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Abstract
In this paper we study the Nirenberg problem on standard half spheres (Sn+, g), n ≥ 5, which
consists of finding conformal metrics of prescribed scalar curvature and zero boundary mean
curvature on the boundary. This problem amounts to solve the following boundary value
problem involving the critical Sobolev exponent:

(P)

{
−�gu + n(n−2)

4 u = K u
n+2
n−2 , u > 0 in S

n+,
∂u
∂ν

= 0 on ∂Sn+.

where K ∈ C3(Sn+) is a positive function. This problem has a variational structure but the
related Euler–Lagrange functional JK lacks compactness. Indeed it admits critical points at
infinity, which are limits of non compact orbits of the (negative) gradient flow. Through the
construction of an appropriatepseudogradient in theneighborhoodat infinity, we characterize
these critical points at infinity, associate to them an index, perform aMorse type reduction of
the functional JK in their neighborhood and compute their contribution to the difference of
topology between the level sets of JK , hence extending the full Morse theoretical approach
to this non compact variational problem. Such an approach is used to prove, under various
pinching conditions, some existence results for (P) on half spheres of dimension n ≥ 5.
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1 Introduction and statement of the results

In the early seventieth of the last century Louis Nirenberg asked the following question: Can
a smooth positive function K ∈ C∞(Sn) defined on the standard n−dimensional sphere
(Sn, g) be realized as the scalar curvature of a metric g conformally equivalent to g ?
On S

2, setting g = e2ug the Nirenberg problem is equivalent to solving the following
nonlinear elliptic equation

−�gu + 1 = Ke2u, in S
2,

where �g denotes the Laplace Beltrami operator.
For spheres of dimensions n ≥ 3 and writing the conformal metric as g := u4/(n−2)g, the
Nirenberg problem amounts to solve the following nonlinear elliptic equation involving the
Sobolev critical exponent:

(NP) − �gu + n(n − 2)

4
u = Ku

n+2
n−2 ; u > 0, in S

n . (1)

The Nirenberg problem has attracted a lot attention in the last half century. See [3,4,6,7,
10–12,19–24,28,31,32,36,37] and the references therein. Actually due to Kazdan-Warner
obstructions, see [18,28], a positive answer to the Nirenberg’s question requires imposing
conditions on the function K . It turns out that finding sufficient conditions under which the
Nirenberg problem is solvable depends strongly on the dimension n and the behavior of the
function K near its critical points. Indeed in low dimension n < 5 index counting criteria
have been obtained, see [7,20,27,31,32]. Such a counting index criterium fails, under the
nondegeneracy assumption (ND) (that is �K �= 0 at critical points of K ), if the dimension
n ≥ 5. They can be extended on high dimensional spheres in the perturbative setting (that is
when K is close to a constant) see [19,24] or under some flatness assumptions see [16,22,31].
To explain the main difficulty in studying the Nirenberg problem and the differences between
the low dimensional case n < 5 and the high dimensional one n ≥ 5, we point out that due to
the presence of the Sobolev critical exponent, the corresponding Euler–Lagrange functional
does not satisfy the Palais-Smale condition. One way to overcome such a difficulty is to
consider the following subcritical approximation of the problem (NP):

(NPε) − �gu + n(n − 2)

4
u = K u

n+2
n−2−ε, u > 0 in S

n, (2)
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where ε > 0 is a small parameter. In this way one recovers the compactness and one then
studies the behavior of blowing up solution uε of (NPε) as the parameter ε goes to zero.
Actually it can be proved that finite energy blowing up solutions of (NPε) can have only
isolated simple blow up points which are critical points of the function K , see [23,31,32,35].
The reason of the additional difficulty in the high dimensional case lies in the complexity of
the blow up phenomenon. Indeed in dimensions n = 2, 3 there are only single blow up points,
see, [7,20,27,31,37] and in dimension n = 4 multiple bubbling may occur only under some
extra condition, see [11,32] while, under the non degeneracy assumption (ND), on spheres
of dimension n ≥ 5 every m−tuple (q1, . . . , qm) of distinct critical points of K , satisfying
�K (qi ) < 0 for each i = 1, . . . ,m can be realized as a concentration set of blowing up
solutions of (NPε). See [34].

Regarding the high dimensional case n ≥ 5, Malchiodi and Mayer [35] obtained recently
an interesting existence criterium under some pinching condition. Their result reads as fol-
lows:

Theorem A [35] Let n ≥ 5 and K ∈ C∞(Sn) be a positive Morse function satisfying the
following conditions

(i)

∀q ∈ S
n, ∇K (q) = 0 ⇒ �K (q) �= 0,

(ii)

Kmax/Kmin ≤ (3/2)1/(n−2),

where Kmax := maxSn K and Kmin := minSn K
(iii)

#{q ∈ S
n; ∇K (q) = 0;�K (q) < 0} ≥ 2,

where #A denotes the cardinal of the set A.

Then Nirenberg Problem (NP) has at least one solution.
In this paper we consider a version of the Nirenberg problem on standard half spheres

(Sn+, g). Namely we prescribe simultaneously the scalar curvature to be a positive function
0 < K ∈ C3(Sn+) and the boundary mean curvature to be zero. This amounts to solve the
following boundary value problem

(P)

{
−�gu + n(n−2)

4 u = K u(n+2)/(n−2), u > 0 in S
n+,

∂u
∂ν

= 0 on ∂Sn+,
(3)

where K ∈ C3(Sn+) is a positive function.
This problem has been studied on half spheres of dimensions n = 2, 3, 4. See the papers

[13–15,17,25,29,30] and the references therein. Verymuch like the case of spheres, to recover
compactness one considers here the following subcritical approximation

(Pε)

{
−�gu + n(n−2)

4 u = K u
n+2
n−2−ε, u > 0 in S

n+,
∂u
∂ν

= 0 on ∂Sn+.
(4)

Just as above, there are two alternatives for the behavior of a sequence of solutions uε of
(Pε). Either the ||uε||L∞ remains uniformly bounded or it blows up and if it does u2n/(n−2)

ε Ln

(whereLn denotes the Lebesgue measure) converges to a sum of Dirac masses, some of them
are sitting in the interior and the others ones are located on the boundary. The interior points
are critical points of K satisfying that �K ≤ 0 and the boundary points are critical points

123



148 Page 4 of 41 M. Ahmedou, M. Ben Ayed

of K1 the restriction of K on the boundary and satisfying that ∂K/∂ν ≥ 0. See [14,17,25].
Furthermore a refined blow up analysis, under the non degeneracy assumption that �K �= 0
at interior critical points of K and that ∂K/∂ν �= 0 at critical points of K1, shows that in the
dimension n = 3 multiple bubbling may occur but all blow up points are isolated simple,
see [25,30]. Moreover in dimensions n = 2, 3 counting index criteria have been established,
see [14,17,25,29]. Furthermore under additional condition on K1 it has been proved in [15]
that all blow up points are isolated simple, but already in dimension n = 4 counting index
formulae, under the above non degeneracy conditions fail. More surprisingly and in contrast
with the case of closed spheres, the Nirenberg problem on half spheres may have non simple
blow up points, even for finite energy bubbling solutions of (Pε) see [1,2].

In this paper we study Problem (P) from the viewpoint of the theory of critical points at
infinity. In this approach initiated by the late Bahri, see [5–8], one studies the possible ends
of non compact orbits of the (negative) gradient of the associated Euler Lagrange functional.
The method consists of taking advantage of the concentration-compactness analysis of non
converging Palais-Smale sequences to identify a potential neighborhood at infinity where
concentration may occur. Then one constructs a global pseudogradient for which the full
analysis of the ω-limit set, in this neighborhood is easier than for the genuine gradient flow
and then uses it to characterize critical points at infinity. One then performs aMorse reduction
near these critical points at infinity in order to compute their topological contribution to the
difference of topology between the level sets of the Euler–Lagrange functional.

Before stating our main results, we set up some notation and introduce our assumptions.
For the function K and its restriction on the boundary K1 := K
∂Sn , we use the following

assumption:
(H1): We assume that K is a C3(Sn+) positive function, which has only non-degenerate

critical points with�K �= 0. (We point out that some of these points can be on the boundary.)
(H2): We assume that the restriction of K on the boundary K1 := K|∂Sn+ has only non-

degenerate critical points z’s. Furthermore we assume that if z is not a local maximum point
of K1, we have that ∂K/∂ν(z) ≤ 0.

(H3): If z ∈ ∂Sn+ is a critical point of K1 satisfying that ∂K/∂ν(z) = 0, hence z is actually
a critical point of K on ∂Sn+, we assume that�K (z) �= 0 and one of the following conditions
is satisfied:

(i) either ∂K/∂ν(a)�K (z) ≤ 0 for each a ∈ ∂Sn+ in a small neighborhood of z,

(ii) or lima∈∂Sn+;a→z
∂K/∂ν(a)
d(a,z) = 0.

Next we introduce the following subsets of critical points of K and K1

K−
in := {y ∈ S

n+ : ∇K (y) = 0 and �K (y) < 0},
K+
b := {z ∈ ∂Sn+ : ∇K1(z) = 0 and ∂K/∂ν(z) > 0},

K0,−
b := {z ∈ ∂Sn+ : ∇K1(z) = 0; ∂K/∂ν(z) = 0 and �K (z) < 0}.

Furthermore we define

K∞ := K−
in ∪ K+

b ∪ K0,−
b .

Our first result is an existence result under a pinching assumption, which parallels the
above mentioned existence result of Malchiodi–Mayer. Namely we prove

Theorem 1.1 Let n ≥ 5 and 0 < K ∈ C3(Sn+) satisfying the assumptions (H1), (H2) and
(H3).

If the following conditions hold
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(i)

Kmax/Kmin < (5/4)1/(n−2),

where Kmax := maxSn+ K and Kmin := minSn+ K.
(ii)

#K∞ ≥ 2,

where #A denotes the cardinal of the set A. Then Problem (P) has at least one solution.

Remark 1.2 1. The above theorem is the counterpart of the existence result of Malchiodi–
Mayer [35](see Theorem A quoted above). We point that the proof of Theorem 1.1,
compared with the proof of Theorem A is more involved. In particular the counting index
argument in our case is more subtle. Indeed due to the influence of the boundary the
blow up picture is more complicated. Namely we have boundary and interior blow up as
well as mixed configurations involving both of them. Such a complicated picture imposes
to consider 4 critical levels instead of two critical levels needed in the case of closed
spheres. Such a fact makes the index counting of the associated critical points at infinity
more involved, see Lemmas 5.9, 5.8 in the “Appendix”.

2. The conditions (H2), (H3) are used to rule out non simple blow up, see [1]. A phe-
nomenon which does not occur in the case of closed spheres. See Sect. 3.2.2.

The above pinching condition (i) of Theorem 1.1 can be relaxed when combined with
some counting index formula involving either the boundary blow up points or the interior
blow points. In the next theorem we provide an existence result involving the boundary blow
up points. Namely we prove:

Theorem 1.3 Let n ≥ 5and0 < K ∈ C3(Sn+). Assume that the critical points of K1 := K|∂Sn+
are non degenerate and that K satisfies the assumption (H3). If the following conditions hold
(a)

Kmax/Kmin < 21/(n−2),

(b)

A1 :=
∑

z∈K+
b ∪K0,−

b

(−1)n−1−morse(K1,z) �= 1.

Then Problem (P) has at least one solution.

Next we assume that the above index formula A1 = 1, which implies, in particular that
the number of boundary blow up points is an odd number, say 2k + 1, where k ∈ N0.

The next existence result combined a pinching condition with a counting index formulae
involving interior blow up points. Namely we prove:

Theorem 1.4 Let n ≥ 5 and 0 < K ∈ C3(Sn+) satisfying the assumptions (H1), (H2) and
(H3).

If the following conditions hold
(i)

Kmax/Kmin < (3/2)1/(n−2) and A1 = 1,

where A1 is defined in Theorem 1.3,

123



148 Page 6 of 41 M. Ahmedou, M. Ben Ayed

(ii)

B1 :=
∑
y∈K−

in

(−1)n−morse(K ,y) �= −k,

where #(K+
b ∪ K0,−

b ) = 2k + 1, k ∈ N0. Then Problem (P) has at least one solution.

Regarding the method of proof of our main existence results, Theorems 1.1, 1.3 and 1.4
some comments are in order. Indeed although the general scheme falls in the framework of the
techniques and ideas of the critical point theory at infinity , see [6,7,11], the main arguments
here are of a different flavor. Indeed with respect to the case of closed spheres, treated by
A.Bahri in his seminal paper [6], the case of half spheres presents new aspects: From one
part the blow up picture is more complicated (interior, boundary and mixed configurations)
and from another part the behavior of the self interactions of interior bubbles and boundary
bubbles is drastically different. A fact which was used in [1] to construct subcritical solutions
having non simple blow ups. To rule out such a possibility, under our assumption (H2)
and (H3), we had to come up with a barycentric vector field which moves a cluster of
concentration points towards their common barycenter and to prove that along the flow lines
of such a vector field the functional decreases and the concentration rates of an initial value
do not increase, see Lemma 3.9. Furthermore we prove that in the neighborhood of critical
points at infinity, the concentration rates are comparable and the concentration points are not
to close to each other. See Sects. 3.2.2 and 3.2.3.

The remainder of this paper is organized as follows: In Sect. 2 we set up the variational
framework and define the neighborhood at infinity and in Sect. 3 we construct an appropriate
pseudogradient in the vicinity of highly concentrated bubbles and derive from the analysis
of the behavior of its flow lines the set of its critical points at infinity. Section 4 is devoted
to the proof of the main existence results of this paper. Lastly we collect in the appendix
some estimates of the bubble, fine asymptotic expansion of the Euler–Lagrange functional
and its gradient in the neighborhood at infinity as well as useful counting index formula for
the critical points of the function K and its restriction K1 on the boundary.

2 Loss of compactness and neighborhood at infinity

In this section we set up the analytical framework of the variational problem associated to
the Nirenberg problem and recall the description of its lack of compactness. Let H1(Sn+) be
the Sobolev space endowed with the norm

||u||2 :=
∫
S
n+

|∇u|2 + n(n − 2)

4

∫
S
n+
u2,

and let � denote its unit sphere.
Problem (P) has a variational structure. Namely its solutions are in one to one correspon-

dence with the critical points of the functional

JK (u) := ||u||2
(
∫
S
n+ K |u|2n/(n−2))(n−2)/n

defined on �+ := {u ∈ �; u ≥ 0}.

The functional JK fails to satisfy the Palais Smale condition. To describe non converging
Palais-Smale sequences we introduce the following notation.
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For a ∈ S
n+ and λ > 0 we define the standard bubble to be

δa,λ(x) := c0
λn−2/2

(λ2 + 1 + (1 − λ2) cos d(a, x))n−2/2 ,

where d is the geodesic distance on S
n+ and c0 is a constant chosen such that

−�δa,λ + n(n − 2)

4
δa,λ = δ

(n+2)/(n−2)
a,λ in S

n+.

For a ∈ S
n+, we define projected bubble ϕa,λ to be the unique solution of

−�ϕa,λ + n(n − 2)

4
ϕa,λ = δ

(n+2)/(n−2)
a,λ in S

n+; ∂ϕa,λ

∂ν
= 0 on ∂Sn+.

We point out that ϕa,λ = δa,λ if a ∈ ∂Sn+.
Next for m ∈ N and p, q ∈ N0 such that q + 2p = m we define the neighborhood of

potential critical points at Infinity V (m, q, p, ε) as follows:

V (m, q, p, ε) :=
{
u ∈ � : ∃ λ1, . . . , λp+q > ε−1; ∃ a1, . . . , aq+p ∈ S

n+, with

λi d(ai , ∂S
n+) < ε, ∀ i ≤ q, and λi d(ai , ∂S

n+) > ε−1 ∀ i > q,

εi j <ε such that ‖u−
∑p+q

i=1 K (ai )(2−n)/4ϕai ,λi

‖∑p+q
i=1 K (ai )(2−n)/4ϕai ,λi ‖

‖<ε
}
,

where

εi j :=
( λi

λ j
+ λ j

λi
+ 2λiλ j (1 − cos(d(ai , a j )))

)2−n/2
.

