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Abstract
We establish the interior Hölder continuity for locally bounded solutions, and the Harnack
inequality for non-negative continuous solutions to a class of anisotropic elliptic equations
with bounded and measurable coefficients, whose prototype equation is

uxx + Δq,yu = 0 locally in R × R
N−1, for q < 2,

via ideas and tools originating from the regularity theory for degenerate and singular parabolic
equations.

Mathematics Subject Classification 35J70 · 35J92 · 35B65

1 Introduction

1.1 Notation and themain results

Let E be an open set in R
N with N ≥ 2. We denote a general point in E by z = (x, y) ∈

R×R
N−1. For a function u defined in E , the symbols Dx u (or ux ) and Dyi u (or uyi ) represent

the differentiation of u with respect to x and yi variables. Accordingly we also set

Dy = (Dy1 , . . . , DyN−1), D = (Dx , Dy).
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For 1 < q < 2, we shall consider the elliptic partial differential equation

uxx +
N−1∑

i=1

Dyi Ai (z, u, Du) = 0 weakly in E, (1)

where the functions Ai (z, u, ξ) : E × R × R
N → R are Carathéodory functions, i.e. they

are measurable in (u, ξ) for all z ∈ E and continuous in z for a.e. (u, ξ) ∈ R
N+1. Moreover,

they are subject to the following structure conditions a.e. in E
⎧
⎪⎪⎨

⎪⎪⎩

N−1∑

i=1

Ai (z, u, Du) · Dyi u ≥ Co|Dyu|q

|Ai (z, u, Du)| ≤ C1|Dyu|q−1 i = 1, . . . , N − 1

(2)

with given positive constants Co and C1. The prototype equation is

uxx + divy(|Dyu|q−2Dyu) = 0.

Before stating the main result, let us recall that the anisotropic elliptic partial differential
Eq. (1) is a special case of the more general equation

N∑

i=1

Dxi Ai (x, u, Du) = 0 weakly in E, (3)

where the functions Ai (x, u, ξ) : E ×R×R
N → R are Carathéodory functions, and subject

to the structure conditions
{

Ai (x, u, Du) · uxi ≥ Co|uxi |pi ,

|Ai (x, u, Du)| ≤ C1|uxi |pi −1,
(4)

for some constants pi > 1, Co > 0 and C1 > 0. The prototype equation is

N∑

i=1

(
ai (x)|uxi |pi −2uxi

)
xi

= 0 weakly in E .

Here ai (x), i = 1, . . . , N are measurable functions, satisfying Co ≤ ai (x) ≤ C1 for some
positive Co and C1. Note also we slightly abused the symbols x and D in (3) and (4), which
represent a vector in RN and the gradient in x .

When p1 = · · · = pN = p > 1, the general Eq. (3) reduces to the standard p-Laplacian
type equation whose local regularity theory, such as Hölder regularity andHarnack estimates,
is well studied. See [3,13,21,22,24], for example.

When pi ’s are potentially different, the study of local regularity was initiated in [17–20].
It has been shown that solutions are Lipschitz continuous, provided the coefficients of the
operator are differentiable and satisfy some proper structure conditions. See also [14,15].
However, much less is known about the local regularity for (3) with merely bounded and
measurable coefficients.

It has been proved that the local boundedness of local solutions to (3) is inherent in the
notion of weak solution in [10,12], provided

max{p1, . . . , pN } ≤ N p̄

N − p̄
where

1

p̄
= 1

N

N∑

i=1

1

pi
.
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The above condition indicates that the indices pi ’s are not too far apart. In fact, examples are
constructed in [11,17] to show that solutions could be unbounded, if the indices are too far
apart. Recently, a rather detailed discussion on this issue has been carried out in [1].

Concerning the continuity of locally bounded solutions, a first step was made in [16]. It
has been shown that locally bounded solutions to (1) are Hölder continuous for q > 2. We
also mention that the Hölder regularity for more general anisotropic operators is considered
in [8,9].

In order to define the notion of weak solution formally, we introduce the following
anisotropic Sobolev spaces

W 1,[2,q](E) = {
u ∈ L1(E) : ux ∈ L2(E), uyi ∈ Lq(E), i = 1, . . . , N − 1

}
,

W 1,[2,q]
o (E) = W 1,1

o (E) ∩ W 1,[2,q](E).

A function u ∈ W 1,[2,q]
loc (E) is called a local, weak sub(super)-solution to (1), if for every

compact set K ⊂ E it satisfies

∫

K
uxφx dz +

∫

K

N−1∑

i=1

Ai (z, u, Du)φyi dz ≤ (≥) 0,

for all non-negative test functions φ ∈ W 1,[2,q]
o (K ).

In this note, by sub(super)-solutions we always refer to the weak ones defined above.
When we speak of structural data, we refer to the set of parameters {q, N , Co, C1}. We also
write γ as a generic positive constant that can be quantitatively determined a priori only in
terms of the data and it may change line by line. When we write γ (b) we mean to emphasize
the dependence on the quantity b.

For ρ > 0 let Kρ(y) be the cube of center at y in R
N−1 and edge 2ρ. When y = 0

we simply write Kρ . For zo = (xo, yo) ∈ E , we define the cylinders scaled by a positive
parameter θ :

⎧
⎪⎨

⎪⎩

centered cylinders: zo + Qρ(θ) = [
xo − θρ

q
2 , xo + θρ

q
2
] × Kρ(yo),

forward cylinders: zo + Q+
ρ (θ) = [

xo, xo + θρ
q
2
] × Kρ(yo),

backward cylinders: zo + Q−
ρ (θ) = [

xo − θρ
q
2 , xo

] × Kρ(yo).

Concerning the parameter θ , it will be a quantity that restores the homogeneity of the Eq.

(1) depending on the structure it is subject to. More precisely, we will set θ = [u] 2−q
2 , where

[u] represents a quantity that is of the “dimension” of a given solution u. When q = 2, the
cylinder zo + Qρ(θ) formally recovers the standard cube in RN of center at zo and edge 2ρ.
The exact form of θ hinges upon the context and will be specified in the following. Thus,
such cylinders are intrinsically scaled. When θ = 1, we simply write zo + Q±

ρ .
Suppose that u ∈ L∞(E) is a local weak solution to (1) and (2). For a compact set K ⊂ E

introduce the intrinsic distance from K to ∂ E by

(2, q) − dist(K ; ∂ E)
def= inf

z∈K
z̄∈∂ E

{
|y − ȳ| + ‖u‖

q−2
q

∞,E |x − x̄ | 2q
}

.

Fix zo ∈ E and let R > 0 be so small that

Qo
def= [xo − R

q
2 , xo + R

q
2 ] × K R(yo) ⊂ E
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for a small parameter ε > 0; we may assume that zo coincides with the origin. We set

μ+ = ess sup
Qo

u, μ− = ess inf
Qo

u, ω = ess osc
Qo

u = μ+ − μ−.

Construct the cylinder

Q R(θ) =
[
−θ R

q
2 , θ R

q
2

]
× K R with θ =

(ω

Λ

) 2−q
2

,

where Λ > 1 is a parameter to be determined in terms of the data only. Without loss of
generality, we may assume that ω ≤ 1, such that

Q R(θ) ⊂ Qo and ess osc
Q R(θ)

u ≤ ω.

This Q R(θ) is the starting cylinder for the reduction of oscillation.
Now we state our theorem concerning the interior Hölder regularity which holds for all

1 < q < 2.

Theorem 1 Let u be a bounded, local, weak solution to (1) and (2) in E. Then u is locally
Hölder continuous in E. More precisely, there exist constants γ, Λ > 1 and α ∈ (0, 1) that
can be determined a priori only in terms of the data, such that for any 0 < ρ < R, we have

ess osc
zo+Qρ(θ)

u ≤ γω
( ρ

R

)α

.

In other words, for every compact set K ⊂ E,

|u(z1) − u(z2)| ≤ γ ‖u‖∞,E

⎛

⎜⎝
|y1 − y2| + ‖u‖

q−2
q

∞,E |x1 − x2|
2
q

(2, q) − dist(K ; ∂ E)

⎞

⎟⎠

α

for every pair of points z1, z2 ∈ K .

In order to state Harnack’s inequality, introduce the following intrinsically scaled cylinder
centered at zo ∈ E :

zo + Q4ρ(θ) where θ = [c̄u(zo)]
2−q
2 , (5)

where c̄ ∈ (0, 1) will be determined in terms of the data and

2(N − 1)

N
def= q∗ < q < 2. (6)

It is worth mentioning that (6) ensures κ
def= Nq − 2(N − 1) > 0.

Since every locally bounded, local, weak solution to (1) and (2) has a continuous repre-
sentative by Theorem 1, we may only deal with continuous weak solutions.

