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Abstract
This paper presents results on the existence and multiplicity of solutions for quasilinear
problems in bounded domains involving the p-Laplacian operator under local versions of the
Landesman–Lazer condition. Themain results do not require any growth restriction at infinity
on the nonlinear term which may change sign. The existence of solutions is established by
combining variationalmethods, truncation arguments and approximation techniques based on
a compactness result for the inverse of the p-Laplacian operator. These results also establish
the intervals of the projection of the solution on the direction of the first eigenfunction of the
p-Laplacian operator. This fact is used to provide the existence of multiple solutions when
the local Landesman–Lazer condition is satisfied on disjoint intervals.

Mathematics Subject Classification 35J20 · 35J92 · 47J30

1 Introduction andmain results

This paper deals with the study of weak solutions for a class of nonlinear problems involving
the p-Laplacian operator. More specifically, we are concerned with the quasilinear problem

{
−�pu = λ|u|p−2u + μhμ(x, u) in �,

u = 0 on ∂�,
(1.1)
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where� is a bounded regular domain inRN , p > 1,�pu = div(|∇u|p−2∇u), λ > 0,μ �= 0
are real parameters and hμ : � × R → R is a family of Carathéodory functions depending
on μ.

Our main objective is to provide local hypotheses on the family of functions hμ that
guarantee the existence and multiplicity of solutions for problem (1.1) when the parameters
μ and λ are close, respectively, to zero and λ1, the principal eigenvalue of the operator −�p

with zero boundary conditions (see [6]).
When p = 2, problem (1.1) becomes the semilinear elliptic problem{

−�u = λu + μhμ(x, u) in �,

u = 0 on ∂�.
(1.2)

Since the seminal work of Landesman and Lazer [23], problem (1.2) under resonant
conditions has been extensively studied (see e.g. [9,11,28,29,31] and their references). Con-
sidering, for example, λ = λ1 and hμ(x, s) = g(s)− f (x), with f ∈ L2(�) and g : R → R

a bounded continuous function with finite limits g± = lims→±∞ g(s), a solution of (1.2)
exists whenever h satisfies the Landesman–Lazer condition.[ ∫

�

(g− − f )ϕ1dx

][ ∫
�

(g+ − f )ϕ1dx

]
< 0,

where ϕ1 is a positive eigenfunction associated with λ1. This result has been extended to the
quasilinear problem by Arcoya and Orsina [10] (see also [4,7,9,13] for related results).

In a recent article Rezende et al. [30], considering hμ(x, s) = h0(x, s), for every μ �= 0,
established the existence of a weak solution for problem (1.2), whenever μ > 0 is close to
zero and |λ − λ1|/μ is sufficiently small, by supposing a local Landesman–Lazer condition
on the interval (t1, t2) ⊂ R:

(H+
0 )

∫
�

h0(x, t1ϕ1)ϕ1dx > 0 >

∫
�

h0(x, t2ϕ1)ϕ1dx,

or

(H−
0 )

∫
�

h0(x, t1ϕ1)ϕ1dx < 0 <

∫
�

h0(x, t2ϕ1)ϕ1dx .

We note that one of the characteristics of the results in [30] is that it is not assumed
any global growth restriction on the nonlinear term h0. For the existence of solution
under the hypothesis (H+

0 ), these authors suppose that h0 is locally Lσ (�)-bounded,
σ > max{N/2, 1}. Using an approximation technique, the existence of a solution for the
original problem is obtained by finding a local minimum for the functional associated with
an appropriated truncation of the nonlinear term h0. Under the hypothesis (H−

0 ), further
assuming that h0 is locally Lσ (�)-Lipschitz, the solution (derived via Lyapunov–Schmidt
reduction method [14,15,24]) is a saddle point of the functional associated with the truncated
problem.

We emphasize that the projection on direction of ϕ1 of the solution derived in [30] is
located in the interval (t1ϕ1, t2ϕ1). Based on this fact, the existence of multiple solutions for
the semilinear problem is established in thementionedwork [30] when the local Landesman–
Lazer conditions (H±

0 ) hold on disjoint open intervals.
In this paper we provide versions of the results established in [30] for the quasilinear

problem (1.1) when the family of functions hμ is uniformly locally Lσ (�)-bounded:

(H1) Given S > 0, there are μ1 > 0 and ηS ∈ Lσ (�), σ > max{N/p, 1}, such that
|hμ(x, s)| ≤ ηS(x), for every |s| ≤ S, a.e. in �, for every μ ∈ (0, μ1).

123



Quasilinear problems under local Landesman–Lazer condition Page 3 of 27 210

We also suppose hμ satisfies the following versions of conditions (H±
0 ):

Definition 1.1 We shall say that the family of functions hμ satisfies the local Landesman–
Lazer condition (H+

μ ) [respectively, (H−
μ )] on the interval (t1, t2) if there exists a

Carathéodory function h0 : � × R → R such that

(i) h0 satisfies (H+
0 ) [respectively, (H−

0 )];
(ii) hμ(x, s) → h0(x, s0), as (μ, s) → (0, s0), for every s0 ∈ R, a.e. in �.

Note that hypothesis (H1) implies that the integrals in (H+
0 ) [respectively (H−

0 )] are well
defined whenever the family of functions hμ satisfies (H+

μ ) [respectively (H−
μ )]. Further-

more, we have that hμ satisfies (H+
0 ) [respectively (H−

0 )] for μ > 0 sufficiently small.
Since there is no global growth restriction on the nonlinearities hμ, the associated func-

tional may not be well defined inW 1,p
0 (�). Following the argument employed by Rezende et

al. [30], we overcome this difficulty by applying an approximation argument combined with
an appropriated truncation of the functions hμ. We emphasize that hypothesis (H1) plays an
important role in the approximation method used in this article.

In order to state our results, we consider X = {v ∈ W 1,p
0 (�); ∫

�
|∇ϕ1|p−2∇ϕ1 ·∇vdx =

0}. We note that X is a topological complement in W 1,p
0 (�) of the space generated by ϕ1.

Indeed, take T
ϕ
p−1
1

: W 1,p
0 (�) → R, defined by T

ϕ
p−1
1

(v) = ∫
�

ϕ
p−1
1 vdx, v ∈ W 1,p

0 (�),

the continuous linear functional in W 1,p
0 (�) associated with ϕ

p−1
1 . By the variational char-

acterization of the eigenvalue λ1, X is the closed subspace of W 1,p
0 (�) orthogonal to the

functional T
ϕ
p−1
1

.

Theorem 1.2 If hμ satisfies (H1) and (H+
μ ) on the interval (t1, t2), then there exist positive

constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ− λ1| < μν∗, problem (1.1) has
a weak solution uμ = tϕ1 + v, with t ∈ (t1, t2) and v ∈ X.

We emphasize that, as a direct consequence of Theorem 1.2, we may establish a multi-
plicity result for (1.1) when (H+

μ ) is satisfied on disjoint open intervals:

Corollary 1.3 If hμ satisfies (H1) and (H+
μ ) on each one of the intervals (t2 j−1, t2 j ), 1 ≤

j ≤ k, k ≥ 2, with t1 < · · · < t2k , then there exist positive constants μ∗, ν∗ such that, for
every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, problem (1.1) has k solutions {u1μ, · · · , ukμ} such
that u j

μ = τ jϕ1 + v j , τ j ∈ (t2 j−1, t2 j ), v j ∈ X , 1 ≤ j ≤ k.

It is important to observe that it is possible to prove Theorem 1.2 and Corollary 1.3 using,
in Definition 1.1, the weaker condition hμ(x, s) → h0(x, s), as μ → 0, for every s ∈ R,
a.e. in �, instead of (i i). See Remark 2.7.

It is clear that, under the hypotheses of Corollary 1.3, the family of functions hμ satisfies
the condition (H−

μ ) on each interval (t2 j , t2 j+1), 1 ≤ j ≤ k − 1. Hence, based on the results
by Rezende et al. [30], we may expect to obtain (k − 1) more solutions for problem (1.1)
which projections on the ϕ1-axis are in the intervals (t2 jϕ1, t2 j+1ϕ1), 1 ≤ j ≤ k − 1.

It is worthwhile mentioning that when dealing with the hypothesis (H−
μ ) for p �= 2,

unlike in [30], we may not rely on the Lyapunov–Schmidt reduction method since problem
(1.1) involves the quasilinear p-Laplacian operator. In this article the existence of solutions
mentioned in the above paragraph are derived by applying the mountain pass theorem [5,29]
for functionals associated with aproppiated truncated problems. We note that one of the most
important difficulties we face when applying minimax methods is exactly to establish the
region where the minimax critical point is located.
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In our first result on the direction of obtaining minimax solutions for problem (1.1), we
consider that hμ satisfies (H+

μ ) on two open intervals, one of them contained in (−∞, 0)
and the other in (0,∞):

Theorem 1.4 If hμ satisfies (H1) and (H+
μ ) on the intervals (t1, t2) and (t3, t4), with t2 <

0 < t3, then there exist positive constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and
|λ − λ1| < μν∗, problem (1.1) has three distinct weak solutions uiμ = τiϕ1 + vi , with
vi ∈ X , i = 1, 2, 3, and τ1 ∈ (t1, t2), τ2 ∈ (t3, t4) and τ3 ∈ (t1, t4).

We note that the first two solutions u1μ and u2μ are a consequence of Theorem 1.2. The
novelty in Theorem 1.4 is the existence of the third solution u3μ, which is derived via the
mountain pass theorem.

Next we deal with the existence of minimax solutions for problem (1.1) when the local
Landesman–Lazer condition is satisfied in one of the semi-axes (−∞, 0) or (0,∞).

In our next result we establish the existence of two nonnegative nonzero solutions for
problem (1.1):

Theorem 1.5 If hμ satisfies hμ(x, 0) ≥ 0 a.e. in �, (H1), (H−
μ ) on the interval (t1, t2), with

t1 > 0, and (H+
μ ) on the interval (t2, t3), then there exist positive constants μ∗, ν∗ such that,

for every μ ∈ (0, μ∗) and |λ−λ1| < μν∗, problem (1.1) has two nonnegative nonzero weak
solutions uiμ = τiϕ1 + vi , with vi ∈ X , i = 1, 2, and τ1 ∈ (t1, t3), τ2 ∈ (t2, t3).

