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Abstract
We study a basic linear elliptic equation on a lower dimensional rectifiable set S in RN with
the Neumann boundary data. Set S is a support of a finite Borel measure μ. We will use
the measure theoretic tools to interpret the equation and the Neumann boundary condition.
For this purpose we recall the Sobolev-type space dependent on the measure μ. We establish
existence and uniqueness of weak solutions provided that an appropriate source term is given.

Mathematics Subject Classification 35J20 · 35J70 · 28A33

1 Introduction

We study here an old problem of determining the stationary heat distribution in a conductor
S in the ambient space � ⊂ R

N , when the conductivity tensor A and the heat sources Q are
given. We assume that the conductor S is insulated at the boundary of �. Moreover, the set
� \ S is neither conducting nor it contains any heat source. The main objective of the paper
is to investigate the case of “thin” S, i.e., the case when the dimension of S is smaller than
N .

In the classical setting, S is a smooth Riemannian manifold. The stationary heat equation
takes the following form,

�u + Q = 0, x ∈ S,
∂u
∂ν

= 0, x ∈ ∂S.
(1.1)
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Here, � denotes the Laplace-Betrami operator, i.e.,

�u = div S∇u,

where div S is a surface divergence and∇u is the covariant derivative ofu. If S is a submanifold
of RN , then ∇u = PDu, where P is the projection of RN onto Tx S, the tangent space of S
at x . Equation (1.1) is the Euler–Lagrange equation of a variational functional,∫

S

[
1

2
|∇u|2 − Qu

]
dσ, u ∈ W 1,2(S),

where W 1,2(S) is the Sobolev space on the Riemannian manifold S.
Our main goal is to discuss such variational functionals and to analyze their Euler–

Lagrange equations in a more general context, namely when the set S is a lower dimension
rectifiable set in R

N . To do this we employ the measure theoretic tools and we follow the
approach proposed by Bouchitté, Buttazzo and Seppecher in [1]. Namely, we consider a
measure μ, supported in S, which is singular with respect to the Lebesgue measure in R

N .
We assume further that the conductivity tensor A and the heat sources Q are, respectively, a
tensor and a scalar valued measure; both measures are absolutely continuous with respect to
μ. Applying variationalmethods, we focus initially onminimizing problem for the functional

E(u) = 1

2

∫
�

(A(x)∇u,∇u) dμ − 〈Q, u〉, u ∈ C∞
c (RN ). (1.2)

When μ = Hk�S, where S is a smooth Riemannian manifold, then the Euler–Lagrange
equation for E is of the form

div S (A∇u) + Q = 0 in S,

[A∇u, ν] |∂� = 0 on S ∩ ∂�,
(1.3)

where ν is the outward normal unit vector of ∂�. However, an effort is required to derive
and give meaning to such an equation when μ is a more general measure.

In this paper we consider a multijunction measure in the sense considered by Bouchitté
and Fragalà in [2]. Our precise assumptions, denoted further by [S], are as follows:

• � is a smooth bounded domain in R
N ;

• a compact set S contained in � is of the form

suppμ = S =
J⋃

j=1

S j ,

where each S j is a compact manifold of class C2 of dimension k j < N ;
• the measure μ is of the form

μ =
J∑

j=1

μ j , where μ j := Hk j�S j , j = 1, . . . J ;

• measures μ j are mutually singular, i.e.

μ j (Si ) = 0 for all j 	= i;
• for each i = 1, . . . , J , we assume that the boundary of the manifold Si is contained in

∂� ∪ ⋃
j 	=i S̄ j ;

• the relative interior of Si does not intersect the boundary ∂�.
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Such measure-oriented point of view proved to be very fruitful when dealing with vari-
ational problems considered on low dimensional structures in R

N , e.g., see the anisotropic
shape optimization problem considered by Bouchitté and Buttazzo in [3]. We refer the reader
to [4] for an introduction to this theory.

At this point let us mention the main features of the present work. First of all, let us
observe, that contrary to the approach presented in [5] and [2], we do not assume a Poincaré-
type inequality to hold globally on S, allowing in particular occurrence of multidimensional
junctions. The issue of the Poincaré inequality is addressed further in Sect. 2 and examples
are given in Sect. 5. Secondly, we consider the Neumann boundary condition in (1.3), which
was not present in aforementioned papers [1,3,4]. We stress that the meaning of the boundary
condition in (1.3) requires clarification. We shall see in Sect. 4 that the correct interpretation
relies on the theory developed by Chen and Frid in [6], and it amounts for the Neumann
boundary term to be understood as a normal trace of a measure with bounded divergence.
Observe also that the ambient space � is, in fact, a design region restricting the position of
set S. Remark 4.1 at the end of Sect. 4 addresses the lack of influence of � on the solutions
to (1.3) as long as ∂� is smooth in a neighborhood of ∂� ∩ ∂S.

And finally, we want to mention the fact that conditions [S]may be relaxed a bit. Namely,
we may consider μ = θμ̄, there μ̄ satisifes [S] and the density θ is bounded and strictly
positive, see (2.9) and (2.10). In this case the same results hold for such μ and their proofs
do not require any changes. We explain it, while presenting the argument.

The variational approach requires introduction of the appropriate Sobolev-type space and
finding the lower semicontinuous envelope of E . To this end we employ the space H1,2

μ

introduced by Bouchitté and Buttazzo, [1]. Its definition and basic properties are discussed
in Sect. 2. In particular, we explain there the notion of the tangential gradient operator ∇μ

for functions from H1,2
μ and the notion of the tangent space of μ at x , denoted by Tμ(x). The

relaxation of E , denoted by Eμ may be calculated explicitly as in [1]–this is done in Sect. 3,
see Proposition 3.1). It is defined as

Eμ(u) = 1

2

∫
�

(Aμ(x)∇μu,∇μu) dμ − 〈Q, u〉, u ∈ H1,2
μ , (1.4)

where Aμ is given by (3.4). The Euler–Lagrange equation for Eμ then takes the form (see
Proposition 3.3)∫

�

(Aμ∇μu,∇μϕ) dμ −
∫

�

f ϕ dμ = 0 for all ϕ ∈ C1
0 (R

N ), (1.5)

where f is the density of the measure Q.
Our main result reads as following:

Theorem 1.1 Let us assume that μ satisfies the conditions [S], and that Q and A satisfy the
conditions (3.1)–(3.3). Suppose also that 〈Q, h〉 = 0 for all h in the kernel of∇μ. Then, there
exists a unique distributional solution u ∈ H1,2

μ to the equation (1.5) which is perpendicular
(in the L2 scalar product) to ker∇μ. Moreover, the solution satisfies the boundary condition
in the following sense: [Aμ∇μu, ν]|∂� = 0 as a continuous linear functional on C2(∂�).

This Theorem follows from Theorem 3.1, Proposition 3.3, and Theorem 4.1. Uniqueness is
addressed in Corollary 3.3. We also make a comment of the boundary conditions in Corol-
lary 4.1. Examples of explicit boundary problems are discussed in Sect. 5.