In the following we describe non converging Palais-Smale sequences. Such a description,
which is by now standard, follows from concentration-compactness arguments as in [33,38]
and reads as follows

Proposition 2.1 Let uk ∈ �+ be a sequence such that∇ JK (uk) → 0 and JK (uk) is bounded.
If Problem (P)does not havea solution, then there existm ∈ Nand p, q ∈ Nwithq+2p = m,
a sequence of positive real numbers εk ↓ 0 as well as subsequence of uk , still denoted uk
such that uk ∈ V (m, q, p, εk).

Following Bahri and Coron, we consider for u ∈ V (m, q, p, ε) the following minimization
problem

Min

{
‖u −

p+q∑
i=1

αiϕai ,λi ‖; αi > 0, λi > 0, ai ∈ ∂Sn+, ∀i = 1, . . . , q; ai ∈ S
n+, ∀q + 1 ≤ i ≤ q + p

}
.

(5)
We then have the following proposition whose proof is identical, up to minor modification
to the one of Proposition 7 in [8]

Proposition 2.2 For anym ∈ N there exists εm > 0 such that if ε < εm andu ∈ V (m, q, p, ε)
the minimization problem (5) has, up to permutation, a unique solution.

Hence it follows from Proposition 2.2 that every u ∈ V (m, q, p, ε) can be written in a unique
way as

u =
q∑

i=1

αiδai ,λi +
p+q∑

i=q+1

αiϕai ,λi + v, (6)

123
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where

ai ∈ ∂Sn+, i = 1, . . . , q and ai ∈ S
n+, i = q + 1, . . . , p + q,

and v ∈ H1(Sn+) satisfying

(V0) ‖v‖ < ε, < v,ψ >= 0, for ψ ∈
⋃

1≤i≤q; q+1≤ j≤q+p

{
δi ,

∂δi

∂λi
,
∂δi

∂ai
, ϕ j ,

∂ϕ j

∂λ j
,
∂ϕ j

∂a j

}
,

(7)
where δi := δai ,λi and ϕi := ϕai ,λi . In addition, the variables αi ’s satisfy

|1 − J (u)n/(n−2)α
4/(n−2)
i K (ai )| = oε(1) for each i . (8)

In the next lemma we deal with the v-part of u ∈ V (m, q, p, ε) in order to prove, that its
effect is negligible with the concentration phenomenon. Namely we prove:

Lemma 2.3 Let n ≥ 5. For ε > 0 small, there exists a C1-map which, to each (α :=
(α1, . . . , αp+q), a := (a1, . . . , ap+q), λ := (λ1, . . . , λp+q)), such that u = ∑p+q

i=1 αiϕi ∈
V (m, q, p, ε), associates v = v(α,a,λ) satisfying

JK

(p+q∑
i=1

αiϕai ,λi + v

)
= min

{
JK

(p+q∑
i=1

αiϕai ,λi + v

)
, v satisfies (V0)

}
.

Moreover, there exists c > 0 such that the following holds

‖v‖ ≤ c
q+p∑
i=1

|∇K (ai )|
λi

+ 1

λ2i
+
⎧⎨
⎩

∑
ε

n+2
2(n−2)
i j (ln ε−1

i j )
n+2
2n + ∑

i>q
ln(λi di )

(λi di )(n+2)/2 if n ≥ 6,∑
εi j (ln ε−1

i j )3/5 + ∑
i>q

1
(λi di )3

if n = 5.

Proof The proof follows as in Proposition 3.1 in [12] (see also [9]). Indeed, easy computations
imply that

JK (u + v) = JK (u) − f (v) + (1/2)Q(v) + o(‖v‖2) where

f (v) :=
∫
S
n+
Ku

n+2
n−2 v and Q(v) := ‖v‖2 − n + 2

n − 2

N∑
i=1

∫
S
n+

δ
4/(n−2)
i v2.

Note that Q is a positive definite quadratic form (see [5]) and we have that

f (v) =
∑

α
n+2
n−2
i

∫
S
n+
Kϕ

n+2
n−2
i v + O

(∑
i �= j

∫
S
n+
sup(ϕ j , ϕi )

4
n−2 inf(ϕ j , ϕi )|v|

)
. (9)

Observe that, for n ≥ 6, it follows that 4/(n − 2) ≤ 1. Hence, using Holder’s inequality, we
get∫

S
n+
sup(ϕ j , ϕi )

4
n−2 inf(ϕ j , ϕi )|v| ≤

∫
S
n+
(ϕ jϕi )

n+2
2(n−2) |v|

≤ c‖v‖
( ∫

S
n+
(δ jδi )

n
n−2

) n+2
2n ≤ c‖v‖ε

n+2
2(n−2)
i j (ln ε−1

i j )
n+2
2n if n ≥ 6,

(10)∫
S
5+
sup(ϕ j , ϕi )

4/3 inf(ϕ j , ϕi )|v| ≤ c‖v‖εi j (ln ε−1
i j )3/5 if n = 5. (11)
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For the other term, for i ≤ q (that is ai ∈ ∂Sn+), using the fact that 〈δi , v〉 = 0, we get∫
S
n+
K δ

n+2
n−2
i v = O

(
|∇K (ai )|

∫
R
n+

|x − ai |δ
n+2
n−2
i |v| +

∫
R
n+

|x − ai |2δ
n+2
n−2
i |v|

)

= O
(( |∇K (ai )|

λi
+ 1

λ2i

)
‖v‖

)
.

For i > q , using Lemma 5.1, we get∫
S
n+
Kϕ

n+2
n−2
i v =

∫
S
n+
K δ

n+2
n−2
i v + O

( ∫
S
n+

δ
4

n−2
i |ϕi − δi ||v|

)

= O
(( |∇K (ai )|

λi
+ 1

λ2i

)
‖v‖

)
+
{
O
(‖v‖/(λi di )n−2

)
if n = 5,

O
(‖v‖ ln(λi di )/(λi di )(n+2)/2

)
if n ≥ 6

and the result follows. ��

3 Pseudogradient andMorse Lemma at infinity

This section is devoted to the constructionof a pseudogradient for the functional JK ,whichhas
the property that along its flow lines there could be only finitelymany isolated blow up ponits.
Such a pseudogradient coincides with the gradient outside of

⋃
m,q,p V (m, q, p, ε/2) and

satisfies the Palais-Smale condition there. Moreover in each V (m, q, p, ε) it has the property
to move the concentration points according to∇K or∇K1, the αi ’s to their maximum values
and the concentration λi ’s are moved so that the functional JK decreases along its flow
lines. The global vector field is then defined by convex combining these two vector fields.
Such a construction is then used to perform a Morse reduction near the singularities of the
pseudogradient and to compute the difference of topology induced by the critical points at
infinity between the level sets of the Euler–Lagrange functional JK .

The first step in the construction of the pseudogradient is to describe the movement of the
variable v. In fact, since v minimizes JK in the v-space, it follows from the classical Morse
Lemma that there exists a change of variable v → V such that

JK

(p+q∑
i=1

αiϕai ,λi + v

)
= JK

(p+q∑
i=1

αiϕai ,λi + v

)
+ ‖V ‖2. (12)

Hence, for the variable V , we will use V̇ = −V to bring it to 0. Thus, we need to construct
some vector fields by moving the variables αi , ai and λi .

3.1 The case of a single concentration point

Wepoint out that the construction of a pseudogradient satisfying the aboveproperties becomes
quite involved in the case of more than one concentration point. Indeed in the case of two
bubbles sitting at different points, their mutual interaction comes into play. For this reason
we start by constructing the needed pseudogradient in neighborhoods at infinity, containing
one interior or one boundary point. To do so we consider two cases, the first one corresponds
to p = 1 and q = 0 (case of an interior concentration point) and the second one corresponds
to p = 0 and q = 1 (the case of a boundary point). Namely we prove:
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Proposition 3.1 Assume that K satisfies (H1) and (H3) and that the critical points of K1

are non-degenerate. A pseudogradient W can be defined so that the following holds: There
is a constant c > 0 independent of u = αϕa,λ ∈ V (2p + q, q, p, ε) (with q = 1 or p = 1)
such that

(i) 〈−∇ JK (u),W 〉 ≥ c

{
1/λ2 + 1/(λd)n−2 + |∇K (a)|/λ if p = 1; q = 0,

1/μ + |1 − J (u)
n

n−2 α
4

n−2 K (a)| if p = 0; q = 1,

(ii) 〈−∇ JK (u + v),W + ∂v

∂(α, a, λ)
(W )〉 ≥ c

{
1/λ2 + 1/(λd)n−2 + |∇K (a)|/λ if p = 1; q = 0,

1/μ + |1 − J (u)
n

n−2 α
4

n−2 K (a)| if p = 0; q = 1,

where d := d(a, ∂Sn+) for a ∈ S
n+ and μ−1 = |∇K (a)|/λ + 1/λ2 for a ∈ ∂Sn+.

(iii) The vector field W is bounded with the property that along its flow lines, λ increases
only in the following region

• If p = 1 then λ increases if and only if the point a belongs to a small neighborhood of a
critical point y ∈ S

n+ of K , such that �K (y) < 0
• If q = 1 then λ increases if and only if the point a belongs to a small neighborhood of a

critical point z ∈ ∂Sn+ of K1 such that either (∂K/∂ν)(z) > 0 or (∂K/∂ν)(z) = 0 and
�K (z) < 0.

Proof We start by giving the proof of Claim (i) for the case where p = 1 and q = 0 that
is in V (2, 0, 1, ε). First, we notice that, if a is close to a critical point y of K in S

n+, then
�K (a) = �K (y)(1 + o(1)) and therefore �K (a) has a constant sign.

Let M be a large constant and let ψ1 be a C∞ cut off function defined by ψ ∈ [0, 1],
ψ1(t) = 1 if t ≥ 2 and ψ1(t) = 0 if t ≤ 1. We define

W := ψ1

(λ|∇K (a)|
M

)( 1
λ

∂ϕa,λ

∂a

∇K (a)

|∇K (a)| − λ
∂ϕa,λ

∂λ

)

+
(
1 − ψ1

(λ|∇K (a)|
M

))
( sign(−�K (a)))λ

∂ϕa,λ

∂λ
.

We notice that, in the region where |∇K (a)| ≥ 2M/λ, we have that ψ1(λ|∇K (a)|/M) = 1,
therefore the Claim (i) follows from Proposition 5.7.

Next if |∇K (a)| ≤ 2M/λ then a is very close to a critical point of K in Sn+. We claim that
this critical point cannot be on the boundary. Indeed, arguing by contradiction, we assume
that a is in small neighborhood of a critical point z ∈ ∂Sn+. Since z is a non-degenerate critical
point of K , we derive that λd(a, z) is bounded which contradicts the fact that λd(a, ∂Sn+) is
very large. Hence our claim follows and a is close to an interior critical point y in S

n+.
Next using Proposition 5.7 we derive that

〈−∇ JK (u),W 〉 ≥ cψ1

(λ|∇K (a)|
M

)( |∇K (a)|
λ

+ 1

λ2

)
+
(
1 − ψ1

(λ|∇K (a)|
M

)) c

λ2

which implies Claim (i) in this region.
Hence Claim (i) is proved in the case where p = 1 and q = 0.
Concerning (i i) it follows from (i) using the estimate of v in Lemma 2.3. Finally we

notice that λ increases along the flow lines of the pseudogradientW only in the region where
a is close to a critical point y with �K (y) < 0. Thus the proof of the proposition follows in
the case where p = 1 and q = 0.

Next we consider the case where p = 0 and q = 1, that is the case of a boundary
concentration point a ∈ ∂Sn+. In this situation we divide the set V (1, 1, 0, ε) into 3 subsets
and construct an appropriate vector field in each of these sets.
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(1) Let V 1
1 := {u ∈ V (1, 1, 0, ε) : |1− JK (u)

n
n−2 α

4
n−2 K (a)| ≥ M/μ}. In this region, we

define

W 1
1 := sign(1 − JK (u)

n
n−2 α

4
n−2 K (a)|) δa,λ

and using Proposition 5.6, Claim (i) follows easily (since M is chosen large).

(2) Let V 2
1 := {u ∈ V (1, 1, 0, ε) : |1 − JK (u)

n
n−2 α

4
n−2 K (a)| ≤ 2M/μ and |∇K1(a)| ≥

η}, where η is a small fixed constant. In this region, we define

W 2
1 := 1

η
Wb

a where Wb
a := 1

λ

∂δa,λ

∂a

∇K1(a)

|∇K1(a)| .
Note that, in this region, the parameterμ is of the same order that λ. Hence, using Proposition
5.5, the proof of Claim (i) follows.

(3) Let V 3
1 := {u ∈ V (1, 1, 0, ε) : |1 − JK (u)

n
n−2 α

4
n−2 K (a)| ≤ 2M/μ and |∇K1(a)| ≤

2η}. In this region, a is close to a critical point z of K1. The pseudogradient will depend on
z. We define

W 3
1 := ψ1(λ|∇K1(a)|/M)Wb

a + γ λ
∂δa,λ

∂λ
with γ ∈ {−1, 1} satisfying{

γ = 1 if ∂K/∂ν(z) > 0 or ∂K/∂ν(z) = 0 and �K (z) < 0,

γ = −1 if ∂K/∂ν(z) < 0 or ∂K/∂ν(z) = 0 and �K (z) > 0.
(13)

Using Propositions 5.4 and 5.5, it holds

〈−∇ JK (u),W 3
1〉 ≥ cψ1

(λ|∇K1(a)|
M

)( |∇K1(a)|
λ

+ 1

λ2

)
+γ

(c3
λ

∂K

∂ν
(a) − c

�K (a)

λ2
+ O(

1

λ3
)
)
. (14)

Observe that, if ∂K/∂ν(z) �= 0, it follows that γ ∂K/∂ν(a) ≥ c > 0 and therefore Claim
(i) follows easily. In the other case, that is ∂K/∂ν(z) = 0, we need to make use of the
assumption (H3). Indeed,

• if (i) of (H3) holds, it follows that γ ∂K/∂ν(a) = |∂K/∂ν(a)| and−γ�K (a) ≥ c > 0.
Therefore, if λ|∇K1(a)| ≥ 2M , in the lower bound of (14) will appear |∇K1(a)|/λ +
|∂K/∂ν(a)|/λ + 1/λ2 which is larger than c/μ. Hence, Claim (i) follows in this case.
However, if λ|∇K1(a)| ≤ 2M , it follows that |∇K (a)| ≤ cM/λ (since we assumed that
z is a non degenerate critical point). Therefore 1/λ2 ≥ c(1/λ2 + |∇K (a)|/λ) = c/μ.
Thus Claim (i) follows in this case.

• Next we consider the case where (i i) of (H3) holds. Recall that z is a non degenerate
critical point of K1, thus it follows that there exists r1 > 0 such that |∇K1(a)| ≥ cd(a, z)
for each a ∈ B(z, r1). Let �1 > 0 (satisfying �1 max(M, 1/c) is very small), using
(i i) of (H3), there exists r2 > 0 (with r2 ≤ r1) such that |∂K/∂ν(a)| ≤ �1d(a, z)
for each a ∈ B(z, r2). Hence, in B(z, r2), |∂K/∂ν(a)| = o(|∇K1(a)|) (since �1 is
chosen so that �1/c is small) and therefore |∇K1(a)| = |∇K (a)|(1 + o(1)). Finally,
as before, if λ|∇K1(a)| ≥ 2M , in the lower bound of (14) will appear |∇K1(a)|/λ.
Furthermore, we have−γ�K (a) ≥ c > 0 and |∂K/∂ν(a)| = o(|∇K1(a)|)which imply
the proof of Claim (i) in this case. In the other case, which is λ|∇K1(a)| ≤ 2M , it holds:
d(a, z) ≤ cM/λ which implies that |∂K/∂ν(a)| ≤ �1d(a, z) ≤ c�1M/λ2 = o(1/λ2)
(by the chose of �1). Thus the proof of Claim (i) follows from (14).