We remark that we have a related result providing the existence of two nonpositive solu-
tions for problem (1.1) when hμ satisfies (H+

μ ) and (H−
μ ) on the intervals (t1, t2) and (t2, t3),

respectively, with t3 < 0.
As an application of the above results we may establish the existence of k nonnegative

nonzero solutions for problem (1.1) when the hypotheses (H−
μ ) and (H+

μ ) are satisfied on
consecutive open intervals. For example, supposing

(Hμ)k hμ satisfies the item (i i) of Definition 1.1 and there exist k ∈ N and 0 < t1 < t2 <

· · · < tk < tk+1 such that[ ∫
�

h0(x, t jϕ1)ϕ1dx
][ ∫

�

h0(x, t j+1ϕ1)ϕ1dx
]

< 0, 1 ≤ j ≤ k;∫
�

h0(x, tk+1ϕ1)ϕ1dx < 0,

as a consequence of Theorems 1.2 and 1.5, we may state:

Corollary 1.6 If hμ satisfies hμ(x, 0) ≥ 0, a.e. in�, (H1) and (Hμ)k , then there exist positive
constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and |λ− λ1| < ν∗μ, problem (1.1) has
k nonnegative nonzero solutions {u1μ, · · · , ukμ}.

This paper is organized in the following way: in Sect. 2 we use the Sect. 2.1 to establish
a version of Theorem 1.2 under the hypothesis that the family of functions hμ is Lσ (�)-
bounded.We begin the Sect. 2.2 stating a regularity result—Theorem 2.6—used in the proofs
of our main results. After that, we present the proof Theorem 1.2. In the Sect. 3, we reserve
the Sect. 3.1 to prove Theorem 1.4. In Sect. 3.2, supposing hμ(x, 0) = 0 a.e. in � and an
additional hypothesis, we provide the existence of multiple nontrivial solutions for problem
1.1 (see Theorem 3.2 and Corollary 3.3). The proof of Theorem 1.5 is presented in Sect. 4.
Section 5 is reserved for applications of our main results. For the sake of completeness, we
present the proof of Theorem 2.6 in the “Appendix”.

123



Quasilinear problems under local Landesman–Lazer condition Page 5 of 27 210

Throughout this work, for p > 1 and q ∈ [1,∞), we denote by

‖u‖ =
( ∫

�

|∇u|pdx
) 1

p

, ‖u‖q =
( ∫

�

|u|qdx
) 1

q

and ‖u‖∞ = sup ess�|u|,

the norms of the spacesW 1,p
0 (�), Lq(�) and L∞(�), respectively.Moreover, for α ∈ (0, 1),

we considerC0,α(�) equippedwith its usual norm‖·‖0,α . For p > 1weconsider its conjugate
p′ = p/(p − 1) and the Sobolev exponent p∗ = Np/(N − p).

2 Existence of a minimum solution

2.1 A version of Theorem 1.2

Before proving Theorem 1.2 we shall first present a version for a related problem with a
function f replacing the power |s|p−2s and hμ satisfying (H+

μ ) and a stronger version of
(H1).

We consider the problem{
−�pu = λ f (u) + μhμ(x, u) in �,

u = 0 on ∂�,
(2.1)

with the family of functions hμ satisfying

(Ĥ1) there exist η ∈ Lσ (�), σ > max{N/p, 1} and μ1 > 0 such that, for every μ ∈
(0, μ1),

|hμ(x, s)| ≤ η(x), for every s ∈ R, a. e. in �.

Furthermore we assume that (H+
μ ) holds on (t1, t2) ⊂ R and that f satisfies

(F1) there exists an interval [T1, T2] ⊂ R such that {tϕ1(x); t1 ≤ t ≤ t2, x ∈ �} ⊂ [T1, T2]
and

(i) f (s) = |s|p−2s, ∀ s ∈ [T1, T2];
(ii) | f (s)| ≤ |s|p−1, ∀ s ∈ R.

The functional Iλ,μ associated with problem (2.1) is given by

Iλ,μ(u) = 1

p
‖u‖p − λ

∫
�

F(u)dx − μ

∫
�

Hμ(x, u)dx, ∀ u ∈ W 1,p
0 (�),

where F(s) = ∫ s
0 f (τ )dτ and Hμ(x, s) = ∫ s

0 hμ(x, τ )dτ .We note that under the hypotheses

(Ĥ1) and (F1), Iλ,μ ∈ C1(W 1,p
0 (�),R) for every 0 ≤ μ < μ1. Furthermore the critical

points of Iλ,μ are weak solutions of problem (2.1).
Now we may state a version of Theorem 1.2 for problem (2.1):

Theorem 2.1 Suppose (H+
μ ), (Ĥ1) and (F1) are satisfied. Then there exist [t̂1, t̂2] ⊂

(t1, t2), μ∗ ∈ (0, μ1) and ν∗ > 0 such that, for every μ ∈ (0, μ∗) and |λ − λ1| < ν∗μ,
problem (2.1) has a weak solution uμ = tμϕ1 + vμ, with tμ ∈ (t̂1, t̂2) and vμ ∈ X.

As observed in the introduction, for proving Theorem 2.1 we follow aminimization argument
based on the following lemma:
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Lemma 2.2 Assume that conditions (Ĥ1) and (F1) are satisfied.

(i) If 0 < μ < μ1 and λ ∈ R, then there is uμ ∈ C := {u = tϕ1 + v : t1≤t≤t2, v ∈ X}
such that

Iλ,μ(uμ) = mC := inf{Iλ,μ(u) : u ∈ C}.
Moreover, given t ∈ [t1, t2], there exists vμ ∈ X such that

Iλ,μ(tϕ1 + vμ) = mt := inf{Iλ,μ(u) : u = tϕ1 + v, v ∈ X}.
(i i) Given δ > 0, there exists μ0 ∈ (0, μ1) and ε0 > 0 such that, if 0 < μ < μ0 and |λ−

λ1| < ε0, then ‖v‖ < δ, for every v ∈ St (μ, λ):= {v ∈ X : Iλ,μ(tϕ1 + v) = mt },
with t ∈ [t1, t2].

Remark 2.3 By (i i) of the above lemma, v ∈ St (μ, λ) converges strongly to the origin in
W 1,p

0 (�) when μ → 0 and λ → λ1 uniformly in the interval [t1, t2].

Proof (i) For every μ ∈ [0, μ1), by (Ĥ1) we have

|Hμ(x, s)| ≤ η(x)|s|, ∀ s ∈ R, a. e. in �. (2.2)

As a direct consequence of (2.2), σ > max{N/p, 1} and the Sobolev imbedding theorem,
we obtain c1 > 0 such that∣∣∣ ∫

�

Hμ(x, u)dx
∣∣∣ ≤ c1‖u‖, ∀ u ∈ W 1,p

0 (�), (2.3)

whenever μ ∈ [0, μ1). Similarly, by the boundedness of f it is also possible to find c2 > 0
such that ∣∣∣ ∫

�

F(u)dx
∣∣∣ ≤ c2‖u‖, ∀ u ∈ X . (2.4)

By inequalities (2.3) and (2.4), Iλ,μ is coercive and bounded from below on W 1,p
0 (�) for

every 0 < μ < μ1 and λ ∈ R. This together to (Ĥ1), the Sobolev imbedding theorem and
the fact that W 1,p

0 (�) is uniformly convex, implies that Iλ,μ has a point of minimum in the
set C and in the set tϕ1 + X for every t ∈ [t1, t2].

(ii) Arguing by contradiction, we suppose that there exist δ > 0 and sequences (μm) ⊂
(0, μ1), (λn) ⊂ R, (tn) ⊂ [t1, t2] and (vn) ⊂ X such that{

μn → 0 and λn − λ1 → 0 as n → ∞,

‖vn‖ ≥ δ > 0, vn ∈ Stn (μn, λn), ∀ n ∈ N.
(2.5)

Without loss of generality, we may suppose that tn → t ∈ [t1, t2]. Furthermore, in view
of (2.3), (2.4) and (2.5), we may also assume that vn⇀v weakly in W 1,p

0 (�). Considering
Sobolev imbedding theorem and taking a subsequence if necessary, we have⎧⎪⎨

⎪⎩
vn(x) → v(x) strongly in Lr (�), 1 ≤ r < p∗,
vn(x) → v(x) a. e. in �,

|vn(x)| ≤ ψr (x) ∈ Lr (�), 1 ≤ r < p∗, a. e. in �.

(2.6)

Setting un = tnϕ1 + vn, n ∈ N, from the definition of St (μ, λ), we have
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〈I ′
λn ,μn (un), vm − vn〉 =

∫
�

|∇un |p−2∇un · ∇(vm − vn)dx − λn

∫
�

f (un)(vm − vn)dx

−μn

∫
�

hμn (x, un)(vm − vn)dx = 0 (2.7)

and

〈Iλn ,μm (um), vm − vn〉 =
∫

�

|∇um |p−2∇um · ∇(vm − vn)dx − λm

∫
�

f (um)(vm − vn)dx

−μm

∫
�

hμm (x, um)(vm − vn)dx = 0. (2.8)

The boundedness of f , (2.5) and (2.6) imply that

λn

∫
�

f (un)(vm −vn)dx → 0, and λm

∫
�

f (um)(vm − vn)dx → 0, asm, n → ∞. (2.9)

From (Ĥ1) and Hölder inequality, we get

∣∣ ∫
�

hμn (un)(vm − vn)dx
∣∣ ≤

∫
�

η|vm − vn |dx ≤ ‖η‖Lσ (�)‖vm − vn‖Lσ
′
(�)

.

Since 1 < σ
′
< p∗, by (2.5) and (2.6) we conclude that

μn

∫
�

hμn (un)(vm − vn)dx → 0 and μm

∫
�

hμm (um)(vm − vn)dx → 0, as m, n → ∞.

(2.10)
Subtracting (2.7) of (2.8) and invoking (2.9)–(2.10), we obtain∫

�

[|∇um |p−2∇um − |∇un |p−2∇un
] · ∇(vm − vn)dx → 0 as m, n → ∞.

From the above result, the fact that (um) ⊂ W 1,p
0 (�) is a bounded sequence and tm − tn → 0

as m, n → ∞, we get

∣∣ ∫
�

[|∇um |p−2∇um − |∇un |p−2∇un
] · ∇(um − un)dx

∣∣
≤ |tm − tn |[‖um‖p−1 + ‖un‖p−1]‖ϕ1‖

+∣∣ ∫
�

[|∇um |p−2∇um − |∇un |p−2∇un
] · ∇(

vm

−vn
)
dx

∣∣ → 0 as m, n → ∞.

