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Abstract

In this paper we study the Nirenberg problem on standard half spheres (S , g), n > 5, which
consists of finding conformal metrics of prescribed scalar curvature and zero boundary mean
curvature on the boundary. This problem amounts to solve the following boundary value
problem involving the critical Sobolev exponent:

n+2
P —Agu—i—@u =Kur:2,u>0 inSh,
=0 on 9S",..

where K € C3(S'_L) is a positive function. This problem has a variational structure but the
related Euler-Lagrange functional Jx lacks compactness. Indeed it admits critical points at
infinity, which are limits of non compact orbits of the (negative) gradient flow. Through the
construction of an appropriate pseudogradient in the neighborhood at infinity, we characterize
these critical points at infinity, associate to them an index, perform a Morse type reduction of
the functional Jk in their neighborhood and compute their contribution to the difference of
topology between the level sets of Jx, hence extending the full Morse theoretical approach
to this non compact variational problem. Such an approach is used to prove, under various
pinching conditions, some existence results for () on half spheres of dimension n > 5.
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1 Introduction and statement of the results

In the early seventieth of the last century Louis Nirenberg asked the following question: Can
a smooth positive function K € C*°(S") defined on the standard n—dimensional sphere
(S, g) be realized as the scalar curvature of a metric g conformally equivalent to g ?
On S?, setting g = e?*g the Nirenberg problem is equivalent to solving the following
nonlinear elliptic equation

—Agu +1 = Ke?, in S?,

where A, denotes the Laplace Beltrami operator.
For spheres of dimensions n > 3 and writing the conformal metric as g := u*/ (”_2)g, the
Nirenberg problem amounts to solve the following nonlinear elliptic equation involving the
Sobolev critical exponent:

NP) — Agu +n(nT2)u = Ku%; u >0, inS". (1)
The Nirenberg problem has attracted a lot attention in the last half century. See [3,4,6,7,
10-12,19-24,28,31,32,36,37] and the references therein. Actually due to Kazdan-Warner
obstructions, see [18,28], a positive answer to the Nirenberg’s question requires imposing
conditions on the function K. It turns out that finding sufficient conditions under which the
Nirenberg problem is solvable depends strongly on the dimension » and the behavior of the
function K near its critical points. Indeed in low dimension n < 5 index counting criteria
have been obtained, see [7,20,27,31,32]. Such a counting index criterium fails, under the
nondegeneracy assumption (N D) (thatis AK # 0 at critical points of K), if the dimension
n > 5. They can be extended on high dimensional spheres in the perturbative setting (that is
when K is close to a constant) see [19,24] or under some flatness assumptions see [16,22,31].
To explain the main difficulty in studying the Nirenberg problem and the differences between
the low dimensional case n < 5 and the high dimensional one n > 5, we point out that due to
the presence of the Sobolev critical exponent, the corresponding Euler—Lagrange functional
does not satisfy the Palais-Smale condition. One way to overcome such a difficulty is to
consider the following subcritical approximation of the problem (NP):

WNPe) —Agu+ ——u=Ku2"° u>0inS§", )
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where ¢ > 0 is a small parameter. In this way one recovers the compactness and one then
studies the behavior of blowing up solution u, of (N'P,) as the parameter ¢ goes to zero.
Actually it can be proved that finite energy blowing up solutions of (NP,) can have only
isolated simple blow up points which are critical points of the function K, see [23,31,32,35].
The reason of the additional difficulty in the high dimensional case lies in the complexity of
the blow up phenomenon. Indeed in dimensions n = 2, 3 there are only single blow up points,
see, [7,20,27,31,37] and in dimension n = 4 multiple bubbling may occur only under some
extra condition, see [11,32] while, under the non degeneracy assumption (N D), on spheres
of dimension n > 5 every m—tuple (g1, ..., gn) of distinct critical points of K, satisfying
AK(gi) < Oforeachi = 1,...,m can be realized as a concentration set of blowing up
solutions of (N'P,). See [34].

Regarding the high dimensional case n > 5, Malchiodi and Mayer [35] obtained recently
an interesting existence criterium under some pinching condition. Their result reads as fol-
lows:

Theorem A [35] Let n > 5 and K € C*®(S") be a positive Morse function satisfying the
following conditions
®
Vg eS§", VK(g)=0= AK(q) #0,
(i1)
Kmax/Kmin = (3/2)1/0’_2),

where K4y := maxsn K and K,,i, := ming» K
(iii)
#q €S"; VK(q) =0; AK(q) <0} > 2,

where #A denotes the cardinal of the set A.

Then Nirenberg Problem (N'P) has at least one solution.

In this paper we consider a version of the Nirenberg problem on standard half spheres
(S, g). Namely we prescribe simultaneously the scalar curvature to be a positive function
0<Ke C3(S'jr) and the boundary mean curvature to be zero. This amounts to solve the
following boundary value problem

—Agu + M=Dy — gy D/ =Dy S0 in S,
(P) [ ¢ 4 - 3)

u __ n
5y =0 on 9S8},

where K € C3 (S}) is a positive function.

This problem has been studied on half spheres of dimensions n = 2, 3, 4. See the papers
[13-15,17,25,29,30] and the references therein. Very much like the case of spheres, to recover
compactness one considers here the following subcritical approximation

n+2
Aoy + 2Dy Ky >0 inSt,
(Pe) { 8 4 + 4

)
au — 0 on 9’} .

Just as above, there are two alternatives for the behavior of a sequence of solutions u, of
(Pe). Either the ||u. ||~ remains uniformly bounded or it blows up and if it does u?"/ =2) pn
(where £" denotes the Lebesgue measure) converges to a sum of Dirac masses, some of them
are sitting in the interior and the others ones are located on the boundary. The interior points
are critical points of K satisfying that AK < 0 and the boundary points are critical points
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of K the restriction of K on the boundary and satisfying that 9K /dv > 0. See [14,17,25].
Furthermore a refined blow up analysis, under the non degeneracy assumption that AK # 0
at interior critical points of K and that d K /dv # 0 at critical points of K, shows that in the
dimension n = 3 multiple bubbling may occur but all blow up points are isolated simple,
see [25,30]. Moreover in dimensions n = 2, 3 counting index criteria have been established,
see [14,17,25,29]. Furthermore under additional condition on K it has been proved in [15]
that all blow up points are isolated simple, but already in dimension n = 4 counting index
formulae, under the above non degeneracy conditions fail. More surprisingly and in contrast
with the case of closed spheres, the Nirenberg problem on half spheres may have non simple
blow up points, even for finite energy bubbling solutions of (P;) see [1,2].

In this paper we study Problem (P) from the viewpoint of the theory of critical points at
infinity. In this approach initiated by the late Bahri, see [5—8], one studies the possible ends
of non compact orbits of the (negative) gradient of the associated Euler Lagrange functional.
The method consists of taking advantage of the concentration-compactness analysis of non
converging Palais-Smale sequences to identify a potential neighborhood at infinity where
concentration may occur. Then one constructs a global pseudogradient for which the full
analysis of the w-limit set, in this neighborhood is easier than for the genuine gradient flow
and then uses it to characterize critical points at infinity. One then performs a Morse reduction
near these critical points at infinity in order to compute their topological contribution to the
difference of topology between the level sets of the Euler—Lagrange functional.

Before stating our main results, we set up some notation and introduce our assumptions.

For the function K and its restriction on the boundary K := K |3s#, we use the following
assumption:

(H1): We assume that K is a C%@) positive function, which has only non-degenerate
critical points with AK # 0. (We point out that some of these points can be on the boundary.)

(H2): We assume that the restriction of K on the boundary K| := K last. has only non-
degenerate critical points z’s. Furthermore we assume that if z is not a local maximum point
of K1, we have that 0K /ov(z) < 0.

(H3): If z € S’} is a critical point of K satisfying that 9 K /9v(z) = 0, hence z is actually
a critical point of K on 9S"_, we assume that AK (z) # 0 and one of the following conditions
is satisfied:

(i) either 9K /0v(a)AK (z) < 0 for each a € 9S" in a small neighborhood of z,

. . K /dv(a) __
(i) OrllmaEBS'L;aﬁz d{a,z) =0.

Next we introduce the following subsets of critical points of K and K
K, :={y eS| :VK(y) =0and AK(y) < 0},
ICZ ={z e 8S'j_ :VKi(z) =0and 0K /dv(z) > 0},
K)y™:={z€dS" : VKi(z) = 0; 3K /dv(z) = 0 and AK (z) < O}.
Furthermore we define
K® = K, UKF UKy ™.

Our first result is an existence result under a pinching assumption, which parallels the
above mentioned existence result of Malchiodi-Mayer. Namely we prove

Theorem 1.1 Letn > 5and0 < K € C%@) satisfying the assumptions (H1), (H2) and
(H3).
If the following conditions hold
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®
Kumax/Kumin < (5/4)""2),
where K gy = maxg: K and K,iy = minggr K.
(ii)
#IC® > 2,

where #A denotes the cardinal of the set A. Then Problem (P) has at least one solution.

Remark 1.2 1. The above theorem is the counterpart of the existence result of Malchiodi—
Mayer [35](see Theorem A quoted above). We point that the proof of Theorem 1.1,
compared with the proof of Theorem A is more involved. In particular the counting index
argument in our case is more subtle. Indeed due to the influence of the boundary the
blow up picture is more complicated. Namely we have boundary and interior blow up as
well as mixed configurations involving both of them. Such a complicated picture imposes
to consider 4 critical levels instead of two critical levels needed in the case of closed
spheres. Such a fact makes the index counting of the associated critical points at infinity
more involved, see Lemmas 5.9, 5.8 in the “Appendix”.

2. The conditions (H?2), (H3) are used to rule out non simple blow up, see [1]. A phe-
nomenon which does not occur in the case of closed spheres. See Sect. 3.2.2.

The above pinching condition (i) of Theorem 1.1 can be relaxed when combined with
some counting index formula involving either the boundary blow up points or the interior
blow points. In the next theorem we provide an existence result involving the boundary blow
up points. Namely we prove:

Theorem 1.3 Letn > 5and0 < K € C%@).Assume thatthe critical points of K| := KIGS’i
are non degenerate and that K satisfies the assumption (H 3). If the following conditions hold
(a)

Kmax/Kmin < 21/(’!72):
(b)
Al = Z (_l)n—l—morse(Kl,z) # 1.

+ 50—
ek, UK,

Then Problem (P) has at least one solution.

Next we assume that the above index formula A; = 1, which implies, in particular that
the number of boundary blow up points is an odd number, say 2k + 1, where k € Np.

The next existence result combined a pinching condition with a counting index formulae
involving interior blow up points. Namely we prove:

Theorem 1.4 Letn > 5and0 < K € C%@) satisfying the assumptions (H1), (H2) and
(H3).
If the following conditions hold
()
Kumax/Kmin < (3/2)"/" =% and Ay =1,
where A1 is defined in Theorem 1.3,
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(ii)
By = Z (_l)n—morse(K,y) # —k,

yek;,
where #(IC;' U IC;)’*) =2k + 1, k € Ng. Then Problem (P) has at least one solution.

Regarding the method of proof of our main existence results, Theorems 1.1, 1.3 and 1.4
some comments are in order. Indeed although the general scheme falls in the framework of the
techniques and ideas of the critical point theory at infinity , see [6,7,11], the main arguments
here are of a different flavor. Indeed with respect to the case of closed spheres, treated by
A.Babhri in his seminal paper [6], the case of half spheres presents new aspects: From one
part the blow up picture is more complicated (interior, boundary and mixed configurations)
and from another part the behavior of the self interactions of interior bubbles and boundary
bubbles is drastically different. A fact which was used in [1] to construct subcritical solutions
having non simple blow ups. To rule out such a possibility, under our assumption (H?2)
and (H3), we had to come up with a barycentric vector field which moves a cluster of
concentration points towards their common barycenter and to prove that along the flow lines
of such a vector field the functional decreases and the concentration rates of an initial value
do not increase, see Lemma 3.9. Furthermore we prove that in the neighborhood of critical
points at infinity, the concentration rates are comparable and the concentration points are not
to close to each other. See Sects. 3.2.2 and 3.2.3.

The remainder of this paper is organized as follows: In Sect. 2 we set up the variational
framework and define the neighborhood at infinity and in Sect. 3 we construct an appropriate
pseudogradient in the vicinity of highly concentrated bubbles and derive from the analysis
of the behavior of its flow lines the set of its critical points at infinity. Section 4 is devoted
to the proof of the main existence results of this paper. Lastly we collect in the appendix
some estimates of the bubble, fine asymptotic expansion of the Euler—Lagrange functional
and its gradient in the neighborhood at infinity as well as useful counting index formula for
the critical points of the function K and its restriction K; on the boundary.

2 Loss of compactness and neighborhood at infinity

In this section we set up the analytical framework of the variational problem associated to
the Nirenberg problem and recall the description of its lack of compactness. Let H' (S%) be
the Sobolev space endowed with the norm

nn—2)
lul? = / IVl + =

st s

and let ¥ denote its unit sphere.
Problem (P) has a variational structure. Namely its solutions are in one to one correspon-
dence with the critical points of the functional

[lue]
(sz— K|u|2"/("_2))("_2)/"

Jk ) == definedon X1 :={u € T; u > 0).

