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Abstract
We show that the N -covering map, which in complex coordinates is given by uN (z) :=
z �→ zN /

√
N |z|N−1 and where N is a natural number, is a global minimizer of the Dirichlet

energyD(v) = ∫
B |∇v(x)|2 dx with respect to so-called inner and outer variations. An inner

variation of uN is a map of the form uN ◦ ϕ, where ϕ belongs to the class A(B) := {ϕ ∈
H1(B;R2) : det∇ϕ = 1 a.e., ϕ|∂B(x) = x} and B denotes the unit ball inR2, while an outer
variation of uN is a map of the form φ ◦ uN , where φ belongs to the class A(B(0, 1/

√
N )).

The novelty of our approach to inner variations is to write the Dirichlet energy of uN ◦ ϕ in
terms of the functional I (ψ; N ) := ∫

B N |ψR |2 + 1
N |ψτ |2 dy, where ψ is a suitably defined

inverse of ϕ, and ψR and ψτ are, respectively, the radial and angular weak derivatives of ψ ,
and then to minimise I (ψ; N ) by considering a series of auxiliary variational problems of
isoperimetric type. This approach extends to include p-growth functionals (p > 1) provided
the classA(B) is suitably adapted. When 1 < p < 2, this adaptation is delicate and relies on
the deep results of Barchiesi et al. on the space they refer to in Barchiesi et al. (Arch Ration
Mech Anal 224(2):743–816, 2017) as Ap . A technique due to Sivaloganthan and Spector
(Arch Ration Mech Anal 196:363–394, 2010) can be applied to outer variations. We also
show that there is a large class of variations of the form v = h ◦ u2 ◦ g, where h and g are
suitable measure-preserving maps, in which u2 is a local minimizer of the Dirichlet energy .
The proof of this fact requires a careful calculation of the second variation ofD(v(·, δ)), which
quantity turns out to be non-negative in general and zero only when D(v(·, δ)) = D(u2).

Mathematics Subject Classification 49J99 · 74B20

1 Introduction

Let B be the unit ball in R
2, let N be a natural number, and, for any map u in the Sobolev

space H1(B,R2), let

D(u) :=
∫

B
|∇u(x)|2 dx (1.1)
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be the Dirichlet energy of u. Ball showed in [1] that there is a minimizer of D(·) among
functions in the class

Y := {y ∈ H1(B;R2) : det∇ y = 1 a.e. in B, y|∂B = uN }. (1.2)

Here, uN is the N -covering map given by

uN (R cosα, R sin α) := 1√
N

(R cos Nα, R sin Nα),

where 0 ≤ R ≤ 1 and 0 ≤ α < 2π . The prefactor 1/
√
N ensures that uN satisfies det∇uN =

1 a.e., which, together with the observation that ∇uN is essentially bounded, implies that uN

belongs to Y . This paper examines and finds evidence in support of the conjecture that uN is
itself a singular (i.e. non-smooth), globalminimizer ofD inY by proving that uN is the unique
global minimizer of D with respect to generalized inner and outer variations. A generalized
inner variation of uN in this case is formed by varying the independent variable only, i.e. by
forming a map uN ◦ ϕ where ϕ belongs to the class

A(B) = {ϕ ∈ H1
id(B;R2) : det∇ϕ = 1 a.e. in B}, (1.3)

and where the notation H1
id(B;R2) refers to maps in H1(B;R2) that agree in the sense of

trace with the identity map on ∂B. An outer variation of uN , on the other hand, is a map of
the form φ ◦ uN , where φ belongs to A(B(0, 1/

√
N )) and B(0, r) is the ball in R2 of radius

r and centre 0.
We also study the corresponding problem in the case of energieswith subquadratic growth,

a typical example of which would be a functional such as the p-Dirichlet energy. In the
subquadratic setting the construction of generalised inner variations is much more delicate,
so we postpone its description until Sect. 5 of the paper, where, it should be noted, we shall
rely on the ideas of Barchiesi et al. [4].

The problem of minimizing D in Y is of interest for several reasons, the first of which is
that this problem automatically delivers a singular minimizer whenever N ≥ 2. An argument
of Ball in [3, Section 2.3] can be adapted to establish that, when N ≥ 2, no member of Y is
C1, and so, in particular, the minimizer of D in Y cannot be C1. The constraint det∇ y = 1
a.e. in B is instrumental in limiting the regularity in this way: without it, it is easy to show
that the unique global minimizer of D among maps y agreeing with uN on ∂B is the smooth
harmonic extension of uN |∂B . Nor can topology be ignored: it turns out that any y in Y is
continuous and hence, by topological degree theory, is such that, roughly speaking, y(B)

covers the ball BN N times. When N = 1, the minimizer of D in Y is trivially the identity
map, which coincides with u1 in the notation introduced above. Thus we focus on non-trivial
changes in topology by choosing N ≥ 2.

The second reason to study D in detail is that, formally at least, uN is a critical point of
an appropriately perturbed version of D in Y . To be precise, it can be checked directly that
uN solves the Euler-Lagrange equation associated with the energy

D(u) +
∫

B
2pN ln R det∇u dx, (1.4)

where pN := N − 1/N is constant. (See [6, Proposition 3.4] in the case N = 2; the case
for general N follows similarly.) The prefactor of det∇u in (1.4) is a Lagrange multiplier
traditionally used to encode the requirement that functions inY obey the constraint det∇u =
1 a.e.. We note that the theory which underpins Lagrange multipliers in the case of nonlinear
elasticity has been established in [8,14,15,21–23]. The main difference between that setting
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Energy minimizing N-covering maps in two dimensions Page 3 of 38 4

and ours lies in the lack of invertibility of maps belonging to Y which, as indicated above,
can be thought of as being N -to-1, whilst those considered by the works cited above, for
example, are assumed to be invertible, with sufficiently regular inverses. Thus their results
do not necessarily provide for the existence of a Lagrange multiplier for our problem in the
case of the Dirichlet energyD. Nevertheless, the direct calculation alluded to above conforms
to the conclusions of both [15, Theorem 3.1] and [8, Theorem 4.1], for example, without
necessarily obeying all their hypotheses. This observation may be of independent interest.

It is straightforward to check that, when ϕ ∈ A(B), uN ◦ ϕ has finite Dirichlet energy,
agrees with uN on ∂B, and satisfies det∇(uN ◦ ϕ) = 1 a.e. in B, and that the same assertions
are true of outer variations φ ◦ uN , where φ ∈ A(B(0, 1/

√
N )). We remark that uN ◦ ϕ

represents a quite general form of inner variation that is appropriate to the constraint det∇v =
1 a.e. imposed on members of A(B). In the setting of nonlinear elasticity more generally,
where the constraint det∇v > 0 a.e. is enforced, inner variations of admissible maps v often
take the form v(x + εφ(x)), where φ is a smooth, compactly supported function and ε is
chosen sufficiently small that det∇(x + εφ(x)) is bounded away from 0. See [2] together
with [5, Theorem A.1]; see also [3, Section 2.4]. In the incompressible setting we consider
in this paper maps of the form ϕ(x) = x + εφ(x), with φ smooth and compactly supported
in B, belong to A(B) only if φ(x) = 0 for all x . Thus this particular form of inner variation
appears to be too restrictive.

The first main result of this paper, Theorem 2.2, is the following.

Theorem Let uN be the N-covering map and let ϕ be a map in H1
id(B;R2) which satisfies

det∇ϕ = 1 a.e. in B. Then
∫

B
|∇(uN ◦ ϕ)|2 dx ≥

∫

B
|∇uN |2dx, (1.5)

with equality if and only if ϕ is the identity map. In particular, uN is the unique global
minimizer with respect to inner variations of the Dirichlet energy.

The corresponding result for outer variations, Theorem 4.3, demonstrates that, within the
class of outer variations, uN is the unique global minimizer of the Dirichlet energy among
maps agreeing with uN on ∂B, i.e.D(φ ◦uN ) ≥ D(uN ) for all φ in the classA(B(0, 1/

√
N )),

with equality if and only if φ is the identity map.
It has to be checked that inner and outer variations in this setting are genuinely different,

and this is done rigorously in Proposition 6.1. It is therefore quite natural that the approaches
needed to prove Theorems 2.2 and 4.3 are necessarily different too. Sections 2 and 3 describe
our approach to the inner variation problem, which proceeds by writing D(uN ◦ ϕ) as a
functional in ψ , a suitably defined inverse of ϕ, and by solving a series of problems of
isoperimetric type. The approach needed in the case of outer variations is adapted from [30],
and, although isoperimetry is again involved, the method does not apply to inner variations.
Taken together, these two results clearly do not settle the question of whether uN minimizes
D in Y . Nonetheless, we believe that Theorems 2.2 and 4.3 are interesting intermediate steps.

Our approach to inner variations can be generalized to functionals with subquadratic p-
growth. In this setting, the extension of A(B) is a delicate matter, and we rely heavily on
the results of [4] concerning the class which they refer to as Ap . The details can be found in
Sect. 5, which deals with functionals of the form

E(u) :=
∫

B
f (|∇u(x)|) dx, (1.6)
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where f is convex, of class C1(R+), and such that f ′(t) ≥ 0 for t > 0. We suppose that,
for some 1 < p < 2, there is a constant C > 0 such that 1

C t
p ≤ f (t) ≤ C(1 + t p) for all

t > 0. The corresponding result to Theorem 2.2 is Theorem 5.7, which we record here for
completeness.

Theorem Let the functional E be given by (1.6) and let uN ◦ ϕ be a generalized inner
variation of uN . Then E(uN ◦ ϕ) ≥ E(uN ), with equality if and only if ϕ = id.

We remark that since uN is a non-affine, positively one-homogeneous function, ∇uN (x)
is discontinuous at the point x = 0, a feature it has in common with many of the examples of
singular minimizers in the higher dimensional calculus of variations. In brief, [17,24,27,32]
all construct one-homogeneous minimizers of smooth, strongly convex functionals, the last
of these being in the smallest possible, and hence optimal, dimensionsm = 3, n = 2. Here,m
and n are, respectively, the dimensions of the domain and codomain of the energyminimizing
map. The works [24,32] also contain cogent summaries of the wider theory, which the reader
should consult for further details. To relate some of this to the problem considered in our
paper, we note that in the dimensionsm = n = 2, andwithout a constraint on the determinant,
minimizers should be smooth. This follows from standard results about harmonic functions
(or indeed from the classical result [25, Theorem 1.10.4 (iii)] in the more general case of
strongly convex, quadratic growth integrands), and from [28] in the case that the candidate
minimizer is supposed to be one-homogeneous. In the presence of the determinant constraint,
however, these results cannot apply to members of Y when N ≥ 2.

The paper concludes by focusing in detail on the case N = 2, where we examine a rich
subclass of Y comprised of maps of the form v = h ◦ u2 ◦ g, where h and g are self-maps
of the balls B(0, 1/

√
2) and B respectively. In fact, the maps g and h are generated by flows

in a way that is made precise in Sect. 6.2, and because of this there is a natural parameter in
v, which we call δ, on which both h = h(z; δ) and g = g(y; δ) depend smoothly, and for
which it holds that g(y; 0) = y for all y in B and h(z; 0) = z for all z in B(0, 1/

√
2). This

enables us to write

v(y; δ) = h(u2(g(y; δ)); δ), (1.7)

which is such that v(·; 0) = u2, and so D(v(·; δ)) depends naturally on δ and obeys
D(v(·; 0)) = D(u2). The final main result of the paper, Theorem 6.3, concerns maps of
the type v(·, δ) and can be described as follows. Note that J stands for the 2 × 2 matrix
representing a rotation of π/2 radians anticlockwise.

Theorem Let v(·, δ) be given by (1.7) and let � = J∇ξ and  = J∇σ be smooth,
divergence-free maps with compact support in B(0, 1/

√
2)\{0} and B\{0} respectively. Sup-

pose that h and g are solutions of the following equations
{

∂δh(z, δ) = J∇�(h(z, δ)) z ∈ B(0, 1/
√
2), δ ∈ (−δ0, δ0)

h(z, 0) = z z ∈ B(0, 1/
√
2),

{
∂δG(y, δ) = J∇(G(y, δ)) y ∈ B, δ ∈ (−δ0, δ0)

G(y, 0) = y y ∈ B

Then

(a) ∂δ|δ=0 D(v(·, δ)) = 0, and
(b) it holds that

∂2δ

∣
∣
δ=0 D(v(·, δ)) ≥ 4

∫

B
{(σ − ξ ◦ u2)τ R}2 + {(σ − ξ ◦ u2)RR}2 dy, (1.8)
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and ∂2δ

∣
∣
δ=0 D(v(·, δ)) = 0 only if

D(v(·, δ)) = D(u2) |δ| < δ0.

In particular, the map u2 is a local minimizer of the Dirichlet energy with respect to all
variations of the form v(·, δ).

1.1 Notation

For non-zero x , we will write x = x/|x |. Note then that for any weakly differentiable map ϕ

wemay write∇ϕ(x) = ϕR ⊗x+ϕτ ⊗ J x , where J is the 2×2 matrix representing a rotation
of π/2 radians anticlockwise. For any two vectors a, b inR2, the 2×2 matrix a⊗b is defined
by its action a⊗b v := (b ·v)a on any v inR2. In plane polar coordinates (R, α), the angular
derivative ψτ is (ψα)/R and the radial derivative is ψR . The inner product of two matrices
A1 and A2 will be denoted by A1 · A2 = tr (AT

1 A2) and the norm by |A1|2 = tr (AT
1 A1).

The two-dimensional Lebesgue measure of a (measurable) set E ⊂ R
2 will be written |E |

provided it is unambiguous to do so, and otherwise as L2(E). Throughout the paper, we
will use Cr to represent the circle of radius r and centre 0. The rest of the notation is either
standard or is explained where it is introduced.