In the course of proofs, we will explain that Theorem 1.1 is valid also forμ given by (2.9),
where the density θ satisfies (2.10).
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2 Sobolev spaces H1,p
�

2.1 Definitions

In the problem we study, � is the ambient space, containing S, which is the support of
a measure μ. Set S interpreted as the heat conductor. We study an elliptic problem in S,
however, we are interested in the Neumann-type boundary conditions on S ∩ ∂�.

We need properly defined Sobolev spaces to study weak solvability of differential equa-
tions like (1.3). We require a definition, which is general, yet easy to use. It seems that the
Sobolev space H1,p

μ introduced for any p ∈ [1,∞) by Bouchitté–Buttazzo–Seppecher in [1]
is the right tool. We will briefly recall this definition. A recent discussion on other possible
definitions of Sobolev space on S is in [7].

We begin with the notion of a tangent space to a measure, there is a number of ways to
introduce it. We use the approach proposed in [1] and further exposed in [2,4,8,9] in a more
reader friendly way.

We assume that μ is a positive, Radon measure on RN . If we set

Nμ = {v ∈ C∞
c (RN ) : v = 0 in suppμ},

then we introduce

Nμ := {w ∈ C∞
c (RN ;RN ) : ∃v ∈ Nμ, w = ∇v in suppμ}.

We define the multifunction Nμ : RN ⇒ R
N by

Nμ(x) := {w(x) ∈ R
N : w ∈ Nμ}.

The vector subspace ofRN is called the normal space toμ at x . The vector space Tμ(x) ⊂ R
N

is defined as the orthogonal complement of Nμ(x) and it is called the tangent space to μ at
x .

We introduce 	μ(x, ·) as the orthogonal projection of RN onto Tμ(x). Due to measura-
bility of Tμ(·), see [1], the projection is μ-measurable.

For any u ∈ D(Rn), we define, for μ-a.e. x ∈ R
n , the tangential gradient

∇μu(x) = 	μ(x,∇u(x)).

The space H1,p
μ is defined as a completion of D(Rn) in the following norm

‖u‖1,p,μ =
(
‖u‖2

L p
μ(�)

+ ‖∇μu‖2
L p

μ(�)

)1/2
.

This space is a reflexive Banach space for p ∈ (1,∞). We should stress that we could define
the Sobolev space by weak derivatives, this is done in [10]. This space is denoted by W 1,p

μ ,

in general H1,p
μ is a closed subspace of W 1,p

μ , see [10] for details.

The weak convergence on space H1,p
μ is introduced in a natural way,

uk⇀u weakly in H1,p
μ ⇔

{
uk⇀u weakly in L p

μ(�),

∇μuk⇀∇μu weakly in L p
μ(�).

In our situation, i.e., with μ satisfying the conditions [S], the definitions of the tangent
space and the Sobolev space H1,p

μ are intuitive.
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Proposition 2.1 (see [2, Lemma2.2])Assume that S is a finite union ofC2 compactmanifolds,
S = ⋃J

j=1, dim S j = k j ≤ N and the measures μ j = Hk j�S j are mutually singular. We

set μ = ∑J
j=1 μ j and we denote by TSj (x) the tangent space to S j at x. Then, we have

Tμ(x) = TSj (x) μ j − a.e.

If S = suppμ ⊂ � and � is an open region in R
N and μ(S ∩ ∂�) = 0, then

H1,p
μ = {u ∈ L p(S, μ) : u|S j ∈ H1,p(S j ), j = 1, . . . , J }.

2.2 On the validity of the Poincaré inequality

An important tool in the analysis of the well posedness of the problem (1.3) is the Poincaré
inequality. In case S is a smooth, compact manifold of dimension k < N , the global Poincaré
inequality holds, i.e. there is CP > 0 such that

‖u − uS‖2L2(�,μ)
≤ Cp‖∇μu‖2L2(�,μ)

for u ∈ H1,2
μ , where uS = 1

μ(S)

∫
�

u dμ.

(2.1)

However, we are particularly interested in junctions between several thin structures of pos-
sibly different dimension, i.e. when S is a finite union of compact manifolds of possibly
different Hausdorff dimensions. In such a case (2.1) may not be true. Further in this section
we discuss some positive examples, but let us now concentrate on the problems associated
with the lack of (2.1) and the possible remedies.

One of the consequences of the global Poincaré inequality (2.1) is the following property:

u ∈ H1,2
μ (�), ∇μu = 0 μ − a.e. ⇒ u = const. μ − a.e. (2.2)

In other words

dim ker∇μ = dim{u ∈ H1,2
μ (�) : ∇μu = 0} = 1,

so ker∇μ contains only constant functions. In a general situation of a multijunction measure
this is not necessarily true, i.e. it may happen that

dim ker∇μ > 1.

The important feature is “how big” the junction area is. Every space that supports a global
Poincaré inequality is connected. We expect that removing a set of zero capacity from the
space should not affect the Poincaré inequality. In particular, removing a set of zero capacity
should not disconnect the space. Examples show that our expectation need not be true. We
consider the situation presented on Fig. 1. Since the capacity of a point on a plane is equal
to zero, the global Poincaré inequality cannot be valid for this set. A similar situation occurs
for the set presented on Fig. 6. We do not want to recall the definition of a (Sobolev) capacity
here (we refer the interested reader for instance to the book [11], chapter 4). However, in the
situation presented on the Fig. 1, the argument is simple and straightforward.

Consider the unit disk on a plane D = {(x, y) ∈ R
2 : x2 + y2 < 1} and the function

f (x, y) = − log log(1 + (x2 + y2)−1/2).
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Fig. 1 Set S without Poincaré
inequality (2.1)

This is an unbounded function which belongs to the Sobolev space H1,2(D). Set

ζ(t) =

⎧⎪⎨
⎪⎩
0 t < 0,

t t ∈ [0, 1],
1 t > 1.

Then ζ ◦ f ∈ H1,2(D) as well. Define a sequence of functions fn as

fn(x, y) = ζ( f (x, y) − n + 1).

Since the H1,2(D) energy of f is finite, the H1,2(D)-energy of fn tends to zero.
Now, we consider a metric space (S, μ), such that S = X ∪P Y , where

X = {(x, y, z) ∈ R
3 : z = 0; x2 + y2 ≤ 1}

and μ�X is a 2-dimensional Hausdorff measure;

Y = {(x, y, z) ∈ R
3 : x = y = 0; z ∈ [0, 1]}

and μ�Y is a 1-dimensional Hausdorff measure and P = (0, 0, 0).

Proposition 2.2 Let us suppose that S and μ are defined above. Then, dim ker∇μ > 1.

Proof We define a sequence of functions un : S → R as

un(s) =
{

ζ( f (x, y) − n + 1) s = (x, y, 0) ∈ X;
1 s = (0, 0, z) ∈ Y

and a function

uo(s) =
{
0 s = (x, y, 0) ∈ X;
1 s = (0, 0, z) ∈ Y .

