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Abstract
We show that there are continuous,W 1,p (p < d−1), incompressible vector fields for which
uniqueness of solutions to the continuity equation fails.

Mathematics Subject Classification Primary 35A02 · Secondary 35F10

1 Introduction

In this paper we consider the continuity equation

∂tρ + div (ρu) = 0,

div u = 0,
(1)

in a d-dimensional periodic domain, d ≥ 3, for a time-dependent incompressible vector field
u : [0, 1] ×T

d → R
d and an unknown density ρ : [0, 1] ×T

d → R. Here and in the sequel
T
d = R

d/Zd is the d-dimensional flat torus. We will also always assume, without loss of
generality, that the time interval is [0, 1]. We prove in these notes the following theorem.

Theorem 1.1 (Non-uniqueness for Sobolev and continuous vector fields). Let ε > 0, ρ̄ ∈
C∞(Td) with

´
Td ρ̄ dx = 0. Then there exist

ρ ∈ C
([0, 1]; L1(Td)

)
, u ∈ C([0, 1] × T

d) ∩
⋂

1≤p<d−1

C
([0, 1];W 1,p(Td)

)

such that (ρ, u) is a weak solution to (1) and ρ(0) ≡ 0 at t = 0, ρ(1) ≡ ρ̄ at t = 1 and

max
(t,x)∈[0,1]×Td

|u(t, x)| ≤ ε. (2)
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By weak solution we mean solution in the sense of distributions.
We have chosen the periodic setting for simplicity and to emphasize that the key phe-

nomenon we are studying is the effect of (local) low regularity. As with other applications
of convex integration (e.g. [9,14]), we expect that analogous statements hold also in the full
space Rd .

It is well known that the theory of classical solutions to (1) is closely connected to the
ordinary differential equation

∂t X(t, x) = u(t, X(t, x)),

X(0, x) = x,
(3)

via the formula ρ(t)Ld = X(t)�(ρ(0)Ld) or, equivalently, due to the incompressibility,

ρ(t, X(t, x)) = ρ(0, x). (4)

In particular, for Lipschitz vector fields u the well-posedness theory for (1) follows from the
Cauchy–Lipschitz theory for ordinary differential equations applied to (3).

It is in general of great interest to investigate the existence anduniqueness ofweak solutions
to the Cauchy problem for (1) in the case of non-smooth vector fields, and the connection to
the Lagrangian problem (3), (4). The general question can be formulated as follows. Fix an
exponent r ∈ [1,∞], denote by r ′ its dual Hölder, 1/r + 1/r ′ = 1, and assume that a vector
field

u ∈ L1(0, 1; Lr (Td)
)

(5)

is given. What can be said about existence and uniqueness of weak solutions in the class of
densities

ρ ∈ L∞(0, 1; Lr ′
(Td)

)
? (6)

The choice of class (6) for ρ is motivated by the fact that for classical solutions to (1) every
spatial Lr ′

norm is preserved in time. Once (6) is fixed, the choice of the class (5) for u is
natural, since in this way ρu ∈ L1((0, 1)×T

d) and thus the notion of distributional solution
to (1) is well defined.

While existence of weak solutions can be easily shown under the assumptions (5), (6), the
uniqueness question is much harder. In 1989 DiPerna and Lions [11] proved that uniqueness
holds in the class (6) if

Du ∈ L1(0, 1; Lr (Td)
)

(7)

i.e. if u enjoys Sobolev regularity with exponent r . Moreover, in this case, the incompress-
ibility assumption can be relaxed to div u ∈ L∞. In the class of bounded densities the
uniqueness result was later extended by Ambrosio [1] in 2004, for fields u ∈ L1(0, 1; BV )

with div u ∈ L∞ and very recently by Bianchini and Bonicatto [3] in 2017 in the case of
BV nearly incompressible vector fields.

In all of these results an important additional feature is the connection to a suitable exten-
sion to (3), i.e. the link between the Eulerian and the Lagrangian picture. More precisely,
under assumption (7), there exists a unique distributional solution to (3) for a.e. x , such that
x 
→ X(t, x) is measure preserving for all t (assuming div u = 0): such flow map is called
regular Lagrangian flow (see [2] for a general discussion). Then the unique solution to the
continuity or the transport equation is given by (4), as in the smooth case.

On the other side, several non-uniqueness counterexamples are known, but they mainly
concern the case when the field is “very far” from being incompressible (e.g. div u /∈ L∞,
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see [11]) or the case when no bounds on one full derivative of u are available (see, for
instance, the counterexample in [11] for a field u ∈ L1(0, 1;Ws,1) for every s < 1, but
u /∈ L1(0, 1;W 1,1) or the counterexample in [10] for a field u ∈ L1(ε, 1; BV ) for every
ε > 0, but u /∈ L1(0, 1; BV )). In all these counterexamples, however, non-uniqueness for
the PDE (1) is a consequence of a Lagrangian non-uniqueness for the associated ODE (3).
We refer to [16] and to [2] for a more detailed discussion.

Very recently, we proved in [16] the analog of Theorem 1.1, for fields and densities in the
class

ρ ∈ C
([0, 1]; Lr ′

(Td)
)
, u ∈ C

([0, 1]; Lr (Td)
) ∩ C

([0, 1];W 1,p(Td)
)
,

with

r ∈ (1,∞), p ∈ [1,∞), (8)

and

1

r ′ + 1

p
> 1 + 1

d − 1
. (9)

The result in [16] shows that uniqueness can fail even for incompressible, Sobolev vector
fields (i.e. fields for which the Lagrangian problem (3) is well posed, in the sense of the
regular Lagrangian flow), if the integrability exponent p of Du is much lower than the one
provided in (7) by DiPerna and Lions’ theory, as specified in (9).

The end-point r = ∞, corresponding in (9) to p < d − 1, is excluded in [16]. The
main result of this notes, namely Theorem 1.1, shows that such end-point case can indeed
be reached and, in addition, quite surprisingly, the vector field produced by Theorem 1.1 is
continuous in time and space, not only bounded.

We postpone to Sect. 2 a technical discussion about why the case r = ∞ was out of reach
in [16] and which new ideas are introduced in these notes to deal with such problem.

We would like now to briefly comment about the continuity of the vector field u produced
by Theorem 1.1. It was observed by Caravenna and Crippa [7] that the boundedness or the
continuity of the vector field (in addition to some Sobolev regularity) could play a key role
in the uniqueness problem in the class of integrable densities ρ ∈ L1((0, 1) × T

d). It thus
turns out to be a very interesting question to ask if, in fact, boundedness or continuity plus
Sobolev regularity are enough to guarantee uniqueness. Theorem 1.1 shows that this is not
the case, if the integrability of Du is lower than a dimensional threshold (precisely, d − 1). 1

The idea that the boundedness or the continuity ofu canplay a crucial role in the uniqueness
problem is confirmed by the fact that the majority of the result concerning existence and
uniqueness of the regular Lagrangian flow associated to a Sobolev or BV vector field u
assume that u ∈ L∞ (see, for instance, the recent survey [2]).

On a different point of view, it is a classical result (see, for instance, [12]) that the bound-
edness of u, even without any further Sobolev regularity, is enough to have uniqueness, if a
small viscosity is added to the continuity equation:

∂tρ + div (ρu) = ν�ρ, ν > 0, (10)

while in [16] we showed that uniqueness for (10) can drastically fail is u is Sobolev, but not
bounded.

1 While the present paper was under review, G. Sattig and the first author, relying on the ideas introduced in
the present paper, showed in [15] that this dimensional threshold can be raised up to d.
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The result in Theorem 1.1 is quite surprising, even in comparison with our previous result
in [16]. Indeed, for vector fields produced by Theorem 1.1 the Lagrangian picture is very
well behaved: first, the Sobolev regularity implies the existence and uniqueness of the regular
Lagrangian flow. Second, the continuity of the field implies that the trajectories provided by
the regular Lagrangian flow are C1 in time (and this was not the case for the fields produced
in [16]). Third, the bound (2) means that the length of each trajectory is at most ε > 0, i.e.
particles almost don’t move (and, again, this was not the case for the fields produced in [16]).
Observe also that ε in (2) depends neither on the length of the time interval [0, 1] nor on
the L1 distance between the initial and the final datum ‖ρ(1) − ρ(0)‖L1(Td ) = ‖ρ̄‖L1(Td ).
Nevertheless uniqueness in the Eulerian world is completely lost.

We conclude this introduction observing that Theorem 1.1 is an immediate application of
the following theorem, whose proof is the topic of all next sections.

Theorem 1.2 Let ε > 0. Let ρ0 : [0, 1] × T
d → R, u0 : [0, 1] × T

d → R
d be smooth with

ˆ

Td
ρ0(0, x)dx =

ˆ

Td
ρ0(t, x)dx,

div u0 = 0,
(11)

for every t ∈ [0, 1]. Set
E := {t ∈ [0, 1] : ∂tρ0(t) + div (ρ0(t)u0(t)) = 0

}
. (12)

Then there exist ρ : [0, 1] × T
d → R, u : [0, 1] × T

d → R
d such that

(a) ρ, u have the following regularity:

ρ ∈ C
(
[0, 1]; L1(Td)

)
, u ∈ C

(
[0, 1] × T

d
)

∩
⋂

1≤p<d−1

C
(
[0, 1];W 1,p(Td)

)
;

(b) (ρ, u) is a weak solution to (1);
(c) for every t ∈ E, ρ(t) = ρ0(t), u(t) = u0(t);
(d) ρ is ε-close to ρ0 i.e.

max
t∈[0,1] ‖ρ(t) − ρ0(t)‖L1(Td ) ≤ ε.