The functional Jg fails to satisfy the Palais Smale condition. To describe non converging
Palais-Smale sequences we introduce the following notation.
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oraeian > () we define the standard bubble to be
F S and A > 0 we define th dard bubble to b
Jn—2/2
COZF1+ (=22 cosd(a, x)—22

where d is the geodesic distance on '} and cg is a constant chosen such that

Saa(x) ==

nn—2 —2) .
—A8a + ¥8a,k - 8((1'?;2)/(" LN S

Fora € S, we define projected bubble ¢, ; to be the unique solution of
nn—2)
4
We point out that ¢, 5 = 84,5 if a € 9S"}.

Next for m € N and p, g € Ny such that g + 2p = m we define the neighborhood of
potential critical points at Infinity V(m, q, p, €) as follows:

_ a
Gar = 86(111;-2)/@ D in Si—l}—; (ga,k —0on agﬁ_.
’ %

—A@a s +

V(m,q, p,e¢) ::{u €X:Ar, .., Apyg > 5_]; day,...,aq41p e@, with
rid(a;, 3S")) <&, Vi < g,and A;d(a;, 9ST) > elvi> q,
l-p=+1q K(ai)(z_n)/‘lgoa,',}x,' ” }

&ij <& such that [ju— -
175 K (ap) @, 5, |

where
A A 2-n/2
iy = (55 + 2L 4200051 = cos@(ai,ap))
Aj Ai
In the following we describe non converging Palais-Smale sequences. Such a description,

which is by now standard, follows from concentration-compactness arguments as in [33,38]
and reads as follows

Proposition 2.1 Letu; € X be asequence suchthatV Jx (uy) — 0and Jg (uy) is bounded.
If Problem (P) does not have a solution, then there existm € Nand p, q € Nwithq+2p = m,
a sequence of positive real numbers €, | 0 as well as subsequence of uy, still denoted uy,
such that uy € V(m, q, p, €).

Following Bahri and Coron, we consider for u € V(m, ¢, p, ¢) the following minimization
problem

p+q
Min {llu — Y tiga sl i > 0,2 >0,a; €3S}, Vi=1,....q:a; €S}, ¥g+1<i<q+p

i=1

(5)
We then have the following proposition whose proof is identical, up to minor modification
to the one of Proposition 7 in [8]

Proposition 2.2 Foranym € Nthere exists e,, > Osuchthatife < e, andu € V(m, q, p, €)
the minimization problem (5) has, up to permutation, a unique solution.

Hence it follows from Proposition 2.2 thatevery u € V (m, ¢, p, €) can be written in a unique
way as

q ptq
W=y iy + Y ian + U, (6)
i=1 i=q+1
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where
a; €dSL,i=1,...,qandg; €S}, i=qg+1,...,p+q,
andv € H' (S}) satisfying

Vo) vl <e, <v, ¥ >=0, fory € U

{. 08; 06; ' 8<pj 3(,0]}
1<i<q;q+1<j<q+p

D on a7 an; Ba;
)
where §; := 84, 5, and ¢; := @, 3. In addition, the variables o;’s satisfy

11— T " Da "2 K (a;)] = 0,(1) foreach . )

In the next lemma we deal with the v-part of u € V (m, ¢, p, ) in order to prove, that its
effect is negligible with the concentration phenomenon. Namely we prove:

Lemma2.3 Let n > 5. For ¢ > O small, there exists a C'-map which, to each (a =

+
(@1, ..., ptq),a = (a1 .,ap+q),k = (AL, ..., Apig)), such that u = Zf’zqa,w, IS
V(m,q, p, ¢), associates V = V(q,q,3) Satisfying

p+q ptq
Jk (Z Qi Pa; 2 +v) = min {JK <Z i Pa; 5y + v) , U satisfies (V())} .

i=1 i=1

Moreover, there exists ¢ > 0 such that the following holds

q+p ) b -1y 5t InGdi)
ol <ey LK;‘I’)' + iz L] e 0 83 5) Lo Z»? God oz =6,
i Ai Yeijne; )P+ 3, ooy ifn =5,

Proof The proof follows as in Proposition 3.1 in [12] (see also [9]). Indeed, easy computations
imply that

Tk (u+v) = Jg @) — f() + (1/2)Q@) +o([[v]|*)  where

N
n 2 _
f () ;:/ Kuiiy and Q(v):= |v]? — nt2 > :/ 52
S n—?2 il n

+

Note that Q is a positive definite quadratic form (see [5]) and we have that

n+2

f(U) = ZO‘;Hz

Observe that, for n > 6, it follows that 4/(n — 2) < 1. Hence, using Holder’s inequality, we
get

/S K‘pln 2U+ 0 Z/ Sup((pj 901)” 2 lnf(fﬂj (pl)|v|) 9
i#]j

4 n+2
/Sn sup(@;, ;) »=2 inf (¢}, @;)|v| < /g (0jpi) 2= |y|
+

1
" ”2+2 n+2
scnvll(/sn @-&-)”) " <clllel” T (ne; S itn = 6,
+
(10)
/SS sup(¢;. @) inf (g @n)lv] < cllvlleyj(ne;; ) it n =s. (1

+
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For the other term, for i < ¢ (thatis a; € 3S'}), using the fact that (§;, v) = 0, we get

n+2 5 2
/ K8/ 7v = |v1<(a,)|/ —a; 5” 2|v| +/ Ix — a;] 5;'*2|v|)
" R

~of(TL 1 L)

Fori > g, using Lemma 5.1, we get

n+% % LZ
/n K(/);H v= /rl K(SiYH v+ O(/S\n 61"17 |(pl —(S;||U|)
+

:0((M )” 1)+ [O(an/(xid,-)"—z) itn=>5,

Ai O(Ilvlln(ridi)/ (hidi) " T272) if n > 6

and the result follows. ]

3 Pseudogradient and Morse Lemma at infinity

This section is devoted to the construction of a pseudogradient for the functional Jx , which has
the property that along its flow lines there could be only finitely many isolated blow up ponits.
Such a pseudogradient coincides with the gradient outside of Um’ ap V(m,q, p,e/2) and
satisfies the Palais-Smale condition there. Moreover in each V (m, ¢, p, €) it has the property
to move the concentration points according to VK or VK, the ;s to their maximum values
and the concentration X;’s are moved so that the functional Jx decreases along its flow
lines. The global vector field is then defined by convex combining these two vector fields.
Such a construction is then used to perform a Morse reduction near the singularities of the
pseudogradient and to compute the difference of topology induced by the critical points at
infinity between the level sets of the Euler—Lagrange functional J.

The first step in the construction of the pseudogradient is to describe the movement of the
variable v. In fact, since v minimizes Jg in the v-space, it follows from the classical Morse
Lemma that there exists a change of variable v — V such that

rtq rtq
Jk <Z i Qa;,n; + v) =Jk (Z i Pa; x +v> + ||V||2 (12)

i=1 i=1

Hence, for the variable V, we will use V = —V to bring it to 0. Thus, we need to construct
some vector fields by moving the variables «;, a; and ;.

3.1 The case of a single concentration point

We point out that the construction of a pseudogradient satisfying the above properties becomes
quite involved in the case of more than one concentration point. Indeed in the case of two
bubbles sitting at different points, their mutual interaction comes into play. For this reason
we start by constructing the needed pseudogradient in neighborhoods at infinity, containing
one interior or one boundary point. To do so we consider two cases, the first one corresponds
to p = 1 and ¢ = 0 (case of an interior concentration point) and the second one corresponds
to p = 0 and ¢ = 1 (the case of a boundary point). Namely we prove:
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Proposition 3.1 Assume that K satisfies (H1) and (H3) and that the critical points of K
are non-degenerate. A pseudogradient W can be defined so that the following holds: There
is a constant ¢ > 0 independent of u = a@, ) € V2p+4q.q, p,¢€) (withqg =1orp=1)
such that

1224+ 1/(d)"2 +|VK (@)|/rif p=1;9 =0,

i) (=VJ , W) > n
R >>C{ Ui |l = T2 e K (@) if p=0:g = 1.

1/32+1/(d)" 2 + VK (@)l /A if p=1:q =0,

v
i) (—=VJ, ), W+ —(W)) > B
(i) ( x (u+7) +a(a,a,k)( ))>C{ 1/M+|1—J(u)maﬁK(a)lifP=0§q=lv

where d := d(a, 3S"}) fora € S and w ' = |VK@)|/r+1/2% fora e oSt
(iii) The vector field W is bounded with the property that along its flow lines, ) increases
only in the following region
e [f p = 1 then A increases if and only if the point a belongs to a small neighborhood of a
critical point y € S’} of K, such that AK (y) < 0
e If g = 1 then X increases if and only if the point a belongs to a small neighborhood of a
critical point z € 3S', of Ky such that either (0K /0v)(z) > 0 or (0K /9v)(z) = 0 and
AK(z) <O.

Proof We start by giving the proof of Claim (i) for the case where p = 1 and g = O that
isin V (2,0, 1, ¢). First, we notice that, if a is close to a critical point y of K in S’i, then
AK(a) = AK(y)(1 4+ o(1)) and therefore AK (a) has a constant sign.

Let M be a large constant and let v/ be a C* cut off function defined by ¥ € [0, 1],
Y1) =1ift > 2 and Y1 (r) = 0if r < 1. We define

?»IVK(a)I)(l 9¢a VK(a) 3<ﬂa,x>

W:ZWI( M x 0a |[VK@]| = ox

+(1 - wl(W))( sign(—AK (@) a‘g‘ik.

We notice that, in the region where |VK (a)| > 2M /A, we have that Y1 (A|VK (a)|/M) = 1,
therefore the Claim (i) follows from Proposition 5.7.

Nextif [VK (a)|] < 2M /A then a is very close to a critical point of K in @ We claim that
this critical point cannot be on the boundary. Indeed, arguing by contradiction, we assume
that a is in small neighborhood of a critical point z € dS"} . Since z is a non-degenerate critical
point of K, we derive that Ad(a, z) is bounded which contradicts the fact that Ad (a, S'} ) is
very large. Hence our claim follows and a is close to an interior critical point y in S/} .

Next using Proposition 5.7 we derive that

(—=VJk W), W) > cy (MVEM)')('WT“)' + %) + (1 — (LVZ(")'))%

which implies Claim (i) in this region.

Hence Claim (i) is proved in the case where p = 1 and g = 0.

Concerning (ii) it follows from (i) using the estimate of v in Lemma 2.3. Finally we
notice that A increases along the flow lines of the pseudogradient W only in the region where
a is close to a critical point y with AK (y) < 0. Thus the proof of the proposition follows in
the case where p = 1 and g = 0.

Next we consider the case where p = 0 and ¢ = 1, that is the case of a boundary
concentration point @ € 9S'}.. In this situation we divide the set V (1, 1, 0, &) into 3 subsets
and construct an appropriate vector field in each of these sets.
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n 4

(1) Let V]1 ={ueV(d,1,0,¢&): |1 —Jgxm)—2an2K(a)| > M/u}. In this region, we
define

W= sign(l — Jx )72 a7 2 K (a)]) 8.

and using Proposition 5.6, Claim (i) follows easily (since M is chosen large).

(2) Let V12 ={ueV({,1,0,&): |1 — JK(u)n%?aéK(aﬂ <2M/u and |VKi(a)| >
n}, where 7 is a small fixed constant. In this region, we define
_ 1338, VKi(a)
T A da |VKi(a)|
Note that, in this region, the parameter u is of the same order that . Hence, using Proposition
5.5, the proof of Claim (7) follows.

(3) Let V]3 ={ueVvVd,1,0,e):|1 - JK(u)ﬁa%K(aﬂ <2M/p and [VKi(a)| <
2n}. In this region, a is close to a critical point z of K. The pseudogradient will depend on
z. We define

1
W= fo where Wf :
n

38
W3 =y AVK @]/ M)W! +y Aa—“k" with y € {—1, 1} satisfying

y=1 ifdK/dv(z) > 0ordK/dv(z) =0and AK(z) <0,

13
y=—1 ifdK/ov(z) <0ordK/dv(z) =0and AK(z) > 0. (13)
Using Propositions 5.4 and 5.5, it holds
MVKi(@\IVKi(@)] | 1
_ 3 _
(VI ). W) = epn () (e + 55)
c3 0K AK(a) 1
+y(Ia—v(a) — e+ 0G5 ) (14)

Observe that, if 0K /dv(z) # 0, it follows that y9K /dv(a) > ¢ > 0 and therefore Claim
(i) follows easily. In the other case, that is 0K /dv(z) = 0, we need to make use of the
assumption (H3). Indeed,

e if (i) of (H3) holds, it follows that Y0 K /dv(a) = |0K /ov(a)| and —y AK (a) > ¢ > 0.
Therefore, if A|VK|(a)] > 2M, in the lower bound of (14) will appear |[VK(a)|/\ +
|dK /dv(a)|/A + 1/A% which is larger than c/u. Hence, Claim (i) follows in this case.
However, if A|VK|(a)| < 2M, it follows that |[VK (a)| < ¢M /A (since we assumed that
z is a non degenerate critical point). Therefore 1/2% > ¢(1/A2 + |VK (a)|/A) = ¢/ .
Thus Claim (i) follows in this case.

e Next we consider the case where (ii) of (H3) holds. Recall that z is a non degenerate
critical point of K, thus it follows that there exists r; > O such that |VK(a)| > cd(a, z)
for each a € B(z,ry). Let o1 > O (satistying o1 max(M, 1/c) is very small), using
(ii) of (H3), there exists r, > 0 (with r, < rq) such that |0K /dv(a)| < 01d(a, 2)
for each a € B(z, ). Hence, in B(z,r2), |0K/dv(a)] = o(|[VKi(a)]) (since g; is
chosen so that o1 /c is small) and therefore |[VK;(a)| = |[VK(a)|(1 4+ o(1)). Finally,
as before, if A|VKi(a)| > 2M, in the lower bound of (14) will appear |VKi(a)|/A.
Furthermore, we have —y AK (a) > ¢ > Oand |0K /dv(a)| = o(|VK(a)|) whichimply
the proof of Claim (i) in this case. In the other case, which is A|VK(a)| < 2M, it holds:
d(a,z) < cM /A which implies that |dK /dv(a)| < 01d(a,z) < coiM /3> = o(1/1%)
(by the chose of g1). Thus the proof of Claim (i) follows from (14).

