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Abstract

In this article we use a flatness improvement argument to study the regularity of the free
boundary for the biharmonic obstacle problem with zero obstacle. Assuming that the solution
is almost one-dimensional, and that the non-coincidence set is an non-tangentially accessible
domain, we derive the C!“-regularity of the free boundary in a small ball centred at the
origin. From the C!-%-regularity of the free boundary we conclude that the solution to the
biharmonic obstacle problem is locally C* up to the free boundary, and therefore C2!.
In the end we study an example, showing that in general €27 is the best regularity that a
solution may achieve in dimension n > 2.
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1 Introduction

Let @ C R" be a given domain, and ¢ € C 2(5), ¢ < 0on 02 be a given function, called an
obstacle. Then the minimiser to the following functional

Jlu] :/ (Au(x))? dx, (1.1
Q

over all functions u € Wg ’2(52), such that u > ¢, is called the solution to the biharmonic
obstacle problem with obstacle ¢. The solution satisfies the following variational inequalities

Au>0,u>¢, Au-(u—¢)=0. (1.2)

It has been shown in [1] that the solution u € WISO‘CZ(Q), and in [2] that Au € L7, (),

and moreover u € WIZO’COO(Q), see also [3]. Furthermore, in the paper [3], the authors show
that in dimension n = 2 the solution u € C%($2) and that the free boundary I'), := d{u = ¢}
lies on a C!-curve in a neighbourhood of the points xg € I',,, such that Au(xg) > Ap(xp).

The setting of our problem is slightly different from the one in [1,3] and [2]. We consider
a zero-obstacle problem with general nonzero boundary conditions. Let €2 be a bounded
domain in R” with smooth boundary. We study the minimiser of the functional (1.1) over the
admissible set

3
o = {ueWZ’Z(Q), w0, u:g>0,a—”:fonasz}.
%

The minimiser u exists, it is unique, and is called the solution to the biharmonic obstacle
problem. We will denote the free boundary by I';, := 92, N 2, where @, := {u# > 0}.

There are several important questions regarding the biharmonic obstacle problem that
remain open. For example, the optimal regularity of the solution, the characterisation of
blow-ups at free boundary points, etc. In this article we focus on the regularity of the free
boundary for an n-dimensional biharmonic obstacle problem, assuming that the solution is
close to the one-dimensional solution %(x,,)i. In [4], using flatness improvement argument,
the author, John Andersson, shows that the free boundary in the p-harmonic obstacle problem
isa C1: graph in a neighbourhood of the points where the solution is almost one-dimensional.
We apply the same technique in order to study the regularity of the free boundary in the
biharmonic obstacle problem.

In Sect. 2 we study the basic properties of the solution, adapted to our setting. The existence,
uniqueness as well as Wﬁ;f N C, e -regularity of the solution are known. For the sake of
completeness statements and some sketched proofs are included, together with references.

In Sect. 3 we introduce the class %2 (¢) of solutions to the biharmonic obstacle problem,
which are close to the one-dimensional solution % (xp )1. Following the linearisation argument
by John Andersson (see for instance [4]), we show that if ¢ is small enough, then there exists
arescaling ug(x) = @, such that

||V/“s||W2<2(32) =< VHV/“”W“(BQ) <ye

in a normalised coordinate system, where V;] =V —-nn- V),V = V;”, andy < lisa
constant. Repeating the argument for the rescaled solutions, u«, we show that there exists a
unit vector 19 € R”, such that

/
Vot lw22emy _ 4

(1.3)
1D3ugll12p,)
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for some 0 < s < y < 1. Then the C'**-regularity of the free boundary in a neighbourhood
of the origin follows via a standard iteration argument.

From the C'"-regularity of the free boundary it follows that Au € C' up to the free
boundary, furthermore, u is C>% up to the free boundary. Thus a solution u € %2 (¢) is locally
C?>!, which is the best possible regularity. We provide a two-dimensional counterexample
to the C?!-regularity, showing that without our flatness assumptions there exists a solution
that is C22 but is not C> for & > % Hence C27 is the best regularity that a solution may
achieve in dimension n > 2.

2 The obstacle problem for the biharmonic operator

This section can be viewed as a background text, where we present the known regularity
theory for the biharmonic obstacle problem, with adaptations to our problem. The material in
this section is known for the biharmonic obstacle problem with a general obstacle, and zero
boundary conditions. Later on in Sect. 3 we will need quantitive estimates for | u|| w32 and

oc
for [lull -1, hence we decided to include these estimates in the manuscript, with references
loc

to the original papers.

2.1 The known regularity theory for the solution

The existence and uniqueness of the minimiser of functional (1.1) over the admissible set
</ follows by standard arguments in the calculus of variations, see for instance [5]. We give
a summary of the known regularity theory for the solution. The following result is due to
Frehse, see [1].

Theorem 2.1 (J. Frehse) Let u be the solution to the biharmonic obstacle problem in <2,
where Q C R" is an open bounded set. Then

lullwszery < Cllullw2q),

for any given V.CC 2, where C > 0 is a universal constant, depending only on the space
dimension and sets V , 2, but not on the solution u.

Now let us discuss further properties of the solution, referring to the paper by Caffarelli
and Friedman [3].

Lemma 2.2 The solution to the biharmonic obstacle problem satisfies the following equation
in the distribution sense

AU = py, @2.1)
where [, is a positive measure on Q.

Proof For any nonnegative test function n € Cg§°(£2), the function u + & is obviously
admissible for any ¢ > 0. Hence J[u + en] > J[u], consequently

/sz(An)z +2eAuln >0,

and after dividing by ¢ and letting & go to zero, we obtain

/AuAn >0,
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forall n € Cg°(R),n =0, so A2y > 0 in the sense of distributions.
Let us study the following linear functional A(n) = fQ Auln, n € C°(2). By the
Riesz theorem, A is a positive measure, let us denote it by u := ;. Then A%y = py in the

sense that
/AuAn:/ndpLu.
Q Q

for every n € C;°(2). O

Corollary 2.3 There exists an upper semicontinuous function w in Q, such that v =
Au a.e. in Q.

Proof For any fixed xo € €2, the function
wy(xg) := ][ Au(x)dx
Br(XO)

is decreasing in r > 0, since Au is subharmonic by Lemma 2.2. Define w(x) :=
lim,_o @, (x), then w is an upper semicontinuous function. On the other hand w,(x) —
Au(x)asr — 0 a.e., hence w = Au a.e. in Q. O

In [2] Frehse proved that Au € Ly , later on L. Caffarelli and A. Friedman gave another
proof to the same result, see Theorem 3.1 in [3]. Below we follow the proof in the latter
paper in order to obtain a quantitative estimate on ||Au||ze in our setting. The next lemma

is a restatement of the corresponding result in [3], Theorem 2.2.

Lemma24 Let @ C R”" be a bounded open set with a smooth boundary, and let u be a
solution to the biharmonic obstacle problem with zero obstacle. Denote by S the support of
the measure j, = A%u in Q, then

w(xg) >0, foreveryxge S. 2.2)

Proof The detailed proof of Lemma 2.4 can be found in the original paper [3] and in the
book [6, pp. 92-94], so we will 2provide only a sketch, showing the main ideas.
Extend u to a function in W, (;Z(R”), and denote by u, the e-mollifier of u. Let xg € €,

C
assume that there exists a ball B, (xp), such thatu, > « > 0in B, (xo). Letn € CSO(B, (x0)),
n = 0and 5 = 1in By/>(xo). Then for any ¢ € C§°(By/2(x0)) and 0 < ¢ < 57— the
function

v=nue + (1 —nu£1g

is nonnegative and it satisfies the same boundary conditions as . Hence

/ (Au)? < / (A(us + (1 —mu £12))%,

after passing to the limit in the last inequality as ¢ — 0, we obtain

/(Au)2 < /(Au +1A7)?,

/AuA; =0,

Therefore
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for all ¢ € C3°(B,/2(x0)), hence A%y =0in By 2(xp) and xo ¢ S. It follows that if xg € S,
then there exists x,, € 2, x,, — xo, and &,, — 0, such that

Ug, (Xp) — 0, asm — oo.

