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Abstract
Given a constant k > 1, let Z be the family of round spheres of radius artanh(k−1) in the
hyperbolic space H

3, so that any sphere in Z has mean curvature k. We prove a crucial
nondegeneracy result involving the manifold Z . As an application, we provide sufficient
conditions on a prescribed function φ on H

3, which ensure the existence of a C1-curve,
parametrized by ε ≈ 0, of embedded spheres in H

3 having mean curvature k + εφ at each
point.

Mathematics Subject Classification 53A10 · 35R01 · 53C21

1 Introduction

Let K be a given function on the hyperbolic space H3. The K -bubble problem consists in
finding a K-bubble, which is an immersed surface u : S2 → H

3 having mean curvature
K at each point. Besides its independent interest, the significance of the K -bubble problem
is due to its connection with the Plateau problem for disk-type parametric surfaces having
prescribed mean curvature K and contour Γ , see for instance [1,13]. In the Euclidean case,
the impact of K -bubbles on nonexistence and lack of compactness phenomena in the Plateau
problem has been investigated in [5,8,9].

To look for K -bubbles in the hyperbolic setting one can modelH3 via the Poincaré upper
half-space (R3+, p−23 δhj ) and consider the elliptic system

Δu − 2u−13 G(∇u) = 2u−13 K (u) ∂xu ∧ ∂yu (1.1)
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for functions u = (u1, u2, u3) ∈ C2(S2,H3). Here we used the stereographic projection to
introduce local coordinates on S

2 ≡ R
2 ∪ {∞} and put

G�(∇u) := ∇u3 · ∇u� − 1

2
|∇u|2δ�3 = −1

2
u3

3∑

h, j=1
Γ �
hj (u)∇uh · ∇u j , � = 1, 2, 3, (1.2)

whereΓ �
hj are theChristoffel symbols. Any nonconstant solution u to (1.1) is a generalized K -

bubble inH3 (see Lemma A.2 in the Appendix and [14, Chapter 2]), that is, u is a conformal
parametrization of a surface having mean curvature K (u), apart from a finite number of
branch points. Once found a solution to (1.1), the next step should concern the study of the
geometric regularity of the surface u, which might have self-intersections and branch points.

A remarkable feature of (1.1) is its variational structure, which means that its solutions are
critical points of a certain energy functional E , see the Appendix for details. Because of their
underlying geometrical meaning, both (1.1) and E are invariant with respect to the action
of Möbius transformations. This produces some lack of compactness phenomena, similar
to those observed in the largely studied K -bubble problem, raised by S.T. Yau [22], for
surfaces in R

3 (see for instance [7,10,12,20] and references therein; see also the pioneering
paper [23] by Ye and [3,6,19,21] for related problems). However, the hyperbolic K -bubble
problem is definitively more challenging, due to the homogeneity properties that characterize
the hyperbolic-area and the hyperbolic-volume functionals.

The main differences between the Euclidean and the hyperbolic case are already evident
when the prescribed curvature is a constant k > 0 (the case k < 0 is recovered by a change
of orientation). Any round sphere of radius 1/k in R3 can be parameterized by an embedded
k-bubble, which minimizes the energy functional

EEucl(u) = 1

2

∫

R2

|∇u|2 dz + 2k

3

∫

R2

u · ∂xu ∧ ∂yu dz

on the Nehari manifold { u 
= const. | E ′Eucl(u)u = 0 }, see [7, Remark 2.6]. In contrast, no
immersed hyperbolic k-bubble exists if k ∈ (0, 1], see for instance [16, Theorem 10.1.3]. If
k > 1, then any sphere in H

3 of radius

ρk := artanh
1

k
= 1

2
ln

k + 1

k − 1

can be parameterized by an embedding U : S2 → H
3, which solves

Δu − 2u−13 G(∇u) = 2u−13 k ∂xu ∧ ∂yu on R
2, (P0)

and which is a critical point of the energy functional

Ehyp(u) = 1

2

∫

R2

u−23 |∇u|2 dz − k
∫

R2

u−23 e3 · ∂xu ∧ ∂yu dz. (1.3)

As in the Euclidean case, the functional Ehyp is unbounded from below (see Remark A.1).
Therefore U does not minimize the energy Ehyp on the Nehari manifold, which in fact fills
{ u 
= const. }.

Besides their invariance with respect to Möbius transformations, both system (P0) and
the related energy Ehyp are invariant with respect to the 3-dimensional group of hyperbolic
translations as well. Thus, any k-bubble generates a smooth 9-dimensional manifold Z of
solutions to (P0). We explicitly describe the tangent space TU Z at U ∈ Z in formula (3.5).
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As a further consequence of the invariances of problem (P0), any tangent direction ϕ ∈
TU Z solves the elliptic system

Δϕ − 2U−1
3 G ′(∇U )∇ϕ = −U−1

3 ϕ3ΔU + 2U−1
3 k

(
∂xϕ ∧ ∂yU + ∂xU ∧ ∂yϕ

)
, (1.4)

which is obtained by linearizing (P0) at U .
The next one is the main result of the present paper.

Theorem 1.1 (Nondegeneracy) Let U ∈ Z. If ϕ ∈ C2(S2,R3) solves the linear system (1.4),
then ϕ ∈ TU Z.

Different proofs of the nondegeneracy in the Euclidean case can be found in [11,15,17].
The proof of Theorem 1.1 (see Sect. 3), is considerably more involved. It requires the choice
of a suitable orthogonal frame for functions in C2(S2,R3) and the complete classification
of solutions of two systems of linear elliptic differential equations, which might have an
independent geometrical interest (see Lemmata 3.3, 3.4).

As an application of Theorem 1.1, we provide sufficient conditions on a prescribed smooth
function φ : H3 → R that ensure the existence of embedded surfaces S2 → H

3 having
nonconstant mean curvature k+εφ. Our existence results involve the notion of stable critical
point already used in [18] and inspired from [2, Chapter 2] (see Sect. 2.2). The main tool is
a Lyapunov-Schmidt reduction technique combined with variational arguments, in the spirit
of [2].

Theorem 1.2 Let k > 1 and φ ∈ C1(H3) be given. Assume that the function

Fφ
k (q) :=

∫

BH
ρk

(q)

φ(p) dH3
p, Fφ

k : H3 → R (1.5)

has a stable critical point in an open set A � H
3. For every ε ∈ R close enough to 0 there

exist a point qε ∈ A, a conformal parametrizationUqε of a sphere of radius ρk about qε, and
a conformally embedded (k + εφ)-bubble uε, such that ‖uε − Uqε‖C2 = O(ε) as ε → 0.

Moreover, any sequence εh → 0 has a subsequence εh j such that qεh j converges to a

critical point for Fφ
k . In particular, if q̂ ∈ A is the unique critical point for Fφ

k in A, then
uε → Uq̂ in C2(S2,H3).

Theorem 1.3 Assume that φ ∈ C1(H3) has a stable critical point in an open set A � H
3.

Then there exists k0 > 1 such that for any k > k0 and for every ε close enough to 0, there
exists a conformally embedded (k + εφ)-bubble.

In Sect. 4 we first show that the existence of a critical point for Fφ
k (q) is a necessary

condition in Theorem 1.2. Then we perform the dimension reduction and prove Theorems
1.2, 1.3. With respect to correspondent Euclidean results in [7], a different choice of the
functional setting allows us to weaken the regularity assumption on φ (from C2 to C1).

We conclude the paper with an Appendix in which we collect some partially known results
about the variational approach to (1.1) and prove a nonexistence result for (1.1) which, in
particular, justifies the assumption on the existence of a critical point for φ in Theorem 1.3.

2 Notation and preliminaries

The vector space Rn is endowed with the Euclidean scalar product ξ · ξ ′ and norm |ξ |. We
denote by {e1, e2, e3} the canonical basis and by ∧ the exterior product in R

3.

123



222 Page 4 of 24 G. Cora, R. Musina

We will often identify the complex number z = x + iy with the vector z = (x, y) ∈ R
2.

Thus, i z ≡ (−y, x), z2 ≡ (x2 − y2, 2xy) and z−1 ≡ |z|−2(x,−y) if z 
= 0.
In local coordinates induced by the stereographic projections from the north and the south

poles, the round metric on the sphere S2 is given by ghj = μ2δhj , dS2 = μ2dz, where

μ(z) = 2

1+ |z|2 .

We identify the compactified plane R
2 = R

2 ∪ {∞} with the sphere S2 through the inverse
of the stereographic projection from the north pole, which is explicitly given by

ω(x, y) = (μx, μy, 1− μ). (2.1)

The identity |ω|2 ≡ 1 trivially gives ω · ∂xω ≡ 0, ω · ∂yω ≡ 0. We also notice that ω is a
conformal (inward-pointing) parametrization of the unit sphere and satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δω = 2∂xω ∧ ∂yω, −Δω = 2μ2ω

∂xω · ∂yω = 0

|∂xω|2 = |∂yω|2 = 1
2 |∇ω|2 = μ2.

