»’ [22][Proposition 4.3.1.]. From this, it is a
standard computation to show that

1
liﬁ} &E [|#A6|‘1]5 =|D| foreveryq € [1, +00) 2.4
&

and that there exists a constant ¢ = ¢(A) > 0 such that for every function F : R, — R (that
is integrable with respect to the measure g(r)dr)

E[exp (cr)] < 1, |E[F(rZ)F(ry)]—E[F(r)]2|5E[F(r)4]%s_clx_y‘3. (2.5)

Equipped with {V; ;}.c4¢, we argue that for every realization of H® and all p € [1;2) it
holds

p

/D|v|1’so;”cs(p) (/D|Vv|2)7 2.6)

2—p
2

6
with C¢(p)? = (&3 D oear ri? . Note that by (2.4), (2.5) and the Law of Large
Numbers the family {C®(p)}.~0 satisfies (2.3). We show (2.6) as follows: For every v €
H(} (D¥), we rewrite
[ wr
Ve

Since p, > 1, we have that Bea(e2) € Bga), (€2) so that the function v € H& (D¥?) vanishes

on Bga(gz). Hence, thanks to the choice of {V; ;},cas, we apply Lemma 2 in each set V/

/D|v|"=2

ZEA®
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with By = B« (e7) and B, = B, (¢z) and infer that

P
2
/ [P < e3e™ 7 >or? (/ |W|2> . (2.7)
D VE

z€EA®

Since p € [1,2), we may appeal to Holder’s inequality and conclude that

2-p P
6 2 2
— 3 2-p 2
I? So. 7 | e E Tz E / [V ,
/D ¢ VEND

zeA® Z€A®

i.e. inequality (2.6). This concludes the proof of (2.2) in the case p € [1; 2).
To tackle the case p = 2 we need a further manipulation: we distinguish between points
z € A® having r, > —loge orr, < —loge:

2: 2+ / 2. 2.8
/D|v| > /v;'”' > v;'”' (2.8)

z€A® z€A®
r;<—loge r;>—loge

We apply Poincaré’s inequality in HOl (D) on every integral of the second sum above. This
implies that

2 -2 2 3 -3 2
3 /vm'”' <o /D'V”' (e S agl,~z>_log8),

z€A® z€A®
r;>—loge

so that Chebyschev’s inequality and (2.5) yield

/ |v|2,§a;2ce(2)/ |Vul?,
VEND D

ze®®(D) z

d;>—loge
where we set C¢(2) := (7 ). _ 4 exp (r?)). Note that, again by (2.4)-(2.5) and the Law of
Large Numbers, this definition of C.(2) satisfies (2.3). Inserting the previous display into
(2.10) implies that

/D|v|25 )

z€A®
r;<—loge

/ |v|2+a§cg(z)/ [Vvl2. (2.9)
VEND D

We now apply Lemma 2 in the remaining sum and obtain (2.7) with p = 2, where the sum
is restricted to the points z € A® such that r, < —log e. From this, we infer that

/|v|2503(|loge|3+c€(2)2)/ Vol (2.10)
D D

By redefining C¢(2)> = min (83 ZZE Ae €XP (rf) ; 1), the above inequality immediately
implies (2.2) for p = 2. The proof of Lemma 2.2 is complete. m}

Proofof Lemma 2.1 We prove Lemma 2.1 for u, solving (0.3). The case (0.4) is analogous.
Since f € LY(D) with g € (2; +00], we may test (0.3) with u, and use Holder’s inequality
to control

/D|wg|2§</0|f|‘1)';(/Dwmq—l)q"l
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We thus appeal to (2.2) with p = qu and obtain that

(/D |ogwa|2>§scg<fj)‘*3 (/lel"Y- @.11)

Thanks to (2.3) of Lemma 2.2, this yields that the sequence {0 Vit }¢~0 is bounded in L*(D)
for P-almost every realization. Similarly, we infer (2.1) by taking the expectation and applying
Holder’s inequality.

We argue the remaining bounds for the terms of u, in a similar way: We combine Lemma
2.2 with the same calculation above for (2.11) and apply Holder’s inequality. This establishes
Lemma 2.1.

3 Proof of Theorem 0.1, (a)

Lemma 3.1 Let (®, R) satisfy (0.2). Then there exists an g9 = eo(d) such that for every
& < g9 and P-almost every realization there exists a family {w¢}e~g, € WLH(R3Y) such
that || we || o3y = 1, we = 0in H® and

limsup/ lo, Vw2 < 1, lim/ lwe — 112 = 0. (3.1
el0 JD el0Jp
In addition,
limsupE[/ |og—Zsz|2] <1, hm]E[/ |w£—1|2] =0, (3.2)
€10 D 40 D

and for every ¢ € C°(D) and v, € HO1 (D?) satisfying the bounds of Lemma 2.1 and such
that ogzvg—\v in LY(Q x D), it holds

E |:|(—Awg; Vo) —k—l/ v¢|] — 0. (3.3)
D
Here, the constant k is as in Theorem 0.1, (a).

Proof of Theorem 0.1, (a) We recall that, for part (a) of Theorem 0.1, (¥, R) satisfies (0.2).
The proof is similar to the one in [2]. We first show that aszug—\u inLP(Dx),p €[l,2):
We may appeal to Lemma 2.1 and infer that, up to a subsequence, there exists a weak limit
u* e LP(Q x RY), p € [1,2). We prove that, P-almost surely, the function u* = kf in D.
This, in particular, also implies that the full family {oszu ¢Je=0 weakly converges to u*.

We restrict to the converging subsequence {0521, ue;}jen. However, for the sake of a lean
notation, we forget about the subsequence {¢};en and continue using the notation u, and
e | 0.Letegand {we}e~0beasinLemma3.1. Forevery e < g9, x € L>(Q)and¢ € C{°(D)
we test equation (0.3) with x w.¢ and take the expectation:

E[X/I)V(wm%wg} ZE[X/was¢]-

Using Leibniz’s rule, integration by parts and the bounds for u, and w, in Lemma 2.1 and
3.1 we reduce to

HmE [x (—Awg; us¢)] =E |:X/ f¢]-
el0 D
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We now appeal to (3.3) in Lemma 3.1 applied to the converging subsequence {u}.~o and

conclude that
E[x/ Bk — f)] 0.
D

Since x € L*°(R2) and ¢ € C3°(D) are arbitrary, we infer that for P-almost every realization
u* = kf for (Lebesgue-)almost every x € D. We stress that in this last statement we used
the separability of L”(D), p € [1, 00). This establishes that the full family ogzus—\k f in
LP(Q2 x D), p €[1,2).