Condition (d) can be substituted by the following:

(d’) u is ε-close to u0 i.e.

‖u − u0‖C0([0,1]×Td ) ≤ ε.

We emphasize that conditions (d) or (d’) amount to approximability in a strong norm. This
is at variance with the h-principle type approximability in a weak norm, as for instance in
[5,8]. In particular, it is easy to see that conditions (d) and (d’) cannot hold simultaneously;
Indeed, such a statement would imply that one can construct a sequence (ρk, uk) of weak
solutions to (1) such that (ρk, uk, ρkuk) → (ρ0, u0, ρ0u0) in L1, so that necessarily (ρ0, u0)
is also a weak solution to (1). See also Remark 4.2.

Proof of Theorem 1.1 assuming Theorem 1.2 Let χ : [0, 1] → R be such that χ ≡ 0 on
[0, 1/4], χ ≡ 1 on [3/4, 1]. Apply Theorem 1.2 with ρ0(t, x) := χ(t)ρ̄(x), u0 = 0. By (c),
ρ(0) ≡ 0 at t = 0 and ρ(1) ≡ ρ̄ at t = 1. Moreover, by (d’), ‖u‖C0 ≤ ε.
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2 Comments on the proof

We describe in this section what problems arise when one tries to extend the proof provided
in [16] to Theorem 1.1, i.e. to the end-point case r = ∞ and which new ideas are introduced
to solve such problems.

2.1 Sketch of the paper [16]

We first briefly sketch the proof provided in [16] for the analog of Theorem 1.1 under the
conditions (8), (9). The proof is based on a convex integration scheme, with both oscillations
and concentration playing a key role. More precisely, the density ρ and the field u are defined
as limit of a sequence (ρq )q , (uq)q of smooth approximate solutions to the continuity equation

∂tρq + div (ρquq) = −div Rq , (13)

where Rq is a smooth vector field converging strongly to zero

‖Rq‖Ct L1
x

� δq (14)

with δq = 2−q and (ρq)q , (uq)q satisfy
∑

q

‖ρq − ρq−1‖Ct Lr
′
x

< ∞, (15a)

∑

q

‖uq − uq−1‖Ct Lrx < ∞, (15b)

and
∑

q

‖Duq − Duq−1‖Ct L
p
x

< ∞. (16)

In this way ρ, u are a weak solution to (1) and, moreover, they have the desired regularity.
The sequence (ρq , uq , Rq) is constructed recursively. Assuming (ρq−1, uq−1, Rq−1) are

given, one defines

ρq = ρq−1 + ϑq , uq = uq−1 + wq , (17)

where

ϑq(t, x) := F
(
Rq−1(t, x)

)
�μq (λq x), wq(t, x) := G

(
Rq−1(t, x)

)
Wμq (λq x), (18)

where λq is an oscillation parameter and μq is a concentration parameter, suitably chosen
at each step of iteration, F,G are nonlinear functions and {�μ}μ>0 (resp. {Wμ}μ>0) is a
family ofMikado densities (resp.Mikado fields) (see Proposition 5.1 below and in particular
estimates (47)).

It is proven in [16] that ϑq , wq satisfy the following estimates:

‖ϑq‖Ct Lr
′
x

� ‖Rq−1‖1/r
′

Ct L1
x
, (19a)

‖wq‖Ct Lrx � ‖Rq−1‖1/rCt L1
x
, (19b)

‖ϑq‖Ct L1
x

� μ
−γ1
q , (19c)

‖wq‖Ct L1
x

� μ
−γ2
q , (19d)
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‖Dwq‖Ct L
p
x

� λqμ
−γ3
q , (19e)

where

γ1 = (d − 1)

(
1 − 1

r ′

)
, γ2 = (d − 1)

(
1 − 1

r

)
,

γ3 = (d − 1)

[
1

r ′ + 1

p
−
(
1 + 1

d − 1

)]
.

Notice that γ1 > 0 because r < ∞ (and thus r ′ > 1), γ2 > 0 because r > 1 and γ3 > 0
because of (9). Estimates (19a), (19b) together with the inductive assumption (14) applied to
Rq−1 guarantee the convergences in (15). Estimate (19e) guarantees the convergence in (16),
provided at each step μq � λq , or, more precisely, μq = λcq , with c any constant satisfying
c > 1/γ3.

A computation then shows that, in order for (13) to be satisfied, Rq must be defined as

− Rq = div −1
[
div (ϑqwq − Rq−1)︸ ︷︷ ︸

quadratic term

+ ∂tϑq + div (ϑquq−1) + div (ρq−1wq)︸ ︷︷ ︸
linear term

]
. (20)

In order to prove (14), onefirst uses the oscillation parameterλq tomake the (antidivergence of
the) quadratic term small. Then, in order to estimate the linear term, one can use concentration.
For instance, for the term ϑquq−1, we can use (19c)

∥∥div −1(div (ϑquq−1)
)‖Ct L1

x
= ‖ϑquq−1

∥∥
Ct L1

x
� ‖ϑq‖Ct L1

x
≤ μ

−γ1
q ≤ δq , (21)

provided μq is chosen large enough. A similar estimate holds for ∂tϑq , again using (19c),
while for ρq−1wq one must use (19d).

This shows that Rq can be suitably defined in order to satisfy (20), thus concluding the
proof in [16] for the analog of Theorem 1.1 under the assumptions (8), (9). Let us now discuss
why the above proof does not apply to Theorem 1.1, i.e. to the case r = ∞, r ′ = 1.

2.2 First issue

If r = ∞, then estimate (19b) becomes ‖wq‖Ctx � 1 and this is not enough to prove the
convergence in (15b). This issue is solved, modifying the definition of ρq , uq in (17) as

ρq := ρq−1 + ηqϑq , uq := uq−1 + 1

ηq
wq ,

and choosing ηq := ‖Rq−1‖−1/2
Ct L1

x
. In this way, using (19a), we get

‖ρq − ρq−1‖Ct L1
x

� ηq‖Rq−1‖Ct L1
x

≤ ‖Rq−1‖1/2Ct L1
x

≤ δ
1/2
q−1

and

‖uq − uq−1‖Ctx � 1

ηq
≤ ‖Rq−1‖1/2Ct L1

x
≤ δ

1/2
q−1,

so that the convergences in (15) still holds, and, moreover, the limit vector field u = lim uq is
continuous, being the uniform limit of smooth fields. See Sect. 4 and, in particular, estimates
(43), (44).
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2.3 Second issue

The second issue concerns the analysis of the linear term in (20) and in particular estimate
(21) and the companion estimate for ∂tϑq . Indeed, if r = ∞ and r ′ = 1, then γ1 = 0 and
thus the concentration paramter μq can not be used in (21) to make the linear term smaller
than δq .

This issue is solved using the inverse flow map associated to uq−1, an idea used in [4] in
the framework of the Euler equation, see also [5,13]. Precisely, one separately considers

Linear term in (20) = ∂tϑq + div (ϑquq−1)︸ ︷︷ ︸
transport term

+ div (ρq−1uq)︸ ︷︷ ︸
Nash term

. (22)

While for the Nash term an estimate similar to (21) still holds, since γ2 = d − 1 > 0, in
order to treat the transport term, one modifies the definition of ϑq and wq as follows. The
time interval [0, 1] is split into N small intervals {Ii }i of size 1/N . Denoting by ti the middle
point of each Ii , one considers the inverse flow map �i associated to uq−1

{
∂t�i + (uq−1 · ∇)�i = 0,

�i (ti , x) = x,

and a partition of unity {ζi } subordinated to the partition {Ii }i of [0, 1]. The definition in (18)
is then modified as follows:

ϑq(t, x) := F
(
Rq−1(t, x)

)∑

i

ζi (t)�μq

(
λq�i (t, x)

)
,

wq(t, x) := G
(
Rq−1(t, x)

)∑

i

ζi (t)Wμq

(
λq�i (t, x)

)
.

(23)

With this new definition, the transport term in (22) assumes the form

Transport term in (22) =
∑

i

Hi (t, x)�μq

(
λq�i (t, x)

)
.

The oscillation parameter λq can now be used to show that

div −1
[
Transport term in (22)

]
≈ 1

λq
� δq .

See Sect. 6.3.

2.4 Third issue

The third issue appears because of the new definition (23) of ϑq , wq . Indeed if at some time
t ∈ [0, 1] two cutoffs ζi (t) �= 0, ζi+1(t) �= 0 are active, then in the quadratic term in (20) a
term of the form

div

[
F(Rq−1)G(Rq−1)�μq

(
λq�i (t, x)

)
Wμq

(
λq�i+1(t, x)

)]
(24)

appears, i.e. a non-trivial interaction between aMikado density and aMikado field. In general
there is no reason why one should be able to find a small antidivergence of such term. The
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problem can be solved, using, at each step q of the construction, two different oscillation
parameters λ′

q , λ
′′
q and two different concentration parameters μ′

q , μ
′′
q with

λ′
q � λ′′

q , μ′
q � μ′′

q

and modifying one more time the definition of ϑq , wq as follows:

ϑq(t, x) = F(Rq−1(t, x))

[
∑

i odd

ζi (t)�μ′
q

(
λ′
q�i (t, x)

)+
∑

i even

ζi (t)�μ′′
q

(
λ′′
q�i (t, x)

)
]

,

wq(t, x) = G(Rq−1(t, x))

[
∑

i odd

ζi (t)Wμ′
q

(
λ′
q�i (t, x)

)+
∑

i even

ζi (t)Wμ′′
q

(
λ′′
q�i (t, x)

)
]

.