2 The Dirichlet energy of inner variations of uN

Let ϕ belong toA(B) and consider the composed map uN ◦ϕ. A short calculation shows that

|∇(uN ◦ ϕ)|2 = 1

N
(X1(ϕ)2 + X2(ϕ)2) + N (Y1(ϕ)2 + Y2(ϕ)2), (2.1)

where X1(ϕ) = ϕ ·ϕR , X2(ϕ) = ϕ ·ϕτ , Y1(ϕ) = Jϕ ·ϕR and Y2(ϕ) = Jϕ ·ϕτ . The right-hand
side of (2.1) can be rewritten in terms of ∇ϕTϕ and ∇ϕT Jϕ to give

|∇(uN ◦ ϕ)|2 = 1

N
|∇ϕTϕ|2 + N |∇ϕT Jϕ|2. (2.2)

For later use, we note that for N ≥ 1

1√
N

|∇ϕ| ≤ |∇(uN ◦ ϕ)| ≤ √
N |∇ϕ|. (2.3)

Define W : S1 × R
2×2 × N → R by

W (x, F, N ) = 1

N
|FT x |2 + N |FT J x |2. (2.4)

Note that, from (2.2) and (2.4),

|∇(uN ◦ ϕ)|2 = W (ϕ,∇ϕ, N ). (2.5)

In the following we shall need to refer to the inverse, ψ , say, of a map ϕ belonging to
A(B). The existence and regularity of a continuous map ψ satisfying ψ(ϕ(x)) = x for
a.e. x in B was established in [31, Lemma 6 and Theorem 8], as was the validity of the
expression ∇ψ(ϕ(x)) = (∇ϕ(x))−1. Bearing the constraint det∇ϕ = 1 a.e. in mind, this
immediately implies that ∇ψ(ϕ(x)) = adj∇ϕ(x) a.e., and hence, via [31, Theorem 2 (ii)],
that ∇ψ ∈ L2(B;R2).
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Proposition 2.1 Let W be given by (2.4) and let ϕ lie in A(B), so that uN ◦ ϕ is an inner
variation of the N-covering map. Let ψ = ϕ−1 : B �→ B be the inverse of ϕ, as described
above. Then ψ also belongs to A(B), and

W (ϕ,∇ϕ, N ) = W (y,∇ψT (y), 1/N ) (2.6)

pointwise a.e., where y := ϕ(x). In particular, the Dirichlet energy of uN ◦ ϕ is given by
∫

B
|∇(uN ◦ ϕ)|2 dx = I (ψ, N ), (2.7)

where

I (ψ, N ) :=
∫

B
W (y,∇ψT (y), 1/N ) dy. (2.8)

Proof Apply [31, Theorem 8] together with the constraint det∇ϕ(x) = 1 a.e. to obtain
∇ψ(ϕ(x)) = adj∇ϕ(x) a.e. in B. Letting y = ϕ(x) and using the identity adj A = J T AT J
gives ∇ϕ(x)T = J∇ψ(y)J T , and, since J T = −J , it follows that ∇ϕT (x)ϕ(x) =
J T∇ψ(y)J y and ∇ϕT (x)Jϕ(x) = J∇ψ(y)y. Now, v �→ ±Jv is an isometry of the plane,
so

W (ϕ,∇ϕ, N ) = 1

N
|∇ϕTϕ|2 + N |∇ϕT Jϕ|2

= 1

N
|J T∇ψ(y)J ȳ|2 + N |J∇ψ(y)ȳ|2

= 1

N
|∇ψ(y)J ȳ|2 + N |∇ψ(y)ȳ|2

= W (ȳ,∇ψ(y)T , 1/N ),

which proves (2.6). Integrating the expression above with respect to x and than applying the
change of variables formula [31, Theorem 2 (ii)] leads to (2.7). �

Using Proposition 2.1, we can now study the Dirichlet energy of the map uN ◦ ϕ by
considering I (ψ, N ). The latter can be expressed very simply in polar coordinates as

I (ψ, N ) =
∫

B
N |ψR |2 + 1

N
|ψτ |2 dy (2.9)

and hence, by convexity, the inequality

I (ψ, N ) ≥ I (id, N ) + 2N
∫

B
(ψR − y) · y dy + 2

N

∫

B
(ψτ − J y) · J y dy (2.10)

must hold. By a direct calculation using the boundary condition ψ(y) = y for y ∈ ∂B, the
two integrals combine to give

I (ψ, N ) ≥ I (id, N ) + 2(N − 1/N )

(

π −
∫

B
ψ · y dν(y)

)

, (2.11)

where dν corresponds to the measure dL2(y)/|y|. Defining

F(ψ) :=
∫

B
ψ · y dν(y), (2.12)
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weclaim that ifψ belongs toA(B) then F(ψ) ≤ π . Supposing for now that this is established,
we immediately obtain from (2.11) that I (ψ, N ) ≥ I (id, N ), which, thanks to (2.7), implies
that

∫

B
|∇(uN ◦ ϕ)|2 dx ≥

∫

B
|∇uN |2 dx .

Our goal is now to prove the following result.

Theorem 2.2 Let uN be the N-covering map and let ϕ be a map in H1
id(B;R2)which satisfies

det∇ϕ = 1 a.e. in B. Then
∫

B
|∇(uN ◦ ϕ)|2 dx ≥

∫

B
|∇uN |2dx, (2.13)

with equality if and only if ϕ is the identity map. In particular, uN is the unique global
minimizer with respect to inner variations of the Dirichlet energy.

A short proof of Theorem 2.2 which draws together all its supporting results will be given
at the end of Sect. 3.

3 Bounds on F(Ã)

It is enough to establish the stronger result that, for any admissible ψ and almost every
r ∈ (0, 1), the functional

F(ψ; r) := 1

r

∫

∂B(0,r)
ψ(y) · y dH1, (3.1)

when subject to the constraint

1

2

∫

∂B(0,r)
Jψ · ψτ dH1 = πr2, (3.2)

obeys F(ψ; r) ≤ 2πr . Integrating (3.1) over r ∈ (0, 1) will then yield the claim that
F(ψ) ≤ π .

The constrained variational problem ofmaximising F(·; r) subject to (3.2) is of normal (or
non-degenerate), isoperimetric type, and can be solved by introducing a Lagrange multiplier.
Before justifying this assertion rigorously, we first gather some basic facts about admissible
maps. In the following, ψ |Cr denotes the restriction of the continuous map ψ to the set
Cr = ∂B(0, r).

Proposition 3.1 Let ψ be admissible, that is, let ψ belong to the Sobolev space H1
id(B;R2)

and satisfy det∇ψ = 1 a.e. in B. Then:

(a) ψ has a continuous representative;
(b) for L1-a.e. r ∈ (0, 1), ψ |Cr belongs to H1(Cr ;R2) and is H1-a.e. 1 − 1;
(c) ψ is measure-preserving, and the expression (3.2) holds for L1-a.e r ∈ (0, 1);
(d) the topological degree d(ψ, Br , w) ∈ {0, 1} for all w ∈ R

2\ψ(Cr ), and the set U1 :=
{w ∈ R

2\ψ(Cr ) : d(ψ, Br , w) = 1} coincides with ψ(Br );

(e) U1 has a generalized exterior normal ν̃(ψ(y)) = J T ψτ (y)
|ψτ (y)| for a.e. y ∈ Cr , and ∂U1 =

ψ(Cr ).

Proof (a) This is [31, Theorem 5] or [16, Theorem 2.3.2]; alternatively, see [13, Cor. 5.19].
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(b) The first assertion follows from [26, Proposition 2.8 (iii) and (v)]: see Remark 2 after the
statement of [26, Proposition 2.8]. The second part follows by first applying [31, Lemma
5.1] to deduce that ψ is 1 − 1 on a set of full L2-measure in B. It must therefore be the
case that for a.e. r ∈ (0, 1), ψ |Cr is H1-a.e. 1 − 1.

(c) That ψ is measure-preserving can be deduced from [31, Theorem 7]. Alternatively, one
can argue as follows. Let G ⊂ B be open and such that |∂G| = 0. First note that,
since ψ is open (because it has a continuous inverse, ϕ) and preserves ∂B, the degree
d(ψ, B, x) is well-defined at any point x in B = ψ(B) and is equal to 1 for such x .
By [13, Proposition 5.25], we note that

∫

G
det∇ψ(y) dy =

∫

R2
d(ψ,G, x) dx . (3.3)

By properties of the degree, d(ψ,G, x) = 0 if x /∈ ψ(G). The degree d(ψ,G, x) is not
defined when x ∈ ψ(∂G), but, since ψ has the N -property (by [13, Theorem 5.32]),
this set is null. For x in ψ(G) we can apply excision and d(ψ, B, x) = 1 to conclude
that d(ψ,G, x) and the characteristic function χψ(G)(x) are equal almost everywhere.
Inserting this into (3.3) together with det∇ψ = 1 gives the desired result for open sets.
The result for general measurable G follows by approximation.
Finally, to prove (3.2) it is clearly enough to show that (∗)

∫
Br

det∇ψ dx = 1
2

∫
Cr

Jψ ·
ψτ dH1 for smoothmapsψ and then apply an approximation argument. The latter expres-
sion is a natural consequence of the fact that det∇ψ is a null Lagrangian, and is hence
a divergence. In this case, det∇ψ = (1/2)div (ψ2 J∇ψ1 − ψ1 J∇ψ2), which can be
integrated using Green’s theorem to give (∗). Equation (3.2) is now immediate from (∗)

and det∇ψ = 1.
(d) By [7, Proposition 1, part (v)], ψ obeys condition (INV), and hence by [26, Lemma 3.5,

part (ii)], d(ψ, Br , w) ∈ {0, 1} for all w ∈ R
2\ψ(Cr ). Hence, by [26, Lemma 3.5], U1

coincides with the topological image of Br under ψ which, given that ψ is continuous,
is the same thing as ψ(Br ).

(e) This is [26, Eq. 3.14] adapted to the case at hand. Alternatively, see [7, Lemma 1, Eq.
2.6]. �
We first deal with the question of the existence of a maximiser of the functional F(·; r)

among suitable functions in the set C(r) described by (3.5) below. Let r ∈ (0, 1) be such that
Proposition 3.1(b)–(c) apply to ψ |Cr . Define

A(ψ |Cr ) = 1

2

∫

Cr

Jψ · ψτ dH1 (3.4)

and let

C(r) = {ψ |Cr ∈ H1(Cr ;R2) : ψ ∈ A, A(ψ |Cr ) = πr2}. (3.5)

We can assume that for almost every r in (0, 1), sequences (ψ(n) �Cr )n∈N in C(r) are bounded
in H1-norm. To see this, consider the full sequence (ψ(n))n∈N inA.Without loss of generality
||ψ(n)||H1(B) is uniformly bounded, and hence, in particular, so must ||ψ(n)

τ �Cr ||L2(Cr )
be for

a.e. r in (0, 1). Note that ∂τ and restriction toCr commute, so we canwrite (ψ |Cr )τ = ψτ �Cr

for any function ψ |Cr in C(r). Next, since F(·, r) is clearly bounded above, we can choose
(ψ(n) �Cr )n∈N such that

F(ψ(n)|Cr ; r) → sup{F(ψ |Cr ; r) : ψ |Cr ∈ C(r)}
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as n → ∞. By the foregoing argument, we can extract a subsequence (not relabelled) such
thatψ(n) �Cr ⇀v for some functionv in H1(Cr ;R2). It is then immediate, bySobolev embed-
ding, that F(ψ(n) �Cr ; r) → F(v; r), and that by Sobolev embedding together with the weak
convergenceψ

(n)
τ �Cr ⇀vτ , that A(ψ(n) �Cr ) → A(v). Hence F(v; r) = supC(r) F(ψ |Cr ; r)

and A(v) = πr2. Further, by again considering the full sequence (ψ(n))n∈N in A, which we
may assume, without loss of generality, converges weakly to ψ in A(B), it follows that
v = ψ |Cr . Hence, for almost every r ∈ (0, 1), a maximiser ψ |Cr of F(·; r) exists in C(r).

Introduce plane polar coordinates on Cr via y = re(α) for 0 ≤ α ≤ 2π , where e(α) =
(cosα, sin α)T . We take z belonging to ψ(Br ) and, for 0 ≤ α < 2π , define the maps ρ(·)
and σ(·) by

ρ(α) = |ψ(re(α)) − z| and (3.6)

e(σ (α)) = ψ(re(α)) − z

ρ(α)
. (3.7)

By Lemma A.1, ρ and σ can be chosen such that they both belong to H1([0, 2π),R), and,
by Lemma A.2, σ obeys σ(0) = σ0 and σ(2π) = 2π + σ0 for some σ0. Notice that if either
ρ(α) > r for all α or ρ(α) < r for all α thenψ(Br )would have measure strictly greater than
or, respectively, strictly less than |Br |, contradicting Proposition 3.1(c). Hence, and without
loss of generality, we may assume that ρ(0) = r . The quantity σ0 must remain free at this
stage; it will, in fact, parametrize the two families of extremals described in Lemma 3.3.

In terms of ρ and σ ,

A(ψ |Cr ) = (1/2)
∫ 2π

0
ρ2(α)σ ′(α) dα (3.8)

and

F(ψ |Cr ; r) =
∫ 2π

0
ρ(α) cos(σ (α) − α) dα. (3.9)

By identifying ψ |Cr with the pair of functions (ρ, σ ) as described above, it is convenient to
alter the notation slightly so that A(ρ, σ ) := A(ψ |Cr ) and F(ρ, σ ) := F(ψ |Cr ; r). We now
determine conditions necessary for ψ |Cr = (ρ, σ ) to be a stationary point of F amongst
maps which obey the constraint A(ρ, σ ) = πr2.

Lemma 3.2 Let (ρ, σ ) be determined from ψ |Cr as described in (3.6) and (3.7) above, and
suppose that (ρ, σ ) is a stationary point of F with respect to perturbations which obey
A(ρ̃, σ̃ ) = πr2. Then, for some constant λ, the coupled ODEs

λρσ ′ + cos(σ − α) = 0 (3.10)

λρ′ + sin(σ − α) = 0 (3.11)

hold almost everywhere on [0, 2π ].
Proof Let ε1 and ε2 be real, let ρ1, ρ2, σ1 and σ2 be smooth and compactly supported in
[0, 2π], and consider the function

γ (ε1, ε2) := A(ρ + ε1ρ1 + ε2ρ2, σ + ε1σ1 + ε2σ2).