Finally Claim (i i) follows fromClaim (i) using the estimate of v in Lemma 2.3 and Claim
(i i i) follows immediately from the properties of the constructed vector field. ��
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We remark that the assumption (H2) is not used in the construction of the pseudogradient
in V (1, 1, 0, ε).

3.2 The case of multiple concentration points

In the next proposition we address the case where the set of the concentration points contains
more than one point. Before stating our result we define for i = 1, . . . ,m the scalar quantity
μi as follows

μ−1
i = |∇K (ai )|/λi + 1/λ2i if i ≤ q ; μi = λ2i if i ≥ q + 1. (15)

The behavior of such a quantity along the flow lines of the constructed pseudogradient plays
crucial role in identifying critical points at infinity.

Proposition 3.2 Assume that K satisfies (H1), (H2) and (H3). A pseudogradient W can
be defined so that the following holds: There is a constant c > 0 independent of u =∑q

i=1 αiδai ,λi + ∑p+q
j=q+1 α jϕa j ,λ j ∈ V (m, q, p, ε) such that

(i) 〈−∇ JK (u),W 〉 ≥ c
p+q∑
i=1

1

μ
2−1/(n−2)
i

+ c
∑
i≤q

|1 − JK (u)
n

n−2 α
4

n−2
i K (ai )|2− 1

n−2

+ c
∑
k �=r

ε
n−1
n−2
kr + c

∑
i>q

( 1

(λi di )n−1 +
( |∇K (ai )|

λi

)2− 1
n−2

)

(ii) 〈−∇ JK (u + v),W + ∂v

∂(αi , ai , λi )
(W )〉 ≥ c

p+q∑
i=1

1

μ
2−1/(n−2)
i

+ c
∑
k �=r

ε
n−1
n−2
kr

+ c
∑
i≤q

|1− JK (u)
n

n−2 α
4

n−2
i K (ai )|2− 1

n−2 +c
∑
i>q

( 1

(λi di )n−1 +
( |∇K (ai )|

λi

)2− 1
n−2

)

where di := d(ai , ∂Sn+).
(iii) The vector field W is bounded with the property that along its flow lines the maximum

of the μi ’s increases only if the (q + p)−tuple (a1, . . . , aq , . . . aq+p) is close to a collection
of different critical points of K or K1 (z1, . . . , zq , yq+1, . . . yq+p) with the yi ’s are critical
points of K in Sn+ satistying �K (yi ) < 0 for each i ≥ q + 1 and the zi ’s are critical points
of K1 such that either (∂K/∂ν)(zik ) > 0 or ((∂K/∂ν)(zi ) = 0 and �K (zi ) < 0).

The construction of a pseudogradient satisfying (i), (i i), (i i i) is quite involved and requires
some preparatory Lemmas and estimates. Its construction depends on the behavior of the
leading terms of the α-, a- and λ-component of the gradient in the neighborhood at infinity
V (m, q, p, ε). To perform such a construction we divide the set V (m, q, p, ε) into four
subsets. The first and the second ones correspond to the situation where at least one of the
variables αi ’s and ai ’s is not in its critical position and the μi ’s are of the same order. In the
third one, the μi ’s are still of the same order but the variables αi ’s and ai ’s are very close to
their critical positions. Finally in the fourth one we address the case where the μi ’s are not
of the same order.

123



The Nirenberg problem on high dimensional… Page 13 of 41 148

To define these regions, we introduce the following notation. For M2 a large constant we
set:

�αk := |1 − JK (u)
n

n−2 α
4

n−2
k K (ak)|

M2(
∑

r �=k εkr + 1/μk)
; �b

ai := |∇K1(ai )|/λi
M2/λ

2
i + (1/M2

2 )
∑

k∈I εik
for i ≤ q

�ai := |∇K (ai )|/λi
M2(

∑
k �=i εki + (λi di )2−n + 1

λ2i
)
; �Hi := H(ai , ai )/M2λ

n−4
i for i > q,

�λk := μk

∑
j �=k

ε jk/M2 for 1 ≤ i ≤ q + p. (16)

To explain the relevance of the above quantities, we state the following Lemma

Lemma 3.3 (1) Let ai be an interior point satisfying �λi + �ai + �Hi ≤ 8. Then ai is close
to a interior critical point y of K in S

n+.
(2) If ai , a j are interior points satisfying that �λk + �ak + �Hk ≤ 8 for k = i, j and

if their corresponding concentration rates λi and λ j are of the same order. Then ai and a j

cannot be close to the same critical point.

Proof Since i satisfies:�Hi +�ai +�λi ≤ 8, this implies that |∇K (ai )| ≤ C/λi and therefore
ai is close to a critical point of K . We need to exclude the case where this critical point lies on
the boundary. In fact, assuming that it is the case, i.e. ai is close to z ∈ ∂Sn+. Then it follows
from (H1), that λi d(ai , z) is bounded, which is not allowed. Therefore, each concentration
point ai is close to a critical point y ji ∈ S

n+ and the first assertion is proved.
Concerning the second one, assume that two different points ai and a j are near the same

critical point y. Then we have from the first assertion: λkd(ak, y) is bounded for k = i, j .
Since λi and λ j are assumed to be of the same order, it follows that λkd(ai , a j ) is bounded,
which contradicts the smallness of εi j . ��

3.2.1 Construction of some local pseudogradients

In this subsection we construct some local pseudogradients in some parts of the neighbor-
hood at infinity. These vector fields will be glued together to obtain a global pseudogradient
satisfying the properties required in Proposition 3.2.

For M0 a large number we define the following subsets of V (m, q, p, ε)

V1(M0) :={u : μmax ≤ 2M0 μmin} ∩ {u : ∃ i > q : �Hi + �ai + �λi ≥ 6},
V2(M0) :={u : μmax ≤ 2M0 μmin} ∩ {u : ∀ i > q : �Hi +�ai +�λi ≤ 8} ∩

(
{u : ∃ i ≤ q : �αi +�λi ≥ 4}

∪ {u : ∃ i ≤ q : d(ai ,Kb) ≥ η}
)

where Kb := {z ∈ ∂Sn+ : ∇K1(z) = 0},
V3(M0) :={u : μmax ≤ 2M0 μmin} ∩ {u : ∀ i > q : �Hi + �ai + �λi ≤ 8} ∩ {u : ∀ i ≤ q : �αi +�λi ≤ 6}

∩ {u : ∀ i ≤ q : d(ai ,Kb) ≤ 2η},
V4(M0) :={u : μmax > M0 μmin},

where μmax := max j μ j and μmin := min j μ j .
Before defining a pseudogradient in each subset, we single out some of their properties

that will be used in the construction of the local pseudogradients.
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Remark 3.4 (1) In Vk(M0), for k ≤ 3, the variables μi ’s are of the same order. Thus, using
Lemma 5.2, we derive that, for each i �= j ≤ q , it holds

− λi
∂εi j

∂λi
≥ cεi j . (17)

Furthermore, for i �= j > q , we deduce that λi and λ j are of the same order and therefore
(17) holds true. Now, for i > q and j ≤ q , we have λi di is very large which implies that
λi d(ai , a j ) is also very large and therefore (17) holds for these indices.

(2) In Vk(M0), k = 2, 3, for each i > q , the concentration point ai is close to a critical
point y ji ∈ S

n+ and two different points ai and a j cannot be near the same critical point y
(see Lemma 3.3).

(3) In V3(M0), for each i ≤ q , ai is close to a critical point z ji of K1 in ∂Sn+.

We start our construction by defining a pseudogradient in V1(M0).

Lemma 3.5 There exists a bounded pseudogradient W1 so that the following holds: There is
a constant c > 0 independent of u = ∑q

i=1 αiδi + ∑p+q
i=q+1 αiϕi ∈ V1(M0) such that

〈−∇ JK (u),W1〉 ≥
q+p∑
i=1

c

μi
+ c

q∑
i=1

|1 − JK (u)
n

n−2 α
4

n−2
i K (ai )|

+c
∑
k �=r

εkr +
q+p∑

i=q+1

|∇K (ai )|
λi

. (18)

Furthermore, the λi ’s are decreasing functions along the flow lines generated by this pseu-
dogradient. In addition, the constant of 1/μmax is independent of M0 and M2.

Proof We start by defining the following vector fields:

W�in := −
∑
i>q

(ψ1(�λi ) + ψ1(�Hi ))λi
∂ϕi

∂λi
and Win

a :=
∑
i>q

ψ1(�ai )
1

λi

∂ϕi

∂ai

∇K (ai )

|∇K (ai )| (19)

W�b := −
∑
i≤q

ψ1(�λi )λi
∂δi

∂λi
and Wα := −

∑
k≤q

ψ1(�αk ) sign(1 − JK (u)
n

n−2 α
4

n−2
k K (ak))δk

(20)

where ψ1 is a C∞ function defined by ψ1 ∈ [0, 1], ψ1(t) = 1 if t ≥ 2 and ψ1(t) = 0 if
t ≤ 1. Observe that, using Propositions 5.4, 5.7, the estimate (17) and the definition of ψ1,
we derive that

〈−∇ JK (u),W�in 〉 ≥ c
∑
i>q

(ψ1(�λi ) + ψ1(�Hi ))
(∑

j �=i

εi j + H(ai , ai )

λn−2
i

+ M2

2

1

λ2i
+ O(R1)

)
:= ��in

(21)

〈−∇ JK (u),W�b 〉 ≥ c
∑
i≤q

ψ1(�λi )
(∑

k �=i

εik + M2

2

1

μi
+ O

(∑
k>q

εki + Rb
1

))
:= ��b . (22)

Moreover using Proposition 5.6, we derive that

〈−∇ JK (u),Wα〉 ≥ c
∑
k≤q

ψ1(�αk )

⎛
⎝|1 − JK (u)

n
n−2 α

4
n−2
k K (ak)| + M2

2

⎛
⎝∑

r �=k

εkr + 1

μk

⎞
⎠
⎞
⎠ := �α.

(23)
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Such an estimate suggests to move the variable αi ’s if |1− JK (u)n/n−2α
4/n−2
i K (ai )| is very

large with respect to
∑

r �=k εkr +1/μk . Furthermore making use of Propositions 5.6 and 5.7,
we derive that

〈−∇ JK (u),Win
a 〉 ≥ c

∑
i>q

ψ1(�ai )
( |∇K (ai )|

λi
+ M2

2

(∑
k �=i

εki + 1

(λi di )n−2 + 1

λ2i

))
:= �

in
a .

Nest we define

W1 := W�in + Win
a + Wα + (1/M2)W�b .

Using the previous estimates, we obtain

〈−∇ JK (u),W1〉 ≥ ��in + �
in
a + �α + (1/M2)��b

≥ c
∑
i>q

(ψ1(�λi ) + ψ1(�Hi ) + ψ1(�ai ))
(∑

j �=i

εi j + H(ai , ai )

λn−2
i

+ M2

2

1

λ2i

)

+ c
∑
i>q

ψ1(�ai )
|∇K (ai )|

λi
+ �α + (1/M2)��b + O(R1). (24)

Regarding the above estimate, we point that we need to take care of the interaction term
O(εki ) contained in the expression ��b . To that aim, we observe that, if �Hk + �ak + �λk ≥
6, then the εki appears in the lower bound in (24) and therefore we are able to remove
the (1/M2)εki by taking M2 large. But, if �Hk + �ak + �λk ≤ 6, it follows that (see the
second assertion of Remark 3.4) ak is close to a critical point y of K and therefore we get
εki = O(1/λn−2

k + 1/λn−2
i ) which is small with respect to our lower bound.

Sincewe are inV1(M0), there exists at least one index i > q such thatψ1(�λi )+ψ1(�Hi )+
ψ1(�ai ) ≥ 1. This implies that 1/λ2i = 1/μi appears in the lower bound of (24). Since all
the μ j ’s are of the same order, we are able to make appear all the 1/μ j ’s in this lower bound
and Lemma 3.5 follows. ��

In the next lemma we construct a pseudogradient in the set V2(M0). Namely we prove:

Lemma 3.6 There exists a bounded pseudogradient W2 such that the following holds: There
is a constant c > 0 independent of u = ∑q

i=1 αiδi + ∑p+q
i=q+1 αiϕi ∈ V2(M0) such that the

statement of Lemma 3.5 holds true with W2 instead of W1.

Proof First, recall that (see Remark 3.4), in V2(M0), each interior concentration point ak
is close to a critical point of K in S

n+ and that two interior concentration points ai and
ak cannot be close to the same critical point which implies that d(ai , ak) ≥ c > 0 and
εik = O(1/(λkλi )(n−2)/2).

Recalling that Kb := {z ∈ ∂Sn+ : ∇K1(z) = 0} we define the following pseudogradient:

W2 := Wα + W�b +
∑
i∈D1

1

λi

∂δi

∂ai

∇K1(ai )

|∇K1(ai )| where D1 := {i ≤ q : d(ai ,Kb) ≥ η}.

Using (22), (23) and Proposition 5.5, we get

〈−∇ JK (u),W2〉 ≥ �α+��b +
∑
i∈D1

c

λi
+O

(∑
k≤q

( 1
λi

|∂εki

∂ai
|+λkd(ak, ai )ε

n+1
n−2
ki

)+Rb
1+

∑
k>q

εki

)
.

(25)
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First, taking i ∈ D1, for k ≤ q , two cases may occur: (i) either d(ai , ak) ≤ η/2, and in this
case we get that |∇K (ak)| ≥ c and therefore μk and λk are of the same order. Thus λi and
λk are of the same order. (i i) or d(ai , ak) ≥ η/2. In the two cases, we deduce that

εki = 1 + o(1)

(λiλkd(ai , ak)2)
n−2
2

; λkd(ak, ai )ε
n+1
n−2
ki ≤ c ε

n−1
n−2
ki

λi |d(ai , ak)

and
1

λi
|∂εki

∂ai
| ≤ c εki

λi d(ai , ak)
= o(εki ).

Secondly, for i ∈ D1, we have |∇K1(ai )| ≥ c(η) and therefore λi and μi are of the same
order. Since all the μ j ’s are assumed to be of the same order, we are able to make appear all
the 1/μ j ’s in the lower bound of (25). Finally, for j /∈ D1, (i) either �α j ≥ 2, in this case,

the |1 − JK (u)n/(n−2)α
4/(n−2)
j K (a j )| +∑

εk j appears in �α , (i i) or �α j ≤ 2 and �λ j ≥ 2,

in this case
∑

k j εk j appears in ��b , (i i i) or �α j + �λ j ≤ 4, in this case we are able to make

appear |1− JK (u)n/(n−2)α
4/(n−2)
j K (a j )|+∑

εk j from 1/μ j . Hence the lemma follows. ��
Next we consider the third set V3(M0). We notice that in this subset each concentration

point ai is close to some critical point of K or K1 and for a critical point z ∈ ∂Sn+ of K1

(resp. y ∈ S
n+ of K ), we denote by

Bz := {i ≤ q : ai is close to z} ; By := {i > q : ai is close to y}.
We observe that it follows from Remark 3.4 that #By ≤ 1 for each critical point y in S

n+.
However, it is possible to have #Bz ≥ 2 for some critical points z’s in ∂Sn+.