Supposing p ≥ 2 and using the estimate (see [27])

cp|a − b|p ≤ [|a|p−2a − |b|p−2b] · (a − b), ∀ a, b ∈ R
N ,

where cp denotes positive constant depending on p, we get∫
�

|∇(um − un)|pdx → 0, as m, n → ∞. (2.11)

On the other hand, if 1 < p < 2, we invoke the estimate ( see [27])

cp|a − b|2
(1 + |a| + |b|)2−p

≤ (|a|p−2a − |b|p−2b) · (a − b), ∀ a, b ∈ R
N ,
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to obtain

lim
m,n→∞

∫
�

|∇(um − un)|2
(1 + |∇um | + |∇un |)2−p

dx = 0. (2.12)

Hence, applying Hölder inequality with exponents 2/p and 2/(2 − p), we have∫
�

|∇(um − un)|pdx =
∫

�

[ |∇(um − un)|p
(1 + |∇um | + |∇un |)2−p

] p
2 · (1 + |∇um | + |∇un |)

p(2−p)
2 dx

≤
[ ∫

�

|∇(um − un)|2
(1 + |∇um | + |∇un |)2−p

dx
] 2

p
[ ∫

(1 + |∇um | + |∇un |)pdx
] 2−p

2
.

As a direct consequence of (2.12) and the boundedness of the sequence (un) ⊂ W 1,p
0 (�), we

may conclude that (2.11) also holds for 1 < p < 2. From (2.11) and the convergence of (tn)
to t , we may assert the strong convergence in W 1,p

0 (�) of the sequence (un) to u = tϕ1 + v.
Using this convergence, (2.2), (2.5) and the fact that the function f is bounded, we obtain
that ‖v‖ ≥ δ > 0 and

Iλn ,μn (un) = 1

p
‖un‖p − λn

∫
�

F(un)dx

−μn

∫
�

Hμn (x, un)dx −→ 1

p
‖u‖p − λ1

∫
�

F(u)dx,

as n → ∞. Since ‖v‖ ≥ δ > 0, from (F1)-(ii), we deduce that

1

p
‖u‖p − λ1

∫
�

F(u)dx ≥ 1

p
‖u‖p − λ1

p
‖u‖p

p > 0,

and that Iλn ,μn (tnϕ1 + vn) > 0, for n sufficiently large.
On the other hand, from (2.2), (tn) ⊂ [t1, t2] and (F1)-(i), we get

Iλn ,μn (tnϕ1) = 1

p
‖tnϕ1‖p − λn

p
‖tnϕ1‖p

p

−μn

∫
�

Hμn (x, tnϕ1)dx → 1

p
‖tϕ1‖p − λ1

p
‖tϕ1‖p

p = 0,

and we conclude that Iλn ,μn (tnϕ1) < Iλn ,μn (tnϕ1 + vn), for n sufficiently large. However,
this contradicts vn ∈ Stn (μn, λn) for n ∈ N. The proof of Lemma 2.2 is complete. ��

In our proof of Theorem 2.1, we shall use the following technical result:

Lemma 2.4 Suppose the family of functions hμ satisfies (Hμ) and (Ĥ1). Let (un) be a

sequence in W 1,p
0 (�) such that un⇀u weakly in W 1,p

0 (�), as n → ∞. Then⎧⎪⎪⎨
⎪⎪⎩

∫
�

[
H0(x, un(x)) − H0(x, u(x))

]
dx → 0, as n → ∞,∫

�

[
Hμ(x, un(x)) − H0(x, u(x))

]
dx → 0, as μ → 0, n → ∞.

(2.13)

Proof First of all we note that without loss of generality we may suppose{
un(x) → u(x), a. e. in �, as n → ∞,

|un(x)| ≤ ψr (x) a. e. in �, with ψr ∈ Lr (�), 1 ≤ r < p∗, ∀ n ∈ N.
(2.14)
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The first limit in (2.13) is a consequence of (2.2), (2.14), with r = σ ′, and the Lebesgue
dominated convergence theorem. Next, we shall verify the second limit in (2.13). Let (μn)

any sequence in (0, μ1) converging to zero. We claim that

Hμn (x, un(x)) → H0(x, u(x)), as n → ∞, a. e. in �. (2.15)

By the definitions of Hμ and H0, we have

Hμn (x, un(x)) − H0(x, u(x)) =
∫ u(x)

0
[hμn (x, s) − h0(x, s)]ds +

∫ un(x)

u(x)
hμn (x, s)ds.

(2.16)
Next we fix x ∈ � such that |u(x)| < ∞ and η(x) < ∞, with η given by (Ĥ1). Hence, by
(Ĥ1) and (Hμ), for every n ∈ N,

|hμn (x, s) − h0(x, s)| ≤ |hμn (x, s)| + |h0(x, s)| ≤ 2η(x) < ∞, ∀ s ∈ R. (2.17)

Invoking (Hμ) one more time, the above estimate and the Lebesgue dominated convergence
theorem, we obtain ∫ u(x)

0
[hμn (x, s) − h0(x, s)]ds → 0, as n → ∞. (2.18)

On the other hand, from (Ĥ1) and (2.14), we have∣∣∣ ∫ un(x)

u(x)
hμn (x, s)ds

∣∣∣ ≤ η(x)|un(x) − u(x)| → 0, as n → ∞.

Consequently, it follows from (2.16) and (2.18) that (2.15) holds almost everywhere in �.
The claim is proved.

In view of (2.2) and (2.14), there exists ψσ ′ ∈ Lσ ′
(�) such that, for every n ∈ N,

∣∣Hμn (x, un(x)) − H0(x, u(x))
∣∣ ≤ η(x)(|un(x)| + |u(x)|) ≤ 2η(x)ψσ ′ (x) ∈ L1(�), a. e. in �.

By the above estimate, (2.15) and the Lebesgue dominated convergence theorem we have
that ∫

�

[Hμn (x, un(x)) − H0(x, u(x))]dx → 0, as n → ∞.

The proof of Lemma 2.4 is complete. ��
Now we may present:

Proof of Theorem 2.1: In view of the hypothesis (H+
μ ), the function h0 satisfies (H+

0 ), which
together to (2.2) implies that there exist a, δ > 0 and t0 ∈ (t1 + δ, t2 − δ) such that∫

�

H0(x, t0ϕ1)dx −
∫

�

H0(x, tϕ1)dx ≥ a > 0, ∀ t ∈ [t1, t1 + δ] ∪ [t2 − δ, t2]. (2.19)

We shall verify that there exist μ∗ ∈ (0, μ1) and ν∗ > 0 such that, for every 0 < μ < μ∗
and |λ − λ1| < ν∗μ, we obtain

Iλ,μ(t0ϕ1) < Iλ,μ(tϕ1 + v), ∀ t ∈ [t1, t1 + δ] ∪ [t2 − δ, t2], v ∈ St (μ, λ). (2.20)

From the definition of the functional Îλ,μ and (F1), we have

Iλ,μ(t0ϕ1) = (λ1 − λ)

pλ1
|t0|p − μ

∫
�

Hμ(x, t0ϕ1)dx (2.21)
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and

Iλ,μ(tϕ1+v) ≥ (λ1 − λ)

pλ1
‖tϕ1+v‖p−μ

∫
�

Hμ(x, tϕ1+v)dx, ∀ t ∈ [t1, t2], v ∈ St (μ, λ).

(2.22)
Considering a > 0 given by (2.19), we take 0 < ε < a/4 and 0 < ν∗ < apλ122(p−1)/(4T +
a)p, T = max{|t1|, |t2|}. ��

In view of Lemma 2.2-(i i) and Lemma 2.4, we may find 0 < μ∗ < μ1 such that, for every
0 < μ < μ∗ and |λ − λ1| < ν∗μ, we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣∣ ∫
�

[
Hμ(x, tϕ1 + v) − H0(x, tϕ1)

]
dx

∣∣∣ < ε, ∀ t ∈ [t1, t2], v ∈ St (μ, λ),

∣∣∣ ∫
�

[
Hμ(x, t0ϕ) − H0(x, t0ϕ1)

]
dx

∣∣∣ < ε,

‖v‖ < ε, ∀ v ∈ St (μ, λ), t ∈ [t1, t2].
From the above relations, (2.21) and (2.22), we obtain

Iλ,μ(tϕ1 + v) − Iλ,μ(t0ϕ1) ≥ (λ1 − λ)

pλ1

[‖tϕ1 + v‖p − |t0|p
]

−μ

∫
�

[
Hμ(x, tϕ1 + v) − Hμ(x, t0ϕ1)

]
dx

≥ −ν∗μ [(|t | + ε)p + |t0|p]
pλ1

−μ

∫
�

[
Hμ(x, tϕ1 + v) − H0(x, tϕ1)

]
dx

−μ

∫
�

[
H0(x, t0ϕ1) − Hμ(x, t0ϕ1)

]
dx

+μ

∫
�

[
H0(x, t0ϕ1) − H0(x, tϕ1)

]
dx

≥ −ν∗μ [(|t | + ε)p + |t0|p]
pλ1

− 2με

+μ

∫
�

[
H0(x, t0ϕ1) − H0(x, tϕ1)

]
dx .

In view of (2.19), 0 < ε < a/4 and 0 < ν∗ < apλ122(p−1)/(4T + a)p , if 0 < μ < μ∗,
|λ − λ1| < ν∗μ, we get

Iλ,μ(tϕ1 + v) − Iλ,μ(t0ϕ1) ≥ −ν∗ 4T + a)p

pλ122(p−1)
μ + μ

a

2
= [a

2
− ν∗(4T + a)p

pλ122p−1

]
μ > 0,

whenever t ∈ [t1, t1 + δ] ∪ [t2 − δ, t2] and v ∈ St (μ, λ). That concludes the verification of
(2.20).

Considering 0 < μ < μ∗ and |λ − λ1| < ν∗μ, by Lemma 2.2-(i), there exist uμ such
that Iλ,μ(uμ) = mC = mC (μ, λ) = inf{Iλ,μ(u); u ∈ C}. From (2.20) and the definitions of
mC and mt in Lemma 2.2-(i i), we get

Iλ,μ(uμ) ≤ Iλ,μ(t0ϕ1) < mt (μ, λ), ∀t ∈ [t1, t1 + δ] ∪ [t2 − δ, t2].
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Hence, writing uμ = tμϕ1 + vμ, vμ ∈ X , we have that t1 + δ < tμ < t2 − δ. This implies
that uμ is a point of minimum local of Iλ,μ and, consequently, a weak solution of problem
(2.1). The proof of Theorem 2.1 is complete with t̂1 = t1 + δ and t̂2 = t2 − δ.

Remark 2.5 We emphasize that the solution uμ of problem (2.1) given by Theorem 2.1 is
actually a point of minimum of the functional Iλ,μ in the interior of the cylinder C = {u =
tϕ1 + v; t ∈ [t1, t2], v ∈ X}.

