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Abstract
In this article we use a flatness improvement argument to study the regularity of the free
boundary for the biharmonic obstacle problemwith zero obstacle. Assuming that the solution
is almost one-dimensional, and that the non-coincidence set is an non-tangentially accessible
domain, we derive the C1,α-regularity of the free boundary in a small ball centred at the
origin. From the C1,α-regularity of the free boundary we conclude that the solution to the
biharmonic obstacle problem is locally C3,α up to the free boundary, and therefore C2,1.

In the end we study an example, showing that in general C2, 12 is the best regularity that a
solution may achieve in dimension n ≥ 2.
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1 Introduction

Let � ⊂ R
n be a given domain, and ϕ ∈ C2(�), ϕ ≤ 0 on ∂� be a given function, called an

obstacle. Then the minimiser to the following functional

J [u] =
ˆ

�

(	u(x))2 dx, (1.1)

over all functions u ∈ W 2,2
0 (�), such that u ≥ ϕ, is called the solution to the biharmonic

obstacle problemwith obstacle ϕ. The solution satisfies the following variational inequalities

	2u ≥ 0, u ≥ ϕ, 	2u · (u − ϕ) = 0. (1.2)

It has been shown in [1] that the solution u ∈ W 3,2
loc (�), and in [2] that 	u ∈ L∞

loc(�),

and moreover u ∈ W 2,∞
loc (�), see also [3]. Furthermore, in the paper [3], the authors show

that in dimension n = 2 the solution u ∈ C2(�) and that the free boundary 
u := ∂{u = ϕ}
lies on a C1-curve in a neighbourhood of the points x0 ∈ 
u , such that 	u(x0) > 	ϕ(x0).

The setting of our problem is slightly different from the one in [1,3] and [2]. We consider
a zero-obstacle problem with general nonzero boundary conditions. Let � be a bounded
domain inRn with smooth boundary. We study the minimiser of the functional (1.1) over the
admissible set

A :=
{
u ∈ W 2,2(�), u ≥ 0, u = g > 0,

∂u

∂ν
= f on ∂�

}
.

The minimiser u exists, it is unique, and is called the solution to the biharmonic obstacle
problem. We will denote the free boundary by 
u := ∂�u ∩ �, where �u := {u > 0}.

There are several important questions regarding the biharmonic obstacle problem that
remain open. For example, the optimal regularity of the solution, the characterisation of
blow-ups at free boundary points, etc. In this article we focus on the regularity of the free
boundary for an n-dimensional biharmonic obstacle problem, assuming that the solution is
close to the one-dimensional solution 1

6 (xn)
3+. In [4], using flatness improvement argument,

the author, JohnAndersson, shows that the free boundary in the p-harmonic obstacle problem
is aC1,α graph in a neighbourhood of the pointswhere the solution is almost one-dimensional.
We apply the same technique in order to study the regularity of the free boundary in the
biharmonic obstacle problem.

InSect. 2we study thebasic properties of the solution, adapted to our setting.The existence,
uniqueness as well as W 3,2

loc ∩ C1,α
loc -regularity of the solution are known. For the sake of

completeness statements and some sketched proofs are included, together with references.
In Sect. 3 we introduce the class B�

κ (ε) of solutions to the biharmonic obstacle problem,
which are close to the one-dimensional solution 1

6 (xn)
3+. Following the linearisation argument

by John Andersson (see for instance [4]), we show that if ε is small enough, then there exists
a rescaling us(x) = u(sx)

s3
, such that

‖∇′us‖W 2,2(B2) ≤ γ ‖∇′u‖W 2,2(B2) ≤ γ ε

in a normalised coordinate system, where ∇′
η := ∇ − η(η · ∇),∇′ := ∇′

en , and γ < 1 is a
constant. Repeating the argument for the rescaled solutions, usk , we show that there exists a
unit vector η0 ∈ R

n , such that

‖∇′
η0
usk‖W 2,2(B2)

‖D3usk‖L2(B1)
≤ γ kε (1.3)
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for some 0 < s < γ < 1. Then the C1,α-regularity of the free boundary in a neighbourhood
of the origin follows via a standard iteration argument.

From the C1,α-regularity of the free boundary it follows that 	u ∈ C1,α up to the free
boundary, furthermore, u isC3,α up to the free boundary. Thus a solution u ∈ B

�
κ (ε) is locally

C2,1, which is the best possible regularity. We provide a two-dimensional counterexample
to the C2,1-regularity, showing that without our flatness assumptions there exists a solution

that is C2, 12 but is not C2,α for α > 1
2 . Hence C

2, 12 is the best regularity that a solution may
achieve in dimension n ≥ 2.

2 The obstacle problem for the biharmonic operator

This section can be viewed as a background text, where we present the known regularity
theory for the biharmonic obstacle problem, with adaptations to our problem. The material in
this section is known for the biharmonic obstacle problem with a general obstacle, and zero
boundary conditions. Later on in Sect. 3 we will need quantitive estimates for ‖u‖W 3,2

loc
and

for ‖u‖C1,α
loc

, hence we decided to include these estimates in the manuscript, with references

to the original papers.

2.1 The known regularity theory for the solution

The existence and uniqueness of the minimiser of functional (1.1) over the admissible set
A follows by standard arguments in the calculus of variations, see for instance [5]. We give
a summary of the known regularity theory for the solution. The following result is due to
Frehse, see [1].

Theorem 2.1 (J. Frehse) Let u be the solution to the biharmonic obstacle problem in �,
where � ⊂ R

n is an open bounded set. Then

‖u‖W 3,2(V ) ≤ C‖u‖W 2,2(�),

for any given V ⊂⊂ �, where C > 0 is a universal constant, depending only on the space
dimension and sets V ,�, but not on the solution u.

Now let us discuss further properties of the solution, referring to the paper by Caffarelli
and Friedman [3].

Lemma 2.2 The solution to the biharmonic obstacle problem satisfies the following equation
in the distribution sense

	2u = μu, (2.1)

where μu is a positive measure on �.

Proof For any nonnegative test function η ∈ C∞
0 (�), the function u + εη is obviously

admissible for any ε > 0. Hence J [u + εη] ≥ J [u], consequentlyˆ
ε2(	η)2 + 2ε	u	η ≥ 0,

and after dividing by ε and letting ε go to zero, we obtainˆ
	u	η ≥ 0,
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for all η ∈ C∞
0 (�), η ≥ 0, so 	2u ≥ 0 in the sense of distributions.

Let us study the following linear functional �(η) := ´
�

	u	η, η ∈ C∞
0 (�). By the

Riesz theorem, � is a positive measure, let us denote it by μ := μu . Then 	2u = μu in the
sense that ˆ

�

	u	η =
ˆ

�

ηdμu .

for every η ∈ C∞
0 (�). ��

Corollary 2.3 There exists an upper semicontinuous function ω in �, such that ω =
	u a.e. in �.

Proof For any fixed x0 ∈ �, the function

ωr (x0) :=
 
Br (x0)

	u(x)dx

is decreasing in r > 0, since 	u is subharmonic by Lemma 2.2. Define ω(x) :=
limr→0 ωr (x), then ω is an upper semicontinuous function. On the other hand ωr (x) →
	u(x) as r → 0 a.e., hence ω = 	u a.e. in �. ��

In [2] Frehse proved that 	u ∈ L∞
loc, later on L. Caffarelli and A. Friedman gave another

proof to the same result, see Theorem 3.1 in [3]. Below we follow the proof in the latter
paper in order to obtain a quantitative estimate on ‖	u‖L∞ in our setting. The next lemma
is a restatement of the corresponding result in [3], Theorem 2.2.

Lemma 2.4 Let � ⊂ R
n be a bounded open set with a smooth boundary, and let u be a

solution to the biharmonic obstacle problem with zero obstacle. Denote by S the support of
the measure μu = 	2u in �, then

ω(x0) ≥ 0, for every x0 ∈ S. (2.2)

Proof The detailed proof of Lemma 2.4 can be found in the original paper [3] and in the
book [6, pp. 92–94], so we will provide only a sketch, showing the main ideas.

Extend u to a function in W 2,2
loc (Rn), and denote by uε the ε-mollifier of u. Let x0 ∈ �,

assume that there exists a ball Br (x0), such that uε ≥ α > 0 in Br (x0). Let η ∈ C∞
0 (Br (x0)),

η ≥ 0 and η = 1 in Br/2(x0). Then for any ζ ∈ C∞
0 (Br/2(x0)) and 0 < t < α

2‖ζ‖∞ the
function

v = ηuε + (1 − η)u ± tζ

is nonnegative and it satisfies the same boundary conditions as u. Henceˆ
(	u)2 ≤

ˆ
(	(ηuε + (1 − η)u ± tζ ))2 ,

after passing to the limit in the last inequality as ε → 0, we obtainˆ
(	u)2 ≤

ˆ
(	u ± t	ζ)2,

Therefore ˆ
	u	ζ = 0,
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for all ζ ∈ C∞
0 (Br/2(x0)), hence 	2u = 0 in Br/2(x0) and x0 /∈ S. It follows that if x0 ∈ S,

then there exists xm ∈ �, xm → x0, and εm → 0, such that

uεm (xm) → 0, as m → ∞.

Then by Green’s formula,

uεm (xm) =
 

∂Bρ(xm )

uεm dHn−1 −
ˆ
Bρ(xm )

	uεm (y)V (xm − y)dy,

where ρ < dist(x0, ∂�) and −V (z) is Green’s function for Laplacian in the ball Bρ(0).
Hence

lim inf
m→∞

ˆ
Bρ(xm )

	uεm (y)V (xm − y)dy ≥ 0,

Then it follows from the convergence of the mollifiers and the upper semicontinuity of ω,
that ω(x0) ≥ 0, for any x0 ∈ S. ��

Knowing that 	u is a subharmonic function, and ω ≥ 0 on the support of 	2u, we can
show that 	u is locally bounded (Theorem 3.1 in [3]).

