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Abstract
We extend Korevaar–Schoen’s theory of metric valued Sobolev maps to cover the case of
the source space being an RC D space. In this situation it appears that no version of the
‘subpartition lemma’ holds: to obtain both existence of the limit of the approximated energies
and the lower semicontinuity of the limit energy we shall rely on:

– the fact that such spaces are ‘strongly rectifiable’ a notion which is first-order in nature
(as opposed to measure-contraction-like properties, which are of second order). This fact
is particularly useful in combination with Kirchheim’s metric differentiability theorem,
as it allows to obtain an approximate metric differentiability result which in turn quickly
provides a representation for the energy density,

– the differential calculus developed by the first authorwhich allows, thanks to a representa-
tion formula for the energy that we prove here, to obtain the desired lower semicontinuity
from the closure of the abstract differential.

When the target space is C AT (0) we can also identify the energy density as the Hilbert-
Schmidt norm of the differential, in line with the smooth situation.
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1 Introduction

A seminal paper in the study of the regularity of harmonic maps between Riemannian man-
ifolds is the one [12] by Eells and Sampson. A crucial result that they obtain is a local
Lipschitz estimate in terms of a lower bound on the Ricci curvature of the source manifold
and an upper bound on its dimension under the assumption that the target manifold has
non-positive sectional curvature and is simply connected.

An interesting feature of their statement is that it does not rely on the smoothness of the
manifolds but only on the stated curvature bounds. It is therefore natural to wonder whether
the same Lipschitz estimates can be obtained in the non-smooth setting under the appropriate
weak curvature condition: we refer to [22–24,28,29,34,35,45,46,50] for a non-exhaustive list
of papers studying this issue at various levels of generality. In connection with the kind of
program developed here, we mention also the recent [13], where the Bochner-Eells-Sampson
formula has been established for harmonic maps from a smooth Riemannian manifold to a
C AT (0) space.

One of the first tasks to accomplish in order to move from the smooth to the non-smooth
setting is that of finding the appropriate replacement for the notion of energy that isminimized
by harmonic maps. Recall that for smooth maps u between smooth Riemannian manifolds
such energy is given by the formula

E(u) :=
ˆ

|du|2H S dvol. (1.1)

It is not clear a priori how to adapt this to the case where either the source or the target space
are non-smooth (and actually even in this case some thoughts are required to handle the case
of u Sobolev): a turning point of the theory has been the paper [34] by Korevaar and Schoen
where the energy of maps from a smooth manifold M to a general metric space Y has been
defined. The idea - that here we briefly recall with some simplifications - is that given such
a map u and a positive ‘scale’ r one defines first the ‘energy density at scale r ’ ksr [u](x) of
u at x by putting

ksr [u](x) :=
√ 

Br (x)

dY(u(x), u(y))2

r2
dvol(y),
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then the total energy Er (u) at scale r as Er (u) := ´
ks2r [u] dvol and finally the energy as

E(u) := lim
r↓0 Er (u). (1.2)

While this procedure indeed recovers the energy (1.1) in the case of smooth maps between
smoothmanifolds, it is non-trivial to check that such an energy iswell defined in the generality
of [34]: to check that this is the case one should prove that the limit in (1.2) exists and that
E is lower semicontinuous w.r.t. L2-convergence of maps.

Both these fact are deduced in [34] as a consequence of the so-called subpartition lemma,
which roughly saying can be formulated as√

Er (u) ≤
∑

i

λi
√

Eλi r (u) + Err(r , u) for λi ≥ 0,
∑

i

λi = 1, (1.3)

where the ‘error term’ Err(r , u) goes to 0 as r ↓ 0. This inequality grants approximate
monotonicity in r of Er (u), and in turn this implies at once both the existence of the limit
in (1.2) and - since the energies at positive scale are trivially L2-continuous - L2-lower
semicontinuity the limit energy E .

In [34], the inequality (1.3) is obtained by relying, for the most part, on the fact that
thanks to the smoothness of the source space, the Ricci curvature is bounded from below.
While this approach does not directly work in the non-smooth context, the basic idea does
and the argument can be stretched to cover much more general situation: this kind of work
has been carried out in [35], where the notion of space with the strong measure contraction
property of Bishop-Gromov type (SMCPBG-spaces, in short) has been introduced and it has
been proved that a suitable version of (1.3) holds on SMCPBG-spaces. In particular, on these
spaces the approximated energies converge and the limit energy is lower semicontinuous.
Notable example of non-smooth SMCPBG-spaces are finite dimensional Alexandrov spaces
with curvature bounded from below. In this direction we remark that in the recent paper [50]
it has been proved that C AT (0)-valued harmonic maps on Alexandrov spaces are locally
Lipschitz, thus greatly extending the original result by Eells-Sampson [12] and in particular
providing the first extension of their Lipschitz estimates to the case where both the source and
target spaces are non-smooth. As said, the result by Eells-Sampson provides local Lipschitz
estimates in terms of a lower Ricci and an upper dimension bound on the source space, there-
fore the natural non-smooth setting where to expect it to hold is that of maps on RC D(K , N )

spaces (introduced in [14] - see also [6] for a previous contribution in the infinite dimensional
case and [39], [47,48] for the original works on the C D condition via optimal transport) for
K ∈ R and N ∈ [1,∞). Unfortunately, RC D spaces are not SMCPBG-spaces in general:
informally speaking, this is due to the fact that the SMCPBG condition asks for the measure
of balls to increase at a given power both at small and at large scales. In the context of lower
Ricci bounds, this kind of behaviour is related to a non-collapsing condition (see [9] for
the original definition in the setting of Ricci-limit spaces and [16] for the adaptation in the
synthetic setting).

If one has the goal of generalizing Eells-Sampson’s result to the RC D setting, it would
be unnatural to impose such a non-collapsing assumption. Indeed, the typical example of
collapsed and smooth space is that of a weighted Riemannian manifold, i.e. of a smooth
Riemannian manifold equipped with a measure different from the volume one. In this setting
the relevant notion of Ricci curvature tensor is the so-called N -Bakry-Émery-Ricci tensor
and it turns out that, by closely following Eells-Sampson’s argument, Lipschitz estimates
for harmonic maps can be obtained in terms of lower bounds on such tensor. Alternatively,
to see that it is not natural to impose a non-collapsing condition one can notice that Eells-
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Sampson’s estimates pass to the limit under measured-Gromov-Hausdorff convergence even
in the collapsing case.

Aim of this paper is to adapt the constructions in [34] to the case of RC D(K , N ) spaces.
Our main results can be described as follows: under suitable assumptions on the source space
X (see (1.11) below) which cover the RC D(K , N ) case and for arbitrary complete spaces Y
as target spaces we have:

(i) The energy E of a map is well defined by the formula (1.2), i.e. the limit exists (Theorem
3.13). Also, we improve, w.r.t. what previously known, the convergence results for the
energy densities at positive scale to the limit energy density.

(ii) The energy E is lower semicontinuous w.r.t. L2 convergence of maps (Theorem 4.16),
(iii) A formula like (1.1) holds, i.e. the energy E can be written as

E(u) =
ˆ

S2(du) dm, (1.4)

where S2(du) is a natural replacement of the squaredHilbert-Schmidt normof the abstract
differential of the givenmap (see Theorem4.14 and formula (1.9) below for the simplified
case X = R

d ). We remark that in the case X = R
d this formula was already established

in [37] (and our proof read in the Euclidean case reduces to that of [37]).

Once this is done, following standard ideas in the field we can

(iv) Define the energy of a map from an open subset � of X and show that in this setting it
is still possible to prescribe the value at the boundary (Definitions 5.4, 5.8). In the case
of C AT (0) spaces as target, we also show that the problem of minimizing the energy
among maps with given boundary value has unique solution (Theorem 6.4).

We remark that since, as said, we cannot rely on the monotonicity granted by the subpartition
lemma, we shall obtain existence of the limit and lower semicontinuity of the energy via two
different means.

Let us illustrate our strategy in the simplified case X = R
d . As starting point we recall

the known fact that if u : Rd → Y is such that limr↓0 Er (u) < ∞ then, using only the fact

that Rd is doubling and supports a local Poincaré inequality, for some G ∈ L2 it holds

dY(u(x), u(y)) ≤ |x − y|(G(x) + G(y)
) ∀x, y ∈ A (1.5)

for some Borel set A ⊂ R
d with negligible complement. In particular, this shows that u

has the Lusin-Lipschitz property. We couple this information with (a simplified version of)
a result by Kirchheim [33] which says: for u : Rd → Y Lipschitz we have that for Ld -a.e.
x ∈ R

d there exists a seminorm mdx (u), called metric differential of u at x , such that

dY(u(y), u(x)) = mdx (u)(y − x) + o(|y − x |). (1.6)

It is then possible to see (as done in [30]) that for maps having the Lusin-Lipschitz property,
an appropriate approximate (in the measure theoretic sense) version of (1.6) holds and this
fact coupled with the domination (1.5) easily gives that

ks2r [u](x) →
 

B1(0)
md2

x (u)(z) dz as r ↓ 0 for a.e. x

and that the limit of Er (u) as r ↓ 0 exists. The argument also gives the explicit expression
for the energy density

e22[u](x) =
 

B1(0)
md2

x (u)(v) dv a.e. x (1.7)
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and convergence in L2 of ksr [u] to it. This settles (i). Then we turn to (i i i) and recall that
the notion of differential for a Sobolev and metric-valued map has been defined in [20] by
building up on the theory developed in [15]. We won’t enter into technicalities here and refer
instead to Sect. 4.1.1 for all the details; for themoment we just recall that in [20] the following
natural link between such abstract differential du and the metric differential md ·(u) has been
established, at least for Lipschitz maps: for any v ∈ R

d it holds

|du(v)|(x) = mdx (u)(v) a.e. x ∈ R
d . (1.8)

Using the Lusin-Lipschitz property of Sobolev maps that we already mentioned it is not hard
to extend this to the Sobolev case and thus to obtain from (1.7) the representation formula

e22[u](x) =
 

B1(0)
|du(v)|2(x) dv =: S2(du)(x) a.e. x ∈ R

d . (1.9)

This gives (i i i). The advantage of having formula (1.9) at disposal in place of (1.7) is
that we can rely on the closure properties of the differential to deduce the desired lower-
semicontinuity. Specifically, one starts from the duality formula

|du(v)| = ess-sup f :Y→R

Lip( f )≤1
d( f ◦ u)(v) ∀v ∈ R

d (1.10)

and uses the closure of the differential of scalar valued maps to deduce that: if un → u in
L2(Rd ,Y) and supn E(un) < ∞ then

d( f ◦ un)(v) → d( f ◦ u)(v) in the weak topology of L2

for any f : Y → R Lipschitz and v ∈ R
d . From this and (1.10) it is not hard to check that

under the same assumptions it holds

|du(v)| ≤ g Ld − a.e. for any weakL2-limit g of (|dun(v)|)
which together with the representation formula (1.9) easily gives the desired lower semicon-
tinuity of the energy, thus obtaining (i i).

All this in the case X = R
d . The observation that allows to extend the results to the

non-smooth setting is that all the arguments that we used are first-order in nature. Thus for
instance to obtain the same conclusions in the case of X being a Riemannian manifold it
is sufficient to notice that for every ε > 0 we have that X can be covered by open sets
which are (1 + ε)-biLipschitz to open sets in R

d . Then, roughly said, we can run the above
arguments by locally replacing the metric in each of these open sets with the Euclidean one,
thus committing errors of order ε, and then let ε ↓ 0.

A technically more involved - but conceptually similar - argument allows to extend the
above line of thought to metric measure spaces (X, d,m) which are

(uniformly locally) doubling, support a Poincaréinequality and strongly rectifiable,(1.11)

the latter meaning that: there is d ∈ N such that m is absolutely continuous w.r.t. the d-
dimensional Hausdorff measure Hd and for every ε > 0 we can cover m-almost all X by
Borel sets which are (1 + ε)-biLipschitz to Borel subsets of Rd (see Sect. 2.4 for more on
this). For the purpose of the original problem of studying harmonic maps from RC D(K , N )

to C AT (0) spaces it is important to remark that RC D(K , N ) spaces are known to satisfy the
assumptions (1.11) as: they are uniformly locally doubling ( [38], [47,48]), support a local
Poincaré inequality ([38,42]) and to be strongly rectifiable ([7,18,32,41]), i.e. they satisfy the
assumptions in (1.11).
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As said, our set of assumptions is of first order in nature, butwhile they cover the case of the
original paper [34] and the one of Lipschitz manifolds studied in [22], they do not cover the
one studied in [35], even if the hypotheses therein, being related to measure-contraction-like
properties, are of second-order in spirit.

We also point out that there is nothing really special about the exponent p = 2 here:
everything can be generalized to arbitrary p ∈ (1,∞). Still, for simplicity for the most part
of the manuscript we shall stick to the case p = 2, see Remark 4.10 for more about this.

We conclude with a comment about the quantity S2(du) appearing in (1.4). The fact that
in general something different from the Hilbert-Schmidt norm must appear is easily seen
by considering the case of a smooth map from a smooth Riemannian manifold to a smooth
Finslermanifold: in this case the differential of suchmap at any given point is a linear operator
from a Hilbert to a Banach space and as such its Hilbert-Schmidt norm is not well defined.

The quantity S2, that we call 2-size, serves as replacement of the Hilbert-Schmidt norm.
It can then be seen that whenever the target space has the appropriate kind of Hilbert-like
behaviour on small scales - the relevant concept is that of ‘universally infinitesimally Hilber-
tian metric spaces’ - then S2(du) coincides, up to a dimensional constant, with the squared
Hilbert-Schmidt norm |du|2H S of du, as expected.

For our case this is interesting because in [10] it has been proved that C AT (0) spaces (and
more generally spaces that are locallyC AT (κ)) are universally infinitesimallyHilbertian (see
Theorem 6.5 for the rigorous meaning of this) and thus the energy of a Sobolev map u from
an RC D(K , N ) space to a C AT (0) space can be written as

E(u) = c(d)

ˆ
|du|2H S dm,

thus providing a close analogue of the defining formula (1.1),where here c(d) is a dimensional
constant and d the dimension of the source space when seen as a strongly rectifiable space.
As mentioned, the above formula is valid for targets that are locally C AT (κ) spaces, but in
Sect. 6 we shall stick to the case of C AT (0) targets because it is in this setting that we are
able to prove existence and uniqueness of harmonic functions (Theorem 6.4). K.T. Sturm
pointed out to us that the same is expected to hold for target spaces that are C AT (1) and
with diameter < π , but investigating in this direction is outside the scope of this paper.

Finally, we mention that building on top of the content of this paper, in [49] it has been
defined a suitable notion of ‘Laplacian’ for maps from (open subsets of) RC D(K , N ) to
C AT (0) spaces.

2 Preliminaries

2.1 Doubling spaces, Poincaré inequalities andmetric-valued Lp spaces

Throughout this paper bymetric measure spacewewill alwaysmean a triple (X, d,m)where
(X, d) is a complete and separable metric space and m is a non-negative and non-zero Borel
measure giving finite mass to bounded sets.

Given such a space and a pointed completemetric space (Y, dY, ȳ)wedenote by L0(X,Y)

the collection of all equivalence classes up tom-a.e. equality of Borel maps from X to Y with
separable range. Then for any p ∈ (1,∞) we put

L p(X,Yȳ) :=
{

u ∈ L0(X,Y) :
ˆ

d p
Y(u(x), ȳ) dm(x) < ∞

}
.
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Similar definitions can be given for maps defined only on some Borel subset E of X, leading
to the spaces L0(E,Y) and L p(E,Yȳ). If Y is a Banach space, we shall always pick ȳ = 0
and avoid explicitly referring to such point. Notice that if m(E) < ∞ then the particular
choice of ȳ is irrelevant for the definition of L p(X,Yȳ).

It is easy to see that the distance

d L p (u, v) :=
∣∣∣∣
ˆ

d p
Y

(
u(x), v(x)

)
dm(x)

∣∣∣∣
1
p

makes L p(E,Yȳ) a complete metric space. Notice that if ι : Y → Z is an isometric embed-
ding, then f �→ ι ◦ f is an isometric embedding of L p(X,Yȳ) into L p(X,Zι(ȳ)). We shall
occasionally use such embedding when it is convenient to deal with a Banach space target, a
situation to which we can always reduce thanks to the Kuratowski’s embedding that we now
recall. Given a set Y, the Banach space �∞(Y) consists of all real valued bounded maps on
Y endowed with the norm

‖ f ‖�∞ := sup
y∈Y

| f (y)|.

Then the following is well known and easy to prove:

Lemma 2.1 (Kuratowski’s embedding) Let (Y, dY, ȳ) be a pointed metric space. Then the
map ι : Y → �∞(Y) given by

ιy(z) := dY(z, y) − dY(z, ȳ) ∀z ∈ Y

is an isometry of Y with its image sending ȳ to 0.

In what follows, given E ⊂ X we shall denote by χ E : X → {0, 1} the function equal to 1
on E and 0 outside.

A simple application of the above lemma is in the following density-like result:

Lemma 2.2 (‘Density’ of continuous functions) Let (X, d,m) be a metric measure space and
(Y, dY, ȳ) a pointed complete space.

Then there exists another pointed complete space (Z, dZ, z̄) and a pointed (i.e. sending ȳ
to z̄) isometric immersion ι : Y → Z such that the image of L p(X,Yȳ) under the isometry
f �→ ι ◦ f is contained in the L p(X,Zz̄)-closure of Cb(X,Z) ∩ L p(X,Zz̄).

Proof WepickZ := �∞(Y) and ι : Y → Z theKuratowski embedding.Clearly, it is sufficient
to prove that Cb(X,Z0) ∩ L p(X,Z0) is dense in L p(X,Z0). To this aim we notice that our
definition of L p(X,Z0) reduces to the case of the Lebesgue-Bochner space L p(X,Z) and
in particular by well-known approximation procedures we know that the space of functions
attaining only a finite number of values is dense in L p(X,Z).

By linearity, it is now sufficient to prove that any function of the form χ Ev for E ⊂ X
Borel and v ∈ Z belongs to the L p-closure of Cb(X,Z) ∩ L p(X,Z). To see this, just pick
(gn) ⊂ Cb(X,R)∩L p(X) be converging toχ E in L p(X) and notice that (gnv) ⊂ Cb(X,Z)∩
L p(X,Z) converges to χ Ev in L p(X,Z). ��

The space (X, d,m) is said to be uniformly locally doubling provided for any R > 0 there
is a constant Doub(R) > 0 such that

m(B2r (x)) ≤ Doub(R)m(Br (x)) ∀x ∈ X, r ∈ (0, R).
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On such spaces we shall occasionally consider the maximal function MR( f ) of a function
f ∈ L1

loc(X) defined, for any given R > 0, as

MR( f )(x) := sup
r∈(0,R)

 
Br (x)

| f | dm.

It is well known that the doubling condition coupled with Vitali’s covering lemma gives the
following estimates:

Proposition 2.3 Let (X, d,m) be a uniformly locally doubling space and p ∈ (1,∞). Then
for every R > 0 there is a constant C(R, p) > 0 depending on p and Doub(R) only such
that for any f ∈ L p(X) it holds

‖MR( f )‖L p(m) ≤ C(R, p)‖ f ‖L p(m). (2.1)

Adirect consequence of such estimates is the validity of theLebesgue differentiation theorem.
In particular, for any E ⊂ X Borel we have that m-a.e. point x ∈ E is a density point for E ,
i.e. such that limr↓0 m(Br (x)∩E)

m(Br (x))
= 1. Also, the set of density points of a Borel set is Borel

itself.
We shall also use the fact that

if x is a density point of E and xn → x, xn �= x then there is (yn) ⊂ E

with
d(xn, yn)

d(xn, x)
→ 0. (2.2)

Indeed, if not up to pass to a subsequence we could find α ∈ (0, 1) such that Bαd(x,xn)(xn)∩
E = ∅. Then putting rn := d(x, xn) the doubling condition grants the existence of c > 0
such that

m(Bαrn (xn)) ≥ cm(B4rn (xn)) ≥ cm(B2rn (x)) (2.3)

for n >> 1 and thus taking into account the inclusion Bαrn (xn) ⊂ B2rn (x) we obtain

m(B2rn (x) ∩ E) ≤ m(B2rn (x) \ Bαrn (xn))

= m(B2rn (x)) − m(Bαrn (xn))
(2.3)≤ (1 − c)m(B2rn (x)),

which contradicts the fact that x is a density point of E .
Another basic property of doubling spaces that we shall use is the following simple and

known result about partitions of unity (see also [27, Section 4.1]):

Lemma 2.4 Let (X, d,m) be a uniformly locally doubling space. Then there exists a constant
C > 0 depending only on Doub(1) such that for any r ∈ (0, 1/4) the following holds.

There is an at most countable cover of X made of balls Bi of radius r such that each
point x ∈ X belongs to at most C balls, i.e.