Finally Claim (ii) follows from Claim (i) using the estimate of v in Lemma 2.3 and Claim
(iii) follows immediately from the properties of the constructed vector field. O
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We remark that the assumption (H2) is not used in the construction of the pseudogradient
inV(,1,0,¢).

3.2 The case of multiple concentration points

In the next proposition we address the case where the set of the concentration points contains
more than one point. Before stating our result we define fori = 1, ..., m the scalar quantity
;i as follows

= |VK@)l/h + 15711 <q: i =27ifi > q+1. (15)

The behavior of such a quantity along the flow lines of the constructed pseudogradient plays
crucial role in identifying critical points at infinity.

Proposition 3.2 Assume that K satisfies (H1), (H2) and (H3). A pseudogradient W can
be defined so that the following holds: There is a constant ¢ > 0 independent of u =

p+
S iba g + Zj:ZH ®j@a;n; € V(m,q, p,e) such that

p+q
i n— 2
i) (=VJk@), W) >c2m+c2|1_11((u)n 20 K (ar)*~
— i=q
= VK (a;)l 5
+ch +CZ((Ad)” 1+( Iy ) )
k#r i>q
87 ) n— 1
(ii) (—VJK(u+v),W+ﬁ(W) c Z = l/(n > +CZ‘9
i k#r
4 _ 1
— n— n=2 . 27,1% 1 |VK(al)| 2 n—=2
+c§|l Jk (u) za K (a)| 2+c;<(kidi)"—l+( » ) )

where d; :=d(a;, 3S"}).

(iii) The vector field W is bounded with the property that along its flow lines the maximum
of the u;’s increases only if the (q + p)—tuple (ai, ..., a4, . .. agyp) is close to a collection
of different critical points of K or K1 (21, ...,2g> Yg+1 - - - Yq+p) With the y;’s are critical
points of K in S’} satistying AK (y;) < 0 for eachi > q + 1 and the z;’s are critical points
of K1 such that either (0K /0v)(z;,) > 0 or (0K /dv)(z;) = 0 and AK (z;) < 0).

The construction of a pseudogradient satisfying (i), (i), (iii) is quite involved and requires
some preparatory Lemmas and estimates. Its construction depends on the behavior of the
leading terms of the a-, a- and A-component of the gradient in the neighborhood at infinity
V(m,q, p, €). To perform such a construction we divide the set V (m, ¢, p, €) into four
subsets. The first and the second ones correspond to the situation where at least one of the
variables ¢;’s and @;’s is not in its critical position and the p;’s are of the same order. In the
third one, the w;’s are still of the same order but the variables «;’s and ¢;’s are very close to
their critical positions. Finally in the fourth one we address the case where the w;’s are not
of the same order.
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To define these regions, we introduce the following notation. For M, a large constant we
set:

n i

1—J a2 K VK (a;)|/Ai

Py = I k()2 ay (ak)l; b 2| 1(a,)2|/ i fori < g
Mo (3, i &kr + 1/ 1) T Mo a4 (LME) Y e Eik
VK (@)| /)i

T, = VK @Dl/ ’2 —: Ty, = H(a;, a;)/ M)~ fori > g,

M2(Zk7g,‘ eki + (Aidi)=™" + )7)
Do o=k Yy eje/My forl <i <q+p. (16)

J#k
To explain the relevance of the above quantities, we state the following Lemma

Lemma 3.3 (1) Let a; be an interior point satisfying 'y, + T'gq; + 'y, < 8. Then a; is close
to a interior critical point y of K in S'}..

(2) If a;, a;j are interior points satisfying that T'y, + Ty, + Ty, < 8 fork =i, j and
if their corresponding concentration rates A; and A are of the same order. Then a; and a;
cannot be close to the same critical point.

Proof Sincei satisfies: 'y, +T'g; + T, < 8, thisimplies that [V K (a;)| < C/A; and therefore
a; is close to a critical point of K. We need to exclude the case where this critical point lies on
the boundary. In fact, assuming that it is the case, i.e. a; is close to 7 € 881. Then it follows
from (H1), that A;d(a;, z) is bounded, which is not allowed. Therefore, each concentration
point g; is close to a critical point y;, € S| and the first assertion is proved.

Concerning the second one, assume that two different points a; and a; are near the same
critical point y. Then we have from the first assertion: Axd(ay, y) is bounded for k = i, j.
Since A; and A; are assumed to be of the same order, it follows that Axd(a;, a;) is bounded,
which contradicts the smallness of ¢;;. |

3.2.1 Construction of some local pseudogradients

In this subsection we construct some local pseudogradients in some parts of the neighbor-
hood at infinity. These vector fields will be glued together to obtain a global pseudogradient

satisfying the properties required in Proposition 3.2.
For My a large number we define the following subsets of V (m, g, p, €)

ViMo) :={u : pmax < 2Mo pmin} N{u:3i>q: Ty, +Tg +Ty,; =6},

Va(Mo) =t : ftmax < 2Mo ftmin} O {2 ¥ i > g : Tpg+Tg +T5, <8N ({u :3i<q:To+T;, =4
Ulu:3i<q:da, K" zn)  where K = (z € 08 : VK1) = 0,

V3(Mo) =1 : ftmax < 2Mo fimin} N {u:¥ i > q : Tpg, + T, + T, <8} N{u:Vi<q:To+T, <6
Nu:Vi<gq:da, K" <2},

Va(Mo) :={u : ftmax > Mo lmin}s

where fimax :=max; u; and fmip := min; ;.
Before defining a pseudogradient in each subset, we single out some of their properties
that will be used in the construction of the local pseudogradients.
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Remark 3.4 (1) In Vi.(My), for k < 3, the variables u;’s are of the same order. Thus, using
Lemma 5.2, we derive that, for each i # j < g, it holds

L > ceyj. (17)

Furthermore, fori # j > ¢, we deduce that A; and A ; are of the same order and therefore
(17) holds true. Now, for i > ¢g and j < ¢, we have A;d; is very large which implies that
Aid(a;, aj) is also very large and therefore (17) holds for these indices.

(2) In Vi (My), k = 2,3, for each i > ¢, the concentration point g; is close to a critical
point y;, € S} and two different points ¢; and a; cannot be near the same critical point y
(see Lemma 3.3).

(3) In V3(My), for each i < g, a; is close to a critical point z, of K in 0S .

We start our construction by defining a pseudogradient in V(Mp).

Lemma 3.5 There exists a bounded pseudogradient W1 so that the following holds: There is
a constant ¢ > 0 independent of u = Z?:l ;8 + le;qﬂ a;@; € Vi(My) such that

q+p .
(—VJk ), W) = Z*HZ“ — Jg )07 K (a)]

i=1 ™ i=1

q+p
VK (a
teYe+ Y VK@) (’)' (18)
ktr i=q+1

Furthermore, the A;’s are decreasing functions along the flow lines generated by this pseu-
dogradient. In addition, the constant of 1/ [imax s independent of My and M.

Proof We start by defining the following vector fields:

in . 1 9¢; VK(a;)
Wa,, 1=—§(¢1(Fx)+1//1(rm)))» - and W, :gwl(rai)k—i 50 VK@) 19
Wa, = —Zwl(mx - and W= = Y (Ty) sign(l — Jx ()72 P K @)
i<q k<q
(20)

where ¥ is a C* function defined by ¥y € [0, 1], ¥1(¢) = 1 ift > 2 and 1 (¢r) = 0 if
t < 1. Observe that, using Propositions 5.4, 5.7, the estimate (17) and the definition of v,
we derive that

H(aj,a;)) M, 1
(VI @, W) 2 e 30T + (L + g + 2 s+ O(R) =T,
i>q J#i i
1)
M, 1 —
(VI Way) 2 e YT ( L e 5o+ O( Y ewi + RY)) =T (22)
i<q ki ! k>q

Moreover using Proposition 5.6, we derive that

n 1 —_
(~VJk @), Wa) = ¢ > 91T (u k@™l K (@] + 22 (ng, + M)) = T
k<q r#k

(23)
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Such an estimate suggests to move the variable ;s if |1 — Jg (u)”/”’za?/"_zl((am is very

large with respect to Y rotk Ekr + 1/ k. Furthermore making use of Propositions 5.6 and 5.7,
we derive that

(—VJk (), Wimy >CZ¢1(ral)(|VK(“’)| Mz(Zek, (A'd'l)n_2+%2)) =T

l>l]

Nest we define
Wi = Wa,, + W' + Wo + (1/M2) W,

Using the previous estimates, we obtain

(=VJg ), Wi) = Tp, +Ffln 4+ To + (1/M2)Ta,

in

> 3 W) 9T + @) ( Y e + ) Ma Ly

-2 2
i>q J#i )\7 2 A
VK(a)
+eYy (1) VL] '+r + (1/M)T p, + O(Ry). (24)
1>q

Regarding the above estimate, we point that we need to take care of the interaction term
O (s4;) contained in the expression I' 5 »- To that aim, we observe that, if 'y, + Ty, + 1, >
6, then the ¢;; appears in the lower bound in (24) and therefore we are able to remove
the (1/M>)ey; by taking M» large. But, if I'y, + 'y, + T';, < 6, it follows that (see the
second assertion of Remark 3.4) gy is close to a critical point y of K and therefore we get
ki = O(l/)»’,:_2 + I/A;’_z) which is small with respect to our lower bound.

Since we are in V| (M), there exists atleast one index i > ¢ such that yry (I'y, )+ (I'g,)+
Y1(T'g;) = 1. This implies that 1 /Al.z = 1/p; appears in the lower bound of (24). Since all
the 1 ;’s are of the same order, we are able to make appear all the 1/;’s in this lower bound
and Lemma 3.5 follows. O

In the next lemma we construct a pseudogradient in the set V,(Mp). Namely we prove:

Lemma 3.6 There exists a bounded pseudogradient W) such that the following holds: There
is a constant ¢ > 0 independent of u = Zl L8 + Z —q+1 ;i € Vo(My) such that the
statement of Lemma 3.5 holds true with W instead of W1.

Proof First, recall that (see Remark 3.4), in V,(M), each interior concentration point ay
is close to a critical point of K in §'| and that two interior concentration points a; and
ay cannot be close to the same critical point which implies that d(a;, a;y) > ¢ > 0 and
gik = O(1/ (A =2/2).
Recalling that K := {z € oS : VK(z) = 0} we define the following pseudogradient:
1 08; VKi(a;)

Wy i= Wy + Wp, + _—— where D = {isq:d(a~,ICb)2n}.
CrR ZD ki da; VK1 (ap)] ’

Using (22), (23) and Proposition 5.5, we get

(—VJk (), Wo) > a+FAb+Z +0(Z

ieD l

a,)s +Rb+Zsk,)

k>q
(25)
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First, taking i € Dy, for k < ¢, two cases may occur: (i) either d(a;, ar) < n/2, and in this
case we get that |[VK (ag)| > ¢ and therefore px and Ax are of the same order. Thus A; and
A are of the same order. (i) or d(a;, ay) > n/2. In the two cases, we deduce that

n—1

1 1 n+l anfz
ki = ot i hd (g ap)ef;” <
n—2 ki
(Mired(ai, ap)?) = Aild(a;i, ar)
and —|S8) < S _ ).
Ai da; Aid(a;, ax)

Secondly, for i € D1, we have |VKj(a;)| > c(n) and therefore A; and p; are of the same
order. Since all the ;s are assumed to be of the same order, we are able to make appear all
the 1/ ;’s in the lower bound of (25). Finally, for j ¢ Dy, (i) either Ly, = 2, in this case,

the |1 — JK(u)n/(n—Z)aj/(n—Z)IE(aj)l + Zb“kj appears in Ty, (ii) or I‘aj < 2and F;\j > 2,
in this case ij exj appearsin I' 5, , (iii) or l"aj + F,\j < 4, in this case we are able to make

appear |1 — Jg (u)”/("_z)aj/(n_z)K(aj)| + > & from 1/ ;. Hence the lemma follows. O

Next we consider the third set V3(My). We notice that in this subset each concentration
point a; is close to some critical point of K or K and for a critical point z € 0S| of K}
(resp. y € S| of K), we denote by

B,:={i<q:ajisclosetoz} ; By:={i >q:a;iscloseto y}.