Then by Green’s formula,
Ug,, (xXp) = ][ usdenil - / Ausm MV —y)dy,
8B (xm) By, (xm)

where p < dist(xp, dR2) and —V (z) is Green’s function for Laplacian in the ball B,(0).
Hence

m—0o0

lim inf / Autg, (Y)V (xm — y)dy = 0,
Bp(xm)

Then it follows from the convergence of the mollifiers and the upper semicontinuity of w,
that w (xg) > 0, for any x¢ € S. O

Knowing that A is a subharmonic function, and @ > 0 on the support of A%u, we can
show that Au is locally bounded (Theorem 3.1 in [3]).

Theorem 2.5 Let u be the solution to the biharmonic obstacle problem with zero obstacle in
Q, By CC Q. Then

lAullLes 5 < Cllullw22q), (2.3)
where the constant C > 0 depends on the space dimension n and on dist(B1, 0Q2).

Proof The detailed proof of the theorem can be found in the original paper [3], Theorem 3.1,
and in the book [6, pp. 94-97]. Here we will only provide a sketch of the proof.
Let w be the upper semicontinuous equivalent of Au and xo € By 2, then

(xg) < ]L Au(x)dx,
Bi2(x0)

since w is a subharmonic function. Applying Holder’s inequality, we obtain

_1
w(x0) < |Bi2| 2| Aullp2p))- 24

It remains to show that Au is bounded from below in By . Let ¢ € C°(B1), { = lin
Byj3 and 0 < ¢ < 1 elsewhere. Referring to [6, p. 96], the following formula holds for any
X € B2

wx) = —/ Vx —ydp — / LV (x — ) A udy +8(x), 2.5)
Bi2 B1\B1)2

where V is Green’s function for the unit ball By, and § is a bounded function,

||3||L°°(Bl/2) <Cp ||Au||L2(Bl). (2.6)

Denote

V() = / V@ — y)du(y).
By

@ Springer



206 Page6 of 28 G. Aleksanyan

then V is a superharmonic function in R”, and the measure v := AV is supported on
So := B2 N S, moreover according to Lemma 2.4, (2.2)

V(x) < —w(x) +8(x) < 8(x) on Sp.

Taking into account that V (400) < 00, the authors in [3] apply Evans maximum principle,
[7] to the superharmonic function V — V (+00), and conclude that

V(x) < I8loo(s,,,) in R™. 2.7)
It follows from equation (2.5) that
®(x) = —|I8llLoo(By ) — Cniu(B1) + 8(x), (2.8)

for any x € By3.
Let n € C§°(2) be a nonnegative function, such that » = 1in By and 0 < n < 1in Q.
Then

1a(Br) < /Q ndp, = /Q Auly < |Aull 2l A7] 2 g,
and 7 can be chosen such that ||Anllz2q) < C(dist(B1, 9€2)). Hence

wy(By) < C”A“”LZ(Qy (2.9)

where the constant C > 0 depends on the space dimension and on dist(Bj, 0€2).
Combining the inequalities (2.4) and (2.8) together with (2.9), (2.6), we obtain (2.3). O

Corollary 2.6 Let u be the solution to the biharmonic obstacle problem in Q. Thenu € C llo’g,
forany 0 < o < 1, and
lullcrexy = Cllullw2(qys (2.10)

where the constant C depends on the space dimension and dist(K, 092).
Proof It follows from Theorem 2.5 via a standard covering argument, that
|AullL=k) < C||M||W2v2(9)~

Then inequality (2.10) follows from the Calderén—Zygmund inequality and the Sobolev
embedding theorem. O

According to Corollary 2.6, u is a continuous function in €2, and therefore the noncoinci-
dence set 2, := {u# > 0} is an open subset of Q2. Define the free boundary by

I, =09, NQ. @2.11)

By standard arguments in the theory of free boundary problems, we can see that u is a
biharmonic function in the noncoincidence set €2,,. It follows from our discussion that i, =
A%y is a positive measure supported on I',, and the variational inequalities (1.2) holds with
¢ =0.

3 Regularity of the free boundary
In this section we investigate the regularity of the free boundary I';,, under the assumption
that the solution to the biharmonic obstacle problem is close to the one-dimensional solution

1
E(Xn)%,u
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3.1 One-dimensional solutions

First we find the explicit solution to the biharmonic obstacle problem in the interval (0, 1) C
R.

Example 3.1 The minimiser u of the functional
1
Jul = / (" (x))*dx, 3.1)
0

over nonnegative functions u € W22(0, 1), with boundary conditions u(0) = 1, u’(0) =
A < —=3and u(l) =0, u’(1) = 0, is a piecewise 3-rd order polynomial,

3

3
up(x) = % <x + ;) , x€(0,1), (3.2)

hence ug € C%1(0, 1).

Proof Let ug be the minimiser to the given biharmonic obstacle problem. If 0 < xp < 1,
and ug(xg) > 0, then [ugn” = 0, for all infinitely differentiable functions 7 compactly
supported in a small ball centered at xo. Hence the minimiser uq has a fourth order derivative,
u(()4) (x) =0if x € {up > 0}. Therefore ug is a piecewise polynomial of degree less than or
equal to three. Denote by y € (0, 1] the first point where the graph of ug hits the x-axes. Our
aim is find the explicit value of y. Then we can also compute the minimiser u.

Observe that ug(y) = 0, and ué(y) = 0, since u6 is an absolutely continuous function
in (0, 1). Taking into account the boundary conditions at the points 0 and y, we can write
up(x) = ax3 + bx? + Ax + 1 in (0, y), where

Ay +2

a= , b=

20y +3
y? '

)/2

We see that the point y is a zero of second order for the third order polynomial ug, and ug > 0
in (0, y]. That means the third zero is not on the open interval (0, y), hence y < —%.
Consider the function

14 2
F(y) :=/0 (u” (x))dx,

then F(y) = % (Azy2 +3Ay +3).Hence F'(y) = — %(ky +3)2, showing that the function

F is decreasing, so it achieves minimum at the point y = —%. Therefore we may conclude
that

23 3\°
uo(x) = 75 <x + X)_’ x € (,1), (3.3)

and y = —3 is a free boundary point. Observe that u”(y) = 0, and u” is a continuous

x
function, but u”” has a jump discontinuity at the free boundary point y = —% |

The example above characterises one-dimensional solutions. It also tells us that one-
dimensional solutions are C%!, and in general are not C 3,
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3.2 Theclass %l‘: (€) of solutions to the biharmonic obstacle problem

Without loss of generality, we assume that 0 € I'y, and study the regularity of the free
boundary, when u ~ %(xn)i.
Let us start by recalling the definition of non-tangentially accessible domains [8].