Theorem 2 Let u be a continuous, non-negative, local, weak solution to (1) and (2) in E.
Assume (6) holds and the cylinder (5) is contained in E. There exist constants c, c̄ ∈ (0, 1)
depending only on the data, such that

c sup
zo+Qρ(θ)

u ≤ u(zo) ≤ c−1 inf
zo+Qρ(θ)

u.
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Theorem 2 has been stated for continuous solutions, to give meaning to u(zo). However,
it continues to hold for non-negative weak solutions to (1) and (2) for almost all zo ∈ E and
for the corresponding intrinsic cylinders.

The proofs of Theorems 1 and 2 are based on the following expansion of positivity. To
this end, we introduce another intrinsically scaled cylinder centered at zo ∈ E :

zo + Q16ρ(θ) where θ = δM
2−q
2 , (7)

for some positive number M and a parameter δ ∈ (0, 1) to be determined in terms of the data
only.

Proposition 1 Let u be a non-negative, local, weak super-solution to (1) and (2) in E. Assume
the cylinder (7) is contained in E and

|[u(xo, ·) ≥ M] ∩ Kρ(yo)| ≥ β|Kρ |
for some β ∈ (0, 1) and M > 0. There exist constants η, δ ∈ (0, 1) depending only upon the
data and β, such that

u ≥ ηM a.e. in zo + Q2ρ(θ) with θ = δM
2−q
2 .

The proof of Theorem 2 will also use the following L1
loc − L∞

loc estimate.

Theorem 3 Let u be a non-negative, local, weak solution to (1) and (2) in E and assume (6)
holds. There exists a constant γ > 0 depending only on the data, such that for all cylinders

[xo − 2t, xo + 2t] × K2ρ(yo) ⊂ E,

we have

ess sup
[xo−t,xo+t]×Kρ(yo)

u ≤ γ

(
ρq

t2

) N−1
κ

(∫

K2ρ(yo)

u(xo, y) dy

) q
κ

+ γ

(
t2

ρq

) 1
2−q

,

where κ = Nq − 2(N − 1).

Remark 1 Our main results continue to hold if we multiply uxx in (1) by a measurable
coefficient a(y) satisfying Co ≤ a(y) ≤ C1 for some positive Co and C1. Nevertheless
we do not know how to demonstrate them for more general operators at this moment. See
(8)–(10) for the technical obstruction.

1.2 Novelty and significance

The main contribution of this work is to present a local regularity theory regarding (1) in the
case q < 2. In Theorem 1, we obtain that locally bounded solutions are Hölder continuous
for all 1 < q < 2. Moreover, we establish an intrinsic Harnack inequality for non-negative
solutions to (1) in Theorem 2, which holds only for q > q∗, where q∗ > 1 is defined in (6).
The main tool of proving Theorems 1 and 2, i.e. the expansion of positivity for non-negative,
super-solutions, is presented in Proposition 1. Such a property plays a central role in any kind
of Harnack estimates for elliptic and parabolic equations. Moreover, Theorem 3 serves as
another main component in the proof of Theorem 2. It may be viewed as a Harnack inequality
in L1

loc − L∞
loc topology.

The main idea of treating the local regularity issues for (1) is the so-called intrinsic
scaling, which was originally formulated in the theory of degenerate and singular parabolic
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equations. We refer to [2,4,7] for an account of the theory. To realize such a key idea, we
also owe technical tools to the parabolic theory. The exponential shift technique in our proof
of Proposition 1 is borrowed from [6], which was used to handle the singular parabolic
equations. Theorem 3 also has a counterpart in the theory of singular parabolic equations,
though we need some new input to prove it. See [5] and [7, Appendix A]. However, it is
not immediately clear whether the same kind of approach can be applied to more general
anisotropic p-Laplacian operators. We think this intriguing interplay between the theories
of elliptic equations and parabolic equations deserves a deeper understanding in the future
investigation.

As for the organization of this note, we first collect some preliminary tools in Sect. 2,
including energy estimates, DeGiorgi-type lemmas, a logarithmic lemma and its conse-
quences. In Sect. 3, we give a proof of Proposition 1, concerning the expansion of positivity.
Section 4 is devoted to the proof of Theorem 1. To streamline the presentation, we show
Theorem 2 in Sect. 5 assuming Theorem 3, which will be proven in Sect. 6.

2 Preliminaries

For a multi-index p = (p1, . . . , pN ), pi ≥ 1, introduce anisotropic Sobolev spaces

W 1,p(E) = {
u ∈ L1(E) : uxi ∈ L pi (E), i = 1, . . . , N

}
,

W 1,p
o (E) = W 1,1

o (E) ∩ W 1,p(E).

We state here the Sobolev–Troisi inequality [23].

Lemma 1 Let E ⊂ R
N be a bounded open set and consider u ∈ W 1,p

o (E), pi ≥ 1 for all
i = 1, . . . , N. Set

1

p̄
= 1

N

N∑

i=1

1

pi
, p̄∗ = N p̄

N − p̄
.

If p̄ < N, then there exists a positive constant γ depending only on the set of parameters
{N , p}, such that

‖u‖N
p̄∗ ≤ γ

N∏

i=1

‖uxi ‖pi .

According to our notion of weak solution for (1), the index we will use is p = (2, q, . . . , q).

2.1 Energy estimates

For k ∈ R, we set

(u − k)+ = max{u − k, 0}, (u − k)− = max{−(u − k), 0}.
The first proposition concerns energy estimates in the interior.

Proposition 2 Let u be a local, weak sub(super)-solution to (1) and (2) in E. Then there
exists a constant γ > 0 depending only on the data, such that for any cube Q ⊂ E and for
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every non-negative, piecewise smooth cutoff function ζ vanishing on ∂ Q, we have for any
k ∈ R that

∫

Q
|Dx (u − k)±|2ζ 2 dz +

∫

Q
|Dy(u − k)±|qζ 2 dz

≤ γ

∫

Q
(u − k)2±|ζx |2 dz + γ

∫

Q
(u − k)

q
±|Dyζ |q dz.

Proof We only show the case of super-solutions, the other case being similar. In the weak
formulation of (1), we take the test function −(u − k)−ζ 2; a standard calculation yields that

−
∫

Q
ζ 2ux Dx (u − k)− dz −

∫

Q
ζ 2

N−1∑

i=1

Ai (z, u, Du)Dyi (u − k)− dz

≤ 2
∫

Q
ζ |ux |(u − k)−|ζx | dz + 2

∫

Q
ζ

N−1∑

i=1

|Ai (z, u, Du)|(u − k)−|Dyi ζ | dz.

We will employ the structure conditions and Young’s inequality repeatedly in estimating the
various terms. We first estimate the terms on the left-hand side. The first term is

−
∫

Q
ζ 2ux Dx (u − k)−dz =

∫

Q
|Dx (u − k)−|2ζ 2 dz,

while the second term is estimated by

−
∫

Q
ζ 2

N−1∑

i=1

Ai (z, u, Du)Dyi (u − k)− dz ≥ Co

∫

Q
|Dy(u − k)−|qζ 2 dz.

Now we estimate the terms on the right-hand side. The first term is estimated by

2
∫

Q
ζ |ux |(u − k)−|ζx | dz ≤ 1

2

∫

Q
ζ 2|Dx (u − k)−|2 dz + 2

∫

Q
(u − k)2−|ζx |2 dz.

Similarly, the second term is estimated by

2
∫

Q
ζ

N−1∑

i=1

|Ai (z, u, Du)|(u − k)−|Dyi ζ | dz

≤ Co

2

∫

Q
ζ 2|Dy(u − k)−|q dz + γ

∫

Q
(u − k)

q
−|Dyζ |q dz.

Collecting all these estimate gives the desired result. ��
The second proposition concerns energy estimates involving boundary information. We state
it in the case of super-solutions, while sub-solutions have an analogous statement. Let θ and
M be positive parameters.

Proposition 3 Let u be a local, weak super-solution to (1)and (2) in E. Suppose zo+Q±
ρ (θ) ⊂

E and

u(xo, ·) ≥ M a.e. in Kρ(yo).

Then there exists a constant γ > 0 depending only on the data, such that for any k ≤ M and
for every non-negative, piecewise smooth cutoff function ζ vanishing on ∂ Qρ(θ), we have

∫

zo+Q±
ρ (θ)

|Dx (u − k)−|2ζ 2 dz +
∫

zo+Q±
ρ (θ)

|Dy(u − k)−|qζ 2 dz
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≤ γ

∫

zo+Q±
ρ (θ)

(u − k)2−|ζx |2 dz + γ

∫

zo+Q±
ρ (θ)

(u − k)
q
−|Dyζ |q dz.

