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Abstract
For a bounded open set 2 C R? we consider the minimization problem

Vul? + (a + eV)|ul|?) dx
S(a+eV)= inf Jo IVl (6 13” B
0ucH} () (Jqubdx)!/

involving the critical Sobolev exponent. The function a is assumed to be critical in the sense
of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of
S(a+€V)—Sase — 0+, where S is the Sobolev constant. (Almost) minimizers concentrate
at a point in the zero set of the Robin function corresponding to a and we determine the
location of the concentration point within that set. We also show that our assumptions are
almost necessary to have S(a + € V) < § for all sufficiently small € > 0.
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1 Introduction and main results
1.1 Setting of the problem
In their celebrated paper [8] Brézis and Nirenberg considered the problem of minimizing the

quotient

Jo(UVul®> + alul®) dx

Salu] = (Jo ub dx)173

over : all0 £ u € H& (), where  c R3 is a bounded open set and a is a continuous function
on 2. We denote the corresponding infimum by

S(a) = inf  S,lu].
0£ueH] (Q)

This number is to be compared with

N4/
S = 3(—) ,
2

the sharp constant [3,25,26,31] in the Sobolev inequality

1/3 ]
/ [Vul>dx > S (/ u6dx> , ue H'®. (1.1)
R3 R3

One of the findings in [8] is that if @ is small (for instance, in L°>°(£2)), then S(a) = S. This is
in stark contrast to the case of dimensions N > 4 where the corresponding analogue of S(a)
(with the exponent 6 replaced by 2N /(N — 2)) is always strictly below the corresponding
Sobolev constant, whenever a is negative somewhere.

This phenomenon leads naturally to the following notion due to Hebey and Vaugon [20].

Definition 1.1 Let a be a continuous function on Q. We say that a is critical in Q if S(a) = S
and if for any continuous function a on @ with a < a and a # a one has S(a) < S(a).

Our goal in this paper is to compute the asymptotics of S(a + €V) — S as € — 0 for
critical a and to understand the behavior of corresponding minimizers. Here V is a bounded
function on €2, without any restrictions on its sign.

A key role in our analysis is played by the regular part of the Green’s function and its
zero set. To introduce these, we follow the sign and normalization convention of [24]. If the
operator —A + a in  with Dirichlet boundary conditions is coercive (which, in particular,
is the case if a is critical), then it has a Green’s function G, satisfying

—Ax Ga(x,y) +a(x) Ga(x, y) =4mwdy in Q,

(1.2)
Gya(x,y)=0 on 0%2.
The regular part of G, is defined by
1
Hy(x,y) := — — G4(x,y). (1.3)

lx — vl
It is well-known that for each x € Q the function H,(x, -), which is originally defined in
Q \ {x}, extends to a continuous function in 2 and we abbreviate

$a(x) := Ha(x, x).
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It has been understood that the function ¢, is relevant for problems involving the critical
Sobolev exponent, see, e.g., [27] and [4]. For the problem at hand, it was shown in [6, Thm.
7] that if ¢,(x) < O for some x € 2, then S(a) < S. (In [6] this is attributed to Schoen
[27] and a work in preparation by McLeod.) Conversely, it was conjectured in [6] and proved
by Druet in [12] that if S(a) < S, then ¢,(x) < O for some x € Q. An alternative proof,
assuming only continuity of a, is given in [15]. Thus, the (non-local) condition ming ¢, < 0
is necessary and sufficient for S(a) < S, and replaces the (local) condition minga < 0 in
dimensions N > 4.
The above results imply that, if a is critical, then ming ¢, = 0. In particular, the set

Ny ={x€Q: ¢pa(x) =0}

is non-empty.

1.2 Main results

Let us proceed to a precise statement of our main results. Throughout this paper we work
under the following assumption.

Assumption 1.2 The set Q@ C RR3 is open, bounded and has a C? boundary. The function a
satisfies a € C(2) N C1(£2) and is critical in 2. Moreover,

a(x) <0 forall x € N,. (1.4)

Finally, V € L*°(Q).

We will see in Corollary 2.2 that criticality of a alone implies a(x) < 0 for all x € N.
Therefore assumption (1.4) is not severe.
We set

Qv (x) :=/QV<y)Ga(x,y)2dy, xeQ, (1.5)
and

Ng(V) :={x e N, : Qy(x) <O0}.

The following is our main result.

Theorem 1.3 Assume that N, (V) # @. Then S(a + €V) < S forall € > 0 and

lim

1.6
e—>0+ € ( )

S@a+eV)—§ (3)5 1 ov()?
Her =t o (3 ,

-] —— sup
? 872 veNu(v) 1a()]
We supplement this theorem with a result for the opposite case where N, (V) = @.

Theorem 1.4 Assume that N;(V) = @. Then S(a + €V) = S + o(e?) as € — 0+ If, in
addition, Qv (x) > 0 for all x € Ny, then S(a + €V) = S for all sufficiently small € > 0.

It follows from the above two theorems that the condition AV, (V) # @ is ‘almost’ necessary

for the inequality S(a + €V) < S for all small € > 0. Only the case where minx;, Qv =0
is left open.
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Example 1.5 When Q = B is the unit ball in R3, then it is well-known that the constant func-
tiona = —m2 /4 is critical and that in this case N, = {0} and G, (0, y) = |y|~! cos(|y|/2);
see, e.g., [6]. Thus, with

cos?(w|yl/2)

e

qv = Qv(0) = /B Vy)

we have

1,
—qy ifgy <0

li
m 271'4

e—>0+ €

Sa+eV)y—S 3\ 2
()

and S(a + €V) = S for all sufficiently small € > 0 if gy > 0.

Remark 1.6 1t is instructive to compare our results here with the results for the analogous
problem

2 2
. Jo(Vul* +eVu?)dx
SEV) = 1nf] NN NN
0ueH () ([, ul>N/ dx)

in dimension N > 4. Let Sy be the sharp constant in the Sobolev inequality in RY. From
[8] we know that S(eV) < Sy if and only if V(x) < O for some x € 2, and therefore we
focus on the case where N (V) :={x € Q: V(x) < 0} # @. Then
N-=2
[V(x)|¥V=% N2 N=2 o,
S(eV)=8v—Cy sup ———5—€eN-4 +o(eN=4) if N=>5, (1.7)
xeN (V) ¢o(x)N—4

$o(x) )

4
S(eV) =Sy —exp (= (o) inf 0

f N=4, (1.8)
with explicit constants Cy depending only on N. Note that, as a reflection of the Brézis—
Nirenberg phenomenon, V enters pointwisely into the asymptotic coefficient in (1.7) and
(1.8), while it enters non-locally through Qv into the asymptotic coefficient in Theorem 1.3.

Asymptotics (1.7) and (1.8) in the case where V is a negative constant are essentially
contained in [30]; see also [32] for related results. The case of general V e C(2) canbe treated
by similar methods. For details, we refer to [18]. We emphasize that the proof of Theorem
1.3 is considerably more complicated than that of (1.7) and (1.8), since the expansion in
Theorem 1.3 should rather be thought of as a higher order expansion of S(a +¢€V) — S where
the coefficient of the term of order € vanishes due to criticality. In the higher dimensional
context, no such cancellation occurs.

1.3 Behavior of almost minimizers

We prove Theorems 1.3 and 1.4 by proving upper and lower bounds on S(a + € V). For the
upper bound it suffices to evaluate S,y [u] for an appropriately chosen family of functions
u. For the lower bound we need to evaluate the same quantity where now u. is an optimizer
for S(a + €V). To do so, we will show that u, is essentially of the same form as the family
chosen to prove the upper bound. In fact, we will not use the minimality of the u, and show
that, more generally, all ‘almost minimizers’ have essentially the same form as the functions
chosen for the upper bound.
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Given earlier works and, in particular, those by Druet [12] and Esposito [15] it is not
surprising that almost minimizers concentrate at a point in the set A;. One of our new
contributions is to show that this concentration happens at a point in the subset NV, (V) and,
more precisely, at a point in N (V) where the supremum in (1.6) is attained.

In order to state our theorem about almost minimizers, for x € Q and A > 0, let

2172
(1 + 22y = xP)I72°

The functions Uy, and their multiples are precisely the optimizers of the Sobolev inequality
(1.1); see the references mentioned above and [22, Cor. I.1]. We introduce PU, ; € HO1 ()
as the unique function satisfying

APUy, = AUy, inQ, PU.; =0 ondS. (1.9)

U p(y) =

Moreover, let
Ty = span{PUy ;. 0, PUy ;. 0y, PU.; (i = 1,2,3)}
and let TxJ,'A be the orthogonal complement of 7 ; in HO1 (£2) with respect to the inner product

fQ Vu - Vvdy. Finally, by Iy  and Hi ,, we denote the orthogonal projections in HO1 (2)
onto Ty ; and TXJ-A, respectively.

Theorem 1.7 Assume that N, (V) # (. Let (ue) C Hé (R2) be a family of functions such that

3
S —Sa+ev $\?
lim Satevluel ZS@teV) /ugdx: 2) . (1.10)
e—0 S—S(a+¢€V) Q 3

Then there are (x¢) C 2, (A¢) C (0, 00) and (ae) C R such that

e = ae (PUs s, = 42T , (Hae, ) = HoGxe ) +7) (L11)

and, along a subsequence,

2 2
Xe = xo for some xog € N(V) with M _ Ov(y) ,
la@o)l  yeni(v) la()l

Palxe) = o(e),

lim €, = 4r2 19CO
=

€0 Qv (xo)|’
o =5+ O(e) forsomes € {£1}.

Finally, re € T;-; and ||Vre| = o(e).

The L° normalization in (1.10) is chosen in view of

3
S\ 2
Ub,dy=(=) .
/Rs“y <3)

There is a huge literature on blow-up results for solutions of equations involving the
critical Sobolev exponent. Early contributions related to the problem we are considering are,
for instance, [2,9,10,19,23]; see also the book [13] for more recent developments and further
references. Here we follow a somewhat different philosophy and focus not on the equation
satisfied by the minimizers, but solely on their minimality property. Therefore our proofs also
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apply to almost minimizers in the sense of (1.10) and we obtain blow-up results for those
as well. This extension is not really necessary for the proof of our main results, Theorems
1.3 and 1.4, but it is crucial when studying parabolic or hyperbolic versions of the problem
studied here. On the other hand, with our variational methods we cannot say anything about
non-minimizing solutions of the corresponding equation and our blow-up bounds are only
obtained in H' instead of L° norm. Other related works that study Sobolev critical problems
from a variational point of view are, for instance, [1,16,17].

As already mentioned before, the works of Druet [12] and Esposito [15], and similarly
[1,17] in related problems, show that concentration happens at a point in N,. In terms of
S(a + €V), this corresponds essentially to the fact that S(a + €V) = S + o(€). In order to
go further than that and to compute the coefficient of €2, we need to prove that concentration
happens in the subset NV, (V) at a point where the supremum in (1.6) is attained.

The strategy of the proof of the lower bound is to expand the quotient S,y [u¢] for an
almost minimizer u as precisely as allowed by the available information on u., then to use a
coercivity bound to deduce that certain terms are small and thereby improving our knowledge
about u.. We repeat this procedure three times (namely, in Sects. 4, 5 and 6). Therefore, a
key tool in our analysis is the coercivity of the quadratic form

/;2(|Vv|2 +av? - 15 U;‘,/\vz)dx, S TXJ:,\,

provided that A dist(x, d€2) is sufficiently large; see Lemma 4.3. This coercivity was proved
by Esposito [15] and comes ultimately from the non-degeneracy of the Sobolev minimizer
U, ;.. Bsposito used this bound to obtain an a priori bound on the term o, e — PU e he 1D
Theorem 1.7. We will use it for the same purpose in Proposition 4.1, but then we will use it two
more times in Propositions 5.1 and in Lemma 6.6 in order to get bounds on ot lye—pP Ui o+
2V (Hy(xe, ) — Ho(xe, ) and a;'ue — PUy 5 + 27211 (Ha(xe, ) — Ho(xe, ),
respectively. After the last step we are able to compute the energy to within o(e?). We
emphasize that in principle there is nothing preventing us from continuing this procedure
and computing the energy to even higher precision.