∂xω ∧ ω = ∂yω, ω ∧ ∂yω = ∂xω, ∂xω ∧ ∂yω = −μ2ω.

(2.2)

2.1 The Poincaré half-spacemodel

We adopt as model for the three dimensional hyperbolic space H
3 the upper half-space

R
3+ = {(p1, p2, p3) ∈ R

3 | p3 > 0} endowed with the Riemannian metric ghj = p−23 δhj .
The hyperbolic distance dH(p, q) in H

3 is related to the Euclidean one by

cosh dH(p, q) = 1+ |p − q|2
2p3q3

,

and the hyperbolic ball BH
ρ (p) centered at p = (p1, p2, p3) is the Euclidean ball of center

(p1, p2, p3 cosh ρ) and radius p3 sinh ρ.
If F : H3 → R is a differentiable function, then ∇HF(p) = p23∇F(p), where ∇H, ∇

are the hyperbolic and the Euclidean gradients, respectively. In particular, ∇HF(p) = 0 if
and only if ∇F(p) = 0. The hyperbolic volume form is related to the Euclidean one by
dH3

p = p−33 dp.

2.2 Stable critical points

Let X ∈ C1(H3) and let Ω � H
3 be open. We say that X has a stable critical point in Ω if

there exists r > 0 such that any function G ∈ C1(Ω) satisfying ‖G − X‖C1(Ω) < r has a
critical point in Ω .

As noticed in [18], conditions to have the existence of a stable critical point p ∈ Ω for
X are easily given via elementary calculus. For instance, one can use Browder’s topological
degree theory or can assume that

min
∂Ω

X > min
Ω

X or max
∂Ω

X < max
Ω

X .

Finally, if X is of class C2 and Ω contains a nondegenerate critical point p0 (i.e. the Hessian
matrix of X at p0 is invertible), then p0 is stable.
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2.3 Function spaces

Any function f on R
2
is identified with f ◦ω−1, which is a function on S2. If no confusion

can arise, from now on we write f instead of f ◦ ω−1.
The Hilbertian norm on L2(R

2
,Rn) ≡ L2(S2,Rn) is given by

‖ f ‖22 =
∫

R2
| f |2 μ2dz < ∞.

Let m ≥ 0. We endow

Cm(R
2
,Rn) = { u ∈ Cm(R2,Rn) | u(z−1) ∈ Cm(R2,Rn) } ≡ Cm(S2,Rn)

with the standardBanach space structure (we agree that Cm(R
2
,Rn) = C�m�,m−�m�(R 2

,Rn)

if m is not an integer). If m is an integer, a norm in Cm(R
2
,Rn) is given by

‖u‖Cm =
m∑

j=0
‖μ− j∇ j u‖∞ . (2.3)

Since we adopt the upper half-space model for H3, we are allowed to write

Cm(R
2
,H3) = Cm(R

2
,R3+) = {u ∈ Cm(R

2
,R3) | u3 > 0},

so that Cm(R
2
,H3) is an open subset of Cm(R

2
,R3).

If ψ, ϕ ∈ C1(R 2
,R3) and τ ∈ R

2, we put

∇ψ · ∇ϕ = ∂xψ · ∂xϕ + ∂yψ · ∂yϕ, τ∇ϕ = τ1∂xϕ + τ2∂yϕ

(notice that τ∇ϕ(z) = dϕ(z)τ for any z ∈ R
2). For instance, we have

zh∇ϕ =
{

∂xϕ if h = 0

x∂xϕ + y∂yϕ if h = 1
, i zh∇ϕ =

{
∂yϕ if h = 0

−y∂xϕ + x∂yϕ if h = 1.

For future convenience we notice, without proof, that the next identities hold:
⎧
⎪⎨

⎪⎩

∂xω = e1 − ω1ω − e2 ∧ ω

z∇ω = e3 − ω3ω

z2∇ω = −(e1 − ω1ω + e2 ∧ ω)

⎧
⎪⎨

⎪⎩

∂yω = e2 − ω2ω + e1 ∧ ω

i z∇ω = e3 ∧ ω,

i z2∇ω = e2 − ω2ω − e1 ∧ ω.

(2.4)

The monograph [4] is our reference text for the theory of Sobolev spaces on Riemannian
manifolds. In view of our purposes, it is important to notice that

H1(R
2
,Rn) = { u ∈ H1

loc(R
2,Rn) | |∇u| + |u|μ ∈ L2(R2) } ≡ H1(S2,Rn).

We simply write L2(R
2
), Cm(R

2
) and H1(R

2
) instead of L2(R

2
,R), Cm(R

2
,R) and

H1(R
2
,R), respectively.

2.4 Möbius transformations and hyperbolic translations

Transformations in PGL(2,C) are obtained by composing translations, dilations, rotations
and complex inversion. Its Lie algebra admits as a basis the transforms

z �→ 1, z �→ i, z �→ z, z �→ i z, z �→ z2, z �→ i z2 .
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Therefore, for any u ∈ C1(R 2
,H3), the functions

zh∇u, i zh∇u, h = 0, 1, 2,

span the tangent space to the manifold { u ◦ g | g ∈ PGL(2,C) } at u.
Hyperbolic translations are obtained by composing a horizontal (Euclidean) translation

p �→ p + ae1 + be2, a, b ∈ R with an Euclidean homothety p �→ tp, t > 0. Therefore, for

any u ∈ Cm(R
2
,H3), the functions

e1, e2, u,

span the tangent space to the manifold { uq | q ∈ H
3 } at u, where

uq := q3u + q − (q · e3)e3 . (2.5)

3 Nondegeneracy of hyperbolic k-bubbles

The proof of Theorem 1.1 needs some preliminary work. We put

U = rk(ω + ke3), rk := sinh ρk = 1

k
cosh ρk = 1√

k2 − 1
,

where ω is given by (2.1). Since U is a conformal parametrization of the Euclidean sphere
of radius rk about krke3, which coincides with the hyperbolic sphere of radius ρk about e3,
then U has curvature k and in fact it solves (P0). Accordingly with (2.5), we put

Uq := q3U+ q − (q · e3) e3 (3.1)

(notice that Ue3 = U), and introduce the 9-dimensional manifold

Z = {
Uq ◦ g | g ∈ PGL(2,C), q ∈ H

3 }
. (3.2)

Remark 3.1 Any surface U ∈ Z is an embedding and solves (P0). Conversely, let U ∈
C2(R 2

,H3) be an embedding. If U solves (P0), then it is a k-bubble by Lemma A.2
and, thanks to an Alexandrov’ type argument (see for instance [16, Corollary 10.3.2]) it
parametrizes a sphere of hyperbolic radius ρk and Euclidean radius rk . SinceU is conformal,
then ΔU = 2r−1k ∂xU ∧ ∂yU . Therefore U ∈ Z by the uniqueness result in [5].

By the remarks in Sect. 2.4 and since ∇Uq is proportional to ∇ω, we have that TUq Z =
TUZ for any q ∈ H

3, and

TUZ = 〈{zh∇ω, i zh∇ω | h = 0, 1, 2}〉⊕ 〈
e1, e2,U

〉
. (3.3)

Moreover, any tangent direction τ ∈ TUZ solves (1.4).

It is convenient to split Cm(R
2
,R3) in the direct sum of its closed subspaces

〈ω〉⊥Cm := {ϕ ∈ Cm(R
2
,R3) | ϕ · ω ≡ 0 on R2 }, 〈ω〉Cm := { ηω | η ∈ Cm(R

2
) }. (3.4)

Since TUZ = (
TUZ∩〈ω〉⊥C2

)⊕(
TUZ∩〈ω〉C2

)
, from (2.4) we infer another useful description

of the tangent space, that is

TUZ = {
s − (s · ω)ω + t ∧ ω | s, t ∈ R

3 }⊕ {
(α · (kω + e3)) ω | α ∈ R

3 }
. (3.5)

We now introduce the differential operator

J0(u) = −div(u−23 ∇u)− u−33 |∇u|2e3 + 2ku−33 ∂xu ∧ ∂yu.
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Notice that Z ⊂ {J0 = 0}. Further, let I (z) = z−1. Since J0(u ◦ I ) = |z|−4 J0(u) ◦ I for any
u ∈ C2+m(R

2
,H3), m ≥ 0, then J0 is a C1 map

J0 : C2+m(R
2
,H3) → Cm(R

2
,R3).

We denote by J ′0(u) : C2+m(R
2
,R3) → Cm(R

2
,R3) its differential at u.

Finally, J0(Uq ◦ g) = 0 for any g ∈ PGL(2,C), q ∈ H
3, that implies TUZ ⊆ ker J ′0(U).