Theorem 2.5 Let u be the solution to the biharmonic obstacle problem with zero obstacle in
�, B1 ⊂⊂ �. Then

‖	u‖L∞(B1/3) ≤ C‖u‖W 2,2(�), (2.3)

where the constant C > 0 depends on the space dimension n and on dist(B1, ∂�).

Proof The detailed proof of the theorem can be found in the original paper [3], Theorem 3.1,
and in the book [6, pp. 94–97]. Here we will only provide a sketch of the proof.

Let ω be the upper semicontinuous equivalent of 	u and x0 ∈ B1/2, then

ω(x0) ≤
 
B1/2(x0)

	u(x)dx,

since ω is a subharmonic function. Applying Hölder’s inequality, we obtain

ω(x0) ≤ |B1/2|− 1
2 ‖	u‖L2(B1). (2.4)

It remains to show that 	u is bounded from below in B1/2. Let ζ ∈ C∞
0 (B1), ζ = 1 in

B2/3 and 0 ≤ ζ ≤ 1 elsewhere. Referring to [6, p. 96], the following formula holds for any
x ∈ B1/2

ω(x) = −
ˆ
B1/2

V (x − y)dμ −
ˆ
B1\B1/2

ζ(y)V (x − y)	2udy + δ(x), (2.5)

where V is Green’s function for the unit ball B1, and δ is a bounded function,

‖δ‖L∞(B1/2) ≤ Cn‖	u‖L2(B1). (2.6)

Denote

Ṽ (x) :=
ˆ
B1/2

V (x − y)dμ(y),
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then Ṽ is a superharmonic function in R
n , and the measure υ := 	Ṽ is supported on

S0 := B1/2 ∩ S, moreover according to Lemma 2.4, (2.2)

Ṽ (x) ≤ −ω(x) + δ(x) ≤ δ(x) on S0.

Taking into account that Ṽ (+∞) < ∞, the authors in [3] apply Evans maximum principle,
[7] to the superharmonic function Ṽ − Ṽ (+∞), and conclude that

Ṽ (x) ≤ ‖δ‖L∞(B1/2) in R
n . (2.7)

It follows from equation (2.5) that

ω(x) ≥ −‖δ‖L∞(B1/2) − cnμu(B1) + δ(x), (2.8)

for any x ∈ B1/3.
Let η ∈ C∞

0 (�) be a nonnegative function, such that η = 1 in B1 and 0 ≤ η ≤ 1 in �.
Then

μu(B1) ≤
ˆ

�

ηdμu =
ˆ

�

	u	η ≤ ‖	u‖L2(�)‖	η‖L2(�),

and η can be chosen such that ‖	η‖L2(�) ≤ C(dist(B1, ∂�)). Hence

μu(B1) ≤ C‖	u‖L2(�), (2.9)

where the constant C > 0 depends on the space dimension and on dist(B1, ∂�).
Combining the inequalities (2.4) and (2.8) together with (2.9), (2.6), we obtain (2.3). ��

Corollary 2.6 Let u be the solution to the biharmonic obstacle problem in �. Then u ∈ C1,α
loc ,

for any 0 < α < 1, and

‖u‖C1,α(K ) ≤ C‖u‖W 2,2(�), (2.10)

where the constant C depends on the space dimension and dist(K , ∂�).

Proof It follows from Theorem 2.5 via a standard covering argument, that

‖	u‖L∞(K ) ≤ C‖u‖W 2,2(�).

Then inequality (2.10) follows from the Calderón–Zygmund inequality and the Sobolev
embedding theorem. ��

According to Corollary 2.6, u is a continuous function in �, and therefore the noncoinci-
dence set �u := {u > 0} is an open subset of �. Define the free boundary by


u = ∂�u ∩ �. (2.11)

By standard arguments in the theory of free boundary problems, we can see that u is a
biharmonic function in the noncoincidence set �u . It follows from our discussion that μu =
	2u is a positive measure supported on 
u , and the variational inequalities (1.2) holds with
ϕ ≡ 0.

3 Regularity of the free boundary

In this section we investigate the regularity of the free boundary 
u , under the assumption
that the solution to the biharmonic obstacle problem is close to the one-dimensional solution
1
6 (xn)

3+.
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3.1 One-dimensional solutions

First we find the explicit solution to the biharmonic obstacle problem in the interval (0, 1) ⊂
R.

Example 3.1 The minimiser u0 of the functional

J [u] =
ˆ 1

0
(u′′(x))2dx, (3.1)

over nonnegative functions u ∈ W 2,2(0, 1), with boundary conditions u(0) = 1, u′(0) =
λ < −3 and u(1) = 0, u′(1) = 0, is a piecewise 3-rd order polynomial,

u0(x) = λ3

33

(
x + 3

λ

)3

−
, x ∈ (0, 1), (3.2)

hence u0 ∈ C2,1(0, 1).

Proof Let u0 be the minimiser to the given biharmonic obstacle problem. If 0 < x0 < 1,
and u0(x0) > 0, then

´
u′′
0η

′′ = 0, for all infinitely differentiable functions η compactly
supported in a small ball centered at x0. Hence the minimiser u0 has a fourth order derivative,
u(4)
0 (x) = 0 if x ∈ {u0 > 0}. Therefore u0 is a piecewise polynomial of degree less than or

equal to three. Denote by γ ∈ (0, 1] the first point where the graph of u0 hits the x-axes. Our
aim is find the explicit value of γ . Then we can also compute the minimiser u0.

Observe that u0(γ ) = 0, and u′
0(γ ) = 0, since u′

0 is an absolutely continuous function
in (0, 1). Taking into account the boundary conditions at the points 0 and γ , we can write
u0(x) = ax3 + bx2 + λx + 1 in (0, γ ), where

a = λγ + 2

γ 3 , b = −2λγ + 3

γ 2 .

We see that the point γ is a zero of second order for the third order polynomial u0, and u0 ≥ 0
in (0, γ ]. That means the third zero is not on the open interval (0, γ ), hence γ ≤ − 3

λ
.

Consider the function

F(γ ) :=
ˆ γ

0
(u′′(x))2dx,

then F(γ ) = 4
γ 3 (λ

2γ 2+3λγ +3). Hence F ′(γ ) = − 4
γ 4 (λγ +3)2, showing that the function

F is decreasing, so it achieves minimum at the point γ = − 3
λ
. Therefore we may conclude

that

u0(x) = λ3

33

(
x + 3

λ

)3

−
, x ∈ (0, 1), (3.3)

and γ = − 3
λ
is a free boundary point. Observe that u′′(γ ) = 0, and u′′ is a continuous

function, but u′′′ has a jump discontinuity at the free boundary point γ = − 3
λ
. ��

The example above characterises one-dimensional solutions. It also tells us that one-
dimensional solutions are C2,1, and in general are not C3.
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3.2 The classB%
� (") of solutions to the biharmonic obstacle problem

Without loss of generality, we assume that 0 ∈ 
u , and study the regularity of the free
boundary, when u ≈ 1

6 (xn)
3+.

Let us start by recalling the definition of non-tangentially accessible domains [8].

Definition 3.2 Abounded domain D ⊂ R
n is called non-tangentially accessible (abbreviated

NTA) when there exist constants M , r0 and a function l : R+ �→ N such that

1. D satisfies the corkscrew condition; that is for any x0 ∈ ∂D and any r < r0, there exists
P = P(r , x0) ∈ D such that

M−1r < |P − x0| < r and dist(P, ∂D) > M−1r . (3.4)

2. Dc := R
n\D satisfies the corkscrew condition.

3. Harnack chain condition; if ε > 0 and P1, P2 ∈ D, dist(Pi , ∂D) > ε, and |P1 − P2| <

Cε, then there exists a Harnack chain from P1 to P2 whose length l depends onC , but not
on ε, l = l(C). A Harnack chain from P1 to P2 is a chain of balls Brk (x

k), k = 1, . . . , l
such that P1 ∈ Br1(x

1), P2 ∈ Brl (x
l), Brk (x

k) ∩ Brk+1(x
k+1) �= ∅, and

Mrk > dist(Brk (x
k), ∂D) > M−1rk . (3.5)

Let us define rigorously, what we mean by u ≈ 1
6 (xn)

3+.

Definition 3.3 Let u ≥ 0 be the solution to the biharmonic obstacle problem in a domain �,
B2 ⊂⊂ � and assume that 0 ∈ 
u is a free boundary point. We say that u ∈ B

�
κ (ε), if the

following assumptions are satisfied:

1. u is almost one dimensional, that is

‖∇′u‖W 2,2(B2) ≤ ε,

where ∇′ := ∇ − en
∂

∂xn
.

2. The set �u := {u > 0} is an NTA domain with constants r0 = M−1 = �, and with a
function l, indicating the length of a Harnack chain.

3. There exists 2 > t > 0, such that u = 0 in B2 ∩ {xn < −t}.
4. We have the following normalisation

‖D3u‖L2(B1) = 1

6

∥∥D3(xn)
3+
∥∥
L2(B1)

= |B1| 12
2

1
2

:= ωn, (3.6)

and we also assume that

‖D3u‖L2(B2) < κ, (3.7)

where κ > 1
6

∥∥D3(xn)3+
∥∥
L2(B2)

= 2
n
2 ωn .

