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Abstract
Using the convex integration technique for the three-dimensional Navier–Stokes equations
introduced by Buckmaster and Vicol, it is shown the existence of non-unique weak solutions
for the 3D Navier–Stokes equations with fractional hyperviscosity (−�)θ , whenever the
exponent θ is less than Lions’ exponent 5/4, i.e., when θ < 5/4.

Mathematics Subject Classification 35Q30

1 Introduction

In this paper we consider the question of non-uniquness of weak solutions to the 3D
Navier–Stokes equations with fractional viscosity (FVNSE) on T3{

∂tv + ∇ · (v ⊗ v) + ∇ p + ν(−�)θ v � 0,
∇ · v � 0,

(1)

where θ ∈ R is a fixed constant, and for u ∈ C∞(T3) with
´
T3 u(x)dx � 0, the fractional

Laplacian is defined via the Fourier transform as

F((−�)θu)(ξ ) � |ξ |2θF(u)(ξ ), ξ ∈ Z
3.
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Definition (weak solutions) A vector field v ∈ C0
weak(R; L

2(T3)) is called a weak solution
to the FVNSE if it solves (1) in the sense of distribution.

When θ � 1, FVNSE (1) is the standard Navier–Stokes equations. Lions first considered
FVNSE (1) in [20], and showed the existence and uniqueness of weak solutions to the initial
value problem, which also satisfied the energy equality, for θ ∈ [5/4,∞) in [21]. Moreover,
an analogue of the Caffarelli–Kohn–Nirenberg [6] result was established in [18] for the
FVNSE system (1), showing that the Hausdorff dimension of the singular set, in space and
time, is bounded by 5 − 4θ for θ ∈ (1, 5/4). The existence, uniqueness, regularity and
stability of solutions to the FVNSE have been studied in [17, 26, 28, 29] and references
therein. Very recently, using the method of convex integration introduced in [12], Colombo
et al. [8] showed the non-uniquenss of Leray weak solutions to FVNSE (1) for θ ∈ (0, 1/5)
and for θ ∈ (0, 1/3) in [13].

In the recent breakthrough work [5], Buckmaster and Vicol obtained non-uniqueness of
weak solutions to the three-dimensional Navier–Stokes equations. They developed a new
convex integration scheme in Sobolev spaces using intermittent Beltrami flows which com-
bined concentrations and oscillations. Later, the idea of using intermittent flows was used to
study non-uniqueness for transport equations in [23–25] employing scaled Mikado waves,
and for stationary Navier–Stokes equations in [7, 22] employing viscous eddies.

The schemes in [5, 24] are based on the convex integration framework in Hölder spaces
for the Euler equations, introduced by De Lellis and Székelyhidi [12], subsequently refined
in [2, 3, 10, 15], and culminated in the proof of the second half of the Onsager conjecture by
Isett in [16]; also see [4] for a shorter proof. For the first half of the Onsager conjecture, see,
e.g., [1, 9], and the references therein.

The main contribution of this note is to show that the results in Buckmaster–Vicol’s paper
hold for FVNSE (1) for θ < 5/4:

Theorem 1 Assume that θ ∈ [1, 5/4). Suppose u is a smooth divergence-free vector field,
define on R+ × T

3, with compact support in time and satisfies the condition
ˆ

T3
u(t, x)dx ≡ 0.

Then for any given ε0 > 0, there exists a weak solution v to the FVNSE (1), with compact
support in time, satisfying

‖v − u‖L∞
t W 2θ−1,1

x
< ε0.

As a consequence there are infinitely many weak solutions of the FVNSE (1) which are
compactly supported in time; in particular, there are infinitely many weak solutions with
initial values zero.

Remark 1 In the above theorem we assume that θ ∈ [1, 5/4). However, using the con-
structions in [5] with a slightly different choice of parameters, one can actually show that
Theorem 1.2 and Theorem 1.3 in [5] hold for the 3D FVNSE, i.e., there exist non-unique
weak solutions v ∈ C0

t W
β,2
x , with a different β > 0, depending on θ . However, in this paper

we choose to prove a weaker result, Theorem 1, in order to simplify the presentation while
retaining the main idea.

Remark 2 For the case θ ∈ (−∞, 1), the same construction also yields weak solutions
v ∈ C0

t L
2
x ∩ C0

t W
1,1
x with a suitable choice of parameters.
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We nowmake some comments on the analysis in this paper. Using the technique in [5], we
adapt a convex integration scheme with intermittent Beltrami flows as the building blocks.
The main difficulty in a convex integration scheme for (FVNSE), is the error induced by the
frictional viscosity ν(−�)θ v, which is greater for a larger exponent θ . This error is controlled
by making full use of the concentration effect of intermittent flows introduced in [5]. As it is
shown in the crucial estimate (36), the error is controllable only for θ < 5/4. Compared with
[5], since our goal is to construct weak solutions v ∈ C0

t L
2
x,weak ∩ L∞

t W 2θ−1,1
x , we adapt a

slightly simpler cut-off function and prove only estimates that are sufficient for this purpose.

2 Outline

2.1 Iteration lemma

Following [5], we consider the approximate system{
∂tv + ∇ · (v ⊗ v) + ∇ p + ν(−�)θ v � ∇ · R,

∇ · v � 0,
(2)

where R is a symmetric 3 × 3 matrix.