We observe that it follows from Remark 3.4 that #B, < 1 for each critical point y in S .
However, it is possible to have #B, > 2 for some critical points z’s in 0S .
Next we divide the set V3 (M) into four subsets. The first three ones are defined as follows:

Vi i={u € V3(Mo) : Az with dK /dv(z) = 0 and #B, > 2},

5 ::({u : 3z with 0K /dv(z) < O and B; # )| J{u : 3y with AK > 0 and By, # 0}
(J{u : 3z with 9K /9v(z) = 0; AK(z) > 0 and #B; # 0}) [ (Va(Mo)\V3),

Vi ={u € V3(Mo) : Iz with 0K /dv(z) > 0 and #B, > 2} ﬂ(\@(MO)\(V3‘ U Vv3)

where y is an interior critical point of K and z is a critical point of K, and the last one is
defined as:

W ={u € V3(Mp) : Vi < q,a; is close to z; € S|, with #B,, = 1; (0K /dv =0& AK < 0)
or 9K /dv > O} [ {u € V3(Mo),Vj > ¢, a; is close to y; € S,
with #By, = 1 and AK(y;) < 0}. (26)

In the next lemma we construct a pseudogradient in the first subset. Namely we prove the
following lemma:

Lemma 3.7 There exists a bounded pseudogradient W31 such that the following holds: There
is a constant ¢ > 0 independent of u = Z?:] o;d; + Zf:qu oi@; € V3l such that the
statement of Lemma 3.5 holds true with W; instead of Wj.

Proof Let z be such that 0K /dv(z) = 0 and #B, > 2. Firstly, we claim that:

VKi(a M 1
There exists k € B, such that: M > —22 +— Ze,k. 27
Iy )Lk M2 e ’
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Indeed arguing by contradiction, we assume that this claim does not hold. Thus, since z is a
non-degenerate critical point of K, we obtain, for each k € B_,

d(ak,z) IVKi(adl _
¢ A 2 )\2 ngk
k k z oy
M 1 VK M d(ag, z M
_722+L7§L| (ar) c—;sc(akz) c—;
A Mywe — My Ak A Mahg A

which implies that Ad (ax, z) is bounded. In addition, from the definition of ug, we get

L1 _ VK@l 1 _ Adlaps 1 c
A2 T Ak 22 22 PrANSY,

Thus, wx and A,% are of the same order for each k € B;.

Next let i and j be two different indices in B,. We deduce that A ; and A; are of the same
order and Axd(a;, a;) is bounded for k = i, j. These give a contradiction with the fact that
&ij is small. Hence our claim follows.

Furthermore observe that, for k satisfying (27), it holds that Axd(ax, z) > cM>.

Now, in this region, we define the following vector field:

1 1 35; VKi(ai) . . )
Wy = e — where Dy := {i < ¢ : (27) holds with k = i}.
Ai da; |VK(a;)]

ieDy

Using Proposition 5.5, we get

VW = e 30 o (30 (L1 et s )+ REEY o).
ieDy k<q k>q
(28)
Recall that (see Remark 3.4), in V3(Mp), each concentration point ay, for k > g is close to
a critical point of K in S| which implies that d(a;, ax) > ¢ > 0 for each i < q. Hence we
getgix = O(1/(gri) =212,
Moreoverfori € Dy andk < g withk # i, two cases may occur: (i) either Ay < M(%Mzz)»i,

and in this case we get

n—1

L2 4 sdar, a»sk, < chd(ai, a)el” < e MoMay/hdid(ai, apel” < e MoMag),

Aa,

or (ii) b > M&M%ki. In this case, since uyr < 2Mou; and z is a non-degenerate critical
point of K71, it follows that
cd(ai,z) _ VK@)l _ [VK(a)l Mo

2— < 2M,
AT A - Ai ()L? Ak ) = k

VK d

VK (ar)| < eMp (ax, z)
Ak
which implies that d(a;, z)/d(ar,z) < cMohi/Ax < c/(MoMzz). Thus we deduce that
d(a;,ar) > cMoMzzd(a,-, 7). Therefore we obtain

1 0six ntl _n_ c 1 c c

= . n—2 . . .
| ‘ + Aid(ag, aieg; ™ < cMd(ai, ap)ef ™ < ada, ak)gtk = M()M% and(a;.2) ik = MSM() Eik
where we have used the fact that A;d(a;, z) > c¢M>. Thus (28) becomes
VK (a;)l
—VJk (), Wi) > ¢ T =+ ) &+ O(RY . (29
<KU3LJ§ » +ﬂ+W§”+( Z (29)
2
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Finally, we notice that [VK (a;)| < cd(a;, z) < c|VKi(a;)| < ¢|VK (a;)|. Thus, in (29), we
can make appear 1/u; fori € D; and therefore all the 1/ ;’s (since there are of the same
order) and the proof follows as the proof of the previous lemmas. O

Lemma 3.8 There exists a bounded pseudogradient W32 such that the following holds: There
is a constant ¢ > 0 independent of u = Z?:l o;id; + Zf:qu oj@; € V32 such that the
statement of Lemma 3.5 holds true with W32 instead of W.

Proof Let Dy := Uy.ak (y)>0By, D2 := Uyk /ov(z)<0 Bz and D3 := U5k /8v(2)=0; AK (2)>0 8-
We divide this region into two subsets:
Ist subset: If D1 U Dy # (. In this case, we define

Z A 3§01
1 .

ieD1UD;

By using the first assertion of Remark 3.4 and Propositions 5.4 and 5.7, it follows that

~VIk@. Wi =c Y (Zs,,+—+o(z 5+ RU+Ri)).

ieD\UDy  j#i ./

Hence, the proof follows.
2nd subset: D3 # (). Note that, since we are outside of V31 ,fori € B, withdK /dv(z) =0,
it holds that B, = {i}, thatis d(a;, a;) > ¢ > 0 for each j # i. We define

1 36; VKi(a;) Ll

o= V1 Gal VK @)/ M) - 3o e = i
ieD; G ! !

where M is a large constant. We point out that W is exactly the sum of of the vector fields
W3 (defined in (13)) with y = —1. Furthermore the presence of the function v; implies
that the point @; moves only if |[VK(a;)| > M /X,;.

Using Propositions 5.4 and 5.5, we get

VK (a;
(=9I, W) ze Y GtV Kl (DR 4 Y
ieD3 ) i
c3 0K N AK (a;) L ,
_(k—ia—v(a,) ¢ 2 )+O(Zk;@—2 —|—R1) (30)

which has the same form as (14). Hence, the same computations and arguments hold and the
proof of the lemma follows. O

3.2.2 Ruling out collapsing phenomena

We point that, the main difference between the S”-case (or the case of an interior blow up point
for the S’} -case) and the boundary blow up point case relies essentially on the behavior of the
leading term in Propositions 5.4 and 5.7 (namely the A-term). Indeed when 0K /dv(z) # 0
and q; is close to a boundary critical point z € dS", the leading term behaves like ¢/,
while for the S"-case (or the case of an interior blow up point in the S’} -case), for a; close
to an interior critical point y with AK (y) # 0, this term behaves like ¢ /kf. This difference
on the behavior of the leading term plays a crucial role in the nature of the critical point at
infinity. Indeed in [1], for z a critical point of K| (which is not local maximum) satisfying
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0K /dv(z) > 0, we proved that z is not a simple blow up point in the sense that B, contains
more than one concentration point. In the following lemma, we consider the case of a local
maximum point of K satisfying 0K /dv(z) > 0 and we will prove that z is a simple blow
up point. Namely we prove

Lemma 3.9 Let z be a non degenerate local maximum of K1 with 0K /dv(z) > 0. Then z
is a simple blow up. More precisely if #B, := #{a;; close to z} 1= q1 > 2, then Jg admits
in the set V(q1, q1, 0, €) a compactifying bounded pseudogradient W (z, q1). Namely there
exits a constant ¢ > 0 independent of u = Z?lz | @i8; such that

4 n—1
(=VIkw), W(z.q)) =c Y S = T2 a2 K@) 72 ) +c Y e/
k), Wiz, q1)) = 2-1/(n-2) K i i kro -
i<q) )Li k#r
Furthermore, the concentration rates A;’s do not increase along the flow lines generated by
this pseudogradient.

For the proof of Lemma 3.9, we make use of the following technical results.

Lemma3.10 Leta;,a; € 0S| be concentration points such that the corresponding rates A;
and A are of the same order and d(ax, b) — O for k =i, j for some point b € 3S'}. Then
we have

88,‘]

88" .
ejj = a; (b —{ai, b)a;) + 5a: (b —A{aj, b)aj) = cegj.
i j

Proof Easy computation implies that
38,' Jj

/(n=2)
P (= 2)hihjaj —ae] " .

Thus we get

eij = (n — 2)},[)\_]8:;/(”_2)(((1] _aivb - <ais b)al> + (ai - aj’ b - <aj’ b)aj>)
= (n —ainjel] "

= (n— Z)Aikjs?j/("_z)|a,- —a;jl’(1 4 o(1) > csij.

aj +ai, b)(1 — (aj, a;))

where |a; — aj| is the euclidian norm of a@; — a; seen as a vector in R+ ]

Lemma3.11 Leta, h € 3S!, be close to a non degenerate local maximum z of K. Then it
holds that

VKi(a)(h — {a, h)a) > évmm)(a — (a,h)h) + cla — h|*.

Ki(a)"/? = Ki(h)?

Proof Let
__ h+tla—h) . 2/(n=2)
B(t) == 7”1 Tra—h) g() = —Kl(ﬂ(t))("*z)/z forr € [0, 1].

It is easy to get that

B(1) = —h—(B(1),a— h)ﬁ(t)) . (B(),a—h)=0(a—hP),

h+ 1@ —h)] (a
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and therefore it holds that |8'(¢)| = |a — h|(1 + o(1)) uniformly in z € [0, 1]. Furthermore,
easy computations imply that |8” ()| = O(la—h 1) uniformly in ¢ € [0, 1]. In another hand,
we have

g = VK1(B@) (B (1)

—1
Ki(B()"/?
and, since a and & are close to a non degenerate maximum critical point z of K1, we derive
that

1
" 1) = 4 t 2y 1)21{ ¢ /t , / ) + 7 ¢
g (1) = ol ®) KB 1B@)(B' (@), B'@®) +o(1B" D))
> cla — h|? (uniformly in 7 € [0, 1]).
Now,
1 1 / / b

WVK](a)(h — (a, h)a) + WVK](h)(a — {a, h)h) =g(1)—g'0= /0 g () de
which implies the lemma. O

Proof of Lemma 3.9 For the construction of a suitable vector field satisfying the properties
required in Lemma 3.9 as well for later purposes we will use some constants My, M5 and
M4 which are required to be large and to satisfy

M, ' Ménfl)/(n72)
M(;/(q+p—1)’ Mél/2+1/(n—2))/(q+p—1)

Moy
— small , max (
M2

) small . (31
4

The first requirement is used in (34) and (35) below while the second one is used when
studying a remainder term of (42) and the last one is used in (44) in the proof of Lemma
3.14.

In view of the pseudogradient constructed in Lemmas 3.6 and 3.14, it is enough to construct
a pseudogradient satisfying the above estimate in the following set:

V(z,q1. 1,8 Mo) :={u € V(q1.41,0, &) : max < MoAmin; d(a;,z) <n;T5; <2 and Ty, <2 Vi}.

Moreover, since the A;’s are of the same order, we have that ¢;; = (1 + o(1))/(A;iA;
d(a,-,aj)z)("_z)/2 and therefore d(a;,a;) > c/kin_3)/(n_2) for each i # j (since I'y, is
bounded). We want to construct a pseudogradient which moves the concentration points a;
to their barycenter and prove that along its flow lines the Euler—Lagrange functional decreases.
To this aim, let i and i1 be such thatd(a;, a;,) := mind(a,, a¢) and define L; := {i, i1}. Next
let M, be a large positive constant, for such an index i, we define inductively a sequence L}
by setting

Ll :={j:3¢eL;st daj,a) < Msd(a,a;,)} and
Li:={j:3¢te Lf_l s.t.d(aj,ap) < My max 1d(czr,a,)}.

riteli”
Observe that, since we have only ¢ points and #L; = 2, then there exists m < gq; — 1 such
that L:"“Ll = L and we set L} := L!" where m is the first index such that L:."H =LI".We
remark that L; C L7. Next we want to move the points a;’s, for j € L7, to their center of
mass. For this aim, let a;j be defined as
b; e
aj = |bl| where b; € R"H! satisfying Z (bj —aj)=0. (32)
i

JeL?
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Note that, it is easy to see that aj satisfies

a; € 08} and Zaj—

JEL?