Let us briefly comment on a surprising technical subtlety in our proof. While Theorem
1.7 says that almost minimizers are essentially given by

PU; — 27210, (Ha(x, ) — Ho(x, )

with x € N, (V) a maximum point for the right side in (1.6) and A proportional to € !, to
prove the upper bound we use the simpler functions

PUy s =272 (Ha(x, ) = Ho(x, )
(with the same choices of x and X). The difference between the two functions, namely
—27V2 T (Ha(x, ) = Ho(x, ),

can be shown to be of order € (when A is proportional to ¢! ), but not smaller; see Remark
6.2. Therefore it is not at all obvious that the two families of functions lead to the same
(within o(e2)) value of Sa+evI-]. The fact that they do is contained in Lemma 6.3, where the
contributions of —A~1/2 T1 x.2(Hy(x, -) — Ho(x, -)) to the numerator and to the denominator
are shown to cancel each other to within o(€2).

At first sight, the problem considered in this paper resembles the problem of minimizing
the quotient [y (|Vu|? + €V |u|P)dx/ [ |u|? dx for p < N, which is a classical prob-
lem for p = 2 [28] motivated by quantum mechanics and which was studied in [14] for
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general p. The underlying mechanism, however, is rather different. In these works almost
minimizers spread out, whereas here and in its higher dimensional version [18] they concen-
trate. The concentration regime is much more sensitive to the local details of the perturbation
and necessitates, in particular, the use of orthogonality conditions in TXJ-A and the resulting
coercivity. ’

1.4 Notation

Given a set M and two functions fi, f» : M — R, we write fj(m) < fa(m) if there is a
numerical constant ¢ such that fj(m) < c¢ f>(m) for all m € M. The symbol 2 is defined
analogously. For any p € [1, oo] and u € L?P(2) we denote

llullp = llullLr(s)-

If p = 2, we typically drop the subscript and write ||lu|| = [lull 2 (q)-

2 Upper bound on S(a + €V)

Recall that we always work under Assumption 1.2. In this section (and only in this section),
however, we do not assume (1.4).

2.1 Statement of the bounds and consequences

Our goal in this section is to prove an upper bound on S(a + € V) by evaluating the quotient
Sa+ev|-] on a certain family of trial functions. For x € Q and A > 0, let

Y (y) 1= PUx . (y) — A2 (Hy(x, y) — Ho(x, y)). 2.1)

This function belongs to HOl (£2). We shall prove the following expansions.

Theorem 2.1 As A — oo, uniformly for x in compact subsets of 2 and for € > 0,

/Q (Ve + @+ eV)y2,) dy
3

-3 (E) f_ 47 Pg(x) Al 2@ —myax) a2 + ;QV()C)

3
+o(x7Y) +o(er™ (2.2)
and
S\ 3
f Yl dy = <§> — 87 ()T + 87 a(x) A2 + 1572 pu ()2 172 + 0(A72).
Q
(2.3)
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In particular,

1

-2
) 47 ¢ (x) A"

W]

Sa+€V[¢x,A] =5+ <
1

+ <§>_§ (Fove —27%a()a™ - (1577 — 128) gu(0)? 272

+0(72) +o(er™h). (2.4

In the proof of Theorem 2.1 we do not use the fact that g is critical. We only use the fact
that —A + a is coercive. In the following corollary we use criticality.

Corollary 2.2 One has ¢,(x) > 0 forall x € Q and a(x) < 0 for all x € N,.

The first part of this corollary appears in [6, Thm. 7]. Note that the second part is non-trivial
since we do not assume (1.4).

Proof We apply (2.4) with € = 0. We get Sy[¥x1] = S+ (5/3)"24n ¢, (x)A "1 +o(x71)
for any fixed x € Q. Since § = S(a) < S;[V¥x 1], we infer that ¢,(x) > O for all x € Q.
Similarly, Sy[¥x2] = § — (S/3)_1/22712a(x))»_2 + o(A72) for any fixed x € N, implies
that a(x) < O for all x € N. |

Corollary 2.3 Assume that N, (V) # @. Then S(a+¢€V) < Sforalle > 0and, as € — 0+,

2
<=7 Sup Qv () e+ 0(62),
8 xeNy (V) la(x)]

5\
Sa+¢eV)y<S§— <§>
where the right side is to be understood as —o0 if a(x) = 0 for some x € N, (V).

Proof We fix x € N, and k > 0 and apply (2.4) with 1 = (ke)~1. Since S(a+e€V) <
Sal¥x.2], we obtain

S(a+eV)—S
lim sup% < (83712 <k/ V G2(x, y) dy — 2712a(x)k2).
€ Q

e—>0
Thus,
S V)y—S§
limsup% <(§/3)7'%  inf (k/ V G(x,y)dy — 272 a(x) k2>,
€0 € x€Ny, k>0 Q

which implies the claimed upper bound.

Foreachu € HO1 (2), € > Sy4ev[u]is an affine linear function, and therefore its infimum
over u, which is € — S(a + €V), is concave. Since S(a + € V) < § for all sufficiently small
€ > 0, as we have just shown, we conclude that S(a +€V) < S forall € > 0. ]

2.2 Auxiliary facts

In this preliminary subsection we collect some expansions that will be useful in the proof of
Theorem 2.1 as well as later on. In order to emphasize that criticality is not needed, we state
them for a function b € C(Q2) N C1() such that the operator —A + b in Q with Dirichlet
boundary conditions is coercive.
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Lemma 2.4 As A — oo, uniformly in x from compact subsets of <2,
| =272 Hy(x, ) = 272Gp(x, )]s = OG72),
(U =272 Hy(x, ) = 271 Gp(x, 9%, = 0072 Ina).

Proof Since

[x =yl V1+A12x—y?

1 N
(Usp. = 27 PH(x, ) = 272Gy (x, y) = =27 12 ( ) ’

the first bound follows immediately from

1 A 1 1
0< — < min { 573 3 } . 2.5)
lx =yl 14+ 22x —y|? [x =y 22%|x — y|°

To prove the second bound, we write

Uy — 27V Hy(x, y)? =271 Go(x, y)

_ )fl( 1 A2 )
Ix =y  14+22x —y|?

1 A
+ 207 Hy (x, y) - :
lx =yl 14+221x —y?)

The last term on the right side can be bounded as before, using the fact that Hy(x, -) is
uniformly bounded in L*°(€2) for x in compact subsets of 2, see (2.6) below. The first term
on the right side can be bounded using

0 22 . { 1 1 }
< - < min , .
X —ylF 142 x —y)? v = y[27 A% x — yI*
This proves the lemma. O

Lemma 2.5 As A — oo, uniformly for x in compact subsets of €2,
4 _ 4 _ _
/ UL Hy(x, ) dy = == ¢p(0) 2712 = == b(0) 472 4+ 0077
Q

Proof Step 1 We claim that, with d(x) := dist(x, 9%Q),
I Hp(x, Moo < d(x)~' forall x € Q. (2.6)

Indeed, since Hy(x, -) is harmonic in €2, the maximum principle implies

I Ho(x, )leo = sup Ho(x,y) =d(x)~". 2.7
yeo

In order to deduce (2.6) we note that the resolvent identity implies

1
Hp(x,y) — Ho(x,y) = H/ Go(x, 2)b(2)Gp(z, y) dz. (2.8)
Q
The claim now follows from the fact that

sup fGo(x,z> Gy, y)dz < oc.
Q

x,yeQ
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Step 2 We claim that for any x € 2 there is a &, € R3 such that

b
Hb<x,y>=Hb<x,x)+sx~<y—x)—%|y—x|+o(|y—x|) as y - x. (29)

The asymptotics are uniform for x from compact subsets of 2.
To prove this, let

Vi (y) == Hb(x,y)—Hb(x,x)Jr@Iy—xI. (2.10)
Using the equation
Ay Hy(x,y) +a(y) Ga(x,y) =0 2.11)
as well as the fact that Alx| = 2|x|~! as distributions we see that W, is a distributional
solution of
— AW (y) = Fe(y) in Q, (2.12)
where
Fu0) = 222 b i, ),

By Step 1 and the assumption b € C(Q) N C 1(Q), we have F, € L (€2). In particular,
F, e LIPOC(Q) for any 3 < p < oo and therefore, by elliptic regularity (see, e.g., [21, Thm.
10.2]), ¥, € CI]O’g(Q) for « = 1 — 3/p. Thus, in particular, ¥, € cl). Inserting the
Taylor expansion

Yy (y) = vy\l"x(x) (y—=x)t+o(y—=x|) as y—>x

into (2.10), we obtain the claim with £, = V,W,(x). The uniformity statement follows
from the fact that if x is from a compact set K C €2, then there is an open set w with
K C w C @ C Q such that the norm of F, in L?(w) is uniformly bounded for x € K.

Step 3 We now complete the proof of the lemma. Let 0 < p < d(x) and write, using Step
2,

/ U2, Hy(x, y)dy = ¢p(x) / U, dy+ / U6 (v —x)dy
Q B, (x)

By(x)
b(x)
2 JB,w

+o0 / U2, ly —x|dy +/ U2, Hy(x, y)dy
B, (x) Q\B) (x)

with p — 0 as . — oo. Since x belongs to a compact subset of 2, we have d(x) = 1, and
therefore the bound (2.6) from Step 1 implies

/ US. Hy(x.y)dy| < / US dy <1124 /oo 12 dt
X, y)ayr s y = T —=5
Q\B,(x) o Q\B, (x) o o (1412)3/2

-0 ();5/2 pfz) .

U, ly —x|dy
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Similarly,

Mo 2 dt 4
US, dy =2~ 12 471/ L A e VO (kfs/zpfz)
/z.gp(x) o o (141232 3

/ U? ur—ﬂdy=4nx—%</w £ dr -1/m £ di )
B o (452 [, (1412572

8
- 7” AI40 <)F5/2 p*l) .

and

Finally, since Uy, is radial about x,
/ UL (& - (v = x)dy =0. (2.13)
By (x)

Choosing p — 0 with Ap? — 0o we obtain the conclusion of the lemma. O

The argument in Step 2 is the only place in this paper where we use the C! assumption
on a. Clearly the same proof would work if we only assumed a € C%(2) for some @ > 0.

Lemma 2.6 As A — oo, uniformly for x in compact subsets of ,
f ULy Hy(e, )2 dy = 722 ¢p(0)? 27" + 007D,
Q

The proof is similar, but simpler than that of Lemma 2.5 and is omitted. We only note that
the constant comes from

f U, d _4“_1/00 2 di =gt
po T o 1+ .

Lemma 2.7 As x — oo, uniformly for x from compact subsets of 2,

lx — yl

[ b Ux.uy)( . M(y)) dy = 2(r = 2)b(@) 272 + 0 (1 log ).

_1
Proof Let0 < p < dist(x, 9R). Since = — Ux,1(y) = O forany x, y € ©, the differen-
tiability of b at x implies

1

1
/ b(y) Us 1 () ( - x,m) dy
B,(x) lx — ¥l

2

lx — yl

- x,)»(y)) dy + RA

with
1

A2
[R;.| 5/ [x =y Uxp () — U (y) | dy
By(x) lx — yl

3 pPA 12 t3 3
< AT ——— —— |dt =0 (A" In(xp)). 2.14
N /0 < e 1+t2) ( n(xp)) (2.14)
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Moreover,
1

/ Uea [ 2= 0 ) dy =224 /M< ! a >d
x, A — Ux Yy y= T . p— t
Bw lx =yl g 0 \WI1+2 14172

=722 (m —2) (1 + O((hp) ™ h).