Since ∫
S
|un(s)| dμ =

∫
X

|un(s)| dH2 +
∫
Y

|un(s)| dH1

and ∫
S
|∇μun(s)| dμ =

∫
X

|∇μun(s)| dH2 +
∫
Y

|∇μun(s)| dH1

︸ ︷︷ ︸
=0

,

then it follows that un ∈ H1,2
μ . By the construction, we also have

‖un − uo‖H1,2
μ

→ 0,

which implies uo ∈ H1,2
μ which in turn falsifies the Poincaré inequality (2.1) on S and it

shows that (2.2) in this situation is not true. As a result, our claim holds. ��
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Let us denote

V = ker∇μ ⊂ H1,2
μ ⊂ L2(�,μ).

This is a finite dimensional subspace of L2(�,μ). We define

P : H1,2
μ → V (2.3)

as the orthogonal projection onto V (with respect to L2 scalar product). Set d = dim V .
We can split the set {1, . . . , J } from the condition [S] into a final family of disjoint sets of
indices

{1, . . . , J } = J1 ∪ . . . ∪ Jd , d ≤ J , Jl ∩ Jm = ∅, l 	= m.

The sets Jl , l = 1, . . . , d are defined in the following way. The set

S̃l =
⋃
i∈Jl

Si

is such that

χS̃l ∈ ker∇μ,

and Jl are “maximal” in the sense that for any proper subset K ⊂ Jl ,

the characteristic function of
⋃
i∈K

Si does not belong to V .

Then the projection P in (2.3) can be expressed as

P =
d∑

l=1

Pl , where Pl u = χS̃l

∫
S̃l
u dμ. (2.4)

For a multijunction measure satisfying [S] the following weaker version of the Poincaré
inequality holds.

Theorem 2.1 Let us suppose that a multijunction measure satisfies [S]. Then there is Cl > 0
such that for u ∈ H1,2

μ

∑
i∈Jl

∫
�

|u − Plu|2 dμi ≤ Cl

∑
i∈Jl

∫
�

|∇μu|2 dμi , for l = 1, . . . , d, (2.5)

where Pl is defined in (2.4).

Let us mention in advance that, the regularity of solutions depends in an essential way on
whether the set S supports the inequality (2.1) or (2.5). It is known that if a metric measure
space (the set Smay be treated as such) supports the Poincaré inequality (2.1), one can expect
solutions to be continuous. The weaker version (2.5), which is sufficient for the existence
result, is not enough to ensure regularity, as shown on examples presented in Sect. 5.

On the other hand, as it is observed in the vast literature concerning analysis on metric-
measure spaces, there are many examples of spaces for which validity of Poincaré-type
inequality (2.1) can be asserted. It is impossible to discuss this broad topic in all the details
within this paper.Various versions of thePoincaré-type inequalities are formulated in different
context. However, just to give some justification for our claim that in some examples, one
can indeed assert validity of the Poincaré inequality in the form (2.1), we will sketch the
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framework of metric-measure spaces. An interested reader may find more information and
references e.g., in the papers of Semmes [12, Section B], of Hajłasz and Koskela [15], of
Heinonen and Koskela [13, Section 6] and in the book [11].

We need to formulate some definitions which are necessary within the framework. Let
(X , d) be a connected and complete metric space equipped with a Borel regular measure μ.
We say that:

• X is doubling if there exists a constant Cd ≥ 1 such that

μ(B2R) ≤ Cdμ(BR) (2.6)

for all balls BR in X of radius 0 < R < diam X .
• X is q-regular if there are constants Cq ≥ 1 and q > 0 so that

Rq

Cq
≤ μ(BR) ≤ Cq R

q (2.7)

for all balls BR in X of radius 0 < R < diam X .
• X is linearly locally contractible if there is a constant C such that every small ball is

contractible inside a ball whose radius is C times larger.

LetU be an open set in X and let u be an arbitrary real-valued function inU . We say that
a Borel function g : U → [0,∞] is a very weak gradient of u in U if

|u(x) − u(y)| ≤
∫

γ

g dH1

whenever γ is a rectifiable curve joining x and y in U . In many cases (in particular in the
Euclidean setting, when the function u is differentiable) one can take simply g = |∇u|. Let
us observe that this is our case, due to Proposition 2.1.

We say that X admits a local weak (1, p)-Poincaré inequality if
∫
B

|u − uB |dμ ≤ Cp(diam B)

(∫
λB

gpdμ

)1/p

(2.8)

whenever u is a bounded continuous function in a ball λB and g is its very weak gradient.
The constants Cp ≥ 1 and λ ≥ 1 should be independent of B and u. Inequality (2.8) is
termed “weak” because we allow a larger ball on the right-hand side than on the left. In many
cases this weak estimate can be used to iterate so as to yield an inequality with the same ball
on both sides. If the term “weak” is omitted, we assume λ = 1.

With such preparations, we may now state the results due to Semmes (see [12, Section
B]):

Theorem 2.2 Assume that (X , d, μ) is a q-regular metric space which is also locally linearly
contractible and a connected orientable topological manifold of dimension q. Then X admits
a local (1, p)-Poincaré inequality for all p ≥ 1.

Theorem 2.3 Suppose that X is a connected, finite simplicial complex of pure dimension
q > 1 such that the link of each vertex is connected. Then X admits a local (1, q)-Poincaré
inequality.

Observe first that both theorems assert validity of the local Poincaré inequality, not just
its local weak version. This is a good starting point, but still, local version is not sufficient
for our purpose, we want the global version (2.1). Then, even as Theorem 2.3 is much more
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general, and actually very handy in our situation (our assumptions for the set S actually make
it a simplicial complex), we want to avoid introduction of yet another language of simplicial
geometry. Therefore to justify passing from the local version (2.8) of the Poincaré inequality
to the global one (2.1), we shall start our arguments with the Theorem 2.2.

As observed byHeinonen andKoskela [13], two spaces that support a local (weak) version
of the Poincaré inequality may be glued along a sufficiently large common part to produce a
new metric space that also supports a Poincaré-type inequality. To make the statement more
precise, suppose that X and Y are two locally compact q-regular metric measure spaces.
Suppose also that A is a closed subset of X that has an isometric copy inside Y , i.e. there is
an isometric embedding i : A → Y . In the following, we understand this embedding as fixed
and think of A as a closed subset of both X and Y . We form a space

X ∪A Y

which is the disjoint union of X and Y with points in the two copies of A identified. This
space has a natural metric which extends the metrics from X and Y : the distance between
x, y ∈ X ∪A Y is

inf
a∈A

(dX (x, a) + dY (a, y)).