To conclude Theorem 0.1, (a) it remains to upgrade the previous convergence from weak
to strong. We fix p € [1, 2). By the assumption on f, the function u* € L9 (D), for some
q € (2; +o0]. Let {un}peny S CG°(D) be an approximating sequence for u* in L9 (D).

Since w, € WL(D), the function weu, € HO1 (D). Hence, by Lemma 2.2 applied to
Uy — Welt, We obtain

%
E[ / lo2ue —wsum] <o, PE [C(p)f’ ( / IV (02ue —waun>|2) }
D D

and, since p < 2 and C(p) satisfies (2.3) of Lemma 2.2, also

P
E [/ lo2ue — wgunv’} < <a;2JE [/ \V(o2ue — wgun)FDZ . (3.4)
D D

We claim that

limo,*E / V(0 2ue — weuy,)|? :k*l/ lun — u*|%, (3.5)
el0 D D
so that
limsup E |:/ Icrfug — wgu,,lp] < / lupy — u*)?. (3.6)
€0 D D

Provided this holds, we establish Theorem 0.1, (a), as follows: By the triangle inequality we
have that

2 2
/Iogug—u*IPS/ Iun—u*l”+/ Iagus—wsunlhr/ [we — 117 |up].
D D D D

Since u* and u,, € Cgo(D) are deterministic, we take the expectation and use Lemma 3.1
with (3.6) to get

limsup]E|:/ |03u5—u*|p]§/|un—u*|p+(/ |un_”*|2)g~
£40 D D D

This implies the statement of Theorem 0.1, (a), since p < 2 and {u, },cn converges to u™ in
L3(D).

We thus turn to (3.5): We skip the lower index n € N and write u instead of u,. If we
expand the inner square, we write

o ’E [/ IV(o2ue — wgu)|2] =0’E [/ |Vu5\2] —2E [/ Vi, - V(wgu)] +0,°E [/ |V(w8u)|2] )
D D D D

3.7)
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For the first term in the right-hand we use (0.3) and the fact that oazugAu* in LP(Q2 x D)

with p € [1, 2). Hence,
limo’E [/ |w8|2} = / fu*. (3.8)
el0 D D

We focus on the remaining two terms in (3.7): Using Leibniz’s rule and an integration by
parts we have that

E |:/ Vu, ~V(wgu):| =K |:/ weVig - Vu] + E[{(—Awg; uu)] — E |:/ usVwg - Vu] .
D D D

Thanks to Lemma 2.1, Lemma 3.1 and since u € C8°(D), the first and second term vanish
in the limit ¢ | 0. Hence,

181131@[/1) Vi - V(u)gu)j| = lim B [(~Awe: ueu)]. (3.9)

By Lemma 2.1 and since u,—u*, we may apply (3.3) of Lemma 3.1 with ¢ = u and v, = u,
to the limit on the right-hand side above. This yields

limE[/ Vi 'V(wau):| =/k—1u*u. (3.10)
6\[,0 D

We now turn to the last term in (3.7). Also here, we use Leibniz rule to compute

O';zIE |:/ |V(wgu)|2] = g;Z <1E [/ \Vw8|2u2] +E [/ IVu|2w§] +2E [/ uws Vwg - Vu])
D D D D

By an argument similar to the one for (3.10), we reduce to
E?(} O’S_ZE |:/D |V(w8u)|2] = Eﬁ% O‘E_Z]E [(—Aws; wguz).

We now apply (3.3) of Lemma 3.1 to v, = w.u and ¢ = u. This implies that

limo,*E [/ |V(w€u)|2] :/k_luz. (3.11)
el0 D

Inserting (3.8), (3.10) and (3.11) into (3.7) we have that

2
1imE</ |ogu£—w5u|q>q :/ fu*+/ k*luz—zlfl/ wtu. (3.12)
€0 D D D D

Since u® = kf, it is easy to see the the right-hand side above equals the right-hand side of
(3.5). This establishes (3.5) and concludes the proof of Theorem 0.1, case (a). ]

3.1 Proof of Lemma 3.1

Throughout this section, we assume that the process (®, R) satisfies assumption (0.2).
Lemma 3.1 may be proven in a way that is similar to [14][Lemma 3.1]. The first crucial
ingredient is the following lemma, that allows to find a suitable partition of the holes H® by
dividing this set into a part containing well separated holes and another one containing the
clusters. The next result is the analogue of [14][Lemma 4.2] with the different rescaling of
the radii of the balls generating the set H®.
For every x € IR3, we recall the definition of R¢ x in (1.1). We have:
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Lemma3.2 Let y € (0,a — 1). Then there exists a partition H® := Hg; U Hy, with the
following properties:

e There exists a subset of centres n®(D) C ®¢(D) such that

)4
HE = Beo, (e2), min R,, >¢&' T2, max &%p, < gl 17, 3.13
p E%) eup,(62),  min Re; >  max &%p; < (3.13)
z

o There exists a set Dy (w) C R3 satisfying
Hf € Dj, Cap(Hf,Dj) SC)s* Y.
ze®(D)\n¢ (D)
and for which
Bre. (e2) N Dy, =0, for every 7 € n°(D).
2
Finally, we have that

3 3
lim &3 “ —(, P— almost surely, 1limE |¢&> “ | =0.
am Z 0z almost surely s]f(} e Z o
ze®¢(D)\n® (D) ze®¢(D)\n® (D)
(3.14)

b

Let y in Lemma 3.2 be fixed. We construct w, as done in [14]: we set w, = wé A w,

with

W I —argminCap(H;; D;) in D} R L in Bg, (¢2),z € n®(D)
b= inR?\D; ¢ 1 in RN\ U, e (p) Br..(€2)
(3.15)

where for each z € n®(D), the function w, ; vanishes in the hole B,«,,_(¢z) and solves

—Awe; =0 in Bg, (£2)\Beep, (£2)
=10 on 0B, (£2) (3.16)
1 on dBg, (¢2)

&
We

We also define the measure

He =Y OuWe 8By, (cz) € H™'(D). (3.17)
zen®(D)

We stress that all the previous objects depend on the choice of the parameter y in
Lemma 3.2. The next result states that this parameter may be chosen so that the norm
e — 4w AE [p] |l -1(p) is suitably small. This, together with Lemma 3.2, provides the
crucial tool to show Lemma 3.1:

Lemma 3.3 There exists y € (0, o — 1) such that if jue is as in (3.17) there exists k > 0 such
that for every random field v € HO1 (D)

-2 . < ok [ 51 2 z 2 :
E[((0, % 1e — 4nE[p]); v)] S & o0, 'E IVvl*| +E [v| )
D D
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Proof of Lemma 3.1 By construction, it is clear that, for P-almost every realization, the func-
tions w, € WL(R3) N H(R?), vanish in H¢ and are such that lwe ll poo(m3y = 1.
We now turn to (3.1). Using the definitions of wg and wj and Lemma 3.2 we have that

llwe — Ul z2(py = llwg = L 2gp) + Iw? = Ul2(p)- (3.18)

By Poincaré’s inequality in each ball { Bg, . (£2)};ens(p) We bound

-1.3
lwf = Uapy = Y VWG S8 Y pe (3.19)
zené (D) zené (D)

Thanks to (0.2) and the Strong law of Large numbers, for P-a.e. realization the right-hand
side vanishes in the limit ¢ | 0.

We now turn to the second term: Since by the maximum principle |wé7 — 1] <1, we may
use the definition of Dy, to bound

— 3

i = - DE

”w‘]: 1||L2(D) =< |Dé) N D| < E 83a(pz A€ 0‘)3 S 83 § : o
€08 (D)\n* ze®¢(D)\n®

Thanks to (3.14) in Lemma 3.2, the right-hand side vanishes in the limit ¢ | O for P-
almost every realization. Combining this with (3.19) and (3.18) yields (3.1) for w, — 1.
Inequality (3.1) for 08’1 Vw, follows by Lemma 3.2 and the definition (3.15) of w, as done
in [14][Lemma 3.1]. Limit (3.2) may be argued as done above for (3.1), this time appealing
to the bound (0.2) and the stationarity of (&, R).

It thus remains to show (3.3). Using (3.15), (3.17) and the fact that ¢u, € HO1 (D?), we
may decompose

(—Awe; Pve) = (e PU) +/ Vwl - V($e). (3.20)
D

Since v, is assumed to satisfy the bounds in Lemma 2.1, Holder’s inequality, Lemma 2.1 ,
definition (3.15) and (3.14) of Lemma 3.2 imply that

. b . .
‘;i%]E[' /D Vg -V<¢>vg>|} < lim B [Cap(Hj: Dj)] = 0.

This and (3.20) thus yield that

limsupE[u—Awe;mE)—k*l/ v¢|} =1imsupE[|<ug;¢vg>—k*1/ v¢|].
D €10 D

el0

Using the triangle inequality and the assumption v,—v in L!(Q x D), we further reduce to

limsup E |:|(—Aw£; dve) — k! / v¢|] = limsup E [|((—07 Aw, — k"5 po ve)]
el0 D el0

(3.21)
By Lemma 3.3, there exists ¥ > 0 such that

limsupE [ (=02 Aw, — 47AE [p]); o, 2ve)]
el0

1 1
< limsup &* <0’81E |:/ |V(¢>082v5)|21| ’ +E |:/ ((bagzve)zi| 2) .
€10 D D
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Thanks to the assumptions on v,, we infer that the right-hand side is zero. This, together with
(3.21), yields (3.3). The proof of Lemma 3.1 is thus complete. O

Proof of Lemma 3.3 We divide the proof into steps. The strategy of this proof is similar to the
one for [11][Theorem 2.1, (b)].

Step 1: (Construction of a partition for D) Let Q := [—%; %]3; fork € Nand x € R? we
define

Qs,k,x =ez+keQ, Qs,x = Qa,l,x

Let Ny C 72 be a collection of points such that [Ny .| < e 3 and D C UxeNk . Qe k,x. For
each x € Ni . we consider the collection of points N, x := {z € n°(D) : €z € Qe kx} <
®¢(D) and define the set

Kejx =\ OQek.x U Oez |\ U Qe.;-

2€Ne kx 2€®# (D)\Ne .«

Since by definition of n° (D) in Lemma 3.2 the cubes {Q; ,} sede(p) ATe all disjoint, we have
that

D C U Kekx, sup |diam(Kgp )| S ke,
XENex XENek (3.22)
(k— 1) < |Kpx| < (k+ 1) forevery x € Ne.
Note that the previous properties hold for every realization w € .

Step 2. For k € N fixed, let {K; x x}xen, ., be the covering of D constructed in the previous
step. We define the random variables

4 R ;
Sekox 1= > Yoo Yei=elp——— (3.23)
& X |K5,X‘k| ZENﬁk &,2 &,2 Z Rs,z _ St)tpz

and construct the random step function

mg(k) = 4m Z Sedex 1Ko .-

XENg i

Let v be as in the statement of the lemma and m (k) as above. The triangle and Cauchy-
Schwarz inequalities imply that

E [(o, 2 pe — 47AE[p]; v)]

1

2

1 3 1
< E[lo; 2 —me®1% ] E[IV0I2: )| +E[lme k) — 472 0] 12:] E[ 10122 )
(3.24)

so that the proof of the lemma reduces to estimating the norms
1 1
E[llo; e =me@)l7, 117, E[llme k) — 4nrELp]117.]" -
We now claim that there existsay > 0,k € N
E[llo e —me® 31y | S €02 E[lImeo) = 42101 I3 | S & (3:25)

for a positive exponent ¥ > 0. Combining these two inequalities with (3.24) establishes
Lemma 3.3.
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In the remaining part of the proof we tackle inequalities (3.25). We follow the same lines
of [11][Theorem 1.1, (b)]. and thus only sketch the main steps for the argument.
Step 3. We claim that

_ C(a—l—y)2—3
E [llo 2 = me() -1 | S (ke)* logiels™ @171, (3:26)
We first argue that that

loz 2 e = me (1131 py S8 Y pred) ™, (3.27)
zen®(D)

This follows by Lemma 4.3 applied to the measure UE’ZME: In this case, the random set of
centres is Z = ®°(D), the random radii R = {Rg,z}zeé(D), the functions g; = US*ZVV We 7,

7z € OF (D) and the partition {K i x}xen,, Of the previous step. Note that, by construction,
this partition satisfies the assumptions of Lemma4.3. The explicit formulation of the harmonic
functions {wg ;};ene(p) defined in (3.16) (c.f. also [11][(2.24)]) implies that for every z €
n®(D)