On the complement of B, (x) we use the bound (2.5), which gives

1
2

/ by Usn () U () | d <r2/w a 0~ 1Y)
Y) Uri(y — Ui | dy| S — - =0(p .
Q\B,(x) ! b=yl " o (L1212

Choosing p = 1/1n X we obtain the bound in the lemma. O

The same proof shows that if b is merely continuous, but not necessarily C', then the
expansion still holds with an error o(1~2). This would be sufficient for our analysis.

2.3 Expansion of the numerator
One easily checks that for all x € R3 and A > 0,

— AUy, =3U3,. (2.15)
This, together with the Eq. (2.11), the harmonicity of Hy(x, -) and (1.9), implies that

1 1
— Ay (3) = =AU i (0) + 272 AyHo(x, y) = 3U3 ,(») — 2~ 2a(y) Galx, y).

(2.16)
We now introduce f ; by
PUy s = U =272 Ho(x, ) = fes @.17)
and recall that [24, Prop. 1 (b)], with d := dist(x, 02),
I ferlloo = O T2d 7). (2.18)

Hence, by (2.16) and the fact that ¥, ; vanishes on the boundary,

/ Vel = / (3U3,00 =273 a() Gae, 1) (Uer0) =277 Ha(x,3) = fin () dy
Q Q
=3/ Uf.x(y)dy—ﬂ_%/ U3, (y) Ha(x, y) dy
Q ' Q
- r‘”/ a() Gax, y) (Una() =272 Ho(x, ) dy
Q

— [ (3U20) =47 a0) Gt ) fra ) d. (2.19)

It is easy to see that

/ '3 Uy, () — 277 aly) Gal(x, y)‘ dy = 0(x"1%)
Q

and therefore, by (2.18) and the fact that x is in a compact subset of €2,

/Q (3 U)f,x()’) —r a(y) Ga(x, y)) fen(dy = 00.77).

@ Springer



Energy asymptotics in the 3D Brezis-Nirenberg problem Page 130f46 58

A simple computation shows that the first term on the right side of (2.19) is

3
S\ 2
/ U, dy = / US,dy+0073) = (§> +0O0). (2.20)
Q Rn

For the second term we use Lemma 2.5 and obtain

1

3A2 / U2, () Ha(x, y)dy = 4m ¢ ()1~ — dma(x)A ™2 + o(A72).
Q

We will combine the third term with the term coming from fQ ax//f’ 5 dy.
Using again expansion (2.17) of PU, ; we find

/Q(“ + vy, (ndy = /Qm +eV) (Uon =272 Hy(x, ) dy
- Z/Q(a +eV)(Urp = 272 Hy(x, ) frpdy + fg(a +eV)fdy.
Using (2.18) and the fact that x is in a compact subset of €2 it is easy to see that
-2 fg @+ eV)(Uyp — 22 Ha(x, ) frendy + fQ (@+eV)fi,dy=00"1+e).

To summarize, we have shown that

/ (VY lP +ay?,)dy =3 <§) — 47 G () A +Ama(x) AT+ T(x, )
Q

be / V(Usr — 22 Ho (e, y)2 dy + 0(h=2) + O(er™)
Q

with

A—1/2
T(x,}) = / a(y) (Usp(y) =272 Hy(x, y) (Umy) - )dy.
Q |x — |

Similarly as in the proof of Lemma 2.7 one finds that

-1/2

372 [ at) Hux, ) (Z— = Ues))dy = 067 i,

lx =yl
Hence, by Lemma 2.7,
T(x, %) = —=2m(7 —2)a(x) A2 +o(x72).
Finally, by Lemma 2.4,
/Q V(U — 2" Y2 Hy (x, ) dy = 27! /Q VGa(x,y)*dy + O 2Inh).
This proves the first assertion in Theorem 2.1.
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2.4 Expansion of the denominator

By the decomposition (2.17) for PUy ; we obtain
/Qw)?,kdy = fg(ux,x — 272 Hy(x, y)8 dy + O(IUx 3 — 272 Hay (2, 12N frnlloo + 1 i 1)

Using (2.6) and (2.18), together with the fact that x is in a compact subset of 2, we see that
the remainder term is O(A~3). Next, we expand

/ (Uxp = 27" Ha(x, y))°dy
Q
:./QU)?’Ady—6A‘1/2/£2U3,)\Ha(x,y)dy+ISA_I/QU;")\HQ(x,y)zdy
+ OO PNU IR Ha0x, )13+ 27 I Ha(x, )119).
Using (2.6), together with the fact that x is in a compact subset of €2, we see that the remainder

term is O(A 73 In ). The first three terms on the right side are evaluated in (2.20) and Lemmas
2.5 and 2.6. This proves the second assertion in Theorem 2.1.

2.5 Expansion of the quotient

Expansion (2.3) implies that

S13 reNTz /5\ 28
6 N e e on -1
(o) "=() )
S\?( 8n 5 , 2 64x? 5\ . s
‘f‘(g) (—7a(x)—57'r Pa(x) +§W¢a()€) )A
+o(r72).

Expansion (2.4) now follows by multiplying the previous equation with (2.2). This concludes
the proof of Theorem 2.1.

3 Lower bound on S(a + €V): preliminaries

3.1 The asymptotic form of almost minimizers

The remainder of this paper is concerned with proving a lower bound on S(a + €V) that
matches the upper bound from Corollary 2.3. We will establish this by proving that functions
ue for which Sy ey [uc] is ‘close’ to S(a + €V) are ‘close’ to the functions v, ; used in the
upper bound for certain x and A depending on €. We will prove this in several steps. The very

first step is the following proposition.

Proposition 3.1 Let (u.) C HO1 (R2) be a sequence of functions satisfying

Sureviuel = S+ o(1), /uﬁdx = (§/3)3. (3.1)
Q
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Then, along a subsequence,
e = ate (PUx, 3 + we) (3.2)
where
ae — s forsomes € {—1,+1},
Xe — xo for some xg € Q,
‘ (3.3)
rede — 00,
IVwel = 0 and we € Txi)‘e.
Here d, =dist(xg, 0Q2).

If the u, are minimizers for S(a + €V), and therefore solutions to the corresponding
Euler-Lagrange equation, this proposition is well-known and goes back to work of Struwe
[29] and Bahri—Coron [5]. The result for almost minimizers is also well-known to specialists,
but since we have not been able to find a proof in the literature, we include one in Appendix B.
Here we only emphasize that the fact that u. converges weakly to zero in HO1 (£2) is deduced

from a theorem of Druet [12] which says that S(a) is not attained for critical a. (Note that this
part of the paper [12] is valid for a € L3/?(2), without any further regularity requirement.)

Convention From now on we will assume that
Sa+eV)<S§ foralle >0 3.4

and that (u.) satisfies (1.10). In particular, assumption (3.1) is satisfied. We will always
work with a sequence of €’s for which the conclusions of Proposition 3.1 hold. To enhance
readability, we will drop the index € from o, x¢, Ae, de and we.

4 A priori bounds
4.1 Statement of the bounds

Erom Proposition 3.1 we know that || Vw|| = o(1) and that the limit point xo of (x¢) lies in
2. The following proposition, which is the main result of this section, improves both these
results.

Proposition 4.1 Ase — O,
IVw| =0 (712, .1
d'=00) (4.2)
and
A(S —=Sa+eV)=0) and A(Ssieviuc] — S(a+€V)) =o(l). (4.3)

The bounds (4.1) and (4.2) were shown in [15, Lem. 2.2 and Thm. 1.1] in the case where
ue is a minimizer for S(a + € V). Since the proof in [15] uses the Euler-Lagrange equation
satisfied by minimizers, this proof is not applicable in our case. We will replace the use of
the Euler-Lagrange equation by a suitable expansion of S,cv[uc], which is carried out in
Sect. 4.2. The other ingredient in the proof of [15, Lem. 2.2] and in our proof is the coercivity
of a certain quadratic form, see Lemma 4.3 in Sect. 4.3. Finally, in Sect. 4.4 we will prove
Proposition 4.1.
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4.2 A first expansion

In this subsection, we shall prove the following lemma.

Lemma4.2 Ase — 0,

Satrevlugl =S+ (5/3)7Pango(0)r~" + (/3)”"2 / (Vwl? +aw? — 15U%, w?) dy
Q

+ 0 (712)Vull) + o((@n)™h) + o(IVuw||?).

Proofof Lemma 4.2 We will expand separately the numerator and the denominator in

Satevlue].
Expansion of the numerator Since w is orthogonal to PU, we have

a—2/ |Vu€|2dy:/ |VPUX,)\|2dy+/ [Vw|>dy. 4.4)
Q Q Q

The first term on the right side is computed in (A.1). The other terms in the numerator are

ot_Z/(a—l—eV)ugdy=/(a~|—eV)PUA2’xdy+2/(a—i—s)PU;L,xwdyﬁ—/‘(a+eV)w2dy.
Q Q Q Q

Since 0 < PUy ) < Uxp < A‘l/zlx — yl_l, see [24, Prop. 1], we have

d
/(a—l—eV)Pfody‘ < ||a+eV||OOA_1/ Y —oo.
Q ’ Qlx—yl
Clearly,
€ /QVw"‘dy‘se||vnoo||w||25e||V||oo||Vw||2=o(||Vw||2>,
and, by (A.5),

< lla + €Vl PUs s llessllwlle = O™ Vw]).

/ (a+€V)PU, wdx
Q

To summarize, the numerator is o2 times

3712832 _aggo()r~! + / (IVw]* + aw?) dy + O (A2 Vwll) + o((hd) ™) + o(| V).
Q
Expansion of the denominator We have
01_6/ ubdy :/ PUS,,\dy+6/ PUS,,\wdy—l—lS/ PU} ,w*dy + O(|Vuw|*).
Q Q Q Q

The first term on the right side is computed in (A.2). Moreover, abbreviating ¢y, =
A"V2Ho(x, ) + frs, so that, by (2.17), PU, 5 = Uy s — ¢y, we find

/QPUS’Awdy=/QUfYAwa’y+O(/Q U?’,\qu,,\lwmy—|—/S‘2¢27)\|w|dy>.

(Note that ¢y 3 > 0, since PU, ; < Uy by [24, Prop.1 (a)].) By (2.15), (1.9), the fact that
w vanishes on the boundary and since w € TXJ,',\’ we have

1 1
/ U wdy = < / (=AU, Dwdy = 7/ VPU,, -Vwdy =0.
Q 3Ja 3Ja
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Also, by the equation after [15, (10)],
fQ Ul b alwldy + /Q ¢3 lwldy = 0@ IVw]) = o(dn) ™).

Finally,

/ PUisz dy = / U;{sz dy+ O (/ U;J(ﬁx,,\wz dy —l—/ ¢;‘7Aw2 dy)

Q Q Q Q
and, since [|¢y.1]l6 = O((dr)~'/?) by [24, Prop. 1 (c)],

/Q U3 s pw® dy + fQ ¢y w” dy = o(|Vw|).
To summarize, we have shown that
oF(’/ngdy = (5/3)%% — 8rpo(x)r ! + 15/QU;{Aw2 dy + o((d\)™Y) + o(|Vwl?)

and therefore, by the rough bound [, U, yw?dy < Uy s lIglwliZ < 10U I2IVw]® = o(1),

—1/3 -1 -2
o? </ u?dy> = (E) g <§> 8—”¢0(x)r1 —455—2f U, w?dy
Q 3 3 3 Q ’
+o(( @)™ + o(IVw]?).