Next we divide the set V3(M0) into four subsets. The first three ones are defined as follows:

V 1
3 :={u ∈ V3(M0) : ∃ z with ∂K/∂ν(z) = 0 and #Bz ≥ 2},

V 2
3 :=

(
{u : ∃ z with ∂K/∂ν(z) < 0 and Bz �= ∅}

⋃
{u : ∃ y with �K > 0 and By �= ∅}⋃

{u : ∃ z with ∂K/∂ν(z) = 0; �K (z) > 0 and #Bz �= 0}
)⋂

(V3(M0)\V 1
3 ),

V 3
3 :={u ∈ V3(M0) : ∃ z with ∂K/∂ν(z) > 0 and #Bz ≥ 2}

⋂
(V3(M0)\(V 1

3 ∪ V 2
3 ))

where y is an interior critical point of K and z is a critical point of K1, and the last one is
defined as:

W :={u ∈ V3(M0) : ∀i ≤ q, ai is close to zi ∈ ∂Sn+,with #Bzi = 1; (∂K/∂ν = 0&�K < 0)

or ∂K/∂ν > 0}
⋂

{u ∈ V3(M0),∀ j > q, a j is close to y j ∈ S
n+,

with #Byj = 1 and �K (y j ) < 0}. (26)

In the next lemma we construct a pseudogradient in the first subset. Namely we prove the
following lemma:

Lemma 3.7 There exists a bounded pseudogradient W 1
3 such that the following holds: There

is a constant c > 0 independent of u = ∑q
i=1 αiδi + ∑p+q

i=q+1 αiϕi ∈ V 1
3 such that the

statement of Lemma 3.5 holds true with W 1
3 instead of W1.

Proof Let z be such that ∂K/∂ν(z) = 0 and #Bz ≥ 2. Firstly, we claim that:

There exists k ∈ Bz such that:
|∇K1(ak)|

λk
≥ M2

λ2k
+ 1

M2
2

∑
j �=k

ε jk . (27)
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Indeed arguing by contradiction, we assume that this claim does not hold. Thus, since z is a
non-degenerate critical point of K1, we obtain, for each k ∈ Bz ,

c
d(ak, z)

λk
≤ |∇K1(ak)|

λk
≤ M2

λ2k
+ 1

M2
2

∑
j �=k

ε jk

≤ M2

λ2k
+ c

M2

1

μk
≤ c

M2

|∇K (ak)|
λk

+ c
M2

λ2k
≤ c

d(ak, z)

M2λk
+ c

M2

λ2k

which implies that λkd(ak, z) is bounded. In addition, from the definition of μk , we get

1

λ2k
≤ 1

μk
:= |∇K (ak)|

λk
+ 1

λ2k
≤ c

λkd(ak, z)

λ2k
+ 1

λ2k
≤ c

λ2k
.

Thus, μk and λ2k are of the same order for each k ∈ Bz .
Next let i and j be two different indices in Bz . We deduce that λ j and λi are of the same

order and λkd(ai , a j ) is bounded for k = i, j . These give a contradiction with the fact that
εi j is small. Hence our claim follows.

Furthermore observe that, for k satisfying (27), it holds that λkd(ak, z) ≥ cM2.
Now, in this region, we define the following vector field:

W 1
3 :=

∑
i∈D2

1

λi

∂δi

∂ai

∇K1(ai )

|∇K1(ai )| where D2 := {i ≤ q : (27) holds with k = i}.

Using Proposition 5.5, we get

〈−∇ JK (u),W 1
3 〉 ≥ c

∑
i∈D2

|∇K1(ai )|
λi

+O
(∑
k≤q

( 1
λi

|∂εki

∂ai
|+λkd(ak, ai )ε

n+1
n−2
ki

)+Rb
1+

∑
k>q

εki

)
.

(28)
Recall that (see Remark 3.4), in V3(M0), each concentration point ak , for k > q is close to
a critical point of K in S

n+ which implies that d(ai , ak) ≥ c > 0 for each i ≤ q . Hence we
get εik = O(1/(λkλi )(n−2)/2).

Moreover for i ∈ D2 and k ≤ q with k �= i , two casesmay occur: (i) eitherλk ≤ M2
0M

2
2λi ,

and in this case we get

1

λi
|∂εik

∂ai
| + λkd(ak , ai )ε

n+1
n−2
ki ≤ c λkd(ai , ak)ε

n
n−2
ik ≤ c M0M2

√
λkλi d(ai , ak)ε

n
n−2
ik ≤ c M0M2ε

n−1
n−2
ik ,

or (i i) λk ≥ M2
0M

2
2λi . In this case, since μk ≤ 2M0μi and z is a non-degenerate critical

point of K1, it follows that

c
d(ai , z)

λi
≤ |∇K1(ai )|

λi
≤ |∇K (ai )|

λi
+ ( 1

λ2i
− 2

M0

λ2k

) ≤ 2M0
|∇K (ak)|

λk
≤ cM0

d(ak, z)

λk

which implies that d(ai , z)/d(ak, z) ≤ cM0λi/λk ≤ c/(M0M2
2 ). Thus we deduce that

d(ai , ak) ≥ cM0M2
2d(ai , z). Therefore we obtain

1

λi
| ∂εik

∂ai
| + λkd(ak , ai )ε

n+1
n−2
ki ≤ c λkd(ai , ak)ε

n
n−2
ik ≤ c

λi d(ai , ak)
εik ≤ 1

M0M2
2

c

λi d(ai , z)
εik ≤ c

M3
2M0

εik

where we have used the fact that λi d(ai , z) ≥ cM2. Thus (28) becomes

〈−∇ JK (u),W 1
3 〉 ≥ c

∑
i∈D2

|∇K1(ai )|
λi

+ M2

λ2i
+ 1

M2
2

∑
j �=i

εi j + O(Rb
1 +

∑ 1

λn−2
j

). (29)
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Finally, we notice that |∇K (ai )| ≤ cd(ai , z) ≤ c|∇K1(ai )| ≤ c|∇K (ai )|. Thus, in (29), we
can make appear 1/μi for i ∈ D2 and therefore all the 1/μ j ’s (since there are of the same
order) and the proof follows as the proof of the previous lemmas. ��
Lemma 3.8 There exists a bounded pseudogradient W 2

3 such that the following holds: There

is a constant c > 0 independent of u = ∑q
i=1 αiδi + ∑p+q

i=q+1 αiϕi ∈ V 2
3 such that the

statement of Lemma 3.5 holds true with W 2
3 instead of W1.

Proof LetD1 := ∪y:�K (y)>0By ,D2 := ∪z:∂K/∂ν(z)<0Bz andD3 := ∪z:∂K/∂ν(z)=0; �K (z)>0Bz .
We divide this region into two subsets:

1st subset: If D1 ∪ D2 �= ∅. In this case, we define

W 21
3 := −

∑
i∈D1∪D2

λi
∂ϕi

∂λi
.

By using the first assertion of Remark 3.4 and Propositions 5.4 and 5.7, it follows that

〈−∇ JK (u),W 21
3 〉 ≥ c

∑
i∈D1∪D2

(∑
j �=i

εi j + 1

μi
+ O

(∑ 1

λn−2
j

+ Rb
1 + R1

))
.

Hence, the proof follows.
2nd subset: D3 �= ∅. Note that, since we are outside of V 1

3 , for i ∈ Bz with ∂K/∂ν(z) = 0,
it holds that Bz = {i}, that is d(ai , a j ) ≥ c > 0 for each j �= i . We define

W 22
3 :=

∑
i∈D3

ψ1(λi |∇K1(ai )|/M)
1

λi

∂δi

∂ai

∇K1(ai )

|∇K1(ai )| − λi
∂δi

∂λi

where M is a large constant. We point out that W 22
3 is exactly the sum of of the vector fields

W 3
1 (defined in (13)) with γ = −1. Furthermore, the presence of the function ψ1 implies

that the point ai moves only if |∇K1(ai )| ≥ M/λi .
Using Propositions 5.4 and 5.5, we get

〈−∇ JK (u),W 22
3 〉 ≥c

∑
i∈D3

ψ1(λi |∇K1(ai )|/M)
( |∇K1(ai )|

λi
+ 1

λ2i

)

−
(c3

λi

∂K

∂ν
(ai ) − c

�K (ai )

λ2i

)
+ O

(∑ 1

λn−2
j

+ Rb
1

)
(30)

which has the same form as (14). Hence, the same computations and arguments hold and the
proof of the lemma follows. ��

3.2.2 Ruling out collapsing phenomena

Wepoint that, themain difference between theSn-case (or the case of an interior blowup point
for the Sn+-case) and the boundary blow up point case relies essentially on the behavior of the
leading term in Propositions 5.4 and 5.7 (namely the λ-term). Indeed when ∂K/∂ν(z) �= 0
and ai is close to a boundary critical point z ∈ ∂Sn+, the leading term behaves like c/λi ,
while for the Sn-case (or the case of an interior blow up point in the Sn+-case), for ai close
to an interior critical point y with �K (y) �= 0, this term behaves like c/λ2i . This difference
on the behavior of the leading term plays a crucial role in the nature of the critical point at
infinity. Indeed in [1], for z a critical point of K1 (which is not local maximum) satisfying
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∂K/∂ν(z) > 0, we proved that z is not a simple blow up point in the sense that Bz contains
more than one concentration point. In the following lemma, we consider the case of a local
maximum point of K1 satisfying ∂K/∂ν(z) > 0 and we will prove that z is a simple blow
up point. Namely we prove

Lemma 3.9 Let z be a non degenerate local maximum of K1 with ∂K/∂ν(z) > 0. Then z
is a simple blow up. More precisely if #Bz := #{ai ; close to z} := q1 ≥ 2, then JK admits
in the set V (q1, q1, 0, ε) a compactifying bounded pseudogradient W (z, q1). Namely there
exits a constant c > 0 independent of u = ∑q1

i=1 αiδi such that

〈−∇ JK (u),W (z, q1)〉 ≥ c
∑
i≤q1

( 1

λ
2−1/(n−2)
i

+ |1 − JK (u)
n

n−2 α
4

n−2
i K (ai )|2− 1

n−2

)
+ c

∑
k �=r

ε
n−1
n−2
kr .

Furthermore, the concentration rates λi ’s do not increase along the flow lines generated by
this pseudogradient.

For the proof of Lemma 3.9, we make use of the following technical results.

Lemma 3.10 Let ai , a j ∈ ∂Sn+ be concentration points such that the corresponding rates λi
and λ j are of the same order and d(ak, b) → 0 for k = i, j for some point b ∈ ∂Sn+. Then
we have

ei j := ∂εi j

∂ai
(b − 〈ai , b〉ai ) + ∂εi j

∂a j
(b − 〈a j , b〉a j ) ≥ c εi j .

Proof Easy computation implies that

∂εi j

∂ai
= (n − 2)λiλ j (a j − ai )ε

n/(n−2)
i j .

Thus we get

ei j = (n − 2)λiλ jε
n/(n−2)
i j

(〈a j − ai , b − 〈ai , b〉ai 〉 + 〈ai − a j , b − 〈a j , b〉a j 〉
)

= (n − 2)λiλ jε
n/(n−2)
i j 〈a j + ai , b〉(1 − 〈ai , a j 〉)

= (n − 2)λiλ jε
n/(n−2)
i j |ai − a j |2(1 + o(1)) ≥ cεi j .

where |ai − a j | is the euclidian norm of ai − a j seen as a vector in R
n+1. ��

Lemma 3.11 Let a, h ∈ ∂Sn+ be close to a non degenerate local maximum z of K1. Then it
holds that

1

K1(a)n/2 ∇K1(a)
(
h − 〈a, h〉a) ≥ − 1

K1(h)n/2 ∇K1(h)
(
a − 〈a, h〉h) + c |a − h|2.

Proof Let

β(t) := h + t(a − h)

|h + t(a − h)| , g(t) := 2/(n − 2)

K1(β(t))(n−2)/2
for t ∈ [0, 1].

It is easy to get that

β ′(t) = 1

|h + t(a − h)|
(
a − h − 〈β(t), a − h〉β(t)

)
, 〈β(t), a − h〉 = O(|a − h|2),
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and therefore it holds that |β ′(t)| = |a − h|(1 + o(1)) uniformly in t ∈ [0, 1]. Furthermore,
easy computations imply that |β ′′(t)| = O(|a−h|2) uniformly in t ∈ [0, 1]. In another hand,
we have

g′(t) = −1

K1(β(t))n/2 ∇K1(β(t))
(
β ′(t)

)
and, since a and h are close to a non degenerate maximum critical point z of K1, we derive
that

g′′(t) = o(|β ′(t)|2) − 1

K1(β(t))n/2 D
2K1(β(t))

(
β ′(t), β ′(t)

) + o(|β ′′(t)|)
≥ c|a − h|2 (uniformly in t ∈ [0, 1]).

Now,

1

K1(a)n/2 ∇K1(a)
(
h − 〈a, h〉a) + 1

K1(h)n/2 ∇K1(h)
(
a − 〈a, h〉h) = g′(1) − g′(0) =

∫ 1

0
g′′(t) dt

which implies the lemma. ��
Proof of Lemma 3.9 For the construction of a suitable vector field satisfying the properties
required in Lemma 3.9 as well for later purposes we will use some constants M0, M2 and
M4 which are required to be large and to satisfy

M0

M2
4

small , max
( M2

M1/(q+p−1)
0

; M (n−1)/(n−2)
2

M (1/2+1/(n−2))/(q+p−1)
0

)
small . (31)

The first requirement is used in (34) and (35) below while the second one is used when
studying a remainder term of (42) and the last one is used in (44) in the proof of Lemma
3.14.

In viewof the pseudogradient constructed inLemmas 3.6 and 3.14, it is enough to construct
a pseudogradient satisfying the above estimate in the following set:

V (z, q1, η, ε, M0) := {u ∈ V (q1, q1, 0, ε) : λmax ≤ M0λmin; d(ai , z) < η; �λi ≤ 2 and �αi ≤ 2 ∀ i}.
Moreover, since the λi ’s are of the same order, we have that εi j = (1 + o(1))/(λiλ j

d(ai , a j )
2)(n−2)/2 and therefore d(ai , a j ) ≥ c/λ(n−3)/(n−2)

1 for each i �= j (since �λi is
bounded). We want to construct a pseudogradient which moves the concentration points ai
to their barycenter and prove that along its flow lines theEuler–Lagrange functional decreases.
To this aim, let i and i1 be such that d(ai , ai1) := min d(ar , a�) and define Li := {i, i1}. Next
let M4 be a large positive constant, for such an index i , we define inductively a sequence Ls

i
by setting

L1
i := { j : ∃ � ∈ Li s.t . d(a j , a�) ≤ M4d(ai , ai1)} and

Ls
i := { j : ∃ � ∈ Ls−1

i s.t . d(a j , a�) ≤ M4 max
r ,t∈Ls−1

i

d(ar , at )}.

Observe that, since we have only q1 points and #Li = 2, then there exists m ≤ q1 − 1 such
that Lm+1

i = Lm
i and we set L∗

i := Lm
i where m is the first index such that Lm+1

i = Lm
i . We

remark that Li ⊂ L∗
i . Next we want to move the points a j ’s, for j ∈ L∗

i , to their center of
mass. For this aim, let ai be defined as

ai := bi
|bi | where bi ∈ R

n+1 satisfying
∑
j∈L∗

i

(bi − a j ) = 0. (32)
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Note that, it is easy to see that ai satisfies

ai ∈ ∂Sn+ and
∑
j∈L∗

i

a j − 〈a j , ai〉ai = 0. (33)

Now we define the following vector field:

Wi
3 := 1

λiγi

∑
j∈L∗

i

α j
∂δ j

∂a j
(ai − 〈a j , ai〉a j ) where γi := max

j∈L∗
i

d(ai , a j ).