In the notation of the class B�
κ (ε) we did not include the length function l, since later it

does not appear in our estimates. For the rest of this paper we will assume that we have a
fixed length function l. Later on in Corollary 3.6 we will see that the precise value of the
parameter t in assumption 3 is not very important, and therefore we also omit the parameter
t in our notation. From now on κ > 2

n
2 ωn and 1 > � > 0 are fixed parameters.

Evidently 1
6 (xn)

3+ ∈ B
�
κ (ε), for any ε > 0 and � > 0. We show that if u ∈ B

�
κ (ε), with

ε > 0 small, then u ≈ 1
6 (xn)

3+ inW 3,2(B1). First we need to prove the following easy lemma.
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Lemma 3.4 Let u be the solution to the biharmonic obstacle problem in �. Take K ⊂⊂ �,
and a function ζ ∈ C∞

0 (K ), ζ ≥ 0, then
ˆ

�

	uxi 	(ζuxi ) ≤ 0, (3.8)

for all i = 1, 2, . . . , n.

Proof Fix 1 ≤ i ≤ n, denote ui,h(x) := u(x + hei ), where 0 < |h| < dist(K , ∂�), hence
ui,h is defined in K . Let us observe that the function u + tζ(ui,h − u) is well defined and
nonnegative in � for any 0 < t < 1

‖ζ‖L∞ , and it satisfies the same boundary conditions as u.
Therefore ˆ

�

(
	(u + tζ(ui,h − u))

)2 ≥
ˆ

�

(	u)2,

after dividing the last inequality by t , and taking the limit as t → 0, we obtain
ˆ
K

	u	(ζ(ui,h − u)) ≥ 0. (3.9)

Note that ui,h is the solution to the biharmonic obstacle problem in K , and ui,h + tζ(u−ui,h)
is an admissible function, henceˆ

K

(
	(ui,h + tζ(u − ui,h))

)2 ≥
ˆ
K
(	ui,h)

2,

after dividing the last inequality by t , and taking the limit as t → 0, we obtain
ˆ
K

	ui,h	(ζ(u − ui,h)) ≥ 0. (3.10)

Inequalities (3.9) and (3.10) imply that
ˆ
K
(	ui,h − 	u)	(ζ(ui,h − u)) ≤ 0, (3.11)

dividing the last inequality by h2, and taking into account that u ∈ W 3,2
loc , we may pass to the

limit as |h| → 0 in (3.11), and conclude that
ˆ
K

	uxi 	(ζuxi ) ≤ 0.

��
Lemma 3.5 There exists a modulus of continuity σ = σ(ε) ≥ 0, such that∥∥∥∥u(x) − 1

6
(xn)

3+
∥∥∥∥
W 3,2(B1)

≤ σ(ε), (3.12)

for any u ∈ B
�
κ (ε).

Proof Weargueby contradiction.Assume that there existsσ0 > 0 and a sequenceof solutions,
u j ∈ B

�
κ (ε j ), such that

‖∇′u j‖W 2,2(B2) = ε j → 0,
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but ∥∥∥∥u j (x) − 1

6
(xn)

3+
∥∥∥∥
W 3,2(B1)

> σ0 > 0. (3.13)

According to assumption 4 inDefinition 3.3,‖D3u j‖L2(B2) < κ and according toAssump-
tion 2 the functions u j are vanishing on an open subset of B2. Therefore it follows from the
Poincaré inequality that‖u j‖W 3,2(B2) ≤ C(�, n)κ . Hence up to a subsequenceu j⇀u0 weakly
in W 3,2(B2), u j → u0 strongly in W 2,2(B2) and according to Corollary 2.6 u j → u0 in
C1,α(B3/2). Hence

‖∇′u0‖W 1,2(B2) = lim
j→∞ ‖∇′u j‖W 1,2(B2) ≤ lim

j→∞ ε j = 0.

This implies that u0 is a one-dimensional solution (depending only on the variable xn).
Example 3.1 tells us that one-dimensional solutions in the interval (−2, 2) have the form

u0(xn) = c1(xn − a1)
3− + c2(xn − a2)

3+,

where c1, c2 ≥ 0 and −2 ≤ a1 ≤ a2 ≤ 2 are constants. According to assumption 3 in
Definition 3.3, u0 = c(xn − a)3+. In order to obtain a contradiction to Assumption (3.13),
we need to show that u j → u0 = 1

6 (xn)
3+ in W 3,2(B1). The proof of the last statement can

be done in two steps.
Step 1We show that

u j → c(xn − a)3+ in W 3,2(B1). (3.14)

Denote u j
n := ∂u j

∂xn
∈ W 2,2(B2), j ∈ N0, and let ζ ∈ C∞

0 (B 3
2
) be a nonnegative function,

such that ζ ≡ 1 in B1. According to Lemma 3.4,

0 ≥
ˆ
B2

	(ζu j
n)	u j

n =
ˆ
B2

u j
n	ζ	u j

n +
ˆ
B2

ζ(	u j
n)

2 + 2
ˆ
B2

∇ζ∇u j
n	u j

n,

and therefore

lim sup
j→∞

ˆ
B2

ζ(	u j
n)

2 ≤ − lim
j→∞

ˆ
B2

u j
n	ζ	u j

n − 2 lim
j→∞

ˆ
B2

∇ζ∇u j
n	u j

n

= −
ˆ
B2

u0n	ζ	u0n − 2
ˆ
B2

∇ζ∇u0n	u0n =
ˆ
B2

ζ(	u0n)
2,

(3.15)

where in the last step we used integration by parts.
On the other hand, since 	u j

n⇀	u0n weakly in L2(B2), it follows that

lim inf
j→∞

ˆ
B2

ζ(	u j
n)

2 ≥
ˆ
B2

ζ(	u0n)
2. (3.16)

Therefore, we may conclude from (3.15) and (3.16) that

lim
j→∞

ˆ
B2

ζ(	u j
n)

2 =
ˆ
B2

ζ(	u0n)
2.

Hence we obtain

∂	u j

∂xn
→ ∂	u0

∂xn
in L2(B1).
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Similarly ∂	u j

∂xi
→ 0 in L2(B1), for i = 1, . . . , n − 1. Knowing that

‖∇	u j − ∇	u0‖L2(B1) → 0, and ‖u j − u0‖W 2,2(B2) → 0,

we may apply the Calderón–Zygmund inequality, and conclude (3.14). Recalling that
‖D3u j‖L2(B1) = ωn , we see that

‖D3u0‖L2(B1) = ωn . (3.17)

Since u0 = c(xn − a)3+ ≥ 0, it follows that

‖D3u0‖2L2(B1)
= c2Ln(B1 ∩ {xn > a}) > 0,

hence

c > 0 and a < 1. (3.18)

Step 2 We show that a = 0 and c = 1
6 . Taking into account that u j → u0 in C1,α and

u j (0) = 0, we conclude that u0(0) = 0, thus a ≥ 0. Assume that a > 0. Since 0 ∈ 
 j , and
� j is an NTA domain, there exists Pj = P(r , 0) ∈ � j , for 0 < r < min(�, a/2) as in the
corkscrew condition,

�r < |Pj | < r and dist(Pj , ∂� j ) > �r .

Therefore up to a subsequence Pj → P0, hence r� ≤ |P0| ≤ r , Br ′(P0) ⊂ � j , for all j
large enough, where 0 < r ′ < r� is a fixed number. Since we have chosen r < a/2, we may
conclude that

Br ′(P0) ⊂ {xn < a} ∩ � j .

Thus 	u j is a sequence of harmonic functions in the ball Br ′(P0), and therefore

	u j → 0 locally uniformly in Br ′(P0), (3.19)

according to (3.14).
Let Q := en , then u0(Q) = c(1 − a)3 > 0, since u j → u0 uniformly in B3/2, we see

that u j (Q) > 0 for large j , and Q ∈ � j . Therefore there exists a Harnack chain connecting
P0 with Q; {Br1(x1), Br2(x2), . . . , Brl (xl)} ⊂ � j , whose length l does not depend on j .
Denote by K j := ∪i Bri (x

i ) ⊂⊂ � j , and let V j ⊂⊂ K j ⊂⊂ � j where V j is a regular
domain, such that dist(K j , ∂V j ) and dist(V j , ∂� j ) depend only on r and �.

Let w
j
+ be a harmonic function in V j , with boundary conditions w

j
+ = (	u j )+ ≥ 0 on

∂V j , then w
j
+ − 	u j is a harmonic function in V j , and w

j
+ − 	u j = (	u j )− ≥ 0 on ∂V j

, hence

0 ≤ w
j
+ − 	u j ≤ ‖(	u j )−‖L∞(V j ) in V j . (3.20)

Let us observe that 	u j → 	u0 = 6c(xn − a)+ implies that ‖(	u j )−‖L2(B2) → 0. Since
(	u j )− is a subharmonic function in � j , and V j ⊂⊂ � j it follows that

‖(	u j )−‖L∞(V j ) ≤ C(n, r , �)‖(	u j )−‖L2(B2) → 0.

So w
j
+ is a nonnegative harmonic function in V j , and by the Harnack inequality

CH inf
Brl (x

l )
w

j
+ ≥ sup

Brl (x
l )

w
j
+ ≥ w

j
+(en) ≥ 	u j (en) ≥ 1

2
	u0(en) = 3c(1 − a),
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if j is large, where CH is the constant in Harnack’s inequality, it depends on � and r but not
on j . Denote C(a, c) := 3c(1 − a) > 0 by (3.18). Applying the Harnack inequality again,
we see that

CH inf
Brl−1 (xl−1)

w
j
+ ≥ sup

Brl−1 (xl−1)

w
j
+ ≥ inf

Brl (x
l )

w
j
+ >

C(a, c)

CH
.