Lemma 1 (Iteration Lemma for L2 weak solutions) Let θ ∈ (−∞, 5/4). Assume (vq , Rq ) is
a smooth solution to (2) with

‖Rq‖L∞
t L1

x
≤ δq+1, (3)

for some δq+1 > 0. Then for any given δq+2 > 0, there exists a smooth solution (vq+1, Rq+1)
of (2) with

‖Rq+1‖L∞
t L1

x
≤ δq+2, (4)

and supptvq+1 ∪ suppt Rq+1 ⊂ Nδq+1 (supptvq ∪ suppt Rq ). (5)

Here for a given set A ⊂ R, the δ-neighborhood of A is denoted by

Nδ(A) � {y ∈ R : ∃y′ ∈ A, |y − y′|< δ}.
Furthermore, the increment wq+1 � vq+1 − vq satisfies the estimates

‖wq+1‖L∞
t L2

x
≤ Cδ

1/2
q+1, (6)

‖wq+1‖L∞
t W 2θ−1,1

x
≤ δq+2, (7)

where the positive constant C depends only on θ .

Proof of Theorem 1 Assume Lemma 1 is valid. Let v0 � u. Then
ˆ

T3
∂tv0(t, x)dx � d

dt

ˆ

T3
v0(t, x)dx ≡ 0.

Let

R0 � R(∂tv0 + ν(−�)θ v0) + v0 ⊗ v0 + p0 I , p0 � −1

3
|v0|2,

where R is the symmetric anti-divergence operator established in Lemma 5, below. Clearly
(v0, R0) solves (2). Set
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δ1 � ‖R0‖L∞
t L1

x
,

δq+1 � 2−qε0, for q ≥ 1.

Apply Lemma 1 iteratively to obtain smooth solution (vq , Rq ) to (2). It follows from (6) that∑
‖vq+1 − vq‖L∞

t L2
x
�

∑
‖wq+1‖L∞

t L2
x
≤ C

∑
δ
1/2
q+1 < ∞.

Thus vq converge strongly to some v ∈ C0
t L

2
x . Since ‖Rq+1‖L∞

t L1
x
→ 0, as q → ∞, v is a

weak solution to the FVNSE (1). Estimate (7) leads to

‖v − v0‖
L∞
t W2θ−1,1

x
≤

∞∑
q�1

‖wq‖
L∞
t W2θ−1,1

x
≤

∞∑
q�1

δq+1 ≤ ε0.

Furthermore, it follows from (5) that

supptv ⊂ ∪q≥0supptvq ⊂ N∑
q≥0 δq+1 (suppt u) ⊂ Nδ1+ε0 (suppt u).

Now we show the existence of infinitely many weak solutions with initial values zero. Let
u(t, x) � ϕ(t)

∑
|k|≤N akeik·x with ak �� 0, ak · k � 0, a−k � a∗

k for all |k|≤ N , and
ϕ ∈ C∞

c (R+). Thus ∇ · u � 0 satisfies the conditions of the theorem. Hence there exists a
weak solution v to (1) close enough to u so that v �≡ 0. �

3 Iteration scheme

3.1 Notations and parameters

For a complex number ζ ∈ C, we denote by ζ ∗ its complex conjugate. Let us normalize the
volume

|T3|� 1.

For smooth functions u ∈ C∞(T3) with
´
T3 u(x)dx � 0 and s ∈ R, we define

F(|∇|su)(ξ ) � |ξ |sF(u)(ξ ), ξ ∈ Z
3.

For M, N ∈ [0,+∞], denote the Fourier projection of u by

F(P[M,N )u) �
{
u(ξ ), M ≤ |ξ |< N , ξ ∈ Z

3,

0, otherwise.

We also denote P≤k � P[0,k) and P≥k � P[k,+∞) for k > 0.
Following the notation in [5], we introduce here several parameters σ , r , λ, with

0 < σ < 1 < r < λ < μ < λ2, σr < 1, (8)

where λ � λq+1 ∈ 5N is the ‘frequency’ parameter; σ with 1/σ ∈ N is a small parameter
such that λσ ∈ N parameterizes the spacing between frequencies; r ∈ N denotes the number
of frequencies along edges of a cube; μ measures the amount of temporal oscillation.

Later σ , r , μ will be chosen to be suitable powers of λq+1. We also fix a constant p > 1
which will be chosen later to be close to 1. The constants implicitly in the notation ‘�’ may
depend on p but are independent of the parameters σ , r , λ.
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3.2 Intermittent Beltrami flows

We use intermittent Beltrami flows introduced in [5] as the building blocks. Recall some
basic facts of Beltrami waves.

Proposition 1 [5, Proposition 3.1] Given ξ ∈ S
2 ∩ Q

3, let Aξ ∈ S
2 ∩ Q

3 be such that

Aξ · ξ � 0, |Aξ |� 1, A−ξ � Aξ .

Let � be a given finite subset of S2 such that −� � �, and λ ∈ Z be such that λ� ⊂ Z
3.