In order to prove Theorem 1.1 it suffices to show that

ker J ′0(U) ⊆ TUZ .

Main computations
Recall that U = rk(ω + ke3) solves J0(U) = 0 to check that

J ′0(U)ϕ = −div(U−23 ∇ϕ
)

+2U−3
3

[
G ′(∇U)∇ϕ − ∇U3∇ϕ − 1

2
ϕ3ΔU+ k(∂xϕ ∧ ∂yU+ ∂xU ∧ ∂yϕ)

]
,

where G is given by (1.2). Since ∇ω3 = −∇μ = μ2z, thanks to (2.2) we have

r2k J
′
0(U)ϕ = −div((ω3 + k)−2∇ϕ

)

+ 2(ω3 + k)−3
[(
G ′(∇ω)∇ϕ − μ2z∇ϕ

)+ μ2ϕ3ω + k(∂xϕ ∧ ∂yω + ∂xω ∧ ∂yϕ)
]
,

(3.6)

G ′(∇ω)∇ϕ − μ2z∇ϕ = ∇ϕ3∇ω − (∇ϕ · ∇ω)e3. (3.7)

To rewrite (3.6) in a less obscure form, we decompose any ϕ ∈ Cm(R
2
,R3), m ≥ 0, as

ϕ = Pϕ+ (ϕ ·ω)ω, Pϕ := ϕ− (ϕ ·ω)ω = μ−2((ϕ · ∂xω)∂xω+ (ϕ · ∂yω)∂yω
)
, (3.8)

compare with (3.4). Accordingly, for ϕ ∈ C2(R 2
,R3) we have

J ′0(U)ϕ = P(
J ′0(U)ϕ

)+ (J ′0(U)ϕ · ω)ω,

so that we can reconstruct J ′0(U)ϕ ∈ C0(R 2
,R3) by providing explicit expressions for

P(
J ′0(U)ϕ

)
and J ′0(U)ϕ · ω, separately. This will be done in the next Lemma.

Lemma 3.1 Let ϕ ∈ C2(R 2
,R3). Then

r2kP
(
J ′0(U)ϕ

) = P
(
− div

( ∇Pϕ

(ω3 + k)2

))
+ 2μ2

(ω3 + k)3
(i z∇Pϕ) ∧ ω − 2μ2

(ω3 + k)2
Pϕ,

(3.9)

r2k (J ′0(U)ϕ) · ω = −div
( ∇(ϕ · ω)

(ω3 + k)2

)
− 2k μ2

(ω3 + k)3
(ϕ · ω). (3.10)

Proof We introduce the differential operator L = −div((ω3 + k)−2∇ )
and start to prove

(3.10) by noticing that

Lϕ ·ω = L(ϕ ·ω)+2(ω3+k)−3
[
(ω3+k)∇ϕ ·∇ω−μ2ϕ ·(z∇ω)−μ2(ω3+k)(ϕ ·ω)

]
. (3.11)

Recalling that ω is pointwise orthogonal to ∂xω, ∂yω, from (3.7) we obtain
(
G ′(∇ω)∇ϕ − μ2z∇ϕ

) · ω = −(∇ϕ · ∇ω)ω3.
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Further, by (2.2) we have (∂xϕ ∧ ∂yω + ∂xω ∧ ∂yϕ) · ω = −∇ϕ · ∇ω. Finally, we obtain

r2k (J ′0(U)ϕ) · ω = L(ϕ · ω)− 2(ω3 + k)−3μ2[ϕ · (z∇ω)− ϕ3 + (ω3 + k)(ϕ · ω)
]
,

and (3.10) follows, because e3 = z∇ω + ω3ω, see (2.4).
Next, using the equivalent formulation

U2
3 J

′
0(U)ϕ = −Δϕ + 2(ω3 + k)−1

[
G ′(∇ω)∇ϕ + μ2ωϕ3 + k(∂xϕ ∧ ∂yω + ∂xω ∧ ∂yϕ)

]

we find that, for ϕ = ηω, η ∈ C2(R 2
), it holds

U2
3 J

′
0(U)(ηω) · ∂xω = U2

3 J
′
0(U)(ηω) · ∂yω = 0,

whence we infer

P(
J ′0(U)(ϕ − Pϕ)

) = 0, for every ϕ ∈ C2(R 2
,R3) . (3.12)

Thanks to (3.10) and (3.12) we get P(
J ′0(U)ϕ

) = J ′0(U)(Pϕ), thus to conclude the proof
we can assume that ϕ = Pϕ. Since ϕ is pointwise orthogonal to ω, we trivially have

∂xϕ · ω = −ϕ · ∂xω, ∂yϕ · ω = −ϕ · ∂yω.

We start to handle (3.7). From e3 = z∇ω + ω3ω we get

(G ′(∇ω)∇ϕ − μ2z∇ϕ)+ ω3(∇ϕ · ∇ω)ω = ∇ϕ3∇ω − (∇ϕ · ∇ω)z∇ω

= (
∂xϕ3 − x(∇ϕ · ∇ω)

)
∂xω + (

∂yϕ3 − y(∇ϕ · ∇ω)
)
∂yω.

Further,

∂xϕ3 − x(∇ϕ · ∇ω) = ∂xϕ · (z∇ω + ω3ω)− x(∇ϕ · ∇ω)

= (
∂xϕ · (z∇ω)− x(∇ϕ · ∇ω)

)− ω3ϕ · ∂xω = −(i z∇ϕ) · ∂yω − ω3ϕ · ∂xω.

In a similar way one can check that ∂yϕ3 − y(∇ϕ · ∇ω) = (i z∇ϕ) · ∂xω− ω3ϕ · ∂yω, thus
G ′(∇ω)∇ϕ − μ2z∇ϕ = μ2(i z∇ϕ) ∧ ω − ω3(∇ϕ · ∇ω)ω − μ2ω3ϕ.

Next, using (2.2) we can compute

∂xϕ ∧ ∂yω = ∂xϕ ∧ (∂xω ∧ ω) = −(ϕ · ∂xω)∂xω − (∂xϕ · ∂xω)ω

∂xω ∧ ∂yϕ = (ω ∧ ∂yω) ∧ ∂yϕ = −(ϕ · ∂yω)∂yω − (∂yϕ · ∂yω)ω,

which give the identity

∂xϕ ∧ ∂yω + ∂xω ∧ ∂yϕ = −μ2ϕ − (∇ϕ · ∇ω)ω, (3.13)

that holds for any ϕ ∈ 〈ω〉⊥Cm .
Putting together the above informations we arrive at

r2k J
′
0(U)ϕ = Lϕ + 2μ2

(ω3 + k)3
(i z∇ϕ) ∧ ω − 2μ2

(ω3 + k)2
ϕ

+ 2

(ω3 + k)3
[
μ2ϕ3 − (ω3 + k)∇ϕ · ∇ω

]
ω .

Using (3.11) and ϕ3 = ϕ · (z∇ω), we conclude the proof. ��
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Thanks to Lemma 3.1 we can study the system J ′0(U)ϕ = 0 separately, on 〈ω〉⊥Cm first,
and on 〈ω〉Cm later. In fact, ϕ ∈ ker J ′0(U) if and only if the pair of functions

ψ := Pϕ ∈ 〈ω〉⊥C2 ⊂ C2(R 2
,R3), η := ϕ · ω ∈ C2(R 2

),

solves
⎧
⎪⎪⎨

⎪⎪⎩

P
(
− div

( ∇ψ

(ω3 + k)2

))
+ 2μ2

(ω3 + k)3
(i z∇ψ) ∧ ω = 2μ2

(ω3 + k)2
ψ , (3.14a)

−div
( ∇η

(ω3 + k)2

)
= 2k μ2

(ω3 + k)3
η. (3.14b)

We begin by facing problem (3.14a). Firstly, we show that the quadratic form associated to
the differential operator J ′0(U) is nonnegative on 〈ω〉⊥C2 .

Lemma 3.2 Let ψ ∈ 〈ω〉⊥C2 . Then

∫

R2

J ′0(U)ψ · ψ dz = r−2k

∫

R2

(∂xψ · ∂xω − ∂yψ · ∂yω)2 + (∂xψ · ∂yω + ∂yψ · ∂xω)2

μ2(ω3 + k)2
dz.

Proof Since J ′0(U)ψ · ψ = P(
J ′0(U)ψ

) · ψ and Pψ = ψ , formula (3.9) gives

r2k

∫

R2

J ′0(U)ψ · ψ dz =
∫

R2

|∇ψ |2
(ω3 + k)2

dz + 2
∫

R2

ψ · (i z∇ψ) ∧ ω

(ω3 + k)3
μ2dz − 2

∫

R2

|ψ |2
(ω3 + k)2

μ2dz.