_ _ _ (3.23)
/ lo 20w 1> < &3p2d 3, / 020 we; = Y. (3.28)
0BRg, ,(2) 0Be ¢
Therefore, Lemma 4.3 and the bounds (3.28) yield that
-2 2 . 2 -3
log e =mell-1(p)< sup diam(Ke ) > pied),
ke 2€d#(D)

which implies (3.27) thanks to (3.22).
It thus remains to pass from (3.27) to (3.26): We do this by taking the expectation and
arguing as for [11][Inequality (4.22)]. We rely on the stationarity of (¢, R), the properties of

the Poisson point process and the fact that z € n, impliesthate®p, < ¢ 147 and Re,>¢ I+3y .
Step 4. We now turn to the left-hand side in the second inequality of (3.25) and show that

2
< k7387(a717y) +k71 +82y
4+ @ 1G04y oy o=@ 1=1)2=3)y (3.29)

The proof of this step is similar to [11][Theorem 2.1, (b)]: Using the explicit formulation
of m¢ (k) we reduce to

E[nmsu«) — 470 [p] ||22(D)] S X E[Sten —2E[p)?]

XENg ¢
If ]\7‘9,1c = {x € Ngy : dist(Qg k,x; 0D) > 2¢e}, we split

¥ E[Sten —AE[0)?]

XENk ¢

SE* Y E[Skex —2ED]+ Y E[Seex —AE[D?]. (3.30)

xENkvg\}\o]gyk xE/\B/kvg
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Since 9D is C! and compact, for ¢ small enough (depending on D) we have

€k ey o p E[Skex = AE[0])?]

< ¢kE[p%1 (0<2) ke~ (@ 1-1Q2=2)+
~ € [/O s"‘p<slﬂ/] N Eke R

By stationarity, the second term in (3.30) is controlled by
E [(Sk,e.0 — AE[oD)?]. (3.31)

Hence,

¥ E[Skew = AED?] S E[(Skeo = AE[p)?] + eke™@1=1C=i0,

xENk.g

The remaining term on the righ-hand side may be controlled by the right-hand side in (3.29)
by means of standard CLT arguments as done in [11][Inequality (4.23)] for the analogous
term. We stress that the crucial observation is that the random variables Sk . » — AE [p] are
centred up to an error term. We mention that in this case the set K, x , has been defined in
a different way from [11] and we use properties (3.22) instead of [11][(4.13)]. This yields
(3.29)

Step 5. We show that, given (3.26) and (3.29) of the previous two steps, we may pick y and
k € N such that inequalities (3.25) hold: Thanks to the definition of o, and since @ € (1; 3),
we may find y close enoughtoor — 1,e.2. y = %(oc —1),andak e Nye.g. k = —%(a —-1),
such that

(ek)] log ele~ @ 171D < 5=22g@=1-7) < F0@-D),
This, thanks to (3.26), implies that the first inequality in (3.25) holds with the choice x =
%O(a — 1) > 0. The same values of y and « yield that also the right hand side of (3.29) is

bounded by ¢!~ 3@=1) Thig yields also the remaining inequality in (3.25) and thus concludes
the proof of Lemma 3.3.

Proof of Lemma 3.2 The proof of this lemma follows the same construction implemented in
the proof of [11][Lemma 4.1] with d = 3, § = y and with the radii {p;};c°(p) rescaled by
&“ instead of £3. Note that the constraint for y is due to this different rescaling. In the current

setting, we replace &2 by SH—%V in the definition of the set KZ in [11][(4.7)]. Estimate (3.14)
may be argued as [11][Lemma 4.4] by relying on (0.2). ]

4 Proof of Theorem 0.1, (b)

The next lemma plays, in the case of the Stokes system in Theorem 0.1, (b), the same role
that Lemma 3.1 play for the Poisson problem in Theorem 0.1, (a):

Lemma 4.1 Assume that (O, R) satisfies (0.5). Then, for every § > 0, there exists an gy > 0
and a set As € F, having P(Ag) > 1 —§, such that for every w € As and ¢ < g there exists
a linear map

R.:{¢p € C(D,RY) : V.¢p =0} - H}(D,R?)
satisfying Re¢p = 0in H%, V - Rc¢p = 0in D and such that

limisoupIE[IAa/[)|ag‘1VRs(¢>|2]§||v||21(0), E[IA(;/D|RS(¢)—¢|2]%0. .1
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Furthermore, if ve satisfies the bounds of Lemma 2.1 and o}v,—v in L' (Q x D), then
E[1A3|/VRE(¢) Vv — K71 /pu|] — 0. (4.2)

Proof of Theorem 0.1, (b) The proof of this statement is very similar to the one for case (a)
and we only emphasize the few technical differences. We recall that, in contrast with (a),
in this case the process (®, R) satisfies the stronger condition (0.5). Using the bounds of
Lemma 2.1, that we may apply since (0.5) implies (0.2), we have that, up to a subsequence,
ugj—\u* in LP(2 x D), 1 < p < 2. We prove that

u* =K(f —Vp), 4.3)

where p € H'(D) is the unique weak solution to

—Ap=-V-f in D / _ (4.4)
Vp—f)-n=0 onapn.” JpP =" '

Identity (4.3) also implies that the full {u,}.~o converges to u*.

As for the proof of Theorem 0.1, case (a), we restrict to the converging subsequence
{ug;}jen but we skip the index j € N in the notation. We start by noting that, using the
divergence-free condition for u, and that u, vanishes on d D, we have that for every ¢ €

C°(D) and x € L*(Q2)
E [X / Vo u] o0, @5)
D

Let x € L*®(Q) and ¢ € C;°(D) with V- ¢ = 0in D be fixed. For every § > 0,
we appeal to Lemma 4.1 to infer that there exists an ¢s > 0 and a set A5 € F, having
P(As) > 1 — §, such that for every @ € As and for every ¢ < &5 we may consider the
function R.¢ € HOI(DE) of Lemma 4.1. Testing equation (0.4) with R.(p), and using that
the vector field R.v is divergence-free, we infer that

E[lmx / Vi, V(Raq»] =E[X1A5 / <Rs¢)f]
D D

Using Lemma 4.1 and the bounds of Lemma 2.1 this implies that in the limit ¢ | 0 we have

IE[IAEX /D(u* - Kf)¢] =0.