∑
i
χ Bi ≤ C. Moreover, there are functions

ϕi : X → [0, 1] with supp(ϕi ) ⊂ Bi ,
∑

i ϕi = 1 and with Lip(ϕi ) ≤ C
r for every i ∈ N. The

collection of these ϕi ’s is called partition of unity subordinate to (Bi ).

Proof Put for brevity D := Doub(1). Fix r ∈ (0, 1/8) and let (xn) ⊂ X be countable and
dense. Define an at most countable set (yn) by putting y0 := x0 and then recursively putting
yn := xk where k is the least index i ∈ N such that xi /∈ ∪ j<n Br (y j ). If no such k exists, we
do not define yn (in other words, we built a maximal r -separated set). The definition and the
density of (xn) ensure that the balls Bi := B2r (yi ) cover X.
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Now we claim that

For every x ∈ X the ball B2r (x) meets at most D5 balls Bi . (2.4)

Indeed, if B2r (x) ∩ Bi �= ∅ then B25·r/2(yi ) = B16r (yi ) ⊃ B8r (x) and thus taking into
account the doubling condition we get

m(B8r (x)) ≤ D5m(Br/2(yi )) ∀i s.t . Br (x) ∩ Bi �= ∅. (2.5)

On the other hand, by construction the balls Br/2(yi ) are all disjoint (because d(yi , y j ) ≥ r
for any i �= j) and if B2r (x) ∩ Bi �= ∅ then Bi ⊂ B8r (x). Thus if i1, . . . , iN are such that
B2r (x) ∩ Bi j �= ∅ for every j = 1, . . . , N , we have

N
N∑

j=1

m(Br/2(yi j )) ≤ N m(B8r (x))
(2.5)≤ D5

N∑
j=1

m(Br/2(yi j )),

which gives (2.4).
Now let ψi := ( 32r − d(·, yi ))

+, where (z)+ denotes the positive part of the real number
z, and notice that supp(ψi ) ⊂ Bi and that Lip(ψi ) ≤ 1. Therefore by (2.4) we deduce
Lip(

∑
j ψ j |Bi

) ≤ D5 for every i . Also, since by construction every x ∈ X is at distance

≤ r from some of the yi ’s, we have
∑

j ψ j ≥ r
2 on X. Hence from the trivial bound

Lip( 1
f ) ≤ Lip( f )

| inf f |2 we deduce Lip( 1∑
j ψ j |Bi

) ≤ 4 D5

r2
for every i .

To conclude put ϕi := ψi∑
j ψ j

. It is clear that supp(ϕi ) ⊂ Bi , ϕi ≥ 0 and
∑

i ϕi = 1. Thus

we also have ϕi ≤ 1 everywhere for any i . Let us now bound from above

Lip(ϕi ) = sup
x,y∈X

| ψi (y)∑
j ψ j (y)

− ψi (x)∑
j ψ j (x)

|
d(x, y)

.

For x, y /∈ supp(ψi ) the expression at the right hand side is 0. For x, y ∈ Bi we can use the
trivial bound Lip( f g) ≤ sup |g|Lip( f ) + sup | f |Lip(g) to obtain

Lip(ϕi |Bi
) ≤ sup |ψi |Lip

( 1∑
j ψ j

|Bi

)

+ sup
∣∣∣ 1∑

j ψ j

∣∣∣Lip(ψi ) ≤ 2r
4D5

r2
+ 2

r
· 1 = 8D5 + 2

r
.

Finally, if x ∈ supp(ψi ) and y /∈ Bi we have d(x, y) ≥ r
2 and since |ψi | ≤ r

2 and
1∑
j ψ j

≤ 2
r

we obtain

| ψi (x)∑
j ψ j (x)

|
d(x, y)

≤ 2

r

and the conclusion follows. ��
Recall that given a Borel function u : X → R∪ {±∞} and x ∈ X, the approximate lim of u
at x is defined as

ap - limy→x u(y) := inf{λ ∈ R ∪ {+∞} : x is a density point of {u ≤ λ}}
and it is easy to verify that

ap - limy→x u(y) = inf
U

lim
y→x
y∈U

u(y) = inf
U

inf
r>0

sup
Br (x)∩U

u, (2.6)
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the inf being made among Borel sets U for which x is a density point. Also, if x is a density
point ofU ⊂ X, then the value of u outside the setU is irrelevant for what concerns the value
of ap - lim u(x), as seen by the very definition of this latter object. Therefore in this case it
makes sense to define the quantity ap - lim u(x) as ap - lim v(x) for any Borel extension v

of u to the whole X: what just said ensures that the result does not depend on the chosen
extension. From (2.6) we also see that in this case it holds

ap - limy→x u(y) = inf lim
y→x

y∈V∩U

u(y), (2.7)

the inf being made among Borel sets V for which x is a density point.
Using the notion of approximate lim we can introduce the one of approximate local

Lipschitz constant ap -lip(u) : X → [0,∞] of a Borel function u : X → Y as

ap -lip(u)(x) := ap - limy→x
dY(u(y), u(x))

d(y, x)
, ∀x ∈ X.

This notion should be compared with that of local Lipschitz constant lip(u) : X → [0,∞]
defined as

lip(u)(x) := lim
y→x

dY(u(y), u(x)))

d(x, y)

and with that of asymptotic Lipschitz constant lipa(u) : X → [0,∞] defined as

lipa(u)(x) := lim
y,z→x

dY(u(y), u(z)))

d(y, z)
= inf

r>0
Lip(u|Br (x)

).

All these notions are intended to be 0 if x is an isolated point. We shall denote by Lip(X)

(resp. Lipbs(X)) the space of Lipschitz (resp. Lipschitz andwith bounded support) real-valued
functions on X.

On uniformly locally doubling spaces, for Lipschitz functions we have ap -lip(u) = lip(u)

as we are going to show now:

Proposition 2.5 Let (X, d,m) be a uniformly locally doubling space, (Y, dY) a complete
space, U ⊂ X Borel and u : U → Y a Lipschitz map. Then for every x ∈ U density point
we have

lip(u)(x) = ap -lip(u)(x).

In particular, if u is defined on the whole X then such identity holds for every x ∈ X.

Proof The inequality ≥ is obvious, so we turn to the other one. Fix x ∈ X and notice that
if m(x) > 0 then the doubling property (and the fact that m gives finite mass to bounded
sets) forces X = {x} and in this case the conclusion is obvious. Thus we may assume that
m(x) = 0, so that the fact that it is a density point of U implies that it is not an isolated point
of U . Then pick V ⊂ X Borel having x as density point and let (xn) ⊂ U be an arbitrary
sequence converging to x , with xn �= x for every n ∈ N. Since, trivially, x is a density point
of V ∩ U , by (2.2) there is a sequence (yn) ⊂ V ∩ U such that d(xn ,yn)

d(xn ,x)
→ 0 and therefore

lim
n→∞

|u(xn) − u(x)|
d(xn, x)

≤ lim
n→∞

|u(yn) − u(x)|
d(xn, x)

+ lim
n→∞Lip(u)

d(xn, yn)

d(xn, x)

≤ lim
y→x

y∈V∩U

|u(y) − u(x)|
d(y, x)

,
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so that the claim follows from the arbitrariness of (xn), the definition of lip(u) and the
characterization (2.7) of the approximate-lim. ��
We shall be mainly interested in approximate local Lipschitz constants for maps u : X → Y
having the Lusin Lipschitz property, i.e. such that we can find Borel sets N , Un , n ∈ N, with
X = N ∪ (∪nUn), N which ism-negligible and for which u|Un

is Lipschitz for every n ∈ N.
Notice that a trivial consequence of the definition and of Proposition 2.5 above is that

ap -lip(u) < ∞ m − a.e.

if u has the Lusin Lipschitz property and X is unif.loc.doubling. (2.8)

We conclude this section recalling that (X, d,m) is said to support a (weak, local, 1-1)
Poincaré inequality provided for any R > 0 there are constants C(R), λ(R) > 0 such that
for any Lipschitz function f : X → R it holds 

Br (x)

| f − fBr (x)| dm ≤ C(R)r
 

Bλr (x)

lip f dm ∀x ∈ X, r ∈ (0, R), (2.9)

where fB := ffl
B f dm. Notice that in the literature this inequality is typically required to

hold for continuous functions and upper gradients: our formulation is equivalent to that one,
see [4]. Also, for our results regarding the Korevaar–Schoen space K S1,p(X,Yȳ) it would
be sufficient to require the (weaker) 1 − p Poincaré inequality, see Remark 3.17 for further
comments in this direction, but given that the main application that we have in mind is that
of X being a RC D(K , N ) space, where (2.9) holds (see [38] and [42]), for simplicity we
preferred to deal just with it.

2.2 Sobolev functions in the non-smooth setting

In this section we recall the concept of Sobolev function over a metric measure space with
both real and metric target. For what concerns the real valued case, we shall mostly focus on
the approach based on test plans introduced in [5], but we recall ( [4,5]) that this is equivalent
to the original definition given in [8] and thus also to the variant proposed in [44]. Both for
this and for more detailed references for the metric valued case we refer to [27],

Let us fix a metric measure space (X, d,m) and p, q ∈ (1,∞) with 1
p + 1

q = 1. We
shall denote by C([0, 1],X]) the (complete and separable) space of continuous curves in
X defined on [0, 1] equipped with the ‘sup’ distance. For t ∈ [0, 1] the evaluation map
et : C([0, 1],X]) → X sends γ to γt . A curve γ ∈ C([0, 1],X]) is said to be absolutely
continuous provided there is f ∈ L1(0, 1) such that

d(γt , γs) ≤
ˆ s

t
f (r) dr ∀t ≤ s, t, s ∈ [0, 1]. (2.10)

The least—in the a.e. sense—such f is called metric speed of γ and denoted |γ̇t |. In what
follows, when writing

´ 1
0 |γ̇t | dt it will be intended that such integral is +∞ by definition

if γ is not absolutely continuous. We shall also define the metric speed functional ms :
C([0, 1],X) × [0, 1] → [0,+∞] by putting

ms(γ, t) := lim
h→0

d(γt+h, γt )

|h|
provided γ is absolutely continuous and the limit exists, ms(γ, t) := ∞ otherwise. It can
be proved, see for instance [3, Theorem 1.1.2], that for any absolutely continuous curve γ it
holds ms(γ, t) = |γ̇t | for a.e. t .
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The notion of Sobolev function is given in duality with that of test plan:

Definition 2.6 (q-test plan) A q-test plan on X is a Borel probability measure π on
C([0, 1],X) such that

ˆ 1

0

ˆ
|γ̇t |q dπ(γ ) dt < ∞,

(et )∗π ≤ Cm ∀t ∈ [0, 1],
for some C > 0.

Definition 2.7 (Sobolev functions) Let p ∈ (1,∞) and f ∈ L0(X). We say that f belongs
to the Sobolev class S p(X) provided there is G ∈ L p(X), G ≥ 0 such that

ˆ
| f (γ1) − f (γ0)| dπ(γ ) ≤

¨ 1

0
G(γt )|γ̇t | dt dπ(γ ) ∀π q-test plan.

Any such G is called p-weak upper gradient of f .
We define W 1,p(X) := L p(X) ∩ S p(X).

It is possible to check that for f ∈ S p(X) there is a minimal, in the m-a.e. sense, p-weak
upper gradient G: it will be denoted by |D f |. Notice that in principle |D f | depends on p,
but in what follows we shall omit to insist on such dependence, see also Remark 4.10.

We shall equip W 1,p(X) with the norm

‖ f ‖p
W 1,p := ‖ f ‖p

L p + ‖|D f |‖p
L p

and recall that W 1,p(X), which is easily seen to be a vector space, is a Banach space when
equipped with this norm.

The following theorem collects some important properties of real-valued Sobolev func-
tions on a metric measure space:

Theorem 2.8 Let (X, d,m) be a metric measure space and p ∈ (1,∞). Then the following
hold:

(i) Let ( fn) ⊂ L0(X) and (Gn) ⊂ L p(X). Assume that fn → f in L0(X), that Gn⇀G in
L p(X) and that Gn is a p-weak upper gradient of fn for every n. Then G is a p-weak
upper gradient of f .

(ii) For any f , g ∈ S p(X) we have

|D f | = |Dg| m − a.e. on { f = g}.
(iii) Let f ∈ W 1,p(X). Then there is a sequence ( fn) ⊂ Lipbs(X) such that ( fn), (lipa( fn))

converge to f , |D f | in L p(X) as n → ∞.
iv) Let f ∈ L0(X) and G ∈ L p(X), G ≥ 0. Then G is a p-weak upper gradient for f if and

only if for any q-test plan π the following holds: for π-a.e. γ the function f ◦ γ belongs
to W 1,1(0, 1) and

|( f ◦ γ )′|(t) ≤ G(γt ) |γ̇t | π × L1|[0,1] − a.e. (γ, t).

(v) Suppose that (X, d,m) is uniformly locally doubling. Then W 1,p(X) is reflexive.
(vi) Suppose that (X, d,m) supports a Poincaré inequality. Then for every f ∈ W 1,p(X) it

holds  
Br (x)

| f − fBr (x)| dm ≤ C(R)r
 

Bλr (x)

|D f | dm ∀x ∈ X, r ∈ (0, R), (2.11)

123



Korevaar–Schoen’s energy on strongly rectifiable spaces Page 13 of 54 235

where C(R), λ are the same constants appearing in (2.9).

Proof For (i), (i i) see [5], for (i i i) see [5] and [4]. (iv) is proved - by slightly modifying
arguments in [5] - in [14, Theorem B.4]. (v) has been obtained in [2] under a global dou-
bling assumption, but the argument works without modifications even under our assumption.
Finally, (vi) follows trivially from (i) and the fact that for f ∈ Lipbs(X) the local Lipschitz
constant lip( f ) is a p-weak upper gradient (see also [4]). ��

The definition of Sobolev function can be adapted to the case of metric valued functions
via a post-composition procedure (as proposed first by Ambrosio in [1] for the case of BV
functions and then by Reshetnyak in [43] for the Sobolev case - see [27] for more on the
topic and detailed bibliography):

Definition 2.9 Let (X, d,m) be ametricmeasure space, (Y, dY, ȳ) a pointed complete space,
p ∈ (1,∞) and u ∈ L p(X,Yȳ).We say that u ∈ W 1,p(X,Yȳ) provided there isG ∈ L p(X),
G ≥ 0 such that for every ϕ : Y → R 1-Lipschitz it holds ϕ◦u ∈ S p(X)with |D(ϕ◦u)| ≤ G
m-a.e.. Any such G is called p-weak upper gradient of u.

Fix p ∈ (1,∞). It is clear that the essential supremum of |D(ϕ ◦ u)| as ϕ varies among
1-Lipschitz functions from Y to R is a p-weak upper gradient of u and that is the minimal
one in them-a.e. sense: such function is called minimal weak upper gradient of u and denoted
|Du| (we will omit the dependence on p of such object from our notation, as we shall only
work with one fixed p at the time). We remark that in the smooth setting |Du| would be the
operator norm of the differential of u.

Some basic properties of metric-valued Sobolev functions are collected in the following
proposition:

Proposition 2.10 Let (X, d,m) be a metric measure space, (Y, dY, ȳ) a pointed complete
space and p, q ∈ (1,∞) with 1

p + 1
q = 1. Then:

(i) Let u ∈ L p(X,Yȳ) and G ∈ L p(X), G ≥ 0. Then the following are equivalent:

(a) u ∈ W 1,p(X,Yȳ) and G is a p-weak upper gradient of u.
(b) For every q-test plan π on X it holds

ˆ
dY(u(γ1), u(γ0)) dπ(γ ) ≤

¨ 1

0
G(γt )|γ̇t | dt dπ(γ )

(c) For every q-test plan π on X the following holds. For π -a.e. γ the curve [0, 1] �
t �→ u(γt ) ∈ Y has an absolutely continuous representative uγ and the bound
ms(uγ , t) ≤ G(γt )|γ̇t | holds for π × L1|[0,1]-a.e. (γ, t).

(ii) Let u ∈ L p(X,Yȳ), (Z, dZ) a complete space and ι : Y → Z be an isometric embedding.
Then u ∈ W 1,p(X,Yȳ) if and only if ι ◦ u ∈ W 1,p(X,Zι(ȳ)) and in this case |Du| =
|D(ι ◦ u)| m-a.e..

iii) Let un ∈ L p(X,Yȳ) for every n ∈ N be such that un → u in L p(X,Yȳ). Assume that
un ∈ W 1,p(X,Yȳ) for every n ∈ N and that for some G ∈ L p(X) we have |Dun |⇀G
in L p(X). Then u ∈ W 1,p(X,Yȳ) as well with |Du| ≤ G m-a.e..

(iv) For any u, v ∈ W 1,p(X,Yȳ) we have

|Du| = |Dv| m − a.e. on {u = v}.
Proof (i) Up to modify u in a negligible set we can, and will, assume that it takes values in
a separable subset of Y. Let (yn) ⊂ Y be dense in such subset and put ϕn := dY(·, yn) for
every n ∈ N.
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(b) ⇒ (a) If ϕ : Y → R is 1-Lipschitz we have

|ϕ(u(γ1)) − ϕ(u(γ0))| ≤ dY (u(γ1), u(γ0))

for any curve γ , thus the conclusion follows from our assumption by a direct verification of
Definition 2.7

(a) ⇒ (c) Fix a q-test plan π and use (iv) of Theorem 2.8 and the well-known existence
of absolutely continuous representatives for real valued Sobolev functions to deduce: for
π -a.e. γ there is a Borel negligible set Nγ ⊂ [0, 1] such that

|ϕn(u(γs)) − ϕn(u(γt ))| ≤
ˆ s

t
G(γr )|γ̇r | dr ∀t, s ∈ [0, 1] \ Nγ , ∀n ∈ N.

Taking the supremum in n ∈ N we deduce that

dY
(
u(γs), u(γt )

) ≤
ˆ s

t
G(γr )|γ̇r | dr ∀t, s ∈ [0, 1] \ Nγ ,

which in particular grants that the restriction of u ◦ γ to [0, 1] \ Nγ is uniformly continuous.
It is then clear that its continuous extension uγ is absolutely continuous and that the desired
bound on its metric speed comes from the characterization of the latter as least function f
for which (2.10) holds.

(c) ⇒ (b) We know that for π-a.e. γ it holds

dY(u(γs), u(γt )) ≤
ˆ s

t
G(γr )|γ̇r | dr a.e. t, s ∈ [0, 1], t < s

and thus integrating w.r.t. π and using Fubini’s theorem we deduceˆ
dY(u(γs), u(γt )) dπ(γ ) ≤

¨ s

t
G(γr )|γ̇r | dr dπ(γ ) a.e. t, s ∈ [0, 1], t < s.

(2.12)

Now, observe that the right hand side is continuous in t, s and thus to conclude it is then
sufficient to prove that the left hand side is also continuous in t, s. Use Lemma 2.2 to find
ι : Y → Z as in the statement and recall the defining property of a test plan to obtain that for
any v1, v2 ∈ L p(X,Zz̄) it holdsˆ

|dZ(v1(γs), v1(γt )) − dZ(v2(γs), v2(γt ))| dπ(γ )

≤
ˆ

dZ(v1(γs), v2(γs)) + dZ(v1(γt ), v2(γt )) dπ(γ )

≤ 2C
1
p d L p (v1, v2).

(2.13)

Now fix u ∈ L p(X,Yȳ) and find (vn) ⊂ Cb(X,Z) ∩ L p(X,Zz̄) converging to
ι ◦ u in L p(X,Zz̄). Since vn ∈ Cb(X,Zz̄) it is easy to check that the quantity´

dZ(vn(γs), vn(γt )) dπ(γ ) is continuous in t, s. Then from (2.13) it follows that the left
hand side of (2.12) is continuous in t, s, being the uniform limit of continuous functions.
(ii) Assume u ∈ W 1,p(X,Yȳ) and let ϕ : Z → R be 1-Lipschitz. Then ϕ ◦ ι : Y →
R is 1-Lipschitz and thus our assumption and the defining property of |Du| ensure that
ϕ ◦ ι ◦ u ∈ W 1,p(X) with |D(ϕ ◦ ι ◦ u)| ≤ |Du|. The arbitrariness of ϕ then ensures that
ι ◦ u ∈ W 1,p(X,Zι(ȳ)) with |D(ι ◦ u)| ≤ |Du|.