We note that L∗
i has two important properties:

• If k, � ∈ L∗
i , we have d(ak, a�) ≤ cMm

4 d(ai , ai1).
• If k /∈ L∗

i , then, for each j ∈ L∗
i , we have d(a j , ak) ≥ M4 maxr ,�∈L∗

i
d(ar , a�). Hence,

for k /∈ L∗
i and j ∈ L∗

i , choosing M (n−2)/2
0 /Mn−2

4 small, it follows that for every � ∈ L∗
i ,

we have that:

| ∂ε jk

∂a j
||ai − 〈a j , ai〉a j | ≤ cd(ai, a j )

(λ jλk)
n−2
2 d(a j , ak)n−1

≤ M (n−2)/2
0

Mn−1
4

c

(λ jλ�)
n−2
2 d(a j , a�)n−2

= o
(
ε j�

)
(34)

ε jk ≤ c

(λ jλk)(n−2)/2d(a j , ak)n−2
≤ cM (n−2)/2

0

Mn−2
4

1

(λ jλ�)(n−2)/2d(a j , a�)n−2
= o

(
ε j�

)
(35)

(by using (31)). We note that, in this region, we have |1 − JK (u)
n

n−2 α
4

n−2
j K (a j )| ≤

cM2/λ j for each j , hence Proposition 5.5 can be written as:

〈∇ JK (u), α j
∂δ j

∂a j
〉 = λ j

[
c4

(
1 − JK (u)

n
n−2 α

4
n−2
i K (ai )

)
+ JK (u)

n
n−2 α

4
n−2
i

c5
λi

∂K

∂ν
(ai )

]
en

− JK (u)c2
∑
k �= j

α jαk
∂εk j

∂a j
− 8c5 JK (u)−

n−2
2

∇K1(a j )

K (a j )n/2 + O
( 1

λ
+ λ

∑
ε

n
n−2
kr ln(ε−1

kr )
)
. (36)

Hence we derive that:

〈−∇ JK (u),Wi
3〉 = JK (u)c2

λiγi

∑
k �= j; j∈L∗

i

α jαk
∂εk j

∂a j
(ai − 〈a j , ai〉a j )

+ 8c5 JK (u)(2−n)/2

λiγi

∑
j∈L∗

i

1

K (a j )n/2 ∇K1(a j )(ai − 〈a j , ai〉a j )

+ O
( 1

λ2
+
∑

ε
n

n−2
kr ln(ε−1

kr )
)
. (37)

Next we notice that, using Lemma 3.10, il holds

∂εk j

∂a j
(ai − 〈a j , ai〉a j ) + ∂εk j

∂ak
(ai − 〈ak, ai〉ak) ≥ c εk j , for each k, j ∈ L∗

i . (38)
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Furthermore, using Lemma 3.11 (with h = ai), it holds that∑
j∈L∗

i

1

K (a j )n/2 ∇T K (a j )(ai − 〈a j , ai〉a j )

≥
∑
j∈L∗

i

−1

K (ai)n/2 ∇T K (ai)(a j − 〈a j , ai〉ai) + c
∑
j∈L∗

i

|a j − ai|2

≥ c
∑
j∈L∗

i

|a j − ai|2 (since
∑
j∈L∗

i

a j − 〈a j , ai〉ai = 0 (see (33))).

Thus we get

〈−∇ JK (u),Wi
3〉 ≥ c

∑
k, j∈L∗

i

εk j

λiγi
+

∑
j∈L∗

i

d(a j , ai)2

λiγi
+ O

(∑
ε

n
n−2
�r ln ε−1

�r + 1

λ2i

)
. (39)

Now, since γi := maxk,r∈L∗
i
d(ak, ar ) is of the same order of all the d(a�, a j )’s, we derive

that εk j/λiγi ≥ cε(n−1)/(n−2)
k j . Furthermore,

∑
j∈L∗

i
d(a j , ai)2 ≥ c

∑
j,r∈L∗

i
d(a j , ar )2 and

therefore ∑
j∈L∗

i

d(a j , ai)2/(λiγi ) ≥
∑
j,r∈L∗

i

d(a j , ar )/λi ≥ c/λ2−1/(n−2)
i .

Hence, in the lower bound of (39), we are able to make appear 1/λ2−1/(n−2)
i and therefore

(since all the λ j ’s are of the same order and �αk ≤ 4 for each k) we are able to make appear

all the 1/λ2−1/(n−2)
j ’s and |1− JK (u)n/(n−2)α

4/(n−2)
j K (a j )|2−1/(n−2)’s. Concerning the εkr ,

we note that the εk j ’s which appeared in the lower bound, are only for the indices k, j ∈ L∗
i .

Hence we need to make appear ε jr for j /∈ L∗
i . For this aim, we remark that, for each j, �,

we have d(a j , a�) ≥ d(ai , ai1) (by the definition of i and i1), in addition we have that the
λk’s are of the same order. Hence we deduce that εi i1 ≥ cε j�. Hence the proof of the lemma
follows.

In the next lemma we rule out non simple blow up for a mixed configuration involving
local maxima on the boundary and other interior blow up points. Namely we prove:

Lemma 3.12 There exists a bounded pseudogradient W 3
3 such that the following holds: There

is a constant c > 0 independent of u = ∑q
i=1 αiδi + ∑p

i=q+1 αiϕi ∈ V 3
3 such that

〈−∇ JK (u),W 3
3 ≥

q+p∑
i=1

c

μ
2n−5
n−2
i

+ c
q∑

i=1

|1 − JK (u)
n

n−2 α
4

n−2
i K (ai )| 2n−5

n−2

+ c
∑
k �=r

ε
n−1
n−2
kr + c

q+p∑
i=q+1

( |∇K (ai )|
λi

) 2n−5
n−2

Furthermore, the λi ’s do not increase along the flow lines generated by the pseudogradient
W 3

3 .

Proof Let z1, . . . , z� be the critical points of K1 satisfying ∂K/∂ν(z j ) > 0 and #Bz j ≥ 2.
We decompose u as follows:

u :=
�∑

i=1

ui + u�+1 where ui :=
∑
k∈Bzi

αkδk and u�+1 := u −
�∑

i=1

ui .
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From the second and the third assertions of Remark 3.4, it follows that each concentration
point a j of u�+1 satisfies |a j − ak | ≥ c for each k �= j and it is close to a critical point of K1

with ∂K/∂ν ≥ 0 or a critical point of K in S
n+ with �K < 0. Furthermore, for j ∈ Bzi , we

have |a j − ak | ≥ c for each k /∈ Bzi . Hence the mutual interaction between two clusters Bzi
and Bz j for i �= j is negligible with respect to the other terms. In this situation, we define
the following vector field

W 3
3 :=

�∑
i=1

W (zi , #Bzi )

where W (zi , #Bzi ) is defined in Lemma 3.9. Hence we obtain

〈−∇ JK (u),W 3
3 〉 =

�∑
i=1

〈−∇ JK (u),W (zi , #Bzi )〉 =
�∑

i=1

〈−∇ JK (ui ),W (zi , #Bzi )〉+
∑

k∈Bzi ; j /∈Bzi
O
(
εk j

)
.

(40)
We observe that, for k ∈ Bzi , we have μk and λk are of the same order. Moreover we
are in the case where all the μ j ’s are of the same order. Thus, using Lemma 3.9, we are

able to make appear all the 1/μ2−1/(n−2)
j ’s in the lower bound of (40) (and therefore all

the |1− JK (u)n/(n−2)α
4/(n−2)
i K (ai )|2−1/(n−2)’s and the (|∇K (ai )|/λi )2−1/(n−2)’s (since the

�αk ’s and the �ai ’s are bounded). In addition, for j /∈ Bzi and k ∈ Bzi , we have

εk j ≤ c

(λ jλk)(n−2)/2
≤
{

o(1/λ2k) if n ≥ 6,

c/λ2k + c/λ4j if n = 5.

Therefore, our lemma follows from Lemma 3.9. ��
Lemma 3.13 There exists a bounded pseudogradient V satisfying the following estimate:

There is a constant c > 0 independent of u = ∑q
i=1 αiδi + ∑p

i=q+1 αiϕi ∈ W such that
(18) holds true with V instead of W1.

Furthermore in the subset ofW such that λi |∇K1(ai )| is bounded, the λi ’s are increasing
functions along the flow lines generated by the pseudogradient V .

Proof Let ψ1 be a C∞ cut of function defined by ψ1 ∈ [0, 1], ψ1(t) = 1 if t ≥ 2 and
ψ1(t) = 0 if t ≤ 1.

We define the following vector field:

V := Wα + Win
a + Wb

a +
p+q∑
i=1

λi
∂ϕi

∂λi

where Wb
a := ∑

i∈Ib ψ1(λi |∇K1(ai )|/M2)(1/λi )(∂δi/∂ai )(∇K1(ai )/|∇K1(ai )|) and Win
a

(resp. Wα) is defined in (19) (resp. (20)).
Observing that in W we have εi j = O(1/λn−2

i + 1/λn−2
j ) for each i �= j and using

Propositions 5.4, 5.5, 5.7 the lemma follows. ��

3.2.3 Ruling out bubble towers phenomena

In this subsection we prove any configuration of points of non comparable concentration
rates is not critical at infinity. Indeed one can construct in the neighborhood of such points a
compactifying pseudogradient. Namely we prove that:
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Lemma 3.14 There exists a bounded pseudogradient W4 such that the following holds: There
is a constant c > 0 independent of u = ∑q

i=1 αiδi + ∑p+q
i=q+1 αiϕi ∈ V4(M0) such that

〈−∇ JK (u),W4〉 ≥ c
q+p∑
i=1

1

μ
n−1
n−2
i

+ c
q∑

i=1

|1 − JK (u)
n

n−2 α
4

n−2
i K (ai )| n−1

n−2

+ c
∑
k �=r

ε
n−1
n−2
kr +

q+p∑
i=q+1

( |∇K (ai )|
λi

) n−1
n−2

.

Furthermore,maxμi deos not increase along the flow lines generated by this pseudogradient.

Proof For u = ∑q
i=1 αiδai ,λi + ∑p+q

i=q+1 αiϕai ,λi , we denote

Iin := {i = 1, . . . , p + q; ai ∈ S
n+} & Ib := {i = 1, . . . , p + q; ai ∈ ∂Sn+}.

Next we reorder the parameters μi ’s as: μ1 ≤ · · · ≤ μp+q and define the following subset
of indices:

I := {1} ∪ {i ≥ 2 : μk ≤ M1/(p+q−1)
0 μk−1 for each k ≤ i}.

Since we are in V4(M0), we have μmax > M0μmin, it follows that p + q /∈ I . In this region,
we write u as

u := u1 + u2 where u1 :=
∑
i∈I

αiϕi and u2 := u − u1.

Let k0 := max I (then we have k0 < p + q). It follows that μk0 ≤ M (k0−1)/(p+q−1)
0 μ1 :=

M0μ1, μk0+1 ≥ M1/(p+q−1)
0 μk0 and therefore u1 ∈ V1(M0) ∪ V2(M0) ∪ V3(M0).

Furthermore we introduce the following notation

D4
1 := {i ∈ Iin : �λi + �ai + �Hi ≥ 6} & D4

2 := {i ∈ Ib : �λi + �αi ≥ 4}
and set

i0 :=
{
min D4

1, if D4
1 �= ∅

p + q + 1, otherwise.
j0 :=

{
min D4

2, if D4
2 �= ∅

p + q + 1, otherwise.

Next we define in case D4
1 ∪ D4

2 �= ∅ the following vector fields:

Wi0 := −
∑

i≥i0;i∈Iin

2iλi
∂ϕi

∂λi
and Wj0 := −

∑
j≥ j0;i∈Ib

2 jλ j
∂δi

∂λi

and as in the proof of Lemma 3.5, we define

W 0
4 := Wi0 + (1/M2)Wj0 + Wα + Win

a

where Win
a (resp. Wα) is defined in (19) (resp. (20)). Following the proof of Lemma 3.5 and

using Lemma 5.2, we get

〈−∇ JK (u),W 0
4 〉 ≥ �

in
a + c

∑
i≥i0;i∈Iin

(∑
��=i

εi� + 1

(λi di )n−2 + O(R1)
)

+ c

μi0

+ �α + c

M2

∑
j≥ j0; j∈Ib

(∑
��= j

ε j� + O
(
Rb
1 + +c

c

μ j0
+

∑
�∈Iin

ε j�
)) := �4.

(41)
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Observe that, concerning the last term, for � ∈ Iin , (i) either � ≥ i0, then the ε j� exists in
the second term of this formula and one takes M2 large to absorb the last term, or (i i) � < i0
and in this case by Lemma 3.3, the concentration point a� is close to a critical point y of K in
S
n+ and then ε j� ≤ c(1/λn−2

j + 1/λn−2
� ). Hence, we can in either case absorb the last term.

Furthermore we notice that if D4
1 ∪ D4

2 �= ∅ and if i0 ∈ I or if j0 ∈ I then we can
include all the indices in I in the lower bound of (41). Otherwise to make appear the terms
corresponding to these indices we argue as follows:

Case 1: If u1 ∈ V1(M0)∪V2(M0)∪(V3(M0)\V 3
3 ). In this region, we define the following

vector field:

W 1
4 := W 0

4 + (1/M2
2 )W̃ (u1),

where W̃ is the convex combination of the pseudogradients constructed in V1(M0), V2(M0)

and V3(M0)\V 3
3 . It follows then that

〈−∇ JK (u),W 1
4 〉 ≥ �4 + 1

M2
2

⎛
⎝∑

i∈I

c

μi
+ c

∑
i∈I∩Ib

|1 − JK (u)
n

n−2 α
4

n−2
i K (ai )|

+c
∑

k �=r;k,r∈I
εkr + c

∑
i∈I∩Iin

|∇K (ai )|
λi

+ O

⎛
⎝ ∑

j∈I ;�/∈I
ε j�

⎞
⎠
⎞
⎠ . (42)

To complete the proof, it remains to absorb the last term. To this aim, we notice that:
(i) if "� ∈ Iin with � ≥ i0 or � ∈ Ib with � ≥ j0", then the term ε j� is already in �4 the

lower bound of (41). Taking M2 large, we will be able to absorb this term.
(i i) if "� ∈ Iin with � < i0 or � ∈ Ib with � < j0", then there holds: ε j� ≤ c M2

μ�
≤

c(M2/M
1/(q+p−1)
0 ) 1

μk0
= o(1/μk0) by choosing M2/M

1/(q+p−1)
0 small enough (see (31))

and where k0 := max I . Hence, we are also able to remove this term. (Recall that, in Lemmas
3.5–3.8, 3.13, the constant over μmax is independent of M0 and M2). Hence the estimate in
the first case follows as in the proof of the previous lemmas.

Case 2: In this case we take u1 ∈ V 3
3 (M0) and assume that D9 ∪ D8 �= ∅, where

D9 := {i ∈ I : i ∈ Bz with #Bz = 1}; D8 := I ∩ Iin .
Here we define the following vector field:

W 2
4 := W 0

4 + (1/M2
2 )

∑
i∈D8∪D9

λi
∂ϕi

∂λi
.

We point out that, this pseudogradient increases theμi for i ∈ D8∪D9, but does not increase
the μmax := μp+q since p + q /∈ I . Furthermore observe that

〈−∇ JK (u),
∑

i∈D8∪D9

λi
∂ϕi

∂λi
〉 ≥ c

∑
i∈D8∪D9

( 1

μi
+ O

( p+q∑
j=1

1

λ3j
+
∑
�/∈I

εi�

))
.