The lemma follows immediately from the expansions of the numerator and the denomi-
nator. O

4.3 Coercivity

We will frequently use the following bound from [15, Lem. 2.2].

Lemma 4.3 There are constants T,, < oo and p > 0 such that for all x € 2, all A > 0 with
dr > Ty andall v € TXJ:A,

/ (IVo* + av? — 15U, v?) dy > p/ [Vu|* dy. (4.5)
Q ' Q
The proof proceeds by compactness, using the inequality [24, (D.1)]

4
/Q(|Vv|2 — 15U ,v%) dy > 7/Q|Vz)|zdy forall v e T5.

For details of the proof we refer to [15].

4.4 Proof of Proposition 4.1

We combine the expansion from Lemma 4.2 with the coercivity bound from Lemma 4.3 and
the fact that ¢ := infcq dist(y, 0Q)¢o(y) > 0, see [24, (2.8)] or [16, Lem. 8.3]. (Note that
this bound uses the C? assumption on 9€2.) Thus,

Sateviuel = S+ ((S/3)72amc + o)) (@)™
+((8/3)72p + o)) [Vw|I* + O3 Vw]).
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Since A~12||Vw|| < 8||Vw]||> + (48)~'A~! for every § > 0, we obtain, for all sufficiently
small € > 0 and some constants ¢y, ¢ > 0 and C < oo independent of €,

CA7 ' 4 (Suteviuel — S(@+eV)) = S — S(a+eV) +c1(dr) " + ol Vw2
By assumption (1.10), this becomes
CrA7' = (14 0(1) (S —S@+eV) +c1dV) ™" + 2| Vwl.

Since all three terms on the right side are non-negative, we obtain (4.1), (4.2) and the first
bound in (4.3). The second bound in (4.3) follows from the first one by assumption (1.10).
This completes the proof of the proposition.

5 A priori bounds reloaded

5.1 Statement and heuristics for the improved a priori bound

In order to prove a sufficiently precise lower bound on S(a + €V) we need more detailed
information on the almost minimizers u .. Here we extract the leading term from the remainder
term w = w, in (3.2).

Proposition 5.1 One has, as € — 0,
AMS —S@a+€V)) =o(l), ¢s(x)=o0(1) 5.1
and
w=—A""Y2(H,(x,) — Ho(x.")) +q with |[Vq|l =o0(1""). (5.2)

Note that the second statement in (5.1) implies that ¢, (xo) = O for the limit point x¢ in
(3.3). In particular, together with Corollary 2.2, we obtain ming, ¢, = O for critical a, which
is Druet’s theorem [12]. Our proof, which is closely related to that by Esposito [15], uses
another theorem of Druet, which says that S(a) is not attained for critical a [12, Step 1] (see
Proposition 3.1), but is otherwise independent of [12].

The proof of Proposition 5.1 is given at the end of this section. Let us explain the heuristics
behind the proof. In Lemma 5.2 we will derive the following expansion,

1
S -2
Suteviugl =S+~ <§>

(471 ba(x) + ()" //Q . Go(x, »)a(y)Galy, y/)a(y/)Go(y’,X)dydy/)

3

Note that this is an improvement over the expansion in Lemma 4.2, which only had a remain-
der O(A~"). This improvement is possible thanks to the information from Proposition 4.1.

From the expansion (5.3) we want to determine the asymptotic form of w. In order to
(almost) minimize the quotient S,y [u.] the function w will (almost) minimize the expres-
sion

1
S\ 2
+(7> /(|Vw|2+aw2+2x_l/2aGo(x,y)w—ISUisz)dy—i-o()\_l). (5.3)
Q

/Q (|Vw|2 +aw? + 22" 2aGy (x, yyw — 15 U;")\w2) dy.
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This is quadratic and linear in w, so it can be minimized by ‘completing a square’. If the
term —15U ;‘ , were absent, then the minimum would be

-2 @)t f /Q QGo(x,y)a(y)Ga(y,y/>a<y’>Go(yﬂx)dydy/

and the optimal choice for w would be —a172 (Hy(x,-) — Ho(x,-)). Using the positive
contribution that arises when completing the square, we will be able to show that if u. almost
minimizes S(a + €V), then w almost minimizes the above problem and is therefore almost
equal to —2"V2(H, (x, )= Hy(x, ). Proposition 5.1 provides a quantitative version of these
heuristics.

As the above argument shows, the main difficulty will be to show that the term —15 U ;‘. 5 18

negligible to within o(A™ 1. This does not follow from a straightforward bound since || Vw 112
is only @(A~1). The orthogonality conditions satisfied by w will play an important role.

5.2 A second expansion

In this subsection, we shall prove the following lemma.

Lemmab5.2 Ase — 0,

Saveviuel =S +27"

S -2
(5) (4n $a () + (41! / /Q QGo<x,y>a<y)Ga<y,y’)a(y’)Go(y’,xwydy’)

1
S\ "2
+ <*> f (|Vw|2 + aw? +22712aGo(x, y)w — 15 U;")\wz) dy +o(07h).
Q

3
5.4

Proof Expansion of the numerator We claim that

05_2/ (|Vu£|2 +au§ + eVuz) dy = 371/283/2 _ -1 (47r¢)0(x) — / aGo(x, y)2 dy)
Q Q

+ / (IVw|* + aw* + 2272 a Go(x, y)w) dy + o(A7"). (5.5)
Q

Indeed, arguing as in the proof of Lemma 4.2 and using the bounds on d and || Vw|| from
Proposition 4.1, we obtain

“_2/ (Vue* +au? + eVuydy = 37178% — dmgo(n)r™ +/ aPU}, dy
@ Q

+/ (|Vw|2 +aw’+2a PUx,;Lw) dy + o(x™ .
Q
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Note that here we have kept the term fQ a(P Ufy,\ + 2PU, ,w)dy instead of estimating it.
We now treat this contribution more carefully. We expand P Uy  as in (2.17), which leads to

/a(PUf,)L—i—ZPUX,xw)dy
Q
= / a Uy — 272 Hy(x, ) 4 2(Uy 5. — 272 Hy(x, y))w) dy
Q

—2[ a(PUx,)\-I—w)fx,/\dy—/ a xz,,\dy-
Q Q

By (2.18) and (A.5), taking into account (4.2),

/Qa (2(PU s +w) frn + f72) dy’

= O (lallos(IPUs s llessll flle + llwllll fe.xlless + Il fenll®)
=00

On the other hand, by Lemma 2.4,
/ a((Ues — 22 Ho(x, y))* + 2(Uy . — 272 Ho(x, y))w) dy
Q

= / a ()flGo(x, y)2 + 2)51/2G0(x, y)w) dy + (’)()F2 InA).
Q
This proves (5.5).

Expansion of the denominator Combining the bound from the proof of Lemma 4.2 with the
bounds on d and || Vw|| from Proposition 4.1, we obtain

-1/3 3
o? (fg u dy> =(§/3)" 12 4+ (5/3)—2?”4)0(;;»—‘ —455_2‘/£2Uixw2 dy +o(A™ .

(5.6)
Expansion of the quotient Multiplying (5.5) and (5.6) gives
Sarevluel = S +271(8/3)"Pangox) +171(5/3)7? /Q aGo(x, y)* dy
+(S/3)"1/2 /Q (IVwl* + aw? +227"2aGo(x, yyw — 15U}, w?) dy + oA 7).
The resolvent identity together with the symmetry Go(x, y) = Go(y, x) implies
/Q a()Go(x, )’ dy — (4m)™"! / /Q _, 60@0a()Ga(y.y)ak)Go(y' x) dy d’
= /Q Go(x, Y)a(y)Ga(y, x)dy =47 (¢a(x) — ¢po(x)) .

This completes the proof of the lemma. O

5.3 Regularization and coercivity

In this subsection we will show that the coercivity bound from Lemma 4.3 remains essentially
true after regularization. A convenient regularization procedure for us is a spectral cut-off.
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Namely, we denote by 1(—A + a < w) the spectral projection for the interval (—oo, ] of
the self-adjoint operator —A +a in L?(£2) with Dirichlet boundary condition. The parameter
1 here will be later chosen large depending on €.

Lemmab5.3 Letv e H(} (R2). Then for any u > 1,

IM(=A+a <l $ 1 IVYIl. (5.7)

Proof Let a— = max{0, —a}. By the maximum principle or the Trotter product formula, we
have

0<e"CAD(x x) < @) 32 el forall 1 > 0; (5.8)

see, e.g., [11, Thm. 2.4.4] for related estimates.
We denote by E, the eigenvalues of —A + a in L?*($2) and by ®,, the corresponding
L?-normalized eigenfunctions. We bound for any x € Q

[(L(=A +a < p)v) (x)|

> (@ )P (x)

Ep<p
12 _ 12
= (X El@nwl) (X Ee@P)
E,<p E,<p
We clearly have
D El(@y,v) < ZE (@, v)]> = (v, (A +a)v) S [ Vl|>.
En=p

The heat kernel bound (5.8) implies that for any s > O and r > 0
D IRaP <€ Y e, ()7 < eIl (4 T2,

En<s En<s
and choosing t = (3/2)(s + [la_|loo) "' we obtain for any s > 0,
e \3/2
Y0P = ()7 6 a2
6
E,<s
Thus, writing E~1 = 7 572 ds, we get

d
> E M@ / > @) PL(E, <s) fE 1Py S

E,<u E,<p L E, <m1n {i,s}

3/2 ds
= (=) / min { (e + lla—lle0)%, (s + lla— 1)} 5
6 E 52

The integral is easily seen to be bounded by a universal constant times
3/2
T i I
This proves the claimed bound. O

Lemma 5.4 There are constants T, < 0o, p > 0 and C < oo such that forall x € Q, A > 0
withd) > T,, and all v € T k and all p > 1 the function

vs = 1(—A+a>pv
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satisfies
/ (IVvs|* +avi — 15U, v2)dy > p/ Voo |2 dy — Cp' a1 Vo2, (5.9)
Q Q

Proof Step 1 We construct an orthonormal basis in 7y = Span{¢y, ..., ¢5}, where
¢1=PUx), ¢2=0PUxs, ¢j =0, ,PUrs, j=3,45
From [24, Appendix B] we know that, as . — oo,
IVgill ~ 1. IVl ~ 27" Vel ~ A, j=3.4,5, (5.10)

uniformly in x with Ad > T, where T is any fixed constant. Here ~ means that the quotient
of both quantities is bounded from above and away from zero. Let
~ ¢J

b= L j=1,....5, (5.11)
T v,

and
Gj,,(:=/gv$j-v$kdy, jok=1,...,5.
By [24, Appendix B] and (5.10),
Gjx:=00"" forallj#k and G, ;=1 forall,. (5.12)

Hence, if A is large enough, which follows from d) > T, with sufficiently large 7, since €2
is bounded, then G is invertible and

(G k=8 +007H. (5.13)
Hence, by the Gram—Schmidt procedure,
Y=Y (G j=1.....5 (5.14)
k
is an HOl (£2)-orthonormal basis of T .
Step 2 We decompose
v =v+vy with vy € Ty p and v, € TXJ:,\ (5.15)

and claim that
Vvl = 007 2u! 4 Vo). (5.16)
Since the v; are an orthonormal basis of T ;, we have
5
v = ijl/fj with m; ::/ V- Vus dy.

j=1 ¢

Since
2 2
[ vuiay = Yomd,
J

the claim (5.16) follows from

mj =002V vy forall j=1,...,5. (5.17)
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In order to prove the latter, we introduce

£ :-/V(l), Vs dy,
so that, by (5.14),

mj = Z(G_l/z)j,k .
k

Therefore, in view of (5.13), the claim (5.17) follows from
¢ =007 24 vy forall j=1,...,5. (5.18)

To prove (5.18), we use the fact that v € Txly)\ to find

zj:—/véj.vU<dy:f vo Ad;dy.
Q Q
Thus,

161 < llv<lioc | AG;]1.

