
Calc. Var. (2019) 58:47
https://doi.org/10.1007/s00526-019-1483-6 Calculus of Variations

Partial regularity for manifold constrained p(x)-harmonic
maps

Cristiana De Filippis1

Received: 25 June 2018 / Accepted: 18 January 2019 / Published online: 12 February 2019
© The Author(s) 2019

Abstract
We prove that manifold constrained p(x)-harmonic maps are locally C1,β0 -regular outside
a set of zero n-dimensional Lebesgue’s measure, for some β0 ∈ (0, 1). We also provide an
estimate from above of the Hausdorff dimension of the singular set.
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Introduction

We prove local C1,β0 -partial regularity for manifold constrained p(x)-harmonic maps. More
precisely, we consider local minimizers of the functional

W 1,p(·)(�,M) � w �→ E(w,�) :=
∫
�

k(x)|Dw|p(x) dx, (0.1)

where p(·) and k(·) are Hölder continuous functions (see (P1)-(P2) and (K1)-(K2) below
for the precise assumptions),� ⊂ R

n , n ≥ 2, is an open, bounded set andM ⊂ R
N , N ≥ 3,

is an m-dimensional, compact submanifold endowed with a suitable topology. We refer to
Sect. 1 for the precise notation. Our final outcome is that there exists a relatively open set
�0 ⊂ � of full n-dimensional Lebesgue measure such that u ∈ C1,β0

loc (�0,M) for some
β0 ∈ (0, 1) and �0(u) := � \ �0 has Hausdorff dimension at the most equal to n − γ1.
Moreover, after imposing some extra restrictions on the variable exponent p(·), we are able to
provide a further reduction to the Hausdorff dimension of the singular set ofM-constrained
minimizers of the p(·)-energy

w �→
∫
�

|Dw|p(x) dx . (0.2)

Let us put our results into the context of the available literature. Functionals with variable
growth exponent modelled on the one in (0.2) have been introduced in the setting of Calculus
of Variations and Homogenization in the fundamental works of Zhikov [51–54]. Energies as
in (0.2) also occur in the modelling of electro-rheological fluids, a class of non-newtonian
fluids whose viscosity properties are influenced by the presence of external electromagnetic
fields [3,43]. As for regularity, the first result in the vectorial case has been obtained byCoscia
andMingione in [8], where it is shown that local minimizers of energy (0.2) are locallyC1,β -
regular in the unconstrained case. This is the optimal generalization of the classical results of
Uhlenbeck concerning the standard case when p(·) is a constant.We refer to [32,33,36,39,48,
49] for a survey of regularity results in the p-growth case, both for scalar and vector valued
minimizers. Subsequently, the regularity theory of functionals with variable growth has been
developed in a series of interesting papers by Ragusa, Tachikawa and Usuba [40–42,46,47],
where the authors established partial regularity results for unconstrained minimizers that are
on the other hand obviously related to the constrained case. Especially, in [46] Tachikawa
gives an interesting partial regularity result and some singular set estimates for a class of
functionals related to the constrainedminimization problem inwhichminimizers are assumed
to take values in a single chart. This generalizes the well-known results of Giaquinta and
Giusti [22] valid in the case of quadratic functionals with special structure. In this paper we
finally tackle the case of local minimizers with values into a manifold, provided that suitable
topological assumptions are considered on the manifoldM and optimal regularity conditions
are in force on p(·) and k(·). Our first main result is the following:

Theorem 1 Let u ∈ W 1,p(·)(�,M) be a local minimizer of the functional in (0.1), where p(·)
satisfies assumptions (P1)-(P2), k(·) satisfies (K1)-(K2) and M is as in (M1)-(M2). Then
there exists a relatively open set �0 ⊂ � such that u ∈ C1,β0

loc (�0,M) for some β0 ∈ (0, 1),
andHn−γ1(� \�0) = 0.

By strengthening further the assumptions on the variable exponent p(·), we are then able to
provide a better dimension estimate for the singular set. This is in the following:

Theorem 2 Let u ∈ W 1,p(·)(�,M) be a constrained local minimizer of energy (0.2), where
p(·) ∈ Lip(�), γ1 ≥ 2 andM is as in (M1)-(M2). Then,
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i. if n ≤ [γ1] + 1, then u can have only isolated singularities;
ii. if n > [γ1]+1, then theHausdorff dimension of the singular set is at the most n−[γ1]−1.

As they are stated, our results are the natural generalization of the classical ones in [27,
28,34,44] for the case p(·) ≡ constant. For the vectorial quasiconvex case with standard
p-growth we refer to the recent work of Hopper [31]. The extension we make here to the
variable exponent case requires a number of non-trivial additional ideas and tools, in particular
as far as the dimension estimates stated in Theorem 2 are concerned. This is also related
to the recent, aforementioned paper of Tachikawa [46], and it is based on the use of a
suitable monotonicity formula. We remark that the variable exponent functional in (0.1) is a
significant instance of functionals with (p, q)-growth (following the terminology introduced
by Marcellini, [37,38]). These are variational integrals of the type w �→ ∫

F(x, Dw) dx ,
where the integrand F(·) satisfies

|z|p � F(x, y, z) � (1 + |z|q), 1 < p ≤ q.

The study of such functionals has undergone an intensive development over the last years,
see for instance [5,11,15,35,37–39]. Another prominent model in this class is the so called
Double Phase energy, where

F(x, z) = |z|p + a(x)|z|q , 0 ≤ a(x) ≤ L.

This model shares several features with the variable growth exponent and has been again
introduced by Zhikov in [53]. Indeed, here once again the growth exponent with respect to
the gradient variable is determined by the space variable x , since the ellipticity type changes
according to the the positivity of the coefficient a(·). There are several analogies between
the variable exponent energy and the double phase one. In particular, one should notice the
similarities between the use of the Gehring’s Lemma-based reverse Hölder inequalities made
here and the reverse Hölder inequality coming from fractional differentiability exploited
in [6,7]. Moreover, compare the use of localization methods based on p-harmonic type
approximation implemented here and in [4]. Such analogies point to a unified approach to
non-autonomous functionals with (p, q)-growth conditions, partially implemented in [9].
We plan to investigate this in the context of constrained minimizers in a forthcoming paper
[10].

1 Notation, main assumptions and functional setting

Throughout this paper, � denotes an open, bounded subset of Rn with n ≥ 2 and the target
space will be a submanifold of RN , N ≥ 3. As usual, we denote by c a general constant
larger than one. Different occurrences from line to line will be still indicated by c and relevant
dependencies from certain parameters will be emphasized using brackets, i.e.: c(n, p)means
that c depends on n and p. We denote Br (x0) := {x ∈ R

n : |x − x0| < r} the open ball
centered in x0 with radius r > 0; when not relevant, or clear from the context, we shall
omit indicating the center: Br ≡ Br (x0). Moreover, for integer k ≥ 1, by ωk we mean
the k-dimensional Lebesgue measure of the unit ball B1(0) ⊂ R

k . Along the paper, k will
assume values N or m. When referring to balls in R

k , k ∈ {m, N }, we will stress it with
an apex “k”, i.e.: Bk

r (a0) is the open ball with center a0 ∈ R
k and positive radius r . For

α, β ∈ {1, · · · , n} and i, j ∈ {1, · · · , N }, we set δαβ ≡ 0, δi j ≡ 0 if α 
= β, i 
= j
respectively and δαα = δi i ≡ 1.WithU ⊂ R

n being a measurable subset with positive, finite
Lebesgue measure 0 < |U | < ∞ and with f : U → R

k being a measurable map, we shall
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denote by

( f )U :=
∫
−
U

f (x) dx = 1

|U |
∫
U

f (x) dx

its integral average. In particular, when U ≡ Br (x0), we will indicate only the radius and,
if necessary, the centre of the ball, i.e.: ( f )r ≡ ( f )r ,x0 := ( f )Br (x0). For g : � → R

k and
U ⊂ �, with γ ∈ (0, 1] being a given number we shall denote

[g]0,γ ;U := sup
x,y∈U ;x 
=y

|g(x)− g(y)|
|x − y|γ , [g]0,γ := [g]0,γ ;�.

It is well known that the quantity defined above is a seminorm and when [g]0,γ ;U <∞, we
will say that g belongs to the Hölder space C0,γ (U ,Rk). Let us turn to the main assumptions
that will characterize our problem. When considering the functional in (0.1), the exponent
p(·) will always satisfy

(P1) p ∈ C0,α(�), α ∈ (0, 1],
(P2) 1 < γ1 ≤ p(x) ≤ γ2 <∞ for all x ∈ �,
γ1 := inf

x∈� p(x) and γ2 := sup
x∈�

p(x),

while the coefficient k(·) is so that

(K1) k ∈ C0,ν(�), ν ∈ (0, 1],
(K2) 0 < λ ≤ k(x) ≤ � <∞ for all x ∈ �,

hold true. Clearly, in hypotheses (P1)-(K1) there is no loss of generality in supposing α = ν,
since in the forthcoming estimates only min {α, ν} will be relevant, so, for simplicity, from
now on we will assume p(·), k(·) ∈ C0,α(�). These assumptions are optimal in order to
get local Hölder continuity for the gradient of a minimizer of problem (0.1). This is evident
already in the scalar, linear case, (Schauder estimates). For any given ball Br � �, we denote

p1(r) := inf
x∈Br

p(x) and p2(r) := sup
x∈Br

p(x). (1.1)

Notice that there is no loss of generality in assuming γ1 < γ2, otherwise p(·) ≡ const on�,
and in this case the problem is very well understood, [23,27,28,34,44,45]. Furthermore, we
need to impose some topological restriction on the manifoldM. Precisely, we ask that

(M1)M is a compact, m − dimensional, C3 Riemannian submanifold without boundary of RN ,

(M2)M is [γ2] − 1 connected.

Here [x] denotes the integer part of x . We refer to Sect. 2 for a detailed description of the
geometry ofM. Finally, for shorten the notation we shall collect the main parameters of the
problem in the quantity

data := (n, N ,M, λ,�, γ1, γ2, [k]0,α, [p]0,α, α).
As to fully clarify the framework we are going to adopt, we need to introduce some basic
terminology on the so-calledMusielak-Orlicz-Sobolev spaces. Essentially, these are Sobolev
spaces defined by the fact that the distributional derivatives lie in a suitable Musielak-Orlicz
space, rather than in a Lebesgue space as usual. Classical Sobolev spaces are then a particular
case. Such spaces and related variational problems are discussed for instance in [29,54], to
whichwe refer formore details. Here, wewill consider spaces related to the variable exponent
case in both unconstrained and manifold-constrained settings.
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Definition 1 Given an open set � ⊂ R
n, the Musielak-Orlicz space L p(·)(�,Rk), k ≥ 1,

with p(·) satisfying (P1)-(P2), is defined as

L p(·)(�,Rk) :=
{
w : �→ R

k measurable and
∫
�

|w|p(x) dx <∞
}
,

and, consequently,

W 1,p(·)(�,Rk) :=
{
w ∈ W 1,1(�,Rk) ∩ L p(·)(�,Rk) such that Dw ∈ L p(·)(�,Rk×n)

}
.

The variants W 1,p(·)
0 (�,Rk) and W 1,p(·)

loc (�,Rk) are defined in an obvious way.

It is well known that, under assumptions (P1)-(P2), the set of smooth maps is dense in
W 1,p(·)(�,Rk), see e.g. [15,51,53,54]. Following [9,31] we also recall the analogous defi-
nition of such spaces when mappings take values intoM.

Definition 2 LetM be a compact submanifold of Rk , k ≥ 3, without boundary and� ⊂ R
n

an open set. For p(·) satisfying (P1)-(P2), theMusielak-Orlicz-Sobolev spaceW 1,p(·)(�,M)
of functions intoM can be defined as

W 1,p(·)(�,M) :=
{
w ∈ W 1,p(·)(�,Rk) : w(x) ∈ M for a. e. x ∈ �

}
.

The local space W 1,p(·)
loc (�,M) consists of maps belonging to W 1,p(·)(U ,M) for all open

sets U � �.