Furthermore, the measures on X and Y add up to a measure μ on X ∪A Y that is obviously
q-regular. Recall that the Hausdorff s-content of a set E in a metric space is the number

H∞
s (E) = inf

∑
i

r si ,

where the infimum is taken over all countable covers of the set E by ball Bi of radius ri . The
Heinonen and Koskela result (see [13, Thm. 6.15]) reads as following:

Theorem 2.4 Let X, Y and A be as above. Suppose that there are numbers q ≥ s > q − p
and C ≥ 1 so that for all balls BR either in X or in Y that are centered at a point in A with
0 < R < min{diam X , diam Y } it holds

H∞
s (A ∩ BR) ≥ C−1Rs .

If both X and Y admit a local weak (1, p)-Poincaré inequality, then X ∪A Y admits a local
weak (1, p)-Poincaré inequality as well.

Finally, passing from a local weak version of the Poincaré-type inequality (2.8) to the
global version (2.1) can be done if the measure μ is doubling and the space satisfies the so-
called chain condition. Roughly speaking, the chain conditions means that each two points
of the space can be joint by a sequence of balls with controlled radius and “thick” (in the
sense of measure) intersection. An elegant and elementary proof of the fact was given by
Hajłasz and Koskela in [14]:

Theorem 2.5 Assume (X , d, μ) to be a doubling metric measure space which satisfies a
chain condition. Assume � to be a bounded domain in X. Assume that a local weak (1, p)-
Poincaré inequality holds for functions u ∈ L1

loc(μ) and g ∈ L p(μ) for all balls λB ⊂ �.
Then there exists κ > 1 which depend on p and the doubling constant only, such that the
global Sobolev-Poincaré inequality holds

(∫
�

|u − u�|κ pdμ

)1/κ p

≤ C

(∫
�

|g|pdμ

)1/p

.
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Fig. 2 Poincaré inequality (2.1)
holds on S, condition [S] not
satisfied

Fig. 3 Poincaré inequality (2.1)
holds on S. Proposition 5.1 yields
a continuous solution

Fig. 4 Poincaré inequality (2.1)
holds on S

The chain condition is clearly satisfied on a compact smooth manifold or on finite unions
of manifolds. The above result allows to give a variety of examples of spaces for which the
global Poincaré-type inequality (2.1) holds. In particular, this is the case of sets presented
on Figs. 2, 3, and 4. In all these situations one can also expect that the solutions of the
Euler–Lagrange Eq. (3.8) are regular.

2.3 Amore general measure

In the Introduction, we mentioned a possible generalization of our results. Namely, we now
assume that μ̄ satisfies [S] and we consider

μ = θμ̄, (2.9)

where the density is not only in L∞(S), but also θ is strictly positive. We notice that such
measures share the tangent space.
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Corollary 2.1 Let us suppose that μ̄ satisfies [S], θ ∈ L∞(S, μ̄) and there exist 0 < θ, θ̄ ∈ R

such that

θ(x) ∈ [θ, θ̄ ] for μ̄-a.e. x ∈ S. (2.10)

We set μ = θμ̄. Then,

Tμ(x) = Tμ̄(x).

Hence, H1,p
μ = H1,p

μ̄ .

Proof If we inspect the definition of Nμ, then we notice that Nμ and Nμ̄ must coincide. As
a result, we see that Nμ = Nμ̄ and Nμ = Nμ̄(x) for μ̄ a.e. x ∈ S. Finally,

	μ(x, ·) = 	μ̄(x, ·) for μ̄ a.e. x ∈ S (2.11)

and our first claim follows.
The second claim follows from (2.11) and the definition of H1,p

μ . ��

3 The elliptic problem

We would like to use the calculus of variations to establish existence of solutions to (1.3)
in the space H1,2

μ . For this purpose we recall the definition of E(u) for H1,2
μ . We have to

specify the assumptions on A and Q.
In principle, u is an element of L2(�,μ), sowemust specify properties of Q appropriately.

This is why we make the following assumption,

Q is a measure of a finite total variation supported in �,

absolutely continuous with respect to μ,

and there is f ∈ L2(�,μ) such that Q = f μ.

(3.1)

This assumption in particular makes elements of H1,2
μ measurable with respect to Q.

Now, we specify our assumptions on A. We consider{
A ∈ L∞(�; M(N × N ), μ) and

for a.e. x the matrix A(x) is symmetric and Tμ(x) ⊂ Im A(x).
(3.2)

We have to present the positivity of A in a way suitable for dealing with∇μu in the tangent
space to μ. We require that at μ-almost every x ∈ �, we have

(A(x)ξ, ξ) ≥ λ|ξ |2, for all ξ ∈ Im A(x). (3.3)

After these preparations, we state our first result.

Proposition 3.1 Let us suppose that A satisfies (3.2) and (3.3). Suppose further that the
measure μ satisfies the assumptions [S]. Moreover, Q = f μ, where f ∈ L2(S, μ). Then,
the relaxation of E, defined by (1.2), is given by

Eμ(u) = 1

2

∫
�

(Aμ(x)∇μu,∇μu) dμ −
∫

�

f u dμ.

Here, matrix Aμ(x) is defined by

Aμ(x) = A(x) −
l∑

i=1

A(x)ei (x) ⊗ A(x)ei (x)

(A(x)ei (x), ei (x))
(3.4)
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where vectors ei = ei (x), i = 1, . . . , l are linearly independent, μ-measurable, they span
(Tμ(x))⊥∩ Im A(x). Moreover we can assume (A(x)ei (x), e j (x)) = δi j , for i, j = 1, . . . , l.

Proof We may assume for the sake of simplicity of notation that f = 0. Indeed, the term∫
�

f u dμ is weakly continuous, hence we have to deal with the lower semicontinuity of the
quadratic term.

Step 1. Let us assume first that we are given a matrix B ∈ L∞(�, M(N × N ), μ) and for
μ-a.e. x ∈ � matrix B(x) is symmetric and positive definite. Then, for μ-a.e. x ∈ �, the
matrix B(x) defines a scalar product in RN :

(v,w)B := (B(x)v,w) for v,w ∈ R
N .

Let us choose vector fields e1, . . . , eN−k such that for μ-a.e. x ∈ �:

• they are linearly independent,
• they span (Tμ(x))⊥,
• they are orthonormal with respect to the scalar product defined by the matrix B, i.e. for

μ-a.e. x ∈ �

(ei (x), e j (x))B = δi j i, j = 1, . . . , N − k.

The μ-measurability of these vector fields is discussed in Step 4.
Observe that for μ-a.e. x ∈ �, the orthogonal projection onto (Tμ(x))⊥ with respect to

the scalar product B(x) is defined as

PBv =
N−k∑
i=1

ei (x)(ei (x), v)B v ∈ R
N .

Let us set FB(x, p) := (B(x)p, p) = (p, p)B . Then, we define EB(u) =
1
2

∫
�
FB(x,∇u) dμ. By [1], EB

μ , the relaxation of EB , is given by

EB
μ (u) = 1

2

∫
�

FB
μ (x,∇μu) dμ,

where

FB
μ (x, p) = inf{FB(x, p + ξ) : ξ ∈ (Tμ(x))⊥}.

The minimization problem in the definition of FB
μ may be written as

inf

{
FB(x, p +

N−k∑
i=1

ti ei (x)) : ti ∈ R, i = 1, . . . , N − k

}
.