Then for any choice of coefficients aξ ∈ C with a∗
ξ

� a−ξ the vector field

W (x) �
∑
ξ∈�

aξ Bξ e
iλξ ·x , with Bξ � 1√

2

(
Aξ + iξ × Aξ

)
,

is real-valued, divergence-free and satisfies

∇ × W � λW , ∇ · (W ⊗ W ) � ∇ |W |2
2

.

Furthermore,

〈W ⊗ W 〉 :�
 

T3
W ⊗ Wdx �

∑
ξ∈�

1

2
|a(ξ )|2(Id − ξ ⊗ ξ ).

Let �,�+,�− ⊂ S
2 ∩ Q

3 be defined by

�+ �
{
1

5
(3e1 ± 4e2),

1

5
(3e2 ± 4e3),

1

5
(3e3 ± 4e1)

}
,

�− � −�+, � � �+ ∪ �−.

Clearly we have

5� ∈ Z
3, and min

ξ
′
,ξ∈�,ξ

′
+ξ ��0

|ξ ′
+ ξ |≥ 1

5
. (9)

Also it is direct to check that

1

8

∑
ξ∈�

(Id − ξ ⊗ ξ ) � Id.

In fact, representations of this form exist for symmetric matrices close to the identity. We
have the following simple variant of [5, Proposition 3.2].

Proposition 2 Let Bε(Id) denote the ball of symmetric matrices, centered at the iden-
tity, of radius ε. Then there exist a constant εγ > 0 and smooth positive functions
γ(ξ ) ∈ C∞(Bεγ (Id)), such that

1. γ(ξ ) � γ(−ξ );
2. for each R ∈ Bεγ (Id) we have the identity

R � 1

2

∑
ξ∈�

(
γ(ξ )(R)

)2
(Id − ξ ⊗ ξ ).
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Define the Dirichlet kernel

Dr (x) � 1

(2r + 1)3/2
∑
ξ∈�r

eiξ ·x , �r � {( j, k, l) : j, k, l ∈ {−r , . . . , r}}.

It has the property that, for 1 < p ≤ ∞,

‖Dr‖L p� r3/2−3/p, ‖Dr‖L2� (2π)3.

Following [5], for ξ ∈ �+, define a directed and rescaled Dirichlet kernel by

η(ξ )(t, x) � ηξ,λ,σ ,r ,μ(t, x) � Dr (λσ (ξ · x + μt, Aξ · x, (ξ × Aξ ) · x)), (10)

and for ξ ∈ �−, define

η(ξ )(t, x) � η−(ξ )(t, x).

Note the important identity

1

μ
∂tη(ξ )(t, x) � ±(ξ · ∇)η(ξ )(t, x), ξ ∈ �±. (11)

Since the map x �→ λσ (ξ · x + μt, Aξ · x, (ξ × Aξ ) · x) is the composition of a rotation

by a rational orthogonal matrix mapping {e1, e2, e3} to {ξ, Aξ , ξ × Aξ }, a translation, and a
rescaling by integers, for 1 < p ≤ ∞, we have

 

T3
η(ξ )(t, x)

2(t, x)dx � 1, ‖η(ξ )‖L∞
t L p

x (T3)� r3/2−3/p.

Let W(ξ ) be the Beltrami plane wave at frequency λ,

W(ξ ) � Wξ,λ(x) � Bξ e
iλξ ·x .

Define the intermittent Beltrami waveW(ξ ) as

W(ξ )(t, x) :� Wξ,λ,σ ,r ,μ(t, x) � η(ξ )(t, x)W(ξ )(x). (12)

It follows from the definitions and (9) that

P[ λ
2 ,2λ)W(ξ ) � W(ξ ), (13)

P[ λ
5 ,4λ)

(
W(ξ ) ⊗ W(ξ

′
)

)
� W(ξ ) ⊗ W(ξ

′
), ξ

′ �� −ξ . (14)

The following properties are immediate from the definitions.

Proposition 3 [5, Proposition 3.4] Let aξ ∈ C be constants with a∗
ξ

� a−ξ . Let

W (x) �
∑
ξ∈�

aξW(ξ )(x).

ThenW (x) is real valued. Moreover, for each R ∈ Bεγ (Id) we have∑
ξ∈�

(
γ(ξ )(R)

)2  
T3

W(ξ ) ⊗ W(−ξ ) �
∑
ξ∈�

(
γ(ξ )(R)

)2
Bξ ⊗ B−ξ � R.

Proposition 4 [5, Proposition 3.5] For any 1 < p ≤ ∞, N ≥ 0, K ≥ 0:∥∥∥∇N ∂K
t W(ξ )

∥∥∥
L∞
t L p

x
� λN (λσrμ)K r3/2−3/p, (15)∥∥∥∇N ∂K

t η(ξ )

∥∥∥
L∞
t L p

x
� (λσr )N (λσrμ)K r3/2−3/p. (16)
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3.3 Perturbations

Let ψ(t) be a smooth cut-off function such that

ψ(t) � 1 on suppt Rq , suppψ(t) ⊂ Nδq+1 (suppt Rq ), |ψ ′(t)|≤ 2δ−1
q+1. (17)

Take a smooth increasing function χ such that

χ(s) �
{
1, 0 ≤ s < 1
s, s ≥ 2

,

and set

ρ(t, x) � ε−1
γ δq+1χ

(
δ−1
q+1|Rq (t, x)|

)
ψ2(t).

where εγ is the constant in Proposition 2. Then clearly

supptρ ⊂ Nδq+1 (suppt Rq ). (18)

It follows from the above definition that

|Rq |/ρ � εγ

|Rq |
δq+1χ

(
δ−1
q+1|Rq (t, x)|

)
ψ2

≤ εγ =⇒ Id − Rq/ρ ∈ Bεγ (Id) on supp Rq .