Now assume ι ◦ u ∈ W 1,p(X,Zι(ȳ)) and let ψ : Y → R be 1-Lipschitz. Then there exists
(e.g. as a consequence of McShane extension lemma) a 1-Lipschitz function ϕ : Z → R
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such that ψ = ϕ ◦ ι on Y. Therefore our assumption grants that ψ ◦ u = ϕ ◦ ι ◦ u belongs to
W 1,p(X) with |D(ψ ◦ u)| = |D(ϕ ◦ ι ◦ u)| ≤ |D(ι ◦ u)| and the conclusion comes from the
arbitrariness of ψ .
(iii) Let ϕ : Y → R be 1-Lipschitz and notice that ϕ ◦ un → ϕ ◦ u in L p(X) and that since
|D(ϕ ◦ un)| ≤ |Dun | the sequence (|D(ϕ ◦ un)|) is bounded in L p(X). Letting g be any
L p-weak limit of a subsequence we clearly have g ≤ G and thus, by (i) of Theorem 2.8, we
conclude that ϕ ◦ u ∈ S p(X) with |D(ϕ ◦ u)| ≤ G.

The conclusion follows by the arbitrariness of ϕ.
(iv) Direct consequence of the analogous property in the real valued case. ��
In some circumstances it is convenient to operate a cut-off procedure for metric-valued
Sobolev maps. While this seems hard to do for arbitrary target spaces, at least in the case
of Banach-valued maps the situation resembles that of real-valued function, thanks to the
‘differential’ characterization of Sobolev maps given in point (i − c) above:

Lemma 2.11 Let u ∈ W 1,p(X,Y) with Y being a Banach space. Let η : X → R be Lipschitz
and with bounded support. Then ηu ∈ W 1,p(X,Y) with

|D(ηu)| ≤ (sup |η|)|Du| + Lip(η)|u| m − a.e..

Proof Let π be a q-test plan on X. Then keep in mind point (i − c) of Proposition 2.10 and
notice that for π -a.e. γ the curve t �→ η(γt )u(γt ) is a.e. equal to the absolutely continuous
one (η ◦ γ ) uγ whose metric speed is - by direct computation - bounded by

ms((η ◦ γ ) uγ , t) ≤ |γ̇t |
(
(sup |η|)|Du|(γt ) + Lip(η)u(γt )

)
a.e. t ∈ [0, 1].

The conclusion follows from point (i − c) of Proposition 2.10 again. ��

2.3 The Hajlasz-Sobolev space HS1,p(X, Yȳ)

Here we recall Hajlasz’s definition (see [26]) of Sobolev functions in the non-smooth setting
and its links with the W 1,p spaces that we have just seen.

Definition 2.12 (Real-valued Hajlasz-Sobolev space) Let (X, d,m) be a metric measure
space and p ∈ (1,∞). Then H S1,p(X) is the subspace of L p(X) made of functions f
such that there is A ⊂ X Borel of full measure and, for every R > 0, a function G R ∈ L p(X)

such that

| f (y) − f (x)| ≤ d(x, y)
(
G R(x) + G R(y)

) ∀x, y ∈ A such that d(x, y) ≤ R.

(2.14)

Any such function G R is called p-Hajlasz gradient of u, or simply Hajlasz gradient if it is
clear the Sobolev exponent we are working with, at scale R.

Remark 2.13 The standard definition of the Hajlasz-Sobolev space asks for a single function
G to satisfy (2.14) for any R > 0 (see [25,27]). The choice of our variant is motivated by the
fact that we shall not work with (globally) doubling spaces but only with a (uniform) local
doubling condition and in this case our phrasing is better linked to the notion of W 1,p(X)

space, see Proposition 2.17. ��
Much like the case of functions in S p(X), a natural metric-valued variant of the notion of

Hajlasz-Sobolev map can be obtained via post-composition with 1-Lipschitz maps:
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Definition 2.14 (Metric-valued Hajlasz-Sobolev space) Let (X, d,m) be a metric measure
space, (Y, dY, ȳ) a pointed complete space, p ∈ (1,∞) and u ∈ L p(X,Yȳ). We say that
u ∈ H S1,p(X,Yȳ) if for any R > 0 there is G R ∈ L p(X)which is an Hajlasz upper gradient
at scale R of ϕ ◦ u for any 1-Lipschitz function ϕ : Y → R such that ϕ(ȳ) = 0. Any such
G R is called Hajlasz gradient of u at scale R.

In other words, we require that for any 1-Lipschitz function ϕ : Y → R with ϕ(ȳ) = 0 (but
this requirement is in fact irrelevant) it holds

|ϕ(u(y)) − ϕ(u(x))| ≤ d(x, y)
(
G R(x) + G R(y)

) ∀x, y ∈ Aϕ s.t. d(x, y) ≤ R,

where Aϕ ⊂ X is some Borel set of full measure. Picking ϕn := dY(·, yn)−dY(ȳ, yn)where
(yn) ⊂ Y is countable and dense in the essential image of u, and putting A := ∩n Aϕn we
see that this is the same as requiring that

dY(u(x), u(y)) ≤ d(x, y)
(
G R(x) + G R(y)

) ∀x, y ∈ A s.t. d(x, y) ≤ R.

From this bound it directly follows that the restriction of u to BR/2(x) ∩ A ∩ {G R ≤ c} is
Lipschitz for any x ∈ X and c, R ≥ 0. In particular

every map in H S1,p(X,Yȳ) has the Lusin-Lipschitz property. (2.15)

Let us now discuss the relation between H S1,p(X,Yȳ) and W 1,p(X,Yȳ). The inclusion
H S1,p(X,Yȳ) ⊂ W 1,p(X,Yȳ) holds without any assumption on the source space:

Proposition 2.15 Let (X, d,m) be a metric measure space , (Y, dY, ȳ) a pointed com-
plete space and p ∈ (1,∞). Then H S1,p(X,Yȳ) ⊂ W 1,p(X,Yȳ) and for every f ∈
H S1,p(X,Yȳ), R > 0 and Hajlasz-upper gradient G R at scale R it holds

|D f | ≤ 2G R m − a.e.

Proof By the very definitions of H S1,p(X,Yȳ) and W 1,p(X,Yȳ) it is sufficient to deal with
the real-valued case.

Fix R > 0, let q ∈ (1,∞) be such that 1
p + 1

q = 1, fix a q-test plan π and put π̂ :=
π × L1|[0,1]. For every n ∈ N, n > 0, let �n ⊂ C([0, 1],X) be the set of curves γ such

that d(γt , γt+h) ≤ R for every t ∈ [0, 1 − 1
n ], h ∈ [0, 1

n ], and observe that �n ⊂ �n+1 and
∪n�n = C([0, 1],X).

Then define the ‘incremental ratio’ functional IRn : C([0, 1],X) × [0, 1] → R
+ as

IRn(γ, t) :=
{

n d(γ i
n
, γ i+1

n
), if γ ∈ �n and t ∈ [ i

n , i+1
n ) for some i = 0, . . . , n − 1,

0, otherwise.

It is well known and easy to check (see for instance the arguments in [36] and [21]) that if
γ ∈ C([0, 1],X) is absolutely continuous with |γ̇t | ∈ Lq(0, 1), then IRn(γ, ·) → ms(γ, ·)
in Lq(0, 1) - we omit the proof of this fact. Also, from the trivial bound d(γt , γt+ 1

n
) ≤

´ t+ 1
n

t |γ̇s | ds it follows that

‖IRn(γ, ·)‖Lq (0,1) ≤ ‖ms(γ, ·)‖Lq (0,1) ∀γ ∈ C([0, 1],X),

therefore using the fact that ms belongs to Lq(π̂) (which follows from the fact that π is a
q-test plan), by the dominated convergence theorem applied to the Lebesgue-Bochner space
Lq(C([0, 1],X), Lq([0, 1];L1|[0,1]);π) ∼ Lq(C([0, 1],X) × [0, 1]; π̂) we conclude that

IRn → ms inLq(C([0, 1],X) × [0, 1]; π̂). (2.16)
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Now consider G ∈ L p(X) and for n ∈ N, n > 0, define Ĝ ∈ L p(C([0, 1],X) × [0, 1]; π̂)

as

Ĝ(γ, t) := G(γt ) ∀γ ∈ C([0, 1],X]), t ∈ [0, 1],
and then G̃n ∈ L p(C([0, 1],X) × [0, 1]; π̂) as

G̃n(γ, t) :=
{

Ĝ(γ, i
n ) + Ĝ(γ, i+1

n ), if γ ∈ �n and t ∈ [ i
n , i+1

n ] for some i = 0, . . . , n − 1,
0, otherwise.

Notice that the continuity of t �→ Ĝ(·, t) ∈ L p(π) (which iswell-known and easy to establish
- see also the proof of the implication (c) ⇒ (b) in Proposition 2.10) gives

G̃n → 2Ĝ in L p(C([0, 1],X), L p([0, 1];L1|[0,1]);π) ∼ L p(C([0, 1],X) × [0, 1]; π̂)

(2.17)

as n → ∞. To conclude the proof, let f ∈ H S1,p(X), G ∈ L p(X) an Hajlasz-upper gradient
at scale R and m ≥ n > 0. Then a simple telescopic argument shows that

ˆ
�n

| f (γ1) − f (γ0)| dπ(γ ) ≤
¨ 1

0
G̃m IRm dπ̂

and thus passing to the limit first as m → ∞ recalling (2.16) and (2.17) and then as n → ∞
we deduce that ˆ

| f (γ1) − f (γ0)| dπ(γ ) ≤ 2
¨ 1

0
Ĝ ms dπ̂ ,

which, by the arbitrariness of the q-test plan π , is the conclusion. ��
We have already seen that the inclusion H S1,p(X,Yȳ) ⊂ W 1,p(X,Yȳ) always holds.

The converse one is false in general, as shown in the following simple example:

Example 2.16 Let an ↓ 0 be a sequence to be fixed later andX := {0}∪{an : n ∈ N} equipped
with the Euclidean distance and the measurem := δ0 +∑

n>0 2
−nδan . From the fact that the

space is totally disconnected it easily follows that any test plan is concentrated on constant
curves, and thus that any L p(X) function is actually in W 1,p(X) with null minimal upper
gradient. Now consider the function f : X → R

+ defined as f (0) := 0 and f (an) := n
for every n ∈ N. If G is an Hajlasz gradient we must have G(an) ≥ n

an
− G(0) and thus

choosing the an’s small enough we see that G does not belong to L p(X). ��
Nevertheless, the isomorphism of H S1,p(X,Yȳ) and W 1,p(X,Yȳ) as Banach spaces is true
under assumptions that we shall often make in this manuscript (the proof we report is taken
from [27]):

Proposition 2.17 Let (X, d,m) be locally uniformly doubling and supporting a Poincaré
inequality, (Y, dY, ȳ) a pointed complete space and p ∈ (1,∞). Then W 1,p(X,Yȳ) ⊂
H S1,p(X,Yȳ) and for every u ∈ W 1,p(X,Yȳ) a choice of Hajlasz-gradient for u at scale
R is given by

G R := C(R)M2λR(|Du|),
where λ is the constant appearing in the Poincaré inequality (2.9) and the constant C(R) > 0
depends only on the doubling and Poincaré constants of X and the chosen R > 0.
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Note that the fact that G R ∈ L p(X) follows from Proposition 2.3

Proof By the very definitions of W 1,p(X,Yȳ) and H S1,p(X,Yȳ) it is sufficient to consider
the real-valued case.

In the course of the proof we shall denote by C(R) a positive constant depending on a
parameter R > 0 and the doubling and Poincaré constants only, whose value may change
from line to line. Let x ∈ X be such that u Br (x) → u(x) as r ↓ 0 (m-a.e. x ∈ X has this
property), R > 0, put Bi := B2−i R(x) and notice that

|u(x) − u BR(x)| ≤
∞∑

i=0

|u Bi − u Bi+1 | ≤
∞∑

i=0

 
Bi+1

|u − u Bi | dm

≤ C(R)

∞∑
i=0

 
Bi

|u − u Bi | dm
(2.11)≤ C(R)

∞∑
i=0

2−i R
 

λBi

|Du| dm

≤ C(R)RMλR(|Du|)(x).

(2.18)

Nowobserve that if R := d(x, y), from similar arguments and the inclusion BR(y) ⊂ B2R(x)

we get

|u BR(x) − u BR(y)| ≤ |u BR(x) − u B2R(x)| + |u B2R(x) − u BR(y)|
≤
 

BR(x)

|u − u B2R(x)| dm +
 

BR(y)

|u − u B2R(x)| dm

≤ 2C(R)

 
B2R(x)

|u − u B2R(x)| dm
(2.11)≤ 2C(R)

 
B2λR(x)

|Du| dm
≤ C(R)RM2λR(|Du|)(x).

The conclusion comes combining this bound and (2.18) written for both x and y. ��

2.4 Strongly rectifiable spaces

Here we recall the notion of strongly rectifiable space by slightly modifying the original
approach given in [19].

Definition 2.18 (Strongly rectifiable spaces and aligned set of atlases) We say that a metric
measure space (X, d,m) is strongly rectifiable provided there is d ∈ N, called dimension
of X, such that for every ε > 0 there exists a collection Aε := {(U ε

i , ϕε
i ) : i ∈ N}, called

ε-atlas, such that:

(i) U ε
i is a Borel subset of X for every i and the U ε

i ’s form a partition of X \ N for some
m-negligible Borel set N ,

(ii) ϕε
i is a (1 + ε)-biLipschitz map from U ε

i to ϕε
i (U ε

i ) ⊂ R
d ,

(iii) it holds

ciLd |ϕε
i (U ε

i )
≤ mi ≤ (1 + ε)ciLd |ϕε

i (U ε
i )

for some ci > 0, where mi := (ϕε
i )∗m|U ε

i
. (2.19)

Given εn ↓ 0, a family {Aεn }n∈N of atlases is said aligned provided:

(iv) for any n, m ∈ N and (U εn
i , ϕ

εn
i ) ∈ Aεn , (U εm

j , ϕ
εm
j ) ∈ Aεm we have that

the map ϕ
εn
i − ϕ

εm
j : U εn

i ∩ U εm
j → R

d is εn + εm-Lipschitz. (2.20)
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A relevant class of strongly rectifiable spaces is that of RC D(K , N ) spaces:

Theorem 2.19 Let K ∈ R, N ∈ [1,∞) and (X, d,m) a RC D(K , N ) space. Then (X, d,m)

is strongly rectifiable.

Proof The existence of (1 + ε)-biLipschitz charts has been proved in [41]. The fact that the
measure is absolutely continuous w.r.t. the Hausdorff measure of relevant dimension (which
is easily seen to be equivalent to (2.19) - see also the discussion below) has been obtained
independently in [32] and [18]. Finally, the fact that the dimension of the target Euclidean
space is independent on the particular chart is the main result of [7]. ��

Let us compare the definition just given with the one appeared in [19], there called strong
m-rectifiability. A first difference is in the fact that here we imposed the space to have a
given dimension d , while in [19] the possibility of it being the union of parts with different
dimensions was allowed. Strictly speaking, even for the theory developed in this manuscript
we could deal with such more general situation, but that would only be an unnecessary
complication. In fact, both here and in [19] the main class of spaces we have in mind to
work with is that of RC D(K , N ) spaces and, as just recalled, it is now known that they have
constant dimension (a fact which was not clear at the time of [19]).

Beside this, here we require (2.19) in place of the apparently weaker (ϕi )∗m|Ui
� Ld ,

but it is clear that up to refine the partition in such a way that the density
d(ϕi )∗m|Ui

dLd has small
oscillations on ϕi (Ui ) and including the regions where such density is 0 in the negligible set
N , the two approaches are equivalent.

Concerning the aligned family of atlases, in [19] the condition (2.20) is replaced by

‖d(ϕεn
i ◦ (ϕ

εm
j )−1 − Id)(z)‖ ≤ δn,m Ld − a.e. z ∈ ϕ j (U

εn
i ∩ U εm

j ) (2.21)

for every i, j ∈ N, where δn,m → 0 as n, m → ∞. It is obvious that (2.20) implies (2.21).
In fact, also the converse implication holds, indeed, up to a relabeling of the atlases in the
sequence and recalling the fact thatϕ j is 1+εm-biLipschitz, by refining the charts to conclude
it is sufficient to show that

if f : K ⊂ R
d → R

d is a Lipschitz function with ‖d f (z)‖ < c for Ld − a.e. z ∈ K ,

then for

some sequence (Ki ) of Borel sets with Ld(K \ ∪i Ki ) = 0, we have Lip( f |Ki
) ≤ c∀i ∈ N.

To see this let

Kn := {z ∈ K : | f (w) − f (z)| < c|w − z| ∀w ∈ B1/n(z)}
and notice that these are Borel sets and that our assumption gives Ld(K \ ∪n Kn) = 0. To
conclude just write Kn = ∪m Kn,m with the Kn,m’s Borel and with diameter ≤ 1

n and notice
that by construction Lip( f |Kn,m

) ≤ c for every n, m ∈ N.

In particular, by [19, Theorem 3.9] we know that on a strongly rectifiable space, for any
sequence εn ↓ 0 an aligned family of atlases (Aεn ) exists. We shall often use this fact in what
comes next without further notification.

From the assumptions on the strongly rectifiable space X it follows that m � Hd , where
Hd is the d-dimensional Hausdorff measure. The Radon-Nikodym density can be computed
via differentiation as discussed in the following well-known result (see e.g. [16, Theorem
2.13] for the proof):
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Theorem 2.20 (Density w.r.t. the Hausdorff measure) Let (X, d,m) be a strongly rectifiable
space of dimension d ∈ N. Then the function ϑd : X → [0,∞] defined by

ϑd(x) = lim
r↓0

m(Br (x))

ωdrd
provided the limit exists and 0 otherwise,

is a Borel representative of the Radon-Nikodym density dm
dHd .

Finally, we recall that when the space under consideration is the Euclidean one R
d , it is

well known that the Hausdorff measure Hd coincides with the Lebesgue measure Ld ; to
emphasize the fact that we are working on R

d we shall speak about the Lebesgue measure
Ld in this context.

3 The Korevaar–Schoen space

3.1 Approximatemetric differentiability on strongly rectifiable spaces

We shall denote by snd the set of seminorms on R
d and equip it with the complete and

separable distance D defined by

D(n1, n2) := sup
z:|z|≤1

|n1(z) − n2(z)| = Lip(n1 − n2) = lip(n1 − n2)(0),

where here and below by | · | we intend the classical Euclidean norm. We shall also put

|||n||| := D(n, 0) = sup
z:|z|≤1

|n(z)| = Lip(n) = lip(n)(0).

We start recalling the following result, due to Kirchheim [33]:

Theorem 3.1 (Kirchheim’s metric differential) Let (Y, dY) be a complete space U ⊂ R
d

Borel and u : U → Y a Lipschitz map. Then for Ld -a.e. x ∈ U there is a seminorm mdx (u)

on R
d , called metric differential of u at x, such that

lim
y→x
y∈U

|dY(u(y), u(x)) − mdx (u)(y − x)|
|y − x | = 0. (3.1)

Moreover, the Ld -a.e. defined map x �→ mdx (u) ∈ snd is Borel.

Proof In [33] the existence of themetric differential is given for functions defined in thewhole
R

d . This variant is easily obtainable by considering aKuratowski embedding ι : Y → �∞(Y)

(Lemma 2.1), a Lipschitz extension v : Rd → �∞(Y) of ι ◦ u (Lemma 3.2 below), applying
the original statement to such function v and noticing that since ι is an isometry, the metric
differential of v at x coincides with that of u at x for any x ∈ U .

This argument also shows that to prove the stated Borel regularity it is sufficient to deal
with the case of maps u defined on Rd . Also, from the identity

D(n1, n2) = sup
n

n1(vn) − n2(vn) where (vn) ⊂ B1(0) is dense

we see that it is sufficient to prove that for any v ∈ R
d the Ld -a.e. defined map x �→

mdx (u)(v) is Borel. Then from the identity

mdx (u)(v) = lim
n→∞ n mdx (u)((x + n−1v) − x)

(3.1)= lim
n→∞ n dY(u(x + n−1v), u(x))
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valid for Ld -a.e. x the conclusion easily follows. ��
The well known McShane extension lemma can easily be adapted to the case of �∞-valued
maps:

Lemma 3.2 (Lipschitz extension) Let (X, d) be a metric space, Y a set, U ⊂ X and f :
U → �∞(Y) a Lipschitz function. Then there exists an extension F of f to the whole X
with the same Lipschitz constant, i.e. a map F : X → �∞(Y) such that F |U = f and
Lip(F) = Lip( f ).

Proof For every y ∈ Y define

Fy(x) := inf
z∈U

fy(z) + d(x, z)Lip( f ) ∀x ∈ X.

It is readily verified that this function has the required properties. ��
The main goal of this section is to extend Kirchheim’s result to maps defined on strongly

rectifiable spaces. The basic idea is simple: we use the charts to reduce the differentiability
problem to a problem on R

d for which we can apply the known result; if the charts are
(1 + ε)-biLipschitz, in doing so we will make an error of order ε and if we consider a
different atlas we shall obtain a metric differential close to the previous one provided the
charts are somehow aligned (the relevant notion being the one introduced in Definition 2.18).
Then the conclusion follows by considering an aligned family of atlases (Aεn ) and passing
to the limit as n → ∞.