According to (5.7) we have ||v< loo < w!'/4||Vv||. Thus, in order to complete the proof of
(5.18) we need to show that [|A¢;[l; = O("1/?) for j = 1,...,5. We have

—Agy = V173U, —Ady = Vea|'15 U,?,Aaxe,x,

—AQ; = |IVe;Il 7' 15U ,9;Ux s for j =3,4,5. (5.19)
Thus, the claimed bound on ||Ad i ll1 follows from (5.10) and straightforward bounds on
1Uxall5, 105Uy s lls and [|0;Uy 5 |l5. This completes the proof of (5.18) and therefore of

(5.16).
Step 3 By the orthogonal decomposition (5.15) we have

/|Vv>|2dy=/ |Vvu|2dy+/ VoL |2 dy.
Q Q Q

Moreover, we bound, with a parameter § > 0 to be determined,

/ )\U>dy =< (1+8 )/ )\U”dy+(1+8)/ U41Uldy

/auidy > —(1+3—1)/ |a|vﬁdy+/avidy—a/ la| v dy.
Q Q Q Q

/(IVv>|2+av — 15U, 02 )dy>/ (IVoL[* +avi — 15U, 3v7) dy
Q Q

and

Thus,

- af (lal + 15U{ )vi dy

/|Vv||| dy —(1+68~ )/(|a|+15 )\)v” dy.
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Clearly,
/Q(|a| +15U7 ;) 2% dy < (lallsj2 + 151Ux 2 llg) lzliE S I1Vzl? Yz e Hy(R). (5.20)

Sincev; € T, /\, Lemma 4.3 and (5.20) imply that, after increasing T if necessary, there are
8 > 0 and ¢ > 0 such that

/ (IVoL* +avi — 15U, 307 ) dy — 3/ (lal + 15U} v dy > c/ |V | dy.
Q Q Q
On the other hand, by (5.20) and (5.16),
/ (la| + 15U} vjdy < / Vo2 dy = 00" 12 v )?).
Q Q

This completes the proof of Lemma 5.4. O

5.4 Completing the square

The following lemma gives a lower bound on the term in (5.4) which involves w. As explained
above, this is the crucial step in the proof of Proposition 5.1.

Lemma5.5 For some constant ¢ > 0,

/ (|Vw|2 +aw? + ZA_l/zaGo(x, yyw — 15 Ui)\wz) dy
Q
> " dm)™! / / Go(x, »)a(y)Ga(y, y)a(y)Go(y', x)dy dy’
QxQ

+e|a+a) P+ (A +a) A G, -)H2 +007). (520
Proof For a parameter i > 1 to be specified later we decompose w = w~ + w~ with
ws =1(—A+a>pw, we=1(-A+a=<pw.
Then

/(|Vw|2+aw2)dy=/ (IVw=|* +aw )dy+/ (IVw<|* +awk)dy (5.22)
Q Q Q
and therefore, for any § > 0,

/ (IVwl* + aw? + 227 2aGo(x, yyw — 15U} ,w?) dy > I + I + R<(8) + R-(8),
Q
(5.23)

where

1. ::/Q(|Vw<|2+awi+2)ﬁl/2aGo(x,y)w<)dy,
I ::/ (IVws * + aw? — 15U} ,w?) dy,
Q
Ro(8) = —15(1 + 5~ )/ 4wk dy,

R-(8) := —155/ U w2 dy+2r1/2/ aGo(x, y)w- dy.
Q Q
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By completing the square we find

I = 3@ / / Golx. 1)a()Galy. ¥)a(y)Go(y'. x) dy dy’
QxQ
+cA+a) Pws + (—A+a) A PaGox, )|

and with 0 < ¢ < 1 to be determined we estimate

1> 3 an)! / /Q G )a0)Ga(y. Y1) Goly'. x) dy dy
teol(=A+a) Pw. + (A +a) a7 2aGox, |

=-2"@m)™! / /Q . Go(x, Y)a()Ga(y, y)a(y)Go(y', x) dy dy’

tel(=A+a) 2w+ (=A+a) 2 2aGo(x, )|

—c|—a+a)Pu|? - 2cr‘/2/ aGo(x, y)w- dy. (5.24)
Q

According to Lemma 5.4 there are p > 0 and C < oo such that for all sufficiently small
€ >0,

I > p/ Vw- P dy — Cu 2271 | V.
Q

Since a € L*°(2), we have
[(—=A +a) 22> < C'|Vz|? Vze Hi(Q). (5.25)
We apply this with © = w-. and infer that
I.+1.(8)+ R.(8) + R~

> tdm™! / /Q QGO(X,y)a(y)Ga(y,y/)a(y/)Go(y/,x) dydy'

2

+c +R1(8)+R2(8)3

A+ )" 2w+ (A +a) 2L aGox, )
Jr

where
Ri(8) = p||Vws ||*> — cC'|Vws |> — 158 /Q Ul w dy,
Ro(8) = —Cp A | Vwl? +2(1 — A~ 112 /Q aGo(x, yyw- dy
—15(1+6‘])/QU;{Awidy.

We now choose ¢ = min{1, p/(2C")}. Moreover, by (5.20) we can choose a § > 0, indepen-
dent of € and u such that

Ri(8) = 0.

From now on, we fix this value of §.
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It remains to show that R (8) is O(A~3/2) for an appropriate choice of . By (4.1) and
(5.25) and by the orthogonality (5.22) we have

O(rl)zf |Vw|2dyzf (|Vw|2+aw2)dy2/ (IVws > +aw?)dy = pllws >
Q Q Q

(5.26)
Thus, since a € L*°(£2) and since Go(x, -) is uniformly bounded in L?($2), we have
‘/ aGo(x, yyw- dy‘ Slwa | S p™ 2012
Q
Moreover, by Lemma 5.3,
/ Ul widy < ||w<||§o/ Ufsdy S u“znwnzf Ul dy S a2
Q Q R3
Thus,
Ry(®) 2 — (u'2a72 4 7271
With the choice y = A the right side becomes O(A~3/?), as claimed. O

Now we prove the main result of this section.

Proof of Proposition 5.1 Inserting (5.21) into (5.4) gives
Sareviugl = 8 +4m271(S/3)72¢, (x)

+ (/D72 (= + @) Pw + (—A + @) A aGo(x, )|+ 00,
(5.27)

We subtract S(a + € V) from both sides, multiply by A and take the limsup as € — 0+. Using
the second relation in (4.3) we obtain

0 > limsup (A(S — S(a + €V)) + 47 (S/3)"" ¢ (x)

e—0

+(8/372er | (A + ) Pw + (A + )77 aGo, ).

Since the three terms in the limsup are all non-negative (which for ¢, follows from Corollary
2.2), we deduce that

MS = S(a+eV)) =o(l), ¢a(x)=o0(l)
and
|(=A+a) 2w + (=A + @) 27 2aGo(x, ) |* = 007).
Since —A + a is coercive, the last bound implies
1,172 2 1
Hv(w F (A +a) A 2aG(x, ))H — o).
By the resolvent identity,
(—=A +a) 'aGo(x, ) = Go(x,) = Ga(x, ) = Hy(x, ) — Ho(x, "),

and therefore, setting ¢ := w + A~ V2(H,(x,) — Ho(x, ")), the previous bound can be
rewritten as || Vq/||?> = o(A~1). This completes the proof of the proposition. O
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6 A refined decomposition of almost minimizers

From Proposition 5.1 we infer that any sequence (u.) satisfying (1.10) can be decomposed
as

e = a (Yu+4),
where
Vg = PUxj — 272 (Hy(x, ) = Ho(x, )
is as in the proof of the upper bound, see (2.1), and where
IVgll = o(.~'/2).

Thus, expanding S,1cv[uc] leads to an expression that coincides with the upper bound in
Corollary 2.2 up to additional terms involving ¢. Using coercivity we will be able to show
that the contribution from

— L
r=1Iy,q,

the orthogonal projection of ¢ onto T o in Ho (£2), is negligible; see Lemma 6.6 below. The
main focus in this section is on

Mg = My (w+ 272 (Ha(x, ) — Ho(x, ) = A7V2 Ty 3 (Ha(x, ) — Ho(x, ),

where the last identity follows from w € TL In Lemma 6.3 we will prove that the contri-
bution from Iy ¢ is neghglble This is not obv10us and, in fact, somewhat surprising since
Iy 5q is of order 2~ ! and not smaller.

6.1 Preliminary estimates

Let us write

3
Mesqg = Br~"PU . +y®H PUcs+ Y 8; 220, PUs s
j=1

Since PUy j, 9, PUy,, and axj PUy;, j = 1,2, 3, are linearly independent for sufficiently
large A, the numbers 8, y and §;, j = 1,2, 3, (depending on €, of course) are uniquely
determined. The choice of the different powers of A multiplying these coefficients is motivated
by the following lemma.

Lemma 6.1 As € — 0, we have
B, v, 8;j =0().

Proof We recall that the functions q; i»J =1,...,5, were introduced in (5.11). Let

aj :=/ Vq;]qudy, j=1,...,5.
Q
Step 1 We shall show that
ap,ar = 00.7Y, a3, a4,a5 = OG7). (6.1)
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Since —A~V2(H,(x,-) — Ho(x, ) +q = w € T4, we have
aj = rl/z/ Vo - Vy(Ha(x,y) — Ho(x, y)) dy
Q
_ /Q (AG ) (Ha(x. y) — Holx, ) dy.

Formulas for the Laplacians A¢ j are given in (5.19) and the quantities || V¢; || appearing there
were estimated in (5.10). For ay, the integral fQ Ufyx(Ha (x,y) — Ho(x, y))dyis o172
according to Lemma 2.5, which proves the claim in (6.1). To bound a; for j =2, ...,5 we
compute

A2 1222y —xP?
2 (1+220y —xP)32
Yi — X
(14 22y — x|»)3/%’

WhUca(y) =

i=1,2,3.

dy, Ur () = 27/

This expression and straightforward bounds lead to the claim for a; in (6.1).
To prove (6.1) for a; with j = 3,4, 5 we need to bound

/ (Hy(x,y) — Ho(x, Y))Ui)\ax_,- Ui dy.
Q

From Step 1 in the proof of Lemma 2.5, recalling (4.2), we infer that there are p > 0 and
C > 0, both independent of €, such that

|H,(x,y) — Ho(x,y) — Hy(x,x) + Ho(x, x)| S|y — x| forally € B,(x).

Since the function U;‘, /\ij Uy, is odd, we have
/ (Hg(x, x) _HO(xvx))U)?,)LaxJ‘Ux,)\dy =0.
Bp(x)
On the other hand, using the above expression for dy; Uy, we find

[ mintly = x1. ) U105, U] dy = 0671,
Q
This proves (6.1) for j = 3,4, 5.
Step 2 Let us deduce the statement of the lemma. We have
5
Mg =) djd;

j=1

with

ap = A" YVPU, @ :=yIVPUl, &
=802V, _, PUysll, j=3.4,5.