Now γε2(0, 0) = ∫ 2π
0 ρσ ′ρ2 + (1/2)ρ2σ ′

2 dα. Suppose for a contradiction that γε2(0, 0) = 0
for any choice of ρ2, σ2. Then it easily follows that ρσ ′ = 0 and hence that A(ρ, σ ) = 0,
contradicting a hypothesis of the lemma.Hencewe can chooseρ2 andσ2 so thatγε2(0, 0) �= 0,
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and, via the implicit function theorem, find a smooth function g : (−1, 1) → R such that
g(0) = 0 and γ (ε, g(ε)) = γ (0, 0) = πr2 for all sufficiently small ε. Differentiating
the latter expression gives γε1(0, 0) + g′(0)γε2(0, 0) = 0, which will be of use shortly.
The variations (ρε, σ ε) := (ρ, σ ) + ε(ρ1, σ1) + g(ε)(ρ2, σ2) obey the constraint and so are
admissible in the sense given in the statement of the lemma. In particular, ∂ε |ε=0F(ρε, σ ε) =
0, which we compute as follows (and where, for brevity, we set  := σ(α) − α and then
suppress α whenever possible):

∂ε |ε=0F(ρε, σ ε) =
∫ 2π

0
(ρ1 + g′(0)ρ2) cos − ρ(σ1 + g′(0)σ2) sin dα

=
∫ 2π

0
ρ1 cos − ρσ1 sin dα + λγε1(0, 0) (3.12)

provided we set λ = −(
∫ 2π
0 ρ2 cos − ρσ2 sin dα)/γε2(0, 0). Inserting γε1(0, 0) =

∫ 2π
0 ρσ ′ρ1 + (1/2)ρ2σ ′

1 dα into (3.12) gives

0 =
∫ 2π

0
ρ1(cos + λρσ ′) + (λ/2)ρ2σ ′

1 − ρσ1 sin dα

=
∫ 2π

0
ρ1(cos + λρσ ′) − σ1ρ(λρ′ + sin) dα,

from which (3.10) follows immediately, as does ρ(λρ′ + sin) = 0 a.e. on [0, 2π]. Since
ψ |Cr is, by Proposition 3.1(b), 1 − 1 H1-a.e., we may assume that ρ vanishes only on an
H1-null subset of [0, 2π ], and hence (3.11) must hold almost everywhere. �

It remains to identify the solutions to (3.10) and (3.11), and thereby calculate the extreme
values of F(ψ |Cr ; r) among ψ |Cr in C(r).

Lemma 3.3 Let (ρ, σ ) be determined from ψ |Cr as described in (3.6) and (3.7) above, and
suppose that (3.10) and (3.11) hold. Then −2πr ≤ F(ψ |Cr ; r) ≤ 2πr .

Proof Recall that(α) = σ(α)−α. By alteringσ ′ andρ′ ona set ofmeasure zero if necessary,
we can assume that (3.10) and (3.11) hold pointwise on [0, 2π). Clearly, λ �= 0. Moreover,
since  and ρ are absolutely continuous, a simple bootstrapping argument using (3.10) and
(3.11) implies that ρ and  are smooth away from the set {α ∈ [0, 2π) : ρ(α) = 0}. Since
it is long, we break the rest of the proof into several steps.

Step 1. Let k �= 0 be a constant to be determined shortly, and let

ρ = −kY sec, (3.13)

tan = Y ′/Y , (3.14)

provided cos �= 0 and Y �= 0. Let Y solve Y ′′ + Y = (λk)−1 on (0, 2π) subject to
Y (0) = 1 and Y ′(0) = tan σ0, where, to start with, we suppose that cos σ0 �= 0. The
motivation for transforming variables in this way is explained in Remark 3.4 below. The
aim is to show that with ρ,  and Y so arranged, both (3.10) and (3.11) automatically
hold. To that end, note that by first differentiating (3.14) and then usingY ′′+Y = (λk)−1,

sec2()σ ′ = YY ′′ − Y ′2

Y 2 + 1 + tan2 

= (λk)−1 1

Y
. (3.15)

123



Energy minimizing N-covering maps in two dimensions Page 11 of 38 4

Bearing (3.13) in mind, the latter expression rearranges to give (3.10).
To see that (3.11) holds, differentiate (3.13) and use (3.14) and its derivative to obtain

ρ′ = −kY sin() sec2()′ − kY ′ sec()

= −kY sin()

(
Y ′

Y

)′
− kY tan() sec()

= −kY sin()

(
YY ′′ − Y ′2

Y 2 + 1 + tan2 

)

= −λ−1 sin().

(It may help to notice that the bracketed term in the penultimate line also appears in
(3.15), and is therefore (λkY )−1.)
Step 2. Eliminating  from (3.13) and (3.14) gives

ρ = |k|(Y 2 + Y ′2)1/2. (3.16)

When cos σ0 �= 0, we impose ρ(0) = r by setting k = −r cos σ0 in (3.13) (and by
recalling that Y (0) = 1). This gives rise to two possible sets of equations expressing
cos and sin purely in terms of Y as follows:

cos = ±Y

(Y 2 + Y ′2)1/2
(3.17)

sin = ±Y ′

(Y 2 + Y ′2)1/2
, (3.18)

the ± sign to be interpreted as sgn (cos σ0). Suppose for now that cos σ0 > 0. Note that
from (3.16), (3.17) and (3.18), we can express the components of ψ |Cr as

ρ cos σ = r cos(σ0)(Y cosα − Y ′ sin α) (3.19)

ρ sin σ = r cos(σ0)(Y
′ cosα + Y sin α). (3.20)

Since

Y = (λk)−1 + (1 − (λk)−1) cosα + tan σ0 sin α, (3.21)

these simplify to give

ψ |Cr (α) =
(
r cos σ0 + λ−1

r sin σ0

)

− λ−1eR (α). (3.22)

The same equation results when cos σ0 < 0 is assumed at the outset.
Step 3. To determine λ we impose the constraint A(ρ, σ ) = πr2 as follows. By the
description of A given in (3.8), and by using (3.10), (3.13), and (3.21), we see that

A(ρ, σ ) = 1

2

∫ 2π

0
ρρσ ′ dα

= − 1

2λ

∫ 2π

0
ρ cos dα

= − 1

2λ

∫ 2π

0
−kY dα

= π/λ2,
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and hence λ = ±r−1. It is immediate from (3.9), (3.13), and (3.21) that F(ψ |Cr ; r) =
2πλ−1, whence the claim in the statement of the lemma in the case that cos σ0 �= 0.
Step 4. We now deal with the case cos σ0 = 0. Firstly, note that by sending cos σ0 → 0
in (3.22) we obtain four distinct maps (corresponding to λ−1 = ±r , σ0 = π/2 or 3π/2)
which, by a direct calculation, obey (3.10), (3.11) and the relevant boundary conditions.
The point of this final step is to verify that these are the only such solutions.

Let us fix σ0 = π/2, let (3.13) and (3.14) hold and again suppose that Y satisfies Y ′′+Y =
(λk)−1 on (0, 2π). In order that ρ(0) = r holds, (3.13) implies that Y (0) = 0. Suppose for a
contradiction that (α) = π/2 on [0, δ) for some δ > 0. Then (3.13) implies that Y (α) = 0,
and hence Y + Y ′′ = 0 on [0, δ), which, since (λk)−1 �= 0, is a contradiction. Hence there is
δ > 0 such that (α) �= π/2 if α ∈ (0, δ). The calculations in Step 1 imply that (3.10) and
(3.11) hold on (0, δ). Now, by writing (3.14) as Y ′ cos − Y sin = 0, differentiating this
expression and applying the equation Y ′′ + Y = (λk)−1, we have

(Y cos + Y ′ sin)(′ + 1) = (λk)−1 cos (3.23)

on (0, δ). Note that the prefactor of ′ + 1 is continuous, with limit Y ′(0) as α → 0+.
Suppose first that Y ′(0) = 0. Then Y = (λk)−1(1 − cosα), so from (3.14) cos = ±(1 −
cosα)1/2/

√
2, and hence sin = ±(1+cosα)1/2/

√
2 (again by using (3.14)). In particular,

ρ = ±√
2λ−1(1 − cosα)1/2, making ρ(0) = r impossible.

Hence we may assume that Y ′(0) �= 0. By letting α → 0+ in (3.23), it follows that
′(0+) = −1, with obvious notation. By (3.13), l’Hôpital’s rule, and the condition ρ(0) = r ,
r = kY ′(0)/′(0+). Without loss of generality take k = r , so that Y ′(0) = ′(0+) = −1
follows, and hence Y = (λk)−1(1− cosα) − sin α. With k = r , we see that (3.16) becomes
ρ = r(Y 2 + Y ′2)1/2 and hence, from (3.13), that the versions of (3.17) and (3.18) with
negative prefactors on the right-hand sides must be used. The components of ψ |Cr are then

ρ cos σ = −r(Y cosα − Y ′ sin α)

ρ sin σ = −r(Y ′ cosα + Y sin α).

Using the expression for Y just derived, we obtain (3.22) evaluated at σ0 = π/2. A similar
procedure in the case that σ0 = 3π/2 produces the corresponding version of (3.22). The
proof can be concluded by arguing as in Step 3 that λ−1 = ±r and substituting in (3.22). �

Thus we see that the extremals of F(·; r) on C(r) are in the form of two families of maps
which take circles to circles, each family being parametrized by the change in polar angle
σ0. Note also that the condition that re1 maps to re(σ0) is achieved by effectively ‘pivoting’
the original circle Cr about a suitably chosen point.

Remark 3.4 Here we explain the origin of the transformation (3.13) and (3.14). For argu-
ment’s sake, suppose that cos σ0 > 0. Then the assumption that both ρ and σ are absolutely
continuous together with the conditions ρ(0) = r and (0) = σ0 imply that cos(α) > 0
and ρ(α) > 0 provided α is sufficiently small. Using (3.11) and (3.10) gives ρ′/ρσ ′ = tan,
which on writing σ ′ = 1 +  and integrating yields

ρ(α) = −k sec exp

(∫ α

0
tan(ᾱ) dᾱ

)

, (3.24)

where k = −r cos σ0. Let θ = ∫ α

0 tan(ᾱ) dᾱ and insert (3.24) into (3.10) to obtain

1 − λk(′ + 1)eθ sec2  = 0.
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Now θ ′ = tan and θ ′′ = sec2  ′, so

1 − λk(θ ′′ + θ ′2 + 1)eθ = 0,

which, on letting Y (α) = eθ , transforms into the equation

1 − λk(Y ′′ + Y ) = 0.

In terms of Y , (3.24) becomes (3.13) and the equation θ ′ = tan becomes (3.14).

Remark 3.5 Early in the proof of Lemma 3.3 it is asserted that the functions ρ and σ are
smooth away from the set {α ∈ (0, 2π) : ρ(α) = 0}. This qualification is necessary
in the sense that, for certain σ0, there exists α0 such that ρ(α0) = 0, and ρ, σ fail to
be smooth in a neighbourhood of α0. To see this, consider the case that cos σ0 �= 0, so
that ρ obeys (3.16) and Y is given by (3.21). Solving ρ(α) = 0 gives cosα = 1 − λk
and sin α = −λk tan σ0. It can be checked that if cos σ0 and λ are of the same sign then
ρ(α) = 0 is impossible, but that when cos σ0 < 0, k = −r cos σ0 (see Step 2 of Lemma 3.3)
and λ = r−1, the equations for ρ(α0) = 0 are solved by α0 = π/3 when σ0 = 2π/3.
Letting α = π/3 + ε, we find that ρ(ε) = √

2r
√
1 − cos ε, cos = −√

1 − cos ε/
√
2 and

sin = − sin(ε)(
√
2
√
1 − cos ε)−1, none of which is smooth in a neighbourhood of ε = 0.

By contrast, the quantities ρ cos = −r(1 − cos ε) and ρ sin = −r sin ε, which are the
building blocks of ψ |Cr , are clearly smooth in ε, and hence in α.

As promised at the end of Sect. 2, we now give the proof of Theorem 2.2.

Proof Let ϕ be as described in the statement of the theorem. By Proposition 2.1, Eq. (2.9)
and inequality (2.11), it follows that

∫

B
|∇(uN ◦ ϕ)|2 dx ≥ π(N + 1/N ) + 2(N − 1/N )

(

π −
∫ 1

0
F(ψ; r) dr

)

, (3.25)

whereψ = ϕ−1 and the functional F is given by (3.1).By the argument precedingLemma3.2,
the results ofLemma3.3 apply to F(ψ; r) for almost every r in (0, 1). In particular, F(ψ; r) ≤
2πr a.e., fromwhich it clearly follows that the second term in (3.25) is nonnegative for N ≥ 1.
Finally, since the term π(N + 1/N ) in (3.25) is exactly the Dirichlet energy of uN on the
unit ball, (2.13) follows.

To prove that uN is the unique global minimizer of the Dirichlet energy with respect to
inner variations, we note that if (2.13) holds with equality then, in particular, (2.11) must also
hold with equality. Since the functional I (ψ, N ) in (2.9) is strictly convex in ψ , (2.10) holds
with equality if and only if ψ is the identity map, whence ϕ must be the identity map too. �
Remark 3.6 Note that equality in (2.13) also implies that F(ψ; r) = 2πr for almost every r ,
so, for such r , it must be that ψ = ψ |Cr for an appropriate choice of σ0 and with λ−1 = r ,
as described in (3.22) (and in the notation introduced in (3.6) and (3.7)). Supposing this to
be the case, it follows that

ψ(R, α) = R(e(σ̃ (R)) + e(α) − e1)

for a suitable, weakly differentiable map σ̃ satisfying σ̃ (1) = 0. A short calculation then
reveals that det∇ψ = 1 a.e. if and only if σ̃ is a.e. zero, and hence that ψ is equivalent to
the identity map. In this way the uniqueness part of the proof of Theorem 2.2 can be deduced
without appealing to strict convexity.
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4 uN is a minimizer within the class of outer variations

We now apply a technique of Sivaloganathan and Spector [30] to demonstrate that uN is
a minimizer of the Dirichlet energy within the class of outer variations. In the rest of this
section we will write BN := B(0, 1/

√
N ) for brevity.