Now we prove the identity

Bψ := 2
∫

R2

ψ · (i z∇ψ) ∧ ω

(ω3 + k)3
μ2dz = 2

∫

R2

ω · ∂xψ ∧ ∂yψ

(ω3 + k)2
dz +

∫

R2

|ψ |2
(ω3 + k)2

μ2dz.

(3.15)
We use polar coordinates ρ, θ on R

2 and notice that ∂θψ = i z∇ψ . From ρμ2 = ∂ρω3 we
get

Bψ =−
2π∫

0

dθ

∞∫

0

(ψ · ∂θψ ∧ ω)∂ρ(ω3 + k)−2 dρ

=
∞∫

0

dρ

2π∫

0

ω · ∂ρψ ∧ ∂θψ − ψ · ∂ρω ∧ ∂θψ

(ω3 + k)2
dθ +

∞∫

0

dρ

2π∫

0

∂ρθψ · ω ∧ ψ

(ω3 + k)2
dθ

=
∞∫

0

dρ

2π∫

0

ω · ∂ρψ ∧ ∂θψ − ψ · ∂ρω ∧ ∂θψ

(ω3 + k)2
dθ

+
∞∫

0

dρ

2π∫

0

ω · ∂ρψ ∧ ∂θψ − ψ · ∂ρψ ∧ ∂θω

(ω3 + k)2
dθ.

Using the elementary identity ∂ρα ∧ ∂θβ = ρ(∂xα ∧ ∂yβ), we see that

Bψ = 2
∫

R2

ω · ∂xψ ∧ ∂yψ

(ω3 + k)2
dz −

∫

R2

ψ · (∂xω ∧ ∂yψ + ∂xψ ∧ ∂yω)

(ω3 + k)2
dz,
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and (3.15) follows from (3.13) (with ϕ replaced by ψ).
Thanks to (3.15), we have the identity

r2k

∫

R2

J ′0(U)ψ · ψ dz =
∫

R2

|∇ψ |2 + 2ω · ∂xψ ∧ ∂yψ − μ2|ψ |2
(ω3 + k)2

dz,

so that we only need to handle the function

bψ := |∇ψ |2 + 2ω · ∂xψ ∧ ∂yψ − μ2|ψ |2.
We decompose ∂xψ and ∂yψ accordingly with (3.8), to obtain

μ2∂xψ = (∂xψ · ∂xω)ωx + (∂xψ · ∂yω)ωy − μ2(ψ · ∂xω)ω,

μ2∂yψ = (∂yψ · ∂xω)ωx + (∂yψ · ∂yω)ωy − μ2(ψ · ∂yω)ω,

respectively. Since |∇ψ |2 = |∂xψ |2 + |∂yψ |2, we infer
μ2(|∇ψ |2 − μ2|ψ |2) = (∂xψ · ∂xω)2 + (∂xψ · ∂yω)2 + (∂yψ · ∂xω)2 + (∂yψ · ∂yω)2 .

Writing μ2ω = −∂xω ∧ ∂yω, see (2.2), we get

μ2ω · (∂xψ ∧ ∂yψ) = −(∂xψ · ∂xω)(∂yψ · ∂yω)+ (∂xψ · ∂yω)(∂yψ · ∂xω),

fromwhich it readily follows thatμ2bψ = (∂xψ ·∂xω−∂yψ ·∂yω)2+(∂xψ ·∂yω+∂yψ ·∂xω)2.
The proof is complete. ��
Lemma 3.3 Let ψ ∈ C2(R 2

,R3) be a solution to (3.14a). There exist s, t ∈ R
3 such that

ψ = s − (s · ω)ω + t ∧ ω,

and thus ψ ∈ TUZ ∩ 〈ω〉⊥C2 = { s − (s · ω)ω + t ∧ ω | s, t ∈ R
3 }.

Proof From (3.14a) it immediately follows thatψ is pointwise orthogonal toω, which implies
ψ ∈ 〈ω〉⊥C2 . Since Pψ = ψ , then J ′0(U)ψ = 0 by (3.9) and (3.10), hence

{
∂xψ · ∂xω − ∂yψ · ∂yω = 0

∂xψ · ∂yω + ∂yψ · ∂xω = 0
(3.16)

by Lemma 3.2. Since ψ ∈ 〈∂xω, ∂yω〉 pointwise on R2, we can write

ψ = f∇ω, where f := μ−2(ψ · ∂xω,ψ · ∂yω) ∈ C2(R 2
,R2).

We identify f with a complex valued function. A direct computation based on (2.2) shows
that ψ solves (3.16) if and only if f solves ∂x f + i∂y f = 0 on R2. In polar coordinates we
have that

ρ∂ρ f + i∂θ f = 0. (3.17)

For every ρ > 0 we expand the periodic function f (ρ, ·) in Fourier series,

f (ρ, θ) =
∑

h∈Z
γh(ρ)eihθ , γh(ρ) = 1

2π

2π∫

0

f (ρ, θ)e−ihθdθ.

The coefficients γh are complex-valued functions on the half-line R+ and solve

γ ′h − hγh = 0,
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because of (3.17). Thus for every h ∈ Z there exists ah ∈ C such that γh(ρ) = ahρh . Now
recall that μψ ∈ L2(R2,R3). Since

∫

R2

μ2|ψ |2 dz =
∫

R2

μ4| f |2 dz ≥ 2π
∫ ∞

0
μ4ρ|γh |2 dρ = a2h

∫

R2

μ4|z|2h dz, ∀ h ∈ Z,

we infer that γh = 0 for every h 
= 0, 1, 2. Thus f (z) =
2∑

h=0
ahzh , that is ψ =

2∑
h=0

ahzh∇ω,

and in particular the space of solutions of (3.14a) has (real) dimension 6. The conclusion of
the proof follows from the relations (2.4). ��
Lemma 3.4 Let η ∈ C2(R 2

) be a solution to (3.14b). There exists α ∈ R
3 such that

η = α · (kω + e3),

and thus ηω ∈ TUZ ∩ 〈ω〉C2 = { (α · (kω + e3)) ω | α ∈ R
3 }.

Proof First of all, we notice that α · (kω + e3) solves (3.14b) for any α ∈ R
3.

By the Hilbert–Schmidt theorem, the eigenvalue problem

− div
( ∇η

(ω3 + k)2

)
= λμ2

(ω3 + k)3
η on R

2, η ∈ C2(R2), (3.18)

has a non decreasing, divergent sequence (λh)h≥0 of eigenvalues which correspond to critical
levels of the quotient

R(η) :=

∫

R2

|∇η|2
(ω3 + k)2

dz

∫

R2

|η|2
(ω3 + k)3

μ2dz

, η ∈ H1(R
2
) \ {0}.

Clearly, λ0 = 0 is simple, and its eigenfunctions are constant functions. We claim that the
next eigenvalue is 2k, and that its eigenspace has dimension 3, which concludes the proof.

To this goal, we use the functional change

η(z) = μ(z)

μ(ck z)
Φ(ckz), ck := eρk =

√
k + 1

k − 1
.

By a direct computation involving the identity (ω3(z) + k)μ(ck z) = (k − 1)μ(z) and inte-
gration by parts, one gets

λ1 = inf
η∈C2(R

2
)\{0}

∫
R2

η μ2dz
(ω3+k)3

=0

R(η) = 2k + inf
Φ∈C2(R

2
)\{0}∫

R2 Φμ2dz=0

∫

R2
|∇Φ|2dz − 2

∫

R2
|Φ|2μ2dz

∫

R2

|Φ|2
(k − ω3)

μ2dz

.

On the other hand, it is well known that

min
Φ∈C2(R

2
)\{0}∫

R2 Φμ2dz=0

∫

R2
|∇Φ|2dz

∫

R2
|Φ|2μ2dz

= 2

is the first nontrivial eigenvalue for the Laplace-Beltrami operator on the sphere and that its
eigenspace has dimension 3, see for instance [4]. The proof is complete. ��
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Remark 3.2 The third eigenvalue λ2 of (3.18) verifies λ2 > 2k by Lemma 3.4, and

λ2 = min
{
R(η)

∣∣∣
∫

R2

η

(ω3 + k)3
μ2dz =

∫

R2

η(kω j + δ j3)

(ω3 + k)3
μ2dz = 0, j = 1, 2, 3

}
.

Proof of Theorem 1.1 In fact, we only have to sum up the argument. Let U ∈ Z . Thanks to
(3.2), U = Uq ◦ g for some q ∈ H

3, g ∈ PGL(2,C). Since

TUq◦g Z = TUZ ◦ g, ker J ′0(Uq ◦ g) = ker J ′0(U) ◦ g, for every q ∈ H
3, g ∈ PGL(2,C),

it suffices to consider the case U = U.
If ϕ ∈ C2(R 2

,R3) solves (1.4) then J ′0(U)ϕ = 0, which means P (
J ′0(U)ϕ

) = 0 and(
J ′0(U)ϕ

) · ω = 0. From Lemma 3.1 we infer that Pϕ solves (3.14a) and that ϕ · ω solves
(3.14b). Therefore, Lemmata 3.3, 3.4 give the existence of s, t, α ∈ R

3 such that

Pϕ = s − (s · ω)ω + t ∧ ω, ϕ · ω = α · (kω + e3).