When (P1)-(P2) and (M1)-(M2) are in force, a quick modification of [9, Lemma 6] shows
that Lipschitz maps are dense in W 1,p(·)(�,M) as well. Of course, when p(·) ≡ const,
Definitions 1 and 2 reduce to the classical Sobolev spaces W 1,p(�,Rk) and W 1,p(�,M)

respectively. Owing to the p(·)-growth behavior of the integrand in (0.1), we display our
definition of local minimizer.

Definition 3 A map u ∈ W 1,p(·)
loc (�,M) is a constrained local minimizer of the functional

E(·) defined in (0.1) if and only if

x �→ k(x)|Du(x)|p(x) ∈ L1
loc(�) and

∫
U
k(x)|Du|p(x) dx ≤

∫
U
k(x)|Dw|p(x) dx,

for all open sets U � � and all w ∈ W 1,p(·)
u (U ,M), where

W 1,p(·)
u (U ,M) :=

(
u + W 1,p(·)

0 (U ,RN )
)

∩ W 1,p(·)(U ,M).

In Definition 3, local minimizers are given as maps belonging to the local space
W 1,p(·)

loc (�,M). We stress that, since all the regularity properties of constrained local min-
imizers treated in this work are of local nature, there is no loss of generality in assuming
that u ∈ W 1,p(·)(�,M) and that x �→ k(x)|Du(x)|p(x) ∈ L1(�), see the statements of
Theorems 1-2.

Remark 1 By continuity, all the constants depending on certain fixed values of the map p(·)
are stable when p(·) varies in the interval [γ1, γ2]. Thus, whenever a constant depends on
some p ∈ [γ1, γ2], this dependence will be denoted by only mentioning γ1 and γ2, i.e.:
c(p) ≡ c(γ1, γ2).
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47 Page 6 of 38 C. De Filippis

2 Preliminaries

We shall split this section into two parts. In the first one, we collect some basic results
concerning the regularity of minimizers of certain type of functionals and in the second
one we will give a detailed description of the topology of M, together with some extension
lemmas, which will turn fundamental in order to construct suitable comparison maps in some
steps of the proofs of Theorems 1 and 2.

2.1 Known regularity results

We start by reporting a Lipschitz estimate for the gradient and a decay estimate for the excess
functional of unconstrained local minimizers of functionals of the p-laplacean type.

Proposition 1 [2,20,24] Let � ⊂ R
n be an open, bounded set, p ∈ (1,∞), 0 < λ < � and

0 < l < L be absolute constants, gαβ and hi j be constant matrices, uniformly elliptic in the
sense that

l|ξ |2 ≤ gαβξαξβ ≤ L|ξ |2 for all ξ ∈ R
n and l|η|2 ≤ hi jη

iη j ≤ L|η|2 for all η ∈ R
k,

uniformly bounded, [gαβ ] = [gαβ ]−1; α, β ∈ {1, · · · , n}, i, j ∈ {1, · · · , k}. Then, if v ∈
W 1,p(�,Rk) is a local minimizer of the integral functional

W 1,p(�,Rk) � w �→ F(w,�) :=
∫
�

k0
(
gαβhi j Dαw

i Dβw
j
)p/2

dx, (2.1)

where k0 ∈ [λ,�] is a constant, then for all B� ⊂ Br � � the following reference estimates
hold:∫
−
B�

|Dv|p dx ≤ c
∫
−
Br

|Dv|p dx and
∫
−
B�

|Dv − (Dv)�|p dx ≤ c(�/r)μp
∫
−
Br

|Dv|p dx,
(2.2)

for c = c(n, k, λ,�, l, L, p) and μ = μ(n, k, λ,�, l, L, p).
The following result is a p-harmonic approximation lemma, which will play a crucial role
in the proof of Theorem 1. We will state it in the form which better fits our necessities.

Lemma 1 [12] Let � ⊂ R
n be an open subset and p ∈ (1,∞). For every θ̃ > 0 and

d̃ ∈ (0, 1) there exists δ̃ > 0 depending only on θ̃ , d̃, p, such that the following holds. Let
Br ⊂ R

n be a ball and B̃r denote either Br or B2r . If v ∈ W 1,p(B̃r ,Rk) is almost p-harmonic
in the sense that∫

−
Br

p|Dv|p−1 Dv

|Dv| · Dϕ dx ≤ δ̃
∫
−̃
Br

(
|Dv|p + ‖Dϕ‖p

L∞(Br )

)
dx, (2.3)

for all ϕ ∈ C∞
c (Br ,R

k), then the unique map h̃ ∈ W 1,p(Br ,Rk), solution to the Dirichlet
Problem

v + W 1,p
0 (Br ,R

k) � w �→ min
∫
Br

|Dw|p dx (2.4)

satisfies

(∫
−
Br

|Dv − Dh̃|pd̃ dx

) 1
d̃ ≤ θ̃

∫
−̃
Br

|Dv|p dx . (2.5)
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The next are a couple of simple inequalities which will be used several times throughout the
paper. They are elementary, see e.g.: [8,40,46].

Lemma 2 The following inequalities hold true.

i. For any ε0 > 0, there exists a constant c = c(ε0) such that for all t ≥ 0, l ≥ m ≥ 1
there holds |t l − tm | ≤ c(l − m)

(
1 + t (1+ε0)l

)
.

ii. For t ∈ (0, 1], consider the function g(t) := t−ctγ , where c > 0 is an absolute constant
and γ ∈ (0, 1]. Then limt→0 g(t) = 1 and supt∈(0,1] g(t) ≤ exp(c/γ ).

We conclude this section by recalling another fundamental tool in regularity theory, which
will help establishing the behavior of certain quantities.

Lemma 3 [21] Let h : [�, R0] → R be a non-negative, bounded function and 0 < θ < 1,
0 ≤ A, 0 < β. Assume that h(r) ≤ A(d − r)−β + θh(d), for � ≤ r < d ≤ R0. Then
h(�) ≤ cA/(R0 − �)−β holds, where c = c(θ, β) > 0.

2.2 Some extension results

We report some results concerning locally Lipschitz retractions. They have been extensively
used in the realm of functionals with p-growth, see [27,28,31]. For integrands exihibiting
(p, q)-growth they were used for the first time in [9], to prove that if the Lavrentiev phe-
nomenon does not occur in the unconstrained case, then it is absent also in presence of
a geometric constraint. According to assumptions (M1)-(M2), M ⊂ R

N is a compact,
m-dimensional C3 Riemannian submanifold, ∂M = ∅ and, in particular, M is [γ2] − 1
connected. Let us clarify this concept.

Definition 4 [31] Given an integer j ≥ 0, a manifold M is said to be j-connected if its
first j homotopy groups vanish identically, that is π0(M) = π1(M) = · · · = π j−1(M) =
π j (M) = 0.

It is reasonable to expect some good properties in terms of retractions for this kind of mani-
folds endowed with a relatively simple topology, as the following lemma shows.

Lemma 4 Let M ⊂ R
N , N ≥ 3 be a compact, j -connected submanifold for some integer

j ∈ {1, · · · , N − 2} contained in an N-dimensional cube Q. Then there exists a closed
(N − j −2)-dimensional Lipschitz polyhedron X ⊂ Q \M and a locally Lipschitz retraction
ψ : Q \ X → M such that for any x ∈ Q \ X, |Dψ(x)| ≤ c/ dist(x, X) holds, for some
positive c = c(N , j,M).

Proof See e.g., [28, Lemma 6.1] for the original proof, or [31, Lemma 4.5] for a simpli-
fied version relying on some Lipschitz extension properties of maps between Riemannian
manifolds. ��
A major technical obstruction one can face when dealing with manifold-constrained varia-
tional problems is finding comparison maps which satisfy the constraint (notice that, without
further regularity details on minimizers, we cannot localize in the image). Precisely, we are
no longer allowed to use convex combinations of a minimizer with a suitable cutoff function
as to realize valid competitors for the problem. Hence, given any w ∈ W 1,p(·)

loc (�,RN ), we
overcome this issue by applying Lemma 4 to assure a local control on the L p(·)-norm of the
gradient of a suitable projected image of w in terms of the L p(·)-norm of w itself. This is the
content of the next lemma.
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Lemma 5 (Finite energy extension.) LetM be as in (M1)-(M2) and U � � an open subset
of�with Lipschitz boundary. Givenw ∈ W 1,p(·)

loc (�,RN )∩L∞
loc(�,R

N )withw(∂U ) ⊂ M,

there exists w̃ ∈ W 1,p(·)
w (U ,M) satisfying

∫
U |Dw̃|p(x) dx ≤ c

∫
U |Dw|p(x) dx, where

c = c(N ,M, γ2).

Proof Following [31, Section 2.2], we define Unp(M) as the set of all x ∈ R
N for which

there exists a unique point of M nearest to x and, for a ∈ M, we denote by reach(M, a)
the supremum of the set of all numbers r > 0 for which {x ∈ R

N : |x − a| < r} ⊂
Unp(A). Then, we can set reach(M) := infa∈M Reach(M, a). Notice that, by assumptions
(M1)-(M2), reach(M) > 0, see [17,28,31]. Now, if for some 0 < σ < reach(M), V :={
a ∈ R

N : dist(a,M) < σ
}
is a neighbourhood with the nearest point property, then the

metric projection � : V → M associating to any a ∈ V the unique a0 ∈ M such that
dist(a,M) = |a−a0|, is Lipschitz continuous and V andM are homotopy equivalent spaces
with πi (V ) = πi (M) for all i ∈ {0, · · · , [γ2] − 1}, see e.g.: [30, Proposition 1.17] for more
details on this matter. SinceM is compact and w is bounded, there exists an N -dimensional
cube Q such that M ⊂ V ⊂ Q and dist(w,M) ≤ 1

2 dist(M, ∂Q) almost everywhere. By
Lemma 4 with j ≡ [γ2] − 1, there exists a locally Lipschitz retraction ψ : Q \ X → V for
some (N −[γ2]− 1)-dimensional Lipschitz polyhedron X ⊂ Q \ V , which, by construction
stands strictly away fromM. Thus we have a map P := � ◦ ψ : Q \ X → M, satisfying

|∇P(a)| ≤ c

dist(a, X)
, (2.6)

for c = c(N ,M). By a change of variables, the definition of the dual skeleton, the fact that
M is ([γ2] − 1)-connected and dim(X) ≤ N − [γ2] − 1, there holds:

∫
Q

1

dist(a, X)p(x)
da ≤

∫
Q

(
1 + 1

dist(a, X)γ2

)
da < c, (2.7)

for a finite, positive constant c = c(N ,M, γ2). Now, for a sufficiently small 0 < � <

min
{
σ
2 ,

dist(M,∂Q)
2

}
and a point a ∈ BN

� , denote the translations Qa := {b + a : b ∈ Q}
and Xa := {b + a : b ∈ X}, so that one can define the retraction Pa : Qa \ Xa → M given
by Pa(b) := P(b − a). Then, by the chain rule, Fubini’s theorem, (2.6) and (2.7) we obtain

∫
BN
�

∫
U

|D(Pa(w))|p(x) dxda ≤
∫
U

|Dw|p(x)
(∫

BN
�

|∇P(w−a)|p(x) da
)

dx

≤
∫
U

|Dw|p(x)
(∫

Q
|∇P(b)|p(x) db

)
dx≤c

∫
U

|Dw|p(x) dx,
(2.8)

where c = c(N ,M, γ2). Estimate (2.8) and Markov’s inequality then render the existence
of a positive c = c(N ,M, γ2) and a ã ∈ BN

� so that
∫
U

|D(Pã(w))|p(x) dx ≤ c
∫
U

|Dw|p(x) dx, (2.9)

where again c = c(N ,M, γ2). Sincew(∂U ) ⊂ M, the map w̃ := ( Pã |M)−1 ◦ Pã ◦w is well
defined and given that the inverse map P−1

ã is Lipschitz on M, from (2.9) we conclude that∫
U |Dw̃|p(x) dx ≤ c

∫
U |Dw|p(x) dx, with c = c(N ,M, γ2). Moreover, since w(∂U ) ⊂ M,

by construction we have that w̃|∂U = w|∂U and this concludes the proof. ��

123



Partial regularity for manifold constrained p(x)-harmonic… Page 9 of 38 47

Lemma 5 will be particularly helpful whenU is a ball Br or an annulus Br \ B� for a proper
choice of r and �.