Definition 3.2 A bounded domain D C R” is called non-tangentially accessible (abbreviated
NTA) when there exist constants M, ro and a function / : Ry +— N such that

1. D satisfies the corkscrew condition; that is for any xg € 9D and any r < ry, there exists
P = P(r, xo) € D such that

M~'r <|P —xo| <r and dist(P,dD) > M~ 'r. (3.4)

2. D¢ :=R"\D satisfies the corkscrew condition.

3. Harnack chain condition; if € > O and Py, P, € D, dist(P;,0D) > €, and |P| — P>| <
Ce, then there exists a Harnack chain from P; to P, whose length / depends on C, but not
one, ! =[(C). A Harnack chain from P to P, is a chain of balls B,, @ k=1,...,1
such that Py € B, (x!), P, € B, (x"), B, (x*) N By, (x**1) # ¢, and

Mry > dist(By, (x*),9D) > M~ 'r;. (3.5)
Let us define rigorously, what we mean by u ~ é(xn)i.

Definition 3.3 Let # > 0 be the solution to the biharmonic obstacle problem in a domain €,
By CC Q and assume that 0 € I';, is a free boundary point. We say that u € B (), if the
following assumptions are satisfied:

1. u is almost one dimensional, that is
||V/u||W2v2(32) <e,
where V/ :=V — e,,%.
2. The set €, := {u > 0} is an NTA domain with constants 1o = M~! = o, and with a
function /, indicating the length of a Harnack chain.

3. There exists 2 > ¢t > 0, such thatu = 0 in B> N {x, < —t}.
4. We have the following normalisation
1
1 | B2
3 3 3 —
1D ul 2y = g | D° i ] 2,y = S Ten (3.6)
and we also assume that
1D ull 2, <, (3.7)

where k > % || D3(x,,)i||L2(Bz) = Z%wn.

In the notation of the class %2 (&) we did not include the length function /, since later it
does not appear in our estimates. For the rest of this paper we will assume that we have a
fixed length function /. Later on in Corollary 3.6 we will see that the precise value of the
parameter ¢ in assumption 3 is not very important, and therefore we also omit the parameter
t in our notation. From now on x > Z%a),, and 1 > o > 0 are fixed parameters.

Evidently %(x,,)i € % (¢), for any ¢ > 0 and o > 0. We show thatif u € B (¢), with
& > Osmall, thenu ~ %(xn)ﬁ_ in W32 (By). First we need to prove the following easy lemma.
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Lemma 3.4 Let u be the solution to the biharmonic obstacle problem in Q2. Take K CC L,
and a function § € C°(K), £ > 0, then

/ Aux,-A(guxi) S 05 (3'8)
Q

foralli =1,2,...,n.

Proof Fix 1 <i < n, denote u; j(x) := u(x + he;), where 0 < |h| < dist(K, d€2), hence
u; , is defined in K. Let us observe that the function u + ¢ (u; , — u) is well defined and

nonnegative in 2 forany 0 < ¢ < , and it satisfies the same boundary conditions as u.

_ 1
[IZ 1z 00
Therefore

2
| g —m) = [ @
Q Q
after dividing the last inequality by #, and taking the limit as 1 — 0, we obtain

/ Aul(G(uip —u)) = 0. (3.9
K

Note that u; j is the solution to the biharmonic obstacle problemin K, and u; , +1 (u —u; )
is an admissible function, hence

2
/ (Ain+ 15 —uin)” = / (Aui ),
K K
after dividing the last inequality by ¢, and taking the limit as t — 0, we obtain
[ s = = o (3.10)
K
Inequalities (3.9) and (3.10) imply that

/ (Aujp — Au)A(uin —u)) <0, (3.11)
K

dividing the last inequality by 4%, and taking into account that u € Wﬁo’f, we may pass to the
limit as |2| — 01in (3.11), and conclude that

/ Auy; A(Cuy,) < 0.
K

Lemma 3.5 There exists a modulus of continuity o = o (&) > 0, such that

<o(e), (3.12)
W3.2(Bl)

1 3
u(x) — g(xn)+

for any u € %L (e).

Proof We argue by contradiction. Assume that there exists op > 0 and a sequence of solutions,
wl e #2 (&), such that

||V/uj ”WZ,Z(BZ) = 8j — O,
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but

J 1 3
u ()C) - g(x’l)+ > o) > 0. (313)

w32(By)

According to assumption 4 in Definition 3.3, || D3u/ | 12(B,) < k andaccording to Assump-
tion 2 the functions u#/ are vanishing on an open subset of B,. Therefore it follows from the
Poincaré inequality that || | w32(p,) < C(0, n)x.Henceup toasubsequence ul —u° weakly
in W32(By), u/ — u° strongly in W22 (B,) and according to Corollary 2.6 u/ — u°
C%(B32). Hence

in
7.0 : 1 1
IV'u"llyr2p,) = lim ||V uJ”W‘vQ(Bz) < lim ¢; =0.
j—o00 J—00

This implies that x° is a one-dimensional solution (depending only on the variable x,,).
Example 3.1 tells us that one-dimensional solutions in the interval (—2, 2) have the form

U () = 10y —and + 2y —a2)3,

where c1, cp > O and —2 < a; < ap < 2 are constants. According to assumption 3 in
Definition 3.3, u° = = c(x, — a)3 In order to obtain a contradiction to Assumption (3.13),
we need to show that u/ — ug = 5 (x,,) % in W32(B)). The proof of the last statement can
be done in two steps.

Step 1 We show that

ul — c(xy —a)} in W(By). (3.14)

Denote u{; = % e W22(By), j € Nog,and let ¢ € C(‘)’O(B%) be a nonnegative function,

such that ¢ = 1 in Bj. According to Lemma 3.4,
0> / A(cul) Au =/ whACAul + | c(Aul)? + 2/ VeVl Aul,
B By B B
and therefore

limsup | ¢(Au))?® <— lim | ujAzAu)—2 lim [ V¢V Au

j—>00 B2 J—>00 32 J—>00 32

= —/ ud AL Aud —2/ Vevud Aud :/ c(Aud)?,
B B By

where in the last step we used integration by parts.
On the other hand, since Au,ﬁ—\Aug weakly in L2%(By), it follows that

(3.15)

lim inf ;(Au{;)zz/ c(Au®)?. (3.16)
B

J—>00 32

Therefore, we may conclude from (3.15) and (3.16) that
im [ sy = / C(Aud)?.
.]4)00

Hence we obtain

AUl AU’

- in L>(B)).
Xy, 0Xxy, ! (B1)
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Similarly 33;;" — 0in L?(B)), fori = 1,...,n — 1. Knowing that

IVAu = VAL 205, — 0, and [/ —u®lly225,, — O,

we may apply the Calderén—Zygmund inequality, and conclude (3.14). Recalling that
||D3u/||L2(BI) = wp, we see that

ID*u®l 125,y = @n. (3.17)
Since u? = ¢(x,, — a)3. > 0, it follows that

1D N o,y = *L"(B1 N oy > a}) > 0,

hence
c>0and a < 1. (3.18)

Step 2 We show that @ = 0 and ¢ = . Taking into account that u/ — u® in C'** and
uj(O) = 0, we conclude that uO(O) = 0, thus @ > 0. Assume that @ > 0. Since 0 € I';, and
2; is an NTA domain, there exists P; = P(r,0) € Q;, for 0 < r < min(g, a/2) as in the
corkscrew condition,

or < |Pj| <randdist(P;, d2;) > or.

Therefore up to a subsequence P; — Py, hence ro < |Py| <r, B.(Py) C Qj, forall j
large enough, where 0 < r’ < rg is a fixed number. Since we have chosen r < a/2, we may
conclude that

B, (Py) C {xy <a}NQ;.
Thus Au/ is a sequence of harmonic functions in the ball B,/ (Pyp), and therefore
Aul =0 locally uniformly in B, (Py), (3.19)

according to (3.14).