Definition 4.1 (Outer variation) Let φ ∈ H1
id(BN ,R2) satisfy det∇φ = 1 a.e. in BN . Then

φ ◦ uN is an outer variation of uN .

By Proposition 3.1, we may assume that φ is continuous and measure-preserving, and that
for a.e. r ∈ (0, 1/

√
N ), φ|Cr belongs to H1(Cr ;R2) and is H1-a.e. 1 − 1. We have need of

the following technical result.

Proposition 4.2 Let φ ∈ H1
id(BN ,R2) satisfy det∇φ = 1 a.e. in BN . Then there exists a null

set ω ⊂ (0, 1/
√
N ) such that for all r ∈ (0, 1/

√
N )\ω:

(i) φ(Cr ) is H1-measurable and H1(φ(Cr )) ≥ 2πr;
(ii) JφR(z) · φτ (z) = 1 for H1-a.e. z ∈ Cr ;
(iii) H1(φ(Cr )) ≤ ∫

Cr
|φτ (z)| dH1(z).

Proof (i) Since φ agrees with the identity on ∂BN , [31, Lemma 5(i)] implies that φ is 1− 1
almost everywhere. Let U := {z ∈ BN\φ(Cr ) : d(φ, B(0, r), z) ≥ 1}. Then properties
of the degree easily imply that U ⊂ φ(B(0, r)). By [13, Theorem 5.21], the fact that φ is
1 − 1 almost everywhere and the constraint det∇φ = 1 a.e., we can assume that the set

B̃N := {x ∈ BN : ∇φ(x) exists classically, φ−1(φ(x)) = {x} and det∇φ(x) = 1}
is of full measure in BN . Let x ∈ B̃N ∩ B(0, r) and define z = φ(x). By [13, Lemma
5.9], there is r0 > 0 such that, for all r1 ∈ (0, r0], φ(x + h) �= φ(x) if 0 < |h| ≤ r1
and d(φ, B(x0, r1), z) = sgn det∇(x) = 1. The former implies in particular that z /∈
φ(∂B(x, r1)). By taking r1 sufficiently small, we may assume that B(x, r1) ⊂ B(0, r).
It is clear that z /∈ φ(Cr ), so by the excision and domain decomposition properties of the
degree we have

d(φ, B(0, r), z) = d(φ, B(x, r1), z) + d(φ, B(0, r)\B(x, r1), z).

It must be that d(φ, B(0, r)\B(x, r1), z) = 0, since otherwise there is x̃ ∈
B(0, r)\B(x, r1) such that φ(x̃) = z, contradicting our assumption that z has no other
preimages in BN besides x . Hence d(φ, B(0, r), z) = 1, so x ∈ U , and we conclude
that φ(B(0, r)) and the set U := {z ∈ BN : d(φ, B(0, r), z) ≥ 1} differ only by a set
of L2-measure zero. By part (c) of Proposition 3.1, φ preserves the measure of B(0, r),
so that L2(U) = πr2. Now, by arguing as in [26, Lemma 3.5, Step 3], φ(Cr ) = ∂∗U
H1-a.e., and hence, by the isoperimetric inequality [12, Theorem 3.2.43],

H1(φ(Cr )) ≥ 2
√

π(L2(U ))
1
2 = 2πr .

(ii) Let C∗
r = {z ∈ Cr : JφR(z) · φτ (z) �= 1}, ω1 := {r ∈ (0, 1/

√
N ) : H1(C∗

r ) > 0} and
E = ∪r∈ω1C

∗
r . Since det∇φ = 1 a.e., it follows that L2(E) = 0. On the other hand,

L2(E) =
∫

ω1

H1(C∗
r ) dr ,

which implies that ω1 is null. Hence, by excluding r from ω1, we ensure that JφR(z) ·
φτ (z) = 1 for H1-a.e. z ∈ Cr .
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(iii) By Proposition 3.1(b), we can assume without loss of generality that φ|Cr belongs to
H1(Cr ,R

2). The stated inequality now follows by applying [26, Proposition 2.7]. �
Following [30, Lemma 3.5], we note that, by the Cauchy–Schwarz inequality and Proposi-
tion 4.2(ii), for a.e. r ∈ (0, 1/

√
N ),

|φR(z)| ≥ 1

|φτ (z)| H1 − a.e. z ∈ Cr . (4.1)

We now state and prove our result concerning outer variations.

Theorem 4.3 Let φ ◦ uN be an outer variation of uN . Then

D(φ ◦ uN ) ≥ D(uN ) with equality if and only if φ = id. (4.2)

Proof A short calculation shows that

D(φ ◦ uN ) =
∫

B
N |φτ (uN (y))|2 + |φR(uN (y))|2

N
dy,

to which, by [13, Theorem 5.35], we can apply the change of variables

∫

B
N |φτ (uN (y))|2 + |φR(uN (y))|2

N
dy =

∫

B

(

N |φτ (uN (y))|2 + |φR(uN (y))|2
N

)

det∇uN (y) dy

=
∫

R2

(

N |φτ (z)|2 + |φR(z)|2
N

)

d(uN , B, z) dz

=
∫

BN
N2|φτ (z)|2 + |φR(z)|2 dz.

Here we have used the fact that d(uN , B, z) = N if z ∈ BN and d(uN , B, z) = 0 if
z ∈ R

2\BN . This is easily deduced by noting that uN agrees with the smooth function
vN (z) := zN/

√
N on ∂B, expressed here for brevity in terms of z ∈ C, so that d(uN , B, z) =

d(vN , B, z) for all z ∈ R
2\∂BN , and then by computing d(vN , B, z) directly. Now let fN :

R
+ → R

+ be given by

fN (t) = N 2t2 + 1

t2
,

and notice that fN is strictly convex onR+ and strictly increasing on the interval (1/
√
N ,∞).

It follows by the calculation above and (4.1) that

D(φ ◦ uN ) =
∫

BN

N 2|φτ (z)|2 + |φR(z)|2 dz

≥
∫

BN

fN (|φτ (z)|) dz

=
∫ 1/

√
N

0
2πr−

∫

Cr

fN (|φτ (z)|) dH1(z) dr

≥
∫ 1/

√
N

0
2πr fN

(

−
∫

Cr

|φτ (z)|dH1(z)

)

dr ,

where Jensen’s inequality has been applied to pass from the third to the fourth lines above.
By Proposition 4.2(i) and (iii), the argument of fN in the last line above is at least 1, and
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since fN is increasing on (1/
√
N ,∞), we must have

∫ 1/
√
N

0
2πr fN

(

−
∫

Cr

|φτ (z)|dH1(z)

)

dr ≥
∫ 1/

√
N

0
2πr fN (1) dr = π

N
fN (1).

But, by inspection, D(uN ) = π
N fN (1), which proves the inequality stated in (4.2).

IfD(φ ◦uN ) = D(uN ) then all the inequalities derived above become equalities, implying
that

(a) Equation (4.1) must hold with equality a.e. in BN , and hence, by the condition for equality
in the Cauchy–Schwarz inequality, there is a scalar-valued function k(z), say, such that
JφR(z) = k(z)φτ (z) for a.e. z in BN ;

(b)
∫
Cr

|φτ (z)| dH1(z) = 2πr must also hold for a.e. r ∈ (0, 1/
√
N ), whichwhen integrated

over r in that range gives

−
∫

BN

|φτ (z)| dz = 1, (4.3)

(c) −
∫
BN

fN (|φτ (z)|) dz = fN (1).

Hence (c) and (4.3) give

−
∫

BN

fN (|φτ (z)|) dz = fN

(

−
∫

BN

|φτ (z)| dz
)

.

Since fN is strictly convex, Jensen’s inequality tells us that

−
∫

BN

fN (|φτ (z)|) dz ≥ fN

(

−
∫

BN

|φτ (z)| dz
)

with equality if and only if |φτ (z)| = −
∫
BN

|φτ (z̃)| dz̃ for a.e. z. But, by (4.3), this implies that
|φτ (z)| = 1 for a.e. z, and hence from (a) together with the constraint JφR(z) · φτ (z) = 1
a.e., we obtain that k(z) = 1 a.e. Thus we can write

∇φ(z) = −Jφτ (z) ⊗ z̄ + φτ (z) ⊗ J z̄ a.e. z ∈ BN ,

which has the property that cof ∇φ(z) = ∇φ(z) a.e. Thus, by Piola’s identity, φ is a weak
solution of Laplace’s equation which agrees with the identity on ∂BN , so it must be that
φ = id in BN . �
Remark 4.4 From the proof above, we see that

1

N
D(φ ◦ uN ) =

∫

BN

N |φτ (z)|2 + |φR(z)|2
N

dz. (4.4)

Now compare this with the corresponding expression for an inner variation, (2.9), which we
reprint here for convenience,

D(uN ◦ ψ) =
∫

B

1

N
|ψτ (y)|2 + N |ψR(y)|2 dy.

The technique used in Theorem 4.3 does not apply to functionalD(uN ◦ψ), and neither do the
methods used to prove Theorem 2.2 apply to the functionalD(φ ◦uN ). In each case, it seems
that the weighting of the radial and angular derivatives determines the approach required.

123



Energy minimizing N-covering maps in two dimensions Page 17 of 38 4

5 Extension to functionals with p-growth for 1 < p < 2

It is natural to ask whether the techniques of the preceding section carry over to functionals
besides the Dirichlet energy. The functionals we have in mind are of the form

E(u) :=
∫

B
f (|∇u(x)|) dx, (5.1)

where f is convex, of class C1(R+), and such that f ′(t) ≥ 0 for t > 0. In addition, so
that the setting of the problem is W 1,p(B;R2), we suppose that there is a constant C > 0
such that 1

C t
p ≤ f (t) ≤ C(1 + t p) for all t > 0. When p > 2, the analysis of E(uN ◦ ϕ)

carries over from that given for D(uN ◦ ϕ) with only minor changes, so we do not address
that question here. We focus on the case 1 < p < 2, where one has to construct carefully
a suitable analogue to the function space A(B) introduced in (1.3). The chief difficulties
are that, in contrast to members of A(B), a typical map ϕ ∈ W 1,p(B;R2), with p < 2,
obeying det∇ϕ = 1 a.e. in B and ϕ|∂B = id need not be continuous, Eq. (3.2) need not
hold, nor need ϕ be invertible in the sense described just before Proposition 2.1. Recall that
the continuity and invertibility of ϕ ∈ A(B) were needed to apply results depending on the
topological degree and to transform the energy functional

∫
B W (ϕ̄,∇ϕ, N ) dx into a more

tractable form involving ψ := ϕ−1 (see e.g. (2.7) and (2.8)), while Eq. (3.2) led to the area
constraint in the study of the functional F(ψ) described in Sect. 3.

Fortunately, thanks to works of Müller and Spector [26], Henao and Mora-Corral [18–20]
and Barchiesi et al. [4], there is a substantial framework which provides a suitable candidate
for A(B). In short, the required invertibility and other properties (such as the validity of
Eq. (3.2), for example) can be found in the class which Barchiesi, Henao and Mora-Corral
refer to in [4] as Ap . We shall recall the definition of Ap from [4] below, describe some of
its properties, and note how a supplementary condition, given later, ensures that the local
inverse of [4] is, in this setting at least, effectively an inverse on the entire image domain.

5.1 Extending the classA(B)

Let p ∈ (1, 2) and let Uϕ be the class of ‘good’ open sets defined in [4, Definition 2.7].
Following [4], define the class Ap on the set B as:

Ap := {ϕ ∈ W 1,p(B,R2) : adj∇ϕ ϕ ∈ L1
loc(B;R2), det∇ϕ �= 0 a.e., Det∇ϕ = det∇ϕ,

and d(ϕ, B(x, r), ·) ≥ 0 a.e. for all r > 0 for which B(x, r) ∈ Uϕ}.
For later use, we recall that if ϕ ∈ W 1,p(B,R2) then its distributional determinant Det∇ϕ

obeys

〈Det∇ϕ, η〉 = −1

2

∫

B
ϕ(x) · cof ∇ϕ(x)∇η(x) dx η ∈ C∞

c (B).

We also recall the definition of Müller and Spector’s condition (INV), as given in [26,
Definition 3.2] in terms of a bounded, open domain � ⊂ R

n with Lipschitz boundary:

Definition 5.1 We say that u : � → R
n satisfies (INV) provided that for every a ∈ � there

exists an L1 null set Na such that, for all r ∈ (0, ra)\Na , u|∂B(a,r) is continuous,

(i) u(x) ∈ imT(u, B(a, r)) ∪ u(∂B(a, r)) for L2-a.e. x ∈ B(a, r), and
(ii) u(x) ∈ R

2\imT(u, B(a, r)) for L2-a.e. x ∈ �\B(a, r).

Here ra := dist (a, ∂�).
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The topological image imT(u, B(a, r)) is given by

imT(u, B(a, r)) := {y ∈ R
n\u(∂B(a, r)) : d(u, ∂B(a, r), y) �= 0}

whenever u|∂B(a,r) is continuous: see [26, Section 3] or [4, Section 3]. We will need to apply
condition (INV) to the precise representative of a function inW 1,p . One can either follow [26,
Proposition 2.8], or, as we do here, give the formulation of [4, Proposition 2.2].

Proposition 5.2 Let 1 ≤ p < n and u ∈ W 1,p(�;Rn). Let p∗ := np/(n− p) be the Sobolev
conjugate exponent. Denote by P the set of points x0 ∈ � where the following property fails:
there exists u∗(x0) ∈ R

n such that

lim
r↘0

−
∫

B(x0,r)
|u(x) − u∗(x0)|p∗

dx = 0.

Then capp(P) = 0.