A simple differentiation yields optimality conditions

toi = −(Bp, ei )/(Bei , ei ) = −(p, ei )B , for i = 1, . . . , N − k.

Thus we easily see that

FB
μ (x, p) = (Bμ(x)p, p),

where Bμ(x) is given by

Bμ(x) = B(x) −
N−k∑
i=1

B(x)ei (x) ⊗ B(x)ei (x), (3.5)
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that is

Bμ(x)ξ = B(x)ξ −
N−k∑
i=1

B(x)ei (x)(ei (x), ξ)B

= B(x)ξ − B(x)

(
N−k∑
i=1

ei (x)(ei (x), ξ)B

)

= B(x)ξ − B(x)PBξ

It is easy to see that for any ξ ∈ R
N we have Bμξ ∈ Tμ. Indeed,

(Bμ(x)ξ, e j ) = (B(x)ξ, e j ) − (B(x)e j , ξ) = 0 for j = 1, . . . , N − k.

Moreover, Bμ is strictly positively definite on Tμ(x). Indeed, for ξ ∈ Tμ(x) we have

(Bμ(x)ξ, ξ) = (ξ, ξ)B − (PBξ, ξ)B

= (ξ, ξ)B − (PBξ, PBξ)B > 0

since Tμ � ξ 	= PBξ .
Step 2. We assumed that A satisfies (3.3), so if we set F(x, p) = (A(x)p, p), then this

integrand need not satisfy the lower estimate

F(x, p) ≥ c0|p|2

for every p ∈ R
N , which is in the assumption of [1, Theorem 3.1]. For this reason we define

the symmetric matrix Bε ∈ L∞(�, M(N × N ), μ), as

B(x) = A(x) + εP(x), for ε > 0, (3.6)

where P(x) is the orthogonal (with respect to the euclidean product in R
N ) projection onto

ker A. Hence, for every ε > 0 and for μ-a.e. x ∈ � matrix Bε(x) is symmetric and positive
definite and formula (3.5) applies to Bε .

Step 3. We claim that if B is defined by (3.6), then Bε
μ = Aμ, where Aμ is given by

(3.4). Indeed, the summation in (3.5) may be split, the first l ≤ N − k vectors belong to
Im A ∩ (Tμ)⊥, while vectors ei , i = l + 1, . . . , N − k span the kernel of A. We note

(A + εP)ei = Aei for i = 1, . . . , l

and

(A + εP)ei = εPei = εei for i = l + 1, . . . , N − k.

Then, Bε
μ takes the following form,

Bε
μ = A + εP −

l∑
i=1

Aei ⊗ Aei
(Aei , ei )

−
N−k∑
i=l+1

ε
ei

‖ei‖ ⊗ ei
‖ei‖

= Aμ,

because P = ∑N−k
i=l+1

ei‖ei‖ ⊗ ei‖ei‖ .
Step 4. We claim that the mapping x �→ Aμ(x) is μ-measurable. We know that the

multivalued map x �→ T⊥
μ (x) is μ-measurable, (see [9, page 476]), so is

x �→ T⊥
μ (x) ∩ {ξ ∈ R

N : (A(x)ξ, ξ) = 1} =: �1(x).
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As a result, there is a measurable selection of �1(x), which we will call e1.
In the next step we consider a multivalued function

�2(x) = �1(x) ∩ {ξ ∈ R
N : (A(x)e1(x), ξ) = 0}.

Of course it is measurable, we will denotes its selection by e2. After the finite number of
steps we will end up with measurable vector fields ei (x), i = 1, . . . , l, which are necessary
in the formula for Aμ.

Step 5. We will check that the lower semicontinuous envelope of E is Eμ. By definition
we have Eμ(u) ≤ E(u) ≤ EB(u). Step 3 implies that Eμ = EB

μ and EB
μ is semicontinuous.

If we denote by bar the lower semicontinuous envelope, then we see,

Eμ(u) ≤ Ē(u) ≤ Ē B(u) = EB
μ (u) = EB

μ (u).

Hence, Eμ(u) = Ē(u). ��
Interestingly, the conclusion of Proposition 3.1 does not change if we consider μ of the

form (2.9). Here it is:

Corollary 3.1 Let us suppose that all the assumptions of Proposition 3.1 hold, except that
μ = θμ̄, where μ̄ satisfies [S] and θ fullfils (2.10). Then, the relaxation of E is given by Eμ

defined in Proposition 3.1, where (3.4) holds.

Proof Let us notice that (3.4) is well-defined as long as the tangent space Tμ(x) exists, i.e.
also if μ is of the form (2.9).

Let us now introduce

Ā = Aθ, Q̄ = Qθ, f̄ = f θ.

Due to (2.10) we see that μ̄, Ā and Q̄ satisfy the assumptions of Proposition 3.1. Hence, the
relaxation of functional E ,

E(u) = 1

2

∫
�

( Ā(x)∇u,∇u) dμ̄ −
∫

�

f̄ u dμ̄, u ∈ C∞
c (�)

is given by Eμ̄, where Āμ̄ is defined in (3.4). We notice that

Eμ̄(u) = 1

2

∫
�

( Āμ̄(x)∇μ̄u,∇μ̄u) dμ̄ −
∫

�

f̄ u dμ̄, u ∈ H1,2
μ ,

where we use that fact that H1,2
μ = H1,2

μ̄ . It is easy to check that the structure of the formula
(3.4) implies that

Āμ̄(x) = θ(x)Aμ̄(x) μ-a.e.

once we see that vectors in R
N orthogonal with respect to inner product defined by A(x)

are orthogonal with respect to inner product defined by Ā(x). However, this is obvious since
both inner products are propotional, with a positive proportionality constant.

Thus, for any u ∈ H1,2
μ we have,

Eμ̄(u) = 1

2

∫
�

(θ(x)Aμ̄(x)∇μu,∇μu) dμ̄ −
∫

�

f̄ u dμ̄

= 1

2

∫
�

(Aμ̄(x)∇μu,∇μu) dμ −
∫

�

f u dμ

= Eμ(u).

��
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We have to describe ker div Aμ∇μ, what is necessary, before we can specify Q. Actually,
we prove:

Proposition 3.2 ker div Aμ∇μ = ker∇μ.

Proof The inclusion ⊃ is obvious. Let us suppose that u ∈ H1,2
μ satisfies

div (Aμ∇μuμ) = 0 in D′(RN ).

In other words, ∫
�

Aμ∇μu∇ϕ dμ = 0 for all ϕ ∈ D(RN ).

We notice that ∇ϕ(x) = ∇μϕ(x)+ (I d −	μ(x,∇ϕ)) for μ-a.e. x ∈ S. Since Aμ∇μu(x) ∈
Tμ(x) for μ-a.e. x ∈ S, we have

0 =
∫

�

Aμ∇μu∇ϕ dμ =
∫

�

Aμ∇μu∇μϕ dμ.