Therefore, the amplitude functions

a(ξ )(t, x) :� ρ1/2(t, x)γ(ξ )(Id − ρ(t, x)−1Rq (t, x))

are well-defined and smooth. Define the velocity perturbation to be w � wq+1:

w � w(p) + w(c) + w(t),

w(p) �
∑
ξ∈�

a(ξ )W(ξ ) �
∑
ξ∈�

a(ξ )(t, x)η(ξ )(t, x)Bξ e
iλξ ·x ,

w(c) � 1

λq+1

∑
ξ∈�

∇
(
a(ξ )η(ξ )

)
× W(ξ ),

w(t) � 1

μ

∑
ξ∈�+

PLHP ��0

(
a2
(ξ )

η2
(ξ )

ξ
)
,

where PLH � Id − ∇�−1div is the Leray-Helmholtz projection into divergence-free vector
field, and P ��0 f � f − ffl

T3 f dx . It is well-known that PLH is bounded on L p, 1 < p < ∞
(see, e.g., [14]). It follows from Proposition 3 that

∑
ξ∈�

a2
(ξ )

 

T3
W(ξ ) ⊗ W(−ξ )dx � ρId − Rq . (19)

3.4 Estimates for perturbations

Lemma 2 The following bounds hold:

‖ρ‖L∞
t L1

x
≤ Cδq+1, (20)

‖ρ−1‖C0( supp Rq ) � δ−1
q+1, (21)
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‖ρ‖CN
t,x

≤ C(δq+1, ‖Rq‖CN ), (22)

‖a(ξ )‖L∞
t L2

x
� ‖ρ‖1/2

L∞
t L1

x
� δ

1/2
q+1, (23)

‖a(ξ )‖CN
t,x

≤ C(δq+1, ‖Rq‖CN ). (24)

Proof It follows from (3) that

‖ρ(t, ·)‖L1
x

�
ˆ

|Rq |≤δq+1

ρ +
ˆ

|Rq |>δq+1

ρ � δq+1 +
ˆ

|Rq |>δq+1

|Rq |

≤ Cδq+1.

It is direct to verify (21) and (23), while (22) and (24) follow from (17) and (21). �

Now we can estimate the time support of wq+1:

supptwq+1 ⊂ supptρ ⊂ suppψ ⊂ Nδq+1 (suppt Rq ). (25)

We need the following Lemma, which is a variant of [5, Lemma 3.6].

Lemma 3 ([24, Lemma 2.1]) Let f , g ∈ C∞(T3), and g is (T/N )3 periodic, N ∈ N. Then
for 1 ≤ p ≤ ∞,

‖ f g‖L p≤ ‖ f ‖L p‖g‖L p+CpN
−1/p‖ f ‖C1‖g‖L p .

Let us denote

CN � C

(
sup
ξ∈�

‖a(ξ )‖CN
t,x

)
(26)

to be some polynomials depending on supξ∈�‖a(ξ )‖CN
t,x
.

Lemma 4 Suppose the parameters satisfy (8) and

r3/2 ≤ μ. (27)

Then the following estimates for the perturbations hold:∥∥∥w
(p)
q+1

∥∥∥
L∞
t L2

x

� δ
1/2
q+1 + (λq+1σ )

−1/2C1, (28)

‖wq+1‖L∞
t L p

x
� r3/2−3/pC1, (29)∥∥∥w

(c)
q+1

∥∥∥
L∞
t L p

x
+

∥∥∥w
(t)
q+1

∥∥∥
L∞
t L p

x
� (σr + μ−1r3/2)r3/2−3/pC1, (30)∥∥∥∂tw

(p)
q+1

∥∥∥
L∞
t L p

x
+

∥∥∥∂tw
(c)
q+1

∥∥∥
L∞
t L p

x
� λq+1σμr5/2−3/pC2, (31)

‖|∇|Nwq+1‖L∞
t L p

x
� r3/2−3/pλN

q+1CN+1, (32)

for 1 < p < ∞, N ≥ 1.