Let Q := e,, then uO(Q) =c(l —a)® > 0, since u/ — u° uniformly in B3/, we see
that u/ (Q) > 0 for large J»and Q € Q;. Therefore there exists a Harnack chain connecting
Py with Q; {B,1 (x, B,, (xz) ., By, xhy ¢ Qj, whose length / does not depend on j.
Denote by K/ := U; B, (x") CcC Q], and let V/ cc K/ cc Q; where VJ is a regular
domain, such that dist(KJ,9V7/) and dist(V/, 9Q2; ;) depend only on r and o.

Let w’, be a harmonic function in V/, with boundary COIIdlthIlS w’, L= = (Au/)y >0on

VJ, then wJr Au’ is a harmonic function in V/, and wJr Aul = (Au/)_ > 0ondV/
, hence

Let us observe that Au/ — Au® = 6¢(x, — a)4 implies that ||(Au1),||Lz(B2) — 0. Since
(Au’)_ is a subharmonic function in j»and viccQ j it follows that

I(Au) Nl oo vy < Cln,r, ) I(AU) |l 125y — 0.

So wi is a nonnegative harmonic function in V7, and by the Harnack inequality

1
Cy inf wi > sup w+ > w+(en) > Aul(e,) > = Aug(ey) = 3c(1 — a),
By ) B,y () 2
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if j is large, where Cy is the constant in Harnack’s inequality, it depends on o and r but not
on j. Denote C(a, c¢) := 3c(1 —a) > 0 by (3.18). Applying the Harnack inequality again,
we see that

. : ; C(a,c
Cy inf wfr > sup wﬁr > inf wfr > @ c¢)
Brl—l (x!I=1) Br171 (xl=1y Br[ x!) CH
Inductively, we obtain that
; ; C(a,c
Cy inf wl > sup wl > ( ), (3.21)
N + =1
By (x1) B (1) Ch

where [ does not depend on j. Hence wi(Po) > %ﬁ:) for all j large, and according to

(3.20),

C(a,c)
Cl

lim Au/ (Py) > >0,
j—)OO

the latter contradicts (3.19). Therefore we may conclude that a = 0.
Recalling that ||D3u0||L2(B]) = wy, we see that ¢ = é, but then we obtain u/ — é(xn)i
in W3-2(B;) which is a contradiction, since we assumed (3.13). ]

Lemma 3.5 has an important corollary, which will be very useful in our later discussion.

Corollary 3.6 Let u be the solution to the biharmonic obstacle problem, u € %2 (¢). Then for
any fixed t > 0 we have that u(x) = 0in By N {x, < —t}, provided ¢ = &(t) > 0 is small.

Proof Once again we argue by contradiction. Assume that there exist o > 0 and a sequence
of solutions u; € ﬂf(sj), gj — 0, such that x)l e BN I'j, and x) < —t9.For0 < r <
min(g, fo/2) choose P/ = P(r, x’) € Q; as in the corkscrew condition,

ro < |xj — Pj| <r, B,Q(Pj) C Q.

Upon passing to a subsequence, we may assume that P/ — P9 Fix 0 < r’ < rp, then for
large j

B (P%) cc QN {x, <0}

Hence Au/ is a sequence of harmonic functions in B,/ (PY). According to Lemma 3.5,
uw - %(xn)i_, and therefore Au/ — 0 in B (PY), and Au’/(e,) — 1. Since Q;
is an NTA domain, there exists a Harnack chain connecting PY with Q = ¢, € Qj;
{B, xh, B,, (x?), ..., B, My c 2, whose length does not depend on j. Arguing as in
the proof of Lemma 3.5, we will obtain a contradiction to Au; — 0in B, ( PY). m]

3.3 Linearisation

Let {u/} be a sequence of solutions in 2 DD By, ul e A (&), and assume that &; — 0 as
Jj — oo. It follows from Lemma 3.5, that up to a subsequence

1 )
ul = <o)} in WAA(By) 0 Ch%(Ba). (3.22)
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Let us denote

S.j =

L

H du/

ax,-

W22(Ba)

Without loss of generality we may assume that Sij > 0, for all j € N. Indeed, if S;i = 0 for
all j > Jy large, then u’/ does not depend on the variable x;, and the problem reduces to a
lower dimensional case. Otherwise we may pass to a subsequence satisfying Sij > 0 for all
J-
Denote
1 ou

o= = fori=1,...,n—1, (3.23)
8/ 9xi

J
i
in W22 (B,) and strongly in W -2(B,). For the further discussion we need strong convergence

J

i

then ||vi’ lw22(g,) = 1. Therefore up to a subsequence v; converges to a function v? weakly

v — vl(.) in W22 at least locally.

Lemma 3.7 Assume that {u’} is a sequence of solutions in 2 DD Bo, ul € %2 (ej), ej — 0.

Let vij be the sequence given by (3.23), and assume that vii —\vlp weakly in W22 (B,), strongly
in Wl’z(Bz),fori =1,...,n—1, then

A =0in By, v)=0in B)\B; . (3.24)
Furthermore, for any 0 < R < 2

v/ — vl 225, — O (3.25)

Proof Denote by Q; = Q,;, I'; := I';;. It follows from Corollary 3.6 that v? = 0in
Bg\B+, hence v? = |Vv?| = 0 on {x, = 0} N B3 in the trace sense. Moreover, if K CC BQJr

is an open subset, then K C €2; for large j by (3.22). Hence szi] = 0 in K, and therefore
A% = 0in By, and (3.24) is proved.

Now let us proceed to the proof of the strong convergence. Let { € C;°(B2) be a non-
negative function, such that { = 1in Bg and 0 < ¢ < 1 in B,. It follows from (3.24)
that

0:/ AV A(0?) :/ U?AgAv?Jr/ §(Av?)2+2/ Vevel A, (3.26)
B B By By
According to Lemma 3.4
03/ A(;v{)Av{:/ vijA;Avij+/ {(Avij)Z—}-Z/ VeVl av!, (3.27)
By By By By
and therefore

lim sup g‘(Avij)2 < — lim v;jAgAvij —2 lim V;‘Vvl.jAvij

j—>00 BZ J—>00 BZ J—>00 32

= —/ v?A{Av,Q—Z/ VeV AvY,
B B

where we used that vl.j — v? in Wl*z(Bz) and Av;’—\Av? in L2(Bz).
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206 Page 14 0f28 G. Aleksanyan

From the last inequality and (3.26) we may conclude that

limsup [ £(Av))? < / (A2 (3.28)
j—0o By B
On the other hand
liminf [ ¢(Av))? > / c(Av))? (3.29)
J=7% JB, B

follows from the weak convergence Av;i —\Av? in L2( B»), and we may conclude from (3.28)
and (3.29) that

lim g(Avf) /{(Avo)

]—)OO

Hence we obtain ||Avij — AU?H 12(Bg) — 0, and therefore vij — v? in Wfo’Cz(Bz) according
to the Calder6n—Zygmund inequality. O

3.4 Properties of solutions in a normalised coordinate system

Let us define

u(rx + x
g (0) = ST g €T x € Bay r € (0, 1), (3.30)
r
and u, = u, 0. We would like to know how fast ||V/“r||w2-2(32) decays with respect to

||V’u||Wz,z( By)> for r < L. In particular, the inequality
||V/us||wz,2(32) < f||V’u||Wz,z(Bz), (3.31)

for some 0 < s, T < 1 would provide good decay estimates for ||V'u lw22(g,), k € N.
We show that the inequality (3.31) holds in a special coordinate system depending on
the solution u and parameter s > 0. Then iterating the inequality (3.31) and the coordinate
system we obtain the existence of the unit normal vector to the free boundary at the origin.
Let us observe that %(n . x)?F € B2(e) if In —e,| < Cye, for some dimensional constant
Cy.