Inductively, we obtain that

CH inf
Br1 (x1)

w
j
+ ≥ sup

Br1 (x1)
w

j
+ >

C(a, c)

Cl−1
H

, (3.21)

where l does not depend on j . Hence w
j
+(P0) ≥ C(a,c)

Cl
H

for all j large, and according to

(3.20),

lim
j→∞ 	u j (P0) ≥ C(a, c)

Cl
H

> 0,

the latter contradicts (3.19). Therefore we may conclude that a = 0.
Recalling that ‖D3u0‖L2(B1) = ωn , we see that c = 1

6 , but then we obtain u
j → 1

6 (xn)
3+

in W 3,2(B1) which is a contradiction, since we assumed (3.13). ��

Lemma 3.5 has an important corollary, which will be very useful in our later discussion.

Corollary 3.6 Let u be the solution to the biharmonic obstacle problem, u ∈ B
�
κ (ε). Then for

any fixed t > 0 we have that u(x) = 0 in B2 ∩ {xn < −t}, provided ε = ε(t) > 0 is small.

Proof Once again we argue by contradiction. Assume that there exist t0 > 0 and a sequence
of solutions u j ∈ B

�
κ (ε j ), ε j → 0, such that x j ∈ B2 ∩ 
 j , and x j

n < −t0. For 0 < r <

min(�, t0/2) choose P j = P(r , x j ) ∈ � j as in the corkscrew condition,

r� < |x j − P j | < r , Br�(P j ) ⊂ � j .

Upon passing to a subsequence, we may assume that P j → P0. Fix 0 < r ′ < r�, then for
large j

Br ′(P0) ⊂⊂ � j ∩ {xn < 0}.
Hence 	u j is a sequence of harmonic functions in Br ′(P0). According to Lemma 3.5,
u j → 1

6 (xn)
3+, and therefore 	u j → 0 in Br ′(P0), and 	u j (en) → 1. Since � j

is an NTA domain, there exists a Harnack chain connecting P0 with Q := en ∈ � j ;
{Br1(x1), Br2(x2), . . . , Brk (xk)} ⊂ � j , whose length does not depend on j . Arguing as in
the proof of Lemma 3.5, we will obtain a contradiction to 	u j → 0 in Br ′(P0). ��

3.3 Linearisation

Let {u j } be a sequence of solutions in � ⊃⊃ B2, u j ∈ B
�
κ (ε j ), and assume that ε j → 0 as

j → ∞. It follows from Lemma 3.5, that up to a subsequence

u j → 1

6
(xn)

3+ in W 2,2(B2) ∩ C1,α
loc (B2). (3.22)
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Let us denote

δ
j
i :=

∥∥∥∥∂u j

∂xi

∥∥∥∥
W 2,2(B2)

.

Without loss of generality we may assume that δ
j
i > 0, for all j ∈ N. Indeed, if δ

j
i = 0 for

all j ≥ J0 large, then u j does not depend on the variable xi , and the problem reduces to a
lower dimensional case. Otherwise we may pass to a subsequence satisfying δ

j
i > 0 for all

j .
Denote

v
j
i := 1

δ
j
i

∂u j

∂xi
, for i = 1, . . . , n − 1, (3.23)

then ‖v j
i ‖W 2,2(B2) = 1. Therefore up to a subsequence v

j
i converges to a function v0i weakly

inW 2,2(B2) and strongly inW 1,2(B2). For the further discussionwe need strong convergence
v
j
i → v0i in W 2,2, at least locally.

Lemma 3.7 Assume that {u j } is a sequence of solutions in� ⊃⊃ B2, u j ∈ B
�
κ (ε j ), ε j → 0.

Let v j
i be the sequence given by (3.23), and assume that v

j
i ⇀v0i weakly in W

2,2(B2), strongly
in W 1,2(B2), for i = 1, . . . , n − 1, then

	2v0i = 0 in B+
2 , v0i ≡ 0 in B2\B+

2 . (3.24)

Furthermore, for any 0 < R < 2

‖v j
i − v0i ‖W 2,2(BR) → 0. (3.25)

Proof Denote by � j := �u j , 
 j := 
u j . It follows from Corollary 3.6 that v0i ≡ 0 in
B2\B+

2 , hence v0i = |∇v0i | = 0 on {xn = 0} ∩ B2 in the trace sense. Moreover, if K ⊂⊂ B+
2

is an open subset, then K ⊂ � j for large j by (3.22). Hence 	2v
j
i = 0 in K , and therefore

	2v0i = 0 in B+
2 , and (3.24) is proved.

Now let us proceed to the proof of the strong convergence. Let ζ ∈ C∞
0 (B2) be a non-

negative function, such that ζ ≡ 1 in BR and 0 ≤ ζ ≤ 1 in B2. It follows from (3.24)
that

0 =
ˆ
B2

	v0i 	(ζv0i ) =
ˆ
B2

v0i 	ζ	v0i +
ˆ
B2

ζ(	v0i )
2 + 2

ˆ
B2

∇ζ∇v0i 	v0i . (3.26)

According to Lemma 3.4

0 ≥
ˆ
B2

	(ζv
j
i )	v

j
i =

ˆ
B2

v
j
i 	ζ	v

j
i +

ˆ
B2

ζ(	v
j
i )

2 + 2
ˆ
B2

∇ζ∇v
j
i 	v

j
i , (3.27)

and therefore

lim sup
j→∞

ˆ
B2

ζ(	v
j
i )

2 ≤ − lim
j→∞

ˆ
B2

v
j
i 	ζ	v

j
i − 2 lim

j→∞

ˆ
B2

∇ζ∇v
j
i 	v

j
i

= −
ˆ
B2

v0i 	ζ	v0i − 2
ˆ
B2

∇ζ∇v0i 	v0i ,

where we used that v j
i → v0i in W 1,2(B2) and 	v

j
i ⇀	v0i in L2(B2).
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From the last inequality and (3.26) we may conclude that

lim sup
j→∞

ˆ
B2

ζ(	v
j
i )

2 ≤
ˆ
B2

ζ(	v0i )
2. (3.28)

On the other hand

lim inf
j→∞

ˆ
B2

ζ(	v
j
i )

2 ≥
ˆ
B2

ζ(	v0i )
2 (3.29)

follows from the weak convergence	v
j
i ⇀	v0i in L

2(B2), and wemay conclude from (3.28)
and (3.29) that

lim
j→∞

ˆ
B2

ζ(	v
j
i )

2 =
ˆ
B2

ζ(	v0i )
2.

Hence we obtain ‖	v
j
i − 	v0i ‖L2(BR) → 0, and therefore v

j
i → v0i in W 2,2

loc (B2) according
to the Calderón–Zygmund inequality. ��

3.4 Properties of solutions in a normalised coordinate system

Let us define

ur ,x0(x) := u(r x + x0)

r3
, for x0 ∈ 
u, x ∈ B2, r ∈ (0, 1), (3.30)

and ur := ur ,0. We would like to know how fast ‖∇′ur‖W 2,2(B2) decays with respect to
‖∇′u‖W 2,2(B2), for r < 1. In particular, the inequality

‖∇′us‖W 2,2(B2) ≤ τ‖∇′u‖W 2,2(B2), (3.31)

for some 0 < s, τ < 1 would provide good decay estimates for ‖∇′usk‖W 2,2(B2), k ∈ N.
We show that the inequality (3.31) holds in a special coordinate system depending on

the solution u and parameter s > 0. Then iterating the inequality (3.31) and the coordinate
system we obtain the existence of the unit normal vector to the free boundary at the origin.

Let us observe that 1
6 (η · x)3+ ∈ B

�
κ (ε) if |η − en | ≤ Cnε, for some dimensional constant

Cn .

Definition 3.8 Let u be the solution to the biharmonic obstacle problem. We say that the
coordinate system is normalised with respect to u, if

inf
η∈Rn ,|η|=1

∥∥∥∥∇′
η

(
u(x) − 1

6
(η · x)3+

)∥∥∥∥
L2(B2)

=
∥∥∥∥∇′

en

(
u(x) − 1

6
(xn)

3+
)∥∥∥∥

L2(B2)
,

where ∇′
η := ∇ − (η · ∇)η, and ∇′ := ∇′

en .

A minimiser η always exists for a function u ∈ B
�
κ (ε), and since ∇′−η = ∇′

η, −η is
also a minimiser, thus we always choose a minimiser satisfying the condition en · η ≥ 0.
A normalised coordinate system always exists by choosing η = en in the new coordinate
system.
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Lemma 3.9 Let u be the solution to the biharmonic obstacle problem in a normalised coor-
dinate system with respect to u. Thenˆ

B2

∂u

∂xi

∂u

∂xn
dx = 0, for all 1 ≤ i ≤ n − 1. (3.32)

Proof Let us observe that for every η ∈ R
n ,

∇′
η

(
u(x) − 1

6
(η · x)3+

)
= ∇′

ηu(x)

and ∥∥∥∇′
ηu

∥∥∥2
L2(B2)

= ‖∇u‖2L2(B2)
− ‖η · ∇u‖2L2(B2)

.

For any fixed 1 ≤ i ≤ n − 1, and real number −1 < t < 1, let η(t) := tei + √
1 − t2en .