Here, capp refers to the p-capacity of a set: see [11, Section 4.7], for example.

We now form the subclass Ãp as follows, where condition (INV) is understood in the
sense given above with � = B and n = 2:

Ãp := {ϕ ∈ Ap(B) : ϕ ∈ W 1,p
id (B;R2), ϕ∗ satisfies (INV) in B, det∇ϕ = 1 a.e.}.

(5.2)

By [26, Lemma 3.3], condition (INV) is stable under weak convergence in W 1,p(B,R2),
and, by [4, Proposition 6.1], the weak (in L1) limit of the sequence (det∇ϕ( j)) j∈N coincides
a.e. with det∇ϕ provided (ϕ( j)) j∈N ⊂ Ap , (det∇ϕ( j)) j∈N is equiintegrable, and (ϕ( j)) j∈N
is bounded in W 1,p(B,R2). Since det∇ϕ = 1 a.e. in this case, [4, Proposition 6.1] yields
ϕ ∈ Ap . Thus, in summary, Ãp is closed in the weak W 1,p(B;R2) topology.

Definition 5.3 Let ϕ ∈ Ãp . Then a generalized inner variation of uN is a function of the form
uN ◦ ϕ : B → R

2.

Since Ãp isweakly closed, it follows fromSobolev embedding that the class of generalized
inner variations is also weakly closed. With this in mind, an application of the direct method
of the calculus of variations yields the following.

Proposition 5.4 Let E be given by (5.1). Then there is a minimizer ϕ ∈ Ãp of E(uN ◦ ϕ).

Proof Note that Ãp contains the identity map, so, in particular, the set of generalized inner
variations is nonempty. Take a sequence (ϕ( j)) j∈N such thatE(uN ◦ϕ( j)) ↘ inf{E(uN ◦ϕ( j)) :
ϕ ∈ Ãp}. By (2.3) and the assumed p-growth of f , it follows that, for a subsequence,ϕ( j)⇀ϕ

in W 1,p(B,R2), and, by the argument above, that ϕ ∈ Ãp . The convexity of E finishes the
proof. �

Next, we wish to define a suitable inverse of ϕ ∈ Ãp . According to [26, Lemma 3.4], if ϕ∗
satisfies (INV) on B then ϕ is 1−1 a.e. on B. (See also [4, Lemma 5.1(a)] for the equivalence
of (INV) and 1 − 1 a.e. on sets U ∈ Uϕ .) Take a family of open sets (Uj ) j∈N ⊂ Uϕ with the
property that ∪∞

j=1Uj = B and Uj ⊂⊂ Uj+1 for all j . By [4, Lemma 2.20], there are radii
r j ↗ 1 such that the choice Uj := B(0, r j ) works, for example. Since ϕ is 1 − 1 a.e., it is
clearly the case that ϕ is 1− 1 a.e. on eachUj . Hence, in the notation of [4, Proposition 5.3],
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the family (U ) j∈N belongs to U in
ϕ , and so, by the same result, (ϕ|Uj )

−1 exists and belongs to
W 1,1(imT(ϕ,Uj );R2), with

∇(ϕ|Uj )
−1(y) = (∇ϕ((ϕ|Uj )

−1(y)))−1 a.e. (5.3)

and for each j ∈ N. By [4, Lemma 5.1 (b)], the topological images are nested in the sense
that imT(ϕ,Uj ) ⊂ imT(ϕ,Uj+1) a.e., and, by [4, Lemma 5.18 (c)], they exhaust B up to a
set of measure zero. For a.e. y ∈ B, we take ψ(y) := (ϕ|Uj )

−1(y) if y ∈ imT(ϕ,Uj ). Since
the sets imT(ϕ,Uj ) are nested a.e., (ϕ|Uj+1)

−1 agrees a.e. with (ϕ|Uj )
−1 on imT(ϕ,Uj ). For

clarity, we record the definition of ψ here.

Definition 5.5 Let ϕ ∈ Ãp and let (Uj ) j∈N ⊂ Uϕ be a nested family of sets which satisfies
B = ∪ j∈NUj . Define the function ψ on B = ∪ j∈NimT(ϕ,Uj ) by ψ(y) = (ϕ|Uj )

−1(y)
whenever y ∈ imT(ϕ,Uj ). For y ∈ ∂B, set ψ(y) = y.

Since det∇ϕ = 1 a.e., (5.3) implies that

∇(ϕ|Uj )
−1(y) = cof ∇ϕ((ϕ|Uj )

−1(y))T . (5.4)

By considering the functions ∇ψ χimT(ϕ,Uj ), (5.4) and applying the area formula [4, Propo-
sition 2.7] with NUj = 1 a.e. (the last of which follows from [4, Lemma 5.1]), it follows
that

∫

imT(ϕ,Uj )

|∇ψ(y)|p dy =
∫

imT(ϕ,Uj )

|cof ∇ϕ(ϕ|Uj )
−1(y))T |p dy

=
∫

Uj

|∇ϕ(x)|p dx ≤
∫

B
|∇ϕ(x)|p dx .

Hence, by monotone convergence, ∇ψ ∈ L p(B,R2). By a similar argument, this time with

the functions W
1
2 (ȳ,∇ψT (y), 1/N ) χimT(ϕ,Uj ), it follows that

∫

B
W

1
2 (ȳ,∇ψT (y), 1/N ) dy =

∫

B
W

1
2 (ϕ̄(x),∇ϕ(x), N ) dx . (5.5)

Proposition 5.6 Let ϕ ∈ Ãp. Then the inverse ψ of ϕ given in Definition 5.5 satisfies
Det∇ψ = 1 as a distribution. In particular, (3.2) holds.

Proof Let η ∈ C∞
c (B) be a scalar-valued test function. Since spt η ⊂⊂ B, there is j ∈ N

such that spt η ⊂⊂ imT(ϕ,Uj ). Then

〈Det∇ψ, η〉 = −1

2

∫

B
ψ(y) · cof ∇ψ(y)∇η(y) dy

= −1

2

∫

imT(ϕ,Uj )

(ϕ|Uj )
−1(y) · cof ∇(ϕ|Uj )

−1(y)∇η(y) dy

= −1

2

∫

imT(ϕ,Uj )

(ϕ|Uj )
−1(y) · ∇ϕT ((ϕ|Uj )

−1(y))∇η(y) dy

= −1

2

∫

Uj

x · (∇ϕ|Uj (x))
T∇η(ϕ|Uj (x)) dx

= −1

2

∫

Uj

x · ∇(η ◦ ϕ|Uj ) dx
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=
∫

Uj

η ◦ ϕ|Uj dx

=
∫

imT(ϕ,Uj )

η(y) dy =
∫

B
η(y) dy,

which, since η was arbitrary, proves the first part. To show that (3.2) holds, note that by [4,
Proposition 2.23], for each given set U ∈ Uψ there exists a family (ηδ)δ>0 of smooth,
compactly supported test functions such that ηδ → χU pointwise in B and such that

〈Det∇ψ, ηδ〉 → 1

2

∫

∂U
ψ(y) · cof ∇ψ(y)ν(y) dH1(y). (5.6)

According to [4, Lemma 2.20], B(0, r) ∈ Uψ for a.e. 0 < r < 1. Taking U = B(0, r) in
(5.6), the left-hand side converges to πr2 by the first part of the proposition. Noting that
ν(y) = ȳ, and using the expression cof ∇ψ(y)ȳ = J Tψτ , the right-hand side of (5.6)
converges to 1

2

∫
Cr

Jψ · ψτ dH1, whence (3.2). �
We are now in a position to apply the techniques of Sects. 2 and 3 of this paper to prove

the following result.

Theorem 5.7 Let the functional E be given by (5.1) and let uN ◦ ϕ be a generalized inner
variation of uN . Then E(uN ◦ ϕ) ≥ E(uN ), with equality if and only if ϕ = id.

Proof Let ϕ ∈ Ãp . Recall (2.5) and note that, by (5.5), E(uN ◦ ϕ) can be written

E(uN ◦ ϕ) =
∫

B
f (W

1
2 (ϕ̄(x),∇ϕ(x), N )) dx

=
∫

B
f (W

1
2 (ȳ,∇ψT (y), 1/N )) dy,

where ψ is the inverse of ϕ, as described above. By the convexity of f ,
∫

B
f (W

1
2 (ȳ,∇ψT , 1/N )) dy ≥

∫

B
f (W

1
2 (ȳ, 1, 1/N )) dy

+
∫

B
f ′(W

1
2 (ȳ, 1, 1/N ))(W

1
2 (ȳ,∇ψT , 1/N )

− W
1
2 (ȳ, 1, 1/N )) dy. (5.7)

A direct calculation shows that W
1
2 (ȳ, 1, 1/N ) = (N + 1

N )
1
2 is constant, and in polar

coordinates

W
1
2 (ȳ,∇ψT , 1/N ) =

(

N |ψR |2 + 1

N
|ψτ |2

) 1
2

.

Let g(a, b) = (N |a|2 + 1
N |b|2) 1

2 for any a, b ∈ R
2 and note that g is convex. In particular,

g(ψR , ψτ ) ≥ g(ȳ, J ȳ) + Dg(ȳ, J ȳ) · (ψR − ȳ, ψτ − J ȳ)

=
(

N + 1

N

) 1
2 +

(

N + 1

N

)− 1
2
(

N ȳ · (ψR − ȳ) + 1

N
J ȳ · (ψτ − J ȳ)

)

.

(5.8)
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Integrating and applying the boundary condition ψ |∂B = id, it follows that

∫

B
W

1
2 (ȳ,∇ψ, 1/N ) dy ≥

∫

B
W

1
2 (ȳ, 1, 1/N ) dy +

(

N + 1

N

)− 1
2

(

N − 1

N

) 1
2

(π − F(ψ)), (5.9)

where F(ψ) is given by (2.12). The constraint (3.2) is in force, and the arguments of Sect. 3
continue to hold with W 1,p in place of H1 throughout (with the exception of part (a) of
Proposition 3.1; this is not needed, now that (3.2) has been established above by different
means). In particular, by Lemma 3.3, we see that F(ψ) ≤ π , and hence the rightmost term
in (5.9) is nonnegative. Since f ′ ≥ 0, it follows that the second line in (5.7) is nonnegative,
from which the inequality E(uN ◦ ϕ) ≥ E(uN ) results.

To prove that the identity map is the unique minimizer, first suppose that E(uN ◦ ϕ) =
E(uN ). Then, in particular, (5.8) holds with equality for a.e. y in B. The same cal-
culation which proves the convexity of g also shows that if x := (a, b) ∈ R

4 then
D2g(x)[ξ, ξ ] = 0 if and only if x and ξ are proportional. Equality in (5.8) therefore implies
that D2g(ȳ, J ȳ)[ξ, ξ ] = 0 with ξ := (ψR − ȳ, ψτ − J ȳ), and hence, by the previous remark,
that (ψR , ψτ ) = k(y)(ȳ, J ȳ) for some function k(y) and a.e. y in B. Since det∇ψ = 1 a.e.,
it follows that k2(y) = 1 a.e., and hence that ∇ψ(y) ∈ SO(2) for a.e. y. By a version of
Liouville’s theorem (see e.g. [29]),∇ψ is smooth and everywhere equal to a constant matrix,
and hence, via the boundary condition, ψ = id. Thus ϕ = id. �

6 A class of variations in which u2 is a local minimizer

We now focus on the double-coveringmap, u2, with the twin goals in mind of (a) establishing
that there are maps in the admissible class Y that are not inner variations of u2 and (b)
demonstrating that u2 is a local minimizer in a large subclass of A whose description we
give in Sect. 6.2. The proofs of both facts rely to differing extents on being able to generate
self-maps on the balls B or B ′ using flows, the ideas for which come from [10] and the
references therein.

6.1 Admissible maps that are not inner variations of u2

The following class of counterexamples apply to the case N = 2, i.e. to the double-covering
map, but the principle can be extended to N -covering maps if we wish. To be clear, we seek
maps v belonging to H1(B;R2) which obey both det∇v = 1 a.e. in B and v|∂B = u2, but
which cannot be expressed as inner variations u2 ◦ ϕ where ϕ belongs to A(B).

Proposition 6.1 There exists a smooth diffeomorphism ψ of B ′ = B(0, 1/
√
2) such that

ψ(0) = p0 �= 0, where p0 lies in B ′, ψ |∂B′ = id and det∇ψ = 1 in B ′. The map v defined
by v = ψ ◦ u2 is then admissible, i.e. v ∈ Y , but is not an inner variation of u2.

Proof To begin with, an argument of Dacorogna and Moser implies that a diffeomorphism
ψ with the properties stated above exists. Specifically, by [10, Remark after Theorem 7], one
first chooses a diffeomorphism ψ1, say, of B ′ which permutes the points 0 and p0 and which
preserves the boundary ∂B ′, but which does not necessarily preserve area. By [10, Theorem
7], one then finds a second diffeomorphism, ψ2, say, of B ′ which preserves the boundary,
fixes 0 and p0 and which, in addition, satisfies det∇ψ2 = (det∇ψ1)

−1. It then suffices to
take ψ = ψ2 ◦ ψ1. It should be clear that v := ψ ◦ u2 lies in H1(B;R2), agrees with u2 on
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B(0, 1) B(0, 1) B(0, 1/
√

2)

ϕ
y
1

u2

y
2

x 2

x 1
p0

Fig. 1 The points y1 and y2 are such that u−1
2 (p0) = {y1, y2}, and the points x1 and x2 obey ϕ(xi ) = yi for

i = 1, 2. Thus the map u2 ◦ ϕ takes x1 and x2 to p0. In particular, p0 always has two preimages in B, and so
the map v constructed in Proposition 6.1 cannot be of the form u2 ◦ ϕ

∂B and obeys det∇v = 1 on B\{0}, so that v ∈ Y . Moreover, by construction, v(0) = p0
and, in fact, 0 is the unique preimage of p0 in B.