We now turn to the rigorous definition of ‘approximatemetric differentiability’ on strongly
rectifiable space. It is based on, for given (Ui , ϕi ) belonging to some atlas, thinking at the
map y �→ ϕi (y) − ϕi (x) ∈ R

d as a sort of ‘ε-inverse of the exponential map at x ∈ Ui ’ (see
also [19, Theorem 6.6] for more about the interpretation ofRd as the tangent space at a given
point of a strongly rectifiable space).

Definition 3.3 (Approximate metric differentiability) Let (X, d,m) be a strongly rectifiable
space, εn ↓ 0 and {Aεn } an aligned family of atlases. Also, let (Y, dY) be a metric space and
u : X → Y. We say that u is approximately metrically differentiable at x ∈ X relatively to
(Aεn ) provided:

i) For every n ∈ N there is i(x, n) ∈ N such that x belongs to U εn
i(x,n), is a density point of

such set and ϕ
εn
i(x,n)(x) is a density point of ϕ

εn
i(x,n)(U

εn
i(x,n)).

ii) There is a seminorm mdx (u) on R
d , called metric differential of u at x , such that

lim
n→∞ ap - lim y→x

y∈U n
i

∣∣dY(u(y), u(x)) − mdx (u)(ϕn
i (y) − ϕn

i (x))
∣∣

d(y, x)
= 0,

where for brevity we wrote U n
i , ϕn

i in place of U εn
i(x,n), ϕ

εn
i(x,n).

For smooth maps on R
d it is trivial to check that the norm of the differential coincides with

the local Lipschitz constant. A similar link exists between approximate metric differential
and approximate local Lipschitz constant:

Lemma 3.4 Let (X, d,m) be a strongly rectifiable space, εn ↓ 0 and (Aεn ) an aligned family
of atlases. Also, let (Y, dY) be a complete space and u : X → Y a map which is approximately
metrically differentiable at x ∈ X relatively to (Aεn ). Then

ap -lip u(x) = |||mdx (u)|||. (3.2)
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Proof Fix n ∈ N, let i ∈ N be such that x ∈ U n
i and notice that since ϕn

i : U n
i → ϕn

i (U n
i ) is

(1 + εn)-Lipschitz we have

mdx (u)(ϕn
i (y) − ϕn

i (x))

d(x, y)
≤ (1 + εn)

mdx (u)(ϕn
i (y) − ϕn

i (x))

|ϕn
i (y) − ϕn

i (x)| . (3.3)

Now recall that x, ϕn
i (x) are density points of U n

i , ϕn
i (U n

i ) respectively and notice that the
properties of ϕn

i ensure that

V ⊂ U n
i has x as density point if and only if ϕn

i (V ) has ϕn
i (x) as density point. (3.4)

To see this notice that

Ld
(
BR

d

r (ϕn
i (x)) \ ϕn

i (V )
)

rd

= Ld
(
BR

d

r (ϕn
i (x)) \ ϕn

i (U n
i )

)
rd

+
Ld |ϕn

i (U n
i )

(
BR

d

r (ϕn
i (x)) \ ϕn

i (V )
)

rd
(3.5)

and the first addend on the right goes to 0 because ϕn
i (x) is a density point of ϕn

i (U n
i ).

Recalling that ϕn
i is (1+ εn)-Lipschitz and the bound (2.19) we can estimate from above the

second one with

Ld |ϕn
i (U n

i )

(
BR

d

r (ϕn
i (x)) \ ϕn

i (V )
)

rd
≤ m(BX

r(1+εn)(x) \ V )

cird
.

Hence if x is a density point of V we have that the right hand side in the above goes to 0 as
r ↓ 0 and thus (3.5) shows that ϕn

i (x) is a density point of ϕn
i (V n

i ). The opposite implication
is proven analogously. From (3.4) and (2.6) we deduce the ‘change of variable formula’

ap - lim y→x
y∈U n

i

mdx (u)(ϕn
i (y) − ϕn

i (x))

|ϕn
i (y) − ϕn

i (x)| = ap - limw→ϕn
i (x)

w∈ϕn
i (U n

i )

mdx (u)(w − ϕn
i (x))

|w − ϕn
i (x)| (3.6)

which together with (3.3) and Proposition 2.5 gives

ap - lim y→x
y∈U n

i

mdx (u)(ϕn
i (y) − ϕn

i (x))

d(x, y)
≤ (1 + εn)lip(mdx (u))(0) = (1 + εn)|||mdx (u)|||.

Using the fact that (ϕn
i )−1 is also (1 + εn)-Lipschitz and similar arguments we obtain the

lower bound

ap - lim y→x
y∈U n

i

mdx (u)(ϕn
i (y) − ϕn

i (x))

d(x, y)
≥ (1 + εn)−1|||mdx (u)|||,

so that the conclusion follows from the very definition of metric differential. ��

Remark 3.5 The conclusion of the above lemma fails if one does not insist onϕn
i(x,n)(x) to be a

density point of ϕn
i(x,n)(U

n
i(x,n)) in the definition of metric differentiability. This can be easily

seen by considering X := [0, 1]2 (equipped with the restriction of the Euclidean distance and
Lebesguemeasure),U n

0 = X andϕn
0 to be the natural embedding inR2. Then x := (0, 0) ∈ X

is a density point of U n
0 and the function X � (x1, x2) �→ u(x1, x2) := x1 − x2 is metrically

differentiable at x , with metric differential given by mdx (u)(v1, v2) = |v1 − v2|, so that
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|||mdx (u)||| = sup(v1,v2)∈R2
|v1−v2|√
|v1|2+|v2|2

= √
2. On the other hand we have ap -lip u(x) ≤

lipu(x) (in fact equality occurs by Proposition 2.5) and we have

lip u(x) = lim
(y1,y2)∈X
(y1,y2)→x

|u(y1, y2) − u(0, 0)|
dX((y1, y2), (0, 0))

= lim
y1,y2≥0
y1,y2↓0

|y1 − y2|√|y1|2 + |y2|2
= 1,

thus showing that the strict inequality < holds in (3.2). ��
We now turn to the main result of this section:

Proposition 3.6 Let (X, d,m) be a uniformly locally doubling and strongly rectifiable space,
(Y, dY) a metric space and u : X → Y a Borel function with the Lusin-Lipschitz property.
Also, let εn ↓ 0 and (Aεn ) an aligned family of atlases.

Then u is approximately metrically differentiable at m-a.e. x ∈ X, relatively to (Aεn ), and
the m-a.e. defined map x �→ mdx (u) ∈ snd is Borel.

More precisely:

(i) for every n ∈ N the map X � x �→ nn
x ∈ snd is a m-a.e. well defined Borel map by the

formula

nn
x := mdϕn

i (x)(u ◦ (ϕn
i )−1) m − a.e. on U n

i ,

(ii) for m-a.e. x ∈ X the sequence (nn
x ) ⊂ snd admits a limit nx ,

(iii) nx is the metric differential of u at x for m-a.e. x ∈ X.

Proof Notice that up to a refining the charts, we can assume that u|U is Lipschitz for every
U chart of some of the given atlases. Also, in the course of the proof we shall frequently use
the following observation: if U ⊂ R

d is Borel and v : U → Y is metrically differentiable at
a density point x ∈ U in the sense of Theorem 3.1, then it is also approximately metrically
differentiable, and with the same metric differential, in the sense of Definition 3.3, where
here we pick X := Ū equipped with the Euclidean distance andm := Ld |U , where the charts

are given by the inclusion X ↪→ R
d .

(i) Fix n ∈ N and define m-a.e. the map nn : X → snd as follows: for every (U n
i , ϕn

i ) ∈ Aεn

consider the Lipschitzmap vn
i : ϕn

i (U n
i ) → Ygiven by vn

i := u◦(ϕn
i )−1 and useKirchheim’s

theorem 3.1 to obtain that nn
x := mdϕn

i (x)(v
n
i ) is well-defined m-a.e. and Borel on U n

i . By
the arbitrariness of i ∈ N this defines nn

x for m-a.e. x . Now we apply (3.2) to the function
vn

i defined on R
d (which is a strongly rectifiable space with the identity as chart - here we

extend vn
i to be 0 outside ϕn

i (U n
i )) to deduce that for m-a.e. x ∈ U n

i we have |||nn
x ||| =

ap -lip(vn
i )(ϕn

i (x)). Then arguing as for (3.6) to relate approximate limits in different spaces
we see that ap -lip(vn

i )(ϕn
i (x)) ≤ (1 + εn) ap -lip(u)(x) holds for m-a.e. x ∈ U n

i and thus
assuming, without loss of generality, that εn ≤ 1 for every n ∈ N, we have

|||nn
x ||| ≤ 2 ap -lip(u)(x)

(2.8)
< ∞ m − a.e x ∈ X, ∀n ∈ N. (3.7)

(ii) We claim that for every n, m ∈ N it holds

D(nn
x , n

m
x ) ≤ 2 ap -lip(u)(x)(εn + εm)(1 + εn) m − a.e. x (3.8)

and to prove this we fix n, m, i, j ∈ N such that m(U n
i ∩ U m

j ) > 0 and pick x ∈ U n
i ∩ U m

j
so that x, ϕn

i (x), ϕm
j (x) are density points of U n

i ∩ U m
j , ϕn

i (U n
i ), ϕm

j (U m
j ) respectively and

so that vn
i (resp. vm

j ) is metrically differentiable at ϕn
i (x) (resp. ϕm

j (x)).
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Then we have

dY
(
vn

i (ϕn
i (y)), vn

i (ϕn
i (x))

) = nn
x (ϕ

n
i (y) − ϕn

i (x)) + o(|ϕn
i (y) − ϕn

i (x)|)
= nn

x (ϕ
n
i (y) − ϕn

i (x)) + o(d(x, y)),
(3.9)

having used the fact that ϕn
i is biLipschitz. Since a similar identity holds for vm

j and since
vn

i ◦ ϕn
i = u = vm

j ◦ ϕm
j on U n

i ∩ U m
j , we deduce that

o(d(x, y)) = |nn
x (ϕn

i (y) − ϕn
i (x)) − nm

x (ϕm
j (y) − ϕm

j (x))|
≥ |(nn

x − nm
x )(ϕn

i (y) − ϕn
i (x))| − ∣∣nm

x
(
(ϕn

i (y) − ϕn
i (x)) − (ϕm

j (y) − ϕm
j (x))

)∣∣
(3.7)≥ |(nn

x − nm
x )(ϕn

i (y) − ϕn
i (x))| − 2 ap -lip(u)(x)|(ϕn

i (y) − ϕm
j (y)) − (ϕn

i (x) − ϕm
j (x))|

(2.20)≥ |(nn
x − nm

x )(ϕn
i (y) − ϕn

i (x))| − 2(εn + εm) ap -lip(u)(x)d(x, y)

≥ |(nn
x − nm

x )(ϕn
i (y) − ϕn

i (x))| − 2(εn + εm) ap -lip(u)(x)(1 + εn)|ϕn
i (y) − ϕn

i (x)|,
having used the fact that ϕn

i is (1 + εn)-biLipschitz in the last step. We can rewrite what we
obtained as

|(nn
x − nm

x )(ϕn
i (y) − ϕn

i (x))| ≤ 2(εn + εm)(1 + εn) ap -lip(u)(x)|ϕn
i (y) − ϕn

i (x)| + o(d(x, y)),

so that (3.8) follows from Proposition 2.5 applied to X := R
d , Y := R, the Borel set ϕn

i (U n
i ),

its density point ϕn
i (x) and the Lipschitz function nn

x − nm
x .

A direct consequence of (3.8) (and (2.8)) is the fact that n �→ nn
x ∈ snd is a Cauchy

sequence for m-a.e. x . We denote its limit by nx .
(iii) We claim that nx is the approximate metric differential of u at x for m-a.e. x . Indeed

from the identity u = vn
i ◦ ϕn

i and the bound d(x, y) ≥ |ϕn
i (y)−ϕn

i (x)|
1+εn

valid on U n
i we obtain

∣∣dY(u(y), u(x)) − nx (ϕ
εn
i (y) − ϕ

εn
i (x))

∣∣
d(y, x)

≤
∣∣dY(vn

i (ϕn
i (y)), vn

i (ϕn
i (x))) − nn

x (ϕ
εn
i (y) − ϕ

εn
i (x))

∣∣
d(y, x)

+ (1 + εn)D(nn
x , nx ),

so that the claim follows from (3.9) and the fact that nn
x → nx as n → ∞ for m-a.e. x . The

fact that x �→ nx ∈ snd is Borel follows from the Borel regularity of x �→ nx
n and pointwise

convergence on a Borel set of full measure. ��

3.2 Definition and basic properties of the Korevaar–Schoen space

Here we introduce themain object of study of this manuscript, namely the Korevaar–Schoen–
Sobolev space of metric valued maps. Let us fix a source metric measure space (X, d,m)

and a target pointed complete space (Y, dY, ȳ).
Let p ∈ (1,∞) and u ∈ L p(X,Yȳ). The p-energy density ks p,r [u] : X → R

+ of u at
scale r > 0 in the sense of Korevaar–Schoen is given by

ks p,r [u](x) :=
∣∣∣ 

Br (x)

d p
Y(u(x), u(y))

r p
dm(y)

∣∣∣1/p
(3.10)
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and the (total) energy E p(u) ∈ [0,∞] is defined as

E p(u) := lim
r↓0

ˆ
ks p

p,r [u] dm. (3.11)

Then the Korevaar–Schoen space is introduced as:

Definition 3.7 (Korevaar–Schoen space) Let u ∈ L p(X,Yȳ).We say that u ∈ K S1,p(X,Yȳ)

provided E p(u) < ∞.

Remark 3.8 The typical definition of the Korevaar–Schoen space requires the lim, rather than
the lim, to be finite in (3.11). As we shall see soon in Corollary 3.10 the two conditions are
equivalent under assumptions on X that we are very willing to make: we chose the approach
with the lim because it is more natural in view of Proposition 3.9 below. ��
Proposition 3.9 Let (X, d,m) be a uniformly locally doubling space, (Y, dY, ȳ) a pointed
complete space and p ∈ (1,∞). Then K S1,p(X,Yȳ) ⊂ W 1,p(X,Yȳ) and there is a constant
C > 0 depending only on infr>0 Doub(r) such that for any u ∈ K S1,p(X,Yȳ) it holds

|Du| ≤ C G, m − a.e.,

where G is any weak L p(X)-limit of ks p,εn [u] along some sequence εn ↓ 0 (the fact that
at least one such G exists follows from the definition of K S1,p(X,Yȳ) and the reflexivity of
L p(X)).

Proof Step 1: the case Y = R. Fix u ∈ K S1,p(X,R), r > 0 and for ε ∈ (0, r/4) apply
Lemma 2.4 to obtain a cover of X made of balls (Bi )i∈I of radius ε and a partition of unity
(ϕi )i∈I subordinate to such cover as in the statement of such Lemma. Define uε : X → R as

uε(x) :=
∑
i∈I

ϕi u Bi =
∑
i∈I

ϕi

 
Bi

u dm.

We claim that uε is a locally Lipschitz function in L p(X) and that for some constant C > 0
depending only on Doub(r) it holds

‖uε − u‖L p(X) ≤ Cε‖ks p,8ε[u]‖L p(X),

lip(uε) ≤ Cks p,8ε[u]. (3.12)

These two properties easily imply the conclusion by the arbitrariness of r > 0, point (i) of
Theorem 2.8 and the (trivial) fact that for a locally Lipschitz function the local Lipschitz
constant is a p-weak upper gradient for any p ∈ (1,∞). In the computations below the value
of the positive constant C may change from line to line, but in any case it only depends on
Doub(r).

The fact that uε is locally Lipschitz is obvious. Now notice that from

|uε(x) − u(x)|p ≤
∣∣∣ ∑

i :x∈Bi

|u Bi − u(x)|
∣∣∣p ≤ C sup

i :x∈Bi

|u Bi − u(x)|p

≤ C sup
i :x∈Bi

 
Bi

|u(y) − u(x)|p dm(y) ≤ C
 

B8ε(x)

|u(y) − u(x)|p dm(y)

the first in (3.12) easily follows. For the second, let x, y ∈ X and j ∈ I and notice that

|uε(y) − uε(x)| =
∣∣∣ ∑

i∈I

(ϕi (y) − ϕi (x))u Bi

∣∣∣ =
∣∣∣ ∑

i∈I

(ϕi (y) − ϕi (x))(u Bi − u B j )

∣∣∣
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having used the fact that
∑

i ϕi ≡ 1. Now pick j ∈ I so that x ∈ B j and let y ∈ Bε(x). With
these choices we have that if y ∈ Bi then x ∈ 2Bi , thus the above gives

|uε(y) − uε(x)| ≤
∑

i :x∈2Bi

|ϕi (y) − ϕi (x)||u Bi − u B j |

≤ d(x, y)
C

ε

∑
i :x∈2Bi

|u Bi − u B j | ≤ d(x, y)
C

ε

∑
i :x∈2Bi

|u Bi − u4Bi | + |u4Bi − u B j |.
(3.13)

Now observe that y ∈ Bi ∩ Bε(x) and x ∈ B j ∩ 2Bi imply B j ⊂ 4Bi and 4Bi ⊂ B8ε(x),
thus

|u4Bi − u B j | ≤ C
 
4Bi

 
4Bi

|u(z) − u(w)| dm(z) dm(w)

≤ C
 
4Bi

|u(z) − u(x)| dm(z) ≤ C
 

B8ε(x)

|u(z) − u(x)| dm(z) ≤ Cε ks p,8ε[u](x)

and since a similar estimate holds for |u4Bi − u Bi |, the second in (3.12) follows from (3.13).
Step 2: the general case.Letϕ : Y → Rbe1-Lipschitz andnotice that from the trivial inequal-
ity ks p,ε[ϕ ◦ u] ≤ ks p,ε[u] it follows that ϕ ◦ u ∈ K S1,p(X,R) and that if ks p,εn [u]⇀G in
L p(X), then up to pass to a subsequence it also holds ks p,εn [ϕ ◦ u]⇀Gϕ ≤ G in L p(X).

Hence what already proved ensures that ϕ ◦u ∈ W 1,p(X)with |D(ϕ ◦u)| ≤ C Gϕ ≤ C G
for some constantC not depending on u, ϕ. The conclusion then follows from the arbitrariness
of ϕ and the definition of W 1,p(X,Yȳ). ��
It is now easy to see that if assume not only a doubling condition, but also a Poincaré
inequality, then the Korevaar–Schoen space coincides - as set - with the other notions of
metric-valued Sobolev spaces that we have encountered:

Corollary 3.10 Let (X, d,m) be uniformly locally doubling and supporting a Poincaré
inequality, (Y, dY, ȳ) a pointed complete space and p ∈ (1,∞). Then K S1,p(X,Yȳ) =
W 1,p(X,Yȳ) = H S1,p(X,Yȳ) and for any u ∈ L p(X,Yȳ) we have

lim
r↓0

ˆ
ks p

p,r [u] dm < ∞ ⇔ lim
r↓0

ˆ
ks p

p,r [u] dm < ∞. (3.14)

Also, for u ∈ K S1,p(X,Yȳ), R > 0 and Hajlasz upper gradient G R at scale R it holds the
inequality

ks p
p,r [u](x) ≤ c(p)

(
G p

R(x) +
 

Br (x)

G p
R(y) dm(y)

)
m − a.e. x ∈ X, ∀r ∈ (0, R),(3.15)

where c(p) > 0 is a constant depending only on p.

Proof Propositions 3.9 and 2.17 give K S1,p(X,Yȳ) ⊂ W 1,p(X,Yȳ) ⊂ H S1,p(X,Yȳ).
Now assume u ∈ H S1,p(X,Yȳ), let G R ∈ L p(X) be an Hajlasz upper gradient at scale R
and notice that for any r ≤ R it holds

d p
Y(u(y), u(x))

r p
≤ c(p)(G p

R(x) + G p
R(y)) m × m a.e. (x, y) s.t. d(x, y) ≤ r .

The bound (3.15) follows and since the simple Lemma 3.11 below ensures that the right
hand side in (3.15) is bounded in L1(X), we obtained at once (3.14) and the inclusion
H S1,p(X,Yȳ) ⊂ K S1,p(X,Yȳ). ��
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Lemma 3.11 Let (X, d,m) be a uniformly locally doubling space and g ∈ L1(X). For r > 0
define gr (x) := ffl

Br (x)
g dm. Then gr → g in L1(X) as r ↓ 0.

Proof The claim is trivial if g ∈ Cb ∩ L1(X), thus the general case follows by approximation
if we show that the operators sending g to gr are uniformly bounded in L1 for r ∈ (0, 1).
For this notice that´ ffl

Br (x)
g(y) dm(y) dm(x) = ´

g(y)
ffl

Br (y)
m(Br (y))
m(Br (x))

dm(x) dm(y)

≤ Doub(1)
´

g(y) dm(y),

and the conclusion follows. ��
We emphasize that at this stage we have been able to deduce the important property (3.14),
but we have not proved that the limit of

´
ks p

p,r [u] dm as r ↓ 0 exists. It is unclear to us
whether at this level of generality this really holds: we shall obtain the existence of such limit
in the next section under the further assumption that the source space X is strongly rectifiable.