By the definition of a normalised coordinate system, the function ϕ(t) := ‖η · ∇u‖2
L2(B2)

,
t ∈ (−1, 1) has a local maximum at the point t = 0. Hence

ϕ′(0) = 2
ˆ
B2

∂u

∂xi

∂u

∂xn
dx = 0, (3.33)

which implies (3.32). ��
Lemma 3.10 Assume that u ∈ B

�
κ (ε) solves the biharmonic obstacle problem in a fixed coor-

dinate system with basis vectors {e1, . . . , en}. Let {e11, . . . , e1n} be a normalised coordinate
system with respect to u, and assume that e1n · en ≥ 0. Then

|en − e1n | ≤ C(n)‖∇′u‖L2(B2) ≤ C(n)ε,

if ε is small, where C(n) > 0 is a dimensional constant.

Proof According to Definition 3.8,

‖∇′
e1n
u‖L2(B2) = ‖∇u − e1n(e

1
n · ∇u)‖L2(B2) ≤ ‖∇′u‖L2(B2). (3.34)

It follows from the triangle inequality that∥∥∥∥ ∂u

∂xn
− (en · e1n)2

∂u

∂xn

∥∥∥∥
L2(B2)

≤
∥∥∥∥ ∂u

∂xn
− (en · e1n)(e1n · ∇u)

∥∥∥∥
L2(B2)

+
∥∥∥∥(en · e1n)(e1n · ∇u) − (en · e1n)2

∂u

∂xn

∥∥∥∥
L2(B2)

≤ ‖∇′
e1n
u‖L2(B2) + (en · e1n)‖e1n · ∇′u‖L2(B2) ≤ 2‖∇′u‖L2(B2),

(3.35)

according to (3.34), and taking into account that 0 ≤ en · e1n ≤ 1.

Note that Lemma 3.5 implies that
∥∥∥ ∂u

∂xn

∥∥∥
L2(B2)

≈
∥∥∥ x2n

2

∥∥∥
L2(B+

2 )
is uniformly bounded from

below by a dimensional constant if ε > 0 is small. We may conclude from (3.35) that

1 − (en · e1n)2 ≤ 2‖∇′u‖L2(B2)∥∥∥ ∂u
∂xn

∥∥∥
L2(B2)

≤ C(n)‖∇′u‖L2(B2).

Since 0 ≤ en · e1n ≤ 1, we get

0 ≤ 1 − en · e1n ≤ 1 − (en · e1n)2 ≤ C(n)‖∇′u‖L2(B2). (3.36)
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Denote by (e1n)
′ := e1n − en(en · e1n). It follows from the triangle inequality and (3.34) that

‖(e1n)′(e1n · ∇u)‖L2(B2) ≤ ‖∇′u − (e1n)
′(e1n · ∇u)‖L2(B2)

+ ‖∇′u‖L2(B2) ≤ ‖∇′
e1n
u‖L2(B2) + ‖∇′u‖L2(B2) ≤ 2‖∇′u‖L2(B2).

Hence

|(e1n)′| ≤ 2‖∇′u‖L2(B2)∥∥e1n · ∇u
∥∥
L2(B2)

.

Let us choose ε > 0 small, then
∥∥e1n · ∇u

∥∥
L2(B2)

is bounded from below by a dimensional
constant according to Lemma 3.5 and inequality (3.36). Therefore we obtain

|(e1n)′| ≤ C(n)‖∇′u‖L2(B2). (3.37)

Note that

|en − e1n | ≤ |1 − en · e1n | + |(e1n)′|.
Applying inequalities (3.36) and (3.37) we obtain the desired inequality,

|en − e1n | ≤ C(n)‖∇′u‖L2(B2) ≤ C(n)ε,

and the proof of the lemma is now complete. ��
Lemma 3.10 provides an essential estimate, which will be useful in our later discussion.

Next we state another supporting lemma, the proof of which is quite standard, but we include
it for our convenience.

Lemma 3.11 1. Let v be a biharmonic function in the ball B2, then

‖	v‖L2(B1) ≤ Cn‖v‖L2(B2). (3.38)

2. If v is a biharmonic function in the half-ball B+
2 , such that v = |∇v| = 0 on {xn = 0}∩B2,

then

‖	v‖L2(B+
1 ) ≤ Cn‖v‖L2(B+

2 ). (3.39)

Proof Throughout ζ ∈ C∞
0 (B2) is a fixed function, such that ζ ≡ 1 in B1, 0 ≤ ζ ≤ 1 in B2.

1. If v is a biharmonic function in B2, then

0 =
ˆ
B2

	v	(ζ 4v) =
ˆ
B2

2v(	ζ 2 + 4|∇ζ |2)ζ 2	v

+
ˆ
B2

ζ 4(	v)2 + 8
ˆ
B2

ζ∇ζ∇vζ 2	v.

Hence by Cauchy’s inequality,ˆ
B2

ζ 4(	v)2 = −
ˆ
B2

2v(	ζ 2 + 4|∇ζ |2)ζ 2	v − 8
ˆ
B2

ζ∇ζ∇vζ 2	v

≤ 1

4

ˆ
B2

ζ 4(	v)2 + 4
ˆ
B2

v2(	ζ 2 + 4|∇ζ |2)2 + 1

4

ˆ
B2

ζ 4(	v)2

+ 64
ˆ
B2

(ζ∇ζ∇v)2 ≤ 1

2

ˆ
B2

ζ 4(	v)2 + Cn‖v‖2L2(B2)
+ Cn‖ζ∇v‖2L2(B2)

.

(3.40)
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On the other hand,ˆ
B2

ζ 2|∇v|2 =
ˆ
B2

∇(ζ 2v)∇v − 2
ˆ
B2

ζv∇ζ∇v

= −
ˆ
B2

ζ 2v	v − 2
ˆ
B2

ζv∇ζ∇v ≤ 1

8Cn

ˆ
B2

ζ 4(	v)2 + 2Cn

ˆ
B2

v2

+ 1

2

ˆ
B2

ζ 2|∇v|2 + 2
ˆ
B2

|∇ζ |2v2,

and therefore

Cn‖ζ∇v‖2L2(B2)
≤ 1

4

ˆ
B2

ζ 4(	v)2 + C̃n

ˆ
B2

v2 (3.41)

Combining estimates (3.40) and (3.41), we obtainˆ
B2

ζ 4(	v)2 ≤ 3

4

ˆ
B2

ζ 4(	v)2 + C̄n‖v‖2L2(B2)
,

which implies (3.38).
2. In order to prove the second part of the lemma, it is enough to observe thatˆ

B+
2

	v	(ζ 4v) = 0,

since ζ 4v ∈ W 2,2
0 (B+

2 ). The rest of the proof follows as in the first part.

��
Proposition 3.12 For any small number 0 < s < 2−n−4e−1n−2, there exists ε0 = ε0(s) > 0
small, such that if ε < ε0, then for any u ∈ B

�
κ (ε)∥∥∇′u2s

∥∥
L2(B2)

≤ Cn
∥∥∇′u

∥∥
W 2,2(B2)

, (3.42)

where Cn is a dimensional constant, not depending on s. Furthermore, if the coordinate
system is normalised with respect to u2s , then∥∥∇′us

∥∥
W 2,2(B2)

≤ τ
∥∥∇′u

∥∥
W 2,2(B2)

, (3.43)

where 1 > τ > �ns is a fixed number and �n is a dimensional constant to be specified.

Proof The proof of inequalities (3.42) and (3.43) follows the exact same procedure, so we
will mainly focus on the proof of the second one, since it is the core of the linearisation
argument.

We want to show that the inequality (3.43) holds in a normalised coordinate system with
respect to u2s . By the Cauchy–Schwartz inequality, it is enough to show that the inequality∥∥∥∥∂us

∂xi

∥∥∥∥
W 2,2(B2)

≤ τ

∥∥∥∥ ∂u

∂xi

∥∥∥∥
W 2,2(B2)

holds for any i ∈ {1, . . . , n − 1}, provided ε is small enough. We argue by contradiction.
Assume that there exists small numbers 0 < s < 2−n−4e−1n−2, �ns < τ < 1 and a
sequence of solutions {u j } ⊂ B

�
κ (ε j ), in a coordinate system normalised with respect to u j

2s ,
such that ε j → 0, as j → ∞, but for some i ∈ {1, 2, . . . , n − 1}∥∥∥∥∥

∂u j
s

∂xi

∥∥∥∥∥
W 2,2(B2)

> τ

∥∥∥∥∂u j

∂xi

∥∥∥∥
W 2,2(B2)

. (3.44)
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Let v
j
i be given by (3.23), then according to Lemma 3.7, v j

i → v0i in W 2,2
loc (B2), where

v0i is a biharmonic function in the half-ball {xn > 0} ∩ B2, satisfying v0i = |∇v0i | = 0 on
{xn = 0} ∩ B2. Inequality (3.44) implies that∥∥∥∥∥

v0i (s·)
s2

∥∥∥∥∥
W 2,2(B2)

≥ τ. (3.45)

Lemma 3.11, part 2. and the Calderón–Zygmund inequality imply that∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
W 2,2(B1)

≤ Cn

∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
L2(B2)

,

hence ∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
L2(B2)

≥ 1

Cn

∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
W 2,2(B1)

≥ Cn

∥∥∥∥∥
v0i (s·)
s2

∥∥∥∥∥
W 2,2(B2)

≥ Cnτ, (3.46)

where Cn represents a general dimensional constant, and it does not depend neither on the
function v0i nor on the parameter s. We will derive a contradiction to (3.45), if we show that∥∥∥∥ v0i (2s·)

4s2

∥∥∥∥
L2(B2)

can be made arbitrarily small by choosing s > 0 small initially.