Definition 3.8 Let u be the solution to the biharmonic obstacle problem. We say that the
coordinate system is normalised with respect to u, if

1
inf  |V/ (u(x) - f(n-x)3)
neRJi=1 || 7 6 " asy
/ 1 3

= Vgn u(x) — *(xn)+ s

6 L2(By)
where V) :=V — (- V)n,and V' := V, .
A minimiser n always exists for a function u € 2 (g), and since V_,7 = V;], —n is

also a minimiser, thus we always choose a minimiser satisfying the condition ¢, - n > 0.
A normalised coordinate system always exists by choosing n = e, in the new coordinate
system.

@ Springer



Regularity of the free boundary in the biharmonic obstacle... Page 150f28 206

Lemma 3.9 Let u be the solution to the biharmonic obstacle problem in a normalised coor-
dinate system with respect to u. Then

ou Jdu

By 0X; 0xy

dx =0, foralll <i<n-—1. (3.32)
Proof Let us observe that for every n € R”,
v ! )=V,
(160 = 20} ) = Vi)

and

, 2
|94

— 2 2
L2(By) - ”V””LZ(BZ) - ||'7 : vu”Lz(Bz) .

For any fixed 1 <i <n — 1, and real number —1 < ¢t < 1, let n(¢) :=te; + /1 — t2e,.

By the definition of a normalised coordinate system, the function ¢(t) := || - Vulli2 (By)’
t € (—1, 1) has a local maximum at the point # = 0. Hence
, du Ju
@ 0)=2 — dx =0, (3.33)
B, 0x; 0xp
which implies (3.32). O

Lemma 3.10 Assume thatu € 2. (¢) solves the biharmonic obstacle problem in a fixed coor-
dinate system with basis vectors {ey, ..., e,}. Let {e}, R e,ll} be a normalised coordinate
system with respect to u, and assume that e,% -e, > 0. Then

len — eyl < C)[IV'ull 1205, < Cn)e,
if € is small, where C(n) > 0 is a dimensional constant.
Proof According to Definition 3.8,
V311l 208, = 1Vt = eq (e - Vil 2my) < IVl L2(3y)- (3.34)

It follows from the triangle inequality that

ou 1o Ou u R
—(en-¢,)" — < — (en - €,)(e, - V)
8xn 3x,, L2(By) 8xn L2(By)
ou
+ || (en - elyel - Vi) — (e, - e})? — (3.35)
Oxn llL2(8,)

< IVjsull 28y + (en - e)llen - Vil 20,y < 201V ull 25,

according to (3.34), and taking into account that 0 < ¢, - e,i < 1.
ou

2
Note that Lemma 3.5 implies that o %” is uniformly bounded from

~ ’

L2(B)) L2(BY)
below by a dimensional constant if ¢ > 0 is small. We may conclude from (3.35) that

2[IV'ull12(8,)

0<1l—ey-ep <1—(en-ep)? <CV'ull 28, (3.36)

1—(en-e)? < - < CMIV'ull12(p,)-
dxy,

L*(B2)

: 1
Since 0 < e, - ¢, < 1, we get
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Denote by (e,i)’ = e,ll —eu(e, - e,ll). It follows from the triangle inequality and (3.34) that
1Cen) (e - Vi)l 20, < V1 = (e3) (e - Vi)l 125y
+ 1V'ull 128, < ||V2111M||L2(32) +IV'ull 28y < 21V ull 12(5,)-

Hence

ey = 227
“ ey - Vu ||L2(Bz)

Let us choose ¢ > 0 small, then H e,ll -Vu ||L2(B2 is bounded from below by a dimensional
constant according to Lemma 3.5 and inequality (3.36). Therefore we obtain

[(ep)'] < C)lIV'ull 2s,- (3.37)
Note that
len —eql < 11— en - eyl +1(e))']-
Applying inequalities (3.36) and (3.37) we obtain the desired inequality,
len — eyl < C)[IV'ull 25, < Cme,
and the proof of the lemma is now complete. O

Lemma 3.10 provides an essential estimate, which will be useful in our later discussion.
Next we state another supporting lemma, the proof of which is quite standard, but we include
it for our convenience.

Lemma3.11 [. Let v be a biharmonic function in the ball By, then
IAvI28) < Cullvll2py)- (3.33)

2. Ifvisabiharmonic function in the half-ball B;, suchthatv = |Vv| = 0on{x, = 0}NBy,
then

IAVI2 ) = Cullvll 2y (3.39)

Proof Throughout ¢ € C3°(By) is a fixed function, such that { = 1in By, 0 < ¢ < lin By.

1. If v is a biharmonic function in B», then
0= / AvA (L) = / 20(AL% + 4|V 1P Av
By B

+ {4(Av)2+8/ VeV Av.
B, By

Hence by Cauchy’s inequality,
HAav)? = —/ 20(AL2 + 4|V P A — 8/ VeVueAv
By By

<! 44(Av>2+4/ v2(A42+4|vz|2)2+1/ Fav? (3.40)
4 B> B> 4 B>

1
64 [ @vevort =3 [ a0+ Gl + Clle VUL
By By
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On the other hand,

;2|W|2:/ V(;zv)Vv—2/ vV Vo
B> B,

By

=— ;“szv -2 tvVeVe <
B> B> n J B

1
41 ;2|Vv|2+2/ VePR,
2 B B

c*(Aav)? + 26, / v?

B

and therefore
1 ~
2 4 2 2
CallEVullzag,, < Z/Bf (Av)"+ Gy /B2 v (3.41)
Combining estimates (3.40) and (3.41), we obtain
3 -
4 2 4 2 2
Av)” < — A C ,
R /B A + ol
which implies (3.38).
2. In order to prove the second part of the lemma, it is enough to observe that

/ AvA(L*) =0,
By

since ¢%v € Wg ’Z(B;' ). The rest of the proof follows as in the first part.
]

Proposition 3.12 For any small number 0 < s < 27412 there exists g9 = go(s) > 0
small, such that if ¢ < &o, then for any u € B (¢)

|Vt HL2(BZ) < G | V'u] W22(By) * (3.42)

where C,, is a dimensional constant, not depending on s. Furthermore, if the coordinate
system is normalised with respect to uys, then

! 7
|V/us| w22y =T [V'ul| W22(By) * (3.43)
where 1 > T > Ays is a fixed number and A, is a dimensional constant to be specified.

Proof The proof of inequalities (3.42) and (3.43) follows the exact same procedure, so we
will mainly focus on the proof of the second one, since it is the core of the linearisation
argument.

We want to show that the inequality (3.43) holds in a normalised coordinate system with
respect to usg. By the Cauchy—Schwartz inequality, it is enough to show that the inequality

‘ dug ou
<t
3x,~ WZ,Z(BZ) Bx,' WM(BZ)
holds for any i € {1,...,n — 1}, provided ¢ is small enough. We argue by contradiction.