We now send 6 |, 0 and appeal to the Dominated Convergence Theorem to infer that
E[X/(u*—Kf)v:| =0. (4.6)
D

Since D has C!!-boundary and is simply connected, the spaces L?(D), p € (1, +00)
admit an LP-Helmoltz decomposition L”(D) = L% (D) @& L! (D) [10][Section IIL1].
This, the separability of L”(D), p € [, +00), and the arbitrariness of x and ¢ in (4.6),
allows us to infer that for P-almost realization the function u™* satisfies u* = K f + Vp(w; -)
for p(w; ) € WhP(D), p € [1;2). By a similar argument, we may use (4.5) to infer that for

[P-almost every realization and for every v € W!4(D), ¢ > 2 we have

/(VP(';w)—i-Kf)-Vv =0.
D
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Since (4.4) admits a unique mean-zero solution, we conclude that p(w, -) does not depend
on w. Finally, since D is regular enough and f € L7(D), standard elliptic regularity yields
that p € H'(D). This concludes the proof of (4.3).

We now upgrade the convergence of the family {u,}.~¢ to u™ from weak to strong: We
claim that for every § > 0 we may find a set As € Q with P(As) > 1 — § such that

limE [1A3/ lo2u, — u*|q} =0. (4.7)
el0 D

Here, g € [1, 2). The proof of this inequality follows the same lines of the proof for (3.12)
in case (a): In this case, we rely on Lemma 4.1 instead of Lemma 3.1 and use that, thanks to
the definition (4.4), it holds

/D FUF—Vp) = /D(f — V2

From (4.7), the statement of Theorem 0.1, (b) easily follows: Let, indeed, g € [1, 2) be
fixed. For every § > 0, let As be as above. We rewrite

E[/W&“e - u|q] =E |:1A5/|Usus - u|q:| +E |:1§2\A5/|Usus - u|q]

and, given an exponent p € (g; 2), we use Holder’s inequality and the assumption on As to
control

q
E|:/|agu5 —u|q:| < E[IAa/lagug —u|q] +81_%E |:/ |octte —u|p:|p .

Since by Lemma 2.1 the family aszu ¢ isuniformly bounded in every L? (2 x D) for p € [1, 2),
we establish

4 @7 4
limsupE |:/ |oeue — u|q] < limsupE |:1A5 / |oeus — u|q] +8 77 < 8.
el0 el0
Since § is arbitrary, we conclude the proof of Theorem 0.1, (b). O

4.1 Proof of Lemma 4.1

Throughout this section we assume that the process (®, R) satisfies assumption (0.5). We
recall that this assumption is stronger than (0.2). Therefore, all the previous results that relied
on (0.2) (e.g. Lemma 3.1, Lemma 3.3) hold also in this case.

We argue Lemma 4.1 by leveraging on the geometric information on the clusters of holes
H¥? contained in Lemma 1.2. The idea behind this proof is, in spirit, very similar to the one
for Lemma 3.1 in case (a): As in that setting, indeed, we aim at partitioning the holes of H®
into a subset Hy of disjoint and “small enough” holes and H; where the clustering occurs.
The main difference with case (a), however, is due to the fact that we need to ensure that the
so-called Stokes capacity of the set H;, namely the vector

(St-Cap(Hf)); = inf{/|Vu|2 cveCP®ERY, V.uv=0inR? v>e¢ in H,f}, i=1,2,3
(4.8)
vanishes in the limit ¢ | 0. The divergence-free constraint implies that, in contrast with the

harmonic capacity of case (a), the Stokes capacity is not subadditive. This yields that, if H;
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is constructed as in Lemma 3.2, then we cannot simply control its Stokes-capacity by the
sum of the capacity of each ball of H; .

We circumvent this issue by relying on the information on the length of the clusters given
by Lemma 1.2. We do this by adopting the exact same strategy used to tackle the same issue
in the case of the Brinkmann scaling in [12]. The following result is a simple generalization
of [12][Lemma 3.2] and upgrades the partition of Lemma 3.2 in such a way that we may
control the Stokes-capacity of the clustering holes in H; . For a detailed discussion on the
main ideas behind this construction, we refer to [12][Subsection 2.3].

Lemma4.2 Lety > 0 be as chosen in Lemma 3.3. For every § > 0 there exists g > 0 and
As C QwithP(As) > 1 — 8 such that for every w € Q and & < gy we may choose H;, H;,
of Lemma 3.2 as follows:

o There exist A(B) > 0, a sub-collection J® C I° and constants {A]};cje < [1, A] such
that
H; € I-_Ib‘S = U kajgapj(azj), Ajg"pj < Aég“.
zjel®
e There exists kyax = kmax (B, d) > 0 such that we may partition

kmax kmax

r=\Jz. = %

k=-3 i=-3
with Z; C J; forallk =1, ..., kyax and
U Bgapi(EZi) - U Bkﬁgapj(‘gzj);
L€} Zelg
o Forallk =—=3,... kpyax and every z;,z; € Ji, zi # 2

By2jecap, (£2i) N Bgz,\?gapj (ezj) =0
e Foreachk = =3, ..., kyax and z; € I and for all z; € U;{;is Jf we have
B, (82i) N Bg,\j_gapj (ezj) = 0. 4.9)
Finally, the set Dy, of Lemma 3.2 may be chosen as

Dj = | Boewszp (620). (4.10)

zieJ®

The same statement is true for P-almost every w € Q for every ¢ > gqg (with &y depending,
in this case, also on the realization w).

Proof of Lemma 4.2 The proof of this result follows the exact same lines of of [12][Lemma
3.2]. We thus refer to it for the proof and to [12][Subsection 3.1] for a sketch of the ideas
behind the quite technical argument. We stress that the different scaling of the radii does not
affect the argument since the necessary requirement is that €* << ¢. This holds for every
choice of @ € (1, 3). We also emphasize that in the current setting, Lemma 1.2 plays the
role of [12][Lemma 5.1]. This result is crucial as it provides information on the length of the
overlapping balls of H¢. For every § > 0, we thus select the set As of Lemma 1.2 containing
those realizations where the partition of H¢ satisfies (1.2) and (1.4). Once restricted to the
set Ag, the construction of the set Hbg is asin [12][Lemma 3.1]. O
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Equipped with the previous result, we may now proceed to prove Lemma 4.1:

Proof of Lemma 4.1 The proof of this is similar to the one in [12][Lemma 2.5] for the analo-
gous operator and we sketch below the main steps and the main differences in the argument.
Foré > 0,letey > 0 and As C Q2 be the set of Lemma 4.2; From now on, we restrict to the
realization w € As. For every ¢ < g9 we appeal to Lemma 3.2 and Lemma 4.2 to partition
H® = H; U H;. We recall the definitions of the set n® C ®*(D) in (3.13) in Lemma 3.2 and
of the subdomain DZ C D in (4.10) of Lemma 4.2.