Thus ϕ = Pϕ + (ϕ · ω)ω ∈ TUZ by (3.5), which concludes the proof. ��

3.1 Further results on the operator J′0(U)

To shorten notation we put

H1 = H1(R
2
,R3).

Since integration by parts gives
∫

R2

−div
( ∇ϕ

(ω3 + k)2

)
· ψ dz =

∫

R2

∇ϕ · ∇ψ

(ω3 + k)2
dz , ϕ, ψ ∈ C2(R 2

,R3),

the quadratic form

(ϕ, ψ) �→
∫

R2

J ′0(U)ϕ · ψ dz (3.19)

can be extended to a continuous bilinear form H1 × H1 → R via a density argument. It can
be checked by direct computation (see also Remark 4.1) that the quadratic form in (3.19) is
self-adjoint on H1, that is,

∫

R2

J ′0(U)ϕ · ψ dz =
∫

R2

J ′0(U)ψ · ϕ dz for any ϕ,ψ ∈ H1. (3.20)

Since TUZ is a subspace of L2(R
2
,R3) ≡ L2(S2,R3), we are allowed to put

TUZ
⊥ :=

{
f ∈ L2(R

2
,R3)

∣∣∣
∫

R2

f · τ μ2dz = 0, ∀ τ ∈ TUZ
}
.

Moreover, we introduce on L2(R
2
,R3) the equivalent scalar product

( f , ψ)∗ =
∫

R2

P f · Pψ

(ω3 + k)2
μ2dz +

∫

R2

( f · ω)(ψ · ω)

(ω3 + k)3
μ2dz
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and the subspaces

TUZ
⊥∗ :={

f ∈ L2(R
2
,R3) | ( f , τ )∗ = 0, ∀ τ ∈ TUZ

}
,

N∗ :=〈ω〉⊥∗ = {
f ∈ L2(R

2
,R3) | ( f , ω)∗ = 0

}
.

We are in position to state the main result of this section.

Lemma 3.5 Let q ∈ H
3. For any v ∈ TUZ⊥, there exists ϕv ∈ H1 ∩ TUZ⊥∗ ∩ N∗ such that

J ′0(Uq)ϕv = v μ2 on R2. (3.21)

If in addition v ∈ Cm(R
2
,R3) for some m ∈ (0, 1), then ϕv ∈ C2+m(R

2
,R3).

In view of Lemma 3.1, we split the proof of Lemma 3.5 in few steps.

Lemma 3.6 Let v ∈ TUZ⊥ be such that v · ω ≡ 0 on R2. There exists ϕ ∈ H1 ∩ TUZ⊥∗ such
that ϕ · ω ≡ 0 on R2 and

J ′0(U)ϕ = v μ2 on R
2. (3.22)

Proof We introduce

X := {
ψ ∈ H1

∣∣ ψ · ω ≡ 0 on R2 } ∩ TUZ
⊥∗ ,

which is a closed subspace of H1. Notice that ψ = Pψ for any ψ ∈ X and moreover

∫

R2

J ′0(U)ψ · ψ dz =
∫

R2

|∇ψ |2
(ω3 + k)2

dz + 2
∫

R2

( (ψ · i z∇ψ) ∧ ω

(ω3 + k)3
− |ψ |2

(ω3 + k)2

)
μ2dz,

use (3.9) and a density argument. Next we put

λ := inf
ψ∈X
ψ 
=0

∫

R2
J ′0(U)ψ · ψ dz

∫

R2
(ω3 + k)−2|ψ |2 μ2dz

,

and notice that λ ≥ 0 by Lemma 3.2. On the other hand, λ is achieved by Rellich theorem.
Thus λ > 0, because of Lemma 3.3. It follows that the energy functional I : X → R,

I (ψ) = 1

2

∫

R2

J ′0(U)ψ · ψ dz −
∫

R2

v · ψ μ2dz,

is weakly lower semicontinuous and coercive. Thus its infimum is achieved by a function
ϕ ∈ X which satisfies

∫

R2

J ′0(U)ϕ · ψ dz =
∫

R2

v · ψ μ2dz, ∀ ψ ∈ X . (3.23)

If ψ ∈ H1 we write

ψ = (Pψ� + Pψ⊥)+ ηω,
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where η = ψ · ω, Pψ� ∈ TUZ = ker J ′0(U ) is the orthogonal projection of Pψ = ψ − ηω

onto TUZ in the scalar product (·, ·)∗ and Pψ⊥ := ψ −Pψ� − ηω ∈ X . We use (3.20) and
(3.10) to compute

∫

R2

J ′0(U)ϕ · Pψ� dz =
∫

R2

J ′0(U)Pψ� · ψ dz = 0,

∫

R2

J ′0(U)ϕ · (ηω) dz =
∫

R2

∇(ϕ · ω) · ∇η

(ω3 + k)2
dz − 2k

∫

R2

(ϕ · ω)η

(ω3 + k)3
μ2dz = 0 ,

because ϕ · ω ≡ 0. Therefore, (3.23) gives
∫

R2

J ′0(U)ϕ · ψ dz =
∫

R2

J ′0(U)ϕ · Pψ⊥ dz =
∫

R2

v · Pψ⊥ μ2dz =
∫

R2

v · ψ μ2dz,

as v is orthogonal to TUZ  Pψ� and to ηω in L2(R
2
,R3). We showed that ϕ solves (3.22),

and thus the proof is complete. ��

Lemma 3.7 Let f ∈ H1(R
2
) be such that f ω ∈ TUZ⊥. There exists η ∈ H1(R

2
) such that

ηω ∈ H1 ∩ TUZ⊥∗ ∩ N∗ and

J ′0(U)(ηω) = f ω μ2 on R2. (3.24)

Proof We introduce the space

Y :=
{

η ∈ H1(R
2
)

∣∣∣
∫

R2

η

(ω3 + k)3
μ2dz =

∫

R2

η(τ · ω)

(ω3 + k)3
μ2dz = 0, ∀ τ ∈ TUZ

}
,

so that ηω ∈ H1 ∩ TUZ⊥∗ ∩ N∗ for any η ∈ Y , and the energy functional I : Y → R,

I (ϕ) = 1

2

∫

R2

J ′0(U)(ηω) · (ηω) dz −
∫

R2

f η μ2dz

= 1

2

∫

R2

|∇η|2
(ω3 + k)2

dz − k
∫

R2

|η|2
(ω3 + k)3

μ2dz −
∫

R2

η f μ2dz,

compare with (3.10). The functional I is weakly lower semicontinuous with respect to the

H1(R
2
) topology and coercive by Remark 3.2. Thus its infimum is achieved by a function

η ∈ Y . To conclude, argue as in the proof of Lemma 3.6 to show that η solves (3.24). ��
Proof of Lemma 3.5 Since J ′0(Uq) = q−23 J ′0(U), we can assume that q = e3, that is,Uq = U.
We take any v ∈ TUZ⊥, and write

v = Pv + (v · ω)ω,

where Pv = v− (v ·ω)ω, as before. Since Pv ∈ TUZ⊥, by Lemma 3.6 there exists a unique
ϕ̂ ∈ H1 ∩ TUZ⊥∗ such that ϕ̂ · ω ≡ 0 on R

2 and
∫

R2

J ′0(U)ϕ̂ · ψ dz =
∫

R2

Pv · ψ μ2dz, for any ψ ∈ H1.
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Next, notice that (v ·ω)ω ∈ TUZ⊥, so we can use Lemma 3.7 to find η ∈ H1(R
2
) such that

ηω ∈ H1 ∩ TUZ⊥∗ ∩ N∗ solves
∫

R2

J ′0(U)(ηω) · ψ dz =
∫

R2

(v · ω)(ψ · ω) μ2dz, for any ψ ∈ H1.

The function ϕv = ϕ̂ + ηω solves (3.21).

To conclude the proof we have to show that if v ∈ Cm(R
2
,R3) then ϕv ∈ C2+m(R

2
,R3).