3 Partial regularity

In this section we first collect a couple of essential inequalities, some basic regularity results
stemming only from the minimality condition and then carry out the proof of Theorem 1.

3.1 Basic regularity results

The first result is Poincaré’s inequality, well known in the unconstrained case, see [14,
Theorem 3.1], and since it is valid for any map w ∈ W 1,p(·)

loc (�,RN ), it transfers verbatim

for functions in W 1,p(·)
loc (�,M). However, given that we are dealing with bounded maps (M

is compact), we present a simplified proof, including also the case in which the domain is an
annulus Arθ := Br \ Br(1−θ) for some 0 < θ < 1.

Lemma 6 (Poincaré’s inequality) Let w ∈ L∞
loc(�,R

N ) ∩ W 1,p(·)
loc (�,RN ), with p(·) satis-

fying (P1)-(P2) and Br � �, 0 < r ≤ 1. Then, there holds

∫
Br

∣∣∣∣w − (w)r
r

∣∣∣∣
p(x)

dx ≤ c

(∫
Br

|Dw|p(x) dx + |Br |
)
, (3.1)

with c = c(n, N , γ1, γ2, [p]0,α, α, ‖w‖L∞(Br )). Furthermore, if for some 0 < θ < 1, w ∈
L∞(Arθ ,R

N ) ∩ W 1,p(·)(Arθ ,R
N ) is such that w|∂Br = 0, then

∫
Arθ

|w/(rθ)|p(x) dx ≤ c

(∫
Arθ

|Dw|p(x) dx + |Aθ |
)
, (3.2)

for c = c(n, N , γ1, γ2, [p]0,α, α, ‖w‖L∞(Arθ )).

Proof Fix Br � �, 0 < r ≤ 1. From assumptions (P1)-(P2), Lemma 2 (ii.), (1.1) and the
standard Poincaré’s inequality holding for p ≡ p1(r) we obtain

∫
Br

∣∣∣∣w − (w)r
r

∣∣∣∣
p(x)

dx ≤cr p1(r)−p2(r)max
{
1, 2‖w‖L∞(Br )

}γ2−γ1 ∫
Br

∣∣∣∣w − (w)r
r

∣∣∣∣
p1(r)

dx

≤c
∫
Br

|Dw|p1(r) dx ≤ c
∫
Br
(|Du|p(x) + 1) dx,

with c = c(n, N , γ1, γ2, [p]0,α, α, ‖w‖L∞(Br )). In the same way, for w ∈ L∞(Arθ ,R
N ) ∩

W 1,p(·)(Arθ ,R
N ) such that w|∂Br = 0, we have

∫
Arθ

|w/(rθ)|p(x) dx ≤ c(rθ)p1(rθ)−p2(rθ)
∫
Arθ

|Dw|p1(rθ) dx ≤ c
∫
Arθ
(|Dw|p(x) + 1) dx,

for c(n, N , γ1, γ2, [p]0,α, α, ‖w‖L∞(Arθ )). Here we denoted p1(rθ) := infx∈Arθ p(x) and
p2(rθ) := supx∈Arθ p(x). ��

As to successfully implement Lemma 1, we also need an intrinsic version of Sobolev-
Poincaré’s inequality.
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Lemma 7 (Intrinsic Sobolev-Poincaré’s inequality) Let p ∈ (1,∞) and w ∈ W 1,p
loc (�,R

N ).
Then, there exist a positive c = c(n, N , p) and exponents d1 > 1 and 0 < d2 < 1 such that

(∫
−
Br

∣∣∣∣w − (w)r
r

∣∣∣∣
pd1

dx

) 1
d1

≤ c

(∫
−
Br

|Dw|pd2 dx
) 1

d2

holds whenever Br � � is such that 0 < r ≤ 1. Here, d1 = d1(n, N , p) and d2 =
d2(n, N , p).

Proof We start by considering the case 1 < p ≤ n. Fix any γ ∈
(
max

{
1
p ,

n
n+p

}
, 1

)

and notice that w ∈ W 1,γ p
loc (�,RN ) for all such γ . From the standard Sobolev-Poincaré’s

inequality we obtain

(∫
−
Br

∣∣∣∣w − (w)r
r

∣∣∣∣
nγ p
n−γ p

dx

) n−γ p
nγ p

≤ c

(∫
−
Br

|Dw|γ p dx
) 1
γ p

,

for c = c(n, N , p, γ ), but, being γ ultimately influenced only by n and p, we can conclude
that c = c(n, N , p). Choosing d1 := nγ

n−γ p > 1 since γ > n
n+p , and d2 := γ < 1 we obtain

the thesis. Now, if p > n, then there exists γ ∈ (n/p, 1) so that pγ > n. Let κ := 1−n/(γ p).
From Morrey’s embedding theorem we then have

(∫
−
Br

∣∣∣∣w − (wr )

r

∣∣∣∣
p
γ

dx

) γ
p

≤ c[w]0,κ;Br rκ−1 ≤ c

(∫
−
Br

|Dw|pγ dx

) 1
pγ

,

for c = c(n, N , p). Fixing d1 := γ−1 and d2 := γ we can conclude.

Remark 2 Since M is compact, for a function w taking values in M the dependence of the
constants appearing in the inequalities in Lemma 6 on the L∞-norm of w will be expressed
as a dependence on M.

In the following lemma, we present a Caccioppoli-type inequality, which is fundamental for
regularity.

Lemma 8 (Caccioppoli-type inequality) Let u ∈ W 1,p(·)(�,M) be a constrained local min-
imizers of (0.1). Then, for any ball Br � � there holds

∫
−
Br/2

|Du|p(x) dx ≤ c
∫
−
Br

∣∣∣∣u − (u)r
r

∣∣∣∣
p(x)

dx,

for c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α).
Proof With 0 < r/2 ≤ s < t ≤ r ≤ 1 we determine a cutoff function η ∈ C1

c (Br ) such
that χBs ≤ η ≤ χBt and |Dη| ≤ 2(t − s)−1 and define the map w := u − η(u − (u)r ). By
construction,w ∈ W 1,p(·)(Bt ,R

N )∩ L∞(Bt ,R
N ) and w|∂Bt = u|∂Bt , so Lemma 5 renders

a map w̃ ∈ W 1,p(·)
u (Bt ,M) which is an admissible competitor for u in problem (0.1) and

satisfies
∫
Bt

|Dw̃|p(x) dx ≤ c
∫
Bt

|Dw|p(x) dx ≤ c

(∫
Bt\Bs

|Du|p(x) dx +
∫
Br

∣∣∣∣u − (u)r
t − s

∣∣∣∣
p(x)

dx

)
,

(3.3)
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for c = c(N ,M, γ1, γ2). The minimality of u, (K2), the features of η, (3.3) and (1.1) give
∫
Bs

|Du|p(x) dx ≤�
λ

∫
Bt

|Dw̃|p(x) dx

≤c
∫
Bt\Bs

|Du|p(x) dx + c
∫
Br

∣∣∣∣u − (u)r
t − s

∣∣∣∣
p(x)

dx

≤c
∫
Bt\Bs

|Du|p(x) dx + c(t − s)−p2(r)
∫
Br

|u − (u)r |p(x) dx,

with c = c(N ,M, λ,�, γ1, γ2). Now we are in position to apply Widman’s hole filling
technique and Lemma 3 to conclude that
∫
Br/2

|Du|p(x) dx ≤cr−p2(r)
∫
Br

|u − (u)r |p(x) dx

= cr p1(r)−p2(r)
∫
Br
r−p1(r)|u−(u)r |p(x) dx ≤ c

∫
Br

∣∣∣∣u−(u)r
r

∣∣∣∣
p(x)

dx,

for c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α). Here we also used assumption (P1), definition
(1.1) and Lemma 2 (ii.). ��
The next step consists in proving an interior higher integrability result for local minimizers
of (0.1).

Lemma 9 Let u ∈ W 1,p(·)(�,M) be a constrained local minimizer of (0.1). Then there
esists a positive integrability threshold δ̃0 = δ̃0(n, N ,M, λ,�, γ1, γ2, [p]0,α, α) such that

|Du|(1+δ)p(·) ∈ L1
loc(�) for all δ ∈ [0, δ̃0)

and, for any Br � �
(∫

−
Br/2

|Du|(1+δ)p(x) dx
) 1

1+δ
≤ c

∫
−
Br
(1 + |Du|2)p(x)/2 dx for all δ ∈ [0, δ̃0),

with c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α).
Proof For a fixed Br � �, combining Lemmas 8 and 7 with p ≡ p1(r), we end up with

∫
−
Br/2

|Du|p(x) dx ≤c
∫
−
Br

∣∣∣∣u − (u)r
r

∣∣∣∣
p(x)

dx

≤cmax
{
1, 2‖u‖L∞(Br )

}γ2−γ1 r p1(r)−p2(r)
∫
−
Br

∣∣∣∣u − (u)r
r

∣∣∣∣
p1(r)

dx

≤c

(∫
−
Br

∣∣∣∣u − (u)r
r

∣∣∣∣
p1(r)d1

dx

) 1
d1

≤ c

(∫
−
Br

|Du|p1(r)d2 dx
) 1

d2

≤c

(∫
−
Br

|Du|p(x)d2 dx
) 1

d2 + c,

for c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α). Here we also used (P1)-(P2), Lemma 2 (ii.)
and Hölder’s inequality. Now, an application of Gehring-Giaquinta-Modica’s lemma, [26,
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Chapter 6] renders the existence of a positive δ̃0 = δ̃0(n, N ,M, λ,�, γ1, γ2, [p]0,α, α) so
that

(∫
−
Br/2

|Du|(1+δ)p(x) dx
) 1

1+δ
≤ c

∫
−
Br
(1 + |Du|2)p(x)/2 dx,

with c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α), for all δ ∈ [0, δ̃0). Finally, after a standard
covering argument, we obtain that |Du|(1+δ)p(·) ∈ L1

loc(�) for all δ ∈ [0, δ̃0). ��

Remark 3 Before proceding further we need to stress that, if Br � � andw ∈ W 1,p(Br ,RN )

is such thatw ≡ 0 onU ⊂ Br with |U | > c̃|Br | for some positive, absolute c̃, then Sobolev-
Poincaré’s inequality gives

∫
Br

|w/r |p dx ≤ cr−n(p/p∗−1)
(∫

Br
|Dw|p∗ dx

) p
p∗
, (3.4)

for c = c(n, N , p, c̃). Here p∗ := max
{
1, np

n+p

}
, as usual.

The following lemma is an up to the boundary higher integrability result. The argument is
well-known to specialists, see [1,40], and it essentially relies on the fact that Caccioppoli’s
inequality can be carried up to the boundary. However, we did not manage to find in the
literature a proof for the manifold-constrained case, so we shall report it here.

Lemma 10 Let p ∈ [γ1, γ2], u ∈ W 1,p
loc (�,M) be such that |Du|p(1+δ1) ∈ L1

loc(�) for some

δ1 > 0 and let v ∈ W 1,p
u (Br ,M) be a solution to the Dirichlet problem

W 1,p
u (Br ,M) � w �→ min

∫
Br

k0|Dw|p dx,

where k0 ∈ [λ,�] is a positive constant and Br � � is any ball with r ∈ (0, 1]. Then there
exists a positive integrability threshold σ̃0 ∈ (0, δ1) such that

∫
−
Br
(1 + |Dv|2)(1+σ)p/2 dx ≤ c

∫
−
Br
(1 + |Du|2)(1+σ)p/2 dx for all σ ∈ [0, σ̃0).

Here σ̃0 = σ̃0(n, N ,M, λ,�, γ1, γ2) and c = c(n, N ,M, λ,�, γ1, γ2).