3.3 The energy density

In order to characterize the limit of
´

ks p
p,r [u] dm the following notion will turn out to be

useful:

Definition 3.12 (p-size of a seminorm) Let ‖ · ‖ be a seminorm on R
d and p ∈ (1,∞). Its

p-size Sp(‖ · ‖) is defined as

Sp(‖ · ‖) :=
∣∣∣ 

B1(0)
‖w‖p dLd(w)

∣∣∣ 1
p =

∣∣∣ 
Br (0)

‖z‖p

r p
dLd(z)

∣∣∣ 1
p ∀r > 0,

where the balls B1(0), Br (0) are intended in the Euclidean norm.

We then have the following result identifying the limit of
´

ks p
p,r [u] dm. Notice a difference

with respect to the terminology in [34]: what here we call energy density, in [34] was the
p-th root of the energy density.

Theorem 3.13 (Energy density) Let (X, d,m) be a strongly rectifiable metric measure space
with locally uniformly doubling measure and supporting a Poincaré inequality and (Y, dY, ȳ)

a pointed complete space. Also, let p ∈ (1,∞).
Then for every u ∈ K S1,p(X,Yȳ) there is a function ep[u] ∈ L p(X), called p-energy

density of u, such that

ks p,r [u] → ep[u] m − a.e. and in L p(X) as r ↓ 0. (3.16)

More explicitly, for any εn ↓ 0 and aligned family of atlases (Aεn ), the function ep[u] is
given by the formula

ep[u](x) = Sp(mdx (u)) m − a.e. x ∈ X, (3.17)

where md ·(u) is the metric differential of u relative to (Aεn ).
In particular, the limit in (3.11) exists for any u ∈ L p(X,Yȳ).

Proof The last claim is trivial if u /∈ K S1,p(X,Yȳ) by the very definition of such space. If
instead u ∈ K S1,p(X,Yȳ), then such claim follows from (3.16). Fix εn ↓ 0 and aligned
family of atlases (Aεn ). Also, fix u ∈ K S1,p(X,Yȳ) and suppose we have already proved
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m-a.e. convergence of ks p,r [u] to Sp(md ·(u)). Then the bound (3.15) ensures that we can
apply the simple Lemma 3.14 below to fr := ks p

p,r [u] and gr given by the right hand side
of (3.15): Lemma 3.11 ensures that (gr ) has a limit in L1(X) as r ↓ 0 and thus Lemma 3.14
yields that ks p

p,r [u] → S p
p (md ·(u)) in L1(X) or equivalently that ks p,r [u] → Sp(md ·(u))

in L p(X). Therefore to conclude it is sufficient to prove that ks p,r [u](·) → Sp(md ·(u))

m-a.e.. Recalling the identity K S1,p(X,Yȳ) = H S1,p(X,Yȳ) - proved in Corollary 3.10 -
and (2.15), up to restrict the charts it is not restrictive to assume that u|U εn

i

is Lipschitz for

every n, i ∈ N.
To this aim let R > 0 and start observing that if x ∈ X is a Lebesgue point of G p

R and a
density point of U ⊂ X, by passing to the limit in the trivial bound

1

m(Br (x))

ˆ
Br (x)\U

G p
R dm ≤ 1

m(Br (x))

ˆ
Br (x)\U

|G p
R(y) − G p

R(x)| dm(y)

+G p
R(x)

m(Br (x) \ U )

m(Br (x))

we deduce that

lim
r↓0

1

m(Br (x))

ˆ
Br (x)\U

G p
R dm = 0.

Using this and (3.15) it is easy to see that for any U ⊂ X Borel it holds

lim
r↓0

∣∣∣∣ks p
p,r [u](x) −

 
Br (x)∩U

d p
Y(u(y), u(x))

r p
dm(y)

∣∣∣∣ = 0 m − a.e. x ∈ U . (3.18)

Now use again the fact that K S1,p(X,Yȳ) = H S1,p(X,Yȳ) (Corollary 3.10) and (2.15) to
apply Proposition 3.6 and deduce that u is m-a.e. approximately metrically differentiable
relatively to (Aεn ). Then putting for brevity nx := mdx (u) it is easy to see that the metric
differentiability gives that

lim
n→∞ ap - lim y→x

y∈U εn
i(n,x)

|d p
Y(u(y), u(x)) − n

p
x (ϕn

i (y) − ϕn
i (x))|

d p(x, y)
= 0 m − a.e. x ∈ X,(3.19)

where i(n, x) ∈ N is such that x ∈ U εn
i(n,x). We are now in position to apply, for every

n, i,∈ N, the trivial Lemma 3.15 below to the set K := U εn
i(n,x) (recall that we assumed

u|U εn
i(n,x)

to be Lipschitz) and to m-a.e. x ∈ U εn
i(n,x) to deduce that

lim
n→∞ lim

r↓0

 
Br (x)∩Uεn

i(n,x)

|d p
Y(u(y), u(x)) − n

p
x (ϕn

i (y) − ϕn
i (x))|

r p dm(y)
(3.19)= 0 m − a.e. x ∈ X.

(3.20)

We now claim that

lim
n→∞ lim

r↓0

 
Br (x)∩U εn

i(n,x)

n
p
x (ϕn

i (y) − ϕn
i (x))

r p
dm(y) = S p

p (nx ) m − a.e. x ∈ X (3.21)

and observe that this identity together with (3.18) and (3.20) gives the conclusion.
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Fix i, n ∈ N, put U n
i := U εn

i for brevity and let x ∈ U n
i be a point where u is metrically

differentiable. Then we have 
Br (x)∩U n

i

n
p
x (ϕn

i (y) − ϕn
i (x))

r p
dm(y)

= 1

m(Br (x) ∩ U n
i )

ˆ
n

p
x (w − ϕn

i (x))

r p
d(ϕn

i )∗m|Br (x)∩U n
i
(w). (3.22)

Now notice that since ϕn
i : U n

i → ϕn
i (U n

i ) ⊂ R
d is (1 + εn)-biLipschitz we have

χ
BRd

r/(1+εn )
(ϕn

i (x))
(ϕn

i )∗(m|U n
i
) ≤ (ϕn

i )∗(m|BX
r (x)∩U n

i

) ≤ χ
BRd

r(1+εn )
(ϕn

i (x))
(ϕn

i )∗(m|U n
i
) (3.23a)

(1 + εn)−d dm

dHd
≤

d(ϕn
i )∗m|U n

i

dLd
◦ ϕn

i ≤ (1 + εn)d dm

dHd
m − a.e. on U n

i ,

(3.23b)

therefore for any f : Rd → R
+ Borel, using the inequalities on the right in the above we

have
1

m(Br (x) ∩ U n
i )

ˆ
f (w) d(ϕn

i )∗m|Br (x)∩U n
i
(w)

(3.23a)≤ 1

m(Br (x) ∩ U n
i )

ˆ
BRd

r(1+εn )
(ϕn

i (x))

f (w) d(ϕn
i )∗(m|U n

i
)(w)

(3.23b)≤ (1 + εn)d

m(Br (x) ∩ U n
i )

ˆ
BRd

r(1+εn )
(ϕn

i (x))

f (w)χϕn
i (U n

i )

dm

dHd
((ϕn

i )−1(w)) dLd(w)

= (1 + εn)d

m(Br (x) ∩ U n
i )

ˆ
BRd

r(1+εn )
(ϕn

i (x))

f (w)ρ(w) dLd(w)

= (1 + εn)2drd

m(Br (x) ∩ U n
i )

ˆ
BRd
1 (0)

( f ρ)
(
ϕn

i (x) + r(1 + εn)z
)
dLd(z),

where we put ρ := χϕn
i (U n

i )
dm
dHd ◦ (ϕn

i )−1. We shall apply this bound to f := n
p
x (·−ϕn

i (x))

r p to
obtain

1

m(Br (x) ∩ U n
i )

ˆ
n

p
x (w − ϕn

i (x))

r p
d(ϕn

i )∗m|Br (x)∩U n
i
(w)

≤ (1 + εn)2d+prd

m(Br (x) ∩ U n
i )

ˆ
BRd
1 (0)

n
p
x (z)ρ

(
ϕn

i (x) + r(1 + εn)z
)
dLd(z).

(3.24)

Now recall that since x is a point of approximate metric differentiability, we know that
x, ϕn

i (x) are density points of U n
i , ϕn

i (U n
i ) respectively. Assume also that x is a Lebesgue

point of the density ϑd(y) = limr↓0 m(Br (y))

ωdrd (recall Theorem 2.20), that the density itself

exists positive at x and finally assume that ϕn
i (x) is a Lebesgue point of dm

dHd ◦ (ϕn
i )−1 =

ϑd ◦ (ϕn
i )−1 (notice that all these conditions are satisfied for m-a.e. x ∈ U n

i ). Then passing
to the limit in (3.24) and using the continuity of nx and (3.22) we obtain

lim
r↓0

 
Br (x)∩U n

i

n
p
x (ϕn

i (y) − ϕn
i (x))

r p
dm(y) ≤ (1 + εn)2d+p

ϑd(x)

 
BRd
1 (0)

n
p
x (z)ϑd(x) dLd(z)

= (1 + εn)2d+p S p
p (nx ).
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Since the lower bound limr↓0
ffl

Br (x)∩U n
i

n
p
x (ϕn

i (y)−ϕn
i (x))

r p dm(y) ≥ (1+ εn)−2d−p S p
p (nx ) can

be obtained in a similar way by using the inequalities on the left in (3.23), the claim (3.21)
and the conclusion follow. ��
Notice that the existence of the energy density provides the representation formula

E p(u) =
⎧⎨
⎩
ˆ

ep
p[u] dm, if u ∈ K S1,p(X,Yȳ),

+∞, otherwise.
(3.25)

Lemma 3.14 Let (X, d,m) be a metric measure space and ( fr ), (gr ) ⊂ L1(X) be non-
negative with

fr ≤ gr m − a.e. ∀r > 0,

gr → g in L1(X),

fr → f m − a.e. as r ↓ 0,

for some Borel functions f , g. Then fr → f in L1(X) as r ↓ 0.

Proof Let rn ↓ 0 be arbitrary and use the assumption gr → g in L1(X) and classical
properties of the space L1(X) to find a subsequence, not relabeled, such that grn ≤ g̃ m-
a.e. for some g̃ ∈ L1(X). Then frn ≤ g̃ m-a.e. for every n and an application of the
dominated convergence theorem gives that frn → f in L1(X). The conclusion follows from
the arbitrariness of the sequence rn ↓ 0. ��
Lemma 3.15 Let (X, d,m) be a metric measure space, K ⊂ X be a Borel set, f : K → R

be a Borel and bounded function and x ∈ K a density point.
Then

lim
r↓0

 
Br (x)∩K

f dm ≤ ap - limy→x
y∈K

f (y).

Proof Let δ > 0 and Aδ ⊂ K be the set of z’s such that f (z) > δ + ap - limy→x
y∈K

f (y). Then

by definition of ap - lim we know that limr↓0 m(Br (x)∩Aδ)
m(Br (x))

= 0. Since for any r > 0 we have

ˆ
Br (x)∩K

f dm =
ˆ

Br ∩Aδ

f dm +
ˆ

Br ∩K\Aδ

f dm ≤ ‖ f ‖L∞m(Br ∩ Aδ) + m(Br (x))
(
δ + ap - limy→x

y∈K
f (y)

)
,

the conclusion follows by the arbitrariness of δ > 0. ��
Corollary 3.16 (Locality of the energy density) Let (X, d,m) be a strongly rectifiable space
with uniformly locally doubling measure and supporting a Poincaré inequality and (Y, dY, ȳ)

a pointed complete space.
Let p ∈ (1,∞) and u, v ∈ K S1,p(X,Yȳ). Then

ep[u] = ep[v] m − a.e. on {u = v}.
Proof Let εn ↓ 0 be arbitrary and (Aεn ) an aligned family of atlases. By the very definition
of approximate metric differentiability and the fact thatm-a.e. x ∈ {u = v} is a density point
for such set (by the doubling assumption) we see that

mdx (u) = mdx (v) m − a.e. x ∈ {u = v}.
The conclusion then follows from the identity (3.17). ��
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Remark 3.17 (About the Poincaré inequality)For a given p ∈ (1,∞), the same conclusions
of Theorem 3.13 hold if in place of (2.9) we assume the weaker p-Poincare’ inequality: 

Br (x)

| f − fBr (x)| dm

≤ C(R)r
∣∣∣  

Bλr (x)

lipp f dm
∣∣∣ 1

p ∀x ∈ X, r ∈ (0, R) ∀ f ∈ Lipbs(X).

Indeed:

(i) by the celebrated result by Keith-Zhong [31] in this case it also holds the p′-Poincaré
inequality for some p′ < p,

(ii) then in the estimate (2.18) (and similarly in the one below it) one can replace MλR(|Du|)
with |MλR(|Du|p′

)| 1
p′

(iii) and since |Du|p′ ∈ L
p
p′ , Proposition 2.3 grants that MλR(|Du|p′

)| ∈ L
p
p′ (X) as well,

i.e. |MλR(|Du|p′
)| 1

p′ ∈ L p(X).

In other words, the conclusion of Proposition 2.17 are in place with

G R := C(R)|M2λR(|Du|p′
)| 1

p′ and once the equivalence ofW 1,p(X,Yȳ) and H S1,p(X,Yȳ)

is obtained, the other arguments, which do not use the Poincaré inequality, can be reproduced.
Similarly, from the next section on we are going to deal with the case p = 2 and prove,

among other things, the lower semicontinuity of the energy. Poincaré inequality will not be
used, beside its application in Proposition 2.17, so that for the reasons just explained all the
stated results would work as well assuming only the validity of the 2-Poincaré inequality. ��

4 Energy density and differential calculus

4.1 On the notion of differential in the non-smooth setting

4.1.1 Reminders about differentials of metric-valued maps

In this short section we are going to recall the definition of differential of a map u ∈
W 1,2(X,Yȳ) as given in [20] by building up on the theory developed in [15]. To keep the
presentation short we assume the reader familiar with the language of L0-normed modules.

Recall that the differential of real valued Sobolev functions and the cotangent module are
defined by the following:

Theorem/Definition 4.1 Let (X, d,m) be a metric measure space. Then there exists a unique
couple (L0(T ∗X), d) where L0(T ∗X) is a L0(m)-normed module and d : W 1,2(X) →
L0(T ∗X) is linear and satisfies

(i) for any f ∈ W 1,2(X) it holds |d f | = |D f | m-a.e.,
(ii) the space {d f : f ∈ W 1,2(X)} generates L0(T ∗X).

Uniqueness is intended up to unique isomorphism, i.e. if (M , d̃) has the same properties,
then there is a unique isomorphism � : L0(T ∗X) → M such that d̃ = � ◦ d.

As studied in [19], in the setting of strongly rectifiable spaces, the cotangent module (and its
dual the tangent module L0(TX)) are tightly linked to the geometry of the underlying space.
In particular, the following holds:
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Theorem 4.2 (Dimension of (co)tangent module) Let (X, d,m) be a strongly rectifiable space
of dimension d which is locally doubling and supporting a Poincaré inequality.

Then the modules L0(T ∗X) and L0(TX) have dimension d.

For general metric measure structures the structure of the (co)tangent module can be rather
complicated, but at least if the metric structure is the Euclidean one some link between such
abstract notions and more concrete ones can be established: the following result has been
obtained in [18], see also [40] for more recent development on the topic.

Theorem 4.3 (Tangent module in the Euclidean setting) Let d ∈ N and consider the space
R

d equipped with the Euclidean distance and a non-negative and non-zero Radon measure
μ.

Then there is a canonical embedding ι of the tangent module L0(TR
d) into the space

L0(Rd ,Rd ;μ) of Borel vector fields on R
d identified up to μ-a.e. equality. In particular the

dimension of L0(TR
d) is bounded above by d.

We now turn to the definition of differential for a metric valued map u : X → Y. This is
given in terms of Sobolev functions on both the source and the target space, where the latter
will typically be equipped with the measure μ := u∗(|Du|2m). In order to emphasize the
dependence of such structure on the choice of the measure μ (and thus on the function u)
we shall denote by dμ the differential operator on (Y, dY, μ) and by L0

μ(T ∗Y), L0
μ(TY) the

corresponding cotangent and tangent modules.
The definition of differential of u is given by duality with that of pullback of Sobolev

functions. This latter operation is the one studied in the following lemma:

Lemma 4.4 (Pullback of Sobolev functions) Let (X, d,m) be a metric measure space and
(Y, dY, ȳ) a pointed complete space.

Let u ∈ W 1,2(X,Yȳ), put μ := u∗(|Du|2m) and let f ∈ W 1,2(Y, dY, μ). Then there is
g ∈ S2(X) such that g = f ◦ u m-a.e. on {|Du| > 0} and

|dg| ≤ |dμ f | ◦ u|Du| m − a.e.. (4.1)

More precisely, there is g ∈ S2(X) and a sequence ( fn) ⊂ Lipbs(Y) such that

fn → f μ − a.e. lipa( fn) → |dμ f | inL2(μ),

fn ◦ u → g m − a.e. lipa( fn) ◦ u|Du| → |dμ f | ◦ u|Du| inL2(m).
(4.2)

Moreover, if f is also bounded, then the fn’s can be taken to be equibounded.

Proof See [20, Proposition 3.3]. The last claim is trivial by truncation, as already noticed in
the course of the proof of [20, Proposition 3.3]. ��
Ideally, we would like to define du as L0(m)-linear map from L0(TX) to the pull-
back u∗L0

μ(TY) of L0
μ(TY) via u. A technical issue in doing so is that u∗L0

μ(TY)

is not a L0(m)-normed module, but a L0(|Du|2m)-normed module, or equivalently a
L0(χ {|Du|>0}m)-normed module. Yet, it is clear that du should be 0 on {|Du| = 0} so that
what we should do is to produce a L0(m)-normed module which ‘coincides with u∗L0

μ(TY)

on {|Du| > 0}’ and the easiest way to do so is to require that such module ‘contains only the
0 element on {|Du| = 0}’.

This procedure is done by the extension functor that we now describe. Let E ⊂ X be Borel
and notice that we have a natural projection/restriction operator proj : L0(m) → L0(m|E

)

given by passage to the quotient up to equalitym-a.e. on E and a natural ‘extension’ operator
ext : L0(m|E

) → L0(m) which sends f ∈ L0(m|E
) to the function equal to f m-a.e. on
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E and to 0 on X \ E . Now let M be a L0(m|E
)-normed module. The extension of M is

the L0(m)-normed module Ext(M ) defined as a set by Ext(M ) := M , equipped with the
multiplication of v ∈ Ext(M ) by f ∈ L0(m) given by proj( f )v ∈ M = Ext(M ) and with
the pointwise norm defined as ext(|v|) ∈ L0(m). We shall denote by ext : M → Ext(M )

the identity map.

Definition 4.5 Let (X, d,m) be a metric measure space, (Y, dY, ȳ) a pointed complete space
and u ∈ W 1,2(X,Yȳ). Then the differential du of u is the operator

du : L0(TX) → Ext
(
(u∗L0

μ(T ∗Y))∗
)

given as follows. For v ∈ L0(TX), the object du(v) ∈ Ext
(
(u∗L0

μ(T ∗Y))∗
)
is characterized

by the property: for every f ∈ W 1,2(Y, dY, μ) and every g ∈ S2(X, dX,m) as in Lemma
4.4 we have

ext
([u∗dμ f ])(du(v)

) = dg(v) m − a.e.. (4.3)

The fact that such definition is well posed is the content of the next proposition, see [20,
Proposition 3.5], which also provides the compatibility (4.4) between two natural notions of
‘norm of the differential’.

Proposition 4.6 (Well posedness of the definition) Let (X, d,m) be a metric measure space,
(Y, dY, ȳ) a pointed complete space and u ∈ W 1,2(X,Yȳ). Then the differential du of u
in Definition 4.5 is well-defined and the map du : L0(TX) → Ext

(
(u∗L0

μ(T ∗Y))∗
)

is

L0(m)-linear and continuous. Moreover, it holds that

|du| = |Du| m − a.e.. (4.4)

4.1.2 Differential andmetric differential

In the last section we have seen the definition of differential for a metric valued Sobolev map
and in Theorem 3.1 we have seen the one of metric differential for a metric valued Lipschitz
map on R

d . It is natural to wonder whether the two concepts are compatible: the positive
answer is given in the following result, proved in [20, Theorem 4.7]:

Theorem 4.7 Let (Y, dY, ȳ) be a pointed complete space, u : Rd → Y be a Lipschitz map
which is also in W 1,2(Rd ,Yȳ) and v ∈ R

d ∼ T0Rd . Denote by v̄ ∈ L0(TR
d) the vector

field constantly equal to v. Then

|du(v̄)|(x) = mdx (u)(v) Ld − a.e. x ∈ R
d .