Since ω ∈ C∞(R
2
,R3) and ω3 + k is bounded and bounded away from zero, ϕv solves a

linear system of the form

−Δϕv = A(z)ϕv + B(z)∇ϕv + μ2(ω3 + k)2v,

for certain smooth matrices on R
2
. A standard bootstrap argument and Schauder regularity

theory plainly imply that ϕv ∈ C2+mloc (R2,R3). The function z �→ ϕv(z−1) satisfies a linear
system of the same kind, hence ϕv ∈ C2+m(R

2
,R3), as desired. ��

4 The perturbed problem

In this section we perform the finite dimensional reduction and prove Theorems 1.2, 1.3. By

the results in the Appendix, any critical point of the C2-functional Eε : C2(R 2
,H3) → R,

Eε(u) := 1

2

∫

R2

u−23 |∇u|2 dz − k
∫

R2

u−23 e3 · ∂xu ∧ ∂yu dz + 2ε Vφ(u) = E0(u)+ 2ε Vφ(u)

(notice that E0 = Ehyp, compare with (1.3)), solves

Δu − 2u−13 G(∇u) = 2u−13 (k + εφ(u)) ∂xu ∧ ∂yu on R2 (Pε)

and has mean curvature (k + εφ), apart from a finite set of branch points.
Due to the action of the Möbius transformations and of the hyperbolic translations, for

any u ∈ C2(R 2
,H3) we have the identities

E ′ε(u)(zh∇u) = 0, E ′ε(u)(i zh∇u) = 0, for h = 0, 1, 2, ε ∈ R, (4.1)

E ′0(u)e1 = 0, E ′0(u)e2 = 0, E ′0(u)u = 0. (4.2)

Now we prove that
Eε(Uq) = E0(U)− 2εFφ

k (q), (4.3)

where Fφ
k is the Melnikov-type function in (1.5). The above mentioned invariances give

E0(Uq) = E0(U). Since the hyperbolic ball BH
ρk

(q) coincides with the Euclidean ball of
radius q3rk about the point qk := (q1, q2, krkq3), the divergence theorem gives

Fφ
k (q) =

∫

BH
ρk

(q)

φ(p) dH3
p =

∫

Bq3rk (qk )

p−33 φ(p) dp =
∫

∂Bq3rk (qk )

Qφ(p) · νp.

Here Qφ ∈ C1(R3+,R3) is any vectorfield such that divQφ(p) = p−33 φ(p) and νp is the
outer normal to ∂Bq3rk (q

k) at p. The functionUq in (3.1) parameterizes the Euclidean sphere
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∂Bq3rk(qk). Since ∂xUq ∧ ∂yUq is inward-pointing, we have

Fφ
k (q) = −

∫

R2

Qφ(p) · ∂xUq ∧ ∂yUq dz = −Vφ(Uq), (4.4)

and (4.3) is proved. Before going further, let us show that the existence of critical points for
Fφ
k is a necessary condition for the conclusion in Theorem 1.2.

Theorem 4.1 Let k > 1, φ ∈ C1(H3). Assume that there exist sequences εh ⊂ R \ {0},
εh → 0, uh ∈ C2(R 2

,H3) and a point q ∈ H
3 such that uh solves (Pεh ), and uh → Uq in

C1(R 2
,H3). Then q is a stationary point for Fφ

k .

Proof The function uh is a stationary point for the energy functional Eεh = E0 + 2εhVφ .
From (4.2) we have V ′

φ(uh)e j = 0 for j = 1, 2 and V ′
φ(uh)uh = 0. We can plainly pass to

the limit to obtain V ′
φ(Uq)e j = 0 for j = 1, 2 and V ′

φ(Uq)Uq = 0. To conclude, use (4.4)

and recall that ∂q jUq = e j for j = 1, 2, and ∂q3Uq = U = q−13 (Uq − q1e1 − q2e2). ��

Now we fix m ∈ (0, 1). The operator Jε : C2+m(R
2
,H3) → Cm(R

2
,R3) defined by

Jε(u) = −div(u−23 ∇u)− u−33 |∇u|2e3 + 2(k + εφ)u−33 ∂xu ∧ ∂yu,

is related to the differential of Eε via the identity

E ′ε(u)ϕ =
∫

R2

Jε(u) · ϕ dz, u ∈ Cm(R
2
,H3), ϕ ∈ Cm(R

2
,R3) . (4.5)

Remark 4.1 Since Eε is of class C2 and

E ′′ε (u)[ϕ,ψ] =
∫

R2
J ′ε(u)ψ · ϕ dz,

then the quadratic form in the right hand side is a self-adjoint form on H1.

We are in position to state and prove the next Lemma, which is the main step towards the
proofs of Theorems 1.2, 1.3.

Lemma 4.1 (Dimension reduction) Let Ω � H
3 be an open set. There exist ε̂ > 0 and a

unique C1-map

[ − ε̂, ε̂] ×Ω → C2+m(R
2
,H3), (ε, q) �→ uε

q ,

such that the following facts hold:

(i) uε
q parameterizes an embedded S2-type surface, and u0q = Uq ;

(ii) uε
q −Uq ∈ TUZ⊥ ∩C2+m(R

2
,R3) and E ′ε(uε

q)ϕ = 0 for any ϕ ∈ TUZ⊥ ∩C0(R 2
,R3) ;

(iii) for any ε ∈ [−ε̂, ε̂], the manifold { uε
q | q ∈ Ω } is a natural constraint for Eε, that is, if

∇q Eε(uε
qε ) = 0 for some qε ∈ Ω , then uε

qε is a (k + εφ)-bubble ;

(iv) ‖Eε(uε
q)− Eε(Uq)‖C1

(
Ω

) = o(ε) as ε → 0, uniformly on Ω .
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Proof To shorten the notation, we put Cm := Cm(R
2
,R3). For s > 0 and δ > 0 we write

Ωs := { p ∈ H
3 | dist(p,Ω) < s } , and Uδ := { ν ∈ C2+m | |ν(z)| < δ for every z ∈ R

2 }.
We fix s and δ = δ(s) such that Ω2s ⊂ H

3 and (Uq + ν) · e3 > 0 for q ∈ Ω2s , ν ∈ Uδ .
We define

τ1 := c0∂xω, τ3 := c0
√
2z∇ω, τ5 := c0z2∇ω,

τ2 := c0∂yω, τ4 := c0
√
2i z∇ω, τ6 := c0i z2∇ω,

γ := 2c0(kω + e3), (4.6)

where c0 :=
√

3
24π

is a normalization constant. Thanks to (3.3), (3.5), we have

TUZ = 〈τ1, . . . τ6〉 ⊕ { (α · γ ) ω | α ∈ R
3 }.

Trivially, τ j · ω ≡ 0 on R
2. Elementary computations give

∫

R2

τi · τ j μ2dz = δi j ,

∫

R2

γhγ� μ2dz = 0 if h 
= �,

for i, j ∈ {1, . . . , 6}, h, � ∈ {1, 2, 3}, and moreover
∫

R2

γ 2
1 μ2dz =

∫

R2

γ 2
2 μ2dz = k2,

∫

R2

γ 2
3 μ2dz = k2 + 3.

Construction of uε
q satisfying i), ii). By our choices of s and δ, the functions

F1(ε, q; ν, ξ, α) := μ−2 Jε(Uq + ν)−
6∑

j=1
ξ j τ j − (α · γ ) ω ∈ Cm ,

F2(ε, q; ν, ξ, α) :=
( ∫

R2

ν · τ1 μ2dz , . . . ,

∫

R2

ν · τ6 μ2dz ;
∫

R2

γ (ν · ω) μ2dz
)
∈ R

6 × R
3,

are well defined and continuously differentiable on R×Ω2s × Uδ × (R6 × R
3). Thus

F := (F1,F2) : R×Ω2s × Uδ × (R6 × R
3) → Cm × (R6 × R

3)

is of class C1 on its domain. Notice that F(0, q; 0, 0, 0) = 0 for every q ∈ Ω2s because
J0(Uq) = 0. Now we solve the equation F(ε, q; ν, ξ, α) = 0 in a neighborhood of
(0, q; 0, 0, 0) via the implicit function theorem. Let

L := (L1,L2) : C2+m × (R6 × R
3) → Cm × (R6 × R

3)

given by

L1(ϕ; ζ, β) := μ−2 J ′0(Uq)ϕ −
6∑

j=1
ζ jτ j − (β · γ ) ω,

L2(ϕ; ζ, β) := L2(ϕ) =
( ∫

R2

ϕ · τ1 μ2dz , . . . ,

∫

R2

ϕ · τ6 μ2dz ;
∫

R2

γ (ϕ · ω) μ2dz
)
,

so that L = (L1,L2) is the differential of F(0, q; ·, ·, ·) evaluated in (ν, ξ, α) = (0, 0, 0).
To prove that L is injective we assume that L(ϕ, ζ, β) = 0 and put

v = μ−2 J ′0(Uq)ϕ ∈ TUZ .