2.2 Proof of Theorem 1.2

Before proving Theorem 1.2, we state a regularity result for theweak solution of the boundary
value problem {

− �pu = g(x), in �,

u = 0, on ∂�,
(2.23)

where � is a bounded regular domain of RN , N ≥ 2, 1 < p ≤ N and g ∈ Lσ (�), with
σ > N/p.

Theorem 2.6 Suppose� is a bounded domain ofRN , N ≥ 2, with ∂� satisfying the exterior
uniform cone condition. If 1 < p ≤ N and g ∈ Lσ (�), σ > N/p, then the weak solution
u ∈ W 1,p

0 (�) of problem (2.23) is in C0,α(�), for some exponent α ∈ (0, 1). Moreover
there is a constant c > 0 such that ‖u‖C0,α(�) ≤ c, with the exponent α and the constant c
depending on � and ‖g‖σ .

For the convenience of the reader, we present the proof of this result in the “Appendix”. It
is based on the argument of the proof of Theorem 1.1 of chapter 4 by Ladyzenskaya and
Uralt’seva [22] andRemark2.6 byArcoya et al. [8].Wealso observe that, for p > N , Theorem
2.6 follows directly from the Sobolev imbeddingW 1,p

0 (�) ↪→ C0,α(�), 0 < α < 1− N/p.

Proof of Theorem 1.2: Considering T = max{|t1|, |t2|} and R > T ‖ϕ1‖∞ > 0, we take a
function χ ∈ C(R, [0, 1]) such that χ(s) ≡ 1, if |s| ≤ R, and χ(s) = 0, if |s| ≥ R+2. Next
we define the truncated functions fR and hμ,R for 0 ≤ μ < μ1, by{

fR(s) = |s|p−2sχ(s), for every s ∈ R

hμ,R(x, s) = hμ(x, s)χ(s), for every (x, s) ∈ � × R.
(2.24)

Associated with fR and hμ,R , we have the problem{
−�pu = λ fR(u) + μhμ,R(x, u), in �,

u = 0, on ∂�.
(2.25)

From (H1) and the definition (2.24) we may assert that the family of functions hμ,R satisfies
(Ĥ1). Moreover, as ‖tiϕ1‖∞ < R, i = 1, 2, it follows from (2.24) and (Hμ

+) that hμ,R

satisfies (Hμ
+) on the interval (t1, t2). We also note that fR satisfies (F1) with [T1, T2] =

[−R, R]. Applying Theorem 2.1 we find [t̂1, t̂2] ⊂ (t1, t2), μ∗ ∈ (0, μ1) and ν∗ > 0 such
that, for every μ ∈ (0, μ∗) and |λ − λ1| < μν∗, problem (2.25) has a weak solution
uμ = tμϕ1 + vμ, with tμ ∈ (t̂1, t̂2) and vμ ∈ X .

To conclude the proof of Theorem 1.2 we verify that limμ→0 ‖uμ‖∞ < R. Indeed, let
(μn) ⊂ (0, μ∗) and (λn) ⊂ R be sequences such that μn → 0, as n → ∞ and |λn − λ1| <

μnν
∗, for every n ∈ N. Given n ∈ N, we write un := uμn = tμnϕ1 + vμn , vμn ∈ X
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and tμn ∈ (t̂1, t̂2). Setting gn(x) = λn fR(un(x)) + μnhμn ,R(x, un(x)) for x ∈ �, by the
boundedness of fR and (Ĥ1), we may find ψ ∈ Lσ (�), σ > max{N/p, 1}, such that, for
every n ∈ N, |gn(x)| ≤ ψ(x), a.e. in �.

Hence, by the compactness of the inverse of the p-Laplacian operator (−�p)
−1 :

Lσ (�) → W 1,p
0 (�), we may find a subsequence (unk ) of (un) such that unk → u strongly

in W 1,p
0 (�), as k → ∞. Furthermore, invoking Theorem 2.6 when p ≤ N and the Sobolev

imbedding theorem for p > N , we may assume that unk → u strongly in C(�), as n → ∞.
Using this last result, (Ĥ1) and that μn → 0 and λn → λ1, as n → ∞, we obtain that u is a
solution of the problem {

−�pu = λ1 fR(u), in �,

u = 0, on ∂�.

Since | fR(s)| ≤ λ1|s|p−1, we get that actually u = tϕ1. Moreover, observing that (tμn) ⊂
[t̂1, t̂2] ⊂ (t1, t2), we have t ∈ (t1, t2) and, consequently, limk→∞ ‖unk‖∞ < R. The proof
of Theorem 1.2 is complete. ��

Remark 2.7 Note that Theorem 1.2 holds if we suppose

(î i) hμ(x, s) → h0(x, s), for every s ∈ R, a.e. in �, as μ → 0,

instead of condition (Hμ)− (i i). Indeed, this last condition has been used in the proof of the
Lemma 2.4 to verify (2.17) and (2.18), which are satisfied if we assume (î i).

Remark 2.8 Note that to prove Theorem 1.2 we could apply Theorem 2.1 to any function f
satisfying (F1) and to any family of functions ĥμ satisfying (Ĥ1) and

ĥμ(x, s) = hμ(x, s), a.e. in �, for 0 ≤ μ < μ1, (2.26)

for every s ∈ [T1, T2].
Moreover, we observe that the solution uμ ∈ W 1,p

0 (�) of problem (1.1) provided by
Theorem 2.1 satisfies uμ = tμϕ1 + vμ, tμ ∈ (t̂1, t̂2), vμ ∈ X and

Iλ,μ(uμ) < min{Iλ,μ(t1ϕ1), Iλ,μ(t2ϕ1)},
where Iλ,μ is the associated functional.

3 A first result on the existence of a minimax solution

3.1 Proof of Theorem 1.4

We begin the proof of Theorem 1.4 by considering appropriated truncations of the family of
functions hμ and the power |s|p−2s: considering T1 := t1‖ϕ1‖∞ < 0 < T2 := t4‖ϕ1‖∞,
we take χ ∈ C(R, [0, 1]) to be a function satisfying χ(s) = 1, if s ∈ [T1, T2], χ(s) = 0, if
s ∈ (−∞, T1 − 1] ∪ [T2 + 1,∞), and 0 < χ(s) < 1, otherwise.

Next, given μ ∈ [0, μ1), we define f̂ : R → R and ĥμ : � × R → R by{
f̂ (s) = |s|p−2sχ(s), for every s ∈ R

ĥμ(x, s) = hμ(x, s)χ(s), for every (x, s) ∈ � × R.
(3.1)
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Associated with the family of functions ĥμ and the function f̂ , we consider the quasilinear
problem {

−�pu = λ f̂ (u) + μĥμ(x, u), in �,

u = 0, on ∂�.
(3.2)

In view of the definitions (3.1), we get that ĥμ satisfies (Ĥ1) and{
f̂ (s) = |s|p−2s, for every s ∈ [T1, T2]
| f̂ (s)| < |s|p−1, for every s ∈ (−∞, T1) ∪ (T2,∞).

(3.3)

Furthermore, noting that {tϕ1(x); t1 ≤ t ≤ t4, x ∈ �} ⊂ [T1, T2], we have that f̂ satisfies
(F1) and ĥμ satisfies (2.26) with respect to the intervals (t1, t2) and (t3, t4). Consequently,
by Theorem 1.2 and Remark 2.8, we find [t̂1, t̂2] ⊂ (t1, t2), [t̂3, t̂4] ⊂ (t3, t4), μ̂∗ ∈ (0, μ1)

and ν̂∗ > 0 such that, for every μ ∈ (0, μ̂∗) and |λ − λ1| < ν̂∗μ, problem (1.1) has two
weak solutions uiμ = τiϕ1 + vi , vi ∈ X , i = 1, 2, and τ1 ∈ (t1, t2), τ2 ∈ (t3, t4). Moreover,

considering the functional associated with problem (3.2), Îλ,μ ∈ C1(W 1,p
0 (�),R), defined

by

Îλ,μ(u) = 1

p
‖u‖p − λ

∫
�

F̂(u)dx − μ

∫
�

Ĥμ(x, u)dx, ∀ u ∈ W 1,p
0 (�), (3.4)

where F̂(s) := ∫ s
0 f (τ )dτ and Ĥμ(x, s) := ∫ s

0 ĥμ(x, τ )dτ , we have that u1μ and u2μ are

point of minimum of the functional Îλ,μ and satisfy{
Îλ,μ(u1μ) < min{ Îλ,μ(t1ϕ1), Îλ,μ(t2ϕ1)}
Îλ,μ(u2μ) < min{ Îλ,μ(t3ϕ1), Îλ,μ(t4ϕ1)}.

(3.5)

Our next task is to derive a third solution u3μ for problem (3.2) via aminimax theorem.We first
verify the geometric properties that are necessary for applying the mountain pass theorem:

Lemma 3.1 Suppose hμ satisfies the hypotheses of Theorem 1.4. Then there exist t0 ∈ (t2, t3),
μ∗
1 ∈ (0, μ̂∗)andν∗

1 ∈ (0, ν̂∗) such thatminv∈X Îλ,μ(t0ϕ1+v)>max{ Îλ,μ(t2ϕ1), Îλ,μ(t3ϕ1)},
for every μ ∈ (0, μ∗

1) and |λ − λ1| < ν∗
1μ.

Proof Without loss of generality, we suppose that Îλ,μ(t2ϕ1) = max{ Îλ,μ(t2ϕ1), Îλ,μ(t3ϕ1)}.
In view of the hypothesis (H−

μ ) on the interval (t2, t3) and (Ĥ1), we find â, δ > 0 and
t0 ∈ (t2 + δ, t3 − δ) such that∫

�

Ĥ0(x, tϕ1)dx −
∫

�

Ĥ0(x, t0ϕ1)dx > â > 0, ∀ t ∈ [t2, t2 + δ] ∪ [t3 − δ, t3]. (3.6)

Setting Ŝt (μ, λ) = {v ∈ X; Îλ,μ(tϕ1 + v) = inf z∈X Îλ,μ(tϕ1 + z)}, t ∈ [t2, t3], by (3.3) we
have

Îλ,μ(t0ϕ1+v) ≥ 1

p

(λ1 − λ)

λ1
‖t0ϕ1+v‖p−μ

∫
�

Ĥμ(x, t0ϕ1+v)dx, for every v ∈ Ŝt0(μ, λ),

(3.7)
and

Îλ,μ(t2ϕ1) = 1

p

(λ1 − λ)

λ1
|t2|p − μ

∫
�

Ĥμ(x, t2ϕ1)dx . (3.8)
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Now, given 0 < ε < â/4, we may apply Lemma 2.4 to find μ∗
1 ∈ (0, μ̂∗) and ν∗

1 ∈ (0, ν̂∗)
such that, for every 0 < μ < μ∗

1 and |λ − λ1| < ν∗
1μ, we obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖v‖ < ε, ∀ v ∈ Ŝt0(μ, λ),∣∣∣ ∫
�

[Ĥμ(x, t0ϕ1 + v) − Ĥ0(x, t0ϕ1)]dx
∣∣∣ < ε, ∀ v ∈ Ŝt0(μ, λ),

∣∣∣ ∫
�

[Ĥμ(x, t2ϕ1) − Ĥ0(x, t2ϕ1)]dx
∣∣∣ < ε.