Step 1. (Construction of R.) For every ¢ € COOO(D), we define R.¢ as

¢, inDj

R.¢ =
= ¢ in D\D;,

where the functions ¢; and d)g satisfy

¢, =0 in H;, ¢, =¢ in D\Dj,
V . ¢; = O in D,

g — @117, Sp |Df| forevery p > 1,
||Usv¢f||iz <6 D et (D)\nt Pz

(4.11)

and
¢ = in Dy, ¢z = 0in H,
V-¢>§:0 in D,

”V(¢§ - ¢)||22(D) 5 e Zzeng(D) Pz»

3
P 3543 ath
||¢§ - ¢||LD(D) 5 & + ZzEnS(D) Pz

Step 2. (Construction of qbf ) We construct q,’); as done in [12][Proof of Lemma 2.5, Step
2]: For every z € J¢, we define

By ;= Bﬁkgsb’pz (e2), B;:= Bkge‘)‘pz (e2).

It is clear that the previous quantities also depend on . However, in order to keep a leaner
notation, we skip it in the notation. We use the same understanding for the function ¢; and
the sets {15,,-}{?2?3 and {Jey,'}ffj3 of Lemma 4.2.

We define ¢” by solving a finite number of boundary value problems in the annuli

U Boc\B:. fork = =3, .. kma

zely
We stress that, thanks to Lemma 4.2, for every k = —3, ..., kmax, €ach one of the above
collections contains only disjoint annuli. Let ¢ ®max+1) = ¢_Starting from k = kpay, at every
iteration step k = kmax, . . ., —3, we solve for every z € I i the Stokes system

—Ap® V7 ® = _Ap*+tD  in By \B.

vV.¢p® =0 in By ;\ B,
o® =0 on 3By,
p® = p*+D on 3B;.

We then extend ¢®) to ¢** outside | ., By,- and to zero in |, 1, Bz

z€Ily
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The analogue of inequalities of [12][(4.12)-(4.14)], this time with the factor & 7 replaced

by &% and with d = 3, is

1Ve© 132y SIVOIT2 ) +8° D pellplioe(pys

zeUtmax . (4.12)
le®llcopy S lpllcocy-
and
V-¢® =0inD, ¢ =0 in U Bea. (£7). (4.13)
zelUm 7
Moreover,

¢®@—¢=0 inD\| [(J Bo:|.
zeUm i (4.14)

V@D = Doy S DIV, + e plBlEin ) -

zeumax g,

These inequalities may be proven exactly as in [12]. We stress that condition (4.9) in Lemma
4.2 is crucial in order to ensure that this construction satisfies the right-boundary conditions.
In other words, the main role of Lemma 4.2 is to ensure that, if at step k the function qb(k)
vanishes on a certain subset of Hy, then ¢*+D also vanishes in that set (and actually vanishes
on a bigger set).

We set ¢ = ¢ obtained by the previous iteration. The first property in (4.11) is an
easy consequence of (4.13) and the first identity in (4.14). We recall, indeed, that thanks to
Lemma 4.2 we have that

Hi= |J Bep(e). Dyj= |J Bo-

zeU"T“" ZEUZZ% Ji

The second property in (4.11) follows immediately from (4.13). The third line in (4.11) is an
easy consequence of the first line in (4.11) and the second inequality in (4.12). Finally, the
last inequality in (4.11) follows by multiplying the last inequality in (4.14) with the factor o,
and using that, since ¢ € C*°, we have that

los 'V @ = D) japy S Iellcrpe™™ Y @i+ S0 D (%) + Do
zeUfmax g, ZeUm gy

Thanks to Lemma 4.2 and the definition of the set n® in Lemma 3.2, the previous inequality
yields the last bound in (4.11).

Step 3. (Construction of ¢g) Equipped with ¢ satisfying (4.11), we now turn to the
construction of ¢>§,. Also in this case, we follow the same lines of [12][Proof of Lemma 2.5,
Step 3] and exploit the fact that the set H, gg is only made by balls that are disjoint and have
radii €% p that are sufficiently small. We define the function ¢>§ exactly as in [12][Proof of
Lemma 2.5, Step 3] with the radius a;  in [12][(4.18)] being defined as a. ; = €% p, instead

d=2 . .
of e @ p,. More precisely, for every z € n®, we write

1
Qe =%, de:= mm{dlst(ez Db) mm (elz =2, 8} 4.15)
z;ﬁz
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and we set

T, = Bam(sz), B; := Ba,.(¢2), By := Bdg_z(gz), C.:=BA\T;, D;:= By \B;.
2
(4.16)

With this notation, we define the function qﬁ; as in [12][(4.19)-(4-21)]. Also in this case,
identities, [12]{(4.22)-(4.23)] hold. By Lemma 3.2 It is immediate to see that this construction
satisfies the first two properties in (4.12).

We now turn to show the remaining part of (4.12): We remark that, since z € n®(D),
Lemma 3.2 and definition (4.15) yield that

a 3
Gy <o, al el .17)
&,z

where y > OisasinLemma4.2 and 8 > Ois asin (0.5). Equipped with the previous bounds,
the analogue of estimates [12][(4.26)-(4.30)] yield that for every z € n®(D)

IV@G = Do, S0 N85 =170, S P2,
ath
IV = Dacy S0 05 =l o) S 70
318
1V = D)7a) + 165 = Sy S 708 4.18)
8 (T3) 8 (Ti)

Since By ; = D, U C; U T; and the function qbg — ¢ is supported only on Uzeng(D) B ., we
infer that for every z € n®(D), it holds

ath a
IV@; = Dlicop) S %o+l 110G — b7 0p) S°708

+ﬂ
Summing over z € n® we obtain the last two inequalities in (4.12). We thus established (4.12)
and completed the proof of Step 1.

Step 4. (Properties of R,) We now argue that R, defined in Step 1. satisfies all the
properties enumerated in Lemma 4.2. It is immediate to see from (4.12) and (4.11) that R.¢
vanishes on H® and is divergence-free in D. Inequalities (4.1) also follow easily from the
inequalities in (4.12) and (4.11) and arguments analogous to the ones in Lemma 3.1. We
stress that, in this case, we appeal to condition (0.5) and, in the expectation, we need to
restrict to the subset As € 2 of the realizations for which R, may be constructed as in Step
1.