In this section we will extend Theorem 4.7 to the case of strongly rectifiable spaces. In order
to do so, we need to recall the link between the ‘abstract and analytic’ tangent module and
the ‘concrete and geometric’ bundle obtained by ‘gluing one copy of Rd for each point of
X’. Such link has been established in [19]: to recall it we need some intermediate definition
and result.

First of all, we define the geometric tangent bundle of the strongly rectifiable space X of
dimension d as

TGHX := X × R
d ,

and then we define the space of its Borel sections up tom-a.e. equality in the natural way as

L0(TGHX) := {
Borel maps from X to R

d identified up to m − a.e. equality
}
.
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Of course, this definition alone does not make much sense: what is relevant is the way
L0(TGHX) is related to X and to the calculus on it: such link is recalled in Theorem 4.9
below and is established via the use of an aligned family of atlases (in the same spirit as in
Proposition 3.6).

The following lemma is useful as it defines the differential of a coordinate map (which in
our axiomatisation is only defined on a Borel set), see [19, Theorem 2.5] for the proof:

Lemma 4.8 Let (X, d,m) be such that W 1,2(X) is reflexive. Let U ⊂ X be Borel and ϕ :
U → R

d be such that for some constants L, C > 0 it holds

ϕ : U → ϕ(U ) is L − biLipschitz,

C−1Ld |ϕ(U )
≤ ϕ∗(m|U ) ≤ CLd |ϕ(U )

.

Then there is a unique linear and continuous operator dϕ : L0(TX)|U → L0(ϕ(U ),Rd),

called differential of ϕ, that for any v ∈ L0(TX)|U satisfies:

dg(dϕ(v)) = d(g ◦ ϕ̄)(v) ◦ ϕ−1 ∀g ∈ Lipbs(R
d),

dϕ( f v) = f ◦ ϕ−1dϕ(v) ∀ f ∈ L0(m),
(4.5)

where ϕ̄ : X → R
d is any Lipschitz extension of ϕ. Moreover, dϕ satisfies

L−1|v| ◦ ϕ−1 ≤ |dϕ(v)| ≤ L|v| ◦ ϕ−1 Ld − a.e. on ϕ(U ).

We then have the following result:

Theorem 4.9 (Abstract and concrete tangent modules) Let (X, d,m) be a strongly rectifiable
space such that W 1,2(X) is reflexive. Let εn ↓ 0 be a given sequence and (Aεn ) an aligned
family of atlases.

Then:

i) for every n ∈ N the L0(m)-linear and continuous map In : L0(TX) → L0(TGHX) is
well defined by the formula

χU n
i
In(v) = dϕn

i (χU n
i
v) ◦ ϕn

i , ∀i ∈ N, v ∈ L0(TX),

ii) the sequence (In) is Cauchy in Hom(L0(TX), L0(TGHX)),
iii) the limit map I : L0(TX) → L0(TGHX) is an isometric isomorphism of modules.

Proof The existence ofI is the content of [19, Theorem 5.2], its construction as limit of the
maps In is the content of the proof of such result. ��
Remark 4.10 (About the dependence on p of the differential calculus)Theorem/Definition
4.1 can be stated for any Sobolev exponent p ∈ (1,∞) but, without appropriate assumptions
on the space, the resulting cotangent module and differentiation operator may depend on p.
One of the problems is in the fact that the minimal p-weak upper gradient also may depend
on p, so that for f ∈ W 1,p ∩ W 1,p′

(X) its p-minimal weak upper gradient and p′-minimal
weak upper gradient can be different (see e.g. [11]). Then point (i) of the statement shows
that dp f and dp′ f must be different.

Still, there are circumstances where the space X is ‘good enough’ so that such differences
do not occur. For instance, it can be proved that this is the case for doubling spaces supporting
a Poincaré inequality (using the results in [8]) or RC D(K ,∞) ones (using the results in [17]).

For what concerns our discussion, a more complicated issue occurs when deal-
ing with metric valued Sobolev maps, because in this case the (co)tangent module on
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(Y, dY, u∗(|Du|pm)) appears and there is no reasonable regularity assumption one can
make on such metric measure structure. The result is that regardless of the regularity of
X, the differential dpu of u ∈ W 1,p(X,Yȳ) a priori depends on p.

We could have developed the theory presented here even for maps W 1,p(X,Yȳ) to prove,
for instance, that the p-energy E p is lower-semicontinuous on L p(X,Yȳ), but that would
have required to either carry on with the additional notational burden of indicating in some
way the dependence on p of the various differentiation operators, or avoiding doing so at
the risk of generating confusion when different exponents are compared. For instance, the
representation formula (3.17) and (4.15) link the 2-differential du to themetric objectmdx (u)

which is unrelated to Sobolev calculus - this seems to suggest some form of link between
different p-differentials of the same map u.

These kind of discussions are outside the scope of this manuscript, so we preferred to
concentrate on the key case p = 2 only. ��

4.2 Reproducing formula for the energy density and lower semicontinuity of the
energy

In this section we do three things. The first is of technical nature and will be useful for the
other results here: in Theorem 4.12 we generalize Theorem 4.7 to the case of maps defined
on strongly rectifiable spaces. The second is to provide another representation for the energy
density: while formula (3.17) relates it to the p-size of the metric differential, in Theorem
4.14 below - using Theorem 4.12 - we relate it to the p-size of the differential (still sticking
to the case p = 2, see definition 4.13 below). Finally, using this formula we will achieve
our third and main goal of this section: we shall prove in Theorem 4.16 that the energy E2

associated to the Korevaar–Schoen space is lower semicontinuous. This result is based on
the closure properties of the abstract differential that we have encountered in the previous
sections.

We start with the following technical lemma:

Lemma 4.11 Let (X, d,m) be such that W 1,2(X) is reflexive, (Y, dY, ȳ) a pointed complete
space and u ∈ W 1,2(X,Yȳ).

Then for every v ∈ L0(TX) we have

|du(v)| = ess-sup f ∈Lipbs (Y)
Lip( f )≤1, f (ȳ)=0

d( f ◦ u)(v) m − a.e.. (4.6)

Proof Put μ := u∗(|Du|2m) and notice that by the definition of du(v) and the fact that
{ext([u∗dμ f ]) : f ∈ W 1,2 ∩ L∞(Y, dY, μ)} generates Ext(u∗L0

μ(T ∗Y)
)
(see [15]) we see

that

|du(v)| = ess-sup(Ei )
ess-sup

( fi )⊂W1,2∩L∞(Y,dY,μ)

|ext([u∗dμ fi ])|≤1 m−a.e. on Ei

χ Ei ext
([u∗dμ fi ]

)
(du(v)) m − a.e.,

(4.7)

where the first essential supremum is among all Borel partitions (Ei ) on X. Let f : Y →
R be 1-Lipschitz with bounded support and notice that f ∈ W 1,2 ∩ L∞(Y, dY, μ) with
|ext([u∗dμ f ])| ≤ 1 m-a.e., and thus recalling Definition 4.5 we see that

|du(v)| ≥ ext([u∗dμ f ])(du(v)) = dg(v) m − a.e.,
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for g given by Lemma 4.4. Thus to prove that inequality ≥ holds in (4.6) it is sufficient to
show that

dg(v) = d( f ◦ u)(v) m − a.e.. (4.8)

To this aim notice that the locality of the differential and the fact that g = f ◦ u m-a.e. on
the set {|du| > 0} proves (4.8) on such set. On the other hand, (4.1) and the trivial bound
|d( f ◦ u)| ≤ |du| ensure that m-a.e. on {|du| = 0} both sides of (4.8) are 0, thus proving
(4.8) and inequality ≥ holds in (4.6).

Recalling (4.4) we see that the opposite inequality is trivial on {|Du| = 0}. Also, by a
simple localization argument we can, and will, assume that |v| ∈ L∞(X).

Now fix E ⊂ {|Du| > 0} compact and f ∈ W 1,2∩ L∞(Y, dY, μ)with |ext([u∗dμ f ])| ≤
1 m-a.e. on E . Let F ⊂ Y be defined up to μ-null sets by F := { du∗(χ E |Du|2m)

du∗(|Du|2m)
> 0} and

notice that |dμ f | ≤ 1 μ-a.e. on F .
Apply Lemma 4.4 to find g ∈ S2(X) and a sequence ( fn) ⊂ Lipbs(Y) of uniformly

bounded functions (by the last claim in the lemma) satisfying (4.2). Let η : X → [0, 1] be
1-Lipschitz, with bounded support and identically 1 on E and notice that the functions η fn ◦u
are uniformly bounded in L2(X) (because they are uniformly bounded and with uniformly
bounded support) and satisfy

|d(η fn ◦ u)| ≤ lipa( fn) ◦ u|Du| + | fn | ◦ u χ supp(η) m − a.e..

Therefore recalling the last in (4.2) we see that these functions are uniformly bounded in
W 1,2(X) and thus, since we assumed such space to be reflexive, they have a non-relabeled
subsequence weakly converging to some function g̃ which, by (4.2), coincides with g on
E . We now apply Mazur’s lemma to the sequence (η fn ◦ u) to find a sequence of convex
combinations W 1,2(X)-strongly converging to g̃. Clearly, these convex combinations can be
written as η f̃n ◦ u where the f̃n’s are convex combinations of the fn’s and it is then easy to
see that they belong to Lipbs(Y) and satisfy (4.2).

From η f̃n ◦ u → g̃ in W 1,2(X) and the fact that g̃ = g on E we deduce that

χ Ed( fn ◦ u)(v) → χ Edg(v) in L2(X,m).

Now fix ε > 0 and apply Egorov’s theorem to find Fε ⊂ F compact with

μ(F \ Fε) < ε m(E \ Eε) < ε where Eε := E ∩ u−1(Fε) (4.9)

and a further non-relabeled extraction of subsequence such that

lipa( f̃n) → |dμ f | uniformly on Fε

d( f̃n ◦ u)(v) → dg(v) uniformly on Eε.

In particular, since |dμ f | ≤ 1 μ-a.e. on F , possibly removing another small set from Fε -
keeping (4.9) valid - we can find n̄ ∈ N such that

lipa( f̃n̄)(y) < 1 + ε for every y ∈ Fε,

|d( f̃n̄ ◦ u)(v) − dg(v)| < ε m − a.e. on Eε.
(4.10)

We thus proved that any y ∈ Fε has a neighbourhoodUy where f̃n̄ is (1+ε)-Lipschitz. Hence
restricting f̃n̄ to Uy and then applying the McShane extension lemma we find a 1-Lipschitz
function hy which coincides with (1 + ε)−1 f̃n̄ on Uy . Up to adding a constant, which does
not affect the differential, we can also assume that hy(ȳ) = 0. By compactness of Fε there
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are y1, . . . , yN such that Fε ⊂ ∪i Uyi . Putting Eε,i := Eε ∩ u−1(Uyi ), the locality of the
differential gives d( f̃n̄ ◦ u)(v) = (1 + ε)d(hyi ◦ u)(v) and therefore

ext
([u∗dμ f ])(du(v))

(4.3)= dg(v)
(4.10)≤ d( f̃n̄ ◦ u)(v) + ε = (1 + ε)d(hyi ◦ u)(v) + ε m − a.e. on Eε,i .

The conclusion follows from this inequality, the arbitrariness of E and f as chosen above,
the identity (4.7), the arbitrariness of ε > 0 and the bounds (4.9). ��

The first application of such lemma is in the proof of the following generalization of
Theorem 4.7:

Theorem 4.12 Let (X, d,m) be a strongly rectifiable space with uniformly locally doubling
measure and supporting a Poincaré inequality and (Y, dY, ȳ) a pointed complete metric
space. Also, let εn ↓ 0 be a given sequence and (Aεn ) an aligned family of atlases and
I : L0(TX) → L0(TGHX) the isomorphism given by Theorem 4.9.

Then for every u ∈ W 1,2(X,Yȳ) and v ∈ L0(TX) we have

|du(v)|(x) = mdx (u)(I (v)(x)) m − a.e. x ∈ X,

where mdx (u) is the approximate metric differential of u relative to (Aεn ).

Proof Up to post-compose u with the Kuratowski embedding we can assume that u takes
values in �∞(Y).

It is not restrictive to assume that for every n, i the set U n
i ⊂ X is compact and (by

(2.15) and Proposition 2.17) that u|U n
i
is Lipschitz, therefore recalling Lemma 3.2 for every

i, n ∈ N there is vn
i ∈ Lip(Rd ,Y) such that vn

i ◦ ϕn
i = u on U n

i and with a simple truncation
argument we can assume that vn

i has bounded support. Then letting ϕ̄n
i : X → R

d be any
Lipschitz extension of ϕn

i , for any v ∈ L0(TX) and f : Y → R 1-Lipschitz with f (ȳ) = 0
and bounded support we have

d( f ◦ u)(v) = d( f ◦ vn
i ◦ ϕ̄n

i )(v)
(4.5)= d( f ◦ vn

i )(dϕn
i (v)) ◦ ϕn

i m − a.e. on U n
i .

Passing to the essential supremum in f and recalling Lemma 4.11 (applicable by point (v)

in Theorem 2.8) we deduce that

|du(v)| = |dvn
i (dϕn

i (v))| ◦ ϕn
i m − a.e. on U n

i .

Then by Theorem 4.7, point (i) of Proposition 3.6 and Theorem 4.9 and with the notation
introduced there we have that for m-a.e. x ∈ U n

i it holds

|dvn
i (dϕn

i (v))|(ϕn
i (x)) = mdϕn

i (x)(v
n
i )

(
dϕn

i (v)(ϕn
i (x))

) = nn
x
(
dϕn

i (v)(ϕn
i (x))

) = nn
x (In(v)(x)).

We thus see that for every n ∈ N it holds

|du(v)|(x) = nn
x (In(v)(x)) m − a.e. x ∈ X.

Now observe that Proposition 3.6 ensures that nn → n in L0(X, snd) and coupling this
information with the convergence of In to I in Hom(L0(TX), L0(TGHX)) granted by
Theorem 4.9 we easily deduce that nn· (In(v)(·)) → n·(I (v)(·)) in L0(X) thus obtaining
the conclusion. ��
We now pass to the study of a new representation formula for the energy density. Recall that
a L0(m)-normed module H is said a Hilbert module provided

2(|v|2 + |w|2) = |v + w|2 + |v − w|2 m − a.e. ∀v,w ∈ H ,
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and that a Hilbert base is a collection e1, . . . , ed ∈ H which generates H and satisfies

〈ei , e j 〉 = δi j m − a.e. ∀i, j = 1, . . . , d.

If H admits such a base made of d elements, we say that H has dimension d .

Definition 4.13 (2-size of an operator on a Hilbert module) Let H be a L0(m)-Hilbert
module of dimension d and M a L0(m)-normed module. Let T : H → M a L0(m)-linear
and continuous map.

Then the 2-size S2(T ) ∈ L0(m) is defined as

S2(T )(x) :=
∣∣∣∣
 

BRd
1 (0)

∣∣∣T ( d∑
i=1

viei
)∣∣∣2
M

(x) dLd(v1, . . . , vd)

∣∣∣∣
1
2

, m − a.e. x, (4.11)

where e1, . . . , ed ∈ H is a Hilbert base of H and | · |M is the pointwise norm on M .

Notice that if the target module is also Hilbertian, then the 2-size coincides, up to a multi-
plicative dimensional constant, with the Hilbert-Schmidt norm of T , see Lemma 6.6.

The fact that orthogonal transformations ofRd preserve the Lebesgue measure grants that
for any linear operator � : Rd → B, where B is a Banach space, it holds 

BRd
1 (0)

‖�(z)‖2B dLd(z) =
 

BRd
1 (0)

‖�(O(z))‖2B dLd(z) ∀O ∈ O(d).

From this identity it is immediate to verify that the definition of 2-size is well-posed, i.e. it
does not depend on the chosen base (ei ). Similarly, it is easy to see that there exists a constant
c(d) > 0 such that for any � as above it holds

c(d)‖�‖op ≤
∣∣∣∣
 

BRd
1 (0)

‖�(z)‖2B dLd(z)

∣∣∣∣
1
2 ≤ ‖�‖op, (4.12)

where ‖�‖op := sup|v|≤1 ‖�(v)‖B , and from these bounds, (4.11) and the observation that

|T | = sup
v∈Rd

|v|≤1

|T (
∑

i

viei )|, m − a.e. (4.13)

where e1, . . . , ed is any Hilbert base of H , it follows that

c(d)|T | ≤ S2(T ) ≤ |T | m − a.e., (4.14)

for any T as in Definition 4.13.
It is now easy to see, as direct consequence of Theorems 3.13,4.9, 4.12 and Definitions

3.12, 4.13, that the following holds:

Theorem 4.14 Let (X, d,m) be a strongly rectifiable space with uniformly locally doubling
measure and supporting a Poincaré inequality and (Y, dY, ȳ) a pointed complete metric
space.

Then for every u ∈ K S1,2(X,Yȳ) we have that

e2[u] = S2(du) m − a.e. (4.15)

Proof For v ∈ R
d let v̂ ∈ L0(TGHX) be defined as constantly equal to v. Then, considering

all the integrals below in the Bochner sense in the space L1(X,m), we have

S2
2 (md ·(u)) =

 
BRd
1 (0)

|md ·u(v)|2 dLd(v) =
 

BRd
1 (0)

|md ·u(v̂(·))|2 dLd(v).
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Letting I : L0(TX) → L0(TGHX) be the isomorphism defined in Theorem 4.9 and recall
Theorem 4.12 we obtain that 

BRd
1 (0)

|md ·u(v̂(·))|2 dLd(v) =
 

BRd
1 (0)

|du(I −1(v̂))|2 dLd(v).