Assume that there exists small numbers 0 < s < 27" %7 1n72 Ays < 7 < 1 and a
sequence of solutions {u’} C B (e j),1in a coordinate system normalised with respect to ué o

such thate; — 0, as j — oo, but for some i € {1,2,...,n -1}
814{ du’
T . (3.44)
ax,' WZ'Z(BQ) 8xi WZ,Z(BZ)
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Let v ' be given by (3.23), then according to Lemma 3.7, v N v m WZOC (Bz) where
vO is a b1harmomc function in the half-ball {x, > 0} N B», samfylng v |Vv | =0on

{xn = 0} N B;. Inequality (3.44) implies that

v)(s-)
2

> 1. (3.45)
W22(By)

Lemma 3.11, part 2. and the Calderén—Zygmund inequality imply that

v (2s°) —c v0(2s-)
2 — n 2 ’
A [ZES A VRIS

hence

0 0 0

v (2s- 1 | v’ (2s- vy (s
[ 25) z ';2) > ¢, | U8 > Cyt. (3.46)
L2(By) " 5 lweagsy 5wy

where C, represents a general dimensional constant, and it does not depend neither on the
function v? nor on the parameter s. We will derive a contradiction to (3.45), if we show that

v (2s°)
2

can be made arbitrarily small by choosing s > 0 small initially.
L%(By)

Since v? is a biharmonic function in the half-ball {x, > 0} N B, and v? = |Vv?| =0on
{x, = 0} N By, we can apply the reflection principle for biharmonic functions, and extend
v? to a biharmonic function in the ball B,, see for instance [9] or [10]. Let 17? denote the
extended function given by Duffin’s formula

0

V>
02, —xn) = =0 (1, %) + 2%, ™ (s xn) — x2AV)(X, xn), X0 > 0. (3.47)
n
The formula (3.47) implies that
15211128y < Cnllv) lw22(5,)s (3.48)

where ¢, > 0 is yet another dimensional constant.
The function 17? is biharmonic in the ball B,, therefore analytic and it may be written as
a Taylor series

D320 >
CHOE Z 70”( L =Y b, (3.49)

loe|=0 : k=0

where « is a multiindex, and by is a homogeneous degree k biharmonic polynomial. It follows
from boundary conditions for the function v? on {x,, = 0} that

bo=b; =0, and br(x) =

(3.50)

Lemma 3.5 implies that aij — %(x"‘)2 in L%(B,), and according to Lemma 3.7,

vl.j (2sx) 0(2SX)
452

in W>2(B,) as j — o0, and v =0in Bz\B2 By Lemma 3.9,

i 1 d
/ / — ! (ZSx)—(st)dx =0,
B

5] Bzal
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and after passing to the limit as j — oo, we obtain that

/ v (2sx)x2dx = 0. (3.51)
Bf
Note that (3.51) implies that
2
0 0
vy (2s-) vy (2s-)
l4S2 - b2 ! 2 + ||b2||L2(B+)
L2(BY) L2(BY)
hence
0 0
v’ (2s- v (2s-
‘; 5 ) < % — by (3.52)
s L2(BY) s L2(BY)
Next we show that || vf) (2s) —4s%b, || iZ( B) is of order s>. By the triangle inequality,
0 o)
v’ (2s-) _
Lo b > @) (250)
L2(BY) k=3 L2(BY)

o (3.53)
< D@20k @) 125y = Z<2v) 1Bkl 2 -
k=3

Now it is time to refer to the estimates on derivatives for biharmonic functions (see “Appendix
A),

o =i
br(x) = Z wx“, and
P (3.54)
» (2n+lnk)k _ }’2 _
[D*05(0)] < it (””zo ”L](B,) + 2n+2) |ag ”L‘(B,))'
Hence
(2n+]nk)k2n+k 1 ~
16l 25 T%T (II I p—_— ||Av?||L1(BI)>
339 2" 2nk)knk
< Ca2" k)t Zk ”UOHLZ(Bz) Cn (T ””0 ”LZ(BZ)
Jet|

<C, 2k(n+2)n2kek H UO ”L2(32) ;

where we used Stirling’s inequality in the last step.
Let A := 2"*"2en? be a fixed number, then by (3.53),

o0
ns Z(zs)k)“k ”’710 ”LZ(BZ)
L2(BY) k=3 (3.55)
)
T L2(By) =

v)(2s°)

452 by

< Cys ”v0||L2(Bz)’

where by assumption 2sA < 1/2.
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Finally, combining the inequalities (3.48) , (3.52) and (3.55), we obtain

vio(Zs-)
2

~ 0
< cnCasllv; lw22(py) < Ans,
L*(By)

where A, > 0 is a dimensional constant, and s is fixed small number, sA,, < 1. Let
A, = A, /Cy, where Cy, is the dimensional constant in (3.46). Recalling that 1 > 7 > sA,,
we derive a contradiction to (3.46).

The proof of the inequality (3.42) is very similar. Any biharmonic function v in the half
ball B; , satisfying the boundary conditions v = |Vv| = 0 on {x, = 0} can be written as
(3.49). Employing the estimates of derivatives of biharmonic functions, we can show that
v(s-)

s? llr2sy)
follows. s

is bounded by a dimensional constant if 0 < s < 2712o=1,=2 and (3.42)

3.5 C"»%-regularity of the free boundary

In this section we perform an iteration argument, based on Proposition 3.12 and Lemma 3.10,
that leads to the existence of the unit normal 7 of the free boundary at the origin, and provides
good decay estimates for IIV;mur w22z,

First we would like to verify that u € %2 (g) imply that u; € %2 (¢). It is easy to check
that the property of being an NTA domain is scaling invariant, in the sense that if D is an
NTA domain and 0 € 9D, then forany 0 < s < 1 the set Dy := s~ (DN By) is also an NTA
domain with the same parameters as D.

Assumption 3 in Definition 3.3 holds for u; according to Corollary 3.6. Indeed, let r = s
in Corollary 3.6, then u(sx) =0ifx, < —1.

Thus u; satisfies 2, 3 in Definition 3.3, but it may not satisfy 4. Instead we consider
rescaled solutions defined as follows

g (x)

Us(x) i= ——,
* ID3ugll 128,

(3.56)

then assumption 4 also holds. Indeed, || D3Us|| 12(B,) = @n by definition of Uy, and

| DBMS ”LZ(BZ) _ @n Il D3u ||L2(BZJ.)

ID*Usll 28,y = =
(B2) ||D3MS||L2(31) ||D3u||L2(BX)

0y (25)7 + o (8)
= wp T < K
wp(s)2 —o(e)

according to Lemma 3.5 provided ¢ = ¢(n, «, s) is small.
In the next lemma we show that Uy € %2 (y¢) in a normalised coordinate system, then
we argue inductively to show that Uy € B (yke), y < 1.

Lemma 3.13 Assume thatu € %2 (¢) solves the biharmonic obstacle problem in anormalised
coordinate system {e1, e2, ..., en}. Then for any 0 < a < 1 there exist ro > 0 and a unit
vector ng € R", such that \ng — en| < Ce, and forany 0 < r < rg

IVyottr llw2.23,) < Croe (3.57)
||D3ur||Lz(Bl) -

provided ¢ = e(n, k, 0, @) is small enough. The constant C > 0 depends only on the given
parameters.
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Proof Throughout {e1, ..., e,} is a fixed coordinate system normalised with respect to the
solution u € %L (e), and V'u = V., u. We may renormalise the coordinate system with
respect to Upy and denote by {e%, ..., e)} the set of basis vectors in the new system. Induc-
tively, {ell‘, R ef;}, k € N is a normalised system with respect to Uy, and el(.) = e;.
According to Lemma 3.10,

4
IVegtasn iy gazy  IVggllwez,)

eyt —exl < Cn) . (339

”D?’usk”LZ(B]) ||D3usk||L2(Bl)

provided ||Vé i Usk lw2.2(p,) s sufficiently small.