Proof Assume zo = (0, 0). The function −(u − k)−ζ 2 vanishes on the boundary of Q±
ρ (θ),

since u(0, ·) ≥ M on the set Kρ and k ≤ M , and thus it is an admissible test function. Using
this test function in the weak formulation in Q±

ρ (θ), the remaining calculation runs similar
to the proof of Proposition 2. ��

2.2 DeGiorgi-type Lemmas

Suppose θ and M are positive parameters.

Lemma 2 Let u be a non-negative, local, weak super-solution to (1) and (2) in E. There
exists a number ν > 0 depending only upon the parameters θ , M and the data, such that if

|[u ≤ M] ∩ [zo + Q2ρ(θ)]| ≤ ν|Q2ρ(θ)|,
then

u ≥ M

2
a.e. in zo + Qρ(θ).

Proof We may assume zo = (0, 0). For n = 0, 1, . . ., we set

kn = M

2
+ M

2n+1 , ρn = ρ + ρ

2n
, ρ̃n = ρn + ρn+1

2
,

Qn = Qρn (θ), Q̃n = Qρ̃n (θ).

Introduce the cutoff function ζ vanishing on ∂ Qn and equal to identity in Q̃n , such that

|Dyζ | ≤ γ
2n

ρ
and |ζx | ≤ γ

θ

(
2n

ρ

) q
2

.

In this setting the energy estimate in Proposition 2 yields
∫

Q̃n

|Dx (u − kn)−|2 dz +
∫

Q̃n

|Dy(u − kn)−|q dz

≤ γ
2qn

θ2ρq

∫

Qn

(u − kn)2− dz + γ
2qn

ρq

∫

Qn

(u − kn)
q
− dz

≤ γ
2qn Mq

ρq

[
1 + M2−q

θ2

]
|An |,

where we have set An = [u < kn]∩ Qn . Now setting ζ to be a cutoff function which vanishes
on the boundary of Q̃n and equals identity in Qn+1, an application of Lemma 1 gives that

(
M

2n+2

)q̄

|An+1| ≤
∫

Q̃n

(u − kn)
q̄
−ζ q̄ dz

≤
(∫

Q̃n

[(u − kn)−ζ ] Nq̄
N−q̄ dz

) N−q̄
N |An | q̄

N

≤ γ

(
‖Dx (u − kn)−‖2

N−1∏

i=1

‖Dyi (u − kn)−‖q

) q̄
N |An | q̄

N

123



Local regularity for an anisotropic elliptic equation Page 9 of 31 116

≤ γ
2qn Mq

ρq

(
1 + M2−q

θ2

)
|An |1+ q̄

N ,

where q̄ satisfies

1

q̄
= 1

N

(
1

2
+ N − 1

q

)
.

In terms of Yn = |An |/|Qn |, this can be rewritten as

Yn+1 ≤ γ γ n
1

(
θ2

M2−q

) q̄
2N

(
1 + M2−q

θ2

)
Y
1+ q̄

N
n ,

where γ1 and γ depend only on the data. Hence by [2, Chapter I, Lemma 4.1], Yn → 0 if we
require that

Yo ≤ 1

γ

(
M2−q

θ2

) 1
2
(
1 + M2−q

θ2

)− N
q̄ def= ν.

��
We also have a version involving boundary data.

Lemma 3 Let u be a non-negative, local weak super-solution to (1) and (2) in E. Suppose
zo + Q±

2ρ(θ) ⊂ E and u(xo, ·) ≥ M on the set K2ρ(yo). There exists a number ν > 0
depending only upon the parameters θ , M and the data, such that if

|[u ≤ M] ∩ [zo + Q±
2ρ(θ)]| ≤ ν|Q±

2ρ(θ)|,
then

u(x, y) ≥ M

2
a.e. in zo + Q±

ρ (θ).

Proof The proof is similar to that of Lemma 2. This time, wemay employ the energy estimate
in Proposition 3, since kn ≤ M . The constant ν presents the same form as in Lemma 2. ��

2.3 A logarithmic estimate

Let Q be a cylinder in E . Suppose u is a non-negative, weak super-solution to (1) and (2) in
E . For a ∈ (0, 1) and M > 0, we introduce the following function in Q:

G(u(z)) =
[

1

u(z) + aM
− 1

M

]

+
.

Note that G(u) = 0 if u ≥ (1 − a)M
def= k.

Lemma 4 Let u be a non-negative, local, weak super-solution to (1) and (2) in E. There
exists a constant γ > 0 depending only on the data, such that for every piecewise smooth
cutoff function ζ in Q vanishing on ∂ Q, there holds

∫

Q

∣∣∣∣Dx ln+
(

M

u + aM

)∣∣∣∣
2

ζ 2 dz

≤ γ

∫

Q∩[u<k]
|Dyζ |q(u + aM)q−2 dz + γ

∫

Q∩[u<k]
|ζx |2 dz.
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Proof Use the test function φ = − G(u)ζ 2 ∈ W 1,[2,q]
o in the weak formulation of u to get

∫

Q∩[u<k]
ux

ζ 2ux

(u + aM)2
dz +

∫

Q∩[u<k]

N−1∑

i=1

Ai (z, u, Du)
ζ 2Dyi u

(u + aM)2
dz

≤ 2
∫

Q
ζ ζx ux G(u) dz + 2

∫

Q
ζ G(u)

N−1∑

i=1

Ai (z, u, Du)Dyi ζ dz.

We use the structure conditions (2) and Young’s inequality repeatedly to estimate various
terms separately. For the left-hand side, the first term is

∫

Q∩[u<k]
|ux |2 ζ 2

(u + aM)2
dz =

∫

Q

∣∣∣∣Dx ln+
(

M

u + aM

)∣∣∣∣
2

ζ 2 dz.

The second term on the left is treated similarly:
∫

Q∩[u<k]
Ai (z, u, Du)

ζ 2Dyi u

(u + aM)2
dz ≥ Co

∫

Q

|Dyu|qζ 2χ[u<k]
(u + aM)2

dz.

For the right-hand side, the first term is estimated by

2
∫

Q
ζ ζx ux G(u) dz ≤ 2

∫

Q
ζ |ζx |G(u)|ux | dz

≤ 2
∫

Q

∣∣∣∣Dx ln+
(

M

u + aM

)∣∣∣∣ ζ |ζx |dz

≤ 1

2

∫

Q

∣∣∣∣Dx ln+
(

M

u + aM

)∣∣∣∣
2

ζ 2dz + 2
∫

Q
|ζx |2χ[u<k] dz.

The second term is estimated similarly:

2
∫

Q
ζ G(u)

N−1∑

i=1

Ai (z, u, Du)Dyi ζ dz ≤ Co

4

∫

Q

|Dyu|qζ 2χ[u<k]
(u + aM)2

dz

+γ

∫

Q∩[u<k]
|Dyζ |q(u + aM)q−2 dz.

Collecting all above estimates yields the desired result. ��

2.4 Consequences of the logarithmic estimate

Suppose u is a non-negative, local, weak super-solution to (1) and (2) in E . Let zo ∈ E ,
ρ > 0 and M > 0, such that zo + Q2ρ(θ) ⊂ E , where for some j∗ > 0 to be determined we
have defined

θ = (2− j∗ M)
2−q
2 .

2.4.1 Propagation of measure theoretical information

Lemma 5 Assume for some β ∈ (0, 1) there holds

|[u(xo, ·) ≥ M] ∩ Kρ(yo)| ≥ β|Kρ |.
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Then there exists j∗ > 0 depending only on the data and β, such that
∣∣∣∣

[
u(x, ·) ≥ M

2 j∗

]
∩ Kρ(yo)

∣∣∣∣ ≥ β

2
|Kρ | for all x ∈

[
xo − θρ

q
2 , xo + θρ

q
2

]
.

Proof Assume zo = (0, 0). We first apply Lemma 4 in Q2ρ(θ), choosing a = 2− j for some
j ∈ {1, 2, . . . , j∗} and a cutoff function ζ that equals 1 in Qρ(θ) and vanishes on ∂ Q2ρ(θ),
such that

|ζx | ≤ γ

θρ
q
2
, |Dyζ | ≤ γ

ρ
.

In this way, we obtain

∫

Qρ(θ)

∣∣∣∣Dx ln+
(

M

u + aM

)∣∣∣∣
2

dz

≤ γ

∫

Q2ρ(θ)

|Dyζ |q(u + aM)q−2χ[u<(1−a)M] dz + γ

∫

Q2ρ(θ)

|ζx |2 dz

≤ γ

θ2ρq
|Qρ(θ)|.

From this, a straightforward application of Hölder’s inequality yields
∫

Qρ(θ)

|ψx | dz ≤ γ

θρ
q
2
|Qρ(θ)|,

where, for ease of notation, we have set

ψ(x, y) = ln+
[

M

u(x, y) + aM

]
.