See (55) for the slightly different, precise definition of the perturbations. With this new
definition, the main term in the non-trivial interaction in (24) becomes of the form

�μ′
q

(
λ′
q�i (t, x)

)
Wμ′′

q

(
λ′′
q�i+1(t, x)

)
or �μ′′

q

(
λ′′
q�i (t, x)

)
Wμ′

q

(
λ′
q�i+1(t, x)

)
, (25)

i.e. the product of a fast oscillating function (with frequency λ′
q ) with a very fast oscillating

function (with frequency λ′′
q ), where one of the two factors (namely Wμ′

q
or Wμ′′

q
) is small

in L1(Td) because of the concentration mechanism (compare with estimate (19d)). One can
then use an improved Hölder inequality (see Lemma 3.4) to show that the terms in (25) are
small in L1 and thus conclude the proof of Theorem 1.1. See Sect. 6.2 and in particular
Lemma 6.1.

3 Technical tools

In this sectionwe provide some technical tools whichwill be frequently used in the following.
We start by fixing some notation:

• T
d = R

d/Zd is the d-dimensional flat torus, d ≥ 3.
• If g(x) is a smooth function of x ∈ T

d , we denote by ‖g‖L p(Td ), or simply by ‖g‖L p , its
L p-norm, for p ∈ [1,∞].

• If f (t, x) is a smooth function of t ∈ [0, 1] and x ∈ T
d , we denote by

– ‖ f ‖Ck the sup norm of f together with the sup norm of all its derivatives in time and
space up to order k;

– ‖ f (t)‖Ck (Td ), or simply ‖ f (t)‖Ck , the sup norm of x 
→ f (t, x) together with the
sup norm of all its spatial derivatives up to order k at fixed time t ;

– ‖ f (t)‖L p(Td ), or simply ‖ f (t)‖L p , the L p norm of f in the spatial derivatives, at
fixed time t .

• If f : [0, 1] → R is a function of time only, we will denote by ḟ = d f /dt its derivative.
• C∞

0 (Td) is the set of smooth functions on the torus with zero mean value.
• N = {0, 1, 2, . . .}, N∗ = N \ {0}.
• We will use the notation C(A1, . . . , An) to denote a constant which depends only on the

numbers A1, . . . , An .
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3.1 Diffeomorphisms of the flat torus

We discuss in this section standard properties of diffeomorphisms of the flat torus. Let � :
R
d → R

d be a smooth diffeomorphism. We say that � is a diffeomorphism of Td , and we
write � : Td → T

d , if

�(x + k) = �(x) + k, for every k ∈ Z
d .

We say that a diffeomorphism � : Td → T
d is measure-preserving if | det D�(x)| = 1 for

every x ∈ T
d . Given a diffeomorphism �, we will often consider

(1) the derivative D� : Td → R
d×d ;

(2) the inverse-matrix of the derivative (D�)−1 : Td → R
d×d ;

(3) higher order derivatives of the inverse-matrix of the derivative Dk((D�)−1) : Td →
R
d(k+2).

Observe that, given a matrix A ∈ R
d×d , with | det A| = 1, it holds |A| ≥ 1, where

|A| := max|u|=1 |Au| is the norm of matrix A. Therefore if � is a measure-preserving

diffeomorphism, then |D�(x)| ≥ 1 for every x ∈ T
d and thus 1 ≤ ‖D�‖α

Ck ≤ ‖D�‖β

Ck for
every 0 < α < β. Recall also that for a given invertible matrix A,

A−1 = 1

det A
(cof A)T ,

where (cof A)T is transpose of the cofactor matrix of A.

Lemma 3.1 Let � : Td → T
d be a measure-preserving smooth diffeomorphism. Then, for

every k ∈ N,

‖Dk((D�)−1)‖C0(Td ) ≤ Ck‖D�‖d−1
Ck (Td )

,

where Ck is a constant depending only on k (and on the dimension d).

Proof. For any fixed x ∈ T
d it holds

∣∣∣
[
D�(x)

]−1
∣∣∣ =

∣∣∣∣
1

det D�(x)
(cof D�(x))T

∣∣∣∣ =
∣∣cof D�(x)

∣∣. (26)

The conclusion now follows from the definition of cofactor matrix.

Lemma 3.2 Let G : T
d → R

d , g : T
d → R be smooth and assume div G = g. Let

� : Td → T
d be a measure-preserving diffeomorphism of the torus. Then

div
[
(D�)−1G(�)

]
= g(�).

Proof. We show that for every ϕ ∈ C∞(Td) it holds

ˆ

Td
ϕ div

[
(D�)−1G(�)

]
dx =

ˆ

Td
ϕ g(�)dx . (27)
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Set ϕ̃ := ϕ ◦ �−1. It holds
ˆ

Td
ϕ div

[
(D�)−1G(�)

]
dx =

ˆ

Td
ϕ̃(�) div

[
(D�)−1G(�)

]
dx

= −
ˆ

Td

[
(D�)T∇ϕ̃(�)

] · [(D�)−1G(�)
]
dx

= −
ˆ

Td
∇ϕ̃(�) · G(�)dx

(changing variable y = �(x)) = −
ˆ

Td
∇ϕ̃ · G dy

=
ˆ

Td
ϕ̃ div G dy

=
ˆ

Td
ϕ̃ g dy

=
ˆ

Td
ϕ(�−1) g dy

(changing variable x = �−1(y)) =
ˆ

Td
ϕ g(�)dx,

thus concluding the proof of the lemma.

Lemma 3.3 Let g : T
d → R be a smooth function. Let � : T

d → T
d be a measure-

preserving diffeomorphism. Then for every p ∈ [1,∞] and k ∈ N, k ≥ 1,

‖g ◦ �‖L p(Td ) = ‖g‖L p(Td ),

and

‖g ◦ �‖Wk,p(Td ) ≤ Ck‖D�‖kCk−1(Td )
‖g‖Wk,p(Td ).

The proof is an easy application of the chain rule and thus it is omitted.

3.2 Properties of fast oscillations

Wediscuss nowsomeproperties of fast oscillating periodic functions. For a given g : Td → R

and λ ∈ N
∗, we set

gλ(x) := g(λx).

Observe that for every p ∈ [1,∞] and k ∈ N,

‖Dkgλ‖L p(Td ) = λk‖Dkg‖L p(Td ). (28)

3.2.1 Improved Hölder inequality

In the same spirit as in [16] and [6], we now prove an improved Hölder inequality for the
product of a slow oscillating function with a fast oscillating functions composed with a
diffeomorphism.
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Lemma 3.4 (Improved Hölder inequality). Let f , g : Td → R be smooth functions, λ ∈ N
∗

and � : Td → T
d be a measure-preserving diffeomorphism. Then for every p ∈ [1,∞],

‖ f gλ‖L p(Td ) ≤ ‖ f ‖L p(Td )‖g‖L p(Td ) + Cp

λ1/p
‖ f ‖C1(Td )‖g‖L p(Td ) (29)

and

‖ f · (gλ ◦ �)‖L p(Td ) ≤ ‖ f ‖L p(Td )‖g‖L p(Td )

+ Cp

λ1/p
‖ f ‖C1(Td )‖D�‖d−1

C0(Td )
‖g‖L p(Td ). (30)

Here f · (gλ ◦ �) is the function x 
→ f (x)g(λ�(x)).

Proof. For a proof of (29), see [16, Lemma 2.1]. Concerning (30), we argue as follows. Since
� is a measure-preserving diffeomorphism, it holds

‖ f · (gλ ◦ �)‖L p = ‖( f ◦ �−1) · gλ‖L p .

Therefore we can apply (29) to get

‖ f · (gλ ◦ �)‖L p ≤ ‖ f ◦ �−1‖L p‖g‖L p + Cp

λ1/p
‖ f ◦ �−1‖C1‖g‖L p

(by Lemma 3.3 and (28)) ≤ ‖ f ‖L p‖g‖L p + Cp

λ1/p
‖ f ‖C1‖D(�−1)‖C0‖g‖L p

≤ ‖ f ‖L p‖g‖L p + Cp

λ1/p
‖ f ‖C1‖(D�)−1‖C0‖g‖L p

(by Lemma 3.1) ≤ ‖ f ‖L p‖g‖L p + Cp

λ1/p
‖ f ‖C1‖D�‖d−1

C0 ‖g‖L p .

3.2.2 Antidivergence operators

In this section we introduce two antidivergence operators, a standard and an improved one,
in the same spirit as in [16].

For f ∈ C∞
0 (Td) there exists a unique u ∈ C∞

0 (Td) such that �u = f . The operator
�−1 : C∞

0 (Td) → C∞
0 (Td) is thus well defined. We define the standard antidivergence

operator as ∇�−1 : C∞
0 (Td) → C∞(Td ;Rd). It clearly satisfies div (∇�−1 f ) = f .

Lemma 3.5 For every k ∈ N and p ∈ [1,∞], the standard antidivergence operator satisfies
the bounds

∥∥Dk(∇�−1g)
∥∥
L p(Td )

≤ Ck,p‖Dkg‖L p(Td ). (31)

For the proof, see [16, Lemma 2.2] .
We now introduce an improved antidivergence operator, which allows us to get better

(w.r.t ∇�−1) estimates, if applied to the product of a slow oscillating function with a fast
oscillating one composed with a diffeomorphism.