Consequently, from (3.6)–(3.8), for every 0 < μ < μ∗
1, |λ − λ1| < ν∗μ and v ∈ Ŝt0(μ, λ),

we get

Îλ,μ(t0ϕ1 + v) − Îλ,′μ(t2ϕ1) ≥ 1

p

(λ1 − λ)

λ1
‖t0ϕ1 + v‖p

−μ
[ ∫

�

[Ĥμ(x, t0ϕ1 + v) − Ĥ0(x, t0ϕ1)]dx
]

− 1

p

(λ1 − λ)

λ1
|t2|p + μ

[ ∫
�

[Ĥμ(x, t2ϕ1) − Ĥ0(x, t2ϕ1)dx
]

+μ
[ ∫

�

[Ĥ0(x, t2ϕ1) − Ĥ0(x, t0ϕ1)dx
]

≥ − 1

p

ν∗
1

λ1

[
2
(|T̂ | + â

4

)p]
μ − 2

â

4
μ + μâ

=
[

− 1

p

ν∗
1

λ1

(4T̂ + â)p

22p−1 + â

2

]
μ,

where T̂ = max{|t2|, |t3|}. Assuming further that 0 < ν∗
1 < pλ1â22(p−1)/(4T̂ + â)p , we

obtain Îλ,μ(t0ϕ1+v) > Îλ,μ(t2ϕ1) = max{ Îλ,μ(t2ϕ1), Îλ,μ(t3ϕ1)}. The proof of Lemma 3.1
is complete. ��
Next we present:

Proof of Theorem 1.4: Since ĥμ satisfies (H+
μ ) on (t1, t2) and (t3, t4), we find a > 0 and

0 < δ < min{t2 − t1, t4 − t3} such that⎧⎪⎪⎨
⎪⎪⎩

∫
�

ĥ0(x, tϕ1)ϕ1dx < −a < 0, ∀ t ∈ [t4 − δ, t4],∫
�

ĥ0(x, tϕ1)ϕ1dx > a > 0, ∀ t ∈ [t1, t1 + δ].
(3.9)

Given μ ∈ (0, μ∗
1) and |λ − λ1| < ν∗

1μ, μ
∗
1 and ν∗

1 given by Lemma 3.1, we define

cλ,μ = inf
γ∈�

max
0≤s≤1

Îλ,μ(γ (s)), (3.10)

where
� = {γ ∈ C([0, 1],W 1,p

0 (�)); γ (0) = t2ϕ1, γ (1) = t3ϕ1}. (3.11)

Since f̂ is a bounded function and (ĥμ) satisfies (Ĥ1), we may assert that Îλ,μ satisfies the
Palais-Smale condition. Hence, invoking Lemma 3.1 and the mountain pass theorem [5] (see
also [29]), Îλ,μ has a critical point uμ ∈ W 1,p

0 (�) such that

Îλ,μ(uμ) = cλ,μ > max{ Îλ,μ(t2ϕ1), Îλ,μ(t3ϕ1)}. (3.12)
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Take 0 < ν∗ < min{ν∗
1 , λ1a/T p−1}, with T = max{|t1|, |t2|} and a given by (3.9). We claim

that there exists μ∗
1 ∈ (0, μ∗) such that, for every μ ∈ (0, μ∗), |λ − λ1| < ν∗μ, we must

have {
uμ = tμϕ1 + vμ, with t1 + δ < tμ < t4 − δ, vμ ∈ X;
T1 < u(x) < T2, a.e. in �.

For proving such claim it suffices to verify that given sequences (μn) ⊂ (0, μ∗
1) and (λn) ⊂ R

such that μn → 0, as n → ∞, and |λn − λ1| < ν∗μn , for every n ∈ N, we may find, up to a
subsequence, n0 ∈ N such that, for every n ≥ n0,{

un := uμn = tμnϕ1 + vμn , with tμn ∈ (t1 + δ, t4 − δ), vμn ∈ X;
T1 < uμn (x) < T2, a.e. in �.

(3.13)

Setting gn(x) = λn f̂ (un(x)) + μnĥμn (x, un(x)), for every x ∈ �, and arguing as in the
proof of Theorem 1.2, we may suppose that there exists t ∈ R such that{

un → tϕ1, strongly in W 1,p
0 (�), as n → ∞;

un → tϕ1, strongly in C(�), as n → ∞.
(3.14)

Moreover −�p(tϕ1) = λ1 f̂ (tϕ1) in �. Hence

λ1

∫
�

f̂ (tϕ1)tϕ1dx = λ1

∫
�

|t |pϕ p
1 dx .

Note that the above relation implies that t ∈ [t1, t4]. Effectively, if t /∈ [t1, t4], by (3.3) and
our choices of T1 and T2, we have that the set E = {x ∈ �; | f̂ (tϕ1(x))| < |t |p−1|ϕ1(x)|p−1}
has positive measure and, consequently,

λ1

∫
�

f̂ (tϕ1)tϕ1dx < λ1

∫
�

|t |pϕ p
1 dx .

Next we assert that actually t ∈ (t1 + δ, t4 − δ). Indeed, if we suppose otherwise, by (3.9)
and the first limit in (3.14), we obtain

−
∫

�

ĥμn (x, un)undx → −t
∫

�

ĥ0(x, tϕ1)ϕ1dx > |t |a > 0. (3.15)

From (3.3) and |λn − λ1| < ν∗μn , we may write

0 = 〈 Î ′
λn ,μn

(un), un〉 ≥ ‖un‖p − λn‖un‖p
p − μn

∫
�

ĥμn (x, un)undx

≥ [ − ν∗‖un‖p

λ1
−

∫
�

ĥμn (x, un)undx
]
μn .

The above inequality, (3.14) and (3.15) imply that 0 ≥ −ν∗|t |p/λ1 + |t |a. However, this
inequality contradicts t �= 0 and 0 < ν∗ < λ1a/T p−1.

Using the above assertion and (3.14), we conclude that, up to subsequence, there exists
n0 ∈ N such that (3.13) holds for every n ≥ n0. The claim is proved.

From the above claim and definitions (3.1), we have that for every μ ∈ (0, μ∗) and
|λ − λ1| < ν∗μ, uμ = tμϕ1 + vμ is a solution of problem (1.1) such that t1 < tμ < t4.
Furthermore, by (3.5) and (3.12), uμ /∈ {u1μ, u2μ}, where u1μ and u2μ are the solutions of
problem (1.1) found by applying Theorem 1.2 in the intervals (t1, t2) and (t3, t4), respectively.
The proof of Theorem 1.4 is complete. ��
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3.2 Existence of nontrivial solutions

In this subsection we suppose that the function hμ satisfies the following hypothesis:

(H2) there exist η1 ∈ Lσ1(�), σ1 > max{ Np , 1}, such that

hμ(x, s) = o(η1|s|p−1), as s → 0 uniformly a.e. in � and μ ∈ [0, μ1).

Note that condition (H2) implies that u = 0 in � is a trivial solution of problem (1.1). In
our first result we establish the existence of an additional nontrivial solution under the above
condition and the hypotheses of Theorem 1.2.

Theorem 3.2 Suppose hμ satisfies (H1), (H2) and (H+
μ ) on the interval (t1, t2), with t1 > 0.

Then there exist positive constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and λ ∈
(λ1 −ν∗μ, λ1), problem (1.1) has two nonnegative nontrivial solutions uiμ = τiϕ1 +vi , vi ∈
X , i = 1, 2, τ1 ∈ (t1, t2) and τ2 ∈ (0, t2).

As a direct consequence of the above result, we may state:

Corollary 3.3 Suppose hμ satisfies the hypotheses of Theorem 1.4 and (H2). Then there exist
positive constants μ∗ and ν∗ such that, for every μ ∈ (0, μ∗) and λ ∈ (λ1 − ν∗μ, λ1),
problem (1.1) has four nontrivial solutions uiμ = τiϕ1 + vi , vi ∈ X , i = 1, 2, 3, 4, τ1 ∈
(t3, t4), τ2 ∈ (0, t4), τ3 ∈ (t1, t2) and τ4 ∈ (t1, 0)

Proof of Theorem 3.2: Since we are looking for nonnegative solutions we use a slightly dif-
ferent argument of the one employed in the proof of Theorem 1.5. Consider T1 = 0,
T2 = t2‖ϕ1‖∞ and χ ∈ C(R, [0, 1]) such that χ(s) = 1 if s ≤ T2, χ(s) = 0 if s ≥ T2 + 1,
and 0 < χ(s) < 1 otherwise. Then we define{

f̂ (s) = (s+)p−1χ(s), for every s ∈ R

ĥμ(x, s) = hμ(x, s+)χ(s), for every (x, s) ∈ � × R.
(3.16)

We also consider the associated quasilinear problem{
−�pu = λ f̂ (u) + μĥμ(x, u), in �,

u = 0, on ∂�.
(3.17)

By definition (3.16) and (H1) we have that hμ satiusfies (Ĥ1). We also have that f̂ satisfies
(F1) and ĥμ satisfies (2.26) with respect to the interval (t1, t2) since {tϕ1(x); t1 ≤ t ≤
t2, x ∈ �} ⊂ [T1, T2]. Applying Theorem 2.1 and Remark 2.8, we find (t̂1, t̂2) ⊂ (t1, t2),
μ̂∗ ∈ (0, μ1) and ν̂∗ > 0 such that, for every μ ∈ (0, μ̂∗) and |λ−λ1| < ν̂∗μ, problem (1.1)
has a weak nonnegative solution u1μ = τ1ϕ1 + v1, v1 ∈ X and τ1 ∈ (t1, t2). Moreover,

Îλ,μ(u1μ) < min{ Îλ,μ(t1ϕ1 + v); v ∈ X}, (3.18)

where Îλ,μ ∈ C1(W 1,p
0 (�),R) is the functional

Îλ,μ(u) = 1

p
‖u‖p − λ

∫
�

F̂(u)dx − μ

∫
�

Ĥμ(x, u)dx, ∀ u ∈ W 1,p
0 (�), (3.19)

with F̂(s) := ∫ s
0 f̂ (τ )dτ and Ĥμ(x, s) := ∫ s

0 ĥμ(x, τ )dτ , for every (x, s) ∈ � × R.
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As in the proof of Theorem 1.5, the second nonnegative solution u2μ for problem (1.1) is
derived by applying the mountain pass theorem. Fixing μ ∈ (0, μ̂∗) and λ ∈ (λ1 − ν̂∗μ, λ1),
we claim that there exist α, ρ > 0 such that

Îλ,μ(u) ≥ α‖u‖p, ∀ u ∈ Bρ(0). (3.20)

Given ε > 0, by (H2), (Ĥ1) and using the fact that p∗/σ ′ > p, there is A > 0 such that

|Ĥμ(x, s)| ≤ ε

p
|η1||s|p + Aη(x)|s| p∗

σ ′ , ∀ s ∈ R, a.e. in �,

with η and η1 given by (Ĥ1) and (H2), respectively.
From the above inequality and (3.16), we get

Îλ,μ(u) ≥ 1

p
‖u‖p − λ

p
‖u‖p

p − μ

p
ε

∫
�

|η1||s|pdx − A
∫

�

η(x)|u| p∗
σ ′ dx .