Now we define the following vector field:

Z a] Ba —{aj, aj)a;)

AiYi Lt

We note that L} has two important properties:

(aj,aj)a; =0. (33)

where y; := maxd(a;, a;).
JeL?

o Ifk, £ € L}, we have d(ay, a¢) < cM}'d(a;, a;)).
o If k ¢ L7, then, for each j € L}, we have d(a;, ay) > My max, rer d(ay, ay). Hence,

fork ¢ L and j € L}, choosing Mé"iz)/z/MZ_2 small, it follows that forevery £ € L7,

we have that:

dejr cd(aj, a;j)

(n=2)/2
<1M0

|——1laj — (aj, aj)a;| <
J J

da; T g T d g, a0t T

c cM(()"*z)/2

c
5] = 0<Eﬂ>

My (Ajhe) T d(aj, ap)"2
(34)

: —o(er) (35)

gjk = =22 3 = w2 =22 ;)
A jr)=22d(aj, ap)" M A jre)=D72d(aj, ag)"

(by using (31)). We note that, in this region, we have |1 — JK(u)n 205 K(a])l <
c¢M; /) for each j, hence Proposition 5.5 can be written as:

‘#
I
|
W
‘Q)
—~
8
N
[
D

88 n 4 > K
(VIk (W), aj — %4, ) =Aj [c4 (1 - JK(u)mai”'QK(a,-)> + Jx ()72 2o oy
1

-2 VK
_JK(M)szajaka —SC5J )~ ZK(al(;ll]/i-i-O( +AZek”rzln(s ) (36)

k#j

Hence we derive that:

: J
(—V Ik (W), Wi) = K;—“y)cz >

8¢cs Jg (u)>=m/2

k#jjeL

0&k;

j p— —
ajor—(@aj — (a;, aj)a;)

da;

VKi(aj)(aj — (a;, aj)a;)

AiVi jerr K(aj)n/z
+ 0(% +3 e Ine,h). (37)
Next we notice that, using Lemma 3.10, il holds
dex @ — (a;, a3)a;) + @(ﬁi — {ak, aj)ax) > ceyj, foreachk, j € LY. (38)

da; day,
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Furthermore, using Lemma 3.11 (with & = aj), it holds that

1 _ _
> Riayy VK @)@~ (aj, Ba))

JeLy
=12
>y K()H/ZVTK(a.xa, (aj. 3)@) +c Y laj — &l
JeLy jeL:
>c Y laj—m|> (since Y aj — (a;, @)@ = 0 (see (33))).
JEL? JEL}
Thus we get
: Ekj d(a;,a;)? P 1
VI, Wy > e 3 Sy § AT o(Y it ey + ). (39
oo AYi o = Aivi A2
JEL; L; i
Now, since y; := maxy, reL? d(ay, ay) is of the same order of all the d(a¢, a;)’s, we derive

that e /Aivi > cg(" D/@=2) . Furthermore, 3« d(a;,a)? > ¢ rerdaj, a,)* and
therefore

S da w2y = Y daj.an i = /a0

JEL? Jj.rel’
Hence, in the lower bound of (39), we are able to make appear 1/ AQ V(=2 and therefore
(since all the A ;’s are of the same order and I'y, < 4 for each k) we are able to make appear
all the 1/)\3 1on- 2osand 1 — Jg (u)/ 0~ z)aj/(" YK (a DIV =25 Concerning the g,
we note that the g;;’s which appeared in the lower bound, are only for the indices k, j € L?.
Hence we need to make appear ¢, for j ¢ L;.". For this aim, we remark that, for each j, ¢,
we have d(aj, ag) > d(a;, a;,) (by the definition of i and i), in addition we have that the
Ak’s are of the same order. Hence we deduce that ¢;;, > ce j¢. Hence the proof of the lemma
follows.

In the next lemma we rule out non simple blow up for a mixed configuration involving
local maxima on the boundary and other interior blow up points. Namely we prove:

Lemma 3.12 There exists a bounded pseudogradient W33 such that the following holds: There
is a constant ¢ > 0 independent of u = Z?:] o;d; + Zf=q+l i@ € V33 such that

q+p
(—VIk@), WS = Y — +c2|1—JK(u)n o K (a) 5
i= lﬂl” =z i=1
q+p
VK
+CZS”2+ Z <| (al)|>
ke#r i=q+1

Furthermore, the A;’s do not increase along the flow lines generated by the pseudogradient
w3,

Proof Let zy, ..., z¢ be the critical points of K satisfying K /dv(z;) > 0 and #B;, > 2.
We decompose u as follows:

e 14

u = Z”i + ug41  where u; 1= Z opdpand upyq = u — Z”i'
i=1 keB, i=1
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From the second and the third assertions of Remark 3.4, it follows that each concentration
point a;j of ug satisfies |a; —ax| > c foreach k # j and it is close to a critical point of K
with 0K /dv > 0 or a critical point of K in § with AK < 0. Furthermore, for j € B;;, we
have |a; — ai| > c for each k ¢ B;,. Hence the mutual interaction between two clusters By,
and B, for i # j is negligible with respect to the other terms. In this situation, we define
the following vector field

¢
W= W(u. #B;,)

i=1

where W(z;, #B;,) is defined in Lemma 3.9. Hence we obtain

¢ ¢
(=VJk @), W3) = (=VJk W), Wz, #B)) = Y (=VIkw), Wi, #B:))+ D Ofex)).
i=1 i=1 keB:,:j¢B,
(40)
We observe that, for k € B;,, we have p; and A, are of the same order. Moreover we
are in the case where all the i ;’s are of the same order. Thus, using Lemma 3.9, we are

able to make appear all the 1/ ui_l/ =25 in the lower bound of (40) (and therefore all

the |1 — Jg ()" =D/ "D K () 2102 s and the (|V K (a;)]/4;)2~ /=2 (since the
Iy, ’s and the 'y, ’s are bounded). In addition, for j ¢ B;, and k € B;,, we have

c o(1/23)ifn > 6,
ekj = O aNm=-2)/2 = 2 4 .
(AjAr) c/Ak+c/Aj ifn =5.

Therefore, our lemma follows from Lemma 3.9. O

Lemma 3.13 There exists a bounded pseudogradient V satisfying the following estimate:
There is a constant ¢ > 0 independent of u = Z,’qzl a;é; + Zf’:lﬁ_l a;¢; € W such that
(18) holds true with V instead of W;.
Furthermore in the subset of W such that 1;|V K (a;)| is bounded, the \;’s are increasing
functions along the flow lines generated by the pseudogradient V.

Proof Let 1 be a C*™ cut of function defined by ¢; € [0, 1], Y1(r) = 1if r > 2 and
Yi(t) =0ifr < 1.
We define the following vector field:

ptq d¢;
o in b el
Vi= Wy + W+ wh +,Z;)L’8A,-
iI=
where W) := Yien, Y1 IVK (@) /M2)(1/2:)(38; /9a;)(V Ky (a;) /|V K1 (a;)]) and win
(resp. Wy) is defined in (19) (resp. (20)).
Observing that in W we have ¢;; = 0(1/)»1'-’72 + 1/)»;%72) for each i # j and using
Propositions 5.4, 5.5, 5.7 the lemma follows. O

3.2.3 Ruling out bubble towers phenomena
In this subsection we prove any configuration of points of non comparable concentration

rates is not critical at infinity. Indeed one can construct in the neighborhood of such points a
compactifying pseudogradient. Namely we prove that:
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Lemma 3.14 There exists a bounded pseudogradient Wy such that the following holds: There
is a constant ¢ > 0 independent of u = Z?:l o;d; + Zf:{qﬂ a;ip; € V4a(My) such that

q+p

1 . n—1
(~VIk@), Wa) = ¢ ) — +c2|1—11<<u>n 2o/ 7 K (ap)] =2
i= 1//,:' n=2 i=1
q+p n=1
VK (a n=2
+CZS + Z <| (Z)|> .
k#r i=q+1

Furthermore, max p; deos not increase along the flow lines generated by this pseudogradient.
Proof For u = Z?:l ®i8a; 0, + Zf:qu Qi @q; 2;» We denote
Tin={i=1,....,p+q; a0, €S} & I:={i=1,...,p+q; a €3S}

Next we reorder the parameters u;’s as: 1 < --- < ip14 and define the following subset
of indices:

F={13Uli =2 < My PT7 D | for each k < i)

Since we are in V4(My), we have timax > Mo[min, it follows that p 4+ g ¢ I. In this region,
we write u as

u:=1u; +uy whereu; := Za,xpi and ur ;= u — uj.
iel
Let ko := max / (then we have kg < p + q). It follows that g, < M(gko_l)/(p+q_l)ul =
M()[Ll, Hig+1 = Mé/(P+q_1),l,Lk0 and therefore u; € V| (M()) U VQ(M()) U V3(M()).
Furthermore we introduce the following notation
D} i=1{i€Ziy: Ty, + T4 +Tpy, >6) & D3:=1{i €Tp: Ty, + Ty >4}
and set

o min D}, ifD{#4 . minD,  if Dy £

. 0 .
p+q+1, otherwise. / p+q+1, otherwise.
Next we define in case D‘l‘ u Dé # () the following vector fields:

Wi() = Z 21)\-[ afl and W/O = Z 21}"/

i=io;i€Zin ! JZjoiieTy

a6;
oA

and as in the proof of Lemma 3.5, we define
W = Wy + (1/M2)Wjy + Wy + Wn

where Wj;” (resp. Wy) is defined in (19) (resp. (20)). Following the proof of Lemma 3.5 and
using Lemma 5.2, we get

—in
(VI W) =T +e 3 (Ye le+(kd)’1 s+ O(R)) + -
i>igyi€Zy, L#i
=1 C —
+Fa+ﬁ Z (ZS/£+O(R]17++C%+ZSI'@)) =T4.
Jzioi€Ts U] Rio ez,

(41
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Observe that, concerning the last term, for £ € Z;;, (i) either £ > iy, then the &, exists in
the second term of this formula and one takes M large to absorb the last term, or (ii) £ < ig
and in this case by Lemma 3.3, the concentration point ay is close to a critical point y of K in
S and then g, < c(l/)»';_2 + l/kz_z). Hence, we can in either case absorb the last term.

Furthermore we notice that if D‘lt U D‘z‘ # P and if ip € I orif jo € I then we can
include all the indices in / in the lower bound of (41). Otherwise to make appear the terms
corresponding to these indices we argue as follows:

Case 1:fuy € Vi(Mo)UVa(Mo)U(V3(Mo)\V5). In this region, we define the following
vector field:

W)= W)+ (1/MHW (uy),

where @s the convex combination of the pseudogradients constructed in Vi (M), V2(Mo)
and V3(M 0)\V33. It follows then that

_ 1 c L
—VIkw), WH > Ty + — §—+c§ 1= Jxu)2a 2 K (a;
( K (u), Wy) 4 M22 2 ' | K (1) (ai)l

iel ielNZy

¥ ey Sl x )

k#r;k,rel ielNZ;, jelt¢l

To complete the proof, it remains to absorb the last term. To this aim, we notice that:

(i) if "¢ € Z;, with £ > ig or £ € Ij, with £ > jo", then the term ¢, is already in T4 the
lower bound of (41). Taking M large, we will be able to absorb this term.

(ii) if "¢ € Z;, with £ < ig or £ € Ij, with £ < jo", then there holds: g, < c% <
c(M, /Ml/(q+p 1))Mk = o(1/ux,) by choosing MQ/MJ/(‘HP_U small enough (see (31))
and where ko := max I Hence, we are also able to remove this term. (Recall that, in Lemmas
3.5-3.8, 3.13, the constant over [,y is independent of My and M>). Hence the estimate in

the first case follows as in the proof of the previous lemmas.
Case 2: In this case we take u; € V33 (M) and assume that D9 U Dg # (J, where

Dg:={iel:ie B, with#B;, = 1}; Dg :=1N1Z,.
Here we define the following vector field:
99i

W2 =W+ (1/M? Ai
4 4 + ( / 2) ‘ Z i YN
ie DgUDg

i

We point out that, this pseudogradient increases the w; fori € DgU Dy, but does not increase
the max := W p+q since p + g ¢ I. Furthermore observe that

+q
Qi 1 4
—VJg(u), Z A’akl Z <f+O(ZA3 +Zeze)>
ieDgUDy ! ieDgupy 1Z3
Hence the result follows as the first case.
Next we set
Dyp:=3i€el: Z exi <miq/ri ¢ =¥, wherem is a small constant.

kel:k#i
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Case 3: In this case we take u; € V33 (M) and assume that Do U Dg = . That is we
have that I C 7; and that #B, # 1 for each z critical point of K. Furthermore we assume
that Do # 0.

Next we recall that in this case, for each z such that #B, > 2, 7 has to be a local maximum
point with 9K /v > 0 (which implies that u; and A; are of the same order). Hence one can
use the same pseudogradient defined in Case 2 (by replacing Dg U D9 by Dj). Hence for
i € Djp, using Proposition 5.4, we derive that

(—VJg W), A i Ai Zs,,)> “+e > ai+ 00 &)

J#L J#i el Jj¢l

and the proof follows as the previous cases.

Case 4: uy € V33(M0) and I C Ip, #B, # 1 for each z and D1p = 0.

In this case, for each z such that #B, > 2, z has to be a local maximum point with
dK /dv > 0 (which implies that u; and A; are of the same order). Let z1, ..., z¢ be such that
#B;, > 2. Thus, the function u can be written as

14

U= Z”/ +ugry where uj = Z ajpifor j <€ and wupqq = Zaiwi.
j=1 i€B;; i¢l

Notice that, for j < ¢, it follows that u; € V(z;, #sz, n, &, M) and in Lemma 3.9, we
have constructed a pseudogradient W (z;, #B;) in this region. Now, we define

¢
1
Wi =W+ §ve > Wz #B:))(u)). (43)
2 j=1

Observe that, by Lemma 3.9, we have

(=VJk @), W(z;, #sz)(uj))

ey (X e + o Y et Y A1k|aaik]:|)).

kEB- r;&k,rEB] r¢B JELipy r¢Bz/,rEIb

Furthermore we notice that, for r ¢ B, ; and r € Z;,, (i) either r > iy and therefore the
ek exists already in T4 or (ii) r < io and, using Lemma 3.3, it follows that a; is close to a
critical point y of K in §’| which implies that g, < c(1 /Az_z +1/x"72). Next for r ¢ B, ;
and r € Ty, three situations may occur

(i) r > jo and therefore the &y, exists already in T'4.
(ii) r < jo and r ¢ I. In this case it follows that g;, < M3 /A, and thus (since A, >
Mé/q+p71)\k for each k € I') we have that
n—1

1 Bsk, A P CMZ”’2
| | < cihrd(ar, ar)e),” <c |—ep " < W
k r

n—1

M2 1 e
2 1\(n—1)/(n 2))
< CM(()1/2+1/(n72))/q+p71 )»;iﬂ/("_z) 0(( o ) (44)

(by using (31)).
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(iii) r < jo and r € 1. In this case, it follows that a, € B, with £ # k and therefore we
deduce that |ax — a,| > ¢ > 0. Hence we get
1 Jepr

1
SIS = 0 + ).
Ak Oay et

Using (41),(43), the previous estimates and the fact that Dy = @, the lemma follows in this
case. ]

Proof of Proposition 3.2 The required pseudogradient will be a convex combination of the
ones defined in the previous lemmas. Each one is bounded and satisfies Claim (i). Further-
more, the only case where jtmax increases is the region W. Finally, Claim (i7) follows from
the first one and the estimate of ||7||? which is small with respect to the lower bound of Claim
(7). Concerning the last claim, it follows easily from the definition of the pseudogradient.
This achieves the proof of Proposition 3.2.