Lemma 3.6 Let f , g : Td → R be smooth function with
 

g = 0.
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Let λ ∈ N
∗ and � : Td → T

d be a smooth, measure-preserving diffeomorphism. Then there
exists a smooth vector field u : Td → R

d so that

div u = f · (gλ ◦ �) −
 

f · (gλ ◦ �) (32)

and for every k ∈ N, p ∈ [1,∞],
‖u‖Wk,p(Td ) ≤ Ck,pλ

k−1‖ f ‖Ck+1(Td )‖D�‖d−1+k
Ck (Td )

‖g‖Wk,p(Td ). (33)

We will use the notation

u := R
(
f · (gλ ◦ �) −

 
f · (gλ ◦ �)

)
.

Remark 3.7 The same result holds if f , g are vector fields and · in (32) denotes the scalar
product.

Proof. Since g has zero mean value, we can define

G := ∇�−1g. (34)

Let us denote by H : Td → R
d the vector field

H := 1

λ
(D�)−1Gλ(�). (35)

By Lemma 3.2 it holds

div H = 1

λ
(div Gλ)(�) = gλ(�).

We now set

u := f H − ∇�−1
(

∇ f · H −
 

∇ f · H
)

.

Let us first check that u satisfies (32). It holds

div u = f div H + ∇ f · H − ∇ f · H +
 

∇ f · H

= f div H +
 

∇ f · H

(integrating by parts) = f div H −
 

f div H

(by (35)) = f · (gλ ◦ �) −
 

f · (gλ ◦ �).

We prove now that (33) holds. We first estimate H as follows:

‖H‖Wk,p ≤ 1

λ

∥∥(D�)−1
∥∥
Ck ‖Gλ ◦ �‖Wk,p

(by Lemma 3.1) ≤ Ck

λ
‖D�‖d−1

Ck ‖Gλ ◦ �‖Wk,p

(by Lemma 3.3) ≤ Ck

λ
‖D�‖d−1+k

Ck ‖Gλ‖Wk,p
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(by (28)) ≤ Ckλ
k−1‖D�‖d−1+k

Ck ‖G‖Wk,p

(by Lemma 3.5) ≤ Ck,pλ
k−1‖D�‖d−1+k

Ck ‖g‖Wk,p .

Using now again Lemma 3.5, we can write

‖u‖Wk,p ≤ ‖ f H‖Wk,p + Ck,p‖∇ f · H‖Wk,p

≤ ‖ f ‖Ck‖H‖Wk,p + Ck,p‖∇ f ‖Ck‖H‖Wk,p

≤ Ck,p‖ f ‖Ck+1‖H‖Wk,p

≤ Ck,pλ
k−1‖ f ‖Ck+1‖D�‖d−1+k

Ck ‖g‖Wk,p ,

which is what we wanted to prove.

Remark 3.8 In Lemma 3.6, if f , g,� are smooth functions of (t, x), t ∈ [0, 1], x ∈ T
d and

at each time t ∈ [0, 1], they satisfy the assumptions of Lemma 3.6, then we can apply R at
each time and define a time-dependent vector field u(t, ·) satisfying (32) and (33). Moreover
u turns out to be a smooth function of (t, x).

3.2.3 Mean value and fast oscillations

In this section we prodide an estimate on the mean value of the product of a slow oscillating
function with a fast oscillating function composed with a diffeomorphism.

Lemma 3.9 Let f , g : T
d → R, with

ffl
Td g = 0. Let λ ∈ N

∗ and � : T
d → T

d be a
measure-preserving diffeomorphism. Then

∣∣∣∣

 

Td
f gλdx

∣∣∣∣ ≤
√
d‖ f ‖C1(Td )‖g‖L1(Td )

λ
(36)

and

∣∣∣∣

 

Td
f · (gλ ◦ �)dx

∣∣∣∣ ≤
√
d‖ f ‖C1(Td )‖D�‖d−1

C0(Td )
‖g‖L1(Td )

λ
. (37)

Proof of Theorem 1.1 assuming Theorem 1.2 For a proof of (36), see [16, Lemma 2.6]. The
proof of (37) follows from (36), observing that

 
f (x)g(λ�(x))dx =

 
f (�−1(y))g(λy)dy.

4 Statement of themain proposition and proof of Theorem 1.2

We assume without loss of generality T
d is the periodic extension of the unit cube [0, 1]d .

The following proposition contains the key facts used to prove Theorem 1.2. Let us first
introduce the continuity-defect equation:

{
∂tρ + div (ρu) = −div R,

div u = 0.
(38)

We will call R the defect field.
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Proposition 4.1 There exists a constant M > 0 such that the following holds. Let p ∈
[1, d−1), η, δ > 0 and let (ρ0, u0, R0) be a smooth solution of the continuity-defect equation
(38). Then there exists another smooth solution (ρ1, u1, R1) of (38) such that for every
t ∈ [0, 1],

‖ρ1(t) − ρ0(t)‖L1(Td ) ≤ Mη‖R0(t)‖L1(Td ), (39a)

‖u1(t) − u0(t)‖C0(Td ) ≤ Mη−1, (39b)

‖u1(t) − u0(t)‖W 1,p(Td ) ≤ δ, (39c)

‖R1(t)‖L1(Td ) ≤ δ, (39d)

and, moreover, if at some time t ∈ [0, 1], R0(t) = 0, then

ρ1(t) − ρ0(t) = u1(t) − u0(t) = R1(t) = 0.

Proof of Theorem 1.2 assuming Proposition 4.1 For ρ0, u0 in the statement of Theorem 1.2,
define

R0(t) := −∇�−1
(
∂tρ0(t) + div (ρ0(t)u0(t))

)
.

By (11), R0 is well defined, it is smooth and (ρ0, u0, R0) solve the continuity-defect equation.
Let (pq)q∈N be a fixed increasing sequence of real numbers such that pq → d − 1 as

q → ∞. Let also (ηq)q∈N, (δq)q∈N be two sequence of positive real numbers, which will be
fixed later. Starting from (ρ0, u0, R0), we can recursively apply Proposition 4.1 to obtain a
sequence (ρq , uq , Rq)q∈N of smooth solutions to the continuity-defect equation such that

‖ρq+1(t) − ρq(t)‖L1(Td ) ≤ Mηq‖Rq(t)‖L1(Td ), (40a)

‖uq+1(t) − uq(t)‖C0(Td ) ≤ Mη−1
q , (40b)

‖uq+1(t) − uq(t)‖W 1,pq (Td ) ≤ δq , (40c)

‖Rq+1(t)‖L1(Td ) ≤ δq , (40d)

for all times t ∈ [0, 1] and
ρq+1(t) = ρq(t), uq+1(t) = uq(t), Rq+1(t) = 0,

for all times t such that Rq(t) = 0. Therefore, by induction, we get from (40a) and (40d) that
for all t ∈ [0, 1] and all q ∈ N,

‖ρq+1(t) − ρq(t)‖L1(Td ) ≤ Mηqδq−1, (41)

where we set δ−1 := maxt∈[0,1] ‖R0(t)‖L1 and, moreover,

ρq+1(t) = ρq(t), uq+1(t) = uq(t) for all t ∈ E, (42)

where E was defined in (12). We now choose (δq)q∈N so that

+∞∑

q=0

δq <

+∞∑

q=0

δ
1/2
q < ∞

and

ηq := σδ
−1/2
q−1
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for q ∈ N, where σ > 0 is a positive number, to be defined later. From (41) we get, for all
t ∈ [0, 1],

+∞∑

q=0

‖ρq+1(t) − ρq(t)‖L1(Td ) ≤ M
+∞∑

q=0

ηqδq−1 = Mσ

+∞∑

q=0

δ
1/2
q−1 < ∞, (43)

and thus there exists ρ ∈ C([0, 1]; L1(Td)) so that ρq → ρ in C([0, 1]; L1(Td)). Similarly,
using (40b), for all t ∈ [0, 1],

+∞∑

q=0

‖uq+1(t) − uq(t)‖C0(Td ) ≤ M
+∞∑

q=0

η−1
q = Mσ−1

+∞∑

q=0

δ
1/2
q−1 < ∞, (44)

and thus there exists u ∈ C([0, 1] ×T
d ;Rd) so that uq → u uniformly. It follows now from

(40d) that ρ, u solve (1).
To prove that u ∈⋂1≤p<d−1 CtW

1,p
x , fix p ∈ [1, d − 1). There is q∗ so that pq > p for

every q > q∗. We now have, for all t ∈ [0, 1],
+∞∑

q=0

‖uq+1(t) − uq(t)‖W 1,p(Td ) =
q∗
∑

q=0

‖uq+1(t) − uq(t)‖W 1,p(Td )

+
+∞∑

q=q∗+1

‖uq+1(t) − uq(t)‖W 1,p(Td )

(since p < pq for q > q∗) ≤
q∗
∑

q=0

‖uq+1(t) − uq(t)‖W 1,p(Td )

+
+∞∑

q=q∗+1

‖uq+1(t) − uq(t)‖W 1,pq (Td )

(by (40c)) ≤
q∗
∑

q=0

‖uq+1(t) − uq(t)‖W 1,p(Td ) +
+∞∑

q=q∗+1

δq < ∞,

thus proving that u ∈ C([0, 1];W 1,p(Td)). This concludes the proof of parts (a), (b) in the
statement of Theorem 1.2.

It follows from (42) that ρ(t) = ρ0(t) and u(t) = u0(t), whenever t ∈ E , and thus part
(c) is also proven. To prove (d), we observe that, from (43), for all t ∈ [0, 1],

‖ρ(t) − ρ0(t)‖L1(Td ) ≤
+∞∑

q=0

‖ρq+1(t) − ρq(t)‖L1(Td ) ≤ Mσ

∞∑

q=0

δ
1/2
q−1

and thus (d) follows choosing

σ := ε

M
∑+∞

q=0 δ
1/2
q−1

.