By Hölder inequality, σ, σ1 > N/p and the Sobolev imbedding theorem, we find c1, c2 > 0
such that

Îλ,μ(u) ≥ 1

p
‖u‖p − λ

p
‖u‖p

p − μ

p
εc1‖η1‖σ1‖u‖p − Ac2‖η‖σ ‖u‖ p∗

σ ′ .

Hence, using that ‖u‖p
p < 1/λ1‖u‖p , we get

Îλ,μ(u) ≥ 1

p

[ (λ1 − λ)

λ1
− μεc1‖η1‖σ1 − Apc2‖η‖σ ‖u‖(

p∗
σ ′ −p)]‖u‖p.

Noting that (λ1 − λ) > 0, we may choose ε > 0 such that (λ1 − λ)/λ1 − μεc1‖η1‖σ1 > 0.
Next, since p∗/σ ′ − p > 0, we may find α, ρ > 0 such that Îλ,μ satisfies (3.20). The claim
is proved.

Now we define
ĉλ,μ = inf

γ∈�
max
0≤t≤1

Îλ,μ(γ (t)), (3.21)

where
� = {γ ∈ C([0, 1],W 1,p

0 (�)); γ (0) = 0, γ (1) = u1μ}. (3.22)

By (3.18) and (3.20),
ĉλ,μ > max{ Îλ,μ(0), Îλ,μ(u1μ)}. (3.23)

Since Îλ,μ satisfies the (PS) condition, there exist uμ, a critical point of Îλ,μ, such that
Îλ,μ(uμ) = ĉλ,μ. From (3.23), uμ �= {0, u1μ}. Moreover, by (3.16) and (3.17), uμ ≥ 0 a.e.
in �.

Since hμ satisfies (H+
μ ) on (t1, t2), we find a > 0 and 0 < δ < t2 − t1 such that∫

�

ĥ0(x, tϕ1)ϕ1dx < −a < 0, ∀ t ∈ [t2 − δ, t2]. (3.24)

Take 0 < ν∗ < min{ν̂∗, λ1a/t2}. Let (μn) ⊂ (0, μ̂∗) and (λn) ∈ R such that μn → 0 as
n → ∞ and |λn − λ1| < ν∗μn , for every n ∈ N. For proving Theorem 3.2, we must verify
that, up to a subsequence, there is n0 ∈ N such that, for every n ≥ n0,{

un := uμn = τnϕ1 + vn, τn ∈ (0, t2), vn ∈ X;
0 ≤ un(x) < T2, a.e. in �.

(3.25)
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Setting gn(x, s) = λn f̂ (s) + μnĥμn (x, s), for every (x, s) ∈ � ×R, we may argue as in the
proof of Theorem 1.5 to conclude that (3.14) holds with t ∈ [0, t2]. Actually we note that
t ∈ [0, t2 − δ). Indeed, if we suppose otherwise, by (3.24) and (3.14), we obtain

−
∫

�

ĥμn (x, un)undx → −t
∫

�

ĥ0(x, tϕ1)ϕ1dx > ta > 0.

However this may not occur since, by (3.16) and λn < λ1,∫
�

ĥμn (x, un)undx ≤ 1

μn
〈 Î ′

λn ,μn
(un), un〉 = 0.

The fact that τn < t2 if n is sufficiently large, follows from t < t2 − δ and the first relation
in (3.14). We also note that un ≥ 0, un �= 0 in � implies that τn > 0.

The second relation in (3.25) follows by the second limit in (3.14). The Theorem 3.2 is
proved. ��

4 A second result on the existence of a minimax solution

4.1 Proof of Theorem 1.5

Following the argument used in Sects. 2 and 3,we begin the proof of Theorem1.5 by choosing
appropriated perturbations of the functions |s|p−1s and hμ(x, s). Themain difficult is that the
type of truncation employed in our proof of Theorem 1.5 does not provide the localization of
the projection of the solution on the direction of ϕ1. Here we consider a local perturbation of
hμ(x, s). We also remark that a key ingredient in the proof of Theorem 1.5 is the compactness
of the inverse of the p-Laplacian operator from Lσ (�) to C(�̄).

Invoking the conditions (H−
μ ) on (t1, t2) and (H+

μ ) on (t2, t3), we find a > 0 and 0 <

δ < t1 such that∫
�

h0(x, tϕ1)ϕ1dx < −a < 0, for every |t − ti | < δ, i = 1, 3. (4.1)

Fixed x0 ∈ �, we use the continuity of the eigenfunction ϕ1 to find r > 0 such that
B̄r (x0) ⊂ � and

(t1 − δ)max{ϕ1(x); x ∈ B̄r (x0)} < (t1 − δ/2)ϕ1(x0) < t1 min{ϕ1(x); x ∈ B̄r (x0)}, (4.2)

and we consider ψ ∈ Cc(Br (x0), [0, 1]) such that ψ(x) = 1, for every x ∈ B̄r/2(x0).
Setting T0 = (t1 − δ/2)ϕ1(x0), T1 = t1 min{ϕ1(x); x ∈ B̄r (x0)} and T2 = t3‖ϕ1‖∞, from

(4.2) and t1 < t3, we have that 0 < T0 < T1 < T2. Next we take 0 < δ1 < (T1 − T0)/2
and χ1 ∈ C(R, [0, 1]) such that χ1(s) = 0, if s ≤ T0 or s ≥ T1; χ1(s) = 1, if T0 + δ1 ≤
s ≤ T1 − δ1. Furthermore we consider χ2 ∈ C(R, [0, 1]) satisfying χ2(s) = 1, if s ≤ T2;
χ2(s) = 0, if s ≥ T2 + 1; and 0 < χ2(s) < 1, if T2 < s < T2 + 1.

Now, for every μ ∈ [0, μ1) and A > 0 to be chosen posteriorly (see Lemma 4.2), we
define {

f̂ (s) = (s+)p−1χ2(s), for every s ∈ R;
ĥμ(x, s) = hμ(x, s+)χ2(s) − Aχ1(s)ψ(x), for every (x, s) ∈ � × R,

(4.3)
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and we consider the associated problem{
− �pu = λ f̂ (u) + μĥμ(x, u), in �,

u = 0, on ∂�.
(4.4)

In the following lemma we present a list with the properties of the function ĥμ:

Lemma 4.1 Suppose hμ satisfies the hypotheses of Theorem 1.5. Then the family of functions
ĥμ, defined in (4.3), satisfies, for every μ ∈ [0, μ1),

(P1) ĥμ(x, s) = hμ(x, s+), if

(i) x ∈ � and s ∈ (−∞, T0] ∪ [T1, T2] or
(i i) x ∈ � − B̄r (x0) and s ∈ (−∞, T2].

(P2) ĥμ(x, s) = hμ(x, 0) ≥ 0, for every s ≤ 0, a.e in �.
(P3) ĥμ(x, tϕ1(x)) = hμ(x, tϕ1(x)), for every t1 ≤ t ≤ t3, x ∈ �.
(P4) ĥμ satisfies (Ĥ1), (H−

μ ) and (H+
μ ) on (t1, t2) and (t2, t3), respectively.

(P5) {
ĥμ(x, s) ≤ hμ(x, s+), for every s ≤ T2, a.e. in �;
Ĥμ(x, s) ≤ Hμ(x, s+) for every s ≤ T2, a.e. in �,

where Ĥμ(x, s) = ∫ s
0 ĥμ(x, t)dt, Hμ(x, s) = ∫ s

0 hμ(x, t)dt, for every s ∈ R, x ∈ �.

Proof The property (P1) is a direct consequence of (4.2), (4.3) and the properties of the
function ψ , χ1 and χ2. The property (P2) follows from property (P1) and hμ(x, 0) ≥ 0, for
almost every x ∈ �. Given t1 ≤ t ≤ t3, we have that 0 < tϕ1(x) ≤ t3‖ϕ1‖∞ = T2, for
every x ∈ �. Moreover, by (4.2), tϕ1(x) ≥ t1ϕ1(x) ≥ T1, for every x ∈ B̄r (x0). In view
of these facts, we may apply property (P1) to assert that property (P3) holds. The property
(P4) follows from the hypotheses of Theorem 1.5, the definition (4.3) and (P3). Finally we
observe that (P5) is a direct consequence of (P2), the definition of ĥμ, χ2(s) = 1 if s ≤ T2
and ψ(x)χ1(s) ≥ 0 for every s ∈ R, x ∈ �. The lemma is proved. ��

We also observe that f̂ , defined in (4.3), is a bounded function satisfying⎧⎪⎪⎨
⎪⎪⎩

f̂ (s) = 0, for every s ≤ 0;
f̂ (s) = s p−1, for every s ∈ [0, T2];
| f̂ (s)| < |s|p−1, for every s ∈ (−∞, 0) ∪ (T2,∞).

(4.5)

Considering F̂(s) = ∫ s
0 f̂ (t)dt , for every s ∈ R, we may invoke the property (P4) in Lemma

4.1 and (4.5) to conclude that the functional Îλ,μ : W 1,p
0 (�) → R, defined by

Îλ,μ(u) = 1

p
‖u‖p − λ

∫
�

F̂(u)dx − μ

∫
�

Ĥμ(x, u)dx, ∀ u ∈ W 1,p
0 (�), (4.6)

is of class C1. Furthermore critical points of Îλ,μ are weak solutions of problem (4.4).
We also remark that property (P2) in Lemma 4.1 and (4.5) imply that any critical point

u ∈ W 1,p
0 (�) of Îλ,μ is nonnegative almost everywhere in �.