123



222 Page 18 of 24 G. Cora, R. Musina

From (3.20) we find
∫

R2

|v|2 μ2dz =
∫

R2

(
μ−2 J ′0(Uq)ϕ) · v μ2dz =

∫

R2

J ′0(Uq)ϕ · v dz =
∫

R2

J ′0(Uq)v · ϕ dz = 0,

which implies J ′0(Uq)ϕ = 0, that is, ϕ ∈ TUZ . On the other hand, ϕ ∈ TUZ⊥ because
L2(ϕ) = 0. Thus ϕ = 0 and therefore also β = ζ = 0.

To prove that L is surjective fix v ∈ Cm and (θ, b) ∈ R
6 ×R

3. We have to find ϕ ∈ C2+m
and (ζ, β) ∈ R

6 × R
3 such that L1(ϕ; ζ, β) = v and L2(ϕ) = (θ, b). To this goal we

introduce the minimal distance projection

P� : L2(R
2
,R3) → TUZ , w �→ P�w,

so that L2(w) is uniquely determined by P�w, and vice-versa. We find ζ j and β so that

6∑

j=1
ζ jτ j + (β · γ )ω = −P�v.

Then, we use Lemma 3.5 to find ϕ̂ ∈ C2+m ∩ TUZ⊥∗ ∩ N∗ such that

J ′0(Uq)ϕ̂ = (v − P�v) μ2.

Finally, we take the unique tangent direction ϕ� ∈ TUZ such that L2(ϕ
�) = (θ, b)−L2(ϕ̂).

The triple (ϕ� + ϕ̂; ζ, β) satisfies L(ϕ� + ϕ̂; ζ, β) = (v; θ, b) and surjectivity is proved.
We are in the position to apply the implicit function theorem to F , for any fixed q ∈ Ω2s . In
fact, thanks to a standard compactness argument, we get that there exist ε′ > 0 and uniquely
determined C1 functions

ν : (−ε′, ε′)×Ωs → Uδ α : (−ε′, ε′)×Ωs → R
3 ξ : (−ε′, ε′)×Ωs → R

6

ν : (ε, q) �→ νε
q α : (ε, q) �→ αε(q) ξ : (ε, q) �→ ξε(q)

such that

ν0q ≡ 0, α0(q) = 0, ξ0(q) = 0, F(ε, q; νε
q , ξ

ε(q), αε(q)) = 0. (4.7)

By (4.7), the C1 function (−ε′, ε′)×Ωs → C2+m(R
2
,H3),

(ε, q) �→ uε
q := Uq + νε

q =
(
q3U+ q1e1 + q2e2

)+ νε
q ,

satisfies i), if ε′ is small enough. Further, using (4.5) (see also Lemma A.1) we rewrite the
last identity in (4.7) as

E ′ε(uε
q)ϕ =

∫

R2

J ′ε(Uq + νε
q) · ϕ dz

=
6∑

j=1
ξε
j (q)

∫

R2

τ j · ϕ μ2dz +
∫

R2

(αε(q) · γ )(ω · ϕ) μ2dz ∀ϕ ∈ C0,

∫

R2

νε
q · τ j μ2dz = 0, ∀ j ∈ { 1, . . . , 6 },

∫

R2

γ�(ν
ε
q · ω) μ2dz = 0, ∀ � ∈ { 1, 2, 3 }.

(4.8)
In particular, claim i i) holds true.
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Proof of iii). As a straightforward consequence of (4.8) we have that
∫

R2

∂qi ν
ε
q · τ j μ2dz = 0,

∫

R2

γ� (∂qi ν
ε
q · ω) μ2dz = 0,

hence E ′ε(uε
q)∂qi ν

ε
q = 0 for any i = 1, 2, 3. We infer the identities

∂qi Eε(u
ε
q) = E ′ε(uε

q)(ei + ∂qi ν
ε
q) = E ′ε(uε

q)ei , i = 1, 2,

∂q3Eε(u
ε
q) = E ′ε(uε

q)(U+ ∂q3ν
ε
q) = E ′ε(uε

q)U.
(4.9)

Now, from (2.4), (4.6) and (4.8) we find

2c0e1 = τ1 − τ5 + k−1γ1ω, 2c0e2 = τ2 + τ6 + k−1γ2ω, 2c0U = krk(
√
2τ3 + k−1γ3ω),

E ′ε(uε
q )τ j = ξε

j (q), E ′ε(uε
q )(γ�ω) = (k2 + 3δ�3)α

ε
�(q),

for any j = 1, . . . , 6, � = 1, 2, 3. Thus by (4.9) we get

2c0∇q Eε(u
ε
q) = Mkξ

ε(q)+Θkα
ε(q), (4.10)

where Mk and Θk are constant matrices, namely

Mk =
⎛

⎝
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0

√
2krk 0 0 0

⎞

⎠ , Θk =
⎛

⎝
k 0 0
0 k 0
0 0 (k2 + 3)rk

⎞

⎠ .

On the other hand, from (4.1) and using ∇Uq = rkq3∇ω we obtain

− q3rk ξε
j (q) = E ′ε(uε

q)(τ
ε
j (q)), (4.11)

where, in the spirit of (4.6), we have put

τ ε
1 (q) := c0∂xνε

q , τ ε
3 (q) := c0

√
2z∇νε

q , τ ε
5 (q) := c0z2∇νε

q ,

τ ε
2 (q) := c0∂yνε

q , τ ε
4 (q) := c0

√
2i z∇νε

q , τ ε
6 (q) := c0i z2∇νε

q .

Notice that
∫

R2

|τ ε
j (q)|2 μ2dz ≤ 2

∫

R2

|∇zν
ε
q |2 μ dz ≤ 2 ‖νε

q‖2C1

∫

R2

μ3 dz = o(1), (4.12)

as ε → 0, uniformly on Ω , see (2.3).
For the sake of clarity, we make now some explicit computations. We denote by σ�h

the entries of the 3 × 6 constant matrix Θ−1
k Mk , and introduce the 6 × 6 matrix Aε(q) =

(aε
jh(q)) j,h=1,...,6, whose entries are given by

aε
jh(q) =

∫

R2

τh · τ ε
j (q) μ2dz −

3∑

�=1
σ�h

∫

R2

γ�(ω · τ ε
j (q)) μ2dz.

Since τ ε
j μ → 0 in L2(R2,R3) by (4.12), then Aε → 0 uniformly on compact subsets of

(−ε′, ε′)×Ωs . In particular, if ε̂ ∈ (0, ε′) is small enough, then the determinant of the 6× 6
matrix (Aε(q)+ q3rkId) is uniformly bounded away from 0 on [−ε̂, ε̂] ×Ω .

Assume that ∇q Eε(uε
qε ) = 0 for some ε ∈ [−ε̂, ε̂], qε ∈ Ω . From (4.10) we obtain

αε(qε) = −Θ−1
k Mkξ

ε(qε). Thus (4.8) and (4.11) give

−qε
3rk ξε(qε) = Aε(qε)ξε(qε),
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and hence ξε(qε) = 0, because the matrix (Aε(qε) + qε
3rkId) is invertible. But then (4.10)

and ∇q Eε(uε
qε ) = 0 imply that αε(qε) = 0 as well, hence E ′(uε

qε ) = 0 by (4.8).

Proof of iv). The function (ε, q) �→ νε
q is of class C1, and in particular ∂εν

ε
q is uniformly

bounded in C2 for (ε, q) ∈ [−ε̂, ε̂] ×Ω . Thus Taylor expansion formula for

ε �→ Eε(u
ε
q)− Eε(Uq) = E0(u

ε
q)− E0(Uq)+ 2ε

(
Vφ(uε

q)− Vφ(Uq))

gives Eε(uε
q)− Eε(Uq) = o(ε) as ε → 0, uniformly on Ω .

Now we estimate ∇q(Eε(uε
q)− Eε(Uq)). We use (4.2), (4.9) to obtain, for j = 1, 2,

∂q j (Eε(u
ε
q)− Eε(Uq)) =

(
E ′0(uε

q)e j − E ′0(Uq)e j
)+ 2ε

(
V ′

φ(uε
q)e j − V ′

φ(Uq)e j
)

= 2ε
(
V ′

φ(uε
q)e j − V ′

φ(Uq)e j
) = o(ε),

because ‖uε
q − Uq‖C2+m = o(1) and Vφ is a C1-functional.