Alternatively, to achieve (d’), we observe that, from (44), for all t ∈ [0, 1],

‖u − u0‖C0 ≤ Mσ−1
+∞∑

q=0

δ
1/2
q−1
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and thus (d)’ follows choosing

σ := M
∑+∞

q=0 δ
1/2
q−1

ε
.

Remark 4.2 Estimate (39a), with η in the r.h.s., and estimate (39b), with η−1 in the r.h.s. show
that conditions (d)–(d’) in the statement of Theorem 1.2 can not be simultaneously achieved.

5 The perturbations

In this and the next two sections we prove Proposition 4.1. In particular in this section we fix
the constant M in the statement of the proposition, we define the functions ρ1 and u1 and we
estimate them. In Sect. 6 we define R1 and we estimate it. In Sect. 7 we conclude the proof
of Proposition 4.1.

5.1 Mikado fields andMikado densities

We recall the following proposition from [16].

Proposition 5.1 Let a, b ∈ R with

a + b = d − 1. (45)

For every μ > 2d and j = 1, . . . , d there exist a Mikado density �
j
μ : Td → R and a

Mikado field W j
μ : Td → R

d with the following properties.

(a) It holds
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div W j
μ = 0,

div (�
j
μW

j
μ) = 0,

ffl
Td �

j
μ = ffl

Td W
j
μ = 0,

ffl
Td �

j
μW

j
μ = e j ,

(46)

where {e j } j=1,...,d is the standard basis in R
d .

(b) For every k ∈ N and r ∈ [1,∞]
‖Dk� j

μ‖Lr (Td ) ≤ Mk μa+k−(d−1)/r ,

‖DkW j
μ‖Lr (Td ) ≤ Mk μb+k−(d−1)/r ,

(47)

where Mk is a constant which depends only on k, but not on r and μ.
(c) For j �= k, supp �

j
μ = supp W j

μ and supp �
j
μ ∩ supp Wk

μ = ∅.
We now define the constant M in the statement of Proposition 4.1 as

M := 4d max
{
M0, M2

0 , M0 + M1

}
, (48)

and we choose

a := d − 1, b := 0, (49)
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in Proposition 5.1. In this way for each direction j = 1, . . . , d , we obtain a family of Mikado
densities {� j

μ}μ>2d and fields {W j
μ}μ>2d , obeying the following estimates:

d∑

j=1

‖� j
μ‖L1(Td ),

d∑

j=1

‖W j
μ‖L∞(Td ),

d∑

j=1

‖� j
μW

j
μ‖L1(Td ) ≤ M

4
, (50)

and

‖W j
μ‖L1(Td ) ≤ Mμ−(d−1), ‖W j

μ‖W 1,p(Td ) ≤ Mμ1−(d−1)/p, (51)

and

‖� j
μ‖C1(Td ) ≤ Mμd , ‖W j

μ‖C1(Td ) ≤ Mμ. (52)

5.2 Definition of the perturbations

We are now in a position to define ρ1, u1. The constant M has already been fixed in (48). Let
thus p ∈ [1, d − 1), η, δ > 0 and (ρ0, u0, R0) be a smooth solution to the continuity-defect
equation (38).

Let

τ ∈ 1/N∗ “time scale”

λ′, λ′′ ∈ N “oscillation”

μ′, μ′′ > 2d “concentration”

be parameters, which will be fixed later. Set

N := 1/τ ∈ N
∗.

For every i = 1, 2, . . . , N , let Ii := [iτ, (i +1)τ ] and let ti := (i +1/2)τ be the midpoint of
Ii . Consider a partition of unity {ζi }i=1,...,N subordinate to the family of intervals {Ii }i=1,...,N .
More precisely, for every i = 1, . . . , N , ζi ∈ C∞([0, 1]) and
• supp ζi ∈ [(i − 1/3)τ, (i + 1 + 1/3)τ ];
• ζi (t) ∈ [0, 1] for every t ∈ [0, 1];
• ∑N

i=1 ζ 2
i (t) = 1 for every t ∈ [0, 1].

Notice that for every time t ∈ [0, 1] there is at most one odd index i1 and one even index i2
so that ζi (t) = 0 for every i �= i1, i2. For every i = 1, . . . , N , let �i : [0, 1] × T

d → T
d be

the solution to
{

∂t�i + (u0 · ∇)�i = 0,

�i (ti , x) = x,
(53)

i.e. the inverse flow map associated to the vector field u0, starting at time ti . Notice that, for
fixed t , �i (t) : Td → T

d is a measure-preserving diffeomorphism.
We denote by R0, j the components of R0, i.e.

R0(t, x) :=
d∑

j=1

R0, j (t, x)e j .
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Let also ψ : [0, 1] → R be a smooth function such that ψ(t) ∈ [0, 1] for every t ∈ [0, 1]
and

ψ(t) =
{
0, if ‖R0(t)‖L1(Td ) ≤ δ/8,

1, if ‖R0(t)‖L1(Td ) ≥ δ/4.
(54)

We set

ρ1 := ρ0 + ϑ + ϑc, u1 := u0 + w,

where ϑ, ϑc, w are defined as follows. First of all, let �
j
μ, W

j
μ, j = 1, . . . , d , be the family

(depending on μ) of Mikado densities and fields provided by Proposition 5.1, with a, b
chosen as in (49). We set

ϑ(t, x) := η ψ(t)

⎧
⎪⎨

⎪⎩

N∑

i=1
i odd

ζi (t)
d∑

j=1

R0, j (t, x)�
j
μ′
(
λ′�i (t, x)

)

+
N∑

i=1
i even

ζi (t)
d∑

j=1

R0, j (t, x)�
j
μ′′
(
λ′′�i (t, x)

)

⎫
⎪⎬

⎪⎭
,

w(t, x) := ψ(t)

η

⎧
⎪⎨

⎪⎩

N∑

i=1
i odd

ζi (t)
d∑

j=1

(D�i (t, x))
−1W j

μ′
(
λ′�i (t, x)

)

+
N∑

i=1
i even

ζi (t)
d∑

j=1

(D�i (t, x))
−1W j

μ′′
(
λ′′�i (t, x)

)

⎫
⎪⎬

⎪⎭
,

ϑc(t) := −
 

Td
ϑ(t, x)dx .

(55)

The factor (D�i (t, x))−1 is the inversematrix of D�i (t, x). Observe that for fixed t0 ∈ [0, 1],
there are at most one odd index i1 and one even index i2 so that ζi (t) = 0 if i �= i1, i2 and t
is close enough to t0 (say, |t − t0| ≤ 2τ/3). Therefore for such times t we can write

ϑ(t) = η ψ(t)

⎧
⎨

⎩
ζi1(t)

d∑

j=1

R0, j (t)�
j
μ′
(
λ′�i1(t)

)

+ζi2(t)
d∑

j=1

R0, j (t)�
j
μ′′
(
λ′′�i2(t)

)
⎫
⎬

⎭
,

w(t) = ψ(t)

η

⎧
⎨

⎩
ζi1(t)

d∑

j=1

(D�i1(t))
−1W j

μ′
(
λ′�i1(t)

)

+ζi2(t)
d∑

j=1

(D�i2(t))
−1W j

μ′′
(
λ′′�i2(t)

)
⎫
⎬

⎭
,

(56)
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which we will call the fixed-time form of the perturbations. Notice that ϑ and w are smooth
functions. Notice also that ϑ + ϑc has zero mean value in Td at each time t . Finally observe
that w is a sum of terms of the form (D�)−1G(�), with

� = �i (t), G = (W j
μ′)λ′ or G = (W j

μ′′)λ′′ .

Since div (Wμ)λ = 0 for every μ, λ (see Proposition 5.1), we get from Lemma 3.2 that each
one of these terms is divergence free and thus div w = 0. Therefore

div u1 = div u0 + div w = 0.

Remark 5.2 Observe that, thanks to the cutoff in time ψ , if R0(t) ≡ 0, then

ϑ(t) = ϑc(t) = w(t) ≡ 0.

5.3 Estimates on the perturbation

In this section we estimate ϑ , ϑc, w.

Lemma 5.3 (L1-norm of ϑ). For every time t ∈ [0, 1],

‖ϑ(t)‖L1(Td ) ≤ Mη

2
‖R0(t)‖L1(Td ) + C

(
M, η, ‖R0‖C1 , max

i=1,...,N
‖D�i‖C0

)( 1

λ′ + 1

λ′′

)
.

Proof. Since we have to estimate ‖ϑ(t)‖L1(Td ) for every fixed time t , we can assume that
ϑ(t) has the form (56). In (56) each term in the summation over j has the form f · (gλ ◦ �),
with

f = R0, j (t, ·)
� = �i1(t, ·)
g = �

j
μ′

λ = λ′

or

f = R0, j (t, ·),
� = �i2(t, ·),
g = �

j
μ′′ ,

λ = λ′′.