Proof SinceW(ξ ) is (T/λσ )3 periodic, it follows from (15), (23), and Lemma 3 that∥∥∥w
(p)
q+1

∥∥∥
L∞
t L2

x

�
∑
ξ∈�

(∥∥∥a(ξ )
∥∥∥
L∞
t L2

x

+ (λq+1σ )
−1/2

∥∥∥a(ξ )
∥∥∥
C1

)
‖W(ξ )‖L∞

t L2
x

� δ
1/2
q+1 + (λq+1σ )

−1/2C1.
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In view of (8), (15) and (16) yield that
∥∥∥w

(p)
q+1

∥∥∥
L∞
t L p

x
�

∑
ξ∈�

∥∥∥a(ξ )
∥∥∥
C0

∥∥∥W(ξ )

∥∥∥
L∞
t L p

x
� r3/2−3/pC0,

∥∥∥w
(c)
q+1

∥∥∥
L∞
t L p

x
� λ−1

q+1

∑
ξ∈�

(∥∥∥η(ξ )

∥∥∥
L∞
t L p

x
+

∥∥∥∇η(ξ )

∥∥∥
L∞
t L p

x

)∥∥∥a(ξ )
∥∥∥
C1

∥∥∥W(ξ )

∥∥∥
L∞
t L p

x

� (σr )r3/2−3/pC1,∥∥∥w
(t)
q+1

∥∥∥
L∞
t L p

x
� μ−1

∑
ξ∈�+

∥∥∥a2(ξ )η2(ξ )ξ
∥∥∥
L∞
t L p

x
� μ−1

∑
ξ∈�+

∥∥∥a2(ξ )
∥∥∥
C0

∥∥∥η(ξ )

∥∥∥2
L∞
t L2p

x

� μ−1r3−3/pC0,

where the boundedness of PLH and P ��0 on L p , for 1 < p < ∞, is used in the first inequality

of the estimate for ‖w(t)
q+1‖L∞

t L p
x
. In the same way, we can estimate

∥∥∥∂tw
(p)
q+1

∥∥∥
L∞
t L p

x
�

∑
ξ∈�

∥∥∥∂t a(ξ )

∥∥∥
C0

∥∥∥W(ξ )

∥∥∥
L∞
t L p

x
+

∥∥∥a(ξ )
∥∥∥
C0

∥∥∥∂tW(ξ )

∥∥∥
L∞
t L p

x

� λq+1σμr5/2−3/pC1,
∥∥∥∂tw

(c)
q+1

∥∥∥
L∞
t L p

x
� λ−1

q+1

∑
ξ∈�

∥∥∥a(ξ )
∥∥∥
C2
t,x

(∥∥∥η(ξ )

∥∥∥
L∞
t L p

x
+

∥∥∥∇η(ξ )

∥∥∥
L∞
t L p

x
+

∥∥∥∂tη(ξ )

∥∥∥
L∞
t L p

x

+
∥∥∥∂t∇η(ξ )

∥∥∥
L∞
t L p

x

)
� σrλq+1σμr5/2−3/pC2 � λq+1σμr5/2−3/pC2.

For N ≥ 1, using (15) and (16), we obtain that

∥∥∥∇Nw
(p)
q+1

∥∥∥
L∞
t L p

x
�

∑
ξ∈�

N∑
k�0

∥∥∥∇ka(ξ )

∥∥∥
C0

∥∥∥∇N−k
W(ξ )

∥∥∥
L∞
t L p

x

� λN
q+1r

3/2−3/pCN ,

∥∥∥∇Nw
(c)
q+1

∥∥∥
L∞
t L p

x
� λ−1

q+1

∑
ξ∈�

N∑
m�0

m∑
k�0

λN−m
q+1

∥∥∥∇k+1a(ξ )

∥∥∥
C0

∥∥∥∇m−kη(ξ )

∥∥∥
L∞
t L p

x

+ λ−1
q+1

∑
ξ∈�

N∑
m�0

m∑
k�0

λN−m
q+1

∥∥∥∇ka(ξ )

∥∥∥
C0

∥∥∥∇m−k+1η(ξ )

∥∥∥
L∞
t L p

x

� λN
q+1r

3/2−3/pCN+1,

∥∥∥∇Nw
(t)
q+1

∥∥∥
L∞
t L p

x
� μ−1

∑
ξ∈�

N∑
m�0

∥∥∥∇N−m
(
a2
(ξ )

)∥∥∥
C0

m∑
k�0

∥∥∥∇kη(ξ )

∥∥∥
L∞
t L2p

x

∥∥∥∇m−kη(ξ )

∥∥∥
L∞
t L2p

x

� λN
q+1r

3/2−3/p (σr )
Nr3/2

μ
CN � λN

q+1r
3/2−3/pCN ,

where we use (8) and (27). �
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3.5 Estimates for the stress

Let us recall the following operator in [12].

Lemma 5 (symmetric anti-divergence)There exists a linear operatorR, of order−1,mapping
vector fields to symmetric matrices such that

∇ · R(u) � u −
 

T3
u, (33)

with standard Calderon–Zygmund estimates, for 1 < p < ∞,

‖R‖L p→W 1,p� 1, ‖R‖C0→C0� 1, ‖RP ��0u‖L p� ‖|∇|−1
P ��0u‖L p . (34)

Proof Suppose u ∈ C∞(T3,R3) is a smooth vector field. Define

R(u) � 1

4

(
∇PLHv + (∇PLHv)T

)
+
3

4

(
∇v + (∇v)T

)
− 1

2
(∇ · v)Id

where v ∈ C∞(T3,R3) is the unique solution to �v � u − ffl
T3 u with

ffl
T3 v � 0.