By the measure theoretical information known at x = 0, we estimate
∫

Kρ

ψ(0, y) dy ≤ (1 − β) j ln 2.

These estimates joint with the mean value theorem give us

∫

Kρ

ψ(x, y) dy ≤
∫

Kρ

ψ(0, y) dy +
∫

Kρ

∫ θρ
q
2

−θρ
q
2

|ψx | dxdy

≤ (1 − β) j ln 2 + γ

θρ
q
2
|Qρ(θ)|

≤ (1 − β) j ln 2 + γ |Kρ |,

for all x ∈
[
−θρ

q
2 , θρ

q
2

]
. The left-hand side is estimated from below over a smaller set

[
u(x, ·) ≤ M

2 j

]
∩ Kρ

to obtain
∫

Kρ

ψ(x, y) dy ≥ ( j − 1) ln 2

∣∣∣∣

[
u(x, ·) ≤ M

2 j

]
∩ Kρ

∣∣∣∣ .
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116 Page 12 of 31 N. Liao et al.

Collecting the above estimates, we have for all x ∈
[
−θρ

q
2 , θρ

q
2

]
,

∣∣∣∣

[
u(x, ·) ≤ M

2 j

]
∩ Kρ

∣∣∣∣ ≤ j

j − 1
(1 − β)|Kρ | + γ

j − 1
|Kρ |.

To conclude, we may choose j∗ large enough, such that

γ

j∗ − 1
≤ β

4
,

j∗
j∗ − 1

(1 − β) ≤ 1 − 3

4
β.

��

2.4.2 A shrinking lemma

Lemma 6 Assume

u(xo, ·) ≥ M a.e. in Kρ(yo).

Then there exists a constant γ > 0 depending only on the data, such that for any j∗ > 0
∣∣∣∣

[
u(x, ·) ≤ M

2 j∗

]
∩ Kρ(yo)

∣∣∣∣ ≤ γ

j∗
|Kρ |,

for all x ∈
[
xo − θρ

q
2 , xo + θρ

q
2

]
.

Proof Assume zo = (0, 0). The proof is similar to that of Lemma 5.However, the quantitative
information u(0, ·) ≥ M in Kρ yields

∫

Kρ

ψ(0, y) dy = 0.

Hence we have for all x ∈
[
−θρ

q
2 , θρ

q
2

]
,

∣∣∣∣

[
u(x, ·) ≤ M

2 j

]
∩ Kρ

∣∣∣∣ ≤ γ

j − 1
|Kρ |.

The proof is concluded by redefining γ properly. ��

2.4.3 Propagation of pointwise information

A combination of Lemmas 3 and 6 shows that the positivity of a non-negative, local super-
solution at xo over a y-cube spreads in x direction over a smaller y-cube.

Lemma 7 Assume

u(xo, ·) ≥ M a.e. in K2ρ(yo).

Then there exists j∗ > 0 depending only on the data, such that

u(x, ·) ≥ M

2 j∗+1 a.e. in Kρ(yo),

for all x ∈
[
xo − θρ

q
2 , xo + θρ

q
2

]
where θ = (2− j∗ M)

2−q
2 .
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Proof Assume zo = (0, 0). By Lemma 3 in the cylinder Q±
2ρ(θ) with θ = (2− j∗ M)

2−q
2 for

some j∗ > 0 to be chosen and a = 1
2 , there exists a positive constant ν depending only on

the data, such that if
∣∣∣∣

[
u ≤ M

2 j∗

]
∩ Q±

2ρ(θ)

∣∣∣∣ ≤ ν|Q±
2ρ(θ)|

then

u ≥ M

2 j∗+1 a.e. in Q±
ρ (θ).

Now we choose the constant j∗ according to Lemma 6, such that γ j−1∗ ≤ ν. ��

3 Proof of Proposition 1

The proof of Proposition 1 hinges upon the following preliminary version.

Proposition 4 Suppose the hypothesis in Proposition 1 holds. If for some β ∈ (0, 1) and
M > 0 there holds

|[u(x, ·) ≥ M] ∩ Kρ(yo)| ≥ β|Kρ |
for all

|x − xo| ≤ M
2−q
2 ρ

q
2 .

Then there exist constants η, δ ∈ (0, 1) depending only upon the data and β, such that

u(x, ·) ≥ ηM a.e. in K2ρ(yo)

for all

(1 − δ)M
2−q
2 ρ

q
2 ≤ |x − xo| ≤ M

2−q
2 ρ

q
2 .

We will assume without loss of generality that zo coincides with the origin. To simplify
the presentation, we deal with the half space [x > 0] only, since the case of [x < 0] is similar.

3.1 Change of variables

Introduce the new variable z̃ = (x̃, ỹ) and the unknown function v defined by

ỹ = y

ρ
, −e−x̃ = x − M

2−q
2 ρ

q
2

M
2−q
2 ρ

q
2

, v(z̃) = 1

M
u(z)e

2
2−q x̃

. (8)

It maps the cylinder
[
0, M

2−q
2 ρ

q
2

]
× K16ρ into (0,∞)× K16. Now we proceed to show that

v satisfies a differential inequality with a similar type of structure conditions as (2). To start
with, we have by differentiation that

ux = Me(1−λ)x̃

M
1
λ ρ

q
2

(vx̃ − λv), λ
def= 2

2 − q
,
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116 Page 14 of 31 N. Liao et al.

uxx = Me(2−λ)x̃

(
M

1
λ ρ

q
2

)2 [vx̃ x̃ − (2λ − 1)vx̃ + λ(λ − 1)v] ,

Dyu = M

ρ
e−λx̃ Dỹv.

As a result, v will satisfy the following differential inequality weakly:

vx̃ x̃ − (2λ − 1)vx̃ + λ(λ − 1)v +
N−1∑

i=1

Dỹi Ãi (z̃, v, Dz̃v) ≤ 0, (9)

where we have defined

Ãi (z̃, v, Dz̃v) =
(

M
1
λ ρ

q
2

)2

ρMe(2−λ)x̃
Ai (z, u, Du).

Moreover, we have
⎧
⎪⎪⎨

⎪⎪⎩

N−1∑

i=1

Ãi (z̃, v, Dz̃v) · Dỹi v ≥ Co|Dỹv|q

| Ãi (z̃, v, Dz̃v)| ≤ C1|Dỹv|q−1 i = 1, . . . , N .

3.2 Energy estimates for v

Proposition 5 Suppose v ≥ 0 satisfies (9) weakly in a cube Q in R
N . There exists a constant

γ > 0 depending only on the data, such that for every non-negative, piecewise smooth cutoff
function ζ vanishing on ∂ Q, we have for any k ≥ 0 that

∫

Q
|Dx̃ (v − k)−|2ζ 2 dz̃ +

∫

Q
|Dỹ(v − k)−|qζ 2 dz̃

≤ γ

∫

Q
(v − k)2−(|ζx̃ | + |ζx̃ |2) dz̃ + γ

∫

Q
(v − k)

q
−|Dỹζ |q dz̃. (10)

Proof For simplicity of notation, we still denote the variable of v by z = (x, y) and Ãi by
Ai . In the weak formulation of (9), we take the test function (v − k)−ζ 2; discarding the
non-negative contribution of v, a standard calculation yields that

−
∫

Q
ζ 2vx Dx (v − k)− dz − (2λ − 1)

∫

Q
ζ 2vx (v − k)− dz

−
∫

Q
ζ 2

N−1∑

i=1

Ai (z, v, Dv)Dyi (v − k)− dz

≤ 2
∫

K
ζ |vx |(v − k)−|ζx | dz

+ 2
∫

Q
ζ

N−1∑

i=1

|Ai (z, v, Dv)|(v − k)−|Dyi ζ | dz.
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We will employ the structure conditions and Young’s inequality repeatedly in estimating the
various terms. We first estimate the terms on the left-hand side. The first term is estimated by

−
∫

Q
ζ 2vx Dx (v − k)−dz ≥

∫

K
|Dx (v − k)−|2ζ 2 dz,

while the second integral is

−
∫

Q
ζ 2vx (v − k)− dz = 1

2

∫

K
ζ 2Dx |(v − k)−|2 dz

= −
∫

K
ζ ζx |(v − k)−|2 dz.

The third term is estimated by

−
∫

Q
ζ 2

N−1∑

i=1

Ai (z, v, Dv)Dyi (v − k)− dz ≥ Co

∫

K
|Dy(v − k)−|qζ 2 dz.

Now we estimate the terms on the right-hand side. The first term is estimated by

2
∫

Q
ζ |vx |(v − k)−|ζx | dz

≤ 1

2

∫

Q
ζ 2|Dx (v − k)−|2 dz + 2

∫

Q
(v − k)2−|ζx |2 dz.