In view of (5.10), the assertion of the lemma is equivalent to

a1,a =007, a;=007?), j=3,4,5. (6.2)

@ Springer



Energy asymptotics in the 3D Brezis-Nirenberg problem Page29 of 46 58

With respect to the orthonormal system v;, j =1, ..., 5, from (5.14) we have

5
Mesg =Y (VY. Vg)y;.

j=1

Using (5.14) twice to express ¥; in terms of &i’s we obtain

5 5 5 5
Mepg = Y (G eV, V@) gk = D Y (G Diear .
k=1 ¢=1

k=1 t=1
Thus,

5

ay = Z(Gil)k,eae, k=1,...
=1

hd

Similarly as in (5.13) one finds
(G k=8 +007",
and then (6.2) follows from (6.1). This completes the proof of the lemma. ]

Remark 6.2 The same method of proof shows that there are non-zero numbers By, yo, 8o, j
such that

B— Bo. v — vo. do,j — do

as e — 0. Indeed, proceeding as in Step 1 above one can show that Aay for k = 1, 2 and A%ay
for k = 3, 4, 5 have a non-zero limit as € — 0. As in Step 2 above, this implies that Aay for
k = 1, 2 have a non-zero limit as € — 0. In order to compute the limits of Aay fork = 3,4, 5
one needs to use, in addition, the fact that (G_l)k,g =Sk + O(A_Q) fork = 3,4, 5. Indeed,
by a Neumann series for G = 1 — (1 — G) one finds

(G e =2 Gp + O™ =280 — /Q Vi - Ve dy + O 72),

and then one can use bounds from [24, Appendix B] for the integral on the right side.

6.2 A third expansion

In this subsection, we shall prove the following lemma.

Lemma 6.3 Ase — 0,
Sateviuedl = SayevVnal + (S/3)7? <50[r] - %J[r]) +o(A7) +o(er™") (6.3)
with
No := /Q (V¥ + @+ eV)y?,)dy, Do:= fQ ¥, dy (6.4)
and

Ilr] == _3or1/2/ Uf’AH,,(x,y)rdy-l-lS/ U;{Arzdy+20/ U, ridy. (6.5)
Q Q Q
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We emphasize that the coefficients 8, y and §; enter only into the remainders o™ +
o(ex™"). This is somewhat surprising since 8 enters to orders A~! and A2 and y enters to
order A2 in the expansion of the numerator and the denominator.

In the following, it will be convenient to abbreviate

3
g:=PBr T PUcx + v PUsr, hi=) 8,370, PU,.x,
j=1
so that
u=oa(e)+g+h+r).
We record the bounds
Vgl =00, VA =0072), [Vrll=o0(1""). (6.6)

Indeed, the bounds on g and % follow from Lemma 6.1 together with (5.10) and that for r
follows from Proposition 5.1 since, by orthogonality, || Vr| < ||Vg].
We will also use the fact that

|AR] = OLT/?). (6.7)

This follows from Lemma 6.1 together with (5.19) and the same bounds that led to (5.18).
We will obtain Lemma 6.3 from separate expansions of the numerator and the denominator,

which we state in the following two lemmas.

Expanding the numerator We abbreviate

Eelv] ::/ (IVV]* + (a + eV)v?) dy
Q

and write £ [v], va] for the associated bilinear form. Recall that Ny was defined in (6.4). We
shall show

Lemma 6.4 Ase — 0,
a2Eluel = No + Ny + Elrl + o ™2) + o(er™),

where

N :=/ IVgl>dy 4+ 2 &l 1, 8-
Q

Proof Step 1 We show that the contribution from % to ot_zc‘fé [ue] is negligible, that is,
a2 Elucl = Eclrn s + g +r1+ 007 6.8)
Indeed,
a2 Euel = EclWn + & + 11+ 2P + g + 1, hl + Eclh].

Since Ec[vy, v2] < [V ||Vuy] for all vy, vy € HOI(Q), we immediately conclude from
(6.6) that

Ehl = OG0 Elg+r.hl =007,
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Next, using (6.7), (2.6) and (2.7),
/ Vi - Vhdy = / VPU,; - Vhdy +O0""?|Hy(x, ) — Ho(x, )llooll ARll1)
Q Q
= / VPU,, - Vhdy +007%).
Q

Moreover, by (5.12) and (5.10),

3
/ VPU,, -Vhdy = § a,-r3f VPU, Vi, PUy . dy = O(7).
Q X Q

j=l1

Finally, by (A.8) and (6.6),
‘ / (@a+eV)yy h dy‘ < lla + €Vllsoll¥x allesslille = OAT3).
Q

This proves (6.8).
Step 2 We now extract the relevant contribution from g and show

Eclap + g+ 11 = Eclun + 1+ 2 &V, 8l + / IVglPdy +00.7%).  (6.9)
Q
Indeed,
ge[\”x,}\ +g+r]= gé[‘ﬁx,}\ +r]+ 2Se[¢x,)\ +r, gl +&lgl
By Lemma 6.1, (A.5), (A.6) and (6.6),
‘/ (a+eV)Q2rg+g% dy‘ <lla+eViliglesClirle + ligle)
Q

S (1B THIPU lless + 1y 113 PUx s llegs) (Irlle + llglle)
=o(A7?).

We have, since r € ij and g € Ty 3,

/Vr~ngy=0.
Q

This proves (6.9).
Step 3 We finally extract the relevant contribution from r and show

EelVen + 1= El¥nil + Elrl + oA ™2) +o(er™). (6.10)
Indeed,

Ee [Wx,k +r]=2¢& [V 0]+ 2& [lﬁx,x, rl+&lrl.

Using r € Txl,)a the harmonicity of Hy and equation (2.11) for H,, we find
[ ey = =72 [ 9, GH 5, 9) = HoCr ) - Vrdy

= —)fI/Z/ aGg(x, y)rdy.
Q
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On the other hand, by (2.17), (2.18) and (4.2),
/Qm/fx,xrdy - /QaUx,xrdy +a712 /QaHau, yrdy = Olaligssl fralloollrlle) = 0G.7).
Thus,
Eolren, 1] = fQ a (Ues =27V Hu(x, y) = A7 12Go(x, ) rdy + 0672,

By Lemma 2.4,

f a(Uep = 27" Hy(x,y) =272 Ga(x, ) r dy
Q
< llalloollUr.z = 272 Ha(x, ) = 2712Ga(x, )llesslirlle = 0 =>"2).

Finally, by (6.6) and (A.8),

’ / Viardy
Q

/ Vr? dy
Q
This proves (6.10).

The lemma follows by collecting the estimates from the three steps. O

< IVlssll¥xallesslirlle = o(™h)

and

< IVIl32lrlIZ = o).

Expanding the denominator Recall that Dy and Z[r] were defined in (6.4) and (6.5) respec-
tively. We shall show

Lemma 6.5 Ase — 0,
—6 6 _ -2
o /uedy—Do—i—D]—l—I[r]ﬁ—o()» ),
Q
where
Dyi=6 [ gy +15 [ vl ay.
Q Q
Proof Step 1 We show that the contribution from % to a~® fQ ug dy is negligible, that is,
—6 6 _ 6 -2
o f”edy—/(llfx,x+g+”) dy +o(A77). (6.11)
Q Q
Indeed,
a*"f uldy = f WY + g +1)°dy +6/ Wi+ g+ 1) hdy
Q Q Q

+O (1w + g + Al + 1718

and by (6.6) the last term is O(x~*). The middle term is

/ W+ g+ hdy = / Wiahdy +0 (Ivalidlle + rliolinlls + g + Il
Q Q
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and again by (6.6) the last term here is 0o(L7>/%). The first term here is
/Q Yl shdy = fg U2 3hdy + O (1Us gl = Unclisliblls + 1.0 = Ura el )

which, by (6.6) and (A.7), is O(A~>/?). Finally, by (5.12) and (5.10),

3
/ Uf~)‘hdy:3_1/ VPU,, -Vhdy = § 3,~r3/ VPU, - Vi, PUy s dy = O0.7).
Q Q - Q

j=1

This proves (6.11).
Step 2 We now extract the relevant contribution from g and show

/ Wen+ g+ 1 dy = / W + 0 dy +6 f ¥, gdy 115 / ¥4, g2dy + (7).
Q Q Q Q
(6.12)

Indeed,

[Q W +g+n°dy = /Q W +1)0dy +6 fg Wi +r)gdy +15 fg W+ dy
+0 (e + 1318 + 1g13)

and by (6.6) the last term is O(73). We need to show that the contribution from r to the
second and third term on the right side is negligible. The third term is

/(wx,k +r)tg*dy =/ vl 82 dy + O (Iveallelirllsliglg + 171§ gllE)

Q Q

and by (6.6) the last term is 0(A~3/2). The second term above is

/Q(I/fx.x +r)Ygdy = /Qw,f,xg dy +5 /Q viargdy +0 (I RIrI3lgls + Ir131g1Z)

and by (6.6) the last term is 0o(L™2). Let us show that the second term on the right side of the
previous equation is negligible. We have

[ wtiredy
Q
= /Q Ul srgdy + O (10x i} — Urilislrlisliglls + 1¥en — Uxallglirlsllglis)
and by (6.6) and (A.7) the last term is o(L™2). Now
/ Ul rgdy = m—l[ U}, PUx,rdy + y/ U}, 8, PU, s dy
Q Q Q

— g / US,rdy+y f Ut 0, Usr dy
Q Q

+ OB NPU 3 — Usills + [y 13 PUx s — :.Ux ) 1Ux 5 gl ll6)-
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By Lemma 6.1, [24, Prop. 1 (c)] and (6.6), the last term is o(L™). Finally, by (5.19) and the
fact that r € TxJ,_A’

/U;Ardy:?)_l/ VPU,,  -Vrdy =0, /Uf,\axeﬂdy
=5 [ va.PUL - vrdy =0,
Q

This proves (6.12).
Step 3 We finally extract the relevant contribution from r and show

/ Wi +1)0dy = / ye, dy +Ilrl+o(r72). (6.13)
Q Q
Indeed,
/(Wx,x +r)°dy :/ wﬁ,,\dy+6/ Y2, rdy + 15/ wi)\rzdy+20/ v, dy
Q Q Q Q Q

+ O (I 27 llg + 1718

and by (6.6) the last term is 0(A~2). We need to extract Z[r] from the three terms on the right
side involving . We begin with the term that is linear in r,

/ w;ﬁxrdy :/ U)i,\rdy-l—S/ U;‘,,\(Wx,x — Uy rdy
Q Q Q
+0 (10U algs1 = Uralloollrlls + W = Unallirls)

By (A.7), (6.6) and ||Uy 1 ]I 5= O ™), the last term is o(A~2). Since r € T}, the first
term is

/ Ul rdy =371 / VPU,,-Vrdy =0.
Q Q
Writing ¥y — Uy ) = 2 V2H, (x, ) — fx.»., we have
4 _ _ 412 4 4
/QUM(%,,\ Ui )rdy = —a /QUX,AHa(x, Wrdy + OWUx i l24)51 fxxlloollr lle)-

By (2.18), (4.2), (6.6) and || Uy ;.[13, 5= O(1~1/2), the last term on the right side is o(12).
We now turn to the terms that are quadratic in . We have

/Q viartdy = /Q U2 dy + O (10 a3 210 = U ploollr I + 1 = U g1 13)

and by (A.7), (6.6) and || Uy ;.[13 n = O(~1/2), the last term on the right side is o(A72).
Similarly, one shows that

/1//iﬂ3dy:/ US,,\r3dy+0()fz).
Q Q

This proves (6.13).
The lemma follows by collecting the estimates from the three steps. O
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Proof of Lemma 6.3 Note that, by (6.6), D; = O(A~!) and Z[r] = o(A~'). Moreover, by
(2.3), Dy stays away from zero. Therefore, the expansion from Lemma 6.5 implies that

1/3 1D 1Z[ 2 D?
6 6 -1/3 1 rl 1 -2
o dy =D, l—--— ——+-— + 0o .
( /QME ) 0 < 3 Dy 3 Dy 9D(2) ( )

Combining this with the expansion from Lemma 6.4 and using N; = O(1~!) (again from
(6.6)), we obtain

_ Ny _ _
Sutevlue] = SavevV il + A+ Dy 1/3 <50[r] _ mﬂr]) +0(x7%) +o(er™")
with
2
~1/3 D, D 2 Dj
A=D Ny — —N; — —N ——Np | .
0 < ! 3 Dy ! 3Dy O+9D(2) 0

Thus, the assertion of the lemma is equivalent to A = o(A™2) + o(er™!). We write

2
13 Dy \ , 1D} No 2D,
A=D, Ni=Dp) (1= )+ 2L (1= 22Dy (1- 271 ).
0 (“ ‘)< 3D0)+3D0+ 300/ 7'\ 3D

It follows from (2.2) and (2.3) that

No -2 .
20 140072 + 0. (6.14)
3Dy

This, together with D = O(A‘l), yields

2
—-1/3 Dl IDI )
A=D Ny —D 11— — P ATO).
o (( 1 1)( 3Do>+3Do)+0( )
We shall show in Appendix A that

, 157% , . _2
B T 7 — 8w go(x) B+4w po(x)y | A"+ 0o(A™7)

w

372 1
N = —BA"
1 2/3 +(4

(6.15)

and

32 1572 1572
Dy==-p""+ (T’Bz + =gV~ 8T 90(0) B+ 47 o (x) y> A2 407,

(6.16)
Thus, in particular,

372\ ?
Ny — Dy = —3728°22 4 0(A"%) and D? = (%) B2+ oA 7).