It is direct to verify thatR(u) is a symmetric matrix field depending linearly on u and sat-
isfies (33). Note thatR is a constant coefficient ellitpic operator of order−1. We refer to [14]
for the Calderon-Zygmund estimates ‖R‖L p→W 1,p� 1 and ‖RP ��0u‖L p� ‖|∇|−1

P ��0u‖L p .
Combining these with Sobolev embeddings, we have ‖Ru‖Cα� ‖Ru‖W 1,4� ‖u‖L4�
‖u‖C0 , with α � 1/4. �

We have the following variant of [5, Lemma B.1] in [5].

Lemma 6 Let a ∈ C2(T3). For 1 < p < ∞, and any smooth function f ∈ L p(T3), we have

‖|∇|−1
P ��0(aP≥k f )‖L p(T3)� k−1‖∇2a‖L∞(T3)‖ f ‖L p(T3). (35)

Proof of Lemma 6 We follow the proof in [5]. Note that

|∇|−1
P ��0(aP≥k f ) � |∇|−1

P≥k/2(P≤k/2aP≥k f ) + |∇|−1
P ��0(P≥k/2aP≥k f ).

As direct consequences of the Littlewood–Paley decomposition and Schauder estimates we
have the bounds for 1 < p < ∞ (see, for example, [14])

‖P≤k/2‖L p→L p� 1, ‖|∇|−1
P≥k/2‖L p→L p� k−1, ‖|∇|−1

P ��0‖L p→L p� 1.

Combining these bounds with Hölder’s inequality and the embedding W 1,4(T3) ⊂ L∞(T3),
we obtain

‖|∇|−1
P ��0(aP≥k f )‖L p � k−1‖P≤k/2aP≥k f ‖L p+‖P≥k/2aP≥k f ‖L p

� k−1(‖P≤k/2a‖L∞+k‖P≥k/2a‖L∞ )‖ f ‖L p

� k−1(‖∇P≤k/2a‖L4+k‖∇P≥k/2a‖L4 )‖ f ‖L p

� k−1(‖P≤k/2∇a‖L4+k‖|∇|−1
P≥k/2|∇|∇P≥k/2a‖L4 )‖ f ‖L p

� k−1(‖∇a‖L4+‖∇2
P≥k/2a‖L4 )‖ f ‖L p� k−1‖∇2a‖L4‖ f ‖L p .

�
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It follows from the definition of wq+1 that
ˆ

T3
wq+1dx �

ˆ

T3

1

λq+1

∑
ξ∈�

∇
(
a(ξ )η(ξ )W(ξ )

)
dx

+
ˆ

T3

1

μ

∑
ξ∈�+

PLHP ��0

(
a2
(ξ )

η2
(ξ )

ξ
)
dx � 0.

Hence
´
T3 ν(−�)θwq+1dx � 0 and

d

dt

´
T3 wq+1dx � 0. We obtain Rq+1 by plugging

vq+1 � vq + wq+1 in (2), using (33) and the assumption that (vq , Rq ) solves (2):

∇ · Rq+1 � ∇ ·
[
R

(
ν(−�)θwq+1 + ∂tw

(p)
q+1 + ∂tw

(c)
q+1

)
+ vq ⊗ wq+1 + wq+1 ⊗ vq

]

+ ∇ ·
[(

w
(c)
q+1 + w

(t)
q+1

)
⊗ wq+1 + w

(p)
q+1 ⊗

(
w

(c)
q+1 + w

(t)
q+1

)]

×
[
∇ ·

(
w

(p)
q+1 ⊗ w

(p)
q+1 − Rq

)
+ ∂tw

(t)
q+1

]
+ ∇(pq+1 − pq )

:� ∇ · (R̃linear + R̃corrector + R̃oscillation) + ∇(pq+1 − pq ).

It follows from Lemma 4 that

‖R̃corrector‖L∞
t L p

x
�

(∥∥∥w
(c)
q+1

∥∥∥
L∞
t L2p

x
+

∥∥∥w
(t)
q+1

∥∥∥
L∞
t L2p

x

)(∥∥wq+1
∥∥
L∞
t L2p

x
+

∥∥∥w
(p)
q+1

∥∥∥
L∞
t L2p

x

)

�
(
σr + μ−1r3/2

)
r3−3/pC1.

Noting that ∇ × w
(p)
q+1

λq+1
� w

(p)
q+1 + w

(c)
q+1, Lemma 4 and (34) yield that

‖R̃linear‖L∞
t L p

x

� λ−1
q+1

∥∥∥∂tR∇ × (w(p)
q+1)

∥∥∥
L∞
t L p

x
+

∥∥R(
ν(−�)θwq+1

)∥∥
L∞
t L p

x

+ ‖vq ⊗ wq+1 + wq+1 ⊗ vq‖L∞
t L p

x

� λ−1
q+1

∥∥∥∂tw
(p)
q+1

∥∥∥
L∞
t L p

x
+

∥∥|∇|2θ−1wq+1
∥∥
L∞
t L p

x
+ ‖vq‖C0‖wq+1‖L∞

t L p
x

� σμr5/2−3/pC2 + r3/2−3/p
(
λ2θ−1
q+1 + ‖vq‖C0

)
C3. (36)