Hence the result follows as the first case.
Next we set

D10 :=
⎧⎨
⎩i ∈ I :

∑
k∈I ;k �=i

εki ≤ m1q/λi

⎫⎬
⎭ �= ∅, where m1 is a small constant.
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Case 3: In this case we take u1 ∈ V 3
3 (M0) and assume that D9 ∪ D8 = ∅. That is we

have that I ⊂ Ib and that #Bz �= 1 for each z critical point of K1. Furthermore we assume
that D10 �= ∅.

Next we recall that in this case, for each z such that #Bz ≥ 2, z has to be a local maximum
point with ∂K/∂ν > 0 (which implies that μi and λi are of the same order). Hence one can
use the same pseudogradient defined in Case 2 (by replacing D8 ∪ D9 by D10). Hence for
i ∈ D10, using Proposition 5.4, we derive that

〈−∇ JK (u), λi
∂δi

∂λi
〉 ≥ c

λi
+ O(

∑
j �=i

εi j ) ≥ c

λi
+ c

∑
j �=i; j∈I

εi j + O(
∑
j /∈I

εi j )

and the proof follows as the previous cases.
Case 4: u1 ∈ V 3

3 (M0) and I ⊂ Ib, #Bz �= 1 for each z and D10 = ∅.
In this case, for each z such that #Bz ≥ 2, z has to be a local maximum point with

∂K/∂ν > 0 (which implies that μi and λi are of the same order). Let z1, . . . , z� be such that
#Bz j ≥ 2. Thus, the function u can be written as

u :=
�∑

j=1

u j + u�+1 where u j :=
∑
i∈Bz j

αiϕi for j ≤ � and u�+1 :=
∑
i /∈I

αiϕi .

Notice that, for j ≤ �, it follows that u j ∈ V (z j , #Bz j , η, ε, M0) and in Lemma 3.9, we
have constructed a pseudogradient W (z j , #Bz j ) in this region. Now, we define

W 4
4 := W 0

4 + 1

M2
2

�∑
j=1

W (z j , #Bz j )(u j ). (43)

Observe that, by Lemma 3.9, we have

〈−∇ JK (u),W (z j , #Bz j )(u j )〉
≥ c

∑
k∈Bz j

( ∑
r �=k;r∈Bz j

ε
n−1
n−2
kr + O

( ∑
r /∈Bz j ,r∈Iin

εkr +
∑

r /∈Bz j ,r∈Ib

1

λk
|∂εkr

∂ak
|
))

.

Furthermore we notice that, for r /∈ Bz j and r ∈ Iin , (i) either r ≥ i0 and therefore the
εkr exists already in �4 or (i i) r < i0 and, using Lemma 3.3, it follows that ar is close to a
critical point y of K in Sn+ which implies that εkr ≤ c(1/λn−2

k + 1/λn−2
r ). Next for r /∈ Bz j

and r ∈ Ib, three situations may occur

(i) r ≥ j0 and therefore the εkr exists already in �4.
(ii) r < j0 and r /∈ I . In this case it follows that εkr ≤ M2/λr and thus (since λr ≥

M1/q+p−1
0 λk for each k ∈ I ) we have that

1

λk
|∂εkr

∂ak
| ≤ cλr d(ar , ak)ε

n
n−2
kr ≤ c

√
λr

λk
ε

n−1
n−2
kr ≤ c M

n−1
n−2
2

λ
1/2
k λ

1/2+1/(n−2)
r

≤ c
M

n−1
n−2
2

M (1/2+1/(n−2))/q+p−1
0

1

λ
1+1/(n−2)
k

= o
((m1

λk

)(n−1)/(n−2)
)

(44)

(by using (31)).
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(iii) r < j0 and r ∈ I . In this case, it follows that ar ∈ Bz� with � �= k and therefore we
deduce that |ak − ar | ≥ c > 0. Hence we get

1

λk
|∂εkr

∂ak
| = O

( 1

λn−1
k

+ 1

λn−1
r

)
.

Using (41),(43), the previous estimates and the fact that D10 = ∅, the lemma follows in this
case. ��
Proof of Proposition 3.2 The required pseudogradient will be a convex combination of the
ones defined in the previous lemmas. Each one is bounded and satisfies Claim (i). Further-
more, the only case where μmax increases is the region W . Finally, Claim (i i) follows from
the first one and the estimate of ‖v‖2 which is small with respect to the lower bound of Claim
(i). Concerning the last claim, it follows easily from the definition of the pseudogradient.
This achieves the proof of Proposition 3.2.

3.2.4 Critical points at infinity and their topological contribution

For ε0 a small number, we define the following neighborhood of the cone of positive solutions
of the sphere in H1(Sn+):

Vε0 (�
+) := {u ∈ �; JK (u)(2n−2)/(n−2)e2J (u)|u−|4/(n−2)

L2n/(n−2) < ε0}, where u− := max(0,−u).

This set is for ε0 small enough invariant under the gradient flow lines of the Euler Lagrange
functional JK . Namely we prove that

Lemma 3.15 For ε0 > 0 small enough, the set Vε0(�
+) is invariant under the flow generated

by −∇ JK .

Proof We will write J instead of JK . For w ∈ L2n/(n+2)(Sn+), we denote by L−1(w) the
solution of the following PDE:{

Lu := −�u + n(n−2)
4 u = w in S

n+,

∂u/∂ν = 0 on ∂Sn+.

Furthermore, it holds

|u|L2n/(n−2) ≤ c‖u‖H1 ≤ c|w|L2n/(n+2)

|L−1(K |u|4/(n−2)u)|L2n/(n−2) ≤ c|u|(n+2)/(n−2)
L2n/(n−2) . (45)

Suppose u0 ∈ Vε0(�
+) and consider⎧⎨

⎩
du(s)
ds = −∇ J (u(s)) = −2J (u)

(
u − J (u)n/(n−2)L−1(K |u|4/(n−2)u)

)
u(0) = u0.

Then

e2
∫ s
0 J (u(t))dt u(s) = u0 + 2

∫ s

0
e2

∫ t
0 J (u(y))dy J (u(t))

2n−2
n−2 L−1(K |u(t)|4/(n−2)u(t))dt,

u−(s) ≤ e−2
∫ s
0 J (u(t))dt

(
u−
0 + 2

∫ s

0
e2

∫ t
0 J (u(y))dy J (u(t))

2n−2
n−2 L−1(K (u−(t))

n+2
n−2 )dt

)

:= e−2
∫ s
0 J (u) f (s).
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Setting

F(s) = e− 4n
n−2

∫ s
0 J (u(t))dt | f (s)|2n/(n−2)

L2n/(n−2) which implies that |u−(s)|2n/(n−2)
L2n/(n−2) ≤ F(s).

Recall that, if u−
0 = 0 then u(s) is positive for all s. Hence, we can assume that u−

0 �= 0 and
we want to prove that F is a decreasing function. Observe that

F ′(s) = − 4n

n − 2
J (u(s))e− 4n

n−2

∫ s
0 J (u)| f (s)|2n/(n−2)

L2n/(n−2) + e− 4n
n−2

∫ s
0 J (u) 2n

n − 2

∫
S
n+
f ′(s) f (s)

n+2
n−2 dx

≤ 2n

n − 2
e− 4n

n−2

∫ s
0 J (u)

[
−2J (u(s))|u−

0 |2n/(n−2)
L2n/(n−2) +

∫
S
n+
f ′(s) f (s)

n+2
n−2 dx

]
(using f (s) ≥ u−

0 ).

Notice that f ′(0) = u−
0 and therefore

∣∣ ∫
S
n+
f ′(s) f (s)

n+2
n−2

∣∣dx ≤ c
∫
S
n+

| f ′(s)||u−
0 | n+2

n−2 + c
∫
S
n+

| f ′(s)|
( ∫ s

0
| f ′(t)|dt

) n+2
n−2

dx .

But, we have (using (45))∫
S
n+
(u−

0 )
n+2
n−2 | f ′(s)|dx =

∫
S
n+
(u−

0 )
n+2
n−2

(
2e2

∫ s
0 J (u) J (u(s))

2n−2
n−2 L−1(K (u−(s))

n+2
n−2 )

)
dx

≤ C J (u(s))
2n−2
n−2 e2

∫ s
0 J (u)|u−

0 |(n+2)/(n−2)
L2n/(n−2) |u−(s)|(n+2)/(n−2)

L2n/(n−2) ,

and we also have (using the fact that J (u(s)) is a decreasing function)∫
S
n+

| f ′(s)|( ∫ s

0
| f ′(t))|dt) n+2

n−2 dx ≤ cs
4

n−2

∫
S
n+

| f ′(s)|
∫ s

0
| f ′(t)| n+2

n−2 dtdx

≤ cs
4

n−2 e
4n
n−2 s J (u0) J (u0)

2n−2
n−2

2n
n−2 |u−(s)|(n+2)/(n−2)

L2n/(n−2)

∫ s

0
|u−(t)|(n+2)2/(n−2)2

L2n/(n−2) dt .

Hence, if |u−(s)|L2n/(n−2) ≤ 5|u−
0 |L2n/(n−2) , for 0 ≤ s ≤ 1, we derive that

F ′(s) ≤ 4n

n − 2
e− 4n

n−2

∫ s
0 J (u)|u−

0 |2n/(n−2)
L2n/(n−2)

(
− J (u(s)) + c J (u0)

2n−2
n−2 e2J (u0)|u−

0 |4/(n−2)
L2n/(n−2)

+c
(
J (u0)

2n−2
n−2 e2J (u0)|u−

0 |4/(n−2)
L2n/(n−2)

)2n/(n−2))
Finally, since inf J > c > 0, using the fact that u0 ∈ Vε0(�

+), that is, J (u0)
2n−2
n−2 e2J (u0)

|u−
o |4/(n−2)

L2n/(n−2) < ε0, and η is small enough, then F ′(s) ≤ 0, for 0 ≤ s ≤ 1. Therefore

J (u(s))
2n−2
n−2 e2J (u(s))|u(s)−|4/(n−2)

L2n/(n−2) < ε0, and our result follows. ��
Next using a partition of the unity, one can define the vector field W of Proposition 3.2

globally by gluing it to the negative gradient−∇ J outside the V (q, p,m, ε)’s. Let us denote
the resulting global vector field by Y and define a new vector field by setting:

X(u) := Y (u)− < Y (u), u > u for u ∈ Vε0(�
+).

We then have

Corollary 3.16 Assume that K satisfies (H1), (H2) and (H3). Then using Propositions 3.1,
3.2 and arguing as in the above Lemma, one proves that for ε0 small enough, X is a pseu-
dogradient of J which preserves Vε0(�

+). Moreover the critical points at infinity of X lie in
subsets W (see the formula (26) for a definition)
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Next we perform a Morse type reduction in the subsets W . Namely we prove

Lemma 3.17 For u = ∑q
i=1 αiδai ,λi + ∑p+q

q+1 αiϕai ,λi ∈ W , we define

D4 := {i ≤ q : ai is close to z with
∂K

∂ν
(z) = 0} & D5 := {i ≤ q : ai is close to z with

∂K

∂ν
(z) > 0}.

Then the functional JK expands as follows

JK (u) = (
∑

i≤q α2
i + 2

∑
i>q α2

i )S
2/n
n

(
∑

i≤q α
2n
n−2
i K (ai ) + 2

∑
i>q α

2n
n−2
i K (ai ))

n−2
n

(
1 − c

∑
i>q

�K (yi )

λ2i
+ c

∑
i∈D5

1

λi

∂K

∂ν
(zi )

+ c
∑
i∈D4

( c7
λi

∂K

∂ν
(ai ) − c6

�K (ai )

λ2i

)
+ o

( ∑
i∈D5

1

λi
+

∑
i∈D4

1

λ2i
+
∑
i>q

1

λ2i

))

= S2/nn

(∑
i≤q

1

K (zi )
n−2
2

+ 2
∑
i>q

1

K (yi )
n−2
2

) 2
n
(
1 − ‖α‖2 +

p+q∑
i=1

(|A−
i |2 − |A+

i |) − c
∑
i>q

�K (yi )

λ2i

(46)

+ c
∑
i∈D5

1

λi

∂K

∂ν
(zi ) + c

∑
i∈D4

( c7
λi

∂K

∂ν
(ai ) − c6

�K (zi )

λ2i

)
+ o

( ∑
i∈D5

1

λi
+

∑
[i>q]∪[i∈D4]

1

λ2i

))
,

where Sn is defined in Proposition 5.3 (it represents the level of one boundary bubble),
α ∈ R

q+p−1, (A+
i , A−

i ) are the local coordinates of the parameters (α1, . . . , αp+q) and ai .
This expansion will be called the Morse Lemma at Infinity of JK near its critical point at
infinity.Note thatwe loose an index for the parameterα since the functional JK is homogenous
with respect to this parameter.

From Propositions 3.1, 3.2 and Lemma 3.17, we derive the characterization of critical
points at infinity and identify their level sets. Namely we have:

Corollary 3.18 Assume that K satisfies (H1), (H2) and (H3). Then, in V (m, q, p, ε), the
critical points at infinity of JK are in one to one correspondence with the collections of q
critical points z�’s of K1 satisfying: either z� is a localmaximumpointwith ∂K/∂ν(z�) > 0 or
∂K/∂ν(z�) = 0 and�K (z�) < 0 and p critical points yr ’s of K in Sn+ satisfying�K (yr ) <

0. We will denote such a critical point at infinity by (z1, . . . , zq , yq+1, . . . , yq+p)∞. Such a
critical point at infinity is at the level (see (46))

C∞(z1, . . . , zq , yq+1, . . . , yq+p) := S2/nn

( q∑
i=1

1

K (zi )(n−2)/2
+

q+p∑
i=q+1

2

K (yi )(n−2)/2

)2/n
.

In particular, it holds that

C (2p+q),∞
min :=

(
(2p + q)Sn

)2/n
K (n−2)/n
max

≤ C∞(z1, . . . , zq , yq+1, . . . , yq+p) ≤
(
(2p + q)Sn

)2/n
K (n−2)/n
min

:= C (2p+q),∞
max

Furthermore, for such a critical point at infinity, we associate an index (which corresponds
to the number of the decreasing directions for JK by using the Morse Lemma at infinity, see
(46))

i∞(z1, . . . , zq , yq+1, . . . , yq+p) := q + p − 1 +
q∑

i=1

(n − 1 − morse(K1, zi ))

+
q+p∑

i=q+1

(n − morse(K , yi )).
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Such an index will be called the i∞-index of such a critical point at infinity.

Next as consequence of the above corollary and the Morse reduction in Lemma 3.17 we
compute the topological contribution of the critical points at infinity to the difference of
topology between the level sets of the functional JK . Namely we have

Lemma 3.19 Let τ∞ be a critical point at infinity at the level C∞(τ∞) with index i∞(τ∞).
Then for θ a small positive number and a field F, we have that

Hl(J
C∞(τ∞)+θ
K , JC∞(τ∞)−θ

K ;F) =
{
F if l = i∞(τ∞),

0, otherwise.

where Hl denotes the l−dimensional homology group with coefficient in the field F.

4 Proof of themain results

This section is devoted to the proof of Theorems 1.1, 1.3 and 1.4. The proof of these theorems
is based on the characterization of the critical points at infinity in Corollary 3.18 and the
computation of their contribution to the difference of topology in Lemma 3.19. It also uses
two deformation lemmas. The first one is an abstract lemma, which is inspired by Proposition
3.1 in [35]. It reads as follows:

Lemma 4.1 Let A and A := (Kmax/Kmin)
(n−2)/n A. Assume that JK does not have any

critical point nor critical point at infinity in the set J A
K \J A

K where J A
K := {u : JK (u) < A}.

Then for each c ∈ [A, A], the level set J cK is contractible.