3.2.4 Critical points at infinity and their topological contribution

For &g a small number, we define the following neighborhood of the cone of positive solutions
of the sphere in H' (Sh):
Veo (B1) = {u € B Jx )@ =2/0=D 200, 100D 1 < g}, where u™ := max(0, —u).

This set is for &g small enough invariant under the gradient flow lines of the Euler Lagrange
functional Jg. Namely we prove that

Lemma 3.15 Foreg > 0 small enough, the set Ve, (=71) is invariant under the flow generated
by -V Jk.

Proof We will write J instead of Jg. For w € L2/(+2) (S%), we denote by L~ (w) the
solution of the following PDE:

[ﬁu = —Au+ @u =w inf,
_ n
du/dv =0 ondS].
Furthermore, it holds

[l on/m-2 < cllull g < clw|p2n/m+2)

- - +2)/(n—2
17N K YD) - < clul 0 5. 45)

Suppose ug € Ve, (ET) and consider

W= VI e) = —21(14)<u - J(u)”/("‘2>.c—1(K|u|4/<"—2>u)>

u(0) = up.
Then

s s t n—
o IOy (5) = g 42 / Ao T 14 (1)) 5 L7V (K [u ()P u(e)dr,
0

N
U (s) < e 2o Jwndi <u5 +2 / 2o 1WONAY J (4 (1)) 57 £ (K(u—(z))%)dt)
0

=e2h J(”)f(s).
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Setting

4n S _ _
F(s) = ¢~z Jo J@dr £ ) /0720 which implies that [~ (s)[7 o0\ < F(5).

Recall that, if u, = 0 then u(s) is positive for all s. Hence, we can assume that u, 7#* 0 and
we want to prove that F' is a decreasing function. Observe that

4 n S _— n s 2 n
F(s) = == Ju(s))e 2 o 10| p ()| 240070 o mnz o 0 T f F16)f ()7 dx
n—2 n—2 S’i

= n_

2n n_ s _ , . nt2 . . —
ioe [—21 w03+ [ o0 dx} (using () = up).
+

Notice that f'(0) = u, and therefore

+2

\/ f’<S>f<s>%!dx5c/ 1 ©)llug |2 +c[ |f’(s>|(/ FOldr)" dx.
St S St 0

But, we have (using (45))

2i

[ w1 omn = [ w2280 0w e ke 05 )
s st

Mm=2 o s _ (42)/(n=2), — +2)/(n—2
< CJ(u(s)) 2 20 10 g | DD = 5 002

and we also have (using the fact that J (u(s)) is a decreasing function)

/ S 2 A / N
/ |f (S)I(/ |f/()ldt) " dx < csH/ Lf (S)I/ |f (D=2 drdx
st 0 s 0

A w2 +2)/m-2) [* +2)%/(n—2)>
< csnZen YJ(MU)J(“O) n2 -2 |y (S)|gl2n/(;)q/,(2r; ) / |u (t)|(LnZn/(31—/2()n "ar.
0

Hence, if [u™ (s)| 20/0-2 < Slug |pan/m—2), for 0 < s < 1, we derive that

4/(n—2)
L2n/(n=2)

2n-2 _ 4/(n—2) \2n/(n—=2)
+c (J(MO) n=2 ezj(u())'uo |L/253(n7)2)> )

4 n s _ n—
Fl(s) < nze,% I J(u)|ua|2ﬂ/(n 2)(_ T(u(s)) +CJ(MO)2,f§ezJ(uo)|ua|

LZn/(n—Z)

2n—2
Finally, since inf J > ¢ > 0, using the fact that ug € Ve, (Z1), that is, J (ug) =2 €2/ “0)
|u;|i/zf$(ﬁ)2) < g, and n is small enough, then F’'(s) < 0, for 0 < s < 1. Therefore
222 5 I (u(s)) —4/(n=2)
J(u(s))n2e lu(s) |L2n/(n—2) < &0, and our result follows. ]

Next using a partition of the unity, one can define the vector field W of Proposition 3.2
globally by gluing it to the negative gradient —V J outside the V (¢, p, m, €)’s. Let us denote
the resulting global vector field by Y and define a new vector field by setting:

Xw):=Ywu)— <YWw),u>u foru € VSO(E"').
We then have

Corollary 3.16 Assume that K satisfies (H1), (H2) and (H3). Then using Propositions 3.1,
3.2 and arguing as in the above Lemma, one proves that for ey small enough, X is a pseu-
dogradient of J which preserves Ve, (E). Moreover the critical points at infinity of X lie in
subsets W (see the formula (26) for a definition)
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Next we perform a Morse type reduction in the subsets V. Namely we prove
Lemma3.17 Foru =Y 7_, &84 1, + Z;’Ii’ Qi¢a; 2, € W, we define
. . ., 0K . ) . 3K
Dy :={i <q :aisclose to z with a—(z) =0} & Ds:={i <gq :q; is close to z with a—(z) > 0}.
v v

Then the functional Jx expands as follows

2 2\ @2/n
T () = (%z«]a- +2Ez>q l)?f (l—cz AI;EY:‘) B Z ; BK(ZL)
(Zz<q P 2K(a’)+221>q - ZK(a,)) n i>q i ieDs !
K AK( i)
e X (2 eSO o £ L 3 e T )
i€Dy i ieD4 i>q
r+q
(Y oy L Y (el Y (AR jar) o 3 AR
@; K@)'T gmn%) (1- 1 Z - 2 i
(46)
1 9K AK( ) 1 1
“‘CZ;” (z,)-i-CZ(%f( a;j) — }; )+0(ZZ+ Z )7))
i€eDs ieD. i i€eDs [i>qlulieD4] "1

where S, is defined in Proposition 5.3 (it represents the level of one boundary bubble),
a € RItr—1 (AIT", A;") are the local coordinates of the parameters (a1, .. ., dptq) and a;.
This expansion will be called the Morse Lemma at Infinity of Jx near its critical point at
infinity. Note that we loose an index for the parameter « since the functional Jk is homogenous
with respect to this parameter.

From Propositions 3.1, 3.2 and Lemma 3.17, we derive the characterization of critical
points at infinity and identify their level sets. Namely we have:

Corollary 3.18 Assume that K satisfies (H1), (H2) and (H3). Then, in V(m, q, p, €), the
critical points at infinity of Jx are in one to one correspondence with the collections of q
critical points z;’s of K1 satisfying: either zy is a local maximum point with 9K /0v(z¢) > Oor
0K /9v(z¢) = 0and AK (z¢) < 0and p critical points y,’s of K in S'|_satisfying AK (y,) <
0. We will denote such a critical point at infinity by (21, ..., 2g, Yg+1s - - +» Yg+p)oo- SUch a
critical point at infinity is at the level (see (46))

c /n q 1 q+p 2 2/n
oo(Zl,-«-’quyq+ls~-,yq+p) (;W‘f‘i:‘;lw) .

In particular, it holds that

2/n 2/n
@p+q).oo (@p+q)Su ) ((2p+q)S )  ~2p+q),
Cmin .—wSCQQ(ZI,..-7Zq,yq+1,...,yq+p)SW._ Cl’(n‘il))( q),00
max min

Furthermore, for such a critical point at infinity, we associate an index (which corresponds
to the number of the decreasing directions for Jg by using the Morse Lemma at infinity, see

(46))

i0o(Z1s -2 2gs Ygt1o -2 Ygap) = q+p =14+ Y (n—1—morse(K1.z))
i=1
q+p
+ Z (n —morse(K, y;)).
i=q+1
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Such an index will be called the i~-index of such a critical point at infinity.

Next as consequence of the above corollary and the Morse reduction in Lemma 3.17 we
compute the topological contribution of the critical points at infinity to the difference of
topology between the level sets of the functional Jx. Namely we have

Lemma 3.19 Let 1o be a critical point at infinity at the level Coo(Too) With index iso(Too)-
Then for 6 a small positive number and a field F, we have that

Fif | =ic(teo),

Coo(Too)+0 Coo(Too)—0
H;(J ,J ;B =
1Uk K ) {0, otherwise.

where H; denotes the | —dimensional homology group with coefficient in the field F.

4 Proof of the main results

This section is devoted to the proof of Theorems 1.1, 1.3 and 1.4. The proof of these theorems
is based on the characterization of the critical points at infinity in Corollary 3.18 and the
computation of their contribution to the difference of topology in Lemma 3.19. It also uses
two deformation lemmas. The first one is an abstract lemma, which is inspired by Proposition
3.1 1in [35]. It reads as follows:

Lemma4.1 Let A and A := (Kmax/Kmin)(”_z)/” A. Assume that Jx does not have any
critical point nor critical point at infinity in the set J,’?\J,% where J,‘? ={u: Jx(u) < A}.
Then for each c € [A, A, the level set JI% is contractible.

Proof First, since we assumed that Jx does not have any critical point nor critical point at
infinity in X1 between the levels A and A, we have that J ,? retracts by deformation onto
J,%. Indeed such a retraction can be realized by following the flow lines of a decreasing

pseudogradient Zx for Jg. Let ¢ denote the one parameter group corresponding to this
pseudogradient. Foreachu € £, we denote by sk () the first time such that ¢ (s (1), u) €
JE

Secondly we recall that, for K = 1, the only critical points of J; are minima and lie in
the bottom level S,,. Furthermore, for each A > §,,, the set JIA is a contractible one. Indeed
by following the flow lines of a decreasing pseudogradient Z; of the Yamabe functional Ji,
each flow line, starting from u € X, will reach the bottom level S,. Let us denote by ¢; the
one parameter group corresponding to Z;.

Next we notice that, we have

(1/K=DImy 1wy < T () < (/K" 2™ I (u)  foreachu e

max min

which implies that

JI% C JIA/ C Jg where A" 1= K"-2/" A,

max
Furthermore we observe that for each u € XV, there exists a unique s (u) satisfying

$1(s1(w), u) € TP
Next we define the following map:

Fo=[0,11x J{ = J; F(t,u) = ¢1(s1(px (¢ sk (), w)), i (¢ sx W), ).

We notice that F' is well defined and continuous and satisfies the following properties:
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e Fort = 0, we have ¢ (0, u) = u. Furthermore, for each u € JIA/, we have s (1) = 0.
Therefore, for each u € JIA/, we get F(0,u) = ¢1(0, u) = u.

e Fort = 1,wehave ¢pg (s (u), u) € J,é - JIA/ (by the definition of sk ) which implies that
s1(¢k (sk (u), u)) = 0 and therefore F (1, u) = ¢1(0, ¢k (sx (u), u)) = ¢k (sg (u), u) €
JI% for each u € JlA .

o Ifu € JI%, then sk (#) = O whichimplies that¢x (¢ sx (1), u) = ¢k (0, u) = u. Therefore
F(t,u) = ¢1(s1(u),u) = ¢1(0,u) = u foreach u € JI? and each r € [0, 1] (we used
s1(u) = 0 since u € J& C J).

Thus JIA/ retracts by deformation onto J A, a fact which provides the claim of the lemma
since J IA/ itself is a contractible set. O

The second deformation lemma is a consequence of the previous one, the assumptions
(H1), (H2), (H3) of this paper and an appropriate pinching condition for the function K.
To state it we set the following notation:

(n—2)/n

min

fore e N, C%°:=s,)*"/K

max

& CLoe = (U8, /KIS,

min
We recall that it follows from Corollary 3.18 that the level of critical points at Infinity
corresponding to g boundary points and p interior points such that ¢ + 2p = ¢ lie between
Cﬁ{iio and Cﬁ{ff .

Our second deformation lemma reads as follows:
Proposition 4.2 For k € N a fixed integer, let 0 < K € C3 (@) satisfying the conditions
(H1), (H2), (H3) and the pinching condition Kmax/Kmin < ((k + 1)/k)}/ =2

Assume that Jx does not have any critical point under the level C k+1,00 Then, for every

min
1 <t <kandeveryc e (Cﬁ{ff, Cﬁ;’nl’oo

Proof Since we assumed that Kpax/Kmin < ((k + 1) /k)l/ #=2) it follows that, for each
1 <€ <k,wehave (k+1)/k < (£ +1)/€ and

), the sublevel Ji is a contractible set.

C(,OO < Ce,oo(KmaX/Kmin)(n_Z)/n < C£+I,OO

max max min

The proof follows then from Lemma 4.1 by taking A = ch + y with a small y > 0 so
that A < Cﬁ;'nl’oo. Indeed between the levels A and A the functional Jg does not have any
critical point nor critical point at infinity. O

Next we start the proof of our existence results by proving Theorem 1.3.