Similarly, the second term is estimated by

2
∫

Q
ζ

N−1∑

i=1

|Ai (z, v, Dv)|(v − k)−|Dyi ζ | dz

≤ Co

2

∫

Q
ζ 2|Dy(v − k)−|q dz + γ

∫

Q
(v − k)

q
−|Dyζ |q dz.

Collecting all these estimates gives the desired result. ��

3.3 Shrinking themeasure of the set [v ≈ 0]

The measure theoretical information in Lemma 5 gives that for some positive integer jo
depending only on the data, such that

∣∣∣
[
v(x̃, ·) ≥ 2− jo e

2
2−q x̃

]
∩ K1

∣∣∣ ≥ β

2
|K1| for all x̃ ≥ 0.

Let x̃o, n∗ > 0 to be chosen and set

ε̄ = 2− jo , ko = ε̄e
2

2−q x̃o , kn = ko

2n
for n = 0, 1, . . . , n∗. (11)

With this stipulation the measure theoretical information above implies

|[v(x̃, ·) ≥ kn] ∩ K8| ≥ β

2

1

8N−1 |K8| for all x̃ ∈ (x̃o,∞), (12)

and for all n > 0. Assume momentarily that x̃o has been chosen. Introduce the pair of
cylinders

Q =
[
x̃o + k2−q

o , x̃o + 2k2−q
o

]
× K8, Q′ =

[
x̃o, x̃o + 3k2−q

o

]
× K16.
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116 Page 16 of 31 N. Liao et al.

Lemma 8 There exists n∗ > 0 depending only on the data, such that for any ν ∈ (0, 1), we
have

∣∣∣∣

[
v ≤ ko

2n∗

]
∩ Q

∣∣∣∣ ≤ ν|Q|.

Proof We employ the energy estimate (10) in the cylinder Q′, with levels kn and a non-
negative, piecewise smooth, cutoff function ζ in Q′, which equals 1 in Q and vanishes on
∂Q′, satisfying

|Dỹζ | ≤ 1

8
, |ζx̃ | ≤ kq−2

o .

Since jo and thus ε̄ are fixed, one verifies that if we take x̃o large enough then we have

kq−2
o = ε̄q−2e−2x̃o ≤ 1,

and as a result

|ζx̃ | + |ζx̃ |2 ≤ 2kq−2
o .

From this observation, the energy estimate (10) gives us that
∫

Q
|Dỹ(v − kn)+|q dz̃ ≤ γ kq

n

(
1 + k2−q

n

k2−q
o

)
|[v < kn] ∩ Q|

≤ γ kq
n |[v < kn] ∩ Q|,

where we have used the fact that k2−q
n ≤ k2−q

o .
Next, we apply [2, Chapter I, Lemma 2.2] to v(x̃, ·) for

x̃ ∈ I
def=

[
x̃o + k2−q

o , x̃o + 2k2−q
o

]

over K8, with levels kn > kn+1. Taking into account the measure theoretical information in
(12), this gives

ko

2n+1 |[v(x̃, ·) < kn+1] ∩ K8|

≤ γ

|[v(x̃, ·) > kn] ∩ K8|
∫

[kn+1<v(x̃,·)<kn ]∩K8

|Dỹv| d ỹ

≤ γ

β

(∫

[kn+1<v(x̃,·)<kn ]∩K8

|Dỹv|q d ỹ

) 1
q

× |([v(x̃, ·) < kn] − [v(x̃, ·) < kn+1]) ∩ K8|1−
1
q .

Set

An = [v < kn] ∩ Q
and integrate the above estimate in dx̃ over I ; we obtain by using the energy estimate

ko

2n+1 |An+1| ≤ γ

β

(∫

Q
|Dỹ(v − kn)+|q d ỹ

) 1
q

(|An | − |An+1|)1−
1
q

≤ γ
ko

2n
|Q| 1q (|An | − |An+1|)1−

1
q .
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Now take the power q
q−1 on both sides to obtain

|An+1|
q

q−1 ≤ γ |Q| 1
q−1 (|An | − |An+1|).

Add these inequalities from 0 to n∗ − 1 to obtain

n∗|An∗ |
q

q−1 ≤
n∗−1∑

n=0

|An+1|
q

q−1 ≤ γ |Q| q
q−1 .

From this we conclude that

|An∗ | ≤ γ

n
q−1

q∗
|Q|.

Thus we may fix n∗ by choosing γ n
− q−1

q∗ ≤ ν. ��

3.4 A DeGiorgi-type lemma for v

Suppose for the moment x̃o > 0 has been chosen in terms of the data. Assume for some
b > 0 to be determined only in terms of the data, there holds the set inclusion:

(x1, 0) + Q8(θ) ⊂ Q ⊂ [0, b] × K16, where θ = (2−n∗ko)
2−q
2 , ko = ε̄e

2
2−q x̃o .

We may employ the energy estimate (10) in (x1, 0) + Q8(θ) to obtain the following.

Lemma 9 There exists a number ν > 0 depending only upon the data, such that if
∣∣∣∣

[
v ≤ ko

2n∗

]
∩ [(x1, 0) + Q8(θ)]

∣∣∣∣ ≤ ν|Q8(θ)|,

then

v ≥ ko

2n∗+1 a.e. in (x1, 0) + Q4(θ).

Proof We may assume (x1, 0) = (0, 0). For n = 0, 1, . . ., we set

ln = M1

2
+ M1

2n+1 , M1 = ko

2n∗ ,

ρn = 4 + 8

2n
, ρ̃n = ρn + ρn+1

2
,

Qn = Qρn (θ), Q̃n = Qρ̃n (θ), θ = M
2−q
2

1 .

Introduce a non-negative, piecewise smooth, cutoff function ζ vanishing on ∂ Qn and equal
to identity in Q̃n , such that

|Dỹζ | ≤ γ 2n and |ζx̃ | ≤ γ
2

q
2 n

θ
.

The constant n∗ will be chosen in (14) first and then x̃o in (17), such that
⎧
⎪⎨

⎪⎩
M1 = e

2
2−q x̃o

2n∗
def= Λo > 1 and θ = M

2−q
2

1
def= Λ

2−q
2

o

are absolute constants depending only on the data.

(13)

123



116 Page 18 of 31 N. Liao et al.

Assuming this for the moment, we would have

|ζx̃ | + |ζx̃ |2 ≤ γ

(
Λ

2−q
2

o + Λ
2−q
o

)
2qn ≤ γΛ

2−q
o 2qn .

Consequently, the energy estimate (10) yields
∫

Q̃n

|Dx̃ (v − ln)−|2 dz̃ +
∫

Q̃n

|Dỹ(v − ln)−|q dz̃

≤ γ 2qnΛ
2−q
o

∫

Qn

(v − ln)2− dz̃ + γ 2qn
∫

Qn

(v − ln)
q
− dz̃

≤ γ 2qnΛ
2−q
o (M2

1 + Mq
1 )|An |

≤ γ 2qnΛ
4−q
o |An |,

where we have set An = [v < ln] ∩ Qn .
Next, we may proceed exactly as in Lemma 2 to obtain the recurrence inequality

Yn+1 ≤ γΛd
oγ n

1 Y
1+ q̄

N
n for n ≥ 0,

where d , γ1 and γ are positive constants depending only on the data, and Yn = |An |/|Qn |.
Hence by [2, Chapter I, Lemma 4.1], Yn → 0 if we require that

Yo ≤ γΛ
− d N

q̄
o

def= ν.

��

3.5 Expanding the positivity of v

Assume momentarily that n∗ and x̃o have been determined. We may also assume

ε̄
2−q
2 ex̃o2

2−q
2 n∗ is an integer. Then recalling the definition of ko and kn∗ in (11), we slice

Q into ε̄
2−q
2 ex̃o2

2−q
2 n∗ cylinders, each of length k

2−q
2

n∗ , by setting
⎧
⎪⎨

⎪⎩

Qn =
[

x̃o + k2−q
o + nk

2−q
2

n∗ , x̃o + k2−q
o + (n + 1)k

2−q
2

n∗

]
× K8

for n = 0, 1, . . . , ε̄
2−q
2 ex̃o2

2−q
2 n∗ − 1.

For at least one of these cylinders, say Qn , there must hold

|[v < kn∗ ] ∩ Qn | ≤ ν|Qn |.
Having ν fixed in terms of the data as in Lemma 9, we may choose n∗ according to Lemma 8,
such that

γ n−1∗ ≤ ν. (14)

Apply Lemma 9 to v over Qn with θ = k
2−q
2

n∗ to obtain that

v

(
x̃o + k2−q

o + (
n + 1

2

)
k

2−q
2

n∗ , ·
)

≥ kn∗
2

a.e. in K4.