We may take a sequence ϕn ∈ D(RN ) such that ∇μϕn converges to ∇μu. This yields,

0 =
∫

�

Aμ∇μu∇μu dμ.

Combining this with ellipticity of Aμ, see (3.3), yields the claim. ��
Remark 3.1 The same proof works in the case of μ as in Corollary 2.1.

After these preparations we can state one of our main results.

Theorem 3.1 Let us assume that the conditions: [S] on μ and (3.1) on Q as well as (3.3) on
A hold. In addition, we assume that 〈Q, h〉 = 0 for all h in the kernel of ∇μ. Then, there
exists a minimizer u of the functional Eμ defined on the linear subspace

H = {u ∈ H1,2
μ : Pu = 0},

where P is the orthogonal projection onto ker∇μ described by (2.4).

Proof We have already computed Eμ, the relaxation of E . Actually, we study minimizers of
Eμ. Let us suppose that {uk} ⊂ H is a sequence minimizing Eμ, i.e.,

lim
k→∞ Eμ(uk) = inf{Eμ(v) : v ∈ H} =: R.

We may assume that for all k ∈ N we have,

R ≤ 1

2

∫
�

(Aμ(x)∇μuk,∇μuk) dμ −
∫

�

f uk dμ ≤ R + 1.

Due to (3.3), we end up with,

λ

2

∫
�

|∇μuk |2 dμ −
∫

�

f uk dμ ≤ R + 1. (3.7)

Now, the Theorem 2.1 and Puk = 0 yield that there exists C > 0 such that∫
�

(u2k + |∇μuk |2) dμ ≤ C
∫

�

|∇μuk |2 dμ.
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Combining this with (3.7) and Young’s inequality yields,

(1 − ε
C

2λ
)‖uk‖2H1,2

μ
≤ C

λ2ε
‖ f ‖2L2(�,μ)

+ R + 1.

In other words the minimizing sequence is bounded in H1,2
μ . Due to the results of [1] we

deduce that there is a weakly convergent subsequence (not relabeled), with limit u. Now, we
invoke the lower semicontinuity results so that we deduce,

lim
k→∞

Eμ(uk) ≥ 1

2

∫
�

(Aμ(x)∇μu,∇μu) dμ −
∫

�

f u dμ.

Uniqueness of minimizers will be treated separately. ��
The claim made in Theorem 3.1 is valid also for μ as in Corollary 2.1.

Corollary 3.2 Let us assume that the hypotheses of Theorem 3.1 hold except that μ = θμ̄,
where μ̄ satisfies [S] and (2.9) is valid. Then, the same claim holds.

Proof We use the notation of Corollary 2.1. Since we may use Corollary 3.1 in place of
Proposition 3.1 and ∇μ = ∇μ̄, then it remains to check that

∫
�

Qu dμ =
∫

�

Q̄u dμ̄,

but this identity follows from the definition of Q̄ andμ. As a result wemay apply Theorem 3.1
to Ā, Q̄ and μ̄. ��

Establishing the Euler–Lagrange equations requires further assumptions on Aμ and μ.

Proposition 3.3 Let us suppose that u is a minimizer of Eμ on H1,2
μ , then the following weak

form of Euler–Lagrange equation holds,∫
�

(Aμ∇μu,∇μϕ) dμ −
∫

�

f ϕ dμ = 0 for all ϕ ∈ C1
0(R

N ). (3.8)

Proof Since u is a minimizer, then for any test function ϕ ∈ H1,2
μ , (in particular we may take

ϕ ∈ C1
0 (R

N )), we have

Eμ(u) ≤ Eμ(u + ϕ).

Thus,

0 ≤
∫

�

(Aμ∇μu,∇μϕ) dμ + 1

2

∫
�

(Aμ∇μϕ,∇μϕ) dμ −
∫

�

f ϕ dμ.

After replacing ϕ with tϕ, where t is real, we will deduce that (3.8) holds. ��
Corollary 3.3 Let us suppose that the assumptions of the previous theorem hold. If u1 and u2
are two minimizers of Eμ, which are perpendicular to ker∇μ, then u1 = u2.

Proof Let us take u = u2 − u1 and take the difference of (3.8) corresponding to u1 and u2,∫
�

(Aμ∇μu,∇μϕ) dμ = 0.
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Since u = u2 − u1 can be approximated in the H1,2
μ -norm by a sequence of C1 functions,

we may take ϕ = u in the identity above,

0 =
∫

�

(Aμ∇μu,∇μu) dμ ≥ λ‖∇μu‖2L2
μ
,

i.e. u ∈ ker∇mu. Since we assumed that u ∈ (ker∇μ)⊥, we deduce that u = 0, i.e. u2 = u1.
��

We do not specify any boundary conditions so we expect that the solution satisfies the
so-called natural boundary condition, however, in a weak form suitable for H1,2

μ .

Remark 3.2 The arguments used in the proofs of Proposition 3.3 and Corollary 3.3 are valid
if μ is as in Corollary 3.1.

Remark 3.3 Let us remark that in the case S is a smooth compact manifold of codimension
1, μ = HN−1�S, and A is the identity matrix, the equation (1.3) takes the familiar form of

�u + f = 0 on S,

where � is the Laplace–Beltrami operator on S.

4 On the boundary condition

After [6], we introduce the notion of a vector valued measure with bounded divergence.

Definition 4.1 (see [6, Definition 1.1]) Let us suppose that F is a vector-valued Radon mea-
sure. We set

|div F |(�) := sup{〈F,∇ψ〉 : ψ ∈ C1
c (�), |ψ(x)| ≤ 1}.

If |div F |(�) is finite, we say that the divergence of F has a finite total variation.

The advantage of measures whose divergence has a finite total variation is that one can define
the trace of their normal component of ∂�. We recall, see [6, Theorem 2.2],

Proposition 4.1 We assume that the boundary of � is smooth. If both F and its divergence
have a bounded total variation, there exists a continuous linear functional [F, ν]|∂� over
C2(∂�) such that

〈[F, ν]|∂�, ϕ〉 = 〈div F, ϕ〉 + 〈F,∇ϕ〉 for any ϕ ∈ C2(�).

Actually, the original statement of the Proposition is more general, in particular less smooth-
ness of the boundary of � is sufficient. Namely, it suffices if ∂� is Lipschitz deformable,
see [6, Definition 2.1]. In addition, [F, ν]|∂� could be defined as a functional on the space
Lip (γ,�), γ > 1, which is larger than C2(∂�), see [6]. However, such generality is not
necessary here, so we choose the simplicity of exposition.

We want to show that if u is a minimizer of E , then F := Aμ∇μu has divergence with a
finite total variation.