This is the crucial estimate to control the fractional viscosity. If we assume that p ∼ 1, r ∼
λ−1
q+1, wemust have θ < 5/4 in order that the second term in (36) is small for λq+1 sufficiently

large.
It remains to estimate R̃oscillation , which can be handled in the same way as in [5]. It

follows from (19) that

∇ ·
(
w

(p)
q+1 ⊗ w

(p)
q+1 − Rq

)
� ∇ ·

⎛
⎝ ∑

ξ,ξ
′∈�

a(ξ )a(ξ ′
)Wξ ⊗ W(ξ

′
) − Rq

⎞
⎠

� ∇ ·
⎛
⎝ ∑

ξ,ξ
′∈�

a(ξ )a(ξ ′
)P≥λq+1σ/2W(ξ ) ⊗ W(ξ

′
)

⎞
⎠ + ∇ρ

:�
∑

ξ,ξ
′∈�

E(ξ,ξ
′
) + ∇ρ.

123
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Since E(ξ,ξ
′
) has zero mean, we can split it as

E(ξ,ξ
′
) + E(ξ

′
,ξ ) � P ��0

(
∇

(
a(ξ )a(ξ ′

)

)
·
(
P≥λq+1σ/2

(
W(ξ ) ⊗ W(ξ

′
) +W

ξ ′ ⊗ W(ξ )

)))

+ P ��0

(
a(ξ )a(ξ ′

)∇ ·
(
W(ξ ) ⊗ W(ξ

′
) +W

ξ ′ ⊗ W(ξ )

))

:� E(ξ,ξ
′
,1) + E(ξ,ξ

′
,2).

Using (15), (34) and (35), we obtain∥∥∥RE(ξ,ξ
′
,1)

∥∥∥
L∞
t L p

x
�

∥∥∥|∇|−1E(ξ,ξ
′
,1)

∥∥∥
L∞
t L p

x

� (λq+1σ )
−1

∥∥∥a(ξ )a(ξ ′
)

∥∥∥
C3

∥∥∥W(ξ ) ⊗ W(ξ
′
)

∥∥∥
L∞
t L p

x

� (λq+1σ )
−1

∥∥∥a(ξ )a(ξ ′
)

∥∥∥
C3

∥∥∥W(ξ )

∥∥∥
L∞
t L2p

x

∥∥∥W(ξ
′
)

∥∥∥
L∞
t L2p

x

� (λq+1σ )
−1r3−3/pC3.

Recall the vector identity A · ∇B + B · ∇A � ∇(A · B)− A× (∇ × B)− B × (∇ × A). For
ξ, ξ

′ ∈ �, using the anti-symmetry of the cross product, we can write

∇ ·
(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

)

�
(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

)
∇

(
η(ξ )η(ξ ′

)

)

+ η(ξ )η(ξ ′
)

(
W(ξ ) · ∇W(ξ

′
) +W(ξ

′
) · ∇W(ξ )

)

�
(
W(ξ

′
) · ∇

(
η(ξ )η(ξ ′

)

))
W(ξ ) +

(
W(ξ ) · ∇

(
η(ξ )η(ξ ′

)

))
W

ξ
′

+ η(ξ )η(ξ ′
)∇

(
W(ξ ) · W(ξ

′
)

)
.

For the term E(ξ,ξ
′
,2), first consider the case ξ + ξ ′ �� 0. It follows from the above identity

and (14) that

a(ξ )a(ξ ′
)∇ ·

(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

)

� a(ξ )a(ξ ′
)∇ · P≥λq+1/10

(
η(ξ )η(ξ ′

)

(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

))

� a(ξ )a(ξ ′
)P≥λq+1/10

(
∇

(
η(ξ )η(ξ ′

)

)
·
(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

))

+ a(ξ )a(ξ ′
)P≥λq+1/10

(
η(ξ )η(ξ ′

)∇
(
W(ξ ) · W(ξ

′
)

))

� a(ξ )a(ξ ′
)P≥λq+1/10

(
∇

(
η(ξ )η(ξ ′

)

)
·
(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

))

+ ∇
(
a(ξ )a(ξ ′

)W(ξ ) · W(ξ
′
)

)
− ∇

(
a(ξ )a(ξ ′

)

)
P≥λq+1/10

(
W(ξ ) · W(ξ

′
)

)

− a(ξ )a(ξ ′
)P≥λq+1/10

((
W(ξ ) · W(ξ

′
)

)
∇

(
η(ξ )η(ξ ′

)

))
,

where the second term is a pressure, the third can be estimated analogously to E(ξ,ξ
′
,1). Also

note that the first and fourth term can estimated analogously. Using (16), (34) and (35), we
obtain∥∥∥R(

a(ξ )a(ξ ′
)P≥λq+1/10

(
∇

(
η(ξ )η(ξ ′

)

)
·
(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

)))∥∥∥
L∞
t L p

x
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� λ−1
q+1

∥∥∥a(ξ )a(ξ ′
)

∥∥∥
C3

∥∥∥∇
(
η(ξ )η(ξ ′

)

)∥∥∥
L∞
t L p

x

� σr4−3/pC3.
Now consider E(ξ,−ξ,2). We can write

∇ ·
(
W(ξ ) ⊗ W(−ξ ) +W(−ξ ) ⊗ W(ξ )

)
�

(
W(−ξ ) · ∇η2

(ξ )