Proof First, since we assumed that JK does not have any critical point nor critical point at
infinity in �+ between the levels A and A, we have that J A

K retracts by deformation onto

J A
K . Indeed such a retraction can be realized by following the flow lines of a decreasing

pseudogradient ZK for JK . Let φK denote the one parameter group corresponding to this
pseudogradient. For each u ∈ �+, we denote by sK (u) the first time such thatφK (sK (u), u) ∈
J A
K .
Secondly we recall that, for K ≡ 1, the only critical points of J1 are minima and lie in

the bottom level Sn . Furthermore, for each A > Sn , the set J A
1 is a contractible one. Indeed

by following the flow lines of a decreasing pseudogradient Z1 of the Yamabe functional J1,
each flow line, starting from u ∈ �+, will reach the bottom level Sn . Let us denote by φ1 the
one parameter group corresponding to Z1.

Next we notice that, we have

(1/K (n−2)/n
max )J1(u) ≤ JK (u) ≤ (1/K (n−2)/n

min )J1(u) for each u ∈ �,

which implies that

J A
K ⊂ J A′

1 ⊂ J A
K where A′ := K (n−2)/n

max A.

Furthermore we observe that for each u ∈ �+, there exists a unique s1(u) satisfying
φ1(s1(u), u) ∈ J A′

1 .
Next we define the following map:

F := [0, 1] × J A′
1 → J A′

1 ; F(t, u) := φ1(s1(φK (t sK (u), u)), φK (t sK (u), u)).

We notice that F is well defined and continuous and satisfies the following properties:
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• For t = 0, we have φK (0, u) = u. Furthermore, for each u ∈ J A′
1 , we have s1(u) = 0.

Therefore, for each u ∈ J A′
1 , we get F(0, u) = φ1(0, u) = u.

• For t = 1,we haveφK (sK (u), u) ∈ J A
K ⊂ J A′

1 (by the definition of sK )which implies that
s1(φK (sK (u), u)) = 0 and therefore F(1, u) = φ1(0, φK (sK (u), u)) = φK (sK (u), u) ∈
J A
K for each u ∈ J A′

1 .

• Ifu ∈ J A
K , then sK (u) = 0which implies thatφK (t sK (u), u) = φK (0, u) = u. Therefore

F(t, u) = φ1(s1(u), u) = φ1(0, u) = u for each u ∈ J A
K and each t ∈ [0, 1] (we used

s1(u) = 0 since u ∈ J A
K ⊂ J A′

1 ).

Thus J A′
1 retracts by deformation onto J A

K , a fact which provides the claim of the lemma
since J A′

1 itself is a contractible set. ��
The second deformation lemma is a consequence of the previous one, the assumptions

(H1), (H2), (H3) of this paper and an appropriate pinching condition for the function K .
To state it we set the following notation:

for � ∈ N, C�,∞
max := (�Sn)

2/n/K (n−2)/n
min & C�,∞

min := (�Sn)
2/n/K (n−2)/n

max .

We recall that it follows from Corollary 3.18 that the level of critical points at Infinity
corresponding to q boundary points and p interior points such that q + 2p = � lie between
C�,∞
min and C�,∞

max .
Our second deformation lemma reads as follows:

Proposition 4.2 For k ∈ N a fixed integer, let 0 < K ∈ C3(Sn+) satisfying the conditions
(H1), (H2), (H3) and the pinching condition Kmax/Kmin < ((k + 1)/k)1/(n−2).

Assume that JK does not have any critical point under the level Ck+1,∞
min . Then, for every

1 ≤ � ≤ k and every c ∈ (C�,∞
max ,C�+1,∞

min ), the sublevel J cK is a contractible set.

Proof Since we assumed that Kmax/Kmin < ((k + 1)/k)1/(n−2), it follows that, for each
1 ≤ � ≤ k, we have (k + 1)/k ≤ (� + 1)/� and

C�,∞
max < C�,∞

max (Kmax/Kmin)
(n−2)/n < C�+1,∞

min .

The proof follows then from Lemma 4.1 by taking A = C�,∞
max + γ with a small γ > 0 so

that A < C�+1,∞
min . Indeed between the levels A and A the functional JK does not have any

critical point nor critical point at infinity. ��
Next we start the proof of our existence results by proving Theorem 1.3.

Proof of Theorem 1.3 Arguing by contradiction we assume that the functional JK does not
have any critical point under the level C2,∞

min . Hence it follows from Proposition 4.2 (with

k = 1) that under the assumption of Theorem 1.3, we have that JC
1,∞
max +γ is a contractible

set, for γ a small constant. Moreover it is a retract by deformation of C2,∞
min . Furthermore

follows from corollary 3.18 that critical points at infinity under the level C2,∞
min are in one to

one correspondence with critical points of K1 in K+
b ∪ K0,−

b . Then it follows from Lemma
3.19 and the Euler–Poincaré theorem that:

1 = χ(JC
2,∞
min +γ ) =

∑
z∈K+

b ∪K0,−
b

(−1)n−1−morse(K1,z)

which contradicts the assumption (b) of Theorem 1.3. Hence the existence of at least one
critical point of JK .
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Proof of Theorem 1.4 Assuming that JK does not have any critical point under the levelC3,∞
min ,

we derive, using Proposition 4.2 (with k = 2), the level sets JC
1,∞
max +γ

K and JC
2,∞
max +γ

K are con-
tractible sets. Then it follows from the properties of the Euler-Characteristic, see Proposition
5.7, pp.105 in [26], that

1 = χ(JC
2,∞
max +γ

K ) = χ(JC
2,∞
max +γ

K , JC
1,∞
max +γ

K ) + χ(JC
1,∞
max +γ

K ).

That is χ(JC
2,∞
max +γ

K , JC
1,∞
max +γ

K ) = 0.Moreover it follows from Corollary 3.18 that the critical

points at infinity between these two levels are (zi , z j )∞ with zi �= z j ∈ K+
b ∪ K0,−

b and y∞
with y ∈ K−

in . Thus, it follows from Lemma 3.19 and the Euler–Poincaré theorem that∑
zi �=z j∈K+

b ∪K0,−
b

(−1)1+ι(zi )+ι(z j ) +
∑
y∈K−

in

(−1)ι(y) = 0

where ι(zk) := n − 1 − morse(K1, zk) and ι(y) := n − morse(K , y).
Observe that, the first term is exactly −A2 defined in Lemma 5.8. Hence, the previous

equality contradicts the assumption (i i) of the theorem. The proof is thereby completed.

Proof of Theorem 1.1 We first observe that, under the assumption of the theorem, if A1 �= 1
or respectively A1 = 1 and B1 �= −k, where #(K+

b ∪ K0,−
b ) = 2k + 1, the existence of

at least one solution to Problem (P) follows from Theorem 1.4, respectively Theorem 1.3.
Hence we will assume that A1 = 1 and B1 = −k and notice that

#(K−
in) = 2r + k, where r ∈ N0,

and there are r even numbers ι(y j )’s and r + k odd numbers ι(y j )’s.
Next arguing as in the proof of Theorem 1.4 using the assumption on Kmax/Kmin and

Proposition 4.2, we deduce that JC
3,∞
max +γ

K and JC
4,∞
max +γ

K are contractible sets. Using Corollary
3.18, we derive that the critical points at infinity whose level are lying between these values
are:

• (zi , z j , zr , zt )∞ with different zi ’s which belong to K+
b ∪ K0,−

b ,

• (zi , z j , y)∞ with y ∈ K−
in and zi �= z j ∈ K+

b ∪ K0,−
b ,

• (yi , y j )∞ with yi �= y j ∈ K−
in .

Hence arguing as above we derive that∑
zi �=z j �=zr �=zt∈K+

b ∪K0,−
b

(−1)3+ι(zi )+ι(z j )+ι(zr )+ι(zt )

+
∑

y∈K−
in;zi �=z j∈K+

b ∪K0,−
b

(−1)2+ι(zi )+ι(z j )+ι(y) +
∑

yi �=y j∈K−
in

(−1)1+ι(yi )+ι(y j ) = 0.

Observe that, the first term is exactly −A4, the second one is A2 × B1 and the third one is
−B2 (defined in Lemmas 5.8 and 5.9). Using the values of these terms (given in Lemmas 5.8
and 5.9), we obtain that

r + k = 0

which implies that r = k = 0. Now, from r = k = 0, we get #(K+
b ∪ K0,−

b ) = 1 and

#K−
in = 0. This leads to a contradiction with the assumption that #(K+

b ∪ K0,−
b ∪ K−

in) ≥ 2.
Thereby the proof of the theorem is completed.
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5 Appendix

5.1 Bubble estimates

Lemma 5.1 For a ∈ ∂Sn+, we have ∂δa,λ/∂ν = 0 and therefore ϕa,λ = δa,λ. For a /∈ ∂Sn+,
we have

(i) δa,λ ≤ ϕa,λ ≤ 2δa,λ ; |λ∂ϕa,λ/∂λ| ≤ cδa,λ; |(1/λ)∂ϕa,λ/∂a
k | ≤ cδa,λ,

where ak denotes the k-th component of a.

(ii) ϕa,λ = δa,λ + c0
H(a, .)

λ(n−2)/2
+ fa,λ where

| fa,λ|∞ ≤ c

λ(n+2)/2dna
; |λ∂ fa,λ

∂λ
|∞ ≤ c

λ(n+2)/2dna
and | 1

λ

∂ fa,λ

∂ak
|∞ ≤ c

λ(n+4)/2dn+1
a

,

where da := d(a, ∂Sn+).

Proof Using a stereographic projection, we are led to prove the corresponding estimates on
R
n+. We still denote by G and H the Green’s function and its regular part of Laplacian on

R
n+ under Neumann boundary conditions. In this case, we have

δa,λ(x) := c0
λ(n−2)/2

(1 + λ2|x − a|2)(n−2)/2
and H(a, x) := 1

|x − a|n−2 ,

where a denotes the symmetric point of a with respect to ∂Rn+. Let ψ := δa,λ + δa,λ. Easy
computation implies that ∂ψ/∂ν = 0.

To prove the first inequality, let us consider h := ϕa,λ − δa,λ. Hence we get �h = 0 and
∂h/∂ν = −∂δa,λ/∂ν > 0. Hence, using the Green’s representation, we derive that h > 0 in
R
n+.
For the second inequality, let us consider h := ψ − ϕa,λ. Easy computations imply that

∂h/∂ν = 0 and −�h = −�δa,λ > 0. Hence, h > 0 in Rn+. The inequality follows from the
fact that δa,λ ≤ δa,λ in R

n+.
For the third one, let g := λ∂ϕa,λ/∂λ, observe that ∂g/∂ν = 0 and |�g| ≤ ((n +

2)/2)δ(n+2)/(n−2)
a,λ . Now let us consider h := ((n+2)/2)ψ ± g. It follows that −�h > 0 and

∂h/∂ν = 0. Hence h > 0 inRn+ which gives the proof of the third inequality. The fourth one
follows by the same way.
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Concerning the second claim, it is easy to see that � fa,λ = 0 and

∂ fa,λ

∂ν
= −∂δa,λ

∂ν
− c0

λ(n−2)/2

∂H(a, .)

∂ν
= c0(n − 2)

λ(n+2)/2da
(1 + λ2|x − a|2)n/2 − c0

λ(n−2)/2

(n − 2)da
|x − a|n

= O
( da

λ(n+2)/2|x − a|n+2

)
.

Now, using the Green’s representation, we get

| fa,λ(x)| ≤ c
∫

∂Rn+
G(x, y)|∂ fa,λ

∂ν
(y)|dy ≤ c da

λ(n+2)/2

∫
∂Rn+

G(x, y)
1

|y − a|n+2 dy

≤ c

λ(n+2)/2da

∫
∂Rn+

G(x, y)
1

|y − a|n dy ≤ c

λ(n+2)/2da

H(a, x)

da
≤ c

λ(n+2)/2dna
.

This gives the first claim in (i i). The other ones can be done by the same way. ��
Lemma 5.2 1) For each i �= j , we have

−λi
∂εi j

∂λi
− λ j

∂εi j

∂λ j
≥ 0 and − λi

∂εi j

∂λi
≥ cεi j if λi ≥ cλ j or λi d(ai , a j ) ≥ 2.

2) Let i, j ∈ Ib := {k : ak ∈ ∂Sn+} and let μi and μ j be defined by (15). Assume that
μ j ≤ c′μi for some constant c′, then: (i) either there exists a constant c′′ such thatλ j ≤ c′′λi ,
(i i) or λi d(ai , a j ) ≥ 2.

Proof The proof of the first assertion follows immediately from the definition of εi j . Con-
cerning the second one, observe that, if |∇K (ai )| ≥ c and |∇K (a j )| ≥ c, then it follows
that μk and λk are of the same order (that is: the ratio is bounded from above and below)
for k = i, j . Hence the result follows in this case. In the other case, there exists k ∈ {i, j}
such that ak is close to a critical point z of K in ∂Sn+ (i.e. ∂K/∂ν(z) = 0). Arguing by
contradiction, assume that λi d(ai , a j ) ≤ 2 and λ j/λi is very large. It follows that ai and a j

are close to the same critical point z. Now we claim that:
Claim 1: λ j |∇K (a j )| is very large.
In fact, if it is not, we derive that |∇K (a j )|/λ j ≤ c/λ2j which implies that 1/μ j ≤ c/λ2j

and therefore 1/μ j is very small with respect to 1/λ2i ≤ 1/μi . This gives a contradiction
and therefore our claim follows.

Since z is a non degenerate critical point of K1, it follows that λ j d(a j , z) is very large.
Moreover, Claim 1 implies that |∇K (a j )|/λ j ≤ 1/μ j ≤ c|∇K (a j )|/λ j . Nowwe claim that:

Claim 2: λi |∇K (ai )| ≥ 1 cannot occur.
To prove this claim, we assume that the inequality is true. Then we derive that

|∇K (ai )|/λi ≤ 1/μi ≤ 2|∇K (ai )|/λi . Since μ j ≤ c′μi , we derive that |∇K (ai )|/λi ≤
c|∇K (a j )|/λ j and therefore λ j d(ai , z) ≤ cλi d(a j , z) which implies that d(ai , z) is very
small with respect to d(ai , z) and therefore d(ai , z) is very small with respect to d(ai , a j ).
Now observe that, since we assumed that λi |∇K (ai )| ≥ 1, it follows that λi d(ai , z) ≥ c
and therefore λi d(ai , a j ) becomes very large which gives a contradiction. Hence Claim 2
follows.