Now let e1, . . . , ed ∈ R
d be the canonical base and notice that the element ei := I −1(êi ),

i = 1, . . . , d , form a Hilbert base of L0(TX) (by Theorem 4.9) and that for v = (v1, . . . , vd)

we haveI −1(v̂) = ∑d
i=1 viei . Therefore taking into account the defining identity (4.11) we

see that

S2
2 (du) =

 
BRd
1 (0)

|du(I −1(v̂))|2 dLd(v)

and thus the conclusion follows from Theorem 3.13 and in particular by (3.17). ��

Remark 4.15 (Links with the directional energy)In [21] we showed how to adapt the notion
of directional energy - introduced in [34] - to the case of maps from an RC D(K , N ) space
to a complete space, in particular defining the directional space K S2

Z (X,Yȳ), where Z is a
regular vector field on X (see [21] for the definitions). One of the things that we proved is
that if u ∈ W 1,2(X,Yȳ), then for every regular vector field Z we also have u ∈ K S2

Z (X,Yȳ)

and the directional energy density e2,Z [u] is given by |du(Z)|, where du is defined as in 4.5.
Now observe that we proved in Corollary 3.10 that W 1,2(X,Yȳ) = K S1,2(X,Yȳ) if X

is RC D(K , N ) (as in this case it satisfies the assumption of such corollary), therefore we
deduce that if a map u belongs to the latter space, it also belongs to K S2

Z (X,Yȳ) for any
regular vector field Z and the inequality

e2,Z [u] = |du(Z)| ≤ |Z ||du| (4.14)≤ c(d)−1|Z |S2(du)

is the analogue of [34, Inequality (1.8.i)]. Similarly, the identity (4.15) is the generalization
of formula [34, Inequality (1.8.1)]. ��

Now that we have a link between the energy density and the differential of u we can use
the closure-like property of the abstract differential to obtain the lower semicontinuity of the
energy:

Theorem 4.16 (Lower semicontinuity of the Korevaar–Schoen energy) Let (X, d,m) be a
strongly rectifiable space such that W 1,2(X) is reflexive and let (Y, dY, ȳ) a complete metric
space. Also, let (un) ⊂ W 1,2(X,Yȳ) be L2(X,Yȳ)-converging to some u ∈ L2(X,Yȳ) and
such that

sup
n

ˆ
|S2(dun)|2 dm < ∞. (4.16)

Then u ∈ W 1,2(X,Yȳ) as well and for any E ⊂ X Borel we have
ˆ

E
S2
2 (du) dm ≤ lim

n→∞

ˆ
E

S2
2 (dun) dm. (4.17)

In particular, if (X, d,m) is a strongly rectifiable space, uniformly locally doubling and
supports a Poincaré inequality, then the functional E2 : L2(X,Yȳ) → [0,∞] (recall (3.11)
and (3.25)) is lower semicontinuous.
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Proof Let f : Y → Rbe 1-Lipschitzwith f (ȳ) = 0.Then the very definition ofW 1,2(X,Yȳ)

ensures that f ◦ un ∈ W 1,2(X) for every n ∈ N with

|d( f ◦ un)| ≤ |dun |
(4.14)≤ c(d)−1S2(dun) m − a.e.. (4.18)

In particular, by our assumption (4.16) up to pass to a non-relabeled subsequence we can
assume that (|dun |) has a weak L2-limit G. Similarly, taking into account that the L2(X,Yȳ)-
convergence of (un) to u trivially yields that f ◦un → f ◦u in L2(X), we see that supn ‖ f ◦
un‖W 1,2 < ∞. From the reflexivity of W 1,2(X) we deduce that ( f ◦ un) is weakly relatively
compact and this fact togetherwith L2-convergencegrantsweakW 1,2-convergenceof ( f ◦un)

to f ◦ u.
For V ∈ L2(TX) the linear operator f �→ ´

d f (V ) dm is continuous on W 1,2(X) and
thus weakly continuous. Picking V := gv with v ∈ L∞(TX) fixed and g ∈ L2(X) arbitrary
we see that d( f ◦un)(v)⇀d( f ◦u)(v) in L2(X). Recalling that (4.6) grants that d( f ◦un)(v) ≤
|dun(v)|m-a.e. and letting g be an arbitraryweak L2-limit of some subsequence of (|dun(v)|)
(the fact that this sequence is bounded in L2(X) follows from (4.18) and (4.16)), we see that
g ≤ |v|G m-a.e.. Thus letting Gv be the essential liminf of all the weak L2-limits of some
subsequence of (|dun(v)|), we see that

d( f ◦ u)(v) ≤ Gv ≤ |v|G m − a.e.. (4.19)

In particular, from the arbitrariness of v we deduce that |d( f ◦ u)| ≤ G and then the arbi-
trariness of f yields that u ∈ W 1,2(X,Yȳ). In particular, du is well defined and from the
arbitrariness of f in (4.19) and (4.6) again we conclude

|du(v)| ≤ Gv m − a.e.. (4.20)

Now fix a Hilbert base e1, . . . , ed of L0(TX) (the fact that it exists follows from Theorem
4.9) and for z ∈ R

d put ẑ := ∑
i ziei ∈ L∞(TX). Also, notice that if E ⊂ X is Borel

and gn⇀g in L2(X), then we also have χ E gn⇀χ E g in L2(X) and therefore
´

E g2 dm ≤
limn→∞

´
E g2

n dm. Keeping this and the definition ofGv inmind and applying Fatou’s lemma
we obtainˆ

E

 
BRd
1 (0)

|du(ẑ)|2 dLd(z) dm
(4.20)≤

 
BRd
1 (0)

ˆ
E

G2
ẑ dm dLd(z)

≤
 

BRd
1 (0)

lim
n→∞

ˆ
E

|dun(ẑ)|2 dm dLd(z)

≤ lim
n→∞

ˆ
E

 
BRd
1 (0)

|dun(ẑ)|2 dLd(z) dm,

which is (4.17). For the second part of the statement recall that the doubling assumption
implies that W 1,2(X) is reflexive (by point (v) in Theorem 2.8), so that the claim follows
from what already proved, Corollary 3.10 and Theorem 4.14. ��
Remark 4.17 (Non-linear Dirichlet forms)We notice that if (X, d,m) is strongly rectifiable,
uniformly locally doubling and supports a Poincaré inequality, then we have just proved that
the Korevaar–Schoen energy E2 is a non-linear Dirichlet form as axiomatized by Jost in [29]
(see also [28]).

Indeed:

(i) The quadratic contraction property

E2(ϕ ◦ u) ≤ Lip2(ϕ)E2(u)
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for u ∈ L2(X,Yȳ) and ϕ : (Y, dY, ȳ) → (Z, dZ, z̄) with ϕ(ȳ) = z̄ is a direct con-
sequence of the definition (3.10) of Korevaar–Schoen energy density at scale r and of
Theorem 3.13. Notice that in [29] the function ϕ is defined only on u(X) but one can
always reduce to the case of ϕ defined on the whole Y without altering the global Lip-
schitz constant, by suitably enlarging the target space Z (an operation which does not
affect the value of the energy).

(ii) The density of K S1,2(X,R) = W 1,2(X,R) in L2(X) follows noticing that Lipbs(X) ⊂
W 1,2(X) and that Lipbs(X) is dense in L2(X).

(iii) The L2-lower semicontinuity of E2 has been just proved in Theorem 4.16.

��

4.3 Consistency in the case Y = R

We already know from Corollary 3.10 that if (X, d,m) is uniformly locally doubling and
supports a Poincaré inequality we have W 1,2(X,Yȳ) = K S1,2(X,Yȳ) as sets. We have also
seen in Theorem 4.14 (recall also the bounds (4.14)) that if X is also strongly rectifiable,
then the corresponding notions of ‘energy density’ are comparable via universal constants
depending only on the dimension of X. In general we cannot expect more than this, because
the energy in W 1,2(X,Yȳ) is related to the operator norm of the differential, while that in
K S1,2(X,Yȳ) by its 2-size (which as said can be seen as a generalization of the Hilbert-
Schmidt norm - see also Lemma 6.6) and it is easy to see that for a linear map from R

d with
values in some Banach space, in general we cannot say anything better than (4.12) for what
concerns the relation between the operator norm and the 2-size.

Yet, there is a particular and relevant case when these two quantities coincide, up to a
multiplicative constant: this occurs if the target Banach space isR, as shown in the following
lemma.

Lemma 4.18 For any d ∈ N there is a constant c(d) > 0 such that the following holds. Let
� : Rd → R be linear. Then

‖�‖op = c(d)S2(�), (4.21)

where ‖�‖op is the operator norm defined as sup|v|≤1 |�(v)|.
In particular, for any L0(m)-linear and continuous map T from a Hilbert L0(m)-module

of dimension d to a L0(m)-module of local dimension bounded above by 1 we have

|T | = c(d)S2(T ) m − a.e.. (4.22)

Proof Both sides of (4.21) are positively 1-homogeneous and remain unchanged if we replace
� by � ◦ O , with O ∈ O(d). Since any two non-zero linear maps from R

d to R can be
transformed one into the other via these transformations, we see that the ratio S2(�)‖�‖ does not
depend on the particular non-zero � chosen. The case � = 0 follows as well because in this
case (4.21) holds for any value of the constant c(d).

For the second part of the statement we notice that on the set where the target module has
dimension 0, the map T must be 0 and thus the conclusion is trivially true. On the set where
the dimension is 1 we use what we previously proved in conjunction with (4.11) and (4.13).

��
From this simple lemmawededuce the following consistency result, in linewith the analogous
one in [34]:
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Proposition 4.19 (Consistency in the case Y = R) Let (X, d,m) be a strongly rectifiable
space with uniformly locally doubling measure and supporting a Poincaré inequality. Then
W 1,2(X,R) = K S1,2(X,R) and for any function u in these spaces it holds

|du| = c(d)e2[u] m − a.e., (4.23)

where d is the dimension of X and c(d) is given by Lemma 4.18 above.

Proof By Theorem 4.3 that the tangent module of R equipped with the measure μ :=
u∗(|du|2m) has dimension bounded above by 1, hence the same holds for Extu∗L0(TμR).
Also, by Theorem 4.2 we know that L0(TX) has dimension d and thus we are in position to
apply the above Lemma to deduce that identity (4.22) holds for T := du. Then we conclude
by the reproducing formula (4.15). ��

5 Maps defined on open sets

5.1 The spacesW1,2(Ä),W1,2
0 (Ä) andW1,2(Ä, Yȳ)

Here we recall the definition of the Sobolev spaces W 1,2(�) and W 1,2
0 (�) of real valued

Sobolev functions defined on an open subset � of a metric measure space and the related
one W 1,2(�,Yȳ).

The definition of W 1,2(�) is based on the observation that if f ∈ W 1,2(X) and η ∈
Lipbs(X), then a simple application of the Leibniz rule shows that η f ∈ W 1,2(X) as well
and by the locality property of the differential we also have d(η f ) = d f m-a.e. on {η = 1}.

We shall denote by L2
loc(�) the space of real valued Borel functions on � which belong

to L2(C) for every bounded closed set C ⊂ �. We then give the following

Definition 5.1 (The spaces W 1,2(�) and W 1,2
0 (�)) Let (X, d,m) be a metric measure space

and � ⊂ X open. The space W 1,2
loc (�) is the subset of L2

loc(�) made of those functions f
such that η f ∈ W 1,2(X) for every η ∈ Lipbs(X) with supp(η) ⊂ � (here η f is intended to
be 0 outside �). For f ∈ W 1,2

loc (�) we define d f ∈ L0(TX) to be 0 outside � and via the
formula

d f := d(η f ) m − a.e. on {η = 1} for everyη ∈ Lipbs(X)withsupp(η) ⊂ �

inside �.
We then define W 1,2(�) ⊂ W 1,2

loc (�) as the collection of those f ∈ W 1,2
loc (�) such that

f , |d f | ∈ L2(�) and equip it with the norm ‖ f ‖W 1,2(�) :=
√

‖ f ‖2
L2(�)

+ ‖|d f |‖2
L2(�)

.

Finally, the space W 1,2
0 (�) ⊂ W 1,2(�) is defined as the W 1,2(�)-closure of the space of

functions f ∈ W 1,2(�) with supp( f ) ⊂ �.

We remark that the definition of d f for f ∈ W 1,2
loc (�) is well posed thanks to the locality

property of the differential and the fact that� is open, which ensures that there are {ηn}n∈N ⊂
Lipbs(X) with support in � and such that ∪n{ηn = 1} = �.

Also, we point out that W 1,2
0 (�) could be equivalently defined as the closure in W 1,2(X),

rather than W 1,2(�), of those functions f ∈ W 1,2(X) with supp( f ) ⊂ �.
For later use we record here the following simple property of W 1,2

0 (�):

Proposition 5.2 Let (X, d,m) be a metric measure space, � ⊂ X open, f ∈ W 1,2
0 (�) and

g ∈ W 1,2(�) be such that 0 ≤ g ≤ f m-a.e. on �.
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Then g ∈ W 1,2
0 (�).

Proof Let ( fn) ⊂ W 1,2(X) with supp( fn) ⊂ � be W 1,2-converging to f . Then the maps
gn := g ∧ fn also belong to W 1,2(X) and have support contained in �, so that to conclude
it is sufficient to show that gn → g in W 1,2(�). Convergence in L2(�) is obvious. Then
notice that from the locality of minimal weak upper gradients and the fact that if gn < g then
gn = fn we have

|D(g − gn)| = χ {g>gn}|D(g − gn)| ≤ χ { f >g}∩{g>gn}|D(g − f )| + |D( f − fn)|
and therefore

‖|D(g − gn)|‖L2 ≤ ‖χ { f >g}∩{g>gn}|D(g − f )|‖L2 + ‖|D( f − fn)|‖L2 → 0,

having used the fact thatm({ f > g} ∩ {g > gn}) → 0 as n → ∞ and the absolute continuity
of the integral. ��
Now, given a pointed complete space (Y, dY, ȳ) the definition of W 1,2(�,Yȳ) can naturally
be given by imitating the analogue one 2.9:

Definition 5.3 (The space W 1,2(�,Yȳ)) Let (X, d,m) be a metric measure space, � ⊂ X
open and (Y, dY, ȳ) a pointed complete space. The space W 1,2(�,Yȳ) is the collection of
all the maps u ∈ L2(�,Yȳ) for which there is G ∈ L2(�) such that for any f : Y → R

1-Lipschitz we have f ◦ u ∈ W 1,2(�) with |D( f ◦ u)| ≤ G m-a.e. on �.
The least, in the m-a.e. sense, function G for which the above holds is denoted by |Du|.

5.2 The space KS1,p(Ä, Yȳ)

In this section we see how to adapt the theory discussed so far to the case of metric valued
functions defined only on an open subset � of the space X.

Let us start recalling the definition as given in [34]:

Definition 5.4 Let (X, d,m) be ametricmeasure space, (Y, dY, ȳ) a pointed complete space,
� ⊂ X open and u ∈ L2(�,Yȳ).

Then for every r > 0 we define ks2,r [u,�] : � → [0,∞] as

ks2,r [u,�](x) :=
⎧⎨
⎩

∣∣∣ 
Br (x)

d2
Y(u(x), u(y))

r2
dm(y)

∣∣∣1/2 if Br (x) ⊂ �,

0 otherwise

and say that u ∈ K S1,2(�,Yȳ) provided

E�
2 (u) := sup lim

r↓0

ˆ
�

ϕ ks22,r [u,�] dm < ∞, (5.1)

where the sup is taken among all ϕ : X → [0, 1] continuous and such that supp(ϕ) is compact
and contained in �.

Remark 5.5 In Definition 5.4 above we opted for the same choice made in [34] to consider
the lim in the defining formula (5.1). On the other hand, in the defining formula (3.11) we
preferred the lim and thus for internal consistency it would perhaps have been preferable to
use the lim also in (5.1). The point, however, is that the choice made is in fact irrelevant:
following the arguments in the proof of Proposition 5.6 below one can easily check that the
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energy defined with the lim is finite if and only if so is the one defined by the lim. In fact,
taking into account the results in Theorem 5.7 one can also see that the limit in (5.1) exists.

��
The following proposition provides an alternative description of functions in K S1,2(�,Yȳ)

which is conceptually closer to Definition 5.1:

Proposition 5.6 Let (X, d,m) be uniformly locally doubling, supporting a Poincaré inequal-
ity and strongly rectifiable of dimension d, � ⊂ X open, (Y, dY, ȳ) a pointed complete space
and ι : Y → �∞(Y) the associated Kuratowski embedding (recall Lemma 2.1).

Then a map u : � → Y belongs to K S1,2(�,Yȳ) if and only if the following two
conditions hold:

i) for every K ⊂ � compact there is uK ∈ K S1,2(X, �∞(Y)) such that

uK = ι ◦ u m − a.e. on K .

ii) The function e2[u] : � → [0,∞] defined by

e2[u] := e2[uK ] m − a.e. on K , (5.2)

which is well defined thanks to Corollary 3.16, belongs to L2(�).

Moreover, if these hold the maps uK can be chosen to satisfy

E2(uK ) ≤ c
(

E�
2 (u) + d(K ,�c)−2

ˆ
�

d2
Y(u(x), ȳ) dm(x)

)
, (5.3)

where c is a universal constant (we will pick c = 25) and d(K ,�c) := inf x∈K
y∈�c

d(x, y).

Proof If Fix ϕ : X → [0, 1] continuous and such that supp(ϕ) is compact and contained
in �. Then for every r > 0 the set Kr := {x ∈ X : d(x, supp(ϕ)) ≤ r} is compact
(because X, being complete and locally doubling, is proper) and for r sufficiently small also
contained in �. Fix such r̄ and notice that for any x ∈ supp(ϕ) and r ∈ (0, r̄) we have
ks2,r [u,�](x) = ks2,r [uKr̄ ](x). Therefore recalling Theorem 3.13 to pass to the limit we
deduce that

lim
r↓0

ˆ
�

ϕ ks22,r [u,�] dm = lim
r↓0

ˆ
ϕ ks22,r [uKr̄ ] dm =

ˆ
ϕ e22[uKr̄ ] dm ≤

ˆ
�

e22[u] dm

and the conclusion (5.1) follows.
Only if Fix K ⊂ � compact, for r > 0 put Kr := {x ∈ X : d(x, K ) ≤ r} and put
r̄ := d(K ,�c)/5 > 0, so that K4r̄ ⊂ �. Also, define η : X → [0, 1] as η := (1 −
r̄−1d(·, Kr̄ ))

+, so that Lip(η) ≤ 5d(K ,�c)−1, and η is identically 1 on Kr̄ and 0 outside
K2r̄ . Put uK := η ι◦u, where it is intended that this function is identically 0 outside �. Then
from the trivial inequality

d�∞(Y)

(
uK (y), uK (x)

)
≤ d�∞(Y)

(
η(y)ι(u(y)), η(y)ι(u(x))

) + d�∞(Y)

(
η(y)ι(u(x)), η(x)ι(u(x))

)
≤ dY(u(y), u(x)) + ‖ι(u(x))‖�∞(Y)|η(y) − η(x)|,

valid for any x, y ∈ � and the triangle inequality in L2(X), we deduce that for any r ∈ (0, r̄)

it holds

ks2,r [uK ](x) ≤
{

ks2,r [u,�] + Lip(η)dY(u(x), ȳ), if x ∈ K3r̄ ,

0, otherwise.
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Now let ϕ : X → [0, 1] be continuous and such that supp(ϕ) is compact and contained in �

and identically 1 on K3r̄ . Then the above inequality ensures that

lim
r↓0

ˆ
ks22,r [uK ] dm ≤ 2 lim

r↓0

ˆ
�

ϕks22,r [u,�] dm + 2Lip2(η)d2
L2(�,Y)

(u, ȳ) < ∞

and thus point (i) and the estimate (5.3) hold. To see that point (i i) holds as well notice that
uK = ι ◦ u on Kr̄ and thus for any r ∈ (0, r̄) we have

ks2,r [uK ](x) = ks2,r [u,�](x) ∀x ∈ K .

Therefore it holdsˆ
K
e22[uK ] dm= lim

r↓0

ˆ
K

ks22,r [uK ] dm= lim
r↓0

ˆ
K

ks22,r [u,�] dm ≤ lim
r↓0

ˆ
�

ϕ ks22,r [u,�] dm
(5.4)

and thus

ˆ
�
e22[u] dm = sup

K⊂⊂�

ˆ
K
e22[u] dm (5.2)= sup

K⊂⊂�

ˆ
K
e22[uK ] dm (5.4)≤ sup lim

r↓0

ˆ
�

ϕ ks22,r [u, �] dm < ∞

as desired, where the last sup is taken among all ϕ’s as in Definition 5.4. ��
The next result collects the main properties of functions in K S1,2(�,Yȳ).

Theorem 5.7 Let (X, d,m) be locally uniformly doubling, supporting a Poincaré inequality
and strongly rectifiable, � ⊂ X open and (Y, dY, ȳ) a pointed and complete space.

Then the following hold:

(i) K S1,2(�,Yȳ) = W 1,2(�,Yȳ) as sets,
(ii) for any u ∈ K S1,2(�,Yȳ) we have

ks2,r [u,�] → e2[u] m -a.e. and in L2
loc(�) as r ↓ 0

where e2[u] is given by (5.2).
(iii) Any u ∈ K S1,2(�,Yȳ) is approximately metrically differentiable m-a.e. in � (here we

extend u on the whole X declaring it to be constant outside � to apply the definition of
approximate metric differentiability) and it holds

e2[u](x) = S2(mdx (u)) = S2(du)(x) m − a.e. x ∈ �. (5.5)

(iv) The functional E�
2 : L2(�,Yȳ) → [0,+∞] defined by (5.1) is lower semicontinuous

and can be written as

E�
2 (u) :=

⎧⎨
⎩
ˆ

�

e22[u] dm, if u ∈ K S1,2(�,Yȳ),

+∞, otherwise.

Proof (i) Let ι : Y → �∞(Y) be the Kuratowski embedding.
Let u ∈ K S1,2(�,Yȳ), f : Y → R 1-Lipschitz and f̂ : �∞(Y) → R 1-Lipschitz and

such that f = f̂ ◦ι (recall Lemma 3.2). Also, let η : X → [0, 1] be Lipschitz andwith support
compact and contained in �. Then with the notation of Proposition 5.6 above we have that
η( f ◦ u) = η( f̂ ◦ usupp(η)) and since usupp(η) ∈ K S1,p(X, �∞(Y)) = W 1,p(X, �∞(Y)) by
Corollary 3.10, we see that the function η( f ◦ u), intended to be 0 outside �, is in W 1,2(X).
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Moreover, putting for brevity K := supp(η) and c := c(d)−1 (recall (4.14)), m-a.e. on
{η = 1} ⊂ K we have

|d(η( f ◦ u))| = |d(η( f̂ ◦ uK ))| = |d( f̂ ◦ uK )| ≤ |duK | (4.14.)≤ c S2(duK )
(4.15)= c e2[uK ] (5.2)= c e2[u].

By the arbitrariness of η, f , the very definition of W 1,2(�,Yȳ) and point (i i) in Proposition
5.6 this grants that u ∈ W 1,2(�,Yȳ).