Consequently, there exists some x̃1 in the range

x̃o + k2−q
o < x̃1 < x̃o + 2k2−q

o ,
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such that

v(x̃1, ·) ≥ σoe
2

2−q x̃o a.e. in K4

where

σo = ε̄

2n∗+1 . (15)

3.6 Returning to the original coordinates

In terms of the original coordinates and the function u, we arrive at

u(x1, ·) ≥ σo Me
−2
2−q (x̃1−x̃o) def= Mo a.e. in K4ρ,

where x1 corresponds to x̃1 according to the change of variables (8). Apply now Lemma 7
with M replaced by Mo to obtain that there exists j∗ > 0 depending only on the data, such
that, setting ε = 2− j∗ ,

u(x, ·) ≥ εMo = εσo Me
−2
2−q (x̃1−x̃o)

≥ εσoe
−4
2−q e2x̃o

M a.e. in K2ρ (16)

for all

x1 ≤ x ≤ x1 + (εMo)
2−q
2 (2ρ)

q
2 .

The parameter x̃o is still to be chosen. Now we choose it such that the right-hand side of the

above interval equals M
2−q
2 ρ

q
2 , i.e.,

M
2−q
2 ρ

q
2 e−x̃1 = M

2−q
2 ρ

q
2 − x1 = (εσo)

2−q
2 M

2−q
2 ex̃o−x̃1(2ρ)

q
2 ,

which implies the choice of x̃o:

ex̃o = 1

2
q
2 (εσo)

2−q
2

.

Taking into consideration (15), this choice of x̃o implies that

ex̃o

2
2−q
2 n∗

= 21−q

ε
2−q
2

def= Λ
2−q
2

o > 1, (17)

which guarantees that (13) holds. Therefore, (16) holds for

x1 = ρ
q
2 M

2−q
2 − (εMo)

2−q
2 (2ρ)

q
2 ≤ x ≤ ρ

q
2 M

2−q
2 .

From the definition of x̃o and the change of variable (8) one estimates

x1 ≤ (1 − δ)M
2−q
2 ρ

q
2 where δ = e−x̃o−2e2x̃o

.
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3.7 Proof of Proposition 1 concluded

Since

|[u(·, 0) ≥ M] ∩ Kρ | ≥ β|Kρ |,
according to Lemma 5, there exists jo > 0, such that

∣∣∣∣

[
u(x, ·) ≥ M

2 jo

]
∩ Kρ

∣∣∣∣ ≥ β

2
|Kρ |

for all

−
(

M

2 jo

) 2−q
2

ρ
q
2 ≤ x ≤

(
M

2 jo

) 2−q
2

ρ
q
2 .

We apply Proposition 4 with M replaced by M1 = δ̄M = 2− jo M and xo = ±M
2−q
2

1 ρ
q
2 . As

a result, there exist η, δ ∈ (0, 1), such that

u(x, ·) ≥ ηδ̄M a.e. in K2ρ

for all

|x | ≤ δ(δ̄M)
2−q
2 ρ

q
2 .

The proof of Proposition 1 is completed by properly redefining constants η and δ.

4 Proof of Theorem 1

Let the parameters δ and η be fixed as in Proposition 1 with β = 1
2 . In order to apply

Proposition 1, we set

Λ = 4δ
−2
2−q .

Then one of the following two alternatives must hold:
∣∣∣
[
μ+ − u(0, ·) ≥ ω

4

]
∩ K R

∣∣∣ ≥ 1

2
|K R | or

∣∣∣
[
u(0, ·) − μ− ≥ ω

4

]
∩ K R

∣∣∣ ≥ 1

2
|K R |.

According to Proposition 1 with M = 1
4ω, we have

±(μ± − u) ≥ η

4
ω a.e. in Q R

2
(θ) with θ =

(ω

Λ

) 2−q
2

.

In either case, we obtain a reduction of oscillation. More precisely,

ess osc
Q R

2
(θ)

u ≤
(
1 − η

4

)
ω.

Once we have this reduction of oscillation, the rest of the proof is quite standard. We refer
to p. 45 of [2] for details.
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5 Proof of Theorem 2 assuming Theorem 3

Fix zo ∈ E , assume u(zo) > 0, and construct cylinders

zo + Q4ρ(θ) ⊂ E, where θ = [c̄u(zo)]
2−q
2 .

Introduce the new variables z̃ = (x̃, ỹ) defined by

ỹ = y − yo

ρ
, x̃ = x − xo

ρ
q
2 [u(zo)] 2−q

2

.

Under this mapping, the cylinder zo + Q4ρ(θ) is transformed into

Q̃ =
[
−4

q
2 c̄

2−q
2 , 4

q
2 c̄

2−q
2

]
× K4, q < 2.

Consider the new function in Q̃:

v(x̃, ỹ) = 1

u(zo)
u

(
xo + x̃ρ

q
2 [u(zo)]

2−q
2 , yo + ρ ỹ

)
.

Then v(z̃) is a bounded non-negative, weak solution to

vx̃ x̃ +
N−1∑

i=1

Dỹi Ãi (z̃, v, Dv) = 0, (18)

where the function Ãi (z̃, v, Dv) : E × R × R
N → R is defined by

Ãi (z̃, v, Dv) = Ai (z, u, Du)[u(zo)]1−qρq−1,

subject to the following structure conditions a.e. in Q̃:
⎧
⎪⎪⎨

⎪⎪⎩

N−1∑

i=1

Ãi (z̃, v, Dv) · Dỹi v ≥ Co|Dỹv|q

| Ãi (z̃, v, Dv)| ≤ C1|Dỹv|q−1 i = 1, . . . , N − 1.

Therefore Proposition 1 holds for v. In what follows, for simplicity of notation, let us still
denote the variables of v by z = (x, y).

The proof of the right-hand side inequality in Theorem 2 is a consequence of the following.

Proposition 6 There exist constants c, c̄ ∈ (0, 1), which can be determined only in terms of
the data, such that

v ≥ c in Q1(c̄).

5.1 Proof of Proposition 6

For τ ∈ (0, 1), introduce the family of nested cubes {Kτ } and the families of non-negative
numbers {Mτ } and {Nτ } as follows:

Mτ = sup
Kτ

v(0, ·), Nτ = (1 − τ)−σ ,

where σ > 1 is to be chosen. The two functions [0, 1) � τ → Mτ , Nτ are increasing, and
Mo = No = 1 since v(0, 0) = 1. Moreover, Nτ → ∞ as τ → 1 whereas Mτ is bounded

123



116 Page 22 of 31 N. Liao et al.

since v is locally bounded. Therefore the equation Mτ = Nτ has roots and we denote the
largest one as τ∗. By the continuity of v, there exists ȳ ∈ Kτ∗ , such that

v(0, ȳ) = Mτ∗ = Nτ∗ = (1 − τ∗)−σ .

Moreover,

K2R(ȳ) ⊂ K 1+τ∗
2

⊂ K1, where 2R
def= 1 − τ∗

2
.

Therefore by the definition of τ∗,

sup
K2R(ȳ)

v(0, ·) ≤ sup
K 1+τ∗

2

v(0, ·) ≤ 2σ (1 − τ∗)−σ def= M∗.

Now we apply Theorem 3 to conclude that there exists γ̄ ∈ (0, 1) depending on the data,
such that

sup
(0,ȳ)+Q R(θ)

v ≤ γ̄ M∗ where θ = M
2−q
2∗ .

Next, we may take Λ in the proof of Theorem 1 even larger, such that

(0, ȳ) + Q R(θ̄) ⊂ (0, ȳ) + Q R(θ) and osc
(0,ȳ)+Q R(θ̄ )

v ≤ γ̄ M∗,

where

θ̄ =
(

γ̄ M∗
Λ

) 2−q
2

.

Then (0, ȳ) + Q R(θ̄) serves as the starting cylinder in Theorem 1.
Let ε∗ ∈ (0, 1) and set r = ε∗ R. ByTheorem1, for all r < R and for all z ∈ (0, ȳ)+Qr (θ̄)

v(z) − v(0, ȳ) ≥ −γ [γ̄ 2σ (1 − τ∗)−σ ]
( r

R

)α ≥ −1

2
(1 − τ∗)−σ ,

provided we choose ε∗ so small that

γ γ̄ 2σ εα∗ ≤ 1

2
.

This in turn gives

v(z) ≥ 1

2
(1 − τ∗)−σ def= M for all z ∈ (0, ȳ) + Qr (θ̄).

From this wemay start employing Proposition 1 to conclude that there exist positive constants
η and δ as indicated, such that

v(x, ·) ≥ ηM in K2r (ȳ)

for all

−δθ̄r
q
2 ≤ x ≤ δθ̄r

q
2 .

Repeated applications of Proposition 1 then yield positive constants η and δ as indicated,
such that

v(x, ·) ≥ ηn M in K2nr (ȳ)
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for all

−δθ̄r
q
2 ≤ x ≤ δθ̄r

q
2 .