To clarify the following argument we introduce the following notation. Given sets X , Y ,

a map f : X → Y and points a ∈ X , b ∈ Y , let a
f↔ b express the statement that f (x) = b

if and only if x = a. By definition of u2 and ψ we therefore have 0
u2↔ 0

ψ↔ p0, and hence,
since v = ψ ◦ u2 by definition, 0

v↔ p0. Now let y1 and y2 be the local inverses of u2
defined on B ′, so that u2(yi (p0)) = p0 for i = 1, 2. Note that because p0 �= 0, neither of
y1(p0), y2(p0) is zero and y1(p0) �= y2(p0). Let ϕ ∈ A, where the class A is defined in
(1.3). Since d(ϕ, B, y) = 1 for all y in B, it must in particular be that there are points x1, x2
in B such that ϕ(xi ) = yi (p0) for i = 1, 2. Moreover, x1 �= x2 because y1(p0) �= y2(p0).

Hence, and with obvious notation, xi
ϕ→ yi (p0)

u2→ p0. (See Fig. 1.) If we now suppose for
a contradiction that v = u2 ◦ϕ then we must have xi

v→ p0 for i = 1, 2. But 0
v↔ p0, which

implies x1 = x2 = 0 and thereby contradicts x1 �= x2. Since ϕ was arbitrary, we conclude
that v is not expressible as u2 ◦ ϕ. �

The key to the result above is the use of ‘outer variations’ of u2 of the form ψ ◦ u2,
and it naturally leads us to consider compositions of the form ψ ◦ u2 ◦ ϕ where ψ and ϕ

are measure-preserving maps of the balls B ′ and B respectively. By further requiring that
tr (ψ) = id and tr (ϕ) = id, it should be clear that ψ ◦ u2 ◦ ϕ belongs to Y . In this way, we
can generate a rich subclass of Y which can be analysed in a neighbourhood of u2. This is
the topic of the next subsection.

6.2 Local minimality of u2 in the class S′ ◦ u2 ◦ S−1

In this section we focus on admissible maps v = v(·, δ) in the form

v = h ◦ u2 ◦ g, (6.1)

where h ∈ S′, g = G−1 with G ∈ S, and where the classes S′ and S are defined in terms of
flows, as follows. Firstly, let

T (B) := { ∈ C∞
c (B\{0},R2) : div = 0 in B},
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with a corresponding description for T (B ′). Then we define S′ and S respectively by

S′ :=
{
h : B ′ → B ′, ∃ � ∈ T (B ′) and

δ0 > 0 s.t.

{
∂δh(z, δ) = J∇�(h(z, δ)) z ∈ B ′, δ ∈ (−δ0, δ0)

h(z, 0) = z z ∈ B ′
}

and

S :=
{
G : B → B, ∃  ∈ T (B) and

δ0 > 0 s.t.

{
∂δG(y, δ) = J∇(G(y, δ)) y ∈ B, δ ∈ (−δ0, δ0)

G(y, 0) = y y ∈ B

}

.

Now, by [9, Lemma 14.11], maps belonging to S′ are self-maps of B ′ which obey (i)
det∇zh(z, δ) = 1 for all z ∈ B ′, |δ| < δ0 and (ii) h(z, δ) = z for all z ∈ ∂B ′, |δ| < δ0.
Similarly, maps in S are smooth self-maps of B with unit Jacobian and which agree with
the identity on ∂B. In particular, by the inverse function theorem, any map G belonging to
S is smooth, invertible and agrees with the identity on ∂B, so that g = G−1 is well-defined.
Letting the set S−1 be

S−1 = {G−1 : G ∈ S},
the notation in the title of the section is now self-explanatory, and, by inspection, the map v

given by (6.1) belongs to Y .
Now recall that

D(v) =
∫

B
|∇v(x)|2 dx .

When v is expressed using (6.1), a short calculation shows that

D(v) =
∫

B
|∇h(u2(y))∇u2(y)adj∇G(y)|2 dy, (6.2)

where G = g−1. Indeed, it is clear from (6.1) and the definition of D(v) that

D(v) =
∫

B
|∇h(u2(g(x)))∇u2(g(x))∇g(x)|2 dx .

By making the substitution y = g(x) and using the fact that ∇g(x) = adj∇G(y) when
det∇g(x) = 1 and G = g−1, the expression (6.2) results.

Lemma 6.2 Let D(v) be as in (6.2) with h a smooth self-map of B ′ and G a smooth self-map
of B. Then D(v) can be written as

D(v) =
∫

B
2|hτ (u2(y))|2|GR (y)|2 + 1

2
|hs(u2(y))|2|Gτ (y)|2

− 2(hτ (u2(y)) · hs(u2(y)))(Gτ (y) · GR (y)) dy. (6.3)

Futhermore, on letting

p(y) = Gτ (y) · GR (y)

|GR (y)|2 , (6.4)

q(y) = hτ (u2(y)) · hs(u2(y))
|hs(u2(y))|2 , (6.5)
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and defining the function � : R+ → R
+ by �(t) = t + 1

t , D(v) takes the form

D(v) =
∫

B

1

2
|hs(u2(y))|2|GR (y)|2(p(y) − 2q(y))2 + �

(
2|GR (y)|2

|hs(u2(y))|2
)

dy. (6.6)

Proof The first expression, (6.3), forD(v) follows by substituting the three expressions, valid
for y �= 0,

∇h(u2(y)) = hs(u2(y)) ⊗ u2(y) + hτ (u2(y)) ⊗ Ju2(y),

∇u2(y) = 1√
2
u2(y) ⊗ y + √

2 Ju2(y) ⊗ J y,

adj∇G(y) = J y ⊗ JGR (y) − y ⊗ JGτ (y),

where z := z
|z| for any z ∈ R

2\{0}, into (6.2).
In order to see (6.6), we begin by abbreviating b1 = GR (y), b2 = Gτ (y), a1 = hs(u2(y))

and a2 = hτ (u2(y)). In these terms, det∇h(u2(y)) = Ja1 · a2 and det∇G(y) = Jb1 · b2,
and since both h and G are 1 − 1, measure-preserving maps by hypothesis, it follows that
Ja1 · a2 = 1 and Jb1 · b2 = 1 throughout the domain B. In particular, note that none of
a1, a2, b1 and b2 can vanish at any point y in B. Hence the decompositions

b2 = p b1 + Jb1
|b1|2

a2 = q a1 + Ja1
|a1|2

must hold, where p = b1·b2
|b1|2 and q = a1·a2

|a1|2 are the shorthand versions of (6.4) and (6.5)
introduced above. Using these exressions in (6.3) shows that

D(v) =
∫

B
2|b1|2

∣
∣
∣
∣q a1 + Ja1

|a1|2
∣
∣
∣
∣

2

+ 1

2
|a1|2

∣
∣
∣
∣p b1 + Jb1

|b1|2
∣
∣
∣
∣

2

− 2pq|a1|2|b1|2 dy

=
∫

B

1

2
|a1|2|b1|2(p2 + 4q2 − 4pq) + 2|b1|2

|a1|2 + |a1|2
2|b1|2 dy,

which, on reverting to the original notation, is (6.6). �
Let� : B ′ → B ′ be a smooth, divergence-freemapwith compact support in the punctured

ball B ′\0. Let h belong to S′, that is, h(z, δ) is a one-parameter family of maps, defined for
z ∈ B ′ and |δ| < δ0, for some δ0 > 0 by the system

{
h′(z, δ) = �(h(z, δ)) if z ∈ B ′ and |δ| < δ0

h(z, 0) = z if z ∈ B ′,
(6.7)

where h′(z, δ) := ∂δh(z, δ). Similarly, let  : B → B be a smooth, divergence-free map
with compact support in the punctured ball B\0. Let G = g−1 be a one-parameter family of
maps, defined for y ∈ B and |δ| < δ0, by the system

{
G ′(y, δ) = (G(y, δ)) if y ∈ B and |δ| < δ0

G(y, 0) = y if y ∈ B,
(6.8)

where G ′(y, δ) := ∂δG(y, δ).
Since � and  are smooth and divergence-free, we have det∇zh(z, δ) = 1 if z ∈ B ′,

det∇yG(y, δ) = 1 if y ∈ B, and higher derivatives of h(·, δ) and G(·, δ) with respect to δ
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can be calculated directly from (6.7) and (6.8). Finally, since � and  are divergence-free,
it is well known that potentials σ and ξ exist such that

�(z) = J∇zξ(z) z ∈ B ′,
(y) = J∇yσ(y) y ∈ B.

With G(y, δ) and h(z, δ) defined by (6.8) and (6.7), let

g(y, δ) = G−1(y, δ) y ∈ B, |δ| < δ0, (6.9)

and write

v(x, δ) = h(u2(g(x, δ)), δ) x ∈ B, |δ| < δ0. (6.10)

Suppressing the dependence on δ for brevity, this is merely (6.1) with the particular choices
g(x) = g(x, δ) and h(z) = h(z, δ), but now equipped with an associated evolution which
enables us to calculate the second variation ∂2δ

∣
∣
δ=0 D(v(·, δ)).

The goal of this section is to prove the following result.

Theorem 6.3 Let  = J∇σ and � = J∇ξ be smooth, divergence free maps belonging,
respectively, to C∞

c (B\0,R2) and C∞
c (B ′\0,R2), and let h,G, g and v be defined by (6.7),

(6.8), (6.9) and (6.10) respectively. Then

(a) ∂δ|δ=0 D(v(·, δ)) = 0;
(b) it holds that

∂2δ

∣
∣
δ=0 D(v(·, δ)) ≥ 4

∫

B
{(σ − ξ ◦ u2)τ R}2 + {(σ − ξ ◦ u2)RR}2 dy, (6.11)

and ∂2δ

∣
∣
δ=0 D(v(·, δ)) = 0 only if

D(v(·, δ)) = D(u2) |δ| < δ0.

In particular, the map u2 is a local minimizer of the Dirichlet energy with respect to all
variations of the form v(y, δ).

The proof of Theorem 6.3 relies on a number of auxiliary results, which we now present.

Lemma 6.4 Let h(z, δ) and G(y, δ) obey (6.7) and (6.8) respectively, and define

a1(y, δ) = hs(u2(y), δ) (6.12)

b1(y, δ) = GR (y, δ) (6.13)

a2(y, δ) = hτ (u2(y), δ) (6.14)

b2(y, δ) = Gτ (y, δ). (6.15)

For brevity, write b′
1(y, δ) = ∂δb1(y, δ), b′′

1(y, δ) = ∂2δ b1(y, δ), and similarly for a1(y, δ),
b2(y, δ) and a2(y, δ). Then the following hold for y ∈ B and −δ0 < δ < δ0:

(a) b1(y, 0) = y, a1(y, 0) = u2(y);
(b) b2(y, 0) = J y, a2(y, 0) = Ju2(y);
(c) b′

1(y, 0) = R(y), a′
1(y, 0) = �s(u2(y));

(d) b′
2(y, 0) = τ (y), a′

2(y, 0) = �τ (u2(y)).

Proof (a) Since G(y, 0) = y, the relation GR (y, 0) = y, whose left-hand side is b1(y, 0)
by definition, is immediate. Similarly, hs(z, 0) = z for any z �= 0, so take z = u2(y) and
recall the definition of a1(y, 0). The proof of part (b) follows similarly.
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(c) Consider (6.8) and take the derivative with respect to the radial variable R. Since the
derivatives in δ and R commute, we have

b′
1(y, δ) = ∇(G(y, δ))b1(y, δ) y ∈ B, |δ| < δ0. (6.16)

By taking δ = 0, applying (a) and the fact that G(y, 0) = y for y ∈ B, it follows that

b′
1(y, 0) = ∇(y)y y ∈ B.

The right-hand side of the equation above is R (y), as claimed. Similarly, h′
s(z, 0) =

�s(z)z, in which we set z = u2(y) to obtain a′
1(y, 0) = �s(u2(y)). Notice that the

condition y �= 0 is precisely what is needed to ensure z = u2(y) �= 0. The proof of part
(d) follows similarly. �
The next three lemmas gather together and simplify various quantities which will shortly

be of use and which exploit the divergence-free nature of � and  appearing in (6.7) and
(6.8). The first of the two results is an identity that is easily deduced, so we present only a
sketch of the proof. The second and third results are more involved.

Lemma 6.5 Let σ belong to the class C∞
c (B\0,R). Then

∫

B
στ RRστ − σRστ Rτ + σ 2

τ R − σRRσττ dy = 0. (6.17)

Proof Equation (6.17) follows from the facts that
∫

B
στ RRστ − σRστ Rτ dy = 0, and (6.18)
∫

B
σRRσττ − σ 2

τ R dy = 0, (6.19)

each ofwhich can be established through a relatively straightforward sequence of integrations
by parts. �
Lemma 6.6 Let b1(y, δ) be given by (6.13), where the corresponding map G(y, δ) evolves
according to (6.8) and where  = J∇σ is a smooth, divergence-free map with compact
support in the punctured ball B\0. Similarly, let a1(y, δ) be given by (6.12), where the
corresponding map h(z, δ) evolves according to (6.7) and where � = J∇ξ is a smooth,
divergence-free map with compact support in the punctured ball B ′\0. In addition, let

X(y) := ξ(u2(y)) y ∈ B, (6.20)

and note that X ∈ C∞
c (B\0,R). Then

(a) |R |2 = σ 2
RR + σ 2

τ R;
(b) |�s(u2(y))|2 = 4X2

RR + X2
τ R, and

(c) the following identities hold:
∫

B
b1(y, 0) · b′′

1(y, 0) + |b′
1(y, 0)|2 dy =

∫

B

σ 2
R

R2 + σττ σR

R
+ σ 2

RR + σ 2
τ R dy, (6.21)

∫

B
a1(y, 0) · a′′

1 (y, 0) + |a′
1(y, 0)|2 dy =

∫

B

4X2
R

R2 + Xττ XR

R
+ 4X2

RR + X2
τ R dy.

(6.22)

Proof (a) We have  = σR J y − στ y, so R = σRR J y − στ R y, and part (a) is immediate.
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(b) Replacing σ(y) and y with ξ(z) and z respectively gives �s(z) = ξss(z)J z − ξτ s(z)z.
By (6.20), ξss(u2(y)) = 2XRR and ξτ s(u2(y)) = Xτ R , whence the stated expression for
|�s(u2(y))|2.