Theorem 4.1 Let us suppose that the structural assumption [S] as well as the condition (3.1)
hold. If u is the minimizer of Eμ, then F := Aμ∇μu ∈ M(�,RN ) has divergence with finite
total variation. As a result, [Aμ∇μu, ν]|∂� = 0 in the sense of Proposition 4.1.
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Proof We have to reconcile Definition 4.1 with the Euler–Lagrange Eq. (3.8): in (3.8) the
inner product of Aμ∇μu with ∇μu is taken, while in Definition 4.1 Aμ∇μu is multiplied
with the full gradient of the test function. The relaxation result, Proposition 3.1, makes this
difference apparent. In fact, no matter what the matrix A(x) is, Proposition 3.1 implies that

Aμ : Tμ → Tμ. (4.1)

Observation (4.1) makes (3.8) coincide with

〈F,∇ψ〉 = 〈Q, ψ〉 ∀ψ ∈ C1
c (�).

Indeed, if 	μ(x) is the projection onto Tμ(x) at each x ∈ �, then for ψ ∈ C1
c (�) we have

∇ψ(x) = 	μ(x)∇ψ(x) + (I d − 	μ(x))∇ψ(x). As a result we notice,

〈F,∇ψ〉 =
∫

�

(Aμ∇μu,∇μψ + (I d − 	μ)∇ψ) dμ

=
∫

�

(Aμ∇μu,∇μψ) dμ + 0

= 〈Q, ψ〉,
where we used (4.1). Now, we can see that |div F |(�) is finite, because

sup
{〈Q, ψ〉 : ψ ∈ C1

c (�), |ψ(x)| ≤ 1
} =

∫
�

| f | dμ < ∞.

Thus,we immediately deduce that [Aμ∇μu, ν]|∂� exists in the sense explained in Proposition
4.1. Now, we have to show that it vanishes., i.e.

〈div Aμ∇μu, ϕ〉 + 〈Aμ∇μu,∇ϕ〉 = 0 for any ϕ ∈ C2(�).

Let us suppose that ηk ∈ C∞
c (�) are the cut-off functions such that ηk(x) = 0 for x ∈ � at

a distance smaller than 1/(k + 1) from ∂� and equal to 1 for x further than 1/k from ∂�.
Then, since ηkϕ ∈ C1

c (�) and by using of the Euler–Lagrange Eq. (3.8) with (1− ηk)ϕ as a
test function, we obtain

〈div Aμ∇μu, ϕ〉 + 〈Aμ∇μu,∇ϕ〉
= 〈div Aμ∇μu, ηkϕ〉 + 〈div Aμ∇μu, (1 − ηk)ϕ〉

+ 〈Aμ∇μu,∇(ηkϕ)〉 + 〈Aμ∇μu,∇((1 − ηk)ϕ)〉
= 〈div Aμ∇μu, (1 − ηk)ϕ〉 + 〈Aμ∇μu,∇((1 − ηk)ϕ)〉
= 〈div Aμ∇μu, (1 − ηk)ϕ〉 +

∫
�

f (1 − ηk)ϕ dμ.

If ω is a measure with a finite variation, then

lim
k→∞

∫
�

(1 − ηk)ϕ dω = 0,

because of the Lebesgue dominated convergence Theorem. If we apply this remark toω = Q
and ω = div Aμ∇μu, then we deduce that

〈[Aμ∇μu, ν]∂�, ϕ〉 = 0

for all ϕ ∈ C2(�̄). Our claim follows. ��
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Remark 4.1 Theorem 4.1 tells us about the meaning of [Aμ∇μu, ν] only at the boundary of
�. So, if a part of ∂S does not touch ∂�, then we have no information about the boundary
behavior of u. This is why we impose the third condition of [S]. On the other hand, the fourth
requirement in [S] rules out spurious conditions.

The corollaries discussed in the next section prompt a more general observation on the
role of�. We notice the lack of dependence of the boundary conditions on�, as long as ∂� is
smooth in a neighborhood of ∂�∩∂S. The set� does not enter the problem of minimization
of functional Eμ. Moreover, by Corollary 3.3, the solution to the minimization problem is
unique. As a result, if �i , i = 1, 2, satisfy [S] and ui , i = 1, 2, are the corresponding
minimizers of Eμ, then u1 = u2. However, the boundary conditions

[Aμ∇μu, ν1]|∂�1 = 0 = [Aμ∇μu, ν2]|∂�2

are a bit different, because ν1 need not be equal ν2. We may vary � as long as conditions [S]
are satisfied. In particular, at any x ∈ S ∩ ∂� the normal ν may be any vector perpendicular
to T∂S(x). Hence, we obtain:

Corollary 4.1 If u is a minimizer of Eμ, then [Aμ∇μu, ν]∂� = 0 for all ν ⊥ T∂S.

Proof This is so, because for any smooth mapping S � x �→ ν(x), where ν(x) ⊥ T∂S we
can find such � satisying [S] that ν(x) ⊥ ∂� at x . Hence, [Aμ∇μu, ν]∂� = 0 holds in the
sense of the Chen-Frid, [6]. ��

In Sect. 3 we established results corresponding to μ given by (2.9) with the density θ

satisfying (2.10). We did it by absorbing the density into Ā, Q̄. It can be easily checked that
the same techique works here, in this section.

5 Examples of the Neumann boundary problems

We present below several examples of Neumann boundary problems on various sets S. The
first two examples dealwith situationswhen thePoincaré inequality (2.1) holds (seeSect. 2.2).
We further present an example (see Proposition 5.3) showing that discontinuous solutions
actually occur, even for regular data, when the set S supports only the weaker inequality
(2.5).

Let us suppose that � is a ball centered at 0 with radius 1, T is an inscribed isosceles
triangle and S1, S2, S3 is the set of radii connecting the center of � with the vertices of T
(see Fig. 3). We set S = S1 ∪ S2 ∪ S3. Moreover, μ = H1�S. We set Q = ∑3

i=1 aiχSi .
We can state the following fact.

Proposition 5.1 Let us assume that S, μ and Q are defined above and a1 + a2 + a3 = 0. If
A = I d, then the relaxed form of Eq. (1.3) takes the form,

d2u

ds2
= −ai in the interior of Si , i = 1, 2, 3 (5.1)

and

du

ds
= 0 on Si ∩ ∂�, i = 1, 2, 3. (5.2)

Here, s is the arc-length parameter counted from the center of �.
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Finally, the solution of (5.1–5.2) with
∫
S u dH1 = 0 has the following form,

u = −
3∑

i=1

ai (
s2

2
− s)χSi .

Proof By Proposition 2.1 Tμ(x) = TSi (x), except for x being the center of the ball. Hence,

Proposition 3.1 yields div Aμ∇μu = d2u
ds2

in the interior of Si , i = 1, 2, 3. Also the form of
boundary data (5.2) follows.

The assumption a1 + a2 + a3 = 0 means that Q is perpendicular to the kernel of ∇μ so
that we may apply Theorem 1.1.

The form of any solution to (5.1–5.2) follows from solving the ODE’s (5.1). While doing
so, we keep in mind the requirement that the solution must be continuous at s = 0, i.e. at
the center of the ball �. The solution is determined up to an additive constant, which can be
computed due to the zero average condition,

∫
S u dH1 = 0. ��

We can also study (1.3) on sums of manifolds of dimension k ≥ 1. We describe the set S
depicted on Fig. 4.