This, together with Dy = (5/3)%/2 4+ o(A~1) (from (2.3)), implies A = o(A2), as claimed.
O
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Before continuing with the main line of the argument, let us expand . By the normalization
(1.10), Lemma 6.5, (2.3) and (6.16)

2
a=0(5/3)3% = (/332 + 3% BA — 87 () A

1572 1572
B+ 6Z y? — 87 go(x) B + 47 o (x) y) 22

+Z[r] + 0oL 7?). (6.17)

+ <87r a(x) +

6.3 Coercivity
To complete the proof of our main results, it remains to prove that the terms involving r in
the expansion (6.3) give a non-negative contribution. Recall that Z[r] was defined in (6.5)

and Ng and Dy in Lemmas 6.4 and 6.5, respectively.

Lemma 6.6 There is a p > 0 such that for all sufficiently small € > 0,

No 2 2

Eolrl = -—Zlrl = p | IVrI®dy +0(7).

3 Do Q

Proof We bound, using (4.2), Lemma 2.6 and (5.1), for any § > 0,
3 3
‘30)»71/2/ U;‘AHa(x, yirdy| < 30271/2 </ U;C1 Arzdy> </ U;‘A H,(x, y)2 dy)
1

2
<o(x™h (/ U;‘)erdy> 55/ Ut r?dy +57 1007,
Q ’ Q ’

Similarly, using (6.6),

3

3 I
i 3 1
‘20/ U, ridy 520(/ U;‘)\rzdy> (/ r6dy> 50()7‘3’*) (/ U;‘Arzdy>
Q Q Q Q

< 5/ UL, rtdy +830(07).
Q

This, together with (6.14) implies that

N
Solr] — ﬁ[[r] > / (IVr? +ar® —15U%, %) dy
Q

—(28+00.7% + O(erl))/ Ut r?dy +670072) + 63000 73).
Q

Since r € TXJ:A, Lemma 4.3 implies that for all sufficiently small € > 0, the first term on the

right side is bounded from below by p [, |Vr |2 dy for some p > 0 independent of €. On the
other hand, by (5.20), choosing § > 0 small, but independent of €, and then € small, we can
make sure that

—(23+0(A—2)+O(er1))f U, rtdy > —(,0/2)/ [Vr?dy.
Q Q

This completes the proof of the lemma. O
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6.4 Proof of the main results

In this subsection we prove Theorems 1.3, 1.4 and 1.7. Combining the expansions from
Lemma 6.3 and Theorem 2.1 and using the fact that ¢, (xg) = 0 (see Proposition 5.1) we
obtain

272a(xp) )

Satevlucl = S+(8/3)7/? <§Qv<xo) -

+(S/3)" 4 o) A1 4 (8/3) 12 <50[V] - %I{r]) +002) + o(ex™).
0

Using the almost minimizing assumption (1.10) as well as the coercivity bound from Lemma
6.6 we obtain

1 (€ 27rza(x0) 5
0= {+o(M)(S—Sa+eV))+(5/3) (XQV(XO) - T) +R+0o(%)
+0(ek_]). (6.18)
with
R = (§/3)"1/? (4n¢a(x)r‘ +,0/ |Vr|2dy). (6.19)
Q

Note that, by Corollary 2.2, R > 0.
Lemma 6.7 If N, (V) # @, then xo € Ny (V).
This is the only place in the proof of Theorem 1.3 where we need assumption (1.4).

Proof We recall the upper bound from Corollary 2.3,

—1/2 QV(y)2 2 2
Sa+¢€V)<S—(5/3) SUp  —5———— € + o(€”).
yeN,(v) 8m=la(y)|
Combining this with (6.18) and using R > 0, we find
€
Cre? + G172 = (=(8/3)7 2 Qv (xo) + o))
with
2
Ci:=(5/3)712 sup Qvn” +o(l), Cy:=(5/3)"1227%a(x0)| + o(1).

yeNL(v) 812 la(y)]
By the assumptions N, (V) # @ and (1.4), both C; and C; tend to some positive quan-

tities as € — 0. Since Cie2 + CoA™2 > 2./C; C2€1~! we obtain that Qvy(xg) < 0, as
claimed. O
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We now assume N, (V) # @ and complete the proof of Theorems 1.3 and 1.7. We can
write

272a(xp)

_ €
(8/3)7'/? (X Qv (x0) = =3

12_(Qvxo) +o(1)*
4 (272|a(xo)| + o(1))

2
+(S/3)1/2< Qv (x9) + o(1) ot 2712|a(xo)|+0(1))»1> .

2y/27m2a(x0)| + o(1)

Inserting this into (6.18) we obtain

) +0(0%) +o(er™h

=—(8/3)"

12 (Qv(xo) +o(1)

2 — /
4 2n2la(xo)| +o(D) © > (1 +0(1)(S—S@a+eV)+R  (620)

(8/3)~
with

Qv (xo) +o(1)

2y 2m2|a(x0)| + o(1)

Since R’ > 0 we obtain, in particular,

2
R’::R+(S/3)1/2< €+ 2n2|a(x0)|+0(1)kl> . (6.21)

(Qv(xo) +o(1)?
4 (272|a(x0)| + o(1))

1/2 QV(XO)2
872|a(xo)|

_ ()?
< (8/3) 172 sup 8Q2V7y
yeN,(v) 87la(y)l

S—Sa+eV) < (14 o(1)(S/3)"1/?

= (5/3)" ()

€? + o(e?). (6.22)

In the last inequality we used xg € N, (V). This proves the claimed lower bound on S(a+¢V)
and completes the proof of Theorem 1.3.

We now proceed to the proof of Theorem 1.7, still under the assumption N, (V) # @.
Combining the lower bound on § — S(a + € V) from Corollary 2.3 with the upper bound in
(6.22) we obtain

Ovixo? _ - Qv
a0l yenuvy eI

Moreover, inserting the lower bound on S — S(a + € V) into (6.20) we infer that R’ = o(e?).
Thus, by (6.19) and (6.21)

_ 1Qv(x0)l

v 2: 2 d )Lfl_
IVr)? = 0(e?) an yerpreost

€+ o(e).

and, reinserting the last expression into R = 0(62), also
$a(x) = o(e€).
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Inserting these bounds into (6.17), we obtain

3
a0 =14 (5/3)732 7” B!

2 2
/3 (8 ateo) + o B2 n % o) B+ A o) v )
+o(e?)

and therefore, using Lemma 6.1, @ = 1 + O(¢). This completes the proof of Theorem 1.7.
We now assume N, (V) = @ and prove Theorem 1.4. Estimating Qv (x9) > 0and R > 0
in (6.18) we obtain

0= (I +0(1)(S = S(a+eV) +((/3)"2 22 a(xo)| + o(1)) A2 + o(er™).

Since o(er™) > =812 + o(€?) for any fixed 4, this implies S — S(a +€V) = o(€?).
Under the additional assumption Qvy (xg) > 0, we infer from (6.18) that

0> (14 0(1)(S — S(a+eV)) + Crer™" + o272
with
Ci:=(5/3)"20v(x0) + o(1) and C, := (8/3)""?27%a(x0)| + o(1).

Since both C; and C3 are positive for all sufficiently small € > 0, we arrive at a contradiction.
Thus, assumption (3.4), under which we have worked so far, is not satisfied. By the concavity
argument in the proof of Corollary 2.3 this means that S(a + €V) = § for all sufficiently
small € > 0. This concludes the proof of Theorem 1.4.
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Appendix A: Some computations
A.1 Asymptotics and bounds
We recall that we abbreviate d = dist(x, 9€2).

LemmaA.1 As A — oo, uniformly in x € €,
/ IVPU 7 dy = 3712832 — 47 g (x) 17" + o((d) ™), (A1)
Q

/ PUS, dy = (5/3)%* =87 ¢o(x) A" + o((hd) ™). (A2)
Q
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Proof We set again ¢, ; = Uy — PUy ;. Then, by (1.9) and (2.15),
/ VP s dy = f VPUy ) - VUypdy = 3/ PU, U, dy
Q Q Q ’
=3 /Q Us,dy— 3/9 U, xsdy.
By [24, Proof of (B.3)]
/ US, dy = (S/3)° +o((dn)™"), (A3)
Q
and, as shown in [15, Proof of Thm.1.1],
5 4 -1 ~1
o U sbxady = 3 Go(x) A7 +o((dA) ™). (A4)

(Since ¢y, = AV 2Ho(x, ) + fx.», the proof of the latter relation is similar to the proof of
Lemma 2.5, but to get the uniformity even for x close to the boundary more careful bounds
on Vy Hy(x, y) are needed.) This proves (A.1).

To prove (A.2), we write

/Q PUS, dy = /Q Ug, dy—6 fg U2 3¢5.dy + O (10U 51 éx 0015 + llgx 1 11E) -

For the first two terms we use (A.3), (A.4). Moreover, [|¢x 3 llco = OO12a=1y (from (2.7)
and (2.18)), l|¢x 1 lle = O((dA)~1/?) (from [24, Prop.1 (c)]) and ||U, ;. [l = O(A~1), so the
remainder term is o((d1) ™). O

LemmaA.2 As A — oo, uniformly in x € £,
IPUslless = O3, (A.5)

Moreover; for x in compact subset of <2,

18, PUy 1 llejs = O3, (A.6)
Y2 — Uy illoo = OT1?) (A7)

and
1 lles = O™Y2). (A.8)

Proof The bound (A.5) follows from 0 < PUy < Uy, (see [24, Prop.1(a)]) and a straight-
forward computation for Uy ;, using the fact that €2 is bounded.

To prove (A.6) we first note that, by a straightforward computation, the claimed bound
holds with 9, U, ; instead of 0y P Uy, ;. The claimed bound now follows since by the bound
on 0, Uy ) — 0y PUy 5 in [24, Prop. 1 (c)] (which holds even in L6).

For the proof of (A.7) we write ¥y 5 — Uy x = —A~ /2 H,(x, -) — fy.;.. Then (A.7) follows
from (2.6) and (2.18). Finally, (A.8) follows from (A.5) and (A.7). m}
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A.2 Proof of (6.15)
We have
Ny = 22 /Q VPU, ;2 dy + 7 fQ Y, PU, ;P dy
+2ﬂyr1/QVPUx,A-vaAPUMdy
+2p1! fQ Vs VPU., dy +2y /Q Vs Viy PUs 1 dy
+ 207! /Q Ve x PUs s dy +2y /Q Ve85 U, dy.