Next result provides the appropriated value of A to be considered in definition (4.3).
Setting Dλ,μ = {u ∈ W 1,p

0 (�) ∩ L∞(�); Î
′
λ,μ(u) = 0, ‖u‖∞ ≤ T2, and u(x) ≤

T0, for almost every x ∈ Br (x0)}, we state:
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Lemma 4.2 Suppose hμ satisfies the hypotheses of Theorem 1.5. Then there exists A > 0 such
that the functional Îλ,μ, defined by (4.6), satisfies Îλ,μ(t1ϕ1) > max{ Îλ,μ(u); u ∈ Dλ,μ},
for every μ ∈ (0, μ1) and |λ − λ1| ≤ μ.

Proof First of all we note that by (H1) we have η ∈ Lσ (�) such that{
|hμ(x, s)| ≤ η(x), for every 0 ≤ s ≤ T2, a.e. in ∈ �;
|Hμ(x, s)| ≤ η(x)s, for every 0 ≤ s ≤ T2, a.e. in ∈ �.

(4.7)

Recalling that any critical point of Îλ,μ is nonnegative, given u ∈ Dλ,μ, by (4.7), (4.5) and
property (P1) of Lemma 4.1, we obtain

Îλ,μ(u) = Îλ,μ(u) − 1

p
〈 Îλ,μ(u), u〉

= μ

∫
�

[
1

p
hμ(x, u)u − Hμ(x, u)

]
dx ≤ μ

(p + 1)

p
T2‖η‖1. (4.8)

On the other hand, from (4.3), (4.5) and (4.6), we have that

Îλ,μ(t1ϕ1) = (λ1 − λ)

pλ1
t1

p−μ

∫
B r
2
(x0)

Ĥμ(x, t1ϕ1)dx−μ

∫
�−B r

2
(x0)

Ĥμ(x, t1ϕ1)dx . (4.9)

By property (P5) of Lemma 4.1, t1‖ϕ1‖∞ < T2 and (4.7), we obtain

Ĥμ(x, t1ϕ1(x)) ≤ Hμ(x, t1ϕ1(x)) ≤ η(x)t1ϕ1(x), for almost every x ∈ �. (4.10)

Consequently ∫
�−B r

2
(x0)

Ĥμ(x, t1ϕ1(x))dx ≤ t1‖ϕ1‖∞‖η‖1. (4.11)

Moreover we have that t1ϕ1(x) ≥ T1 and ψ(x) = 1, for every x ∈ B̄ r
2
(x0). Hence, using

(4.10) one more time, for almost every x ∈ Br
2
(x0), we get

Ĥμ(x, t1ϕ1(x)) = Hμ(x, t1ϕ1(x)) − A
∫ t1ϕ1(x)

0
χ1(s)ds ≤ t1ϕ1(x)η(x) − Ad,

where d = [(T1 − T0) − 2δ1] > 0. Therefore∫
B r
2
(x0)

Ĥμ(x, t1ϕ1(x))dx ≤ t1‖ϕ1‖∞‖η‖1 − Ad|Br
2
(x0)|.

From the above inequality, (4.9)-(4.11) and |λ − λ1| < μ, we get

Îλ,μ(t1ϕ1) ≥ [ − t1 p

pλ1
− 2t1‖ϕ1‖∞‖η‖1 + Ad|Br

2
(x0)|

]
μ.

The proof of Lemma 4.2 is a direct consequence of the above inequality and the estimate
(4.8). ��
Proof of Theorem 1.5: We fix A > 0 given by Lemma 4.2. By (4.1) and properties (P3) and
(P5) of Lemma 4.1, we have that∫

�

ĥ0(x, tϕ1)ϕ1dx ≤ −a < 0, when |t − t1| < δ, or t3 − δ < t ≤ t3. (4.12)

��
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In view of property (P4) of Lemma 4.1, ĥμ satisfies (Ĥ1) and (H+
μ ) on (t2, t3). Moreover

f̂ satisfies (F1) on the interval [0, T2]. Hence by Theorem 2.1–Remark 2.5, there exist
[t̂2, t̂3] ⊂ (t2, t3), μ∗

1, ν
∗
1 > 0 such that, for every μ ∈ (0, μ∗

1) and |λ − λ1| < μν∗
1 , Îλ,μ has

a critical point ûμ = t̂μϕ1 + v̂μ, t̂μ ∈ (t̂2, t̂3), v̂μ ∈ X . Moreover

Îλ,μ(ûμ) < min{ Îλ,μ(t2ϕ1), Îλ,μ(t3ϕ1)}. (4.13)

On the other hand, using that ĥμ satisfies (Ĥ1) and (H−
μ ) on (t1, t2), arguing as in the proof

of Lemma 3.1, we may assume that there exists t0 ∈ (t1, t2) such that

min{ Îλ,μ(t0ϕ1 + v); v ∈ X} > max{ Îλ,μ(t1ϕ1), Îλ,μ(t2ϕ1)}. (4.14)

Now we define
cλ,μ = inf

γ∈�
max
0≤τ≤1

Îλ,μ(γ (τ )), (4.15)

where
� = {γ ∈ C([0, 1],W 1,p

0 (�)); γ (0) = t1ϕ1, γ (1) = t2ϕ1}. (4.16)

From (4.14), we have
cλ,μ > max{ Îλ,μ(t1ϕ1), Îλ,μ(t2ϕ1)}. (4.17)

Since Îλ,μ satisfies the Palais-Smale condition, by (4.17) and the mountain pass theorem, we
have that cλ,μ is a critical value of Îλ,μ, i. e., there is uμ = tμϕ1 + vμ, tμ ∈ R, vμ ∈ X such
that Îλ,μ(uμ) = cλ,μ and Î

′
λ,μ(uμ) = 0.

We claim that there exists μ∗ ∈ (0, μ∗
1) and ν∗ ∈ (0, ν∗

1 ) such that⎧⎪⎨
⎪⎩
uμ = tμϕ1 + vμ, with tμ ∈ (t1 + δ/2, t3 − δ/2), vμ ∈ X;
0 < T1 ≤ uμ(x), a.e. in Br (x0);
‖uμ‖∞ ≤ T2.

(4.18)

For proving the above claim it suffices to verify that given sequences (μn) ⊂ (0, μ∗
1),

(λn) ⊂ R and (un) ⊂ W 1,p
0 (�) such that μn → 0, |λn − λ1|/μn → 0, as n → ∞, with un

a critical point of Îλn ,μn at level cλn ,μn , for every n ∈ N, we may find, up to a subsequence,
n0 ∈ N such that, for every n ≥ n0,⎧⎪⎨

⎪⎩
un = tnϕ1 + vn, with tn ∈ (t1 + δ/2, t3 − δ/2), vn ∈ X;
0 < T1 ≤ un(x), a.e. in Br (x0);
‖un‖∞ ≤ T2.

(4.19)

Defining gn(x) = λn f̂ (un(x)) + μnĥμn (x, un(x)), for every x ∈ �, and arguing as in the
proof of Theorem 1.2, we may suppose that there exists t ∈ R such that{

un → tϕ1 strongly in W 1,p
0 (�), as n → ∞;

un → tϕ1 strongly in C(�̄), as n → ∞.
(4.20)

Moreover −�p(tϕ1) = λ1 f̂ (tϕ1) in �. Using that un is a nonnegative function in � and
arguing as in the proof of Theorem 1.5, we obtain that t ∈ [0, t3]. Next we assert that actually
t ∈ [0, t3 − δ]. Indeed, arguing by contradiction, we suppose that t ∈ (t3 − δ, t3]. Using that
f̂ satisfies (4.5) and that un is a critical point of Îλn ,μn , we get

0 = 〈 Î ′
λn ,μn

(un), un〉 ≥ [ (λ1 − λn)

λ1μn
‖un‖p −

∫
�

ĥμn (x, un)undx
]
μn .
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Consequently, from (4.20) and (4.12) we get 0 ≥ at > 0. This contradiction implies that
effectively t ∈ [0, t3 − δ]. A similar argument implies that t /∈ (t1 − δ, t1 + δ).

We note that by t ∈ [0, t3 − δ] and (4.20), we find n1 ∈ N such that

‖un‖∞ < t3‖ϕ1‖∞ = T2, for every n ≥ n1. (4.21)

Our next step is to verify that t /∈ [0, t1 − δ]. Arguing by contradiction one more time, we
suppose that t ∈ [0, t1 − δ]. On this case, by the first inequality on (4.2), the choice of T0,
(4.20) and (4.21), we obtain that un ∈ Dλn ,μn , for n sufficiently large. Hence, by Lemma
4.2, cλn ,μn = Îλn ,μn (un) < Îλn ,μn (t1ϕ1). However, this fact contradicts (4.17). We conclude
that t /∈ [0, t1 − δ].

Considering the results above verified, we have that t ∈ (t1 + δ, t3 − δ). The first limit in
(4.20) implies that there exists n2 ∈ N such that tn ∈ (t1 + δ/2, t3 − δ/2) for every n ≥ n2.
Moreover, considering the second limit in (4.20), the second inequality in (4.2) and t ≥ t1+δ,
wemay assume that un(x) ≥ T1 > 0, almost everywhere in B̄r (x0), whenever n ≥ n2. Taking
n0 = max{n1, n2}, we obtain (4.19). The proof of the claim (4.18) is complete.

As a direct consequence of the claim proved above and property (P1) of Lemma 4.1, we
obtain that for every μ ∈ (0, μ∗

1) and |λ − λ1| < ν∗μ, uμ is a solution of problem (1.1).
Moreover, uμ = tμϕ1 + vμ, with tμ ∈ (t1, t3), vμ ∈ X and Îλ,μ(uμ) = cλ,μ, cλ,μ defined
by (4.15)-(4.16).

Applying a similar argument we have that problem (1.1) has a solution ûμ = t̂μϕ1 + v̂μ,
with t̂μ ∈ (t2, t3) and v̂μ ∈ X , such that ûμ is a critical point of Îλ,μ and it satisfies (4.13). We
conclude the proof of Theorem 1.5 by observing that the estimates (4.13) and (4.17) imply
that uμ �= ûμ.

5 Applications

In this section we present applications of our main results on the existence and multiplicity
of solutions for quasilinear indefinite problems depending on a parameter.