Proof With x0 ∈ Br , let us fix a ball B�(x0) ⊂ R
n , 0 < � ≤ 1.We start with the case inwhich

|B�(x0) \ Br | > |B�(x0)|/10. Let us fix parameters 0 < �/2 ≤ s < t ≤ � and consider
η ∈ C1

c (Bt (x0)) such that χBs (x0) ≤ η ≤ χBt (x0) and |Dη| ≤ 2(t − s)−1. The function
w := v− η(v− u) coincides with v on ∂Br and on ∂(Br ∩ Bt (x0)) in the sense of traces, so
Lemma 5 with p(·) equal to constant p, provides us with a map w̃ ∈ W 1,p

v (Br ∩ Bt (x0),M)
such that∫

Br∩Bt (x0)
|Dw̃|p dx ≤c

∫
Br∩Bt (x0)

|Dw|p dx

≤c
∫
Br∩(Bt (x0)\Bs (x0))

|Dv|p dx + c
∫
Br∩B�(x0)

|Du|p +
∣∣∣∣v − u

t − s

∣∣∣∣
p

dx,

(3.5)
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for c = c(N ,M, γ1, γ2). The minimality of v in the Dirichlet class W 1,p
v (Br ∩ Bt (x0),M)

and (3.5) render∫
Br∩Bs (x0)

|Dv|p dx ≤�
λ

∫
Br∩Bt (x0)

|Dw̃|p dx

≤c
∫
Br∩(Bt (x0)\Bs (x0))

|Dv|p dx + c
∫
Br∩B�(x0)

|Du|p +
∣∣∣∣v − u

t − s

∣∣∣∣
p

dx,

for c = c(N ,M, λ,�, γ1, γ2). By filling the hole and applying Lemma 3, we get
∫
Br∩B�/2(x0)

|Dv|p dx ≤ c
∫
Br∩B�(x0)

|Du|p +
∣∣∣∣u − v
�

∣∣∣∣
p

dx, (3.6)

with c = c(n, N ,M, λ,�, γ1, γ2). Notice that we can extend v − u ≡ 0 outside Br , since
u − v ∈ W 1,p

0 (Br ,RN ), so there are no discontinuities on ∂(Br ∩ B�(x0)). Recalling also
that |B�(x0) \ Br | > |B�(x0)|/10, from (3.4) we have that

∫
Br∩B�(x0)

∣∣∣∣u − v
�

∣∣∣∣
p

dx =
∫
B�(x0)

∣∣∣∣u − v
�

∣∣∣∣
p

dx

≤c�−n(p/p∗−1)

(∫
B�(x0)

|Du − Dv|p∗ dx

) p
p∗

= c�−n(p/p∗−1)

(∫
Br∩B�(x0)

|Du − Dv|p∗ dx

) p
p∗
,

for c = c(n, N , γ1, γ2). Averaging in the previous display and keeping inmind that |B�(x0)∩
Br | ≤ |B�(x0)|, we obtain

∫
−
Br∩B�(x0)

∣∣∣∣u − v
�

∣∣∣∣
p

dx ≤ c

(∫
−
Br∩B�(x0)

|Du − Dv|p∗ dx

) p
p∗
, (3.7)

with c = c(n, N ,M, λ,�, γ1, γ2). Coupling (3.6) and (3.7) we get, by triangle and Hölder’s
inequalities,

∫
−
Br∩B�/2(x0)

|Dv|p dx ≤ c

⎧⎨
⎩

∫
−
Br∩B�(x0)

|Du|p dx +
(∫

−
Br∩B�(x0)

|Dv|p∗ dx

) p
p∗

⎫⎬
⎭ ,

with c = c(n, N ,M, λ,�, γ1, γ2). We next consider the situation when it is B�(x0) � Br .
In this case, we can apply the standard Sobolev-Poincaré’s inequality, thus getting, as in the
interior case, (Lemma 9 with p(·) equal to constant p),

∫
−
B�/2(x0)

|Dv|p dx ≤ c

(∫
−
B�(x0)

|Dv|p∗ dx

) p
p∗
,

for c = c(n, N ,M, λ,�, γ1, γ2). The two cases can be combined via a standard covering
argument. Precisely, upon defining

V (x) :=
{

|Dv(x)|p∗ x ∈ B�(x0)

0 x ∈ R
n \ B�(x0)

and U (x) :=
{

|Du(x)|p x ∈ B�(x0)

0 x ∈ R
n \ B�(x0)

,
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we get

∫
−
B�/2(x0)

V (x)
p
p∗ dx ≤ c

⎧⎨
⎩

∫
−
B�(x0)

U (x) dx +
(∫

−
B�(x0)

V (x) dx

) p
p∗

⎫⎬
⎭ ,

with c = c(n, N ,M, λ,�, γ1, γ2). At this point, by a variant of Gehring’s Lemma, we obtain
that there exists a positive σ̃0 = σ̃0(n, N ,M, λ,�, γ1, γ2) such that 0 < σ̃0 < δ1 and

(∫
−
Br

|Dv|p(1+σ) dx
) 1

1+σ ≤ c

{∫
−
Br

|Dv|p dx +
(∫
−
Br

|Du|(1+σ)p dx
) 1

1+σ
}
, (3.8)

for all σ ∈ [0, σ̃0) where c = c(n, N ,M, λ,�, γ1, γ2), see [25, Theorem 3 and Proposition
1, Chapter 2]. From (3.8) and the minimality of v within the Dirichlet class W 1,p

u (Br ,M)
we can conclude that∫

−
Br

|Dv|p(1+σ) dx ≤ c
∫
−
Br

|Du|p(1+σ) dx for all σ ∈ [0, σ̃0),

with c = c(n, N ,M, λ,�, γ1, γ2). ��

The next corollary allows recovering some useful estimates for the average of the gradient
of solutions to problem (0.1).

Corollary 3 Let u ∈ W 1,p(·)(�,M) be a constrained local minimizer of (0.1). Then, for any
Br ⊂ � with r ∈ (0, 1], such that B4r � � there holds

∫
−
Br

|Du|p(x) dx ≤ cr−p2(2r), (3.9)

∫
−
Br

|Du|p(x)(1+δ) dx ≤ cr−p2(4r)(1+δ), (3.10)

where c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α) and δ ∈ (0, δ̃0), where δ̃0 is the higher inte-
grability threshold given by Lemma 9.

Proof Inequality (3.9) comes from an application of Lemma 8 and the boundedness of u. In
fact we have

∫
−
Br

|Du|p(x) dx ≤ c
∫
−
B2r

∣∣∣∣u − (u)2r
r

∣∣∣∣
p(x)

dx ≤ cmax
{
1, 2‖u‖L∞(B2r )

}γ2 r−p2(2r),

for c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α). On the other hand, combining Lemmas 9 and 8,
we have

∫
−
Br

|Du|(1+δ)p(x) dx ≤ c

(∫
−
B2r
(1 + |Du|2)p(x)/2 dx

)1+δ

≤ c

(
1 +

∫
−
B4r

∣∣∣∣u − (u)4r
r

∣∣∣∣
p(x)

dx

)1+δ
≤ cr−p2(r)(1+δ),

with c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α), for any δ ∈ (0, δ̃0).
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3.2 Proof of Theorem 1

Now we are ready to prove Theorem 1. For the reader’s convenience, we shall split the proof
in seven steps.

Step 1: comparison, first time. We define δ0 := 1
2 min

{
δ̃0, 1

}
, where δ̃0 is the higher

integrability threshold from Lemma 9. Notice that by (P1), the set

�+ :=
{
x ∈ � : p(x) > n − δ0

2

}
, (3.11)

is open and by Lemma 9, |Du|(1+δ0)p(·) ∈ L1(�+), thus u ∈ W 1,n+ δ0
4 (�+,M). An applica-

tion of Morrey’s embedding theorem then renders that u ∈ C0,β ′
(�+,M)with β ′ := δ0

4n+δ0 .
We will treat this case in Step 7, so, from now on, γ2 < n holds. We set

σ0 := 1

2
min

{
δ0,

α

2max{γ2, n}
}

(3.12)

and fix a R̃∗ ∈ (0, 1] so small that

[p]0,α4R̃α∗ ≤ σ0γ1

σ0 + 2
(3.13)

is satisfied on B̄R̃∗ ≡ B̄R̃∗(x0) � �. Clearly this condition transfers on any ball Br (x1) ⊂
BR̃∗ . We select also an R∗ ∈ (0, R̃∗/2), whose size will be specified along the proof. Now

notice that, since Lemma 9 holds true for all balls B4r ⊂ BR∗ ⊂ BR̃∗ , |Du|(1+δ)p1(2r) ∈
L1(B2r ) for all δ ∈ (0, δ0]. Therefore, by (3.13) and assumption (P1) it easily follows that

p2(2r) <
(
1 + σ0

2

)
p2(2r) ≤ (1 + σ0)p1(2r), (3.14)

so, recalling that σ0 < δ0, we get

|Du|(1+σ/2)p2(2r) ∈ L1(B2r ) for all σ ∈ (0, σ0]. (3.15)

On such a ball we impose the following smallness condition on the energy: there exists an
ε ∈ (0, 1), whose size will be fixed later on, such that

(
(2r)p2(2r)−n

∫
B2r
(1 + |Du|2)p2(2r)/2 dx

) 1
p2(2r)

< ε. (3.16)

Let v ∈ W 1,p2(2r)
u (Br ,M) be a solution to the frozen Dirichlet problem

inf
w∈W 1,p2(2r)

u (Br ,M)

G(w, Br ) := inf
w∈W 1,p2(2r)

u (Br ,M)

∫
Br

k0|Dw|p2(2r) dx, (3.17)

where k0 := k(x0) is the value the coefficient k(·) attains in the centre of Br . Needless to
say, being (K2) in force, k(·) ranges between two positive, absolute constants λ and �, so
none of the estimates we will provide is going to depend on x0. By minimality, v solves the
Euler-Lagrange equation

0 =
∫
Br

k0 p2(2r)|Dv|p2(2r)−2 (Dv · Dϕ − Av(Dv, Dv)ϕ) dx, (3.18)
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for any ϕ ∈ W 1,p2(2r)
0 (Br ,RN ) ∩ L∞(Br ,RN ), where, for y ∈ M, Ay : TyM × TyM →

(TyM)⊥ denotes the second fundamental form ofM. In particular, by tangentiality,

∇2�(v)(Dv, Dv) = −Av(Dv, Dv) and |Av(Dv, Dv)| ≤ cM|Dv|2, (3.19)

where cM depends only on the geometry of M, see [45, Appendix to Chapter 2]. In all the
forthcoming estimates, any dependency on cM of the constants will always be denoted as a
dependency on M, i.e.: c(cM) ≡ c(M). From (3.15), the compactness of M and the fact
that v|∂Br = u|∂Br , we see that the map ϕ := u − v is admissible in (3.18). Let us define

σ := 1

2
min {σ̃0, σ0} , (3.20)

where σ̃0 is the boundary higher integrability threshold given by Lemma 10. Now, exploiting
assumptions (P2)-(K2), (3.19)2 and Hölder’s inequality we estimate

∣∣∣∣
∫
Br

k0 p2(2r)|Dv|p2(2r)−2Av(Dv, Dv)(u − v) dx
∣∣∣∣

≤ c
∫
Br

|Dv|p2(2r)|u − v| dx

≤ crn
(∫
−
Br

|Dv|(1+σ)p2(2r) dx
) 1

1+σ (∫
−
Br

|u − v|p2(2r) dx
) σ

1+σ =: crn [(I) · (II)] ,
(3.21)

where c = c(n, N ,M, λ,�, γ1, γ2). Using Lemma 10, (3.20), Hölder’s inequality, (1.1),
assumptions (P1)-(P2), (3.14), Lemma 9, (3.16) and Lemma 2 (ii.) we have

(I) ≤c

(∫
−
Br

|Du|(1+σ)p2(2r) dx
) 1

1+σ ≤ c

(∫
−
Br

|Du|(1+σ0)p(x) dx
) p2(2r)
(1+σ0)p1(r)

≤c

(∫
−
B2r
(1 + |Du|2)p(x)/2 dx

) p2(2r)
p1(2r)

−1 ∫
−
B2r
(1 + |Du|2)p2(2r)/2 dx

≤cr
−4αrα [p]0,α γ2γ1

(
(2r)p2(2r)−n

∫
B2r
(1 + |Du|2)p2(2r)/2 dx

) p2(2r)−p1(2r)
p1(2r)