To conclude the proof, it only remains to tackle (4.2). We do this by relying on the same
ideas used in Lemma 3.1 in the case of the Poisson equation. We use the same notation
introduced in Step 2. We begin by claiming that (4.2) reduces to show that for every i =
1,...,3

Liﬂ)l]E > / @vwi , —qh vipive; — K~ /Ue,i¢i| =0, (4.19)

zen®(D)

where

X —E&Z . 1. X —€&Z
). ql.(x) = (p) T Gi(——

wh () == W (— ). x€B,

z g
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with (w;, g;) solving

Aw; —Vg; =0 inRY\B;

V. =0 in RY\ By
u_),‘ =¢€; on 8Bl
w; — 0 for |x| — 4o00.

We use the definition of R, ¢ to rewrite for every o € 14,

/DVvs “VRe(¢) = [, Vve - V(dy — @) + [, Vve - V(g — &) + [, Ve - Vo

We claim that, after multiplying by 14, and taking the expectation, the last two integrals
on the right-hand side vanish in the limit. In fact, using the triangle and Cauchy-Schwarz’s
inequalities and combining them with (4.11) and the uniform bounds for {v.}.~o we have
that

1

2
limsupIE|:1Ad\/ VUE-V(¢;—¢)+/ VUE~V¢\:|§limsupIE e Y e EATN
l0 b b 10 208 (D)\n? (D)

Hence, we show (4.2) provided that

lsiigE[lm/Dws-vwg—¢>—K—‘/Dv-¢|]=o.

Furthermore, since o;zvg—\v in LP(2x D), p € [1,2) and ¢ € C3°(D), it suffices to prove
that

1imIE[1A5|/ Vv5~V(¢§—¢>)—K_1/08_2v8-¢|] =0.
el0 D D

We further reduce this to (4.19) if

Liir(}]E L1 /D Voo V(g —¢)— Y /BBZ(?MU;,Z —4gvi)Piveil | =0.

zen®(D)

An argument analogous to the one outlined in [12] to pass from the left-hand side of
[12][(4.34)] to the one in [12][(4.39)] yields that

HmE | 14 / Voo - V(g —¢)— Y ¢ile2) / @w! . — gl _vi)veil | =0.
el0 D zen (D) 9B:
(4.20)

We stress that in the current setting we use again the uniform bounds on the sequence og’l Vu,
and we rely on estimates (4.18) instead of [12][(4.26)-(4.30)]. To pass from (4.20) to (4.19)
it suffices to use the smoothness of ¢ and, again, the bounds on the family {vg}c~0. We thus
established that (4.2) reduces to (4.19).

We finally turn to the proof of (4.19). By the triangle inequality it suffices to show that

1iIr(}E[|<ﬂs,,-;¢ivw> —Kfl/ug,,-qm] =0 foralli =1,2,3 4.21)
&
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where the measures . ; € H™Y(D),i =1,2,3, are defined as
flei= Y g Som., gl =@wl, K —ql v (4.22)
zen®(D)

We focus on the limit above in the case i = 1. The other values of i follow analogously. We
skip the index i = 1 in all the previous objects. As done in the proof of (3.3) in Lemma 3.1,
it suffices to show that there exists a positive exponent x > 0 such that

E[|<ﬂa;¢v8>— —‘/vs¢|]<e (/ o VL P + /|o— v 2) b, (423)

with limg o re = 0. From this, (4.21) follows immediately thanks to the bounds assumed for

{vele>o-
The proof of (4.23) is similar to (3.3): For k € N to be fixed, we apply once Lemma 4.3 to

this new measure 08’2;28, with Z = {ez};ene(p), R = {dng}ZEéS(D), {gw}zeqﬂ(m and with
the partition {K¢ ; r};en, , constructed in Step 1 in the proof of Lemma 3.3. This implies that
1
2

lo % = @l Ske 072 30 it [ gl

2ed¢(D) N

Z / geo |k, (424)

ZE€Nk x,

ek) =)

XENx 5xk|

Appealing to the definition of g, ; and to the bounds for (w, ¢) obtained in [1][Appendix],
for each z € n®(D) it holds that

-2 2 32,2 -2 3 3 €% @17 3+%
O, / |ge.z SSUOZdZ oy / 8e,z — Oe Pzl S €7 p( £d~) NS
dB, G z

z Z

This, (4.24), (4.22), the triangle inequality and the definition of K ~!, imply that

E[I(ﬂs;¢ve> e /vacm]

Py o2 ( / |V<¢va>|2)2

zen®(D)

+(/ mat =k ) ([ o vgz) e,
p 4

where (k) is as in Step 2 of Lemma 3.3 and & is as in Theorem 0.1, (a). From this, we
argue (4.2) exactly as done in Step 2-5 of Lemma 3.3. We established Lemma 4.1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
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5 Appendix

Proof of Lemma 1.1 Without loss of generality, we assume that diam (D) = 1.
(i) = (ii): We prove that

liIg |[H® N D| =0 P — almost surely. (5.1
&
We do this by bounding
H Dl < Y @pAl’ <™ 3 Pleat D Lo Y
7€®¢(D) 2€®#(D) 2€®#(D) 7€®¢ (D)

and, forO <dé <a —1,

[H*ND| < e P#@ D)+ 3 plwivpeat D Lo

ze®¢(D) zed¢ (D)
3 3
< B(df (D)) + Z p51p>67(a—1)+8+83 Z pelys o
2€®* (D) 2€%(D)
3
§g3+3‘3#(¢~8(D))+ Z p&1p>8—(o{—1)+6.
ze®4(D)

Since @ is a Poisson point process and we assumed (0.2), the right-hand side above vanishes
P-almost surely in the limit ¢ |, 0. This concludes the proof of (5.1) and immediately yields

(ii).
(ii) = (i): This is equivalent to show that if E pg] = —+oo then for P-almost every

realization there exists a sequence {ey }xen satisfying ¢x — 0 and such that the set D¢ = ¢
for all k € N. We claim that if ¢; := 27/, j € N, then the events

Aj = {Bz(O) - Bgtjypz(sjz) for some z € ®% (D)\CIDSJ'*‘(D)}, jeN

satisfy
> P(A)) = +oo. (5.2)
jeN
Since the events are independent, this implies by the (second) Borel-Cantelli Lemma that
P JAn =1
neN j>n