(c) We focus on calculating b1(y, 0) · b′′
1(y, 0), since |b′

1(y, 0)|2 = |R(y)|2 has already
been dealt with in part (a). Given (6.8), it follows by (6.16) and both parts of Lemma 6.4,
that for i = 1, 2, the i th component of b′′

1(y, 0) obeys

(b′′
1(y, 0))i = ∇2i (y)[(y), y] + (∇(y)R(y))i .

Suppressing the dependence of  on y for brevity, we have

∇ = R ⊗ y + τ ⊗ J y,

so that

(∇ R)i = (i )R(y · R) + (i )τ (J y · R).

Moreover,

∇2i = ((i )RR y + (i )τ R J y) ⊗ y +
(

(i )Rτ y + (i )R

R
J y + (i )ττ J y − (i )τ

R
y

)

⊗ J y

and hence

∇2i [(y), y] = (i )RR( · y) +
(

(i )Rτ − (i )τ

R

)

( · J y).

Therefore, with the summation convention in force,

b1(y, 0) · b′′
1(y, 0) = yi∇2i [, y] + yi (∇ R)i

= (y · RR)( · y) +
(

y · Rτ − y · τ

R

)

( · J y) + (y · R)
2

+ (y · τ )(J y · R)

Given that  = J∇σ , it is straightforward to check that  · y = −στ ,  · J y = σR , and
that

y · RR = −στ RR (6.23)

y · Rτ = −σRR

R
− στ Rτ (6.24)

y · τ = −σττ − σR

R
(6.25)

y · R = −στ R and (6.26)

J y · R = σRR. (6.27)

Hence

b1(y, 0) · b′′
1(y, 0) + |b′

1(y, 0)|2 = στστ RR − σR

(σRR

R
+ στ Rτ

)

+ σR

R

(
σττ + σR

R

)
− σRR

(
σττ + σR

R

)

+ 2σ 2
τ R + σ 2

RR.
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Integrating this expression over B, applying Lemma 6.17 and using the fact that∫
B

σRσRR
R dy = 0 yields (6.21). Similarly,

a1(y, 0) · a′′
1 (y, 0) + |a′

1(y, 0)|2 = ξτ ξτ ss − ξs

(
ξss

s
+ ξτ sτ

)

+ ξs

s

(

ξττ + ξs

s

)

− ξss

(

ξττ + ξs

s

)

+ 2ξ2τ s + ξ2ss,

where each term on the right-hand side is evaluated at u2(y). Using (6.20), we have
ξτ (u2(y)) = Xτ (y)/

√
2, ξs(u2(y)) = √

2XR(y), and, suppressing the arguments for
brevity, ξτ ss = √

2Xτ RR , ξss = 2XRR , ξτ sτ = Xτ Rτ /
√
2, ξττ = Xττ /2 and ξτ s = Xτ R .

Hence, with s = |u2(y)| = R/
√
2, we have

a1(y, 0) · a′′
1 (y, 0) + |a′

1(y, 0)|2 = Xτ Xτ RR − XRXτ Rτ + X2
τ R − Xττ XRR − 8XRXRR

+ 4X2
R

R2 + Xττ XR

R
+ 4X2

RR + X2
τ R.

Integrating this expression over B, applying Lemma 6.17 with X in place of σ , and using
the fact that

∫
B

XR XRR
R dy = 0, we obtain (6.22). �

By employing the shorthand notation ai (δ) := ai (y, δ) and bi (δ) := bi (y, δ) for i = 1, 2,
and using (6.6) from Lemma 6.2, we can write

D(v(·, δ)) =
∫

B

1

2
|a1(δ)|2|b1(δ)|2(p(δ) − 2q(δ))2 + �(r(δ)) dy, (6.28)

where

p(δ) = b1(δ) · b2(δ)
|b1(δ)|2 , (6.29)

q(δ) = a1(δ) · a2(δ)
|a1(δ)|2 , (6.30)

r(δ) := 2|b1(δ)|2
|a1(δ)|2 . (6.31)

Lemma 6.7 Let L(δ) = 1
2 |a1(δ)|2|b1(δ)|2(p(δ) − 2q(δ))2 + �(r(δ)) be the integrand of

D(v(·, δ)) as it appears in (6.28), where p, q, r are given by (6.29), (6.30) and (6.31) respec-
tively. Then

∫

B
L′(0) dy =

∫

B
3(Xτ R − στ R) dy (6.32)

and
∫

B
L′′(0) dy =

∫

B
4(στ R − 4Xτ R)(στ R − Xτ R) + 3

(
σ 2
R

R2 + σττ σR

R
+ σ 2

RR + σ 2
τ R

)

+

− 3

(
4X2

R

R2 + Xττ XR

R
+ 4X2

RR + X2
τ R

)

+
(

σRR − σR

R
− σττ − 4XRR + Xττ + 4XR

R

)2

dy. (6.33)
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Proof By Lemma 6.4, it is immediate that p(0) = 0, q(0) = 0 and r(0) = 2, and, by a direct
calculation, that

L′(0) = � ′(2)r ′(0)
= 3(b1(0) · b′

1(0) − a1(0) · a′
1(0))

= 3(y · R(y) − u2(y) · �s(u2(y))

= 3(−στ R(y) + ξτ s(u2(y)))

= 3(Xτ R(y) − στ R(y)),

the equivalence ξτ s(u2(y))) = Xτ R(y) having been established during the proof of
Lemma 6.6. This proves (6.32).

To demonstrate (6.33), first note that

L′′(0) = (p′(0) − 2q ′(0))2 + � ′′(2)(r ′(0))2 + � ′(2)r ′′(0). (6.34)

Now, by a direct calculation followed by an application of Lemma 6.4,

p′(0) = b1(0) · b′
2(0) + b′

1(0) · b2(0) − 2(b1(0) · b2(0))(b1(0) · b′
1(0))

= y · τ (y) + J y · R(y)

= σRR − σR

R
− σττ ,

where (6.25) and (6.27) have been used to replace terms in  with terms in σ .
Similarly,

q ′(0) = ξss(u2(y)) − ξs(u2(y))

s
− ξττ (u2(y))

= 2XRR − Xττ

2
− 2XR

R
,

where the conversion to terms in X is again made using facts already established in
Lemma 6.6. Hence

∫

B
(p′(0) − 2q ′(0))2 dy =

∫

B

(

σRR − σR

R
− σττ − 4XRR + Xττ + 4XR

R

)2

dy. (6.35)

Next,

� ′′(2)(r ′(0))2 + � ′(2)r ′′(0) = 1

4

(
4b1(0) · b′

1(0) − 4a1(0) · a′
1(0)

)2

+ 3

4

{
4(b1 · b′

1)
′(0) − 4(a1 · a′

1)
′(0)

+ 16((a1(0) · a′
1(0))

2 − (a1(0) · a′
1(0))(b1(0) · b′

1(0)))
}

= 4(y · R − u2(y) · �s(u2(y)))
2 + 12(u2(y) · �s(u2(y)))

2

+ 3(b1 · b′
1)

′(0) − 3(a1 · a′
1)

′(0)
− 12(u2(y) · �s(u2(y)))(y · R)

= 4σ 2
τ R + 16ξτ s(u2(y))

2 − 20στ Rξτ s(u2(y))

+ 3(b1 · b′
1)

′(0) − 3(a1 · a′
1)

′(0)
= 4(στ R − 4Xτ R)(στ R − Xτ R) + 3(b1 · b′

1)
′(0)

− 3(a1 · a′
1)

′(0).
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By (6.21) and (6.22),
∫

B
� ′′(2)(r ′(0))2 + � ′(2)r ′′(0) dy =

∫

B
4(στ R − 4Xτ R)(στ R − Xτ R)

+ 3

(
σ 2
R

R2 + σττ σR

R
+ σ 2

RR + σ 2
τ R

)

+

− 3

(
4X2

R

R2 + Xττ XR

R
+ 4X2

RR + X2
τ R

)

dy, (6.36)

which, when combined with (6.34) and (6.35) yields (6.33). �
We now replace X and σ in (6.33) with their Fourier series representations

X(y) = A0(R)

2
+

∑

j≥1

A j (R) cos( jθ) (6.37)

σ(y) = a0(R)

2
+

∑

j≥1

a j (R) cos( jθ) + b j (R) sin( jθ) (6.38)

where y = (R cos θ, R sin θ) and where, a0, A0 and, for j = 1, 2, . . ., a j , b j and A j , are
smooth functions of R ∈ (0, 1). Note that, by (6.20), X is an even function of y, and so its
Fourier series must be as stated. The following result records the effect of this substitution
into (6.33), but in a new set of variables which arise naturally from a j , b j and A j .

Proposition 6.8 Let X and σ be represented by (6.37) and (6.38) respectively. Let R = et

for t ∈ I := (−∞, 0] and define functions

w j (t) := b j (et )

et
j ∈ N, t ∈ I (6.39)

z j (t) := a j (et )

et
j ∈ N0, t ∈ I (6.40)

Z j (t) := A j (et )

et
j ∈ N0, t ∈ I . (6.41)

Define the function O( f ; j) on C∞(I ) × N0 by

O( f ; j) := ( j2 − 4)( j2 − 1) f 2 + (5 j2 + 8) ḟ 2 + 4 f̈
2

(6.42)

and where ḟ denotes differentiation with respect to the variable t . Then, in these terms, the
expression (6.33) takes the form

∫

B
L′′(0) dy = π

2

∫

I
O(z0 − Z0; 0) dt + π

∑

j∈N

∫

I
O(z j − Z j ; j) + O(w j ; j) dt . (6.43)

Proof Firstly, it is straightforward to check using elementary properties of Fourier series that
when X and σ are expressed in terms of (6.37) and (6.38), (6.33) gives

∫

B
L′′(0) dy = 2π

∫ 1

0

3

4

(
a′2
0

R2 + a′′2
0

)

− 3

(
A′2
0

R2 + A′′2
0

)

+ 1

4

(

a′′
0 − a′

0

R
+ 4A′

0

R
− 4A′′

0

)2

RdR
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+ π

∞∑

j=1

∫ 1

0
4 j2

{((
b j

R

)′)2

+
((a j

R

)′ − 4

(
A j

R

)′) ((a j

R

)′ −
(
A j

R

)′)}

+ 3

⎧
⎨

⎩

(
a′
j

R

)2

+
(
b′
j

R

)2

+ a′′2
j + b′′2

j + j2
(((a j

R

)′)2

− a ja′
j

R3

)

+ j2
(((

b j

R

)′)2

− b jb′
j

R3

)}

− 3

⎧
⎨

⎩
4

(
A′
j

R

)2

+ 4A′′2
j + j2

(((
A j

R

)′)2

− A j A′
j

R3

)⎫
⎬

⎭

+
{

b′′
j − b′

j

R
+ j2

b j

R2

}2

+
{

a′′
j − a′

j

R
+ j2

a j

R2 − 4A′′
j + 4

A′
j

R
− j2

A j

R2

}2

R dR.

Now we use (6.39), (6.40) and (6.41) to write a′
j = z j + ż j , a′′

j = (ż j + z̈ j )/R and
(a j/R)′ = ż j/R, with similar conversions for A j and b j . Using also the facts that

∫

I
uu̇ dt =

∫

I
u̇ü dt = 0 and

∫

I
uv̈ dt =

∫

I
üv dt = −

∫

I
u̇v̇ dt,

where u, v, are any of w j , z j , Z j , we find, after simplifying and re-arranging terms, that
∫

B
L′′(0)dy = 2π

∫

I
(z̈0 − Z̈0)

2 + 2(ż0 − Ż0)
2 + (z0 − Z0)

2 dt

+ π
∑

j∈N

∫

I

{
4z̈2j + (5 j2 + 8)ż2j + ( j2 − 1)( j2 − 4)z2j

}

+
{
4ẅ2

j + (5 j2 + 8)ẇ2
j + ( j2 − 1)( j2 − 4)w2

j

}

+
{
4Z̈2

j + (5 j2 + 8)Ż2
j + ( j2 − 1)( j2 − 4)Z2

j

}

− 2
{
4z̈ j Z̈ j + (5 j2 + 8)ż j Ż j + ( j2 − 1)( j2 − 4)z j Z j )

}
dt .

(6.44)

It is now clear that the integrand of the first term in (6.44) is equal to 1
4O(z0 − Z0; 0), and

that the remaining integrand equates to O(z j − Z j ; j) + O(w j ; j), which leads directly to
Eq. (6.43) as stated. �
Corollary 6.9 Let the functions σ and X belong to C∞

c (B\0) and be related to
∫
B L′′(0) dy

through (6.33). Then
∫

B
L′′(0) dy ≥ 4

∫

B
{(X − σ)τ R}2 + {(X − σ)RR}2 dy. (6.45)

Proof To show (6.45), begin by noting the lower bounds

O(z0 − Z0; 0) ≥ 4(z̈0 − Z̈0)
2 + 4(ż0 − Ż0)

2 (6.46)

O(z j − Z j ; j) ≥ 4{( j2 + 1)(ż j − Ż j )
2 + (z̈ j − Z̈ j )

2} (6.47)
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O(w j ; j) ≥ 4{( j2 + 1)ẇ2
j + ẅ2

j }, (6.48)

the last two of which hold for all j ∈ N. A short calculation using the Fourier decompositions
(6.37) and (6.38), and the changes of variables (6.39), (6.40) and (6.41), shows that

∫

B
{(X − σ)RR}2 dy = π

2

∫

I
(ż0 − Ż0)

2 + (z̈0 − Z̈0)
2 dt

+ π

∞∑

j=1

∫

I
(ż j − Ż j )

2 + (z̈ j − Z̈ j )
2 + ẇ2

j + ẅ2
j dt (6.49)

and
∫

B
{(X − σ)τ R}2 dy = π

∞∑

j=1

∫

I
j2(ż j − Ż j )

2 + j2ẇ2
j dt . (6.50)

Inserting inequalities (6.46), (6.47) and (6.48) into (6.43), and using (6.49) and (6.50), yields
(6.45). �

It may help at this point to take stock of the results obtained so far, which have established
the lower bound (1.8), i.e.