Since v0i is a biharmonic function in the half-ball {xn > 0} ∩ B2 and v0i = |∇v0i | = 0 on
{xn = 0} ∩ B2, we can apply the reflection principle for biharmonic functions, and extend
v0i to a biharmonic function in the ball B2, see for instance [9] or [10]. Let v̄0i denote the
extended function given by Duffin’s formula

v̄0i (x
′,−xn) = −v0i (x

′, xn) + 2xn
∂v0i

∂xn
(x ′, xn) − x2n	v0i (x

′, xn), xn > 0. (3.47)

The formula (3.47) implies that

‖v̄0i ‖L2(B2) ≤ cn‖v0i ‖W 2,2(B2), (3.48)

where cn > 0 is yet another dimensional constant.
The function v̄0i is biharmonic in the ball B2, therefore analytic and it may be written as

a Taylor series

v̄0i (x) =
∞∑

|α|=0

Dαv̄0i (0)

α! xα =
∞∑
k=0

bk(x), (3.49)

where α is a multiindex, and bk is a homogeneous degree k biharmonic polynomial. It follows
from boundary conditions for the function v0i on {xn = 0} that

b0 = b1 ≡ 0, and b2(x) = ∂2v̄0i (0)

∂x2n

x2n
2

. (3.50)

Lemma 3.5 implies that ∂u j

∂xn
→ 1

2 (x
+
n )2 in L2(B2), and according to Lemma 3.7,

v
j
i (2sx)
4s2

→ v0i (2sx)
4s2

in W 2,2(B2) as j → ∞, and v0i = 0 in B2\B+
2 . By Lemma 3.9,

ˆ
B2

v
j
i (2sx)

∂u j

∂xn
(2sx)dx = 1

δ
j
i

ˆ
B2

∂u j

∂xi
(2sx)

∂u j

∂xn
(2sx)dx = 0,
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and after passing to the limit as j → ∞, we obtain thatˆ
B+
2

v0i (2sx)x
2
ndx = 0. (3.51)

Note that (3.51) implies that
∥∥∥∥∥
v0i (2s·)
4s2

− b2

∥∥∥∥∥
2

L2(B+
2 )

=
∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
2

L2(B+
2 )

+ ‖b2‖2L2(B+
2 )

,

hence ∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
L2(B+

2 )

≤
∥∥∥∥∥
v0i (2s·)
4s2

− b2

∥∥∥∥∥
L2(B+

2 )

. (3.52)

Next we show that
∥∥v0i (2s·) − 4s2b2

∥∥2
L2(B+

2 )
is of order s3. By the triangle inequality,

∥∥∥∥∥
v0i (2s·)
4s2

− b2

∥∥∥∥∥
L2(B+

2 )

=
∥∥∥∥∥

∞∑
k=3

(2s)−2bk(2s·)
∥∥∥∥∥
L2(B+

2 )

≤
∞∑
k=3

∥∥(2s)−2bk(2s·)
∥∥
L2(B+

2 )
=

∞∑
k=3

(2s)k−2 ‖bk‖L2(B+
2 ) .

(3.53)

Now it is time to refer to the estimates on derivatives for biharmonic functions (see “Appendix
A”),

bk(x) =
∑
|α|=k

Dαv̄i0(0)

α! xα, and

|Dαv̄i0(0)| ≤ (2n+1nk)k

rn+k

(∥∥v̄0i

∥∥
L1(Br )

+ r2

2(n + 2)

∥∥	v̄0i

∥∥
L1(Br )

)
.

(3.54)

Hence

‖bk‖L2(B+
2 ) ≤

∑
|α|=k

(2n+1nk)k2n+k

|B1| 12 α!

(∥∥v̄0i

∥∥
L1(B1)

+ 1

2(n + 2)

∥∥	v̄0i

∥∥
L1(B1)

)

(3.38)≤ Cn(2
n+2nk)k

∑
|α|=k

1

α!
∥∥v̄0i

∥∥
L2(B2)

= Cn
(2n+2nk)knk

k!
∥∥v̄0i

∥∥
L2(B2)

≤Cn2
k(n+2)n2kek

∥∥v̄0i

∥∥
L2(B2)

,

where we used Stirling’s inequality in the last step.
Let λ := 2n+2en2 be a fixed number, then by (3.53),∥∥∥∥∥

v0i (2s·)
4s2

− b2

∥∥∥∥∥
L2(B+

2 )

≤ Cns
−2

∞∑
k=3

(2s)kλk
∥∥v̄0i

∥∥
L2(B2)

= Cn
λ3s

1 − 2λs

∥∥v̄0i

∥∥
L2(B2)

≤ C̃ns
∥∥v̄0i

∥∥
L2(B2)

,

(3.55)

where by assumption 2sλ < 1/2.
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Finally, combining the inequalities (3.48) , (3.52) and (3.55), we obtain∥∥∥∥∥
v0i (2s·)
4s2

∥∥∥∥∥
L2(B2)

≤ cnC̃ns‖v0i ‖W 2,2(B2) ≤ Ans,

where An > 0 is a dimensional constant, and s is fixed small number, s An < 1. Let
�n := An/Cn , where Cn is the dimensional constant in (3.46). Recalling that 1 > τ > s�n ,
we derive a contradiction to (3.46).

The proof of the inequality (3.42) is very similar. Any biharmonic function v in the half
ball B+

2 , satisfying the boundary conditions v = |∇v| = 0 on {xn = 0} can be written as
(3.49). Employing the estimates of derivatives of biharmonic functions, we can show that∥∥∥ v(s·)

s2

∥∥∥
L2(B2)

is bounded by a dimensional constant if 0 < s < 2−n−2e−1n−2, and (3.42)

follows. ��

3.5 C1,˛-regularity of the free boundary

In this section we perform an iteration argument, based on Proposition 3.12 and Lemma 3.10,
that leads to the existence of the unit normal η0 of the free boundary at the origin, and provides
good decay estimates for ‖∇′

η0
ur‖W 2,2(B2).

First we would like to verify that u ∈ B
�
κ (ε) imply that us ∈ B

�
κ (ε). It is easy to check

that the property of being an NTA domain is scaling invariant, in the sense that if D is an
NTA domain and 0 ∈ ∂D, then for any 0 < s < 1 the set Ds := s−1(D∩ Bs) is also an NTA
domain with the same parameters as D.

Assumption 3 in Definition 3.3 holds for us according to Corollary 3.6. Indeed, let t = s
in Corollary 3.6, then u(sx) = 0 if xn < −1 .

Thus us satisfies 2, 3 in Definition 3.3, but it may not satisfy 4. Instead we consider
rescaled solutions defined as follows

Us(x) := ωnus(x)

‖D3us‖L2(B1)
, (3.56)

then assumption 4 also holds. Indeed, ‖D3Us‖L2(B1) = ωn by definition of Us , and

‖D3Us‖L2(B2) = ωn‖D3us‖L2(B2)

‖D3us‖L2(B1)
= ωn‖D3u‖L2(B2s )

‖D3u‖L2(Bs )

≤ ωn
ωn(2s)

n
2 + σ(ε)

ωn(s)
n
2 − σ(ε)

< κ,

according to Lemma 3.5 provided ε = ε(n, κ, s) is small.
In the next lemma we show that Us ∈ B

�
κ (γ ε) in a normalised coordinate system, then

we argue inductively to show that Usk ∈ B
�
κ (γ kε), γ < 1.

Lemma 3.13 Assume that u ∈ B
�
κ (ε) solves the biharmonic obstacle problem in a normalised

coordinate system {e1, e2, . . . , en}. Then for any 0 < α < 1 there exist r0 > 0 and a unit
vector η0 ∈ R

n, such that |η0 − en | ≤ Cε, and for any 0 < r < r0

‖∇′
η0
ur‖W 2,2(B2)

‖D3ur‖L2(B1)
≤ Crαε, (3.57)

provided ε = ε(n, κ, �, α) is small enough. The constant C > 0 depends only on the given
parameters.
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Proof Throughout {e1, . . . , en} is a fixed coordinate system normalised with respect to the
solution u ∈ B

�
κ (ε), and ∇′u = ∇′

en u. We may renormalise the coordinate system with
respect to U2s and denote by {e11, . . . , e1n} the set of basis vectors in the new system. Induc-
tively, {ek1, . . . , ekn}, k ∈ N is a normalised system with respect to U2sk , and e0i := ei .
According to Lemma 3.10,

|ek+1
n − ekn | ≤ C(n)

‖∇′
ekn
u2sk+1‖L2(B2)

‖D3usk‖L2(B1)

(3.42)≤ C(n)
‖∇′

ekn
usk‖W 2,2(B2)

‖D3usk‖L2(B1)
, (3.58)

provided ‖∇′
ekn
Usk‖W 2,2(B2) is sufficiently small.

In the following discussion 0 < s < τ < 1 are small fixed numbers, satisfying the
assumptions in Proposition 3.12.

Now let us consider the sequence of numbers {Ak}k∈N0 , defined as follows:

Ak :=
ωn‖∇′

ekn
usk‖W 2,2(B2)

‖D3usk‖L2(B1)
, for k = 0, 1, 2, . . . . (3.59)

By definition, A0 ≤ ε, and

A1 =
ωn‖∇′

e1n
us‖W 2,2(B2)

‖D3us‖L2(B1)
= ‖D3u‖L2(B1)

‖D3us‖L2(B1)
‖∇′

e1n
us‖W 2,2(B2). (3.60)

Applying Proposition 3.12 and Lemma 3.10 for a function u ∈ B
�
κ (ε), we obtain

‖∇′
e1n
us‖W 2,2(B2) ≤ τ‖∇′

e1n
u‖W 2,2(B2)

≤ τ
(‖∇′u‖W 2,2(B2) + 2|en − e1n |‖∇u‖W 2,2(B2)

)
(3.58)≤ τ

(
‖∇′u‖W 2,2(B2) + 2C(n)

‖∇′u‖W 2,2(B2)

||D3u||L2(B1)
‖∇u‖W 2,2(B2)

)

(3.42)≤ τC(n, κ)‖∇′u‖W 2,2(B2).