Wemay assume ε∗(1−τ∗) is a negative, integral power of 2. Then choose n such that 2nr = 2.
In this way, we calculate

ηn M = 1

2
(1 − τ∗)−σ ηn = 1

2

(
8

ε∗2n

)−σ

ηn = 1

2
(2σ η)n

(ε∗
8

)σ

.

Finally, we may choose σ such that 2σ η = 1. As a result, setting c = 2−3σ−1εσ∗ , we have

v(x, ·) ≥ c in K1

for all

−δθ̄r
q
2 ≤ x ≤ δθ̄r

q
2 .

On the other hand, one estimates

δθ̄r
q
2 = δ[γ̄ Λ−12σ (1 − τ∗)−σ ] 2−q

2 [2−2ε∗(1 − τ∗)]
q
2

= δ
2−q
2 γ̄

2−q
2 Λ

q−2
2 2σ

2−q
2 −qε

q
2∗ (1 − τ∗)−σ

2−q
2 + q

2

≥ δ
2−q
2 γ̄

2−q
2 Λ

q−2
2 2σ

2−q
2 −qε

q
2∗
def= c̄

2−q
2 ,

provided σ ≥ q/(2 − q), which may be assumed by possibly taking η smaller if necessary.
In conclusion,

v ≥ c in Q1(c̄).

5.2 Proof of Theorem 2 concluded

We have shown in the last section that

u(zo) ≤ c−1 inf
zo+Qρ(θ)

u where θ = [c̄u(zo)]
2−q
2 .

Now we claim that

sup
zo+Qρ(θ)

u ≤ 2c−1u(zo).

Indeed, if not, by continuity of u, there would exist z∗ ∈ zo + Qρ(θ) such that

u(z∗) = 2c−1u(zo).

The membership of z∗ in zo + Qρ(θ) implies that

|xo − x∗| ≤ ρ
q
2 [c̄u(zo)]

2−q
2 = ρ

q
2

[
cc̄

2
u(z∗)

] 2−q
2

,

which in turn gives that

zo ∈ z∗ + Qρ̄ (θ∗) where ρ̄ = ρ
( c

2

) 2−q
q

and θ∗ = [c̄u(z∗)]
2−q
2 .
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However, this leads to a contradiction:

2c−1u(zo) = u(z∗) ≤ c−1 inf
z∗+Qρ̄ (θ∗)

u ≤ c−1u(zo).

The proof of Theorem 2 is now concluded by properly redefining c.

6 Proof of Theorem 3

We first present two propositions from which Theorem 3 follows.

Proposition 7 Let u be a non-negative, local, weak super-solution to (1) and (2) in E. There
exists a constant γ > 0 depending only on the data, such that for all cylinders

[xo − T , xo + T ] × K2ρ(yo) ⊂ E,

we have

sup
0<t<T

1

tρN−1

∫ xo+t

xo−t

∫

Kρ(yo)

u dydx ≤ γ

ρN−1

∫

K2ρ(yo)

u(xo, y) dy + γ

(
T 2

ρq

) 1
2−q

.

Proposition 8 Let u be a locally bounded, local, weak sub(super)-solution to (1) and (2) in
E. For r ∈ (0, 2], let

κr
def= (N + r − 1)q − 2(N − 1) > 0.

There exists a constant γ > 0 depending only on the data, such that for all cylinders

[xo − 2t, xo + 2t] × K2ρ(yo) ⊂ E,

we have

ess sup
[xo−t,xo+t]×Kρ(yo)

u± ≤ γ

(
ρq

t2

) N−1
κr

(∫

K2ρ(yo)

∫ xo+2t

xo−2t
ur± dxdy

) q
κr

+ γ

(
t2

ρq

) 1
2−q

.

6.1 Proof of Proposition 7

Assuming zo = (0, 0), let us consider the cylinder [−T , T ]× Kρ . In what follows we denote
by ζ2(y) a piecewise smooth function that vanishes on Kρ and equals 1 on Kσρ , such that

|Dyζ2| ≤ γ

(1 − σ)ρ
,

whereas for 0 < t < T we define

ζ1(x) =
(
1 − x2

t2

)

+
.

Let us introduce a constant α that satisfies

1 < α < min

{
q,

1

q − 1

}
,
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such that the quantities 2−α, q −α and α(q −1) are all in (0, 1). The proof of Proposition 7
replies on the following two lemmas.

6.1.1 Auxiliary lemmas

Lemma 10 Suppose the hypothesis in Proposition 7 holds. There exists a constant γ > 0
depending only on the data and α, such that

∫ t

−t

∫

Kρ

|Dyu|qu−αζ1ζ
q
2 dydx

≤ γ

t2

∫ t

−t

∫

Kρ

u2−α dydx + γ

(1 − σ)qρq

∫ t

−t

∫

Kρ

uq−α dydx .

Proof We may assume that u ≥ ε > 0 for otherwise we may work with u + ε and then let
ε → 0. Now we use u1−αζ1ζ

q
2 as a test function in the weak formulation of (1). Formally,

we have

∫ t

−t

∫

Kρ

uxx u1−αζ1ζ
q
2 dydx +

N−1∑

i=1

∫ t

−t

∫

Kρ

Dyi Ai (z, u, Du)u1−αζ1ζ
q
2 dydx ≤ 0.

We estimate the two terms on the left separately. First of all,
∫ t

−t

∫

Kρ

uxx u1−αζ1ζ
q
2 dydx

= (α − 1)
∫ t

−t

∫

Kρ

|ux |2u−αζ1ζ
q
2 dydx + 2

t2

∫ t

−t

∫

Kρ

xux u1−αζ
q
2 dydx

= (α − 1)
∫ t

−t

∫

Kρ

|ux |2u−αζ1ζ
q
2 dydx + 2

(2 − α)t2

∫ t

−t

∫

Kρ

x Dx (u
2−α)ζ

q
2 dydx

≥ (α − 1)
∫ t

−t

∫

Kρ

|ux |2u−αζ1ζ
q
2 dydx − 2

(2 − α)t2

∫ t

−t

∫

Kρ

u2−αζ
q
2 dydx .

Next,

N−1∑

i=1

∫ t

−t

∫

Kρ

Dyi Ai (z, u, Du)u1−αζ1ζ
q
2 dydx

≥ Co(α − 1)
∫ t

−t

∫

Kρ

|Dyu|qu−αζ1ζ
q
2 dydx

− qC1

∫ t

−t

∫

Kρ

|Dyu|q−1u1−αζ1ζ
q−1
2 |Dyζ2| dydx

≥ Co

2
(α − 1)

∫ t

−t

∫

Kρ

|Dyu|qu−αζ1ζ
q
2 dydx

− γ

∫ t

−t

∫

Kρ

uq−α|Dyζ2|q dydx .

Combining them we obtain the desired conclusion. ��

123



116 Page 26 of 31 N. Liao et al.

Lemma 11 Suppose the hypothesis in Proposition 7 holds. There exists a constant γ > 0
depending only on the data and α, such that

1

(1 − σ)ρN

∫ t

−t

∫

Kρ

|Dyu|q−1ζ1ζ
q−1
2 dydx ≤ γ t

2−q
q

(1 − σ)ρ
S2 q−1

q + γ t

(1 − σ)qρq
Sq−1,

where

S = sup
0<t<T

1

tρN−1

∫ t

−t

∫

Kρ

u dydx .

Proof Notice that by our choice of α, the quantities 2 − α, q − α and α(q − 1) are all in
(0, 1). By Hölder’s inequality and Lemma 10, we estimate

1

(1 − σ)ρN

∫ t

−t

∫

Kρ

|Dyu|q−1ζ1ζ
q−1
2 dydx

≤ 1

(1 − σ)ρN

[∫ t

−t

∫

Kρ

|Dyu|qu−αζ1ζ
q
2 dydx

] q−1
q
[∫ t

−t

∫

Kρ

uα(q−1) dydx

] 1
q

≤ 1

(1 − σ)ρN

[
γ

(1 − σ)qρq

∫ t

−t

∫

Kρ

uq−α dydx

] q−1
q
[∫ t

−t

∫

Kρ

uα(q−1) dydx

] 1
q

+ 1

(1 − σ)ρN

[
γ

t2

∫ t

−t

∫

Kρ

u2−α dydx

] q−1
q
[∫ t

−t

∫

Kρ

uα(q−1) dydx

] 1
q

≤ γ t
2−q

q

(1 − σ)ρ
S2 q−1

q + γ t

(1 − σ)qρq
Sq−1.