5.1 Application 1

In our first application we consider the existence of solutions for the following problem{
− �pu = λ|u|p−2u + βb1(x)|u|q1−2u f1(u) + b2(x)|u|q2−2u f2(u), in �,

u = 0, on ∂�,
(5.1)

where � is a bounded domain of RN , N ≥ 1; λ, β > 0; 1 < q1 < q2, with q2 > p, f1, f2 ∈
C(R,R) and b1, b2 ∈ Lσ (�), with σ > max{N/p, 1}.

It’s worthwhile mentioning that indefinite semilinear (p = 2) problems have been the
object of an intense research since the works by Alama and Tarantello [2], Berestycki et al.
[12] and Ouyang [26]—see [1,3,16–19,25] and references there in. For the corresponding
results for indefinite problemswith p-Laplacian operatorwewould like tomention the articles
[20,21,32].
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Setting

lim
s→0

f1(s) = f1(0), lim
s→0

f2(s) = f2(0),

r1 := f1(0)
∫

�

b1ϕ
q1
1 dx and

r2 := f2(0)
∫

�

b2ϕ
q2
1 dx,

we establish the following result:

Proposition 5.1 If 1 < q1 < q2, q2 > p and r1 > 0 > r2, then

(i) there exist positive constants β∗ and ν∗ such that problem (5.1) has a nonnegative

nontrivial solution for every β ∈ (0, β∗) and |λ − λ1| < ν∗β
q2−p
q2−q1 ;

(i i) if p < q1, there exist positive constants β∗∗ and ν∗∗ such that problem (5.1) has two

nonnegative nontrivial solutions for everyβ ∈ (0, β∗∗)andλ1−β
q2−p
q2−q1 ν∗∗ < λ < λ1.

Proof Rescaling the solution u by u = β
1

q2−q1 ω, we obtain that u is a nonnegative nontrivial
solution of problem (5.1) if and only if ω is a nonnegative nontrivial solution of the problem{

− �pω = λ|ω|p−2ω + μhμ(x, ω) in �,

ω = 0, on ∂�,
(5.2)

where μ = β
q2−p
q2−q1 and hμ(x, s) : � × R → R, for μ ≥ 0, is given by

hμ(x, s) = b1(x)(s
+)q1−1 f1(μ

1
q2−p s+) + b2(x)(s

+)q2−1 f2(μ
1

q2−p s+)

for every (x, s) ∈ �×R.We have that hμ is a family of Carathéodory functions. Furthermore,
hμ satisfies (H1) and Definition 1.1-(i i). Considering the function �0 : R → R given by

�0(t) =
∫

�

h0(x, tϕ1)ϕ1dx = r1(t
+)q1−1 + r2(t

+)q2−1,

we use that 1 < q1 < q2 and r2 < 0 < r1 to find 0 < t1 < t2 such that h0 satisfies the
hypotheses (H+

0 ).

(i) A direct application of Theorem 1.2 implies that there exist μ∗, ν∗ > 0 such that
problem (5.2) has a nonnegative nontrivial solution for every μ ∈ (0, μ∗) and |λ −
λ1| < ν∗μ. Taking β∗ = (μ∗)

q2−q1
q2−p , the proof follows from this result.

(ii) Using the definition of hμ and the inequality q1 < q2, we find c > 0 such that
|hμ(x, s)| ≤ c(|b1(x)| + |b2(x)|)|s|q1−1, for every 0 ≤ μ ≤ 1 and |s| ≤ 1. Since
b1, b2 ∈ Lσ (�), σ > max{N/p, 1} and q1 > p, we have that hμ satisfies (H2). The
item (i i) is a consequence of Theorem 3.2. ��

5.2 Application 2

We conclude this section by presenting an application of Corollary 1.6 when hμ is given by

hμ(x, s) =
m∑
i=0

aiμ(x, s)si , for every s ∈ R, a. e. in �, (5.3)

with aiμ being a Carathéodory function satisfying the following hypothesis:
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(A) aiμ(x, s) satisfies the hypotheses (H1) and, for every R > 0,

aiμ(x, s) → ai0(x), as μ → 0 uniformly for |s| ≤ R, a.e. in �.

Considering h0(x, s) = ∑m
i=0 a

i
0(x)s

i , the associated function �, given by

�(t) =
∫

�

h0(x, tϕ1)ϕ1dx =
m∑
i=0

t i
∫

�

ai0(x)ϕ
i+1
1 dx =

m∑
i=0

di t
i ,

where di = ∫
�
ai0(x)ϕ

i+1
1 dx, i = 1, · · · ,m, is a polynomial function in the variable t . Note

that under the condition (A), hμ satisfies (H1) and the item (i i) in Definition 1.1.
As a consequence of Corollary 1.6, wemay state a result on the existence ofmultiple solutions
for problem 1.1 depending on the number of roots of odd multiplicity of �:

Proposition 5.2 Suppose (A), a0μ(x, 0) ≥ 0 in � and dm < 0. Then, if the function � has k
roots of odd multiplicity, τ1, . . . , τk ∈ (0,∞), then there exist positive constants μ∗ and ν∗
such that, for every 0 < μ < μ∗ and |λ − λ1| < μν∗, problem (1.1) has k weak solutions
u1, . . . , uk.

Remark 5.3 A typical model for hμ satisfying the hypothesis of Proposition 5.2 is obtained
by considering aiμ(x, s) = ai0(x) exp(μ

βi sri ), βi > 0, ri ≥ 0, 1 ≤ i ≤ m.

Proof Without loss of generality we may suppose that τ1 < τ2 < · · · < τk . From the
hypothesis of Proposition 5.2 we may write

�(t) = (t − τ1)
2n1−1 · · · (t − τk)

2nk−1(t − c1)
2z1 · · · (t − cl)

2zl p(t),

with n1, . . . , nk, z1, . . . , zl ∈ N and p(t) a product of irreducible quadratic polynomi-
als. As a direct consequence of above expression, we may find t1, . . . , tk+1 such that
t1 ∈ (−∞, τ1), tk+1 ∈ (τk,∞) and ti ∈ (τi−1, τi ), i = 2, . . . , k, c j /∈ (ti , ti+1), for every
i = 1, . . . , k and j = 1, . . . , l; �(ti )�(ti+1) < 0, i = 1, . . . , k; and �(tk+1) < 0. Hence
hμ satisfies (Hμ)k .

Noting that hμ also satisfies (H1), we may apply Corollary 1.6 to find positive constants
μ∗ and ν∗ such that, for every 0 < |μ| < μ∗ and |λ − λ1| < μν∗, Problem (1.1) has k
solutions ui = t̂iϕ1 + vi , with t̂i ∈ (ti , ti+1) and vi ∈ X , i = 1, . . . , k, and the proof of
Proposition 5.2 is complete. ��
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de Análisis Matemático, Universidad de Granada. They would like to present their gratitude for the warm
hospitaltiy of the whole members of that department.
First author is supported by FEDER-MEC (Spain) PGC2018-096422-B-I00 and Junta deAndalucía FQM-116.
Third author is supported by CNPq (Brazil) 311808/2014-0 and 312060/2018-1.

Appendix

Proof of Theorem 2.6: By Stampacchia method [33], there is M = M(‖g‖σ ) such that

‖u‖∞ ≤ M . (6.1)

Next, given k ≥ 0 and a ball Bρ of RN , ρ > 0, we consider η(x) = ξ p|u − k|+, where
ξ : Bρ → [0, 1] is a smooth function of compact support on Bρ . Setting Ak,ρ = {x ∈
Bρ ∩ �; u(x) > k} and considering that η ∈ W 1,p

0 (�), from (2.23), we get

123



Quasilinear problems under local Landesman–Lazer condition Page 25 of 27 210

∫
Ak,ρ

ξ p|∇u|pdx + p
∫
Ak,ρ

|u − k|ξ p−1|∇u|p−2∇u · ∇ξdx =
∫
Ak,ρ

g(x)ξ p(u − k)dx .

Consequently, by Hölder inequality,∫
Ak,ρ

ξ p|∇u|pdx ≤ p
∫
Ak,ρ

ξ p−1|∇u|p−1|u − k||∇ξ |dx + ‖u‖∞‖g‖σ |Ak,ρ |1− 1
σ .

Next, using the Young inequality, we get

pξ p−1|∇u|p−1|u − k||∇ξ | ≤ 1

2
|u − k|p|∇ξ |p + 2p−1(p − 1)p−1|u − k|p|∇ξ |p.

Combining the above inequalities, we obtain∫
Ak,ρ

ξ p|∇u|pdx ≤ 2p(p − 1)p−1
∫
Ak,ρ

|u − k|p|∇ξ |pdx + 2‖u‖∞‖g‖σ |Ak,ρ |1− 1
σ .

(6.2)

Now, given δ > 0, we let k ≥ 0 be such that supBρ∩�[u(x) − δ] ≤ k. From these values of
k, we take ξ such that ξ(x) = 1 for every x ∈ Bρ−μρ , for 0 < μ < 1, in such a way that
|∇ξ | < c

μρ
. Then, from (6.2) we may write∫

Ak,(1−μ)ρ

|∇u|pdx ≤ 2p(p − 1)pcp

(μρ)p
sup
Ak,ρ

|u − k|p|Ak,ρ | + 2‖u‖∞‖g‖σ |Ak,ρ |1− 1
σ

=
[2p(p − 1)p−1cp

μpρ p
|Ak,ρ | 1

σ sup
Ak,ρ

|u − k|p + 2‖u‖∞‖g‖σ

]
|Ak,ρ |1− 1

σ

≤
[2p(p − 1)p−1c

μpρ p
|cN | 1

σ ρ
N
σ sup

Ak,ρ

|u − k|p + 2‖u‖∞‖g‖σ

]
|Ak,ρ |1− 1

σ

or, equivalently, ∫
Ak,(1−μ)ρ

|∇u|pdx ≤ γ
[max |u − k|p

μpρ
p(1− N

pσ )
+ 1

]
|Ak,ρ |1− p

σ p ,

where γ = max{2‖u‖∞‖g‖σ , cN
1
σ 2p(p − 1)p−1}.

Observing that we obtain the same estimate for the function −u(x) for every k >

supBρ∩�[−u(x) − δ], by taking η(x) = ξ p(−u − k)+, we may assert that u ∈
Bp(�, M, γ, δ, 1

σ p ), where Bp is as defined in [22, p. 90].
Since σ p > N , we may invoke Theorem 7.1 in [22] to find that there is c > 0 and

α ∈ (0, 1) such that ‖u‖C0,α(�) ≤ c with the constants c and α depending on p, M, γ, δ, σ

and �. In view of (6.1), this concludes the proof of Theorem 2.6. ��
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