To handle the derivative with respect to q3 we first argue as before to get

∂q3(Eε(u
ε
q)− Eε(Uq)) =

(
E ′0(uε

q)U− E ′0(Uq)U
)+ 2ε

(
V ′

φ(uε
q)U− V ′

φ(Uq)U
)

= E ′0(uε
q)U+ o(ε),

uniformly on Ω . Next, from q3U = uε
q − (q1e1 + q2e2)− νε

q and (4.2) we obtain

q3E
′
0(u

ε
q)U =E ′0(uε

q)(u
ε
q − (q1e1 + q2e2)− νε

q)

=− E ′0(uε
q)ν

ε
q = −E ′ε(uε

q)ν
ε
q + 2εV ′

φ(uε
q)ν

ε
q = 2εV ′

φ(uε
q)ν

ε
q

because of (4.8). Since νε
q → 0 in C2+m we infer that E ′0(uε

q)u
ε
q = o(ε) uniformly on Ω as

ε → 0, which concludes the proof. ��
Proof of Theorem 1.2 Take an open set Ω � R

3+ containing the closure of A, let uε
q be the

function given by Lemma 4.1 and notice that, by (4.4), Eε(Uq) = E0(Uq)− 2εFφ
k (q). Thus

for ε ∈ [−ε̂, ε̂], ε 
= 0 we can estimate
∥∥∥
1

2ε

(
Eε(u

ε
q)− E0(Uq)

)+ Fφ
k (q)

∥∥∥C1(A)
= 1

2|ε| ‖Eε(u
ε
q)− Eε(Uq)‖C1(A) = o(1),

uniformly onΩ by iv) in Lemma4.1. Recalling the definition of stable critical point presented
in Sect. 2.2, we infer that for any ε ≈ 0 the function 1

2ε

(
Eε(uε

q) − E0(Uq)
)
has a critical

point qε ∈ A, to which corresponds the embedded (k + εφ)-bubble uε := uε
qε by i i i) in

Lemma 4.1. The continuity of (ε, q) �→ uε
q gives the continuity of ε �→ uε.

The last conclusion in Theorem 1.2 follows via a simple compactness argument and thanks
to Theorem 4.1. ��
Proof of Theorem 1.3 Recalling that qk := (q1, q2, krkq3), we write

Fφ
k (q) =

∫

Brk (0)

(p3 + krk)
−3φ(q3 p + qk) dp.

Since rk → 0 and krk = k(k2− 1)−1/2 → 1 as k →∞, we infer that qk → q uniformly on
compact sets of R3+ and

3

4πr3k
Fφ
k → φ as k →∞,
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uniformly on Ω . Next, we easily compute

∂q j F
φ
k (q) =

∫

Brk (0)

(p3 + krk)
−3∂q j φ(q3 p + qk) dp, j = 1, 2,

∂q3F
φ
k (q) =

∫

Brk (0)

(p3 + krk)
−3∇φ(q3 p + qk) · (p + krke3) dp,

and thus we obtain, by the same argument,

3

4πr3k
∇Fφ

k → ∇φ as k →∞,

uniformly on Ω . It follows that for k large enough, Fφ
k has a stable critical point in Ω � H

3,
since having a stable critical point is a C1-open condition. Hence Theorem 1.1 applies and
gives the conclusion of the proof. ��
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Appendix

Let K ∈ C0(H3). Take any vectorfield QK ∈ C1(R3+,R3) such that divQK (p) = p−33 K (p)
for any p ∈ R

3+ (here div = ∑
j ∂ j is the Euclidean divergence). The functional

VK (u) :=
∫

R2

QK (u) · ∂xu ∧ ∂yu dz, u ∈ C1(R 2
,H3),

measures the signed (hyperbolic) volume enclosed by the surface u, with respect to theweight
K . In fact, if u parameterizes the boundary of a smooth open set Ω � R

3+ and if ∂xu ∧ ∂yu
is inward-pointing, then the divergence theorem gives

VK (u) = −
∫

∂Ω

QK (u) · ν du = −
∫

Ω

p−33 K dp = −
∫

Ω

K dH3.
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Clearly, the functional VK does not depend on the choice of the vectorfield Q. Notice that if
K ≡ k is constant, then

Vk(u) = −k

2

∫

R2

u−23 e3 · ∂xu ∧ ∂yu dz, u ∈ C1(R 2
,H3).

In the next Lemma we collect few simple remarks about the energy functional

E(u) = 1

2

∫

R2

u−23 |∇u|2 dz + 2VK (u). (A.1)

Lemma A.1 Let K ∈ C0(H3).

(i) The functional E : C1(R 2
,H3) → R is of class C1, and its differential is given by

E ′(u)ϕ =
∫

R2

(u−23 ∇u · ∇ϕ − u−33 |∇u|2e3 · ϕ) dz + 2
∫

R2

u−33 K (u)ϕ · ∂xu ∧ ∂yu dz ;

(ii) If u ∈ C2(R 2
,H3), then E ′(u) extends to a continuous form on C0(R 2

,R3), namely

E ′(u)ϕ =
∫

R2

(−div(u−23 ∇u)− u−33 |∇u|2e3 + 2u−33 K (u)∂xu ∧ ∂yu) · ϕ dz ;

(iii) If K ∈ C1(H3), then E is of class C2 on C1(R 2
,H3).

In the next Lemma we show that critical points for E are in fact hyperbolic K -bubbles.

Lemma A.2 Let K ∈ C0(H3) and let u ∈ C2(R 2
,H3) be a nonconstant critical point for E.

Then u is conformal, that is,

|∂xu| = |∂yu|, ∂xu · ∂yu = 0,

hence it parameterizes an S
2 type surface in H

3, having mean curvature K , apart from a
finite number of branch points.

Proof Put α = 1
2u

−2
3 (|∂xu|2 − |∂yu|2), β = −u−23 ∂xu · ∂yu, ϕ = α + iβ and notice that

|ϕ| ≤ cu |∇u|2 ∈ L∞(R2). By direct computation we find

(∂xα − ∂yβ)u33 = u3∂xu ·Δu − (|∂xu|2 − |∂yu|2)∂xu3 − 2(∂xu · ∂yu)∂yu3,

(∂yα + ∂xβ)u33 = −u3∂yu ·Δu − (|∂xu|2 − |∂yu|2)∂yu3 + 2(∂xu · ∂yu)∂xu3.
(A.2)

Since u solves (1.1), it holds that

u3∂xu ·Δu = 2G(∇u) · ∂xu = 2(∂xu · ∂yu)∂yu3 + (|∂xu|2 − |∂yu|2)∂xu3,
u3∂yu ·Δu = 2G(∇u) · ∂yu = 2(∂xu · ∂yu)∂xu3 − (|∂xu|2 − |∂yu|2)∂yu3.

(A.3)

Putting together (A.2) and (A.3) we obtain ∂xα − ∂yβ = ∂yα + ∂xβ = 0, namely, ϕ is an
holomorphic function. Since ϕ is bounded and vanishes at infinity then ϕ ≡ 0 on R

2, hence
u is conformal.

The last conclusion follows from Proposition 2.4 and Example 2.5(4) in [14]. ��
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Remark A.1 Here we take K ≡ k constant and point out two simple facts about the energy
functional Ehyp in (1.3).

By (4.2), the Nehari manifold contains any nonconstant function. Secondly, Ehyp is
unbounded from below. In fact, for t > 1 we have

Ehyp(ω + te3) = 1

2

∫

R2

(ω3 + t)−2 μ2dz + k
∫

R2

(ω3 + t)−2ω3 μ2dz

= 4π
(− kt − 1

t2 − 1
+ k

2
ln

t + 1

t − 1

)
.

Notice that ω + te3 approaches a horosphere as t → 1, and that lim
t→1

Ehyp(ω + te3) = −∞.

Remark A.2 Differently from the Euclidean case, see for instance [5], the geometric and
compactness properties of the energy functional E are far from being understood (also in the
case of a constant curvature), and would deserve a careful analysis.

We conclude the paper by pointing out a necessary condition for the existence of embedded
K bubbles.

Let K ∈ C1(H3) be given, and let u ∈ C2(R 2
,H3) be an embedded solution to (1.1). By

Lemma A.2, u is a conformal parametrization of the open setΩ ⊂ R
3+, which is the bounded

connected component of R3+ \ u(S2). We can assume that the nowhere vanishing normal
vector ∂xu ∧ ∂yu is inward pointing. Since u is a critical point of the energy functional in
(A.1), then for j = 1, 2 we have that

0 = E ′(u)e j = V ′
K (u)e j =

∫

R2

u−33 K (u)e j · ∂xu ∧ ∂yu dz = −
∫

Ω

div(p−33 K (p)e j ) dp

by the divergence theorem. Thus
∫

Ω

p−33 ∂p j K (p) dp = 0.

In a similar way, from E ′(u)u = 0 and since div(p−33 K (p)p) = p−33 ∇K (p) · p, one gets
∫

Ω

p−33 ∇K (p) · p dp = 0.

In particular, ∂p1K , ∂p2K and the radial derivative of K can not have constant sign in Ω . We
infer the next nonexistence result (see [7, Proposition 4.1] for the Euclidean case).

Theorem A.3 Assume that K ∈ C1(H3) satisfies one of the following conditions,

(i) K (p) = f (ν · p) for some direction ν orthogonal e3, where f is strictly monotone;
(ii) K (p) = f (|p|), where f is strictly monotone.

Then (1.1) has no embedded solution u ∈ C2(R 2
,H3).
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