In the foll?)wing discussion 0 < s < 7 < 1 are small fixed numbers, satisfying the
assumptions in Proposition 3.12.
Now let us consider the sequence of numbers { Ay }xcn,, defined as follows:

Wy ||V;{§ MSk || W2’2(Bz)

A = ,fork=0,1,2,.... 3.59
T T IDd g 2 s 39
By definition, Ay < ¢, and
onllV usllwe2syy | D3ul,»
Al = o = OV w2y (3.60)
| D usll 25, 1D ugllp2py

Applying Proposition 3.12 and Lemma 3.10 for a function u € %2 (¢), we obtain

”V;rl; Ug || W2~2(Bz) <t ||Vé_,1lu || WZ.Z(BZ)
1
<7 (||V/M||W2,2(Bz) + 2|en - €n|||vu||w2,2(32))
IV ull w228, (3.61)

(328) v/ 2C
= o IVullwees, +2C00 755 = =
1

[Vull w2~2(32)>

(3.42) ’
= Cn, 10)IVullwe2(p,y-

Let B :=1C(n,k),and B < y < 1 be fixed numbers. Then

n
||D3M||L2(Bl) 82 HD3MIIL2(BI)
- 3
| D3usll 125, 10wl 2 n,)
n
. s2wy <Y
T s2op-o(Ag) ~ P

according to Lemma 3.5, provided Ag < ¢ is small depending on the parameter s and
dimension n. The last inequality together with (3.60) and (3.61) implies that A; < ye.
We use an induction argument to show that

Ar < y*e, forallk e Ny (3.62)

for fixed 1> y > B > t > Aps > 0. Assuming that (3.62) holds for k € N, we will show
that Ay < y Ag.
By the induction assumption

Wy ”Vékusk ” W22(B,) k
2 = Ay < y"e. (3.63)

”V/kU k”WZ,Z B =
o (B2) ID3ull 2 s,
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Hence
wptt gk (X)
Up = —=—— e B2(y*e)
||D Msk ||L2(Bl)
in the coordinate system {e’l‘, R efl}. By definition, {ell‘H, R efﬂ'l} is a normalised coor-

dinate system with respect to U, k+1 € B (BFe), and by (3.43)

U /
Wp ||VE§+| Uugkrt lw22(B,) C‘)"T”Veﬁﬂ ugk |l w22(B,) ||D3usk 228,

Apy1= < (3.64)
| D31 i1 28, | D3u 28, | D3u gkt 28,
First we observe that
IDugllopy 21D ugll g,
I1D3ugstll 208y  ID3ull 2p.
s L=(By) An L=(Bs) (365)
o Sen Y
T sty —o(ykAg) T B
according to Lemma 3.5, since Uy € #2 (y*e) and y¥e < ¢ is small.
Next we estimate
||v;5§+1 ugk llw22(p,) < ||v;5usk oy + 214 — e[ Vitg 220
(3.58) Vol CIIV ugllw22(py) 1Vl
< Uk |lw22(p,) + . Ugk || w2.2(p 3.66
ek sk IlW=2(By) ||D3us1< ||L2(Bl) s (B2) ( )
(3.42) ,
< Cn, K)Hvelncusk ||W2v2(32)'
Finally we obtain from (3.65) and (3.66) that
/
watCn, )y Verttstlw22(sy)
Apy1 < — (nk)y _ e 2 =y < yFH A, (3.67)

B ||D3usk ||L2(Bl)

this completes the proof of inequality (3.62).
Next we show that {e,’i } is a Cauchy sequence by using (3.58) and (3.62). Indeed for any
m,keN,

m m
k+ k k+1 k+1—1 /
le, ™ — el < E le, ™ — ey | <Cn) E ||Ve’/§+17|U2sk+/||L2(32)

=1 =1

- - k-1 _ Cm)Ao
<CM) Y Ak < CmAg Yy < T
=1 =1

hence ef; — 19, as k — oo for some 19 € R", |no| = 1 and
no — eyl < C'mAgy* < C'(m)y'e, (3.68)
in particular |ng — e,| < C'(n)e.

Now the inequality (3.57) follows via a standard iteration argument. Let 0 < o < 1 be
any number, choose s = s(n, o) small, satisfying the assumption in Proposition 3.12, and
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such that y = C;s < s*. If 0 < r < s, then there exists k € Ny, such that sAH < p < sk
Hence
IVaourllwaaay _ N Viglstllw22m,)
||D3Mr||L2(Bl) B ||D3usk||L2(Bl)
(3.69)

IV ugill w2y + 2lel = nollVuge w22 s,

<C < Cyke < Cs%e < Cr,

||D3MSk ||L2(B])

where C depends on the space dimension and on the given parameters. O
Now we are ready to prove the C'**-regularity of the free boundary.

Theorem 3.14 Let 0 < « < 1 be a given number. Assume that u € B (¢), withan ¢ > 0
small, depending on o and the space dimension. Then there exists 0 < ro < 1 depending on
the given parameters, such that ', N\ By, is a C 1% graph and the C"*-norm of the graph is
bounded by Ce.

Proof Let0 < o < landfixs = s(n, ) > 0small as in (3.69). It follows from Lemma 3.13
that for u € %2 ()

V', ||W2,2(32)

3 <Cr*—=0asr—0,
1D “r”LZ(B])

after a change of variable, by choosing e,, = 19, where 7 is the same vector as in Lemma 3.13.
Then

wputy(X) _ l(x )3
ID3u,ll 28, 6"

according to Lemma 3.5.
So we have shown that in the initial coordinate system,
wuu(rx 1
T U Ly ol in WAB) N CHBY, asr -0, (370)
r ”D ”V”Lz(Bl) 6
and therefore 79 is the measure theoretic normal to I';, at the origin.
Now let xo € 'y N By be a free boundary point, and consider the function u,,,1/2(x) =

24
W, X € By, then

Wplxy,1/2(X)

Ugy(x) 1= ——— 2
o I1D3uxg. 1721l 12¢3,)

€ B2(C(n)e).

According to Lemma 3.13, Uy, has a unique blow-up

UXO(VX) Wp Uy 1/2(7’)6) 1 3
U, X) = = . — — . x) .
rox0 () ri 3 D3uyy 12(rx0)ll 12, 6(7“0 S+

and therefore 7y, is the normal to I';, at xp.
Next we show that 5, is a Holder continuous function on I', N Bs. If xo € ', N By,
then skt < |xg| < s*, for some k € Ny. Hence ||V;]0Us/<’x0 lw22(,) =< C)/ka, and

||V,/]X0 Ur xollw22ep,y — 0 asr — 0. Applying Lemma 3.13 for the function Ug ,, €
B (Cy*e), we obtain

C
1y — 10l < Cy¥e < ;|xo|“e. (3.71)

@ Springer



206 Page24of28 G. Aleksanyan

Furthermore, the inequality
[nx —nyl < Clx — y|*e, foranyx,yeT,
follows from (3.71). O

4 On the regularity of the solution

In this section we study the regularity of the solution to the biharmonic obstacle problem

Assuming thatu € P° (¢), withe > 0small, we derive from Theorem 3.14 thatu € c* loc (B] ).

In the end we provide an example showing that without the NTA domain assumption, there
exist solutions, which are not C21.

4.1 C%'-regularity of the solutions in 22 (¢)

After showing the C'!+%-regularity of the free boundary ', N By, we may go further to derive
improved regularity for the solution u € %y (¢).

Theorem 4.1 Letu € %2 (¢) be the solution to the biharmonic obstacle problem in 2 D> Ba,
and let 0 < o < 1 be a fixed number. Then there exists ro > O such that u € c2! (Bry),
provided ¢ = ¢(k, 0, ) is small. Furthermore, the following estimate holds

lullcse@nmg) < CODlUlly2ag, < COIK,
where C(n) is just a dimensional constant.