(57)

Therefore we can apply the improved Hölder inequality, Lemma 3.4, to get

‖ϑ(t)‖L1 ≤ η‖R0(t)‖L1

d∑

j=1

‖� j
μ′ ‖L1

+ C(η, ‖R0‖C1 ,maxi=1,...,n ‖D�i‖C0)

λ′
d∑

j=1

‖� j
μ′ ‖L1

+ η‖R0(t)‖L1

d∑

j=1

‖� j
μ′′ ‖L1

+ C(η, ‖R0‖C1 ,maxi=1,...,n ‖D�i‖C0)

λ′′
d∑

j=1

‖� j
μ′′ ‖L1

(by (50)) ≤ M

2
η‖R0(t)‖L1 + C

(
M, η, ‖R0‖C1 , max

i=1,...,n
‖D�i‖C0

)( 1

λ′ + 1

λ′′

)
.
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Lemma 5.4 (Estimate on ϑc). For every time t ∈ [0, 1],

|ϑc(t)| ≤ C
(
M, η, ‖R0‖C1 , max

i=1,...,N
‖D�i‖C0

)( 1

λ′ + 1

λ′′

)
.

Proof. As in the proof of Lemma 5.3, we can use for ϑ(t) the form (56) and we observe that
each term in the summation over j has the form f · (gλ ◦ �), with f ,�, g, λ as in (57). We
can thus apply Lemma 3.9 to get:

|ϑc(t)| ≤ C
(
η, ‖R0‖C1 , max

i=1,...,n
‖D�i‖C0

)
⎡

⎣ 1

λ′
d∑

j=1

‖� j
μ′ ‖L1 + 1

λ′′
d∑

j=1

‖� j
μ′′ ‖L1

⎤

⎦

(by (50)) ≤ C
(
M, η, ‖R0‖C1 , max

i=1,...,n
‖D�i‖C0

)( 1

λ′ + 1

λ′′

)
.

Lemma 5.5 (C0 norm of w). For every time t ∈ [0, 1],

‖w(t)‖C0(Td ) ≤ M

2η
max

i=1,...,N
‖(D�i )

−1‖C0(supp ζi×Td ).

Proof. As in the proof of Lemma 5.3 we can use for w(t) the form (56). Therefore

‖w(t)‖C0(Td ) ≤ 1

η
max

i=1,...,N
‖(D�i )

−1‖C0(supp ζi×Td )

⎛

⎝
d∑

j=1

‖W j
μ′ ‖L∞(Td ) + ‖W j

μ′′ ‖L∞(Td )

⎞

⎠

(by (50)) ≤ M

2η
max

i=1,...,N
‖(D�i )

−1‖C0(supp ζi×Td ),

which is what we wanted to prove.

Lemma 5.6 (W 1,p norm of w). For every time t ∈ [0, 1],

‖w(t)‖W 1,p(Td ) ≤ C
(
M, η, max

i=1,...,N
‖D�i‖C1

)(
λ′(μ′)1−(d−1)/p + λ′′(μ′′)1−(d−1)/p

)
.

Proof. As in the proof Lemma 5.5 we can use for w(t) the form (56). Taking one partial
derivative ∂k , we get

∂kw(t) = ψ(t)

η

{
ζi1(t)

d∑

j=1

[
∂k(D�i1(t))

−1W j
μ′
(
λ′�i1(t)

)

+ λ′(D�i1(t))
−1DW j

μ′
(
λ′�i1(t)

)
D�i1(t)ek

]

+ ζi2(t)
d∑

j=1

[
∂k(D�i2(t))

−1W j
μ′′
(
λ′′�i2(t)

)

+ λ′′(D�i2(t))
−1DW j

μ′′
(
λ′′�i2(t)

)
D�i2(t)ek

]}
.
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We now apply the classical Hölder inequality to estimate ‖∂kw(t)‖L p :

‖∂kw(t)‖L p ≤ ψ(t)

η

{
max

i=1,...,N

∥∥D(D�i )
−1
∥∥
C0

( d∑

j=1

‖W j
μ′ ‖L p + ‖W j

μ′′ ‖L p

)

+ max
i=1,...,N

∥∥(D�i )
−1
∥∥
C0‖D�i‖C0 · ·

(
λ′

d∑

j=1

‖DW j
μ′ ‖L p + λ′′

d∑

j=1

‖DW j
μ′′ ‖L p

)}

(by Lemma 3.1) ≤ C
(
η, max

i=1,...,N
‖D�i‖C1

)(
λ′

d∑

j=1

‖W j
μ′ ‖W 1,p + λ′′

d∑

j=1

‖W j
μ′′ ‖W 1,p

)

(by (51)) ≤ C
(
M, η, max

i=1,...,N
‖D�i‖C1

)(
λ′(μ′)1−(d−1)/p + λ′′(μ′′)1−(d−1)/p

)
.

A similar (and even easier) computation holds for ‖w(t)‖L p , thus concluding the proof of
the lemma.

6 The new defect field

In this section we continue the proof of Proposition 4.1, defining the new defect field R1 and
estimating it.

6.1 Definition of the new defect field

We want to define R1 so that

− div R1 = ∂tρ1 + div (ρ1u1). (58)

Let us compute

∂tρ1 + div (ρ1u1) = div (ϑw − R0)

+
[
∂t (ϑ + ϑc) + div

(
(ϑ + ϑc)u0

)]

+div (ρ0w) + div (ϑcw)

= div (Rinteraction + Rflow + Rψ + Rquadr)

+div Rtransport

+div RNash + div Rcorr (59)

where we put

RNash := ρ0w, Rcorr := ϑcw, (60)

and Rinteraction, Rflow, Rψ , Rquadr, Rtransport will be defined respectively in (63), (64), (65),
(66), (70) in such a way that

div (ϑw − R0) = div (Rinteraction + Rflow + Rψ + Rquadr), (61a)

∂t (ϑ + ϑc) + div
(
(ϑ + ϑc)u0

) = div Rtransport. (61b)

We thus define

− R1 := Rinteraction + Rflow + Rψ + Rquadr + Rtransport + RNash + Rcorr, (62)

so that (58) holds.
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6.2 Definition and estimates for Rinteraction, Rflow, RÃ, Rquadr

In this section we define and estimate the vector fields Rquadr, Rinteraction, Rψ and Rflow so
that (61a) holds. First of all, we want to compute more explicitly div (ϑ(t)w(t)− R0(t)), for
every fixed time t . We can use the form (56) for ϑ(t) and w(t). Exploiting the fact that for
j �= k, � j

μ and Wk
μ have disjoint support (see Proposition 5.1), we have

ϑ(t)w(t) = ψ2(t)

⎧
⎨

⎩
ζ 2
i1(t)

d∑

j=1

R0, j (t)(D�i1(t))
−1�

j
μ′
(
λ′�i1(t)

)
W j

μ′
(
λ′�i1(t)

)

+ζ 2
i2(t)

d∑

j=1

R0, j (t)(D�i2(t))
−1�

j
μ′′
(
λ′′�i2(t)

)
W j

μ′′
(
λ′′�i2(t)

)
⎫
⎬

⎭

+ Rinteraction(t),

where we set

Rinteraction(t) := ψ2(t)ζi1(t)ζi2(t)
d∑

j,k=1

[
R0, j (t)(D�i2(t))

−1�
j
μ′
(
λ′�i1(t)

)
Wk

μ′′
(
λ′′�i2(t)

)

+R0, j (t)(D�i1(t))
−1�

j
μ′′
(
λ′′�i2(t)

)
Wk

μ′
(
λ′�i1(t)

)]
. (63)

On the other side, using the fact that
∑N

i=1 ζ 2
i ≡ 1, we can write

R0(t) = ψ2(t)R0(t) + R0(t)
[
1 − ψ2(t)

]

= ψ2(t)R0(t) − Rψ(t)

(using that
∑N

i=1 ζ 2
i ≡ 1)

= ψ2(t)
{
ζ 2
i1(t)R0(t) + ζ 2

i2(t)R0(t)
}

− Rψ(t)

= ψ2(t)
{
ζ 2
i1(t)

[
D�i1(t)

]−1
R0(t) + ζ 2

i2(t)
[
D�i2(t)

]−1
R0(t)

}
− Rflow(t) − Rψ(t)

= ψ2(t)

⎧
⎨

⎩
ζ 2
i1(t)

d∑

j=1

R0, j (t)
[
D�i1(t)

]−1
e j + ζ 2

i2(t)
d∑

j=1

R0, j (t)
[
D�i2(t)

]−1
e j

⎫
⎬

⎭

− Rflow(t) − Rψ(t),

where we set

−Rflow(t) := ψ2(t)

{
ζ 2
i1(t)

[
Id − (D�i1(t))

−1
]
R0(t)

+ ζ 2
i2(t)

[
Id − (D�i2(t))

−1
]
R0(t)

} (64)

with Id being the identity matrix, and

− Rψ(t) := R0(t)
[
1 − ψ2(t)

]
. (65)

123



Non-renormalized solutions to the continuity equation Page 23 of 30 208

Summarizing, we have

div
(
ϑ(t)w(t) − R0(t)

)

= div Rinteraction(t) + div Rflow(t) + div Rψ(t)

+ ψ2(t)

⎧
⎨

⎩
ζ 2
i1(t)

d∑

j=1

div

[
R0, j

[
D�i1(t)

]−1
(
�

j
μ′
(
λ′�i1(t)

)
W j

μ′
(
λ′�i1(t)

)− e j
)]

+ζ 2
i2(t)

d∑

j=1

div

[
R0, j

[
D�i2(t)

]−1
(
�

j
μ′′
(
λ′′�i2(t)

)
W j

μ′′
(
λ′′�i2(t)

)− e j
)]
⎫
⎬

⎭

= div Rinteraction(t) + div Rflow(t) + div Rψ(t)

+ ψ2(t)

⎧
⎨

⎩
ζ 2
i1(t)

d∑

j=1

∇R0, j · [D�i1(t)
]−1
(
�

j
μ′
(
λ′�i1(t)

)
W j

μ′
(
λ′�i1(t)

)− e j
)

+ζ 2
i2(t)

d∑

j=1

∇R0, j · [D�i2(t)
]−1
(
�

j
μ′′
(
λ′′�i2(t)

)
W j

μ′′
(
λ′′�i2(t)

)− e j
)
⎫
⎬

⎭
,

where in the last equality we used the fact that div ((�
j
μ)λ(W

j
μ)λ − e j ) = 0 for every μ, λ, j

(see Proposition 5.1) and Lemma 3.2. We now observe that each term in the two summations
over j has zero mean value (being a divergence) and it has the form f (D�)−1(gλ ◦ �), for

f = ∇R0, j (t, ·)
� = �i1(t, ·)
g = �

j
μ′W

j
μ′ − e j

λ = λ′

or

f = ∇R0, j (t, ·),
� = �i2(t, ·),
g = �

j
μ′′W

j
μ′′ − e j ,

λ = λ′′.