��

6.1.2 Proof of Proposition 7 concluded

We use ζ1ζ
q
2 as a test function in the weak formulation of (1) for super-solutions. Formally,

we have
∫ t

−t

∫

Kρ

uxxζ1ζ
q
2 dydx +

N−1∑

i=1

∫ t

−t

∫

Kρ

Dyi Ai (z, u, Du)ζ1ζ
q
2 dydx ≤ 0.

We estimate the two terms on the left separately. First of all,
∫ t

−t

∫

Kρ

uxxζ1ζ
q
2 dydx = 2

t2

∫ t

−t

∫

Kρ

xuxζ
q
2 dydx

= 2

t

∫

Kρ

u(t, ·)ζ q
2 dy + 2

t

∫

Kρ

u(− t, ·)ζ q
2 dy − 2

t2

∫ t

−t

∫

Kρ

uζ
q
2 dydx

= 2ρN−1h′(t),

where

h(t) = 1

tρN−1

∫ t

−t

∫

Kρ

uζ
q
2 dydx .
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On the other hand, we estimate
∫ t

−t

∫

Kρ

Dyi Ai (z, u, Du)ζ1ζ
q
2 dydx = − q

∫ t

−t

∫

Kρ

Ai (z, u, Du)ζ1Dyi ζ2ζ
q−1
2 dydx

≥ − qC1

(1 − σ)ρ

∫ t

−t

∫

Kρ

|Dyu|q−1ζ1ζ
q−1
2 dydx .

Combining the above two estimates we obtain

h′(t) ≤ γ

(1 − σ)ρN

∫ t

−t

∫

Kρ

|Dyu|q−1ζ1ζ
q−1
2 dydx .

We integrate the above inequality in dt over (0, τ ) for τ < T , use Lemma 11 and apply
Young’s inequality to obtain for an arbitrary δ ∈ (0, 1),

h(τ ) − h(0) ≤ γ
τ

2
q

(1 − σ)ρ
S2 q−1

q + γ
τ 2

(1 − σ)qρq
Sq−1

≤ δS + γ

(1 − σ)
q

2−q δ
q−1
2−q

(
T 2

ρq

) 1
2−q

.

As τ ranges over (0, T ), we arrive at

sup
0<t<T

1

tρN−1

∫ t

−t

∫

Kσρ

u dydx ≤ δ sup
0<t<T

1

tρN−1

∫ t

−t

∫

Kρ

u dydx

+ 2

ρN−1

∫

Kρ

u(0, y) dy + γ

(1 − σ)
q

2−q δ
q−1
2−q

(
T 2

ρq

) 1
2−q

.

An interpolation argument ([2, Chapter I, Lemma 4.3]) yields that

sup
0<t<T

1

tρN−1

∫ t

−t

∫

Kρ

u dydx ≤ γ

ρN−1

∫

K2ρ

u(0, y) dy + γ

(
T 2

ρq

) 1
2−q

.

6.2 Proof of Proposition 8

For parameters k, ρ, t > 0 and n = 0, 1, . . ., we set

kn = k − k

2n
, ρn = σρ + (1 − σ)ρ

2n
, ρ̃n = ρn + ρn+1

2
,

tn = σ t + (1 − σ)t

2n
, t̃n = tn + tn+1

2
,

Qn = [−tn, tn] × Kρn , Q̃n = [−t̃n, t̃n] × Kρ̃n .

By construction Q∞ = [−σ t, σ t] × Kσρ . Assuming u is locally bounded in E , we may
define

M = ess sup
Qo

u+, Mσ = ess sup
Q∞

u+.

Introduce the cutoff function ζ vanishing on ∂ Qn and equal to identity in Q̃n , such that

|Dyζ | ≤ γ 2n

(1 − σ)ρ
and |Dxζ | ≤ γ 2n

(1 − σ)t
.
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In this setting the energy estimate in Proposition 2 yields
∫

Q̃n

|Dx (u − kn+1)+|2 dz +
∫

Q̃n

|Dy(u − kn+1)+|q dz

≤ γ 22n

(1 − σ)2t2

∫

Qn

(u − kn+1)
2+ dz + γ 2qn

(1 − σ)qρq

∫

Qn

(u − kn+1)
q
+ dz.

Next setting An = [u > kn+1] ∩ Qn , we observe that for any r > 0
∫

Qn

(u − kn)r+ dz ≥ (kn+1 − kn)r |[u > kn+1] ∩ Qn | = kr

2r(n+1)
|An |.

As a result, applying Hölder’s inequality and the above observation with r = 2, we estimate
the second integral on the right-hand side of the energy estimate by

∫

Qn

(u − kn+1)
q
+ dz ≤

(∫

Qn

(u − kn+1)
2+ dz

) q
2 |[u > kn+1] ∩ Qn |1− q

2

≤ γ 22n−qn

k2−q

∫

Qn

(u − kn)2+ dz.

Putting this back to the energy estimate gives us
∫

Q̃n

|Dx (u − kn+1)+|2 dz +
∫

Q̃n

|Dy(u − kn+1)+|q dz

≤ γ 22nkq−2

(1 − σ)2ρq

(
1 + k2−q ρq

t2

)∫

Qn

(u − kn)2+ dz.

Now setting ζ to be a cutoff function which vanishes on the boundary of Q̃n and equals
identity in Qn+1, an application of Lemma 1 and the energy estimate gives that

∫

Qn+1

(u − kn+1)
2+ dz ≤

∫

Q̃n

(u − kn+1)
2+ζ 2 dz

≤
(∫

Q̃n

[(u − kn+1)+ζ ] Nq̄
N−q̄ dz

)2 N−q̄
N q̄ |An |1− 2

q̄ + 2
N

≤ γ

(
‖Dx (u − kn+1)+‖2

N−1∏

i=1

‖Dyi (u − kn+1)+‖q

) 2
N |An |1− 2

q̄ + 2
N

≤
[

γ 22nkq−2

(1 − σ)2ρq

(
1 + k2−q ρq

t2

)] 2
q̄
(
22n

k2

)1− 2
q̄ + 2

N
[∫

Qn

(u − kn)2+ dz

]1+ 2
N

,

where q̄ satisfies

1

q̄
= 1

N

(
1

2
+ N − 1

q

)
.

Hence by setting

Yn =
∫

Qn

(u − kn)2+ dz,
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we arrive at the recurrence inequality

Yn+1 ≤ γ γ n
1

(1 − σ)
4
q̄ k

4
N

(
1

k2−q

t2

ρq

) 1
N
(
1 + k2−q ρq

t2

) 2
q̄

Y
1+ 2

N
n ,

where γ, γ1 > 0 are absolute constants.
Now let us stipulate that

k ≥
(

t2

ρq

) 1
2−q

,

such that the above recurrence inequality becomes

Yn+1 ≤ γ γ n
1

(1 − σ)
4
q̄ k

4
N

(
1

k2−q

t2

ρq

) 1
N
(

k2−q ρq

t2

) 2
q̄

Y
1+ 2

N
n

≤ γ γ n
1

(1 − σ)
4
q̄ k

4
N

(
k2−q ρq

t2

) 2
q̄ − 1

N

Y
1+ 2

N
n

≤ γ γ n
1

(1 − σ)
4
q̄ k

4
N

(
k2−q ρq

t2

) 2(N−1)
Nq

Y
1+ 2

N
n .

Hence by [2, Chapter I, Lemma 4.1], Yn → 0, i.e. Mσ ≤ k, if we require that

Yo ≤ γ (1 − σ)
2N
q̄ k2

(
k2−q ρq

t2

)− N−1
q = γ (1 − σ)

2N
q̄ k

κ2
q

(
t2

ρq

) N−1
q

.

This is fulfilled if we require κ2 = (N + 1)q − 2(N − 1) > 0 and take

k = γ Y
q
κ2

o

(1 − σ)
2q N
κ2 q̄

(
ρq

t2

) N−1
κ2 +

(
t2

ρq

) 1
2−q

.

As a result, we arrive at

Mσ ≤ γ

(1 − σ)
2q N
κ2 q̄

(
ρq

t2

) N−1
κ2

(∫

Qo

u2+ dz

) q
κ2 +

(
t2

ρq

) 1
2−q

≤ γ M
q(2−r)

κ2

(1 − σ)
2q N
κ2 q̄

(
ρq

t2

) N−1
κ2

(∫

Qo

ur+ dz

) q
κ2 +

(
t2

ρq

) 1
2−q

,

for any r satisfying r < 2 and κr = (N + r − 1)q − 2(N − 1) > 0. Thus we have

0 <
q(2 − r)

κ2
= 1 − κr

κ2
< 1,

and an interpolation argument ([2, Chapter I, Lemma 4.3]) gives that

ess sup
[−t,t]×Kρ

u+ ≤ γ

(
ρq

t2

) N−1
κr

(∫

K2ρ

∫ 2t

−2t
ur+ dxdy

) q
κr

+ γ

(
t2

ρq

) 1
2−q

.
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