(3.61)

Let β := τC(n, κ), and β < γ < 1 be fixed numbers. Then

‖D3u‖L2(B1)

‖D3us‖L2(B1)
= s

n
2 ‖D3u‖L2(B1)

‖D3u‖L2(Bs )

≤ s
n
2 ωn

s
n
2 ωn−σ(A0)

≤ γ
β
.

according to Lemma 3.5, provided A0 ≤ ε is small depending on the parameter s and
dimension n. The last inequality together with (3.60) and (3.61) implies that A1 ≤ γ ε.

We use an induction argument to show that

Ak ≤ γ kε, for all k ∈ N0 (3.62)

for fixed 1> γ > β > τ > �ns > 0. Assuming that (3.62) holds for k ∈ N, we will show
that Ak+1 ≤ γ Ak .

By the induction assumption

‖∇′
ekn
Usk‖W 2,2(B2) =

ωn‖∇′
ekn
usk‖W 2,2(B2)

‖D3usk‖L2(B1)
= Ak ≤ γ kε. (3.63)
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Hence

Usk = ωnusk (x)

‖D3usk‖L2(B1)
∈ B�

κ (γ kε)

in the coordinate system {ek1, . . . , ekn}. By definition, {ek+1
1 , . . . , ek+1

n } is a normalised coor-
dinate system with respect to U2sk+1 ∈ B

�
κ (βkε), and by (3.43)

Ak+1=
ωn‖∇′

ek+1
n

usk+1‖W 2,2(B2)

‖D3usk+1‖L2(B1)
≤

ωnτ‖∇′
ek+1
n

usk‖W 2,2(B2)

‖D3usk‖L2(B1)

‖D3usk‖L2(B1)

‖D3usk+1‖L2(B1)
. (3.64)

First we observe that

‖D3usk‖L2(B1)

‖D3usk+1‖L2(B1)
= s

n
2 ‖D3usk‖L2(B1)

‖D3usk‖L2(Bs )

≤ s
n
2 ωn

s
n
2 ωn − σ(γ k A0)

≤ γ

β
,

(3.65)

according to Lemma 3.5, since Usk ∈ B
�
κ (γ kε) and γ kε < ε is small.

Next we estimate

‖∇′
ek+1
n

usk‖W 2,2(B2) ≤ ‖∇′
ekn
usk‖W 2,2(B2) + 2|ek+1

n − ekn |‖∇usk‖W 2,2(B2)

(3.58)≤ ‖∇′
ekn
usk‖W 2,2(B2) +

C(n)‖∇′
ekn
usk‖W 2,2(B2)

‖D3usk‖L2(B1)
‖∇usk‖W 2,2(B2)

(3.42)≤ C(n, κ)‖∇′
ekn
usk‖W 2,2(B2).

(3.66)

Finally we obtain from (3.65) and (3.66) that

Ak+1 ≤ ωnτC(n, κ)γ

β

‖∇′
ekn
usk‖W 2,2(B2)

‖D3usk‖L2(B1)
= γ Ak ≤ γ k+1A0, (3.67)

this completes the proof of inequality (3.62).
Next we show that {ekn} is a Cauchy sequence by using (3.58) and (3.62). Indeed for any

m, k ∈ N,

|ek+m
n − ekn | ≤

m∑
l=1

|ek+l
n − ek+l−1

n | ≤ C(n)

m∑
l=1

‖∇′
ek+l−1
n

U2sk+l‖L2(B2)

≤C(n)

m∑
l=1

Ak+l−1 ≤ C(n)A0

m∑
l=1

γ k+l−1 ≤ C(n)A0

(1 − γ )
γ k,

hence ekn → η0, as k → ∞ for some η0 ∈ R
n , |η0| = 1 and

|η0 − ekn | ≤ C ′(n)A0γ
k ≤ C ′(n)γ kε, (3.68)

in particular |η0 − en | ≤ C ′(n)ε.
Now the inequality (3.57) follows via a standard iteration argument. Let 0 < α < 1 be

any number, choose s = s(n, α) small, satisfying the assumption in Proposition 3.12, and
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such that γ = Cns < sα . If 0 < r ≤ s, then there exists k ∈ N0, such that sk+1 ≤ r < sk .
Hence

‖∇′
η0
ur‖W 2,2(B2)

‖D3ur‖L2(B1)
≤ C

‖∇′
η0
usk‖W 2,2(B2)

‖D3usk‖L2(B1)

≤ C
‖∇′

ekn
usk‖W 2,2(B2) + 2|ekn − η0|‖∇usk‖W 2,2(B2)

‖D3usk‖L2(B1)
≤ Cγ kε ≤ Csαkε ≤ Crαε,

(3.69)

where C depends on the space dimension and on the given parameters. ��
Now we are ready to prove the C1,α-regularity of the free boundary.

Theorem 3.14 Let 0 < α < 1 be a given number. Assume that u ∈ B
�
κ (ε), with an ε > 0

small, depending on α and the space dimension. Then there exists 0 < r0 < 1 depending on
the given parameters, such that 
u ∩ Br0 is a C

1,α-graph and the C1,α-norm of the graph is
bounded by Cε.

Proof Let 0 < α < 1 and fix s = s(n, α) > 0 small as in (3.69). It follows from Lemma 3.13
that for u ∈ B

�
κ (ε)

‖∇′ur‖W 2,2(B2)

‖D3ur‖L2(B1)
≤ Crα → 0 as r → 0,

after a change of variable, by choosing en = η0,whereη0 is the samevector as inLemma3.13.
Then

ωnur (x)

‖D3ur‖L2(B1)
→ 1

6
(xn)

3+

according to Lemma 3.5.
So we have shown that in the initial coordinate system,

ωnu(r x)

r3‖D3ur‖L2(B1)
→ 1

6
(η0 · x)3+ in W 3,2(B1) ∩ C1,α(B1), as r → 0, (3.70)

and therefore η0 is the measure theoretic normal to 
u at the origin.
Now let x0 ∈ 
u ∩ Bs be a free boundary point, and consider the function ux0,1/2(x) =

u(x/2+x0)
(1/2)3

, x ∈ B2, then

Ux0(x) := ωnux0,1/2(x)

‖D3ux0,1/2‖L2(B1)
∈ B�

κ (C(n)ε).

According to Lemma 3.13, Ux0 has a unique blow-up

Ur ,x0(x) := Ux0(r x)

r3
= ωnux0,1/2(r x)

r3‖D3ux0,1/2(r x)‖L2(B1)
→ 1

6
(ηx0 · x)3+.

and therefore ηx0 is the normal to 
u at x0.
Next we show that ηx is a Hölder continuous function on 
u ∩ Bs . If x0 ∈ 
u ∩ Bs ,

then sk+1 < |x0| ≤ sk , for some k ∈ N0. Hence ‖∇′
η0
Usk ,x0‖W 2,2(B2) ≤ Cγ kε, and

‖∇′
ηx0

Ur ,x0‖W 2,2(B1) → 0 as r → 0. Applying Lemma 3.13 for the function Usk ,x0 ∈
B

�
κ (Cγ kε), we obtain

|ηx0 − η0| ≤ Cγ kε ≤ C

γ
|x0|αε. (3.71)
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Furthermore, the inequality

|ηx − ηy | ≤ C |x − y|αε, for any x, y ∈ 
u

follows from (3.71). ��

4 On the regularity of the solution

In this section we study the regularity of the solution to the biharmonic obstacle problem.
Assuming thatu ∈ B

�
κ (ε), with ε > 0 small,we derive fromTheorem3.14 thatu ∈ C2,1

loc (B1).
In the end we provide an example showing that without the NTA domain assumption, there
exist solutions, which are not C2,1.

4.1 C2,1-regularity of the solutions inB%
� (")

After showing theC1,α-regularity of the free boundary 
u ∩ Br0 , we may go further to derive
improved regularity for the solution u ∈ B

�
κ (ε).

Theorem 4.1 Let u ∈ B
�
κ (ε) be the solution to the biharmonic obstacle problem in� ⊃⊃ B2,

and let 0 < α < 1 be a fixed number. Then there exists r0 > 0 such that u ∈ C2,1(Br0),
provided ε = ε(κ, �, α) is small. Furthermore, the following estimate holds

‖u‖C3,α(�u∩Br0 ) ≤ C(n)‖u‖W 2,2(B2) ≤ C(n)κ,

where C(n) is just a dimensional constant.