Proposition 5.2 We assume that A = I d, � is the unit ball B(0, 1) ⊂ R
3 and S = D1 ∪ D2

are two great disks of B(0, 1),

D1 = {(x1, x2, x3) ∈ B(0, 1) : x3 = 0}, D2 = {(x1, x2, x3) ∈ B(0, 1) : x1 = 0}.
Moreover, Q = Q1χD1 + Q2χD2 , where

∫
Di

dQi = 0, i = 1, 2. Then, equation (1.5) takes
the form

∂2u
∂x21

+ ∂2u
∂x22

+ Q1 = 0 in D1,

∂u
∂ν1

= 0 on ∂D1

and

∂2u
∂x22

+ ∂2u
∂x23

+ Q2 = 0 in D2,

∂u
∂ν2

= 0 on ∂D2,

where νi are normal to Di in the plane containing Di , i = 1, 2. The condition of orthogonality
to the kernel of ∇μ is

∫
Di

u dH2 = 0, i = 1, 2.

Proof We easily see that, due to Proposition 3.1, we will have

Aμ = (e1 ⊗ e1 + e2 ⊗ e2)χD1 + (e3 ⊗ e3 + e2 ⊗ e2)χD2 .

Hence, the form of relaxed equations follows. The boundary conditions are addressed in
Corollary 4.1. ��

We notice that Aμ depends upon x ∈ � despite A being constant. Moreover, the kernel
of Aμ is two-dimensional.

Due to the generalized Poincaré inequality (2.5), we can study (1.3) on sums of manifolds
of different dimensions. We analyze an example of an equation on the domain depicted on
Figure 5. We define the design region � to be B(0,

√
2) ⊂ R

3. We set,

Si = � ∩ {(x1, x2, x3) ∈ R
3 : x1 = (−1)i }, i = 1, 2,

S3 = {(x1, 0, 0) ∈ R
3 : |x1| ≤ 1}.

In the case of this domain, we do not expect the global Poincaré inequality (2.1) to hold.
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Fig. 5 Poincaré inequality (2.1)
does not hold on S.
Discontinuous solutions occur in
Proposition 5.3

Proposition 5.3 We assume that A = I d and

μ = H2�(S1 ∪ S2) + H1�S3.

We assume that Q = Q1χS1 + Q2χS2 , i.e. Q|S3 ≡ 0. We will require that
∫
Si
Qi dμ = 0, i = 1, 2.

We set

Q1(x1, x2, x3) = q(

√
x22 + x23 ) and Q2(x1, x2, x3) = −q(

√
x22 + x23 ).

Then, u, the solution to (1.5) in S with
∫
Si
u dH2 = 0, i = 1, 2 and

∫
S3
u dH2 = 0 is

discontinuous.

Proof We notice that the relaxation of the functional (Proposition 3.1) yields,

Aμ = (e2 ⊗ e2 + e3 ⊗ e3)χS1∪S2 + (e1 ⊗ e1)χS3 .

Thus, the equation divAμ∇μu + Q = 0 becomes

∂2u

∂x22
+ ∂2u

∂x32
+ q = 0 on S1, (5.3)

∂2u

∂x22
+ ∂2u

∂x32
− q = 0 on S2

and

∂2u

∂x21
= 0 on S3.

The radial symmetry of q implies that

0 =
∫

{x22+x23≤1}
Q1 dμ = 2π

∫ R

0
rq(r) dr . (5.4)

The above Eq. (5.3), considered on S1, due to the radial symmetry takes the following form

urr + 1

r
ur + q = 0.
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Fig. 6 Poincaré inequality (2.1)
does not hold on S

After multiplying by r and integration, we obtain,

rur (r) = a −
∫ r

0
sq(s) ds.

In order to solve it, we have to pay a bit of attention to the boundary conditions. Since
ν = 2−1/2(−1, x2, x3) for (−1, x2, x3) ∈ ∂S1, then the Neumann boundary condition

[Aμ∇μu, ν]|∂� = 0

takes the form

(0, ux2 , ux3) · ν = ∇μu · n = 0,

where n is the outer normal to S1 in the plane x1 = −1. We notice that due to (5.4), the above
boundary conditions are automatically satisfied, provided that a = 0. Moreover, a = 0 is
necessary for u to be an element of H1,2

μ . The formula for the solution is as follows,

u(r) = b −
∫ r

0

1

ρ

∫ ρ

0
sq(s) dsdρ.

The zero mean condition imposed on the solution on S1 implies that

b = 2

R2

∫ R

0
r
∫ r

0

1

ρ

∫ ρ

0
sq(s) dsdρdr .

We may choose q so that b > 0. Due to the symmetry of Q, we deduce that u(−1, x2, x3) =
−u(1, x2, x3). Thus, in particular u(−1, 0, 0) = b = −u(1, 0, 0).

Since we set Q|S3 = 0, then we study the problem of minimizing
∫ 1

−1
u2x1 dx,

on S3, where u ∈ H1,2(−1, 1) and
∫ 1
−1 u dx1 = 0. As a result u|S3 = 0.

We conclude that we constructed a discontinuous solution when the forcing term is con-
tinuous. ��

The last example, on the domain depicted onFig. 6, illustrates how the relaxation procedure
affects the matrix A.

Proposition 5.4 We take

� = B(0,
√
2) ⊂ R

3, S1 = {x ∈ �; x3 = −1}, S2 = {x ∈ �; x1 = 1},
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μ = H2�(S1 ∪ S2) and

A = e2 ⊗ e2 + 1

2
(e1 + e3) ⊗ (e1 + e3).

Then,

Aμ = e2 ⊗ e2 + 1

2
e1 ⊗ e1χS1 + 1

2
e3 ⊗ e3χS2 (5.5)

and the boundary conditions take the following form,

0 = [Aν∇μu, ν1]|∂� = 2−1/2(
1

2
x1ux1 + x2ux2) on S1 (5.6)

0 = [Aν∇μu, ν2]|∂� = 2−1/2(
1

2
x3ux3 + x2ux2) on S2. (5.7)

The condition of orthogonality to the kernel of ∇μ is
∫
Si
u dH2 = 0.

Proof Obviously, S̄1 ∩ S̄2 = {(1, 0,−1)}. When we take μ = H2�(S1 ∪ S2), then we see
that an application of Proposition 3.1 yields (5.5).

We shall compute [Aμ∇μu, ν]|∂�, where ν is normal to �. We notice that

∇μu = (ux1 , ux2 , 0)χS1 + (0, ux2 , ux3)χS2 .

Similarly, we see that

ν1 = 2−1/2(x1, x2,−1), x21 + x22 = 1

on S1 and

ν2 = 2−1/2(1, x2, x3), x23 + x22 = 1

on S2.
Thus, [Aμ∇μu, ν]|∂� leads to the conclusion that (5.6) and (5.7) hold. ��
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