Proof of Theorem 1.3 Arguing by contradiction we assume that the functional Jx does not
have any critical point under the level Crzn’iio. Hence it follows from Proposition 4.2 (with
k = 1) that under the assumption of Theorem 1.3, we have that J Crisx +7 is a contractible
set, for ¥ a small constant. Moreover it is a retract by deformation of Ci;iflo. Furthermore
iio are in one to
one correspondence with critical points of K in ICZ' Uy IC}?’_. Then it follows from Lemma
3.19 and the Euler—Poincaré theorem that:

1 = X(Jcri’iio+y) — Z (_])nflfmorxe(l(l,z)

+0 30—
ek UK,

follows from corollary 3.18 that critical points at infinity under the level Clzn’

which contradicts the assumption (b) of Theorem 1.3. Hence the existence of at least one
critical point of Jg.
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Proof of Theorem 1.4 Assuming that Jx does not have any critical point under the level Cgl’iio,
1,00 2,00
we derive, using Proposition 4.2 (with k = 2), the level sets J Ig‘“ax T and J Ig‘“a‘ *7 are con-

tractible sets. Then it follows from the properties of the Euler-Characteristic, see Proposition
5.7, pp-105 in [26], that

Ch Chx Coisy Chine
1= x U™y = g (™ T ) oy (Jem™ ).

2,00 1,00
Thatis x (J f‘““ +V, J ,g“‘“x +y) = 0. Moreover it follows from Corollary 3.18 that the critical

points at infinity between these two levels are (z;, zj)oo With z; # z; € IC;r U ICg‘_ and yso
with y € ;. Thus, it follows from Lemma 3.19 and the Euler—Poincaré theorem that

Z (_1)]+l(Zi)+l(Zj) + Z (_1)t(y) -0
zi#ZjEIC;UICg’_ yek,
where ((zx) :==n — 1 — morse(K1, zx) and ((y) := n — morse(K, y).

Observe that, the first term is exactly —A» defined in Lemma 5.8. Hence, the previous
equality contradicts the assumption (i) of the theorem. The proof is thereby completed.

Proof of Theorem 1.1 We first observe that, under the assumption of the theorem, if A; # 1
or respectively A = 1 and By # —k, where #(IC;r U ICg’_) = 2k + 1, the existence of
at least one solution to Problem (P) follows from Theorem 1.4, respectively Theorem 1.3.
Hence we will assume that A; = 1 and B; = —k and notice that

#(IC;,,) = 2r +k, where r € Ny,
and there are r even numbers ¢(y;)’s and r + k odd numbers ¢(y;)’s.
Next arguing as in the proof of Theorem 1.4 using the assumption on Kpax/Kmin and

.. C3'.Dc+y C4'.D°+y . .
Proposition 4.2, we deduce that /™ ** and J,™ " are contractible sets. Using Corollary
3.18, we derive that the critical points at infinity whose level are lying between these values
are:

o (i, 2, 2, Zt)oo With different z;’s which belong to & U Ky,
® (2i,2j, Yoo Withy € K and z; #z; € IC,‘: U ICg’_,
o (¥i,¥j)oo With y; # yj € K.

Hence arguing as above we derive that

Z (_1)3+l(Zi)+t(Zj)+t(Zr)+t(Zr)
Zitz Ao £ ek UK ™
+ Z (_1)2+1(Zi)+z(z,-)+z(y) + Z (_1)]+t(yi)+t(yj) —0.
yeK;izi#z ek UKy ™ yi#yi e,

Observe that, the first term is exactly — A4, the second one is A x Bj and the third one is
— B> (defined in Lemmas 5.8 and 5.9). Using the values of these terms (given in Lemmas 5.8
and 5.9), we obtain that

r+k=0

which implies that r = k = 0. Now, from r = k = 0, we get #(ICZr U ICg‘_) = 1 and
#K;,, = 0. This leads to a contradiction with the assumption that #(IC;L U ICg’_ UK, =2

Thereby the proof of the theorem is completed.
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5 Appendix
5.1 Bubble estimates

Lemma 5.1 Fora € 9S", we have 33, /0v = 0 and therefore ¢, ) = 84.5. For a ¢ 9S'},
we have

() 8ax < Pan <2802 5 1100an/OM < cani |(1/2)30a2/0a"| < cBar,

where a* denotes the k-th component of a.

.. H(a,.)
(i)  @ar =084, + COW + faa where
c . afa,)x Cc 1 af[l,)» C
| farloo < )\(n_ﬂ)/zdg, A I loo < )L("+2)/2dg and X Sk loo < A(n+4)/2dg+1’

where d, :=d(a, 0S"} ).

Proof Using a stereographic projection, we are led to prove the corresponding estimates on
R’ . We still denote by G and H the Green’s function and its regular part of Laplacian on
R’ under Neumann boundary conditions. In this case, we have

A(=2)/2 1
co A+ 22 — a7 and H(a,x) =

Sar(x) = P ——
@ |x — a2

where @ denotes the symmetric point of a with respect to dR'} . Let ¥ := 8,5 + dz,1. Easy
computation implies that diy/dv = 0.

To prove the first inequality, let us consider & := @, 5 — 8,4.,. Hence we get Ah = 0 and
dh/dv = —9d6,,,/dv > 0. Hence, using the Green’s representation, we derive that 7 > 0 in
R%.

+F0r the second inequality, let us consider & := ¥ — ¢, ;. Easy computations imply that
dh/dv =0and —Ah = —Adz; > 0. Hence, i > 0in R’}.. The inequality follows from the
fact that 67,5 < 84,5 in R’}

For the third one, let g := A9¢,,/0A, observe that dg/dv = 0 and |[Ag| < ((n +
2)/2)80572/0"") Now let us consider h := ((n +2)/2)y £ g. It follows that —Ah > 0 and
0h/dv = 0. Hence h > 0in R, which gives the proof of the third inequality. The fourth one
follows by the same way.
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Concerning the second claim, it is easy to see that A f, , = 0 and

3 fan 3841 co 0H(a,.) n—2) At2/24, co  (n—2)d,
= — — =co(n — —
v v A2 gy 0 (A +22x —aP)2 ~ Ao=272 [x —gp

-0 da
- <A(”+2)/2|x — a|n+2 >
Now, using the Green’s representation, we get

afa,)L Cda 1
@i =e [ GenHoly < s [ty —mmds
IR IRY

1 c H(a, x) c
——dy < < .
|y _ a|” )L(n+2)/2dg da )“(n+2)/2d:4'

c

< o G(x,y)
+2)/2 /n
Am+2)/2g, aR"

This gives the first claim in (ii). The other ones can be done by the same way. O
Lemma5.2 [) Foreachi # j, we have

88"
a)\” > C&jj ifAi > C)\j orkid(ai,aj) > 2.
i

2) Leti,j €I, := {k : ap € 0S"} and let v; and v be defined by (15). Assume that
wj < c'wj for some constant ¢, then: (i) either there exists a constant ¢ suchthat A j < ¢,
(ii) or Aid(a;,aj) > 2.

Proof The proof of the first assertion follows immediately from the definition of ¢;;. Con-
cerning the second one, observe that, if [VK(a;)| > ¢ and [VK(a;)| > c, then it follows
that uy and Ay are of the same order (that is: the ratio is bounded from above and below)
for k = i, j. Hence the result follows in this case. In the other case, there exists k € {i, j}
such that gy is close to a critical point z of K in oS} (i.e. 3K /dv(z) = 0). Arguing by
contradiction, assume that A;d(a;, a;) < 2 and A;/A; is very large. It follows that a; and a;
are close to the same critical point z. Now we claim that:

Claim 1: 4 ;|VK (a;)] is very large.

In fact, if it is not, we derive that [VK (a;)|/1; < c/)% which implies that 1/u; < c/k?
and therefore 1/ ; is very small with respect to 1 /Aiz < 1/p;. This gives a contradiction
and therefore our claim follows.

Since z is a non degenerate critical point of K7, it follows that A jd(a;, z) is very large.
Moreover, Claim I implies that [VK (a;)|/A; < 1/u; < c|VK(a;)|/X ;. Now we claim that:

Claim 2: %;|VK (a;)| > 1 cannot occur.

To prove this claim, we assume that the inequality is true. Then we derive that
IVK (aj)l/Ai < 1/ < 2|VK(a;)|/A;. Since u; < ¢’ i, we derive that |VK (a;)|/Mi <
c|VK(aj)|/1; and therefore A;d(a;,z) < cA;d(a;j,z) which implies that d(a;, z) is very
small with respect to d(a;, z) and therefore d(a;, z) is very small with respect to d(a;, a;).
Now observe that, since we assumed that A;|VK (a;)| > 1, it follows that A;d(a;,z) > ¢
and therefore A;d(a;, aj) becomes very large which gives a contradiction. Hence Claim 2
follows.

Finally, we claim that

Claim 3: 1;|VK (a;)| < 1 cannot occur.

Arguing by contradiction we assume that A;d (a;, z) < c. From p; < ¢’ i, we derive that
1/)»52 < C|VK(GJ')|/)»J‘ < cd(aj, Z)/)uj and therefore )\j/)u,' < C)»,'d(aj, z), that is )\,,'d(aj, Z)
is very large. But we have A;d(a;, a;) < 2 and A;d(a;, z) < c¢ which imply that A;d(a;, z)
is bounded. Hence we get a contradiction which completes the proof of Claim 3.
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Hence the lemma is fully proven. O

5.2 Asymptotic expansion of the functional and its gradient

Proposition 5.3 Letn > 5 and u = Ziiq a;8; + Zi>q a;@; € V(m,q, p, &) be such that:
(i) d(a;,aj) = c > 0 foreveryi # j, (ii) fori > q, a; is close to a critical point yj, of K
in S and (iii) fori < q, a; is close to a critical point zj; of Ky in 0S'y. Then the following
expansion holds

2/n
iy @ +23 i, 0D)Ss n_ 2 AK (a;)
Tk () = 2n/n—2 ~ o = 21n/n 2 2 (l — 26k (u) -2 Zai 21
Cicy @ K(a)+2Y,., K (ap)yn=2m =7 A
+q 2
" ¢7 9K AK(a)y & 1 |VK(@)
0 Yal (25 -2 ) + Y o5+ TEGODY)
i<q i i=1 i i
where

2n dx n—2 2 |x|2dx
Sy = ¢y 3o C6 = 7 C0 T
ry (1+]x[%)" n re (1+[x[%)"

n—2 2 Xpdx
Cc7 = 27C0 Y
n oy (LX)

Proof From the definition of Jx, we need to expand (using the fact that v L ¢; for each i)
Il =Y aflgill® + II01* + O (Z si,-)
ICRE 3T RALEERY DaC D arg |

i<q i>q i>q i
n atp 2n_ 2n_ n+2
Kun—2 = E O[i"72 Kq),"72 n n=27y
+ i=1 St
o(> /w, <p,+||v||)
i#]

The last integral is equal to O(g;;). The second one is presented in (9). Concerning the first
one, for i > ¢, using Lemma 5.1, we get

2:’2 = 2112 1 nt%
/‘n K(pl :/n Kst +O<W/81 )
+ + Aj
/ ~ 2712 2n2 1 n+%
Blaid) RO\B(a; i) | Agn—z)/z i

1 AK (a) 2 |x|? 1
=285,K(a +5- el 7dx+0(—).
(@) 2n 22 0 Jre (L D" 2
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However, fori < ¢, we have ¢; = §; and therefore

e o ~ ~ 2 Al (x — aj)
K(Sl-n — Kéin = SnK(ai)—|—VK(a,-)cé’ T 2. o X
) 1 wr (14 220 — a2

32K 2 A —ap)e(x —a; 1
72 (a;) (,), — l( 2z)k( l)edx+0(—3)
Oxg0xe R (1 4+A7|x —ai|?)" A;
aE 2n
= SuR (@) = S-@e]” |
rr (I + [x[9)
1 AK(a;) 2 2 1
— g"’)cg-z L o(=).
2n A R 1+ |x[=)" ;

Note that, since u € X, we deduce that

=1+ O(Z—+Z ! aK(a,)I +— + ||v||2))

i>q l

Jg () =

where
2n_ 2n_
.= Z otl.”’2 K(a;)+2 Z oel.”’2 K (a;).
i<q i>q
Now, the precise expansion of Jx follows from the above estimates, the estimate of ||v]| (see

Lemma 2.3) and the fact that (1 +x)~"=2/" = 1 — ((n — 2)/n)x + O(x?). |

In the following, we will present the expansion of the gradient of Jx in the potential sets.
We will present the results for p + ¢ > 2. However, the results are true for p + ¢ = 1, it
suffices to remove the terms ¢;;’s which correspond to the interaction terms of the bubbles.