For the converse inclusion let u ∈ W 1,2(�,Yȳ) and recall that by point (i i) of Proposition
2.10 this is the same as to say that ι ◦ u ∈ W 1,2(�, �∞(Y)). Fix K ⊂⊂ � and let η : X →
[0, 1] be Lipschitz, identically 1 on K and with support contained in �. Then from the very
definition of W 1,2(�,Yȳ) and Lemma 2.11 we deduce that uK := η ι ◦ u, intended to be
0 outside �, belongs to W 1,2(X, �∞(Y)) and thus, by Corollary 3.10, to K S1,2(X, �∞(Y)).
Then taking into account the locality of minimal weak upper gradients and energy densities
we obtain

e2[uK ] = e2[η ι ◦ u] (4.15),(4.14),(4.4)≤ |D(η ι ◦ u)| = |D(ι ◦ u)| = |Du| m − a.e. on K

so that the conclusion follows from Proposition 5.6 and Definition 5.3.
(ii) We need to prove that for any K ⊂⊂ � we have ks2,r [u,�] → e2[u] in L2(K ) and
m-a.e.. To see this, use Proposition 5.6 to find ũ ∈ K S1,2(X, �∞(Y)) equal to ι ◦ u in a
compact neighbourhood of K . Then for r � 1 it holds ks2,r [ũ] = ks2,r [u,�] on K and the
conclusion follows from Theorem 3.13 and the very definition of e2[u] given by (5.2).
(iii) Since we set u to be constant outside �, its differentiability outside � is trivial. Now let
K ⊂⊂ � and uK as in Proposition 5.6. Then by Proposition 3.6, Theorem 3.13 and Theorem
4.14 we know that uK is approximately metrically differentiable and that (5.5) holds for uK .
Then the fact that m-a.e. point in K is a density point and the very definition of approximate
metric differentiability give that u is approximately metrically differentiablem-a.e. in K with
mdx (u) = mdx (uK ) m-a.e. in K . Similarly, from the locality of the differential it is easy to
see that S2(duK ) = S2(du)m-a.e. in K so that recalling also the definition (5.2) we conclude.

Therefore the validity of (5.5) m-a.e. on K follows from the definition (5.2) and the
conclusion follows from the fact that we can write � as countable union of compact subsets.
(iv) Let (un) ⊂ L2(�,Yȳ) be converging to some u in L2(�,Yȳ) and with supn E�

2 (un) <

∞. Fix K ⊂ � compact, find a compact neighbourhood K̃ ⊂ � of K and apply Proposition
5.6 to K̃ to obtain functions uK̃ ,n ∈ L2(X, �∞(Y)) satisfying points (i), (i i) of such propo-
sition and the estimate (5.3) with un in place of u. In particular, we have supn E2(uK̃ ,n) < ∞
and uK̃ ,n → ι ◦ u in L2(K̃ , �∞(Y)).

Let η : X → [0, 1] be Lipschitz, identically 1 on K and with support contained in
K̃ . Then from Corollary 3.10, Lemma 2.11, the identity (4.4), the representation formula
in Theorem 4.14 and the bounds (4.14) we obtain that ηuK̃ ,n ∈ K S1,2(X, �∞(Y)) and
supn E2(ηuK̃ ,n) < ∞.

Since by construction we also have ηuK̃ ,n → uK := ηι ◦ u in L2(X, �∞(Y)), we are
in position to apply the first part of Theorem 4.16 with E := K and deduce that uK ∈
K S1,2(X,Yȳ) and that

ˆ
K
e22[uK ] dm ≤ lim

n→∞

ˆ
K
e22[uK̃ ,n] dm

(5.2)= lim
n→∞

ˆ
K
e22[un] dm ≤ lim

n→∞

ˆ
�

e22[un] dm.

(5.6)
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Since we have uK = ι ◦ u on K , the arbitrariness of K and the uniform bound (5.6) allow to
apply Proposition 5.6 and deduce that u ∈ K S1,2(�,Y). To conclude notice that

E�
2 (u) = sup

K⊂⊂�

ˆ
K
e22[u] dm (5.2)= sup

K⊂⊂�

ˆ
K
e22[uK ] dm (5.6)≤ lim

n→∞

ˆ
�
e22[un ] dm = lim

n→∞
E�
2 (un)

��

5.3 Assigning a value at the boundary

In this section we introduce the space K S1,2
ū (�,Yȳ) ⊂ K S1,2(�,Yȳ) of those maps ‘having

the same value as ū ∈ K S1,2(�,Yȳ) at the boundary of �’. This is possible regardless of
the regularity of � thanks to the notion of W 1,2

0 (�):

Definition 5.8 (The space K S1,2
ū (�,Y)) Let ū ∈ K S1,2(�,Yȳ). Then the space

K S1,2
ū (�,Yȳ) ⊂ K S1,2(�,Yȳ) is defined as:

K S1,2
ū (�,Yȳ) := {

u ∈ K S1,2(�,Yȳ) : dY(u, ū) ∈ W 1,2
0 (�)

}
.

We also define the associated energy functional E�
2,ū : L2(�,Yȳ) → [0,+∞] as

E�
2,ū(u) :=

⎧⎨
⎩ E�

2 (u) =
ˆ

�

e22[u] dm, if u ∈ K S1,2
ū (�,Yȳ),

+∞, otherwise.

In order to understand the basic properties of K S1,2
ū (�,Yȳ) the following lemma will be

useful:

Lemma 5.9 Let (X, d,m) be a strongly rectifiable space with uniformly locally doubling mea-
sure and supporting a Poincaré inequality, � ⊂ X open and (Y, dY, ȳ) a pointed complete
space.

Let u, v ∈ K S1,2(�,Yȳ). Then the map x �→ dY(u(x), v(x)) belongs to W 1,2(�) and

|DdY(u, v)| ≤ c(d)
√
2
√
e22[u] + e22[v] m − a.e. on �, (5.7)

where c(d) is the constant defined in Proposition 4.19.

Proof By Proposition 5.6 and the very definition of W 1,2(�) we see that it is sufficient to
consider the case � = X. Thus let this be the case, equip Y2 with the distance

d2
Y2

(
(y0, y1), (y′

0, y′
1)

) := d2
Y(y0, y′

0) + d2
Y(y1, y′

1)

and notice that from the very Definition 3.7 and from Theorem 3.13 we have that (u, v) :
X → Y2 belongs to K S1,2(X,Y2

(ȳ,ȳ)) with

e2[(u, v)] =
√
e22[u] + e22[v]

Recalling that K S1,2(X,Y2) = W 1,2(X,Y2) and that dY : Y2 → R is
√
2-Lipschitz we

see that dY(u, v) ∈ W 1,2(X) and, by a direct application of the definition of energy density
as limit of the approximate energy densities, that e2[dY(u, v)] ≤ √

2 e2[(u, v)]. Then the
bound (5.7) comes from Proposition 4.19. ��
We then have:
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Proposition 5.10 Let (X, d,m) be a strongly rectifiable space with uniformly locally doubling
measure and supporting a Poincaré inequality, � ⊂ X open and (Y, dY, ȳ) a pointed and
complete space. Also, let ū ∈ K S1,2(�,Yȳ). Then:

i) E�
2,ū is lower semicontinuous.

ii) For any u, v ∈ K S1,2
ū (�,Yȳ) we have dY(u, v) ∈ W 1,2

0 (�).

Proof (i) Let (un) ⊂ K S1,2
ū (�,Yȳ) be with

sup
n

E�
2 (un) < ∞ (5.8)

and L2(�,Yȳ)-converging to some u. By point (iv) in Theorem 5.7 we know that u ∈
K S1,2(�,Yȳ) and thus to conclude it is sufficient to prove that dY(u, ū) ∈ W 1,2

0 (�).
To this aim, notice that the functions dY(un, ū), set to 0 outside �, converge to dY(u, ū)

in L2(X) as n → ∞. Also, by Lemma 5.9 and our assumption 5.8 we know that
supn ‖dY(un, ū)‖W 1,2 < ∞. Since W 1,2(X) is reflexive (recall point (v) in Theorem 2.8),
bounded sequences are weakly relatively compact and in our case the L2-convergence force
theweakW 1,2-convergence of (dY(un, ū)) to dY(u, ū). Since dY(un, ū)belongs to the closed
subspace W 1,2

0 (�) of W 1,2(X), this proves that dY(u, ū) ∈ W 1,2
0 (�) as well.

(ii)Consequence of Proposition 5.2 and the trivial inequalitydY(u, v) ≤ dY(ū, u)+dY(ū, v).

��

6 The case of CAT(0) space as target

In this final section we introduce our main assumption on the target space Y and derive, along
the lines of [34] an existence result for harmonic maps.

Recall that a curve γ : [0, 1] → Y is said a (constant speed) geodesic provided

dY(γt , γs) = |s − t |dY(γ0, γ1) ∀t, s ∈ [0, 1]
and the following definition:

Definition 6.1 (C AT (0) spaces) A complete metric space (Y, dY) is said a C AT (0) space
provided it is geodesic and for any constant speed geodesic γ : [0, 1] → Y and y ∈ Y it
holds

d2
Y(y, γt ) ≤ (1 − t)d2

Y(y, γ0) + td2
Y(y, γ1) − t(1 − t)d2

Y(γ0, γ1) ∀t ∈ [0, 1]. (6.1)

We emphasise that for us a C AT (0) space is complete, much like any other space considered
in the manuscript. Other authors do not enforce this condition and refer to complete C AT (0)
spaces as Hadamard spaces.

It can be proved (see e.g. [34, Corollary 2.1.3]) that in a C AT (0) space, for any two
geodesics γ, η and any t ∈ [0, 1] it holds

d2
Y(γt , ηt ) ≤ (1 − t)d2

Y(γ0, η0) + td2
Y(γ1, η1) − t(1 − t)

(
dY(γ0, γ1) − dY(η0, η1)

)2(6.2)
and that for any couple of points the geodesic connecting them is unique and continuously
depend on the extrema as map from Y2 to C([0, 1],Y). We shall denote by Gx,y the only
geodesic connecting x to y. The continuous dependence of Gx,y on x, y grants that for given
u, v ∈ L0(�,Y) the map Gu,v

t defined as x �→ Gu(x),v(x)
t ∈ Y also belongs to L0(�,Y). It

is then easy to see that if u, v ∈ L2(�,Yȳ), then Gu,v
t ∈ L2(�,Yȳ) and a simple application
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of the definition shows that this is the only geodesic from u to v, indeed recall that on any
metric space, for any triple of points p, q, r and t ∈ (0, 1) it holds

d2(p, r)

t
+ d2(r , q)

1 − t
≥ d2(p, q) with equality iff r is a t-intermediate point between p and q.

(6.3)

Thus for any u, v, w ∈ L2(�,Yȳ) we have

d2
L2(u, w)

t
+ d2

L2(w, z)

1 − t
=
ˆ

�

d2Y(u(x), w(x))

t
+ d2Y(w(x), z(x))

1 − t
dm(x)

by (6.3) ≥
ˆ

�

d2
Y(u(x), v(x)) dm(x) = d2

L2(u, v),

so that the equality case in (6.3) shows that w is a t-intermediate point between u and v if
and only if w = Gu,v

t , as claimed. We also recall that if Y is a C AT (0) space, then so is
L2(�,Yȳ), indeed for any u, v, z ∈ L2(�,Yȳ) and t ∈ [0, 1] we have

d2L2 (z, Gu,v
t ) =

ˆ
�

d2Y(z(x), Gu(x),v(x)
t ) dm(x)

by (6.1) ≤
ˆ
�

(1 − t)d2Y(z(x), u(x)) + td2Y(z(x), v(x)) − t(1 − t)d2Y(u(x), v(x)) dm(x)

= (1 − t)d2L2 (z, u) + td2L2 (z, v) − t(1 − t)d2Y(u, v).

The following lemma gathers the key properties of K S1,2(�,Yȳ) in the case when Y is a
C AT (0) space:

Lemma 6.2 Let (X, d,m) be a metric measure space, � ⊂ X open, (Y, dY, ȳ) a pointed
C AT (0) space and u, v ∈ K S1,2(�,Yȳ). Put m := Gu,v

1/2 and d := dY(u, v).
Then:

(i) m ∈ K S1,2(�,Yȳ), d ∈ K S1,2(�,R) and

2e22[m] + 1

2
e22[d] ≤ e22[u] + e22[v] m − a.e. on �. (6.4)

(ii) Assume that u, v ∈ K S1,2
ū (�,Yȳ) for some ū ∈ K S1,2(�,Yȳ). Then m ∈ K S1,2

ū (�,Yȳ)

as well.

Proof (i) Let x, y ∈ � and apply inequality (6.2) to the geodesics γ := Gu(y),v(y) and
η := Gu(x),v(x) and for t := 1

2 to obtain

2d2
Y(m(y), m(x)) + 1

2

(
d(y) − d(x)

)2 ≤ d2
Y(u(y), u(x)) + d2

Y(v(y), v(x))

and thus integrating in y over Br (x) and dividing by r2 we deduce

2ks22,r [m,�] + 1

2
ks22,r [d,�] ≤ ks22,r [u,�] + ks22,r [v,�] on �.

Then the fact that m ∈ K S1,2(�,Yȳ) and d ∈ K S1,2(�,R) follow from the very Definition
5.4 while the bound (6.4) from point (i i) in Theorem 5.7.
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(ii) Notice that

dY(m, ū) ≤ dY(m, u) + dY(u, ū) ≤ dY(v, u) + dY(u, ū) ≤ dY(v, ū) + 2dY(u, ū)

and that the rightmost side belongs to W 1,2
0 (�) by assumption. Then the conclusion follows

by Proposition 5.2. ��
The existence of a minimizer for E�

2,ū will follow from the bound (6.4) and the following
version of the Poincaré inequality:

Lemma 6.3 Let (X, d,m) be a doubling space supporting a Poincaré inequality, � ⊂ X
open bounded with m(X \ �) > 0. Then there is a constant C > 0 depending only on the
doubling and Poincaré constants of X, on diam(�) and on m({x : d(x,�) ≤ 1}) such thatˆ

�

| f |2 dm ≤ C
ˆ

�

|D f |2 dm ∀ f ∈ W 1,2
0 (�). (6.5)

Proof Recall that W 1,2
0 (�) can be defined as the closure in W 1,2(X) of the space of functions

with support in �. In particular, functions in W 1,2
0 (�) are functions in W 1,2(X) which

are 0 m-a.e. outside �. Fix such function f , let �′ := {x : d(x,�) < 1} and D :=
diam(�′) ≤ diam(�) + 2. Then with the same notation of Proposition 2.17 we know that
G D := C(D)M2λD(|D f |) is an Hajlasz upper gradient for f at scale D and therefore

| f (x)| ≤ D
(
G D(x) + G D(y)

)
m × m − a.e. x, y ∈ X2 such that x ∈ �, y ∈ �′ \ �.

Squaring and integrating we obtain

m(�′ \ �)

ˆ
| f |2 dm ≤ 4m(�′)D2

ˆ
X

G2
D dm

(2.1)≤ 4m(�′)D2C(D)

ˆ
X

|D f |2 dm,

which is the claim. ��
We then have the following result:

Theorem 6.4 Let (X, d,m) be a strongly rectifiable space with locally uniformly doubling
measure and supporting a Poincaré inequality (in particular these holds if it is a RC D(K , N )

space for some K ∈ R and N ∈ [1,∞)) and � ⊂ X a bounded open set with m(X \�) > 0.
Let (Y, dY, ȳ) be a pointed C AT (0) space, ū ∈ K S1,2(�,Yȳ). Then the functional E�

2,ū :
L2(�,Y) → [0,∞]:
(i) is convex and lower semicontinuous,

(ii) admits a unique minimizer.

Proof (i) We already know that E�
2,ū : L2(�,Yȳ) → [0,∞] is lower semicontinuous and

thus to conclude it is sufficient to show that E�
2 : L2(�,Yȳ) → [0,∞] is convex and that

geodesics with endpoints in K S1,2
ū (�,Yȳ) lie entirely in K S1,2

ū (�,Yȳ). For the convexity
of E�

2 we integrate (6.4) and disregard the term with d to deduce that

E�
2 (m) ≤ 1

2
(E�

2 (u) + E�
2 (v)),

which is the convexity inequality for midpoints. Then a standard iteration argument based on
dyadic partition and the lower semicontinuity of E�

2 gives the required convexity. The same
line of thought shows that to conclude it is sufficient to prove that for u, v ∈ K S1,2

ū (�,Yȳ)

we have m ∈ K S1,2
ū (�,Yȳ): this is precisely the content of point (i i) in Lemma 6.2 above.
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(ii) It is sufficient to prove that any minimizing sequence is L2(�,Yȳ)-Cauchy. Thus let
(un) ⊂ K S1,2

ū (�,Yȳ) be such sequence and let I := limn E�
2,ū(un) = inf E�

2,ū . For every
n, m ∈ N put mn,m := Gun ,um

1
2

, dn,m := dY(un, um) and recall that (i i) of Proposition 5.10

gives dn,m ∈ W 1,2
0 (�) and (i i) of Lemma 6.2 above gives mn,m ∈ K S1,2

ū (�,Yȳ), so that by
(i) of the same lemma we get

1

2c(d)

ˆ
�

|Ddn,m |2 dm (4.4),(4.23)= 1

2

ˆ
�
e2[dn,m ]2 dm

(6.4) ≤ E�
2,ū(un) + E�

2,ū(um ) − 2E�
2,ū(mn,m ) ≤ E�

2,ū(un) + E�
2,ū(um ) − 2I

and therefore

lim
n,m→∞

ˆ
�

|Ddn,m |2 dm = 0.

Hence the Poincaré inequality (6.5) yields limn,m→∞
´
�

|dn,m |2 dm = 0, as desired. ��
We conclude pointing out that for target spaces which are C AT (0) the energy density can
be expressed - up to a multiplicative dimensional constant - as Hilbert-Schmidt norm of the
differential, very much in line with the smooth case. This is due to the following result, which
is (a particular case of) the main theorem in [10]:

Theorem 6.5 (Universal infinitesimal Hilbertianity of C AT (0) spaces) Let (Y, dY) be a
C AT (0) space and μ a non-negative and non-zero Borel measure on Y concentrated on a
separable subset and giving finite mass to bounded sets.

Then W 1,2(Y, dY, μ) is a Hilbert space.

Recall that given a linear map � : Rd → H with H Hilbert, its Hilbert-Schmidt norm ‖�‖H S

is given by

‖�‖2H S = tr(�∗�) =
d∑

i=1

|�(vi )|2H ,

where v1, . . . , vd is any orthonormal base of Rd , the fact that the result does not depend on
the base chosen being well known and easy to check.

It is easy to see that, up to a constant, the Hilbert-Schmidt norm coincides with the 2-size:

Lemma 6.6 Let � : Rd → H be a linear operator, with H being a Hilbert space. Then

‖�‖H S = √
d + 2 S2(�).

In particular, if H1,H2 are Hilbert L0(m)-modules with H1 of dimension d and T : H1 →
H2 is L0(m)-linear and continuous, then

|T |H S = √
d + 2 S2(T ) m − a.e..

Proof Consider the Lie group SO(d) and, writing its elements in matrix form w.r.t. the
canonical base of Rd , think of it as subset of (Rd)d . For i = 1, . . . , d let π i : (Rd)d → R

d

be the canonical projection, let μ be the normalized Haar measure on SO(d) and notice that
by symmetry arguments we have π i∗μ = νSd−1 for every i = 1, . . . , d , where νSd−1 is the
normalized volume measure on Sd−1 = {(x1, . . . , xd) : ∑

i |xi |2 = 1} ⊂ R
d .
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Thus we know that for every (v1, . . . , vd) ∈ supp(μ) it holds ‖�‖2H S = ∑d
i=1 |�(vi )|2H

and integrating w.r.t. μ we obtain

‖�‖2H S =
ˆ d∑

i=1

|�(vi )|2H dμ(v1, . . . , vd) =
d∑

i=1

ˆ
|�(v)|2H dπ i∗μ(v) = d

ˆ
|�(v)|2H dνSd−1(v).

On the other hand we have

S2(�)
2 =

 
B1(0)

|�(v)|2H dv = d
ˆ 1

0
rd−1

ˆ
|�(rv)|2H dνSd−1(v) dr = d

d + 2

ˆ
|�(v)|2H dνSd−1(v)

and the conclusion follows.
The second part of the statement now easily follows from the first by considering a Hilbert

base of H1 and writing everything in coordinates. ��
From this last lemma we obtain the following representation formula for the energy density:

Proposition 6.7 (Energy density as Hilbert-Schmidt norm) Let (X, d,m) be a strongly recti-
fiable space with uniformly locally doubling measure and supporting a Poincaré inequality
(in particular these hold if it is a RC D(K , N ) space for some K ∈ R and N ∈ [1,∞)) and
� ⊂ X an open set. Let (Y, dY, ȳ) be a pointed C AT (0) space and u ∈ K S1,2(�,Yȳ).

Then for its energy density e2[u] we have the representation formula

e2[u] = (d + 2)−
1
2 |du|H S m − a.e.,

where d is the dimension of X.

Proof From Theorem 6.5 we deduce that L0
μ(TY) is a Hilbert module for any measure μ as

in the statement of the theorem. Then Ext
(
(u∗L0

μ(T ∗Y))∗
)
is also a Hilbert module, so that

it makes sense to speak about the Hilbert-Schmidt norm of du. Then the conclusion follows
from Lemma 6.6 and of formula (5.5). ��
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