By the definition of the events A ;, this in particular yields that, P-almost surely, there exists
a subsequence of {¢;} ;e along which the sets D®/ are empty.
We argue (5.2) as follows: Let

1 1
Bj ={(z, p;) € (—D\——D) x Ry : gjlz| +2 < £%p.}.
8/' Sj_1

t~hen, if ¥ = (®; R) denotes the extended point process on RY x [1; 400) with intensity
Alx, p) = L f(p) (c.f. Section 1), we rewrite

PA)=1-PW¥(B;)=0=1- exp(—)L f},D\ﬁD fl+°° 13j(x)f(,0)d,0dx).
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Since
+00
/ [ 1m0 s oapas
LIovL-pJ1
D\
400
— JOM e /’D\ ! Ddx
TRt
+0o0
DI [ Ly e 2 67 P26 < p < 247,
we bound

P(Aj)>1— exp(Cs/._3IP’(l28/._“ <p< 245;“))
Recalling that £ ; = 27/, we may sum over j € N in the previous inequality and get that

S Py = Y (1 —exp [—@fl@(l%;“ <p< 248;;:1)})
jeN jeN

We may assume that 8;3]?(128;“ <p < 245;f1) — 0. If not, indeed, (5.2) immediately

|

By the assumption E [,0%] = 400, this establishes (5.2). The proof of Lemma 1.1 is com-
plete.

follows. Since &; = 2-J, we have that

_ — _ 3
D PUA) 2 Y e P2 < p = 2ef ) 2 Y o 1126;a5p5245;31] ~E[p
jeN jeN jeN

R|w

Proof of Lemma 1.2 The proof of this lemma relies on an application of Borel-Cantelli’s
lemma and follows the same lines of the one in [12][Lemma 5.1].
Fork > 0,letkmax = L%J =+ 1. We partition the set of centres ®¢ (D) in terms of magnitude

of the associated radii: We write ®¢(D) = 22‘13 I, x with

I, _3:={z€ ®°(D): ¢p, < gty Lo ke = {Z € ®°(D): %p, > sl_km“*K}
Ik :={z € ®°(D) : el < g < TRy for 2 <k < kpax — 1.

Note that, up to a relabelling of the indices k = —3, ..., kmax, the previous partition satisfies
(1.3) of Lemma 1.2.

For any set x € ®°(D), we say that A contains a chain of length M € N, M > 2, if there
exist zq, ..., 2y € x such that B48“/>z,- (ezi)N B48‘”pzj (ezj) # O, foralli, j=1,...M. We
say that A contains a chain of size 1 if and only if A # (.

Equipped with this notation, (1.2) follows provided we argue that for « suitably chosen,
there exists ko < kmax — 1 such that, P-almost surely and for ¢ small, the sets {I; x Ul k41 }];‘;“,2‘0
are empty. This is equivalent to prove that they do not contain any chain of size at least 1.
Similarly, (1.4) is obtained if we find an M € N such that P-almost surely and for & small
enough, all the sets {I; x U I¢ k41 }i‘):_3 contain chains of length at most M — 1.

For M e Nand k = —3, ..., kmax, we define the events

Apem = {Ig,k U I x+1 contains a chain of length at least M} .
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2
We claim that if k < min (g; %), then there exists kg € N, kg < kmax such that for

every k € {ko, ..., kmax}

P(() U Ake) =0 (5.3)

e0>0¢e<e0

and there exists M = M(«a, f) € N such that for every k = —3, ..., ko — 1, also
P(() U Aken) =0. (5.4)

go>0¢<eo

These claims immediately yield (1.2) and (1.4) and conclude the proof of Lemma 1.2, (7).
The argument for (5.3) and (5.4) relies on an application of Borel-Cantelli’s Lemma and
is analogous to the one for [12][Lemma 5.1]. We thus only sketch the proof. As shown in
[12][Proof of Lemma 5.1, (5.5) to (5.6)], up changing the constant 4 in the definition of chain,
we may reduce to prove (5.3)-(5.4) for a sequence {¢;}jeN = {r/}jeN, with r € (0, 1).
Using stationarity and the independence properties of the Poisson point process (®, R),
it is easy to see that

P(Akem) S popy' ! (5.5)
where
po := P({There is z € ®°(D) with £%p, > &' 7*}),
p1 = P({There is z € & (B,1-¢+1x () With 6% p, > &' 7).
Using the moment condition (0.5) and provided k < % this yields
po < g Hke=D(G+P) p1 < 6%,
Hence, by (5.5), we have that
P(Apem) < @B+ k=1 (2 +B) o (M—1)aB
On the one hand, if k < min (g, %) , then we may pick ko := L% (ngﬁJ and observe
that for every k € {ko, ..., kmax} We have that
P(Ace) S e,
On the other hand, if M € N is chosen big enough, for every k = —3, ..., kg also
P(Agem) S £2°.

Using these two bounds, we may apply Borel-Cantelli to the family of events {Ag ¢;,m} and
conclude (5.3) and (5.4).
We now turn to case (ii). Identity (5.4) may be rewritten as

ko
P (U Aken)) =1
go>0€e<ep k=-3

Thisimplies thatforevery § > 0, we may pickeg > O such that the set]P’(ﬂ5<£O (Uirj‘i3 Akem)) >

1 — §. The statement of (ii) immediately follows if we set As := ﬂKsO (Ul,zzai3 Ake.m)”.
The same argument applied to (5.3) implies the same statement for (1.2). O
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Lemmad4.3 Let Z := {zi}ier € D be a collection of points and let R := {ri}ic; € R4 such
that the balls {B,, (z;)}ic1 are disjoint. We define the measure

M =" gibs, ) € H (D),

iel

where g; € L2(3 B, (zi)). Then, there exists a constant C < +00 such that for every Lipschitz
and (essentially) disjoint covering {K j};jcy of D such that

By (zi) €S Kj OR B, (zi)NK; =0 foreveryiel,jel

we have that

D=

. 2 -1
1M =m0y < € maxdiam(K) | Y N8il2, ci |

iel

with

1

jeJ

> w|
3By; (z0)

iel,
Zl‘EKj

Proof of Lemma 4.3 This lemma is a simple generalization of [11][Lemma 5.1], where the
harmonic functions {d,v;};<s are replaced by a more general collection of functions {g;};c;-

[}
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