Proposition 5.4 Letn > 5, foru = Zisq o;id; + Zi>q ajp; € Vim,q,p,e)andi < gq, it
holds

095; Ei
(Vg i) =20cw| = 5 3 @i’ 0 o)

J#FLJ=q
12 30K AK (a;)
20k ()2 (—;W(ai)ﬁ-w Az‘)] ( +Z€,J+R)
¢ i Ai j>q

where

b (IVK@ONS | 1\ . =2 o n(xP—D)
N _g( H )+(M§> +J#1<212k<q€k7 ) =T ey
Proof

95; 95; n/(n—2) s

(VJ,((u),A,«M)_2J,((u)<za]<5 Ky = I k(Y ajs))™ hiot 20(5,,))

J=q J=q i>q

For j < ¢, we have a; € 9’} and therefore, using [5], we get, for j # i,

38; 2 55 1 2 5 1 o
(Bj hi—) = / 812N = f/ 817 2o = scasij+ O(e] 7 In(e ;1))

oA " J oA 2 J A 2
a6; 42 96 1 2 96

<8i,ki—’>:/ 812N — = 7/ 872 h — = 0.
AN n i 2 Jpn ! AN
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Concerning the other term, it holds

n+2 r1+2 d6;
/ (D)) higs ‘Z/ (oj81) ™25,
J<q J=q
+= _2/K(a,»5,»)n—z( | Z i+ O(Z/(akar)n—z).
JZqij# k#r

Observe that, for j # i, expanding K around a;, we get

nt2 06;
/ K870

oA
n+2 w2 . s
_K(a])/ 8" 2)\1 (lVK(aj”/ x_a]|8;728i+/1.gn |x_aj| 8;7281)
o
n— - IVK (a;)| _ @ 1 - 5
=Ky 628”+0< Zln( i+ Aj - —gij(ng; ) Az uﬂ (Ine;; )n+1)
R VK (a;)|\n/2 1 (n+1)/3
—K(Cl]) C281]+0( 111(8 )—}—(7) +(7) )’
Aj ’32
s a6; 0K n+2 88
K&n—z)v 1 — oA ) /
/'jr ! la)\.i ZBXk (al) Rn 8)\
1 n+2 94 52
ax ax[( )/ (O = @k (x = aiedi " hi = (f1|x—ai|5i 2)
_ ¢ 81( AK(az)
_ 8398 oLy

i i

Finally, for j # i, it holds

n+2 4, 95; 35; vz
— /i K87 8jhi— o K(az)(éj,)ua )+ O(lVK(al)|/. — ;187 8;
n+2
+ / |x _ai|28i)l—28j)'
"
Hence the proof follows. -

Proposition 5.5 Letn > 5. Foru = Zigq ;b + Zi>q ajp; e Vim,q,p,e)andi <gq, it
holds:

95 2 T 72 €5 0K
(VIk 0, 50 = 2 @paen | es (1= Tk @ P2a] 7 Kan ) + sx@ el 200 @
1 d¢; 1
~Jxwer Z# 1 (- 1 I Za K@)+ 0(5)
J=q:J# I

Z(n—l) 2 2c
— 4k ) 2 TSVTK(a,>+0( Y el udaan + Y )

k<q;k#i k>q

where Ri’ is defined in Proposition 5.4 and

2n_ X n—2 x2
ca=(n—2)cg™ / — . ___dx andcs=——¢}7 | ————dx
O Jrr (1 [xPyrt! 2 O fo U P
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Proof The proof can be done as the previous one. O

Proposition5.6 Foru =) ajp; € V(m,q, p,e) and i < g, we have the following expan-
sion:

n 4
(5 50.8) = 2w, (1= 207 K@) ) + o(TEE 4 S Y,

where S, is defined in Proposition 5.3.
Proof
(VI ), 8) = 2Jx (e 18112 = Jic )"/ "= / K57 + 0 Y ).
Observe that
/ 8" - K(a,)/&” - +0 |VK(al)|/|x a;| 8” - /lx—a |26”2"2
which gives the result. o

Proposition 5.7 Foru = ijq a;é; +Zj>q ajpj € V(m,q, p,¢e)andforeachi > g+1,
we have:

p

ag; n—2 H(a;,aj)
(V@02 ) _2JK<—¢2 > 5 Z aj(1+(l(1))m
J#i Jj=q+1
+cai(1+o(1)) AK(a")>+0( +R>
i 2K (ar) !

(VI ), ¢i) = 2Jg ()e; Sy <1 - JK(M)ﬁaimK(a;)>

VK (a;)|
( Y +(Ad)"2+zs”)

i VK (a;)]? 1 1
<VJK(M)7 » 0a l>VK( i)=>c )”+0<()L3+W+§811)|VK(“1))

where

n+1
3

0 \VK( 1 1
R ::Z(7| Akak)|)2+<ﬁ> +Zs,f/21n(8 )+Z(Ad)n

k=1 k J#k j>q

5.3 Counting index formulae

Lemma5.8 Let zy,...,2n be N critical points of Ky in 0S| and let 1(zj) == n — 1 —
morse(Ky, z;). Assume that

N
Ap=) (=@ =1,
j=1
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Then the number N has to be odd, say N := 2k + 1 (with k € Ny) and there are k odd
numbers 1(z;)’s and k + 1 even numbers 1(z;)’s. Furthermore, for each k > 0, it hold

Ay = Z(_l)t(z,')—H(Zz) =—k ; A3:= Z (_l)t(Zj)+l(Zz)—H(zr) = —k,
j<t j<t<r

1
Ay = Z (_1)‘(1]’)+l(1l)+l(1r)+l(zl) — Ek(k 1.

Jj<t<r<t

Proof To compute the value of A;, observe that it is the sum of 41 and —1. To get —1, 1(z;)
and ¢(zx) have to be of different parity. However, to get +1, ¢(z;) and ¢(zx) have to be of the
same parity. A similar argument holds for the computation of the values A3 and A4. Hence:

e For k = 0, we have only one point z with an even ¢(z). Thus A = A3 = A4 = 0.

e For k = 1, we have two points zg and z, with even ¢(zx) and one point z; with an odd
t(z1). Thus, Ay =0,A3 =—land Ay =1—-2=—1.

e For k > 2, there exist k + 1 even numbers ¢(z;) and k odd numbers ¢(z;). Thus, it holds

2 2 1 1 1 1
A2:<k+l>+<k>_(k+l> <k>:E(k—i—l)k—i—ik(k—1)—(k+1)k:—k,

=BG Q)- w-
w3 () 63 () () = =
(-0 -
(BB -
() ()OO (20 ()0

The proof is thereby completed. O
Arguing as in the above lemma, one derives the following counting formula:

Lemma5.9 Letyi, ..., yL be L critical points of K inS'_andleti(y;) := n—morse(K, y;).
Assume that

L
By := Z(—l)‘(yf) =—k withk > 0.
j=1

Then the number L has to satisfy L := 2r + k (withr € No) and there are r even numbers
1(yj)’s and r + k odd numbers 1(y;)’s. Furthermore, it holds

1
By:= Y (=D)OIT00 = _p g Sk(k—=1); foreach L > 0.
1<j<t<L

@ Springer



148 Page 40 of 41 M. Ahmedou, M. Ben Ayed

References
1. Ahmedou, M., Ben Ayed, M.: Non Simple Blow Ups for the Nirenberg Problem on Half Spheres, preprint
(2020). arXiv:2012.11728
2. Ahmedou, M., Ben Ayed, M.: The Nirenberg Problem on Half Spheres: A Bubbling off Analysis. preprint
(2021)
3. Aubin, T.: Equations différentielles non linéaires et probleme de Yamabe concernant la courbure scalaire.
J. Math. Pures Appl. (9) 55(3), 269-296 (1976)
4. Aubin, T., Hebey, E.: Courbure scalaire prescrite (French) [Prescribed scalar curvature]. Bull. Sci. Math.
115(2), 125-131 (1991)
5. Bahri, A.: Critical Points at Infinity in Some Variational Problems, Research Notes in Mathematics, 182.
Longman-Pitman, London (1989)
6. Bahri, A.: An invariant for yamabe-type flows with applications to scalar curvature problems in high
dimensions. A celebration of J. F. Nash Jr. Duke Math. J. 81, 323—466 (1996)
7. Bahri, A., Coron, J.-M.: The scalar curvature problem on the standard three dimensional spheres. J. Funct.
Anal. 95, 106-172 (1991)
8. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the
effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253-294 (1988)
9. Bahri, A, Li, Y.Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of
the critical points at infinity. Calc. Var. Partial Differ. Equ. 3, 67-93 (1995)
10. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev
exponents. Commun. Pure Appl. Math. 36(4), 437-477 (1983)
11. Ben Ayed, M., Chen, Y., Chtioui, H., Hammami, M.: On the prescribed scalar curvature problem on
4-manifolds. Duke Math. J. 84, 633-677 (1996)
12. Ben Ayed, M., Chtioui, H., Hammami, M.: A Morse lemma at infinity for Yamabe type problems on
domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 543-577 (2003)
13. Ben Ayed, M., El Mehdi, K., Ahmedou, M.O.: Prescribing the scalar curvature under minimal boundary
conditions on the half sphere. Adv. Nonlinear Stud. 2(2), 93-116 (2002)
14. Ben Ayed, M., El Mehdi, K., Ould Ahmedou, M.: The scalar curvature problem on the four dimensional
half sphere. Calc. Var. Partial Differ. Equ. 22(4), 465-482 (2005)
15. Ben Ayed, M., Ghoudi, R., Ould Bouh, K.: Existence of conformal metrics with prescribed scalar curvature
on the four dimensional half sphere. NoDEA Nonlinear Differ. Equ. Appl. 19, 629-662 (2012)
16. Ben Ayed, M.: Bahri-Coron type theorem for the scalar curvature problem on high dimensional spheres.
Ann. Mat. Pura Appl. 191, 95-112 (2012)
17. Ben Ayed, M., Ould Ahmedou, M.: On the prescribed scalar curvature on 3-half spheres: multiplicity
results and Morse inequalities at infinity. Discrete Contin. Dyn. Syst. 23(3), 655-683 (2009)
18. Bourguignon, J.P., Ezin, J.P.: Scalar curvature functions in a conformal class of metrics and conformal
transformations. Trans. Am. Math. Soc. 301, 723-736 (1987)
19. Chang, A., Yang, P.: A perturbation result in prescribing scalar curvature on S". Duke Math. J. 64, 27-69
(1991)
20. Chang, A., Gursky, Matthew J., Yang, Paul C.: The scalar curvature equation on 2- and 3-spheres. Calc.
Var. Partial Differ. Equ. 1(2), 205-229 (1993)
21. Chen, C.C,, Lin, C.S.: Blowing up with infinite energy of conformal metrics on S". Commun. Partial
Differ. Equ. 24, 785-799 (1999)
22. Chen, C.C., Lin, C.S.: Prescribing the scalar curvature on S”. I. Apriori estimates. J. Differ. Geom. 57,
67-171 (2001)
23. Chen, C.-C., Lin, C.S.: Estimate of the conformal scalar curvature equation via the method of moving
planes II. J. Differ. Geom. 49, 115-178 (1998)
24. Chen, X., Xu, X.: The scalar curvature flow on S”-perturbation theorem revisited. Invent. Math. 187(2),
395-506 (2012)
25. Dijadli, Z., Malchiodi, A., Ould Ahmedou, M.: Prescribing scalar and boundary mean curvature on the
three dimensional half sphere. J. Geom. Anal. 13, 255-289 (2003)
26. Dold, A.: Lectures on Algebraic Topology. Reprint of the 1972 edition. Classics in Mathematics. Springer,
Berlin (1995)
27. Han, Z.-C.: Prescribing Gaussian curvature on S2. Duke Math. J. 61, 679-703 (1990)
28. Kazdan, J., Warner, F.: Existence and conformal deformation of metrics with prescribed Gaussian and
scalar curvatures. Ann. Math. 2(101), 317-331 (1975)
29. Li, P.L., Liu, J.Q.: Nirenberg’s problem on the two-dimensional hemi-sphere. Int. J. Math. 4, 927-939

(1993)

@ Springer


http://arxiv.org/abs/2012.11728

The Nirenberg problem on high dimensional... Page410f41 148

30.

31.
32.

33.

34.
35.

36.

37.

38.

Li, Y.Y.: The Nirenberg problem in a domain with boundary. Top. Methods Nonlinear Anal. 6, 309-329
(1995)

Li, Y.Y.: Prescribing scalar curvature on S” and related topics. Part I J. Differ. Equ. 120, 319-410 (1995)
Li, Y.Y.: Prescribing scalar curvature on S” and related topics, Part II : existence and compactness.
Commun. Pure Appl. Math. 49, 437-477 (1996)

Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case Part I.
Rev. Mat. Iberoamericano 1, 145-201 (1985)

Malchiodi, A., Mayer, M.: Prescribing Morse Scalar Curvatures: Blow-up Analysis. preprint (2019)
Malchiodi, A., Mayer, M.: Prescribing Morse Scalar Curvatures: Pinching and Morse Theory. Preprint
(2019)

Schoen, R.: Topics in Differential Geometry, Graduate Course at Stanford University (1988). http://sites.
math.washington.edu/~pollack/research/Pollack-notes-Schoen1988.pdf

Schoen, R.: Zhang, Dong: Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Differ. Equ. 4,
1-25 (1996)

Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlin-
earities. Math. Z. 187, 511-517 (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://sites.math.washington.edu/~pollack/research/Pollack-notes-Schoen1988.pdf
http://sites.math.washington.edu/~pollack/research/Pollack-notes-Schoen1988.pdf

	The Nirenberg problem on high dimensional half spheres: the effect of pinching conditions
	Abstract
	1 Introduction and statement of the results
	2 Loss of compactness and neighborhood at infinity
	3  Pseudogradient and Morse Lemma at infinity 
	3.1  The case of a single concentration point
	3.2  The case of multiple concentration points
	3.2.1 Construction of some local pseudogradients
	3.2.2 Ruling out collapsing phenomena 
	3.2.3  Ruling out bubble towers phenomena
	3.2.4  Critical points at infinity and their topological contribution 


	4 Proof of the main results
	5 Appendix
	5.1 Bubble estimates
	5.2  Asymptotic expansion of the functional and its gradient 
	5.3 Counting index formulae

	References