We can therefore apply Lemma 3.6 and define

Rquadr(t)

:= ψ2(t)

⎧
⎨

⎩
ζ 2
i1(t)

d∑

j=1

R
(

∇R0, j · [D�i1(t)
]−1
(
�

j
μ′
(
λ′�i1(t)

)
W j

μ′
(
λ′�i1(t)

)− e j
))

+ζ 2
i2(t)

d∑

j=1

R
(

∇R0, j · [D�i2(t)
]−1
(
�

j
μ′′
(
λ′′�i2(t)

)
W j

μ′′
(
λ′′�i2(t)

)− e j
))
⎫
⎬

⎭
,

(66)

so that (61a) holds. We now separately estimate Rinteraction, Rflow, Rψ , Rquadr. We start with
Rinteraction.

Lemma 6.1 For every time t it holds

‖Rinteraction(t)‖L1(Td ) ≤ C
(
M, ‖R0‖C0 , max

i=1,...,N
‖D�i‖C0

)

(
1

(μ′)d−1 + 1

(μ′′)d−1 + λ′μ′

λ′′ + λ′(μ′)d

λ′′(μ′′)d−1

)
.
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Proof. Consider the definition (63) of Rinteraction. We start by estimating ‖� j
μ′(λ′�i1(t))‖C1

and ‖Wk
μ′(λ′�i1(t))‖C1 , using (52) and the chain rule

‖� j
μ′(λ′�i1(t))‖C1 ≤ C(M, max

i=1,...,N
‖D�i‖C0)λ′(μ′)d ,

‖Wk
μ′(λ′�i1(t))‖C1 ≤ C(M, max

i=1,...,N
‖D�i‖C0)λ′μ′.

(67)

We now estimate �
j
μ′(λ′�i1(t))W

k
μ′′(λ′′�i2(t)), using the improved Hölder inequality,

Lemma 3.4 and considering λ′′ as the fast oscillation. We have
∥
∥� j

μ′
(
λ′�i1(t)

)
Wk

μ′′
(
λ′′�i2(t)

)∥∥
L1

≤ ‖� j
μ′ ‖L1‖Wk

μ′′ ‖L1 + 1

λ′′
∥
∥� j

μ′
(
λ′�i1(t)

)∥∥
C1

∥
∥D�i2(t)

∥
∥d−1
C0

∥
∥Wk

μ′′
∥
∥
L1

≤ C
(
M, max

i=1,...,N
‖D�i‖C0

)( 1

(μ′′)d−1 + λ′(μ′)d

λ′′(μ′′)d−1

)
,

where in the last inequality we used (50), (51) and (67). A similar estimate holds for
�

j
μ′′(λ′′�i2(t))W

k
μ′(λ′�i1(t)):

∥∥� j
μ′′(λ′′�i2(t))W

k
μ′(λ′�i1(t))

∥∥
L1

≤ ‖� j
μ′′ ‖L1‖Wk

μ′ ‖L1 + 1

λ′′ ‖Wk
μ′(λ′�i1(t))‖C1‖D�i2(t)‖d−1

C0 ‖� j
μ′′ ‖L1

≤ C
(
M, max

i=1,...,N
‖D�i‖C0

)( 1

(μ′)d−1 + λ′μ′

λ′′

)
.

Therefore

‖Rinteraction(t)‖L1

≤ C
(
M, ‖R0‖C0 , max

i=1,...,N
‖D�i‖C0

)
·

·
d∑

j,k=1

[∥∥� j
μ′
(
λ′�i1(t)

)
Wk

μ′′
(
λ′′�i2(t)

)∥∥
L1 + ∥∥� j

μ′′(λ′′�i2(t))W
k
μ′(λ′�i1(t))

∥∥
L1

]

≤ C
(
M, ‖R0‖C0 , max

i=1,...,N
‖D�i‖C0

)( 1

(μ′)d−1 + 1

(μ′′)d−1 + λ′μ′

λ′′ + λ′(μ′)d

λ′′(μ′′)d−1

)
.

Lemma 6.2 For every t ∈ [0, 1],
‖Rflow(t)‖L1(Td ) ≤ ‖R0‖C0 max

i=1,...,N

∥∥Id − D�i (t)
−1
∥∥
C0(supp ζi×Td )

.

Proof. The proof follows immediately from the definition of Rflow.

Lemma 6.3 For every t ∈ [0, 1],
‖Rψ(t)‖L1(Td ) ≤ δ/4.

Proof. If ψ2(t) �= 1, then, by (54), ‖R0(t)‖L1 ≤ δ/4 and thus the conclusion follows.

Lemma 6.4 For every t ∈ [0, 1],

‖Rquadr(t)‖L1(Td ) ≤ C
(
M, ‖R0‖C2 , max

i=1,...,N
‖D�i‖C1

)( 1

λ′ + 1

λ′′

)
.
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Proof. Rquadr(t) is defined in (66) using Lemma 3.6. Applying the bounds provided by such
proposition, with k = 0 and p = 1, we get

‖Rquadr(t)‖L1 ≤ C
(
‖R0‖C2 , max

i=1,...,N
‖D�i‖C1

)

⎛

⎝ 1

λ′
d∑

j=1

‖� j
μ′W

j
μ′ − e j‖L1 + 1

λ′′
d∑

j=1

‖� j
μ′′W

j
μ′′ − e j‖L1

⎞

⎠ (by (50))

≤ C
(
M, ‖R0‖C2 , max

i=1,...,N
‖D�i‖C1

)( 1

λ′ + 1

λ′′

)
,

thus concluding the proof of the lemma.

6.3 Definition and estimates for Rtransport

In this section we define and estimate the vector fields Rtransport so that (61b) holds. First of
all, we want to compute more explicitly ∂t (ϑ(t) + ϑc(t)) + div ((ϑ(t) + ϑc(t))u0(t)), for
every fixed time t . We can use the fixed-time form (56) for ϑ(t) and w(t). We have

∂t (ϑ + ϑc) + div ((ϑ + ϑc)u0)

= ϑ̇c +
d∑

j=1

{
A j
1�

j
μ′
(
λ′�i1

)+ A j
2�

j
μ′′
(
λ′′�i2

)

+ λ′B j
1 ·
[
∂t�i1 + (u0 · ∇)�i1

]
+ λ′′B j

2 ·
[
∂t�i2 + (u0 · ∇)�i2

]}

= ϑ̇c +
d∑

j=1

{
A j
1�

j
μ′
(
λ′�i1

)+ A j
2�

j
μ′′
(
λ′′�i2

)}
, (68)

where

A j
1 := η

[
ψ̇ζi1 R0, j + ψζ̇i1 R0, j + ψζi1

(
∂t R0, j + ∇R0, j · u0

)]
,

A j
2 := η

[
ψ̇ζi2 R0, j + ψζ̇i2 R0, j + ψζi2

(
∂t R0, j + ∇R0, j · u0

)]
,

B j
1 := η ψζi1 R0, j ∇�

j
μ′(λ′�i1),

B j
2 := η ψζi2 R0, j ∇�

j
μ′′(λ′′�i2),

and we used (53). Here we used the notation ḟ = d f /dt , if f = f (t) is a function depending
only on time. We now continue the chain of equalities in (68), by adding and subtracting the
mean value of each term in the summations over j , as follows:

∂t (ϑ + ϑc) + div ((ϑ + ϑc)u0)

=
d∑

j=1

{(
A j
1�

j
μ′
(
λ′�i1

)−
 

T d
A j
1�

j
μ′
(
λ′�i1

)
dx

)

+
(
A j
2�

j
μ′′
(
λ′′�i2

)−
 

T d
A j
2�

j
μ′′
(
λ′′�i2

)
dx

)}
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+ ϑ̇c +
d∑

j=1

{ 

T d
A j
1�

j
μ′
(
λ′�i1

)
dx +

 

T d
A j
2�

j
μ′′
(
λ′′�i2

)
dx

}

=
d∑

j=1

{(
A j
1�

j
μ′
(
λ′�i1

)−
 

T d
A j
1�

j
μ′
(
λ′�i1

)
dx

)

+
(
A j
2�

j
μ′′
(
λ′′�i2

)−
 

T d
A j
2�

j
μ′′
(
λ′′�i2

)
dx

)}
. (69)

The last equality is a consequence of the fact that
 (

∂t (ϑ + ϑc) + div ((ϑ + ϑc)u0)
)
dx = 0.

We now observe that, at the fixed time t , each term in the last line in (69) has the form
f · (gλ ◦ �) − ffl

f · (gλ ◦ �)dx for

f = A j
1(t, ·) or f = A j

2(t, ·),
� = �i1(t, ·) or � = �i2(t, ·),
g = �

j
μ′ or g = �

j
μ′′ ,

λ = λ′ or λ = λ′′.