)
W(ξ ) +

(
W(ξ ) · ∇η2

(ξ )

)
W(−ξ )

�
(
Aξ · ∇η2

(ξ )

)
Aξ +

(
(ξ × Aξ ) · ∇η2

(ξ )

)(
ξ × Aξ

)

� ∇ξ2
(ξ )

−
(
ξ · ∇η2

(ξ )

)
ξ

� ∇η2
(ξ )

− ξ

μ
∂tη

2
(ξ )

,

where we use (11) and the fact that {ξ, Aξ , ξ × Aξ } forms an orthonormal basis of R3.
Therefore, we can write

E(ξ,−ξ,2) � P ��0

(
a2
(ξ )

∇P≥λq+1σ/2η
2
(ξ )

− a2
(ξ )

ξ

μ
∂tη

2
(ξ )

)

� ∇
(
a2
(ξ )
P≥λq+1σ/2η

2
(ξ )

)
− P ��0

(
P≥λq+1σ/2(η

2
(ξ )
)∇a2

(ξ )

)

− μ−1∂tP ��0

(
a2
(ξ )

η2
(ξ )

ξ
)
+ μ−1

P ��0

(
∂t

(
a2
(ξ )

)
η2
(ξ )

ξ
)
.

Using the identity Id − PLH � ∇�−1div , we obtain∑
ξ

E(ξ,−ξ,2) + ∂tw
(t)
q+1 � ∇

∑
ξ

(
a2
(ξ )
P≥λq+1σ/2η

2
(ξ )

)
− ∇

∑
ξ

μ−1�−1∇ · ∂t

(
a2
(ξ )

η2
(ξ )

ξ
)

−
∑
ξ

P ��0

(
P≥λq+1σ/2(η

2
(ξ )
)∇a2

(ξ )

)
+ μ−1

∑
ξ

P ��0

(
∂t

(
a2
(ξ )

)
η2
(ξ )

ξ
)
,

where the first and second terms are pressure terms. Using (16), (34) and (35), we obtain

‖RP ��0

(
P≥λq+1σ/2(η

2
(ξ )
)∇a2

(ξ )

)
‖L∞

t L p
x

� (λq+1σ )
−1‖η(ξ )‖2L∞

t L2p
x
C3

� (λq+1σ )
−1r3−3/pC3.

It follows from (16) and (34) that

μ−1‖RP ��0

(
∂t

(
a2
(ξ )

)
η2
(ξ )

ξ
)
‖L∞

t L p
x

� μ−1‖∂t
(
a2
(ξ )

)
η2
(ξ )

ξ‖L∞
t L p

x

� μ−1r3−3/pC1.

Let us now give the explicit definition of R̃oscillation :

R̃oscillation �
∑

ξ,ξ
′∈�

P ��0

(
∇(a(ξ )a(ξ ′

)) · (P≥λq+1σ/2(W(ξ ) ⊗ W(ξ
′
) +W

ξ ′ ⊗ W(ξ )))
)

+
∑

ξ,ξ
′∈�,ξ ��ξ

′
a(ξ )a(ξ ′

)P≥λq+1/10

(
∇

(
η(ξ )η(ξ ′

)

)
·
(
W(ξ ) ⊗ W(ξ

′
) +W(ξ

′
) ⊗ W(ξ )

))

−
∑

ξ,ξ
′∈�,ξ ��ξ

′
∇

(
a(ξ )a(ξ ′

)

)
P≥λq+1/10

(
W(ξ ) · W(ξ

′
)

)
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−
∑

ξ,ξ
′∈�,ξ ��ξ

′
a(ξ )a(ξ ′

)P≥λq+1/10

((
W(ξ ) · W(ξ

′
)

)
∇

(
η(ξ )η(ξ ′

)

))

−
∑
ξ∈�

P ��0

(
P≥λq+1σ/2(η

2
(ξ )
)∇a2

(ξ )

)
+ μ−1

∑
ξ∈�

P ��0

(
∂t

(
a2
(ξ )

)
η2
(ξ )

ξ
)
.

Finally, we estimate the time support of Rq+1. Using (25) we obtain

suppt Rq+1 ⊂ supptwq+1 ∪ suppt Rq ⊂ Nδq+1 (suppt Rq ).

Now we choose the parameters r , σ , μ. Fix α so that

max

{
0,

2

3
(2θ − 1)

}
< α < 1,

which is possible since θ ∈ (−∞, 5/4). Fix

r � λα
q+1, σ � λ

−(α+1)/2
q+1 , μ � λ

(5α+1)/4
q+1 . (37)

Clearly (27) is satisfied. Choose p > 1 sufficiently close to 1 so that

− α + 1

2
+
5α + 1

4
+

(
5

2
− 3

p

)
α < 0,

(
3

2
− 3

p

)
α + max(0, 2θ − 1) < 0,

− 5α + 1

4
+

(
9

2
− 3

p

)
α < 0, −1 − α

2
+

(
3 − 3

p

)
α < 0.

Note that CN is independent of λq+1, due to (24). Combining the above estimates with Lemma
4, it is easy to check that, by taking λq+1 sufficiently large, we arrive at (4), (6) and (7). This
completes the proof of Lemma 1.
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