Therefore (6.15) will follow from the following relations, together with the facts that ¢, (x) =
o(1) by Proposition 5.1 and that 8, y = O(1) by Lemma 6.1,

) 2 3 -2 )
A IVPU, ;| dy=Tx +o(A7?), (A.9)
Q
15 72
/ Vo, PU 2 dy = =272 + 0(72), (A.10)
o 64
rlf VPU,, - V& PUy,dy = 0(h72), (A.11)
Q
-1 3n% -2 -2
A Vs - VPUgdy = - — A7 pa(X) A2+ oM7), (A.12)
Q
/ Vs - VO, PUy s dy = 271 o (x) A2 + 0(A72), (A.13)
Q
At / ayy j PU s dy = 47 ($a(x) — ¢o(x)) A% + 0(A72), (A.14)
Q

/ a0, PUy s dy = =277 (¢a(x) — ¢o(x)) A% + o(A72). (A.15)
Q

For the proof of these bounds we recall that d = 1 by Proposition 4.1.
The bounds (A.9), (A.10) and (A.11) follow from [24, (B.2), (B.7) and (B.5)], respectively.
For the proof of the remaining assertions we decompose ¥ = Uy ) — ATV2H (x, ) —
fx.». and recall the bound (2.18) on f; ;.
Proof of (A.12) By (1.9) and (2.15),

- / Vi VPUy s dy = 317" / U3, WU s = 272 Hy(x, ) dy + 072,
Q Q
By (A.3),3x:7! [(US, dy = %A*l + 0(272). On the other hand, by Lemma 2.5,
32732 /Q U2, Ha(x,y)dy = 47 ¢a(x) A2 + 0(072).
Proof of (A.13) By differentiating (1.9) and (2.15),

/ Ve - Vo PUy s dy = 15 / (Urp — A2 Hy(x, y)UL .U s dy 4+ 0(072).
Q Q
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To compute the first summand, we use [ps U)?’AB;L Uy dy = 05, [ps Uf’/\ dy = 0 and thus

‘/ U2, 8.Uq dy‘ = ‘/ Uj,xa)\Ux,A dy
Q RA\Q

_ I1—|x —z]?| 4
< (@20 1/ T Lz =007,
RO\By(r) (1 + |x —z2)*

To compute the second summand we argue similarly as in the proof of Lemmas 2.5 and
2.6 and obtain

—15 A_]/Z/ Hy(x, WU, 8,.Ux a dy = 27 ¢(x) A2 + 0. 72).
Q

The constant comes from

00 2442
_ (1 —t=)t=dt 2w
U, 0,U, 5 dy =2 k3/2f RS Al Yt 7
fRs x A ExA Gy = ST o (A+2)72 15

Proof of (A.14) Since PU, 5 = Uy — A~V Ho(x, ) — fri,
a7l f ayy 5 PUy ;. dy = 27! / a(Uy 5 — 2V Hy(x, ) Uy p. — 272 Hy(x, y)) dy + 00 72).
Q Q
We have

_ i 1 _ 1 B
A 1/QaUXZ,,\dy:A Z/Qa(y)mdyzx 2/Qa(y)|x_y|2dy+0(A 2

and, similarly,

H,(x,y) + Ho(x, y)

dy + o(x72).
lx — ¥l

A /Q aUs . (Ho(x. y) + Ho(x, ) dy = —A~2 /Q a(y)

_ 1
lx—yl

Putting everything together and recalling that G, (x, y) — H,(x,y), we obtain

At / ayy  PUx . dy = 272 / a(y)Ga(x, y)Go(x, y)dy +o(x™?)
Q Q

= 47 (¢ (x) — Po(X) A2 + 07,

where the last equality follows from the resolvent identity (2.8).
Proof of (A.15) Since [|3 fr.1lloo = O(A77/2) by [24, Prop. 1 (c)], we get, similarly as
before,

1
/ a3 9 PUy s dy = / a(Uy s — 2"V Hy(x, y) 03U 5 + ErmHo(x,y))dy+o<r2)4
Q Q

We have

A2 —|x—y? 1 1
bl dy = —7)»_2/ ay)——5dy+ 0(.7%)
Q lx =yl

1
aUy 03Uy ;. dy = 71_2/ aly) Q> T 202 =
/;2 x, 0 Uxpdy 2 o (_V) (}»72 + Ix _ y‘2)2 2

and, similarly,

_ 1 _ Hy(x,y)
A ‘“[ aHq(x. y)3Uy s dy = 22 2/ a(y) 2D
Q 2 Q lx — vyl
and
_ _ Ho(x,y) _
A 3/2/ aUs Ho(x. y) dy = 2/ a8 k002,
Q Q |x — I
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Putting everything together and using the resolvent identity (2.8) as in the proof of (A.14),
we obtain (A.15).
This completes the proof of (6.15).

A.3 Proof of (6.16)
We have
01=6m—1/Qw}j,APUx,AdyMy/ijkaxPUx,xdy
15272 [ pl PO dy 41572 [ 0500 PUL) dy + 30y
fgl//i)LPUx,;ﬁ;\PUx,;\dy.

Therefore (6.16) will follow from the following relations, together with the facts that ¢, (x) =
o(1) by Proposition 5.1 and that 8, y = O(1) by Lemma 6.1,

—1 5 7T2 —1 4 ) 2
A llfx,APUx,kdy:T)‘ —7(5¢a(X)+¢o(X))?» +o(A7),
Q
(A.16)
5 _ zl -2 -2
Y00 PUy pdy = 3 (Pa(x) + Po(x)) A"+ 0o(A77), (A.17)
Q
22| vt PUZ, d —”—2r2+o(r2) (A.18)
o XA XA y= 4 s .
4 2 m? -2 -2
Y (0aPUx 2) dy=a)» +o(A77), (A.19)
Q
A / Y, PU 8. PUy . dy = o(A7). (A.20)
Q

Proof of (A.16) We insert ¥, 5 = Uy — A" V2H,(x,-) — fys and PU,; = Uy —
A~V2Hy(x,-) — fr.; to obtain

At f Y3, PUysdy = 17! / Us, dy — 2 f U3, (5 Hy(x, y) + Ho(x, ) dy + o(A72).
Q Q Q

For the first term we use (A.3) and for the second term we use Lemma 2.5.
Proof of (A.17) Similarly as before, we obtain

/Q Y30 PU s dy = /Q US 03Uy pdy — 51 /Q U, 0,Us s Ha(x. y) dy

1. _
+3h 3/2/ U2, Ho(x,y)dy +o(r™?).
Q

For the first and the second term we argue as in the proof of (A.13) and for the third one we
use Lemma 2.5.

The bounds (A.18), (A.19) and (A.20) follow from the corresponding relations where
Yx.» and PU, ; are replaced by U, ; and where 0, PU,  is replaced by 9, Uy ;.

This completes the proof of (6.16).
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Appendix B: Proof of Proposition 3.1

In this appendix we provide a proof of the approximate form of almost minimizers. This
result is probably well-known to specialists.

Proof of Proposition 3.1 Step 1 We show that uc—0 in H| ().

The assumptions imply that (u¢) is bounded in HO1 (2) and therefore it has a weak limit
point. Let ug € HO1 (2) be such a limit point and write re := u — ug. In the remainder
of this step we restrict ourselves to values of € along which r—0 in HO1 (£2). By Rellich’s
compactness theorem re — 0 in L2(2) and, passing to a subsequence if necessary, we may
assume that v — 0 almost everywhere in 2. By weak convergence in HOl (£2) and strong
convergence in L2($2) we have

3712532 1 o(1) =/ (IVuel* + au? + eVu?) dx
Q

=/ (IVuo|* + auf) dx +/ IVre|>dx + o(1).
Q Q
Thus,
T := lim IVreI2 dx exists and satisfies 3712832 = / (|Vuo|2 + au%) dx+T.
e—0 Jo Q

On the other hand, by the almost everywhere convergence and the Brézis—Lieb lemma [7],

/357 = [

ugdx:/ugdx—l—fr?dx—l—o(l).
Q Q Q

Thus,

M := lim rf dx exists and satisfies (S/3)3/2 = / ug dx+ M.
Q

e—0 /g
We conclude that
Jo (IVuol? + aul)dx + T
(fqubdx + M)l/3

S == lim Sy1cv(uel =
e—0

In the denominator, we bound

1/3 1/3
(/ ugdx+M> < (f u8dx> + M3 (B.1)
Q Q

and in the numerator we bound T > SM /3. Rearranging terms, we thus obtain

1/3
S(/ u8dx> 2/ (|Vu0|2+au%)dx.
Q Q

Since the opposite inequality holds as well by definition of S(a) and the assumption that
S(a) = S, we need to have, in particular, equality in (B.1). It is elementary to see that this
holds if and only if either f ug dx = 0 (thatis, ug =0)orif M = 0.

Let us rule out the case M = 0. If we had M = 0, then, in particular, uo # 0 and therefore
uo would be a minimizer for the S(a) problem. However, as shown by Druet (Step 1 in [12]),
the S(a) problem does not have a minimizer. (Note that this part of Druet’s paper does not
need any regularity of a.) Thus, M > 0, which, as explained before, implies ug = 0.
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Step 2 We show that along a subsequence,
ue =s Uy +0c (B.2)

with s € {£1}, ze = x0 € Q, e dist(ze, Q) — oo and o, — 0in HI(R3).
Indeed, by Step 1 and Rellich’s compactness theorem we have u, — 0 in L2(2) and
therefore

Jo IVuel? dx
—_——
(Jqubdx)'"

Thus, the u., extended by zero to functions in H'(R3), form a minimizing sequence for
the Sobolev quotient. By a theorem of Lions [22] there exist (z¢) C R3? and (ue) C R+
such that, along a subsequence, (¢ I/ 2145 (u;l - +2¢) converges in H! (R3) to a function that
is an optimizer for the Sobolev inequality. By the classification of these optimizers (which
appears, for instance, in [22, Cor. I.1]) and taking the normalization of the u, into account,
we can assume, after modifying the u and z, that

He Puelu! -4z > sUoa in H'(®)

for some s € {£1}. By a change of variables (which preserves the H! (R?) norm) this is the
same as (B.2).
Note that

/ U6dx:/ Ltde:/(sUZE,“6 +cre)6dx:/ Uzi,ue dx + o(1).
R3 Q Q Q

Thus, ue — oo and dist(z¢, 2) — 0. Using, in addition, the fact that the boundary of € is
C!, we conclude that . dist(ze, R3\ Q) — oo. In particular, after passing to a subsequence,
Ze —> X0 € §

Step 3 We now conclude the proof of the proposition.

Since the remaining arguments are similar to those in [24, Prop. 2] we omit most of
the details. As in that paper, the conclusions from Step 2 allow us to apply the result of
Bahri—Coron [5, Prop. 7] and lead to a decomposition

Ue = OlePUxe,)\€ + wg

with x. € 2, bounded & and w, € TXJ; e such that w, — 0 in HO1 (€2). This implies

/W(agPUxe,xe)de:/ [Vue|*dy +o(1) = 3712832 4 o(1).
Q Q

By the same argument as in [24, Prop. 2] with 371/25%/2 instead of 1 on the right side of
[24, (2.18)] we infer that ¢ /e + te /he + AefbelXe — zZe| S 1. From this we conclude that
Ae — 00, X — xp and Acdist(xg, d€2) — oo. Finally, using [24, (B.2)], ®c — s. The last
relation allows us to replace w, by acw,, which still has the same properties, and obtain the
decomposition stated in the proposition. This completes the proof. O
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