Since �
j
μ has zero mean value (see Proposition 5.1), we can apply Lemma 3.6 and define

Rtransport(t) :=
d∑

j=1

{
R
(
A j
1(t, ·)� j

μ′
(
λ′�i1

)−
 

T d
A j
1(t, ·)� j

μ′
(
λ′�i1

)
dx

)

+ R
(
A j
2(t, ·)� j

μ′′
(
λ′′�i2

)−
 

T d
A j
2(t, ·)� j

μ′′
(
λ′′�i2

)
dx

)}
.

(70)

Lemma 6.5 For every t ∈ [0, 1], it holds

‖Rtransport(t)‖L1(Td ) ≤ C
(
M, η, δ, τ, ‖R0‖C2 , ‖u0‖C1 , max

i=1,...,N
‖D�i‖C1

)( 1

λ′ + 1

λ′′

)
.

Proof. First of all, we observe that

|ψ ′(t)| ≤ C
(
δ, ‖R0‖C1

)
, |ζ ′

i (t)| ≤ C(τ ) for all i = 1, . . . , N .

Therefore

‖A j
1(t)‖C1 , ‖A j

2(t)‖C1 ≤ C
(
η, δ, τ, ‖R0‖C2 , ‖u0‖C1

)
.

We defined Rtransport in (70) using the antidivergence operator provided by Lemma 3.6. We
can thus apply the bounds provided by such proposition, with k = 0 and p = 1, to get

‖Rtransport(t)‖L1

≤
d∑

j=1

⎧
⎨

⎩

‖A j
1(t)‖C1‖D�i1‖d−1

C1 ‖� j
μ′ ‖L1

λ′ + ‖A j
2(t)‖C1‖D�i2‖d−1

C1 ‖� j
μ′′ ‖L1

λ′′

⎫
⎬

⎭

≤ C
(
M, η, δ, τ, ‖R0‖C2 , ‖u0‖C1 , max

i=1,...,N
‖D�i‖C1

)( 1

λ′ + 1

λ′′

)
,

where in the last line we used (50).
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6.4 Estimates for RNash and Rcorr

In this section we estimate RNash and Rcorr.

Lemma 6.6 For every t ∈ [0, 1],

‖RNash(t)‖L1(Td ) ≤ C
(‖ρ0(t)‖C0 , max

i=1,...,N
‖D�i‖C0

)
(

1

(μ′)d−1 + 1

(μ′′)d−1

)
.

Proof. We have

‖RNash(t)‖L1 = ‖ρ0(t)w(t)‖L1

≤ ‖ρ0(t)‖C0‖w(t)‖L1

(by Lemma 3.1) ≤ C
(
η, ‖ρ0(t)‖C0 , max

i=1,...,N
‖D�i‖C0

) d∑

j=1

(
‖W j

μ′ ‖L1 + ‖W j
μ′′ ‖L1

)

(by (51)) ≤ C
(
η, ‖ρ0(t)‖C0 , max

i=1,...,N
‖D�i‖C0

)
(

1

(μ′)d−1 + 1

(μ′′)d−1

)
.

Lemma 6.7 For every t ∈ [0, 1],

‖Rcorr(t)‖L1(Td ) ≤ C(M, η, ‖R0‖C1 , max
i=1,...,N

‖D�i‖C0)

(
1

λ′ + 1

λ′′

)
.

Proof. We use Lemma 5.4 and Lemma 5.5:

‖ϑc(t)w(t)‖L1 = |ϑc(t)|‖w(t)‖L1

≤ |ϑc(t)|‖w(t)‖C0

≤ C(M, η, ‖R0‖C1 , max
i=1,...,N

‖D�i‖C0)

(
1

λ′ + 1

λ′′

)
.

7 Proof of Proposition 4.1

In this sectionwe conclude the proof of Proposition 4.1, and thus also the proof ofTheorem1.2
and, consequently, the proof of Theorem 1.1. We first prove that if R0(t) = 0 at some time
t ∈ [0, 1], then R1(t) = 0. Observe that if R0(t) = 0, then by Remark 5.2,

ρ1(t) − ρ0(t) = ϑ(t) + ϑc(t) = 0, u1(t) − u0(t) = w(t) = 0.

Moreover, by (54), ψ ≡ 0 on a neighborhood of t and thus ψ(t) = ψ ′(t) = 0. Therefore

ψ(t) = 0 �⇒ Rinteraction(t) = Rflow(t) = Rquadr(t) = 0,

ψ(t) = ψ ′(t) = 0 �⇒ Rtransport(t) = 0,

R0(t) = 0 �⇒ Rψ(t) = 0,

w(t) = wc(t) = 0 �⇒ RNash(t) = Rcorr(t) = 0,

and thus R1(t) = 0.
We now prove estimates (39a)–(39d). First of all, in view of Lemma 5.5 and Lemma 6.2,

we choose τ so small that

max
i=1,...,N

‖D�−1
i ‖C0(supp ζi×Td ) ≤ 2, (71a)
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‖R0‖C0 max
i=1,...,N

‖Id − D�−1
i ‖C0(supp ζi×Td ) ≤ δ

4
. (71b)

This is always possible since, by (53), �i (ti , x) = x and thus D�i (ti , x) = Id for every
i = 1, . . . , N . We choose also λ′, μ′, λ′′, μ′′ such that 1 � λ′ � μ′ � λ′′ � μ′′. More
precisely, we set

λ′ = λ, μ′ := λα, λ′′ := λβ, μ′′ := λγ ,

for some

1 < α < β < γ

and λ � 1 to be fixed later.
1 Estimate (39a). If R0(t) = 0, we have already seen that ρ1(t) = ρ0(t). We can thus assume
R0(t) �= 0. We have

‖ρ1(t) − ρ0(t)‖L1 ≤ ‖ϑ0(t)‖L1 + |ϑc(t)|
(by Lemmas 5.3 and 5.4)

≤ Mη

2
‖R0(t)‖L1 + C

(
M, η, ‖R0‖C1 , max

i=1,...,N
‖D�i‖C0

)( 1

λ′ + 1

λ′′

)

≤ Mη

2
‖R0(t)‖L1 + C

(
M, η, ‖R0‖C1 , max

i=1,...,N
‖D�i‖C0

)(1

λ
+ 1

λβ

)

≤ Mη‖R0(t)‖L1 ,

if the constant λ is chosen large enough.
2 Estimate (39b). We have

‖u1(t) − u0(t)‖C0 ≤ ‖w(t)‖C0

(by Lemma 5.5) ≤ M

2η
max

i=1,...,N
‖(D�i )

−1‖C0(supp ζi×Td )

(by (71a)) ≤ M

η
.

3 Estimate (39c). We have

‖u1(t) − u0(t)‖W 1,p ≤ ‖w(t)‖W 1,p

(by Lemma 5.6)

≤ C
(
M, η, max

i=1,...,N
‖D�i‖C1

)(
λ′(μ′)1−(d−1)/p + λ′′(μ′′)1−(d−1)/p

)

≤ C
(
M, η, max

i=1,...,N
‖D�i‖C1

)(
λ1+α(1−(d−1)/p) + λβ+γ (1−(d−1)/p)

)

≤ δ,

if α, β, γ are chosen so that

1 + α

(
1 − d − 1

p

)
< 0, (72a)

β + γ

(
1 − d − 1

p

)
< 0, (72b)

and λ is large enough.
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4 Estimate (39d). Recall the definition of R1 in (62). Using Lemmas 6.1, 6.2, 6.3, 6.4, 6.5,
6.6, 6.7 and (71b), we get

‖R1(t)‖L1 ≤ ‖Rinteraction(t)‖L1 + ‖Rflow(t)‖L1 + ‖Rψ(t)‖L1 + ‖Rquadr(t)‖L1

+ ‖Rtransport(t)‖L1 + ‖RNash(t)‖L1 + ‖Rcorr(t)‖L1

≤ δ

2
+ C

(
M, η, δ, τ, ‖ρ0‖C0 , ‖u0‖C1 , ‖R0‖C2 , max

i=1,...,N
‖D�i‖C1

)
·

·
[
1

λ′ + 1

λ′′ + 1

(μ′)d−1 + 1

(μ′′)d−1 + λ′μ′

λ′′ + λ′(μ′)d

λ′′(μ′′)d−1

]

≤ δ

2
+ C

(
M, η, δ, τ, ‖ρ0‖C0 , ‖u0‖C1 , ‖R0‖C2 , max

i=1,...,N
‖D�i‖C1

)
·

·
[
1

λ
+ 1

λβ
+ 1

λα(d−1)
+ 1

λγ (d−1)
+ λ1+α

λβ
+ λ1+αd

λβ+γ (d−1)

]

≤ δ

2
+ δ

2
≤ δ,

if

1 + α − β < 0, (73a)

1 + αd − β − γ (d − 1) < 0, (73b)

and λ is large enough.
We still have to choose α, β, γ so that (72), (73) are satisfied. This can be easily done as

follows, recalling that p < d − 1. First we fix α > 1 so that

α >
1

d−1
p − 1

,

so that (72a) is satisfied. Then we choose β so that

β > 1 + α,

so that (73a) is satisfied. Finally we choose γ > 1 so that

γ >
β

d−1
p − 1

and γ >
1 + αd − β

d − 1
,

so that (72b) and (73b) are satisfied. This concludes the proof of Proposition 4.1 and thus
also the proof of Theorem 1.2 and, consequently, the proof of Theorem 1.1.
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