∫
−
B2r
(1 + |Du|2)p2(2r)/2 dx

≤cε
p2(2r)(p2(2r)−p1(2r))

p1(2r)

∫
−
B2r
(1 + |Du|2)p2(2r)/2 dx ≤ c

∫
−
B2r
(1 + |Du|2)p2(2r)/2 dx,

with c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α). On the other hand, by Poincaré’s inequality,

the minimality of v in class W 1,p2(2r)
u (Br ,M) and (3.16) we bound

(II) ≤c

(
r p2(2r)

∫
−
Br

|Du − Dv|p2(2r) dx
) σ

1+σ

≤c

(
(2r)p2(2r)−n

∫
B2r
(1 + |Du|2)p2(2r)/2 dx

) σ
1+σ ≤ cε

γ1σ
1+σ ,
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for c = c(n, N , λ,�, γ1, γ2). Inserting the content of the previous two displays in (3.21) we
obtain∣∣∣∣
∫
Br

k0 p2(2r)|Dv|p2(2r)−2Av(Dv, Dv)(u − v) dx
∣∣∣∣ ≤ cε

γ1σ
1+σ

∫
B2r
(1 + |Du|2)p2(2r)/2 dx,

(3.22)

for c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α). For the ease of notation, if z ∈ R
N×n , let us

name g(z) := k0|z|p2(2r). The convexity of g(·) and (3.18) then render

G(u, Br )− G(v, Br )

=
∫
Br
∂g(Dv)(Du − Dv) dx

+
∫
Br

(∫ 1

0
(1 − t)∂2g(t Du + (1 − t)Dv) dt

)
(Du − Dv)(Du − Dv) dx

≥ −
∣∣∣∣
∫
Br

k0 p2(2r)|Dv|p2(2r)−2Av(Dv, Dv)(u − v) dx
∣∣∣∣

+ c
∫
Br

(∫ 1

0
(1 − t)|t Du + (1 − t)Dv|p2(2r)−2 dt

)
|Du − Dv|2 dx,

with c = c(n, N , λ, γ1, γ2). From this and (3.22) we obtain

c
∫
Br
(|Dv|2 + |Du|2) p2(2r)−2

2 |Du − Dv|2 dx ≤ cε
γ1σ
1+σ

∫
B2r
(1 + |Du|2) p2(2r)2 dx

+ G(u, Br )− G(v, Br ), (3.23)

with c = c(n, N ,M, λ,�, γ1, γ2, [p]0,α, α). Using this time the minimality of u, we see
that

G(u, Br )− G(v, Br )

≤ G(u, Br )− G(v, Br )+ E(v, Br )− E(u, Br )

≤ |G(u, Br )− E(u, Br )| + |E(v, Br )− G(v, Br )|.
Recall the definitions of σ0 and of k0. From assumptions (K1)-(K2) and (P1)-(P2), Lemma 2
(i.) with ε0 ≡ σ0/2, (3.14), Lemma 9 and (3.16) we obtain

|G(u, Br )− E(u, Br )|
≤

∫
Br

|k0 − k(x)||Du|p2(2r) dx +�
∫
Br

∣∣∣|Du|p2(2r) − |Du|p(x)
∣∣∣ dx

≤ crα+n
∫
−
Br

1 + |Du|p2(2r)(1+σ0/2) dx ≤ crα+n
∫
−
Br

1 + |Du|p1(2r)(1+σ0) dx

≤ crα+n
(∫
−
B2r
(1 + |Du|2)p2(2r)/2 dx

)1+σ0

≤ crα+n−γ2σ0
(
(2r)p2(2r)−n

∫
B2r
(1 + |Du|2)p2(2r)/2 dx

)σ0 ∫
−
B2r
(1 + |Du|2)p2(2r)/2 dx

≤ crκεγ1σ0
∫
B2r
(1 + |Du|2)p2(2r)/2 dx,
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where c = c(data) and κ := α−γ2σ0 > 0 because of (3.12). Choosing now σ as in (3.20),
using also Lemma 10 and (3.14), in a totally similar way we get

|E(v, Br )− G(v, Br )|
≤ crα+n

∫
−
Br

1 + |Dv|(1+σ)p2(2r) dx ≤ crα+n
∫
−
Br

1 + |Du|(1+σ)p2(2r) dx

≤ crα+n
∫
−
Br

1 + |Du|(1+σ0)p(x) dx ≤ crα+n
(∫
−
B2r
(1 + |Du|)p(x)/2 dx

)1+σ0

≤ crκεγ1σ0
∫
B2r
(1 + |Du|2)p2(2r)/2 dx,

where we set ε0 ≡ σ while applying Lemma 2 (i.). Here c = c(data) and κ > 0 is as
before. All in all, remembering that, by definition, 0 < σ < σ0, we can conclude∫

Br
(|Du|2 + |Dv|2) p2(2r)−2

2 |Du − Dv|2 dx

≤ c
[
ε
γ1σ
1+σ + rκεγ1σ

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx . (3.24)

Since the next estimateswill be slightly different for the cases p2(2r) ≥ 2 or 1 < p2(2r) < 2,
we introduce the quantities

κ1 :=
{
κ 2 ≤ p2(2r)
κ p2(2r)

2 1 < p2(2r) < 2
, κ2 :=

{
γ1σ 2 ≤ p2(2r)
γ1σ p2(2r)

2 1 < p2(2r) < 2
,

κ3 :=
{
γ1σ
1+σ 2 ≤ p2(2r)
γ1 p2(2r)σ
2(1+σ) 1 < p2(2r) < 2

.

Now, if p2(2r) ≥ 2, then we directly have∫
Br

|Du − Dv|p2(2r) dx ≤c
∫
Br
(|Du|2 + |Dv|2) p2(2r)−2

2 |Du − Dv|2 dx

≤c
[
ε
γ1σ
1+σ + rκεγ1σ

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx, (3.25)

while, if 1 < p2(2r) < 2, by Hölder’s inequality and the minimality of v we obtain

∫
Br

|Du − Dv|p2(2r) dx ≤
(∫

Br
(|Du|2 + |Dv|2) p2(2r)−2

2 |Du − Dv|2 dx
) p2(2r)

2

(∫
Br
(|Du|2 + |Dv|2) p2(2r)2 dx

) 2−p2(2r)
2

≤c

[
ε
γ1σ p2(2r)
2(1+σ) + r

κ p2(2r)
2 ε

γ1σ p2(2r)
2

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx .

(3.26)

Coupling estimates (3.25) and (3.26), we can conclude in any case that∫
Br

|Du − Dv|p2(2r) dx ≤ c
[
εκ3 + rκ1εκ2

] ∫
B2r
(1 + |Du|2) p2(2r)2 dx, (3.27)
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where c = c(data). As mentioned before, our choice of σ0 assures the positivity of κ1 as
well.

Step 2: harmonic approximation.We aim to apply Lemma 1 in order to obtain an uncon-
strained p2(2r)-harmonic map suitably close to v. Hence, we need to transfer condition
(3.16) from u to v. From the minimality of v in class W 1,p2(2r)

u (Br ,M) and (3.16) we see
that

E(Br ) :=
∫
−
Br

|Dv|p2(2r) dx ≤ λ−1
∫
−
Br

k0|Du|p2(2r) dx

≤2n−γ1�
λωn

r−p2(2r)(2r)p2(2r)−n
∫
B2r
(1 + |Du|2)p2(2r)/2 dx ≤ c∗(ε/r)p2(2r),

(3.28)

where we set c∗ := 2n−γ1�
λωn

+ 1. Now we claim that v is approximately p2(2r)-harmonic
in the sense of (2.3). This is actually the case: in fact, with reference to the terminology
used in Lemma 1, let d̃ ≡ d2, where d2 ∈ (0, 1) is the exponent given by Lemma 7, pick
any θ̃ ∈ (0, 1) and let δ̃ = δ̃(θ̃ , d̃, p2(2r)) be the “closeness” parameter appearing in (2.3).
Moreover, for reasons that will be clear in a few lines, we also impose a first restriction on
the size of ε. Precisely, keeping in mind the definition of c∗, we ask that

ε ≤ min

⎧⎨
⎩

λωn

2n−γ1�+ λωn ,
(

δ̃λ

�γ2cM + λ

) γ1
γ1−1

⎫⎬
⎭ . (3.29)

By (3.18), we estimate
∣∣∣∣
∫
−
Br

p2(2r)|Dv|p2(2r)−2Dv · Dϕ dx

∣∣∣∣
= k−1

0

∣∣∣∣
∫
−
Br

k0 p2(2r)|Dv|p2(2r)−2Av(Dv, Dv)ϕ dx

∣∣∣∣
(3.19)≤ �γ2cM

λ

∫
−
Br

|Dv|p2(2r)|ϕ| dx ≤ c̃‖Dϕ‖L∞(Br )r E(Br ),

for all ϕ ∈ C∞
c (Br ,R

N ), where c̃ := 1 + �γ2cM
λ

. For δ ∈ (0, 1), by Young’s inequality:

ab ≤ δa p + δ− 1
p−1 bp′

, with exponents p2(2r) and p′
2(2r) := p2(2r)

p2(2r)−1 we get

c̃E(Br )r‖Dϕ‖L∞(Br ) ≤δ− 1
p2(2r)−1 c̃ p

′(2r)(r E(Br ))
p′
2(2r) + δ‖Dϕ‖p2(2r)

L∞(Br )

≤δ− 1
γ1−1 c̃γ

′
1(r E(Br ))

p′
2(2r)−1(r E(Br ))+ δ‖Dϕ‖p2(2r)

L∞(Br )
(3.28)≤ δ

− 1
γ1−1 c̃γ

′
1

[
rc∗(ε/r)p2(2r)

]p′
2(2r)−1

(r E(Br ))+ δ‖Dϕ‖p2(2r)
L∞(Br )

≤δ− 1
γ1−1 c̃γ

′
1

[
c∗ε(ε/r)p2(2r)−1

]p′
2(2r)−1

(r E(Br ))+ δ‖Dϕ‖p2(2r)
L∞(Br )

(3.29)≤ δ
− 1
γ1−1 c̃γ

′
1(ε/r)r E(Br )+ δ‖Dϕ‖p2(2r)

L∞(Br )

≤ δ− 1
γ1−1 c̃γ

′
1εE(Br )+ δ‖Dϕ‖p2(2r)

L∞(Br ).
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Choosing δ ≡ δ̃ in the previous display, we can conclude that∣∣∣∣
∫
−
Br

p2(2r)|Dv|p2(2r)−2Dv · Dϕ dx

∣∣∣∣
(3.29)≤ δ̃

∫
−
Br

(
|Dv|p2(2r) + ‖Dϕ‖p2(2r)

L∞(Br )

)
dx,

thus Lemma 1 renders a map h̃ ∈ v + W 1,p2(2r)
0 (Br ,RN ) solution to (2.4) with p ≡ p2(2r)

and satisfying

(∫
−
Br

|Dv − Dh̃|p2(2r)d2 dx
) 1

d2 ≤ θ̃
∫
−
Br

|Dv|p2(2r) dx . (3.30)

Before going on, we would like to stress that ε depends on θ̃ as well, since by looking at the
dependencies of d2, it is evident that δ̃ = δ̃(n, γ1, γ2, θ̃ ), and (3.29) yields in particular that
ε = ε(δ̃). This is not an obstruction, since the value of θ̃ will be fixed in the next step as a
function of (data).