Proof According to Theorem 3.14, T, N By is a graph of a C'*-function. We know that
Au € W12(By) is a harmonic function in €, := {u > 0}, and also u € W3>2(B,), u = 0
in Q\,, hence Au = 0 on I'y, = 9£2, N B in the trace sense. Therefore we may apply
Corollary 8.36 in [11], to conclude that Au € Cl""((Qu UTy) N Bsg/s), and

[Aull cra@,npsy s < CODIAUIL=(By).- (4.1

It follows from the Calderén-Zygmund estimates that u € W7 (B; 2), forany p < oo.
According to the Sobolev embedding theorem, u € C 2""(BS ,2), for all @ < 1, with the
following estimate

||u||cz.a@ngx/2) = Co) (18l et + lellcrecsy, ) 4.2)

Denote by u;; := dx dx . Then u;; € WLZ(B)) N C*(Q, N B3s/4) is a weak solution of

Au;j = axj in Q, N B34, where f; := dﬁ“ € C%(, N B3;4). Taking into account that

u;j = 0on 32, N By, we may apply Corollary 8.36 in [11] once again and conclude that

luijlera@unn, o < € (i leo,nm, + 18U et rms, ) -
hence
2 o / o
ID%ullcre@,nB,) = Cn (”A“”cl’a(szmzsw) + ”””C'va(Bm))’

according to (4.2).
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Therefore we obtain
el e mmy oy < Nl sy + 1D ull cragiung, )
= Co) (18l ety + Nellcracsy, ) -
Taking into account that
1Dl Lo (B,10) < 1Dl co gy, )0

we see that u € CZ*I(BS/4). ]

4.2 In general the solutions are not better than %3

Let us observe that the assumption u € () is essential in the proof of u € C 21(B,).
The next example shows that without our flatness assumptions there exists a solution to the
biharmonic obstacle problem in R?, that do not possess C> - regularity.

Example 4.2 Consider the following function given in polar coordinates in R?,

[N

u(r,p)=r (cos $_ 1cos 5—(p> , rel0, 1), pel—mm) 4.3)

2 5 2

L. . . . . .
then u € C?>7 is the solution to the biharmonic zero-obstacle problem in the unit ball
B C RZ.

Proof Tt is easy to check thatu > 0, u(x) = O if and only if —1 < x; < 0 and x, = 0. Hence
the set 2, = {# > 0} is not an NTA domain, since the complement of €2, does not satisfy
the corkscrew condition.

Let us show that A2y is a nonnegative measure supported on [—1, 0] x {0}. For any
nonnegative f € C{°(B1), we compute

1 T
/ Au(x)Af(x)a’x:/ / rAf(r,o)Au(r, p)dedr
B 0 -7

1
0

1 T
- 6/ / INLD) cos%dgodr = 6/ r72 f(r, m)dr > 0,
0 —7

where we used integration by parts, and that f is compactly supported in Bj.
We obtain that u solves the following variational inequality,

u>0, A’u>0, u-A%u=0. (4.4)

Now we show that u is the unique minimiser to the following zero-obstacle problem: minimize
the functional (1.1) over
d d
o = v e W2’2(Bl), v>0, s.t.v=u, X = —u, ondBy; # (.
on  on

The functional J admits a unique minimiser over <7, let us call it v. It follows from (4.4),
that

/ AulA(v —u) = (v — u)Azu =/ vA%u > 0.
By B By
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Hence

1 1
(Au)? 5/ Aulv < (/ (Au)z)z (/ (Av)2>2,
B B By B

where we used the Holder inequality in the last step. Therefore we obtain

(Au)* < [ (Av)*,
By By
thus u = v, and u solves the biharmonic zero-obstacle problem in the unit ball.
1 . . . . 1 .
However Au = 6r2 cos %, which implies that u is C2*2, and that the exponent % is
optimal, in particular u is not C>!. O
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A Estimates on derivatives of biharmonic functions

In this part of the paper estimates on derivatives of biharmonic functions are obtained. We
believe that these estimates are known, but we could not find a reference, and therefore
included in the paper.

Lemma A.1 Let v be a biharmonic function in the ball By C R", and assume that B, (x¢) C
By. Then

o (2" nk)k r?
D v@o)l = S pne Wi, con + 50,772 14V 1L @ on ) (A.D

where o is a multiindex, and k = |o|.

Proof The following mean value properties are known for biharmonic functions

2
v(xo) = ][ vdS — = Av(xo) (A2)
9B, (x0) 2n
and
r2
v(xg) = ][ vdx — —— Av(xp). (A.3)
Y P 2m+2) Y

The proofs of (A.2) and (A.3) are similar to the proofs of the mean value properties for
harmonic functions. For a fixed xo, let ¢ (r) := fa B, (x0) vdS. It is easy to see by Green’s
formula that

n

&) = 1][ Avdx = - Av(xo), (A4)
By (x0) n
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where we also used the mean value property for the harmonic function Av. Hence (A.2)
follows by integrating (A.4) in the interval (0, r).
Now (A.3) can be shown by using (A.2) and the co-area formula;

r r nsnfl S2
][ vdx = |B,|”! / / vdSds = / (v(xo) + —Av(xo)> ds
By (x0) 0 JaB(xo) o I 2n

r 1 r
= v(xo)%/ s"lds + Av(xo)—n/ s"Tlds = v(xg) + Av(xo)
r 0 2r 0

r2

2(n+2)°

Let us proceed to the proof of (A.1). Estimate (A.1) is well known for harmonic functions,
which will be used to show that it also holds for biharmonic functions. We follow the proof
of estimates on derivatives of harmonic functions (see for instance [5]), and employ (A.2)
and (A.3). The proof uses an argument of induction on k = |«|. The formula (A.3) implies
that

1 r?
[v(xo)| < 1B <||v||L1(B,4(xO)) + m”Av“Ll(Br(m))> :

Let k = 1, then
2
vy, (x0) = ]i,/z(xo) vy dx — m ]ir/z(xo) Avy,dx
= 2 / vvdS — r22n—2/ v; AvdS.
[Bilr" JaB, 5 (x0) 2(n +2)[B11r" JaB, 5 (x0)
hence

2nllvllLe@B, nxe)) | TRIAVIL® @B, /2 (x0))

[vx; (x0)| =

22(n +2)
2 ulvll s, ey | 12" IV B ey |, 2" 1AL 8, 0
|By|rn+! 2(n +2)|By|r"t! 2(n +2)|By|r"t!

n2n+1 2
=BT (”U”L‘(Br(m)) NEETE) ”AU”L'(Br(Xo)))'

Assuming that (A.1) is true for k — 1, we will show that it is true for k. Let |o| = k, and
D% = (Dﬂv)xi, where |8| =k — 1. By (A.3)

D%v(xg) = 7[ D%vdx — LD“AU(XQ)
By jk (x0) k22(n +2)
k" 2
= / DPyvids — - D* Av(xo)
|B]|rn 9By sk (x0) k 2(}’l+2)
Hence
kn r2
a M B o
[D%v(x0)| < , 1D U||L°°(33r/k(xo)) + k22(n +2)|D Av(xp)].
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If x € 9B, /k(x0), then B, 1),k (x) C B, (xp), and by induction assumption

kn(k — l)k_l (2n+1n)k—lkn+k—l
r|Bi |r”+k—1 (k — 1)yntk—1 ”U”Ll(Br(xo))
r2(k _ 1)2kl’l(k _ 1)k71(2n+ln)k71kn+k71
k22(n + 2)r| By [rnth=1(k — 1)n+k—1 IAVIL1(, (x0))
r2(2n+lnk)k (kn2n+l)k
lAviizip < ————vllLis
|B1|r"+tkk22(n + 2) (Br(x0)) | By |1tk (Br(x0))
(kn2"™Hk((k — 1)? + 1)
200 1 2) By 2 AV, o)

[D%v(x0)| <

(kn211+])k r2
=gy Pl con + 507755 180001 @ eo |-

and the proof of the lemma is now complete. O
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