Proof According to Theorem 3.14, 
u ∩ Bs is a graph of a C1,α-function. We know that
	u ∈ W 1,2(B2) is a harmonic function in �u := {u > 0}, and also u ∈ W 3,2(B2), u ≡ 0
in �\�u , hence 	u = 0 on 
u = ∂�u ∩ B2 in the trace sense. Therefore we may apply
Corollary 8.36 in [11], to conclude that 	u ∈ C1,α((�u ∪ 
u) ∩ B3s/4), and

‖	u‖C1,α(�u∩B3s/4)
≤ C(n)‖	u‖L∞(B1). (4.1)

It follows from the Calderón–Zygmund estimates that u ∈ W 3,p(Bs/2), for any p < ∞.
According to the Sobolev embedding theorem, u ∈ C2,α(Bs/2), for all α < 1, with the
following estimate

‖u‖C2,α(�u∩Bs/2)
≤ C(n)

(
‖	u‖C1,α(�u∩B3s/4)

+ ‖u‖C1,α(B3/4)

)
. (4.2)

Denote by ui j := ∂2u
∂xi ∂x j

. Then ui j ∈ W 1,2(B1) ∩ Cα(�u ∩ B3s/4) is a weak solution of

	ui j = ∂ f j
∂xi

in �u ∩ B3s/4, where f j := ∂	u
∂x j

∈ Cα(�u ∩ B3/4). Taking into account that
ui j = 0 on ∂�u ∩ B1/2, we may apply Corollary 8.36 in [11] once again and conclude that

‖ui j‖C1,α(�u∩Bs/4)
≤ C(n)

(
‖ui j‖C0(�u∩Bs/2)

+ ‖	u‖C1,α(�u∩B3s/4)

)
,

hence

‖D2u‖C1,α(�u∩Bs/4)
≤ C ′

n

(
‖	u‖C1,α(�u∩B3s/4)

+ ‖u‖C1,α(B3/4)

)
,

according to (4.2).
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Therefore we obtain

‖u‖C3,α(�u∩Bs/4)
≤ ‖u‖C1,α(B3/4) + ‖D2u‖C1,α(�u∩Bs/4)

≤ C(n)
(
‖	u‖C1,α(�u∩B3s/4)

+ ‖u‖C1,α(B3s/4)

)
.

Taking into account that

‖D3u‖L∞(Bs/4) ≤ ‖D3u‖C0,α(�u∩Bs/4)
,

we see that u ∈ C2,1(Bs/4). ��

4.2 In general the solutions are not better than C2,
1
2

Let us observe that the assumption u ∈ B
�
κ (ε) is essential in the proof of u ∈ C2,1(Br ).

The next example shows that without our flatness assumptions there exists a solution to the
biharmonic obstacle problem in R2, that do not possess C2,1- regularity.

Example 4.2 Consider the following function given in polar coordinates in R2,

u(r , ϕ) = r
5
2

(
cos

ϕ

2
− 1

5
cos

5ϕ

2

)
, r ∈ [0, 1), ϕ ∈ [−π, π) (4.3)

then u ∈ C2, 12 is the solution to the biharmonic zero-obstacle problem in the unit ball
B1 ⊂ R

2.

Proof It is easy to check that u ≥ 0, u(x) = 0 if and only if−1 ≤ x1 ≤ 0 and x2 = 0. Hence
the set �u = {u > 0} is not an NTA domain, since the complement of �u does not satisfy
the corkscrew condition.

Let us show that 	2u is a nonnegative measure supported on [−1, 0] × {0}. For any
nonnegative f ∈ C∞

0 (B1), we compute
ˆ
B1

	u(x)	 f (x)dx =
ˆ 1

0

ˆ π

−π

r	 f (r , ϕ)	u(r , ϕ)dϕdr

= 6
ˆ 1

0

ˆ π

−π

r
3
2 	 f (r , ϕ) cos

ϕ

2
dϕdr = 6

ˆ 1

0
r− 1

2 f (r , π)dr ≥ 0,

where we used integration by parts, and that f is compactly supported in B1.
We obtain that u solves the following variational inequality,

u ≥ 0, 	2u ≥ 0, u · 	2u = 0. (4.4)

Nowwe show thatu is the uniqueminimiser to the following zero-obstacle problem:minimize
the functional (1.1) over

A :=
{
v ∈ W 2,2(B1), v ≥ 0, s.t. v = u,

∂v

∂n
= ∂u

∂n
, on ∂B1

}
�= ∅.

The functional J admits a unique minimiser over A , let us call it v. It follows from (4.4),
that ˆ

B1
	u	(v − u) =

ˆ
B1

(v − u)	2u =
ˆ
B1

v	2u ≥ 0.
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Hence
ˆ
B1

(	u)2 ≤
ˆ
B1

	u	v ≤
(ˆ

B1
(	u)2

) 1
2
(ˆ

B1
(	v)2

) 1
2

,

where we used the Hölder inequality in the last step. Therefore we obtainˆ
B1

(	u)2 ≤
ˆ
B1

(	v)2,

thus u ≡ v, and u solves the biharmonic zero-obstacle problem in the unit ball.

However 	u = 6r
1
2 cos ϕ

2 , which implies that u is C2, 12 , and that the exponent 1
2 is

optimal, in particular u is not C2,1. ��
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A Estimates on derivatives of biharmonic functions

In this part of the paper estimates on derivatives of biharmonic functions are obtained. We
believe that these estimates are known, but we could not find a reference, and therefore
included in the paper.

Lemma A.1 Let v be a biharmonic function in the ball B1 ⊂ R
n, and assume that Br (x0) ⊂

B1. Then

|Dαv(x0)| ≤ (2n+1nk)k

|B1|rn+k

(
‖v‖L1(Br (x0)) + r2

2(n + 2)
‖	v‖L1(Br (x0))

)
, (A.1)

where α is a multiindex, and k = |α|.
Proof The following mean value properties are known for biharmonic functions

v(x0) =
 

∂Br (x0)
vdS − r2

2n
	v(x0) (A.2)

and

v(x0) =
 
Br (x0)

vdx − r2

2(n + 2)
	v(x0). (A.3)

The proofs of (A.2) and (A.3) are similar to the proofs of the mean value properties for
harmonic functions. For a fixed x0, let φ(r) := ffl

∂Br (x0)
vdS. It is easy to see by Green’s

formula that

φ′(r) = r

n

 
Br (x0)

	vdx = r

n
	v(x0), (A.4)
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where we also used the mean value property for the harmonic function 	v. Hence (A.2)
follows by integrating (A.4) in the interval (0, r).

Now (A.3) can be shown by using (A.2) and the co-area formula;

 
Br (x0)

vdx = |Br |−1
ˆ r

0

ˆ
∂Bs (x0)

vdSds =
ˆ r

0

nsn−1

rn

(
v(x0) + s2

2n
	v(x0)

)
ds

= v(x0)
n

rn

ˆ r

0
sn−1ds + 	v(x0)

1

2rn

ˆ r

0
sn+1ds = v(x0) + 	v(x0)

r2

2(n + 2)
.

Let us proceed to the proof of (A.1). Estimate (A.1) is well known for harmonic functions,
which will be used to show that it also holds for biharmonic functions. We follow the proof
of estimates on derivatives of harmonic functions (see for instance [5]), and employ (A.2)
and (A.3). The proof uses an argument of induction on k = |α|. The formula (A.3) implies
that

|v(x0)| ≤ 1

rn |B1|
(

‖v‖L1(Br (x0)) + r2

2(n + 2)
‖	v‖L1(Br (x0))

)
.

Let k = 1, then

vxi (x0) =
 
Br/2(x0)

vxi dx − r2

23(n + 2)

 
Br/2(x0)

	vxi dx

= 2n

|B1|rn
ˆ

∂Br/2(x0)
vνi dS − r22n−2

2(n + 2)|B1|rn
ˆ

∂Br/2(x0)
νi	vdS.

hence

|vxi (x0)| ≤2n‖v‖L∞(∂Br/2(x0))

r
+ rn‖	v‖L∞(∂Br/2(x0))

22(n + 2)

≤2n+1n‖v‖L1(Br (x0))

|B1|rn+1 + n2n−1r2‖	v‖L1(Br (x0))

2(n + 2)|B1|rn+1 + r2n2n−1‖	v‖L1(Br (x0))

2(n + 2)|B1|rn+1

≤ n2n+1

|B1|rn+1

(
‖v‖L1(Br (x0)) + r2

22(n + 2)
‖	v‖L1(Br (x0))

)
.

Assuming that (A.1) is true for k − 1, we will show that it is true for k. Let |α| = k, and
Dαv = (Dβv)xi , where |β| = k − 1. By (A.3)

Dαv(x0) =
 
Br/k (x0)

Dαvdx − r2

k22(n + 2)
Dα	v(x0)

= kn

|B1|rn
ˆ

∂Br/k (x0)
Dβvνi dS − r2

k22(n + 2)
Dα	v(x0)

Hence

|Dαv(x0)| ≤ kn

r
‖Dβv‖L∞(∂Br/k(x0)) + r2

k22(n + 2)
|Dα	v(x0)|.
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If x ∈ ∂Br/k(x0), then Br(k−1)/k(x) ⊂ Br (x0), and by induction assumption

|Dαv(x0)| ≤kn(k − 1)k−1(2n+1n)k−1kn+k−1

r |B1|rn+k−1(k − 1)n+k−1 ‖v‖L1(Br (x0))

+ r2(k − 1)2kn(k − 1)k−1(2n+1n)k−1kn+k−1

k22(n + 2)r |B1|rn+k−1(k − 1)n+k−1 ‖	v‖L1(Br (x0))

+ r2(2n+1nk)k

|B1|rn+kk22(n + 2)
‖	v‖L1(Br (x0)) ≤ (kn2n+1)k

|B1|rn+k
‖v‖L1(Br (x0))

+ (kn2n+1)k((k − 1)2 + 1)

2(n + 2)|B1|k2rn+k−2 ‖	v‖L1(Br (x0))

≤ (kn2n+1)k

|B1|rn+k

(
‖v‖L1(Br (x0)) + r2

2(n + 2)
‖	v‖L1(Br (x0))

)
,

and the proof of the lemma is now complete. ��
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