Step 3: comparison, second time. First notice that, since v is a solution to the frozen
Dirichlet problem (3.17), a Caccioppoli-type inequality holds. In fact, with the same strategy
adopted for the proof of Lemma 8, we have

∫
−
B�

|Dv|p2(2r) ≤ c
∫
−
B2�

∣∣∣∣v − (v)2�
�

∣∣∣∣
p2(2r)

dx, (3.31)

with c = c(n, N ,M, λ,�, γ1, γ2) for all balls B2� � Br . Now fix any � ∈ (0, r/4).
According to the previous estimates we can proceed in the following way

∫
B�
(1 + |Du|2)p2(2r)/2

≤ c�n + c

{∫
B�

|Du − Dv|p2(2r) dx + �n
∫
−
B�

|Dv|p2(2r) dx
}

(3.31)≤ c�n + c

{∫
Br

|Du − Dv|p2(2r) dx + �n
∫
−
B2�

∣∣∣∣
v − (v)2�

�

∣∣∣∣
p2(2r)

dx

}

(3.27)≤ c�n + c

⎧⎪⎨
⎪⎩

[
εκ3 + rκ1εκ2

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx + �n

(∫
−
B2�

|Dv|p2(2r)d2 dx

) 1
d2

⎫⎪⎬
⎪⎭

≤ c�n + c
[
εκ3 + rκ1εκ2

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx

+ c�n

⎧⎪⎨
⎪⎩

(∫
−
B2�

|Dv − Dh̃|p2(2r)d2 dx

) 1
d2 + �n

∫
−
B2�

|Dh̃|p2(2r) dx

⎫⎪⎬
⎪⎭

(3.30)≤ c�n + c
[
εκ3 + rκ1εκ2

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx

+ c(r/�)n(d
−1
2 −1)

θ̃

∫
Br

|Dv|p2(2r) dx + c�n
∫
−
B2�

|Dh̃|p2(2r) dx

(2.2)≤ c�n + c

[
εκ3 + rκ1εκ2 + (r/�)n(d−1

2 −1)
θ̃

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx

+ c(�/r)n
∫
Br

|Dv|p2(2r) dx

≤ c�n + c

[
εκ3 + rκ1εκ2 + (r/�)n(d−1

2 −1)
θ̃ + (�/r)n

] ∫
B2r
(1 + |Du|2)p2(2r)/2 dx,
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where we also used Lemma 7, the minimality of v in the Dirichlet class W 1,p2(2r)
u (Br ,M)

and of h̃ in v + W 1,p2(2r)
0 (Br ,RN ) and the reference estimate in (2.2)1 which holds for h̃

since h̃ is a solution to (2.4) with p ≡ p2(2r), (set k0 ≡ 1, p ≡ p2(2r), gαβ ≡ δαβ and
hi j ≡ δi j for α, β ∈ {1, · · · , n} and i, j ∈ {1, · · · , N } in (2.1)). Here c = c(data). For the
ease of exposition, let us set s ≡ 2r . Hence we can rewrite the previous estimate as

∫
B�
(1 + |Du|2)p2(s)/2 dx ≤ c0�

n + c1
[
εκ3 + sκ1εκ2 + (s/�)n(d−1

2 −1)θ̃ + (�/s)n
]

∫
Bs
(1 + |Du|2)p2(s)/2 dx, (3.32)

for c0 = c0(n, γ1, γ2) and c1 = c1(data).
Step 4: Morrey-type estimates. Our goal now is to prove a Morrey type estimate for the

energywhichwill eventually lead to the continuity of solutions. For τ ∈ (
0, 14

)
, we let � ≡ τ s

in (3.32) and multiply both sides of it by (τ s)p2(s)−n . We then have

(τ s)p2(s)−n
∫
Bτ s
(1 + |Du|2)p2(s)/2 dx

≤ c1τ
p2(s)

{
τ−n(εκ3 + sκ1εκ2)+ τ−nd−1

2 θ̃ + 1
}
s p2(s)−n

∫
Bs
(1 + |Du|2)p2(s)/2 dx + c0(τ s)

p2(s). (3.33)

Adopting the notation introduced in [42], we consider the following quantities:

φ(r , p) :=
(
r p

∫
−
Br
(1 + |Du|2)p/2 dx

) 1
p = ω− 1

p
n

(
r p−n

∫
Br
(1 + |Du|2)p/2 dx

) 1
p

,

ψ(r) := φ(r , p2(r)).
In these terms, (3.33) reads as

φ p2(s)(τ s, p2(s)) ≤ c1τ
p2(s)

{
τ−n(εκ3 + sκ1εκ2)+ τ−nd−1

2 θ̃ + 1
}
ψ p2(s)(s)+ c0(τ s)

p2(s),

(3.34)

so recalling that

φ(r , p) ≤ φ(r , q) for p ≤ q, (3.35)

we obtain from (3.34)

ψ(τ s) ≤ c2τ

{
τ

− n
p2(s)

[
ε

κ3
p2(s) + s

κ1
p2(s) ε

κ2
p2(s)

]
+ τ− n

d2 p2(s) θ̃
1

p2(s) + 1

}
ψ(s)+ c3(τ s),

(3.36)

where c2 = c2(data) and c3 = c3(n, γ1, γ2). Since τ , s, ε, θ̃ ∈ (0, 1), from the definitions
of κ1, κ2 and κ3 we have

τ
− n

p2(s) ≤ τ− n
γ1 , τ

− n
d2 p2(s) ≤ τ− n

d2γ1 , s
κ1

p2(s) ≤ s κ̃1 , ε
κ2

p2(s) ≤ εκ̃2 ,
ε

κ3
p2(s) ≤ εκ̃3 , θ̃

1
p2(s) ≤ θ̃ 1

γ2 ,
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where

κ̃1 :=
{

κ
γ2

2 ≤ p2(s)
κ
2 1 < p2(s) < 2

, κ̃2 :=
{
γ1σ
γ2

2 ≤ p2(s)
γ1σ
2 1 < p2(s) < 2

,

κ̃3 :=
{

γ1σ
γ2(1+σ) 2 ≤ p2(s)
γ1σ

2(1+σ) 1 < p2(s) < 2
,

thus (3.36) becomes

ψ(τ s) ≤ c2τ

{
τ

− n
γ1

(
εκ̃3 + s κ̃1εκ̃2

)
+ τ− n

d2γ1 θ̃
1
γ2 + 1

}
ψ(s)+ c3(τ s). (3.37)

Now we need to make a proper choice of the parameters appearing in (3.37). We first select
any β ∈ (0, 1) and an η ∈ (β, 1) and ask that c2τ ≤ τη/5, thus obtaining

ψ(τ s) ≤ (τη/5)
{
τ

− n
γ1

(
εκ̃3 + s κ̃1εκ̃2

)
+ τ− n

d2γ1 θ̃
1
γ2 + 1

}
ψ(s)+ c3(τ s)

β .

Moreover, we require that the threshold radius R∗ introduced at the beginning of Step 1 sat-

isfies c3(τ R∗)β ≤ (ε/5). Finally we recall that θ̃ is arbitrary, therefore we fix θ̃ = 2−γ2τ
nγ2
d2γ1

and, since κ̃2 ≥ κ̃3 renders εκ̃2 ≤ εκ̃3 , the choice

ε ≤
⎧⎨
⎩

(
2n−γ1�
λωn

+ 1

)−1

,

(
δ̃λ

�γ2cM + λ

) γ1
γ1−1

, τ
n
γ1 κ̃

⎫⎬
⎭

and (3.16) allow concluding that

ψ(τ s) ≤ τηψ(s)+ c3(τ s)
β and ψ(τ s) ≤ 4

5
τηψ(s)+ ε

5
< ε. (3.38)

We remark that, since η is ultimately influenced only by the choice of β, we can incorporate
the dependency from η in the one from β, so the above procedure defines the following
dependencies: τ = τ(data, β), ε = (data, β) and R∗ = R∗(data, β). Estimate (3.38)2
legalizes iterations, so we can repeat (3.38)1 replacing s by τ s, τ 2s, τ 3s, · · · to get

ψ(τ j+1s) ≤ τη( j+1)ψ(s)+ c3s
βτβ( j+1)

j∑
i=0

τ i(η−β) ≤ τ ( j+1)ηψ(s)+ c4s
βτ ( j+1)β ,

(3.39)

for c4 = c4(data, β). Now, for any ς ∈ (0, s/8) we can find an integer j ≥ 1 with
τ j+1s < ς ≤ τ j s, so, from (3.39) we obtain

ψ(ς) ≤τ 1− n
γ1 ψ(τ j s) ≤ τ 1− n

γ1

{
τη jψ(s)+ c4s

βτβ j
}

≤τ− n
γ1

{
(ς/s)ηψ(s)+ c4s

β(ς/s)β
}

(3.16)≤ τ
− n
γ1

{
(ς/s)βε + c4ς

β
} ≤ c5(ς/s)

β, (3.40)

with c5 = c5(data, β), while if ς ∈ [s/8, s), since (s/ς) ≤ 8, there obviously holds

ψ(ς) ≤ 8
n
γ1

+β−1
(ς/s)β

{
ψ(s)+ sβ

} ≤ 8
n
γ1

+β−1
(ς/s)β(ε + sβ) ≤ c(ς/s)β, (3.41)
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again for c = c(data, β). We can actually improve estimates (3.40)-(3.41) by getting rid of
the restriction s ≤ R∗; we shall only retain s ≤ R̃∗/2. In fact, in case 0 < ς < R∗ ≤ s ≤
R̃∗/2, we see that

ψ(ς)
(3.40)≤ c5(ς/R∗)β ≤ c(ς/s)β, (3.42)

with c = c(data, β), while, if 0 < R∗ < ς ≤ s ≤ R̃∗/2 we have

ψ(ς) ≤(s/ς) n
γ1

−1
ψ(s) ≤ R

1− n
γ1∗ (R∗/ς)

n
γ1

−1+β
(ς/s)βψ(s) ≤ c(ς/s)β, (3.43)

again for c = c(data, β). Now, by the continuity of Lebesgue’s integral and of the mapping
y �→ p2(y, s) := supx∈Bs (y) p(x), we can conclude that if (3.16) holds for Bs(x0) then it
holds also on Bs(y) for all y belonging to a sufficiently small neighborhood of x0. Hence, if
we let

D0 :=
{
y ∈ BR̃∗(x0) :

(
s p2(y,s)−n

∫
Bs (y)

(1 + |Du|2)p2(y,s)/2 dx
) 1

p2(y,s)

< ε for some s ≤ R̃∗/2; Bs(y) � BR̃∗(x0)
}
,

we see that it is open and, taking radii 0 < ς < s, for y ∈ D0 we have

ς−n+γ1−βγ1
∫
Bς (y)

|Du|γ1 dx =ωnς−βγ1φγ1(ς, γ1)
(3.35)≤ ωnς

−βγ1ψγ1(ς)
(3.40)≤ c6s

−βγ1 ,

(3.44)

for c6 = c6(data, β), so, from Morrey’s growth theorem, u ∈ C0,β(D0,M). We would
like to stress that β is an arbitrary number in (0, 1) and, being the interval open it is always
possible to find η ∈ (0, 1) so that β < η < 1. Hence we can take any β ∈ (0, 1) in the
above estimates and deduce from (3.44) that actually u ∈ C0,β(D0,M) for all β ∈ (0, 1).
Of course, the values of all the parameters involved will change accordingly to the one
of β (and consequently of η) we choose. After a standard covering argument, we obtain
that u ∈ C0,β

loc (�0,M) for any β ∈ (0, 1). Now consider any open subset �̃ � �0. From
(3.40)-(3.43) and a standard covering argument, we also obtain the Morrey type estimate

∫
−
Bς

|Du|p2(ς) dx ≤ c7ς
−γ2(1−β), (3.45)

for all Bς � �̃, ς ≤ R̃∗/2 and any β ∈ (0, 1). Here c7 = c7(data, β).
Step 5: Hausdorff dimension of the Singular Set. Given the characterization of D0, we

easily see that, if �0(u, BR̃∗(x0)) := BR̃∗(x0) \ D0, then

�0(u, BR̃∗(x0)) ⊂
{
y ∈ BR̃∗(x0) : lim sup

s→0

(
s p2(y,s)−n

∫
Bs (y)

|Du|p2(y,s) dy
) 1

p2(y,s)

> 0

}
.