∂2δ

∣
∣
δ=0 D(v(·, δ)) ≥ 4

∫

B
{(σ − ξ ◦ u2)τ R}2 + {(σ − ξ ◦ u2)RR}2 dy,

for variations v(·, δ) given by (6.10). The functions σ and X = ξ ◦ u2 are connected to the
evolution of v(·, δ) for |δ| < δ0 through the systems (6.7) and (6.8). In proving Theorem 6.3
we are faced with two possibilities, which are that either the right-hand side of (1.8) is strictly
positive or it is not. The strictly positive case is easily dealt with, while the degenerate case
that

∫

B
{(σ − ξ ◦ u2)τ R}2 + {(σ − ξ ◦ u2)RR}2 dy = 0

requires further analysis. This is the purpose of the next three results, after which we will
finally turn to the proof of Theorem 6.3.

Lemma 6.10 Let ξ ∈ C∞
c (B\0,R) and suppose σ(y) = ξ(u2(y)) for all y ∈ B. Then

∇zξ(u2(y)) = √
2σR(y)u2(y) + 1√

2
στ (y)Ju2(y) y ∈ B. (6.51)

Proof From σ(y) = ξ(u2(y)) we have ∇σ(y) = ∇zξ(u2(y))∇u2(y). Postmulitplying this
expression on both sides by (∇u2(y))−1, which is the same thing as

adj∇u2(y) = 1√
2
J y ⊗ Ju2(y) + √

2 y ⊗ u2(y),

yields (6.51). �
Lemma 6.11 Suppose that h(z, δ) and G(y, δ) evolve according to (6.7) and (6.8) respec-
tively, and let � = J∇zξ and  = J∇yσ where σ(y) = ξ(u2(y)). Then

h(u2(y), δ) = u2(G(y, δ)) y ∈ B, |δ| < δ0.
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Proof Let H(y, δ) = u2(G(y, δ)). Since G(y, 0) = y for all y in B, it is immediate that

H(y, 0) = u2(G(y, 0)) = u2(y) if y ∈ B

and, since h(z, 0) = z for all z in B ′,

h(u2(y), 0) = u2(y) if y ∈ B.

Hence H(y, 0) = h(u2(y), 0) if y belongs to B. We will now show that

H ′(y, δ) = �(H(y, δ)) y ∈ B, |δ| < δ0,

and, since the same equation is satisfied by h(u2(y), δ), we can conclude by the uniqueness
of solutions to such ODEs that H(y, δ) = h(u2(y), δ) for y ∈ B and |δ| < δ0.

In the following, we abbreviate H(y, δ) to H , and, later, G(y, δ) to G; we also make use
of the notation z = z/|z| for z �= 0. By definition of H(y, δ),

H ′(y, δ) = ∇u2(G(y, δ))G ′(y, δ)

=
(
u2(G)√

2
⊗ G + √

2Ju2(G) ⊗ JG

)

J∇σ(G)

=
(

H√
2

⊗ G + √
2J H ⊗ JG

)

J
(
σR(G)G + στ (G)JG

)

= √
2σR(G)J H − στ (G)√

2
H

= J

(√
2σR(G)H + στ (G)√

2
J H

)

= J∇ξ(u2(G))

= J∇ξ(H)

= �(H),

where, in order to pass from the fifth to the sixth line of the calculation, we have applied
Lemma 6.10 with G(y, δ) in place of y. The conclusion now follows. �

The consequences of Lemma 6.11 are quite strong, as we now show.

Proposition 6.12 Assume that the conditions of Lemma 6.11 are in force, and let v(y, δ) be
given by (6.10). Then

D(v(·, δ)) = D(u2) |δ| < δ0.

Proof By Lemma 6.11, we may assume that h(u2(y), δ) = u2(G(y, δ)) for y ∈ B and
|δ| < δ0. By differentiation,

∇h(u2(y), δ)∇u2(y) = ∇u2(G(y, δ))∇G(y, δ),

and hence, by (6.2),

D(v(·, δ)) =
∫

B
|∇h(u2(y), δ)∇u2(y) adj∇G(y)|2 dy

=
∫

B
|∇u2(G(y, δ))∇G(y, δ) adj∇G(y)|2 dy

123



4 Page 34 of 38 J.J. Bevan et al.

=
∫

B
|∇u2(G(y, δ))|2 dy

=
∫

B
|∇u2(x)|2 dy

= D(u2).

In the above, we have used the fact that det∇G(y, δ) = 1 together with the change of
variables x = g(y, δ) where g is given by (6.9) �

We are now in a position to prove Theorem 6.3.

Proof Part (a) of Theorem 6.3 follows from Eq. (6.32) in Lemma 6.7 and the fact that
∫

B
Xτ R − στ R dy = 0

for any smooth function with compact support in the set B\0.
To prove part (b), we twice apply a suitable dominated convergence theorem to the expression
(6.28) for D(v(·, δ)) to deduce that

∂2δ

∣
∣
δ=0 D(v(·, δ)) =

∫

B
L′′(0) dy

≥ 4
∫

B
{(X − σ)τ R}2 + {(X − σ)RR}2 dy, (6.52)

after (6.45) of Corollary 6.9 has been applied. If the lower bound in (6.52) is positive
then a standard argument implies that, for sufficiently small δ, the inequality D(v(·, δ)) >

D(v(·, 0)) = D(u2) must hold. Note that we have implicitly used part (a) of Theorem 6.3
here.

If, on the other hand, the second derivative ∂2δ |
δ=0D(v(·, δ)) vanishes then

∫

B
{(X − σ)τ R}2 + {(X − σ)RR}2 dy = 0,

and so (X − σ)τ R = 0 and (X − σ)RR = 0 both hold in B. Together, these imply that
∇(X − σ) satisfies

∂R∇(X − σ) = 0 y ∈ B.

But then ∇(X − σ) is a function of the polar angle alone, and since ∇(X − σ) vanishes on
∂B, we have ∇(X − σ)(y) = 0 for all y in B. Thus X − σ is a constant, which, since X
and σ have compact support in B, must be zero. Hence X = σ in B. Now the conditions
of Lemma 6.11 are satisfied, so, by Proposition 6.12, we must have D(v(·, δ)) = D(u2) if
|δ| < δ0. �
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Appendix

The following two results are used early in Sect. 3 to express the curves ψ(Cr ) in suitable
coordinates.

Lemma A.1 Let ψ belong to H1(B,R2) and satisfy ψ = id on ∂B and det∇ψ = 1 a.e. in
B. Let r > 0, let Br = B(0, r) be the ball of radius r and centre 0 in R2, and let Cr = ∂Br .
Let z ∈ ψ(Br ), e(α) = (cosα, sin α) and define for 0 ≤ α < 2π the maps ρ(·) and σ(·) by

ρ(α) = |ψ(re(α)) − z| and (A.1)

e(σ (α)) = ψ(re(α)) − z

ρ(α)
. (A.2)

Let h(α) represent the complex form of ψ(re(α))−z
ρ(α)

, that is

h(α) = 1

ρ(α)
(ψ1(re(α)) − z1 + i(ψ2(re(α)) − z2)) . (A.3)

Then, for a.e. r such that 0 < r < 1, ρ belongs to H1([0, 2π),R) and σ can be chosen to
obey

σ(α) = σ0 − i
∫ α

0
h̄(s)h′(s) ds 0 ≤ α < 2π, (A.4)

where h̄(s)h′(s) belongs to L2(0, 2π). In particular, σ lies in H1((0, 2π),R).

Proof By part (b) of Proposition 3.1, we may assume that ρ belongs to H1([0, 2π),R).
Moreover, because z is an interior point of ψ(Br ), it must be that ρ(α) ≥ ρ0 > 0 for all
α ∈ [0, 2π] and some ρ0 > 0. In particular, the function h(α) defined by (A.3) belongs to
H1([0, 2π),C). Let [ln] be a branch of the complex logarithm, let ηε be a standard mollifier
and define hε = ηε ∗ h. Then, for sufficiently small ε, we may assume that |hε(α)| > 1

2 , say,
and hence that [ln](hε(α)) is smooth. Let φ be a smooth test function with compact support
in (0, 2π) and note that

∫ 2π

0
[ln](hε(α))φ′(α) dα = −

∫ 2π

0

(ηε ∗ h′)(α)

hε(α)
φ(α) dα.

Letting ε → 0 and using the fact that h′ ∈ L2(0, 2π), standard properties of mollifiers imply
that

∫ 2π

0
[ln](h(α))φ′(α) dα = −

∫ 2π

0

h′(α)

h(α)
φ(α) dα.

Since [ln](h(α)) = i(σ (α)+2kπ) for some k, it follows in particular that the weak derivative
of iσ(α) exists and equals h̄(α)h′(α) a.e. in (0, 2π). Equation (A.4) is now immediate, as is
the final line in the statement of the lemma. �
Lemma A.2 Let the conditions of Lemma A.1 hold, and let ρ and σ be given by (A.1) and
(A.4) respectively. Then σ(2π) − σ(0) = 2π .

Proof For brevity, define�(α) = ψ(re(α)) for all α in [0, 2π]. Since z /∈ ψ(Cr ) andψ(Cr )

is compact, it follows that there is a point p, say, on ψ(Cr ) nearest z, and, without loss of
generality, we may choose the parametrization of Cr such that p = �(0). Hence

|�(0) − z| ≤ |�(α) − z| 0 ≤ α < 2π.
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Ψ ([α∗, 2π))

Ψ ([0, α∗)) Ψ(0)

Ψ(α∗)

τ τ̃

ν

ν̃

τ

ν

ψ(Cr)

Fig. 2 Left The arrangement of �([0, α∗)) and �([α∗, 2π)) is illustrated. Both generalised exterior normals
ν and ν̃ point into the region U0 := {w ∈ R

2\ψ(Cr ) : d(ψ, Br , w) = 0}, and the degree changes by 1 as
each curve is crossed in the direction of its normal. By Proposition 3.1 part (d), the degree can take only the
values 0 or 1. Thus there is a non-trivial region in a neighbourhood of �(α∗) where the degree is both 0 and 1,
which is impossible. The point z is depicted here as the origin for convenience. Right The curve ψ(Cr ) with
σ(2π) − σ(0) = −2π is illustrated. According to Proposition 3.1 part (e), the exterior normal ν is obtained
by rotating the tangent vector, here written as τ for brevity, π/2 radians clockwise. Since ν points into the
region U0 defined above, it follows that ψ(Br ) lies entirely outside ψ(Cr ) and is, in particular, unbounded.
This is impossible

By rotating the coordinate system in the image domain, we may also assume that �(0) ∈
{z + t(1, 0) : t ≥ 0} =: R(0), say. Introduce for each α ≥ 0 the shorthand notation

�([0, α)) := {�(s) : 0 ≤ s < α}.
Since ψ(Cr ) is a closed loop, there must exist a least α1 > 0, say, such that �(α1) ∈ R(0),
and so we may define the closed loop �α1 by

�α1 = �([0, α1)) ∪ [�(α1),�(0)]
which connects �(0) to itself. For such a loop there are two possibilities: either �α1 is
contractible in the set R2\{z} to the point �(0) or it is not. Note that, since �2π = ψ(Cr )

encircles z, it is certainly the case that �2π is not contractible to �(0) in R
2\{z}, so the set

E := {α ∈ (0, 2π ] : �(α) ∈ R(0), �α is not contractible in R
2\{z} to �(0)}

contains 2π and is bounded below. Thus α∗ := inf E is well defined.
Suppose that α j → α∗ and α j ∈ E for all j . Then, sinceψ |Cr belongs to H1(Cr ,R

2), we
haveH1(�((α j , α

∗))) → 0 as j → ∞, so the non-contractibility in R2\{z} of �α∗ to �(0)
follows from that of �α j for sufficiently large j . Thus E is closed and α∗ ∈ E is a minimum.
Note that �0 = {�(0)}, which is clearly contractible to �(0) in R

2\{z}. Hence 0 /∈ E , and
so, in particular, α∗ > 0.

It now follows that �([0, α∗]) is such that (a) �(0) and �(α∗) both lie on the ray R(0)
with |z−�(0)| ≤ |z−�(α∗)| and (b)�([0, α∗))∪[�(α∗),�(0)] is homotopic to a simple
loop γ , say, encircling z exactly once in either the clockwise or anticlockwise direction. The
alternative to (b) is that γ encircles z more than once, which would necessarily generate
points �(β1) and �(β2), say, on R(0) such that β1 < β2 and β1, β2 ∈ E . By removing the
section of curve corresponding to�((β1, β2)), we obtain that �β1 is not contractible to �(0)
in R

2\{z}. Since α∗ is minimal, it must be that the procedure just described is not possible
with β2 = α∗, whence the claim.
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Now consider the closed loop �((α∗, 2π)) ∪ [�(0),�(α∗)], which we claim is con-
tractible inR2\{z} to the point�(0). Suppose not for a contradiction. Then, since |�(0)−z| ≤
|�(α)− z| for all α in [0, 2π ] by construction, no part of�((α∗, 2π)) can cross the line seg-
ment [z, �(0)], and so �((α∗, 2π)) must encircle z by also encircling the curve �([0, α∗)).
By periodicity, we have �(2π) = �(0), so �([α∗, 2π]) must cross �([0, α∗]) at �(α∗)
where 0 < α∗ < 2π . If α∗ < 2π then the crossing point is ruled out by the topologi-
cal considerations illustrated in Fig. 2(left), so α∗ = 2π . But then σ(2π) − σ(0) = ±2π ,
with + corresponding to the anticlockwise direction of rotation. We can rule out the case
σ(2π) − σ(0) = −2π because it implies, via the topological considerations illustrated in
Fig. 2(right), that ψ(Br ) is unbounded, which is plainly false. Whence σ(2π) − σ(0) = 2π .

�
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