Finally, we claim that
Claim 3: λi |∇K (ai )| ≤ 1 cannot occur.
Arguing by contradiction we assume that λi d(ai , z) ≤ c. From μ j ≤ c′μi , we derive that

1/λ2i ≤ c|∇K (a j )|/λ j ≤ cd(a j , z)/λ j and therefore λ j/λi ≤ cλi d(a j , z), that is λi d(a j , z)
is very large. But we have λi d(a j , ai ) ≤ 2 and λi d(ai , z) ≤ c which imply that λi d(a j , z)
is bounded. Hence we get a contradiction which completes the proof of Claim 3.
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Hence the lemma is fully proven. ��

5.2 Asymptotic expansion of the functional and its gradient

Proposition 5.3 Let n ≥ 5 and u = ∑
i≤q αiδi + ∑

i>q αiϕi ∈ V (m, q, p, ε) be such that:
(i) d(ai , a j ) ≥ c > 0 for every i �= j , (i i) for i > q, ai is close to a critical point y ji of K
in Sn+ and (i i i) for i ≤ q, ai is close to a critical point z ji of K1 in ∂Sn+. Then the following
expansion holds

JK (u) = (
∑

i≤q α2
i + 2

∑
i>q α2

i )S
2/n
n

(
∑

i≤q α
2n/n−2
i K (ai ) + 2

∑
i>q α

2n/n−2
i K (ai ))n−2/n

(
1 − 2c6 JK (u)

n
n−2

∑
i>q

α
2n
n−2
i

�K (ai )

λ2i

+JK (u)
n

n−2
∑
i≤q

α
2n
n−2
i

( c7
λi

∂K

∂ν
(ai ) − c6

�K (ai )

λ2i

)
+

p+q∑
i=1

O
( 1

λ3i
+ |∇K (ai )|2

λ2i

))

where

Sn := c
2n
n−2
0

∫
R
n+

dx

(1 + |x |2)n ; c6 := n − 2

n2
c

2n
n−2
0

∫
R
n+

|x |2dx
(1 + |x |2)n ;

c7 := 2
n − 2

n
c

2n
n−2
0

∫
R
n+

xndx

(1 + |x |2)n

Proof From the definition of JK , we need to expand (using the fact that v ⊥ ϕi for each i)

‖u‖2 =
∑

α2
i ‖ϕi‖2 + ‖v‖2 + O

(∑
εi j

)

= Sn

⎛
⎝∑

i≤q

α2
i + 2

∑
i>q

α2
i

⎞
⎠ + ‖v‖2 + O

⎛
⎝∑ εi j +

∑
i>q

1

λn−2
i

⎞
⎠ ,

∫
S
n+
Ku

2n
n−2 =

q+p∑
i=1

α
2n
n−2
i

∫
S
n+
Kϕ

2n
n−2
i + 2n

n − 2

∫
S
n+
K
(∑

αiϕi
) n+2
n−2 v

+ O
(∑
i �= j

∫
ϕ

n+2
n−2
i ϕ j + ‖v‖2

)
.

The last integral is equal to O(εi j ). The second one is presented in (9). Concerning the first
one, for i > q , using Lemma 5.1, we get

∫
S
n+
Kϕ

2n
n−2
i =

∫
R
n+
K̃ δ

2n
n−2
i + O

( 1

λ
(n−2)/2
i

∫
δ
n+2
n−2
i

)

=
∫
B(ai ,di )

K̃ δ
2n
n−2
i + O

( ∫
Rn\B(ai ,di )

δ
2n
n−2
i + 1

λ
(n−2)/2
i

∫
δ
n+2
n−2
i

)

= 2Sn K̃ (ai ) + 1

2n

�K̃ (ai )

λ2i
c

2n
n−2
0

∫
Rn

|x |2
(1 + |x |2)n dx + O

( 1

λ3i

)
.
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However, for i ≤ q , we have ϕi = δi and therefore∫
S
n+
K δ

2n
n−2
i =

∫
R
n+
K̃ δ

2n
n−2
i = Sn K̃ (ai ) + ∇ K̃ (ai )c

2n
n−2
0

∫
R
n+

λni (x − ai )

(1 + λ2i |x − ai |2)n
dx

+ 1

2

∑ ∂2 K̃ (ai )

∂xk∂x�

c
2n
n−2
0

∫
R
n+

λni (x − ai )k(x − ai )�

(1 + λ2i |x − ai |2)n
dx + O

( 1

λ3i

)

= Sn K̃ (ai ) − ∂ K̃

∂ν
(ai )c

2n
n−2
0

∫
R
n+

xn
(1 + |x |2)n dx

+ 1

2n

�K̃ (ai )

λ2i
c

2n
n−2
0

∫
R
n+

|x |2
(1 + |x |2)n dx + O

( 1

λ3i

)
.

Note that, since u ∈ �, we deduce that

JK (u) = 1

�
n−2
n

(
1 + O

(∑
i>q

1

λ2i
+
∑
i≤q

1

λi
|∂K
∂ν

(ai )| + 1

λ2i
+ ‖v‖2

))

where

� :=
∑
i≤q

α
2n
n−2
i K (ai ) + 2

∑
i>q

α
2n
n−2
i K (ai ).

Now, the precise expansion of JK follows from the above estimates, the estimate of ‖v‖ (see
Lemma 2.3) and the fact that (1 + x)−(n−2)/n = 1 − ((n − 2)/n)x + O(x2). ��

In the following, we will present the expansion of the gradient of JK in the potential sets.
We will present the results for p + q ≥ 2. However, the results are true for p + q = 1, it
suffices to remove the terms εi j ’s which correspond to the interaction terms of the bubbles.

Proposition 5.4 Let n ≥ 5, for u = ∑
i≤q αiδi + ∑

i>q α jϕ j ∈ V (m, q, p, ε) and i ≤ q, it
holds

〈∇ JK (u), λi
∂δi

∂λi
〉 = 2JK (u)

[
− c2

2

∑
j �=i; j≤q

α jλi
∂εi j

∂λi
(1 + o(1))

+ 2JK (u)
n

n−2 α
n+2
n−2
i

(
− c3

λi

∂K

∂ν
(ai ) + c9

�K (ai )

λ2i

)]
+ O

( 1

λ3i
+
∑
j>q

εi j + Rb
1

)

where

Rb
1 :=

∑
k≤q

( |∇K (ak)|
λk

) n
2 +

( 1

λ2k

) n+1
3 +

∑
j �=k; j,k≤q

ε
n

n−2
k j ln(ε−1

k j ) ; c3 = n − 2

2
c

2n
n−2
0

∫
R
n+

xn(|x |2 − 1)

(1 + |x |2)n+1 dx .

Proof

〈∇ JK (u), λi
∂δi

∂λi
〉 = 2JK (u)

(∑
j≤q

α j 〈δ j , λi ∂δi

∂λi
〉 − J (u)n/(n−2)

∫
K
(∑
j≤q

α j δ j
) n+2
n−2 λi

∂δi

∂λi
+
∑
j>q

O(εi j )
)
.

For j ≤ q , we have a j ∈ ∂Sn+ and therefore, using [5], we get, for j �= i ,

〈δ j , λi ∂δi

∂λi
〉 =

∫
R
n+

δ
n+2
n−2
j λi

∂δi

∂λi
= 1

2

∫
Rn

δ
n+2
n−2
j λi

∂δi

∂λi
= 1

2
c2εi j + O

(
ε

n
n−2
i j ln(ε−1

i j )
)

〈δi , λi ∂δi

∂λi
〉 =

∫
R
n+

δ
n+2
n−2
i λi

∂δi

∂λi
= 1

2

∫
Rn

δ
n+2
n−2
i λi

∂δi

∂λi
= 0.

123



The Nirenberg problem on high dimensional… Page 37 of 41 148

Concerning the other term, it holds∫
K
(∑
j≤q

α jδ j
) n+2
n−2 λi

∂δi

∂λi
=
∑
j≤q

∫
K
(
α jδ j

) n+2
n−2 λi

∂δi

∂λi

+ n + 2

n − 2

∫
K (αiδi )

4
n−2

( ∑
j≤q; j �=i

α jδ j
)
λi

∂δi

∂λi
+ O

(∑
k �=r

∫
(δkδr )

n
n−2

)
.

Observe that, for j �= i , expanding K around a j , we get∫
R
n+
K δ

n+2
n−2
j λi

∂δi

∂λi

= K (a j )

∫
R
n+

δ
n+2
n−2
j λi

∂δi

∂λi
+ O

(
|∇K (a j )|

∫
R
n+

|x − a j |δ
n+2
n−2
j δi +

∫
R
n+

|x − a j |2δ
n+2
n−2
j δi

)

= K (a j )
1

2
c2εi j + O

(
ε

n
n−2
i j ln(ε−1

i j ) + |∇K (a j )|
λ j

εi j (ln ε−1
i j )

n−2
n + 1

λ2j
ε

n
n+1
i j (ln ε−1

i j )
n−2
n+1

)

= K (a j )
1

2
c2εi j + O

(
ε

n
n−2
i j ln(ε−1

i j ) +
( |∇K (a j )|

λ j

)n/2 +
( 1

λ2j

)(n+1)/3)
,

∫
R
n+
K δ

n+2
n−2
i λi

∂δi

∂λi
=
∑
k

∂K

∂xk
(ai )

∫
R
n+
(x − ai )kδ

n+2
n−2
i λi

∂δi

∂λi

+ 1

2

∑ ∂2K

∂xk∂x�

(ai )
∫
R
n+
(x − ai )k(x − ai )�δ

n+2
n−2
i λi

∂δi

∂λi
+ O

( ∫
R
n+

|x − ai |3δ
2n
n−2
i

)

= c3
λi

∂K

∂ν
(ai ) − c9

�K (ai )

λ2i
+ O

( 1

λ3i

)
.

Finally, for j �= i , it holds

n + 2

n − 2

∫
R
n+
K δ

4
n−2
i δ jλi

∂δi

∂λi
= K (ai )〈δ j , λi ∂δi

∂λi
〉 + O

(
|∇K (ai )|

∫
R
n+

|x − ai |δ
n+2
n−2
i δ j

+
∫
R
n+

|x − ai |2δ
n+2
n−2
i δ j

)
.

Hence the proof follows. ��
Proposition 5.5 Let n ≥ 5. For u = ∑

i≤q αiδi +∑
i>q α jϕ j ∈ V (m, q, p, ε) and i ≤ q, it

holds:

〈∇ JK (u),
1

λi

∂δi

∂ai
〉 = 2JK (u)αi en

[
c4

(
1 − JK (u)

n
n−2 α

4
n−2
i K (ai )

)
+ JK (u)

n
n−2 α

4
n−2
i

c5
λi

∂K

∂ν
(ai )

]

− JK (u)c2
∑

j≤q; j �=i

α j
1

λi

∂εi j

∂ai

(
− 1 + JK (u)

n
n−2

∑
k=i, j

α
4

n−2
k K (ak)

)
+ O

( 1

λ2i

)

− 4JK (u)
2(n−1)
n−2 α

n+2
n−2
i

2c5
λi

∇T K (ai ) + O
(
Rb
1 +

∑
k≤q;k �=i

ε
n+1
n−2
ik λkd(ai , ak) +

∑
k>q

εik

)

where Rb
1 is defined in Proposition 5.4 and

c4 = (n − 2)c
2n
n−2
0

∫
R
n+

xn
(1 + |x |2)n+1 dx and c5 = n − 2

2n
c

2n
n−2
0

∫
Rn

x2n
(1 + |x |2)n+1 dx .
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Proof The proof can be done as the previous one. ��

Proposition 5.6 For u = ∑
α jϕ j ∈ V (m, q, p, ε) and i ≤ q, we have the following expan-

sion:

〈∇ JK (u), δi 〉 = 2JK (u)αi Sn

(
1 − JK (u)

n
n−2 α

4
n−2
i K (ai )

)
+ O

( |∇K (ai )|
λi

+ 1

λ2i
+
∑
j �=i

εi j

)
.

where Sn is defined in Proposition 5.3.

Proof

〈∇ JK (u), δi 〉 = 2JK (u)αi‖δi‖2 − JK (u)n/(n−2)
∫

K δ
2n
n−2
i + O

(∑
εki

)
.

Observe that∫
K δ

2n
n−2
i = K (ai )

∫
δ

2n
n−2
i + O

(
|∇K (ai )|

∫
|x − ai |δ

2n
n−2
i +

∫
|x − ai |2δ

2n
n−2
i

)
which gives the result. ��

Proposition 5.7 For u = ∑
j≤q α jδ j +∑

j>q α jϕ j ∈ V (m, q, p, ε) and for each i ≥ q+1,
we have:

〈∇ JK (u), λi
∂ϕi

∂λi
〉 = 2JK

(
−c2

∑
j �=i

α j (1 + o(1))λi
∂εi j

∂λi
+ c2

n − 2

2

p∑
j=q+1

α j (1 + o(1))
H(ai , a j )

(λiλ j )(n−2)/2

+ cαi (1 + o(1))
�K (ai )

λ2i K (ai )

)
+ O

( 1

λ3i
+ R1

)
,

〈∇ JK (u), ϕi 〉 = 2JK (u)αi Sn

(
1 − JK (u)

n
n−2 α

4
n−2
i K (ai )

)

+ O
( |∇K (ai )|

λi
+ 1

λ2i
+ 1

(λi di )n−2 +
∑
j �=i

εi j

)
,

〈∇ JK (u),
1

λi

∂ϕi

∂ai
〉.∇K (ai ) ≥ c

|∇K (ai )|2
λi

+ O

(( 1

λ2i
+ 1

(λi di )n−2 +
∑
j �=i

εi j

)
|∇K (ai )|

)

where

R1 :=
q+p∑
k=1

( |∇K (ak)|
λk

) n
2 +

( 1

λ2k

) n+1
3 +

∑
j �=k

ε
n

n−2
k j ln(ε−1

k j ) +
∑
j>q

1

(λ j d j )n
.

5.3 Counting index formulae

Lemma 5.8 Let z1, . . . , zN be N critical points of K1 in ∂Sn+ and let ι(z j ) := n − 1 −
morse(K1, z j ). Assume that

A1 :=
N∑
j=1

(−1)i(z j ) = 1.
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Then the number N has to be odd, say N := 2k + 1 (with k ∈ N0) and there are k odd
numbers ι(z j )’s and k + 1 even numbers ι(z j )’s. Furthermore, for each k ≥ 0, it hold

A2 :=
∑
j<�

(−1)ι(z j )+ι(z�) = −k ; A3 :=
∑
j<�<r

(−1)ι(z j )+ι(z�)+ι(zr ) = −k,

A4 :=
∑

j<�<r<t

(−1)ι(z j )+ι(z�)+ι(zr )+ι(zt ) = 1

2
k(k − 1).

Proof To compute the value of A2, observe that it is the sum of +1 and −1. To get −1, ι(z j )
and ι(zk) have to be of different parity. However, to get +1, ι(z j ) and ι(zk) have to be of the
same parity. A similar argument holds for the computation of the values A3 and A4. Hence:

• For k = 0, we have only one point z with an even ι(z). Thus A2 = A3 = A4 = 0.
• For k = 1, we have two points z0 and z2 with even ι(zk) and one point z1 with an odd

ι(z1). Thus, A4 = 0, A3 = −1 and A2 = 1 − 2 = −1.
• For k ≥ 2, there exist k + 1 even numbers ι(z j ) and k odd numbers ι(z j ). Thus, it holds

A2 =
(

2
k + 1

)
+
(
2
k

)
−
(

1
k + 1

)(
1
k

)
= 1

2
(k + 1)k + 1

2
k(k − 1) − (k + 1)k = −k,

A3 =
(
3
3

)
+
(
1
3

)(
2
2

)
−
(
2
3

)(
1
2

)
= −2 if k = 2

A3 =
(

3
k + 1

)
+
(

1
k + 1

)(
2
k

)
−
(

2
k + 1

)(
1
k

)
−
(
3
k

)
= −k if k ≥ 3

A4 =
(
2
3

)(
2
2

)
−
(
3
3

)(
1
2

)
= 1 if k = 2

A4 =
(
4
4

)
+
(
2
4

)(
2
3

)
−
(
3
4

)(
1
3

)
−
(
1
4

)(
3
3

)
= 3 if k = 3

A4 =
(

4
k + 1

)
+
(

2
k + 1

)(
2
k

)
+
(
4
k

)
−
(

3
k + 1

)(
1
k

)
−
(

1
k + 1

)(
3
k

)

= 1

2
k(k − 1) if k ≥ 4.

The proof is thereby completed. ��

Arguing as in the above lemma, one derives the following counting formula:

Lemma 5.9 Let y1, . . . , yL be L critical points of K inSn+ and let ι(y j ) := n−morse(K , y j ).
Assume that

B1 :=
L∑
j=1

(−1)ι(y j ) = −k with k ≥ 0.

Then the number L has to satisfy L := 2r + k (with r ∈ N0) and there are r even numbers
ι(y j )’s and r + k odd numbers ι(y j )’s. Furthermore, it holds

B2 :=
∑

1≤ j<�≤L

(−1)ι(y j )+ι(y�) = −r + 1

2
k(k − 1); for each L ≥ 0.
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