Now, if pm(x0, R̃∗) := inf x∈BR̃∗ (x0) p(x), then, as in (3.14),

p2(y, s) ≤ (1 + σ0)pm(x0, R̃∗) for all 0 < s ≤ R̃∗/2, Bs(y) � BR̃∗(x0), (3.46)
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so we obtain,

(
s p2(y,s)

∫
−
Bs (y)

|Du|p2(y,s) dx
) 1

p2(y,s)

(3.46)≤
(
s pm (x0,R̃∗)(1+σ0)

∫
−
Bs (y)

|Du|pm (x0,R̃∗)(1+σ0) dx
) 1

pm (x0,R̃∗)(1+σ0)

≤
(
s pm (x0,R̃∗)(1+δ0)

∫
−
Bs (y)

|Du|pm (x0,R̃∗)(1+δ0) dx
) 1

pm (x0,R̃∗)(1+δ0)
,

where we also used that σ0 < δ0. Hence, if y ∈ BR̃∗(x0) is such that

0 < lim sup
s→0

(
s p2(y,s)−n

∫
Bs (y)

|Du|p2(y,s) dx
) 1

p2(y,s)

,

then

0 < lim sup
s→0

(
s pm (x0,R̃∗)(1+δ0)−n

∫
Bs (y)

|Du|pm (x0,R̃∗)(1+δ0) dx
) 1

pm (x0,R̃∗)(1+δ0)
.

This allows to conclude that

�0(u, BR̃∗(x0)) ⊂
{
y ∈ BR̃∗(x0) : lim sup

s→0

(
s pm (x0,R̃∗)(1+δ0)−n

∫
Bs (y)

|Du|pm (x0,R̃∗)(1+δ0) dx
) 1

pm (x0,R̃∗)(1+δ0)
> 0

}
=: D1.

By [26, Proposition 2.7] it follows that dimH(D1) ≤ n− pm(x0, R̃∗)(1+δ0). Now, covering
� with balls having the same features of BR̃∗(x0) and remembering that pm(x0, R̃∗) ≥ γ1,
we obtain that dimH(�0(u)) ≤ n − γ1(1 + δ0) < n − γ1, and so dimH(�0(u)) < n − γ1.

Step 6: partial C1,β0 -regularity. In this part we follow the approach of [28, Theorem 3.1].
So far we know that the regular set �0 ⊂ � is a relatively open set of full n-dimensional
Lebesgue measure and u ∈ C0,β

loc (�0,M) for all β ∈ (0, 1). For reasons that will be clear in
a few lines, we fix

β̃ := max

{
1

2
, 1 − 1

4γ2
min

{
1

2
, α − nσ0,

γ1σ

2(1 + σ)
}}

∈ (0, 1), (3.47)

where σ0, σ are as in (3.12)-(3.20) respectively, and two open subsets �̃ � �′ � �0. Given
the expression of β̃, we shall incorporate any dependency from β̃ of the constants appearing
in the forthcoming estimates into the one from (data). We cover �̃ with finitely many balls
contained in �′, (with size and number depending only on M, [u]0,β̃;�′ and on diam(�′)),
whose image lies in small coordinate neighborhoods ofM. Precisely, by the continuity of u
and up to scaling, rotating and translatingM we can now assume that u(�̃) is contained into
the image of a single chart f (Bm

1 ), so we can find an ω : �̃ → R
m such that u = f (ω) and

|ω| ≤ 1. Here f : Rm �→ M is such that

‖∇ f ‖L∞(Bm
4m )

≤ c(M), ‖∇2 f ‖L∞(Bm
4m )

≤ c(M) and |∇( f −1)(u)| ≤ c(M). (3.48)
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The above conditions are for instance satisfied by the inverse of the stereographic projection

S : RN−1 � y �→
( |y|2 − 1

|y|2 + 1
,

2y

|y|2 + 1

)
∈ S

N−1,

see [10,28]. From (3.48)3 we get that∫
U

|Dω|p(x) dx ≤ c
∫
U

|Du|p(x) dx, (3.49)

for any U ⊆ �̃, with c = c(M, γ1, γ2). Since u is an M-constrained local minimizer of
(0.1), then ω minimizes the variational integral

W 1,p(·)(�̃,Rm) � ζ �→ H(ζ, �̃) :=
∫
�̃

k(x)(δαβhi j (ζ )Dαζ
i Dβζ

j )p(x)/2 dx, (3.50)

where (δαβ)αβ is the n × n identity matrix and (hi j )i j is the m × m symmetric matrix
((∇ f )T∇ f )i j . From (3.48) and being f a chart, (hi j )i j is uniformly elliptic and uniformly
bounded, in the sense that

sup
i, j∈{1,··· ,m}

‖hi j‖L∞(Bm
4m )
< c and c1|ζ |2 ≤ hi j (y)ζ

iζ j ≤ c2|ζ |2

for all ζ ∈ R
m×m , whenever |y| ≤ 4m. Here c, c1, c2 depend only onM. Given the previous

considerations, it is easy to see that the integrand

H(x, y, z) := k(x)(δαβhi j (y)z
i
αz

j
β)

p(x)/2

satisfies the following set of conditions:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1|z|p(x) ≤ H(x, y, z) ≤ c2|z|p(x)
|H(x1, y, z)−H(x2, y, z)| ≤ cε0 |x1 − x2|α

(
1+|z|(1+ε0)max{p(x1),p(x2)}) for any ε0 > 0

|H(x, y1, z)− H(x, y2, z)| ≤ c|y1 − y2||z|p(x)
|∂H(x, y, z)||z| + |∂2H(x, y, z)||z|2 ≤ c|z|p(x)
〈∂2H(x, y, z)ξ, ξ 〉 ≥ c|z|p(x)−2|ξ |2,

(3.51)

for |y| ≤ 4m. Here, all the constants depend only on m, M, λ, �, γ1, γ2, [k]0,α , [p]0,α and
α, except for cε0 , which, in addition, depends also from ε0. In particular, from (3.51)1, we
see that ω minimizes a functional controlled from below and above by the p(·)-laplacean
energy, so there is no loss of generality in assuming that Lemmas 8 and 9 (and 10 for the
associated frozen problem) hold true with the same parameters as before. Moreover, (3.48)3,
(3.49) and (3.45) allow transferring regularity from u to ω. In fact we have

ω ∈ C0,β(�̃,Rm), [ω]0,β;�̃ ≤ c(M)[u]0,β;�̃,
∫
−
B�

|Dω|p2(�) dx ≤ c�−γ2(1−β), (3.52)

for any β ∈ (0, 1) and all B� � �̃. Notice that, by (3.49) and (3.52)2 we can incorporate
any dependency from ‖(|Dω|)p(·)‖L1(�̃) or from [ω]0,β;�̃ of the constants in the forthcoming

estimates into the one from ‖(|Du|)p(·)‖L1(�̃) or from [u]0,β;�̃. In (3.52) we are going to

choose β ≡ β̃, where β̃ is as in (3.47). Let σ0, R̃∗ and σ be as in (3.12), (3.13) and (3.20)
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respectively and fix any ball B� � BR̃∗ � �̃, � ≤ R̃∗/2 and let ϑ ∈ W 1,p2(�)(B�/4,Rm) be
the solution to the frozen Dirichlet problem

ω + W 1,p2(�)
0 (B�/4,R

m) � ζ �→ min
∫
B�/4

k0(δ
αβhi j ((ω)�/4)Dαζ

i Dβζ
j )p(�)/2 dx,

(3.53)

where k0 is the value of k(·) in the centre of B�/4. For simplicity, define H0(y, z) :=
k0(δαβhi j (y)ziαz

j
β)

p2(�)/2, andnotice that, since |(ω)�/4| ≤ 1, then the integrandH0((ω)�/4, z)
is of the type covered by Proposition 1, see [2,20,24]. Furthermore, given the specific struc-
ture of the integrand, the Maximum principle in [13] applies, thus supx∈B�/4 |ϑ(x)| ≤ m. By
(3.14), ω is an admissible competitor for ϑ in problem (3.53) and, as a consequence∫

B�/4
∂H0((ω)�/4, Dϑ)(Dω − Dϑ) dx = 0. (3.54)

Taking into account (3.51)5 (with p2(�) instead of p(x)) and (3.54) we then estimate

c
∫
B�/4
(|Dω|2 + |Dϑ |2) p2(�)−2

2 |Dω − Dϑ |2 dx + c
∫
B�/4

∂H0((ω)�/4, Dϑ)(Dω − Dϑ) dx

= c
∫
B�/4
(|Dω|2 + |Dϑ |2) p2(�)−2

2 |Dω − Dϑ |2 dx

≤
∫
B�/4

H0((ω)�/4, Dω)− H0((ω)�/4, Dϑ) dx

=
∫
B�/4

H0((ω)�/4, Dω)− H(x, (ω)�/4, Dω) dx

+
∫
B�/4

H(x, (ω)�/4, Dω)− H(x, ω, Dω) dx

+
∫
B�/4

H(x, ω, Dω)− H(x, ϑ, Dϑ) dx

+
∫
B�/4

H(x, ϑ, Dϑ)− H(x, (ϑ)�/4, Dϑ) dx

+
∫
B�/4

H(x, (ϑ)ρ/4, Dϑ)− H0((ϑ)�/4, Dϑ) dx

+
∫
B�/4

H0((ϑ)�/4, Dϑ)− H0((ω)�/4, Dϑ) dx =
6∑

i=1

(I)i ,

where c = c(m,M, λ,�, γ1, γ2, [k]0,α, [p]0,α). Before estimating terms (I)1-(I)6, let us take
care of some quantities which will be recurrent in the forthcoming estimates. By (3.52)1,2,
we easily have

sup
x∈B�/4

|ω(x)− (ω)�/4| ≤ c�β̃, (3.55)

with c = c(M, [u]0,β̃;�̃). Moreover, it follows from the convex-hull property in [13] that

sup
x,y∈B�/4

|ϑ(x)− ϑ(y)| ≤ sup
x,y∈∂B�/4

|ω(x)− ω(y)| (3.52)2≤ c�β̃,
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for c = c(M, [u]0,β̃;�̃), therefore

sup
x∈B�/4

|ϑ(x)− (ϑ)�/4| ≤ c�β̃ . (3.56)

Finally, from Poincaré’s and Hölder’s inequalities, Lemmas 9, 2 (ii.), 8 and by the minimality
of ϑ we see that

∫
−
B�/4

|(ω)�/4 − (ϑ)�/4|p2(�) dx

≤ c�p2(�)
∫
−
B�/4

|Dω|p2(�) dx (3.14)≤ c�p2(�)
(∫

−
B�/4

|Dω|(1+σ0)p(x) dx
) p2(�)
(1+σ0)p1(�)

≤ c�p2(�)
(∫

−
B�/2
(1 + |Dω|2)p(x)/2 dx

) p2(�)−p1(�)
p1(�)

∫
−
B�/2
(1 + |Dω|2)p(x)/2 dx

≤ c�p2(�)
∫
−
B�

1 +
∣∣∣∣ω − (ω)�

�

∣∣∣∣
p(x)

dx
(3.52)1,2≤ c�p2(�)+(β̃−1)p2(�) = c�β̃ p2(�), (3.57)

with c = c(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β̃;�̃). From (3.51)2 with ε0 ≡ σ0/2 and Lemma 9
we get

|(I)1| ≤c�α+n
∫
−
B�/4

1 + |Dω|(1+ε0)p2(�) dx (3.14)≤ c�α+n
∫
−
B�/4
(1 + |Dω|2)(1+σ0)p(x)/2 dx

≤c�α+n

(∫
−
B�/2
(1 + |Dω|)p(x)/2 dx

)σ0 ∫
−
B�
(1 + |Dω|2)p2(�)/2 dx

≤c�κ̄1
∫
B�
(1 + |Dω|2)p2(�)/2 dx, (3.58)

where c = c(data, ‖(|Du|)p(·)‖L1(�̃)) and κ̄1 := α−nσ0 > 0 by (3.12). Now, from (3.51)3
and (3.55) we have

|(I)2| ≤c
∫
B�/4

|ω − (ω)�/4||Dω|p(x) dx ≤ c�β̃
∫
B�
(1 + |Dω|2)p2(�)/2 dx, (3.59)

for c = c(data, [u]0,β̃;�̃). Since ω is a local minimizer of (3.50), then

(I)3 ≤ 0. (3.60)

Concerning term (I)4, we use (3.51)3, (3.56) and the minimality of ϑ to bound

|(I)4| ≤c
∫
B�/4

|ϑ − (ϑ)�/4||Dϑ |p(x) dx

≤c�β̃
∫
B�/4
(1 + |Dϑ |2)p2(�)/2 dx ≤ c�β̃

∫
B�
(1 + |Dω|2)p2(�)/2 dx, (3.61)
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with c = c(data, [u]0,β̃;�̃). To take care of term (I)5, we use (3.51)2 with ε0 ≡ σ again
together with the minimality of ϑ and Lemmas 10-9 to obtain

|(I)5| ≤c�α+n
∫
−
B�/4

1 + |Dϑ |(1+σ)p2(�) dx ≤ c�α+n
∫
−
B�/4

1 + |Dω|(1+σ)p2(�) dx

≤c�α+n
∫
−
B�/4

1 + |Dω|(1+σ0/2)p2(�) dx ≤ crα+n

(∫
−
B�/2
(1 + |Dω|2)p(x)/2 dx

)1+σ0

≤c�κ̄1
∫
B�
(1 + |Dω|2)p2(�)/2 dx, (3.62)

with c = c(data, ‖(|Du|)p(·)‖L1(�̃)). Finally, by (3.51)3, Lemmas 10-9 and (3.57)we obtain

|(I)6| ≤c�n
∫
−
B�/4

|(ω)�/4 − (ϑ)�/4||Dϑ |p2(�) dx

≤c�n
(∫

−
B�/4

|(ω)�/4 − (ϑ)�/4|p2(�) dx
) σ

1+σ (∫
−
B�/4

|Dϑ |(1+σ)p2(�) dx
) 1

1+σ

≤c�n+ β̃γ1σ
1+σ

(∫
−
B�/4

|Dω|1+σ0 p(x) dx
) p2(�)
(1+σ0)p1(�)

≤c�n+ β̃γ1σ
1+σ

(∫
−
B�/2
(1 + |Dω|2)p(x)/2

) p2(�)−p1(�)
p1(�)

∫
−
B�
(1 + |Dω|2)p2(�)/2 dx

≤c�
β̃γ1σ
1+σ

∫
−
B�
(1 + |Dω|2)p2(�)/2 dx, (3.63)

where c = c(data, ‖(|Du|)‖L1(�̃), [u]0,β̃;�̃). Collecting estimates (3.58)-(3.63) we can
conclude that∫

B�/4
(|Dω|2 + |Dϑ |2) p2(�)−2

2 |Dω − Dϑ |2 dx ≤ c

(
�
β̃γ1σ
1+σ + �κ̄1 + �β̃

)

∫
B�
(1 + |Dω|2)p2(�)/2 dx,

with c = c(data, ‖(|Du|)‖L1(�̃), [u]0,β̃;�̃).Manipulating the content of the previous display
as we did in Step 1, estimates (3.25)-(3.26) we can conclude that∫

B�/4
|Dω − Dϑ |p2(�) dx ≤ c

(
�
β̃γ1σ
2(1+σ) + � κ̄12 + � β̃2

)∫
B�
(1 + |Dω|2)p2(�)/2 dx . (3.64)

Recalling also that, by (3.47), β̃ ≥ 1/2, we can rewrite (3.64) as∫
B�/4

|Dω − Dϑ |p2(�) dx ≤ c�κ2
∫
B�
(1 + |Dω|2)p2(�)/2 dx, (3.65)

with κ2 := 1
2 min

{
1
2 , κ̄1,

γ1σ
2(1+σ)

}
. Averaging in (3.65) and using (3.47) again, we readily

see that ∫
−
B�/4

|Dω − Dϑ |p2(�) dx (3.52)3≤ c�κ̂ , (3.66)
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for c = c(data, ‖(|Du|p(·))‖L1(�̃), [u]0,β̃;�̃). Here κ̂ := κ2 − γ2(1− β̃) ≥ κ2/2 > 0. Now
fix any 0 < ς < �/8 and notice that, being ϑ a solution to (3.53), the decay estimate (2.2)2
holds true. So we estimate∫

−
Bς

|Dω − (Dω)ς |p2(�) dx

≤ c

{
(�/ς)n

∫
−
B�/4

|Dω − Dϑ |p2(�) dx +
∫
−
Bς

|Dϑ − (Dϑ)ς |p2(�) dx
}

(3.66)≤ c

{
(�/ς)n�κ̂ + (ς/�)μp2(�)

∫
−
B�/4

|Dω|p2(�) dx
}

(3.52)≤ c
{
(�/ς)n�κ̂ + (ς/�)μp2(�)�−γ2(1−β)

}
, (3.67)

with β ∈ (0, 1) still to be fixed and c = c(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β̃;�̃, β). Set β :=
1− μγ1κ̂

2nγ2
in (3.67) and pick ς = �1+a/2 with a := κ̂(2n+μγ1)

2n(n+μp2(�)) . In these terms, (3.67) reads
as∫
−
Bς

|Dω − (Dω)ς |p2(�) dx ≤c

{
ς

−an+κ̂
1+a + ς aμp2(�)−γ2(1−β)

1+a

}
≤ cς

nμκ̂γ1
2n(n+μγ2)+κ̂(2n+μγ1) = cςβ0γ2 ,

where we also denoted

β0 := nμκ̂γ1
2nγ2(n + μγ2)+ κ̂γ2(2n + μγ1) . (3.68)

From the content of the previous display and Hölder inequality we finally get

(∫
−
Bς

|Dω − (Dω)ς |γ1 dx
) 1
γ1

≤
(∫

−
Bς

|Dω − (Dω)ς |p2(�) dx
) 1

p2(�)

≤ cςβ0 ,

thus ∫
−
Bς

|Dω − (Dω)ς |γ1 dx ≤ cςγ1β0 ,

with c = c(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β̃,�̃), so, after covering, we can conclude that

Dω ∈ C0,β0
loc (�̃,R

m×n) because of Morrey’s growth theorem. By (3.68), it is evident that
β0 = β0(data) does not depend on �̃, thus (3.48)2,3 and a standard covening argument
render that Du ∈ C0,β0

loc (�0,R
N×n).

Step 7: the case p(·) > n − δ0/2. As mentioned in Step 1, u ∈ C0,β ′
(�+,M), with

β ′ := δ0
4n+δ0 , so we no longer need to impose a smallness condition like (3.16). Being p(·)

continuous,�+ is open, so we can fix a ball BR̃∗ ≡ BR̃∗(x0) � �+ with R̃∗ satisfying (3.13).
Let σ0 be as in (3.12), so (3.14) is matched on all balls B4� ⊂ BR∗ ⊂ BR̃∗ , where the size of

R∗ ≤ R̃∗/2 will be specified later on. As we did in Step 6, we fix open subsets �̃ � �′ � �+
and cover �̃with a finite number of balls contained inside�′ whose size and numberwill now
depend on M, on [u]0,β ′;�̃ and on diam(�′), having images contained in small coordinate

neighborhoods ofM. Again we can findω ∈ W 1,p(·)(�̃,Rm)∩C0,β ′
(�̃,Rm), unconstrained

local minimizer of the variational integral (3.50) with integrand H(·) matching (3.51), such
that |ω| ≤ 1, u = f (ω) where f is as in (3.48). Our goal is to show the validity of a Morrey
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decay estimate like (3.52)3. To do so, fix B4� � BR∗ and let ϑ ∈ W 1,p2(�)(B�/4,Rm) be a
solution to the frozen Dirichlet problem (3.53). Notice that the estimates obtained in Step 6
till (3.64) do not require any specific value of β, therefore, by (3.64) with β̃ replaced by β ′
we immediately have

∫
B�/4

|Dω − Dϑ |p2(�) dx ≤ c�κ
′
∫
B�
(1 + |Dω|2)p2(�) dx, (3.69)

with c = c(data, ‖(|Du|p(·))‖L1(�̃), [u]0,β ′;�̃) and κ ′ := 1
2 min

{
β ′γ1σ
1+σ , κ̄1, β

′
}
. Now fix

τ ∈ (
0, 18

)
and recall that, being ϑ a solution of (3.53), inequality (2.2)1 holds for all

Bς1 ⊂ Bς2 ⊂ B�/4. Adopting the same terminology appearing in Step 4, clearly with ω
instead of u, we readily have

ψ(τ�)
(3.35)≤ φ(τ�, �)

≤ c

{
(τ�)p2(�)−n

[
(τ�)n +

∫
Bτ�

|Dω − Dϑ |p2(�) dx +
∫
Bτ�

|Dϑ |p2(�) dx
]} 1

p2(�)

(3.69)≤ c

{
τ p2(�)−n

[
τ n + �κ ′]

�p2(�)−n
∫
B�
(1 + |Dω|2)p2(�) dx

} 1
p2(�)

≤ τβ
[
cτ 1−β + c�

κ′
γ2 τ

−β− δ0
2n−δ0

]
ψ(�), (3.70)

where we also used p(·) > n − δ0
2 . Here β ∈ (0, 1) is arbitrary and c = c(data,

‖(|Du|)p(·)‖L1(�̃), [u]0,β ′;�̃, β). Choosing in (3.70) τ ≤ (2c)−1/(1−β) and R∗ ≤ c− γ2
κ′ 2− γ2

κ′

τ
2nγ2

(2n−δ0)κ′ we end up with ψ(τ�) ≤ τβψ(�), by remembering also that � ≤ R∗. Notice that
our previous decisions fixed the following dependencies: τ = τ(data, ‖(|Du|)p(·)‖L1(�̃),

[u]0,β ′;�̃, β) and R∗ = R∗(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β ′;�̃, β). By induction, it is easy
to see that for any integer j there holds

ψ(τ j�) ≤ τ jβψ(�). (3.71)

Now, if ς ∈ (0, �/8), there exists an integer j ≥ 1 such that τ j+1� < ς ≤ τ j�. Therefore,
proceeding as we did for (3.40), using (3.71) we get

ψ(ς) ≤ τ 1− n
γ1 τ jβψ(�) ≤ c(ς/�)βψ(�), (3.72)

with c = c(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β ′;�̃, β). This is the estimate we were looking for.
In fact, as in Step 4, (3.41) we can extend (3.72) to the full range 0 < ς < � and, proceeding
as in estimates (3.42)-(3.43) we can get rid of the restriction s ≤ R∗; as already mentioned,
we shall only retain s ≤ R̃∗/2. Furthermore, it directly implies that

ςγ1−n−βγ1
∫
Bς

|Dω|γ1 dx ≤cR̃γ1(1−β)∗

(∫
−
BR̃∗/2

(1 + |Dω|2)p2(R̃∗/2)/2 dx

) γ1
p2(R̃∗/2)

≤cR̃γ1(1−β)∗

(∫
−
BR̃∗/2

(1 + |Dω|2)(1+σ0)p(x) dx
) γ1
(1+σ0)p1(R̃∗/2)
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≤cR̃γ1(1−β)∗

(∫
−
BR̃∗
(1 + |Dω|2)p(x)/2 dx

) γ1
p1(R̃∗/2)

≤ c,

for c = c(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β ′;�̃, β) and therefore, being β ∈ (0, 1) arbitrary,
by Morrey’s growth theorem and a standard covering argument, we can conclude that ω ∈
C0,β
loc (�

+,Rm) for any β ∈ (0, 1). Now, for all B4ς � �+ such that 0 < ς ≤ R̃∗/2, by
Lemmas 9, 8 and 2 (ii.), we obtain

∫
−
Bς

|Dω|p2(ς) dx ≤c

(∫
−
B2ς
(1 + |Dω|2)p(x)/2 dx

) p2(ς)−p1(ς)
p1(ς)

∫
−
B2ς
(1 + |Dω|2)p(x)/2 dx

≤c
∫
−
B4ς

1 +
∣∣∣∣ω − (ω)4ς

ς

∣∣∣∣
p(x)

dx ≤ cς−γ2(1−β), (3.73)

where c = c(data, ‖(|Du|)p(·)‖L1(�̃), [u]0,β ′;�̃, β). Once (3.73) is available, we can con-
clude as in Step 6.

4 Dimension reduction

In this section we obtain a further reduction of the dimension of the singular set of p(x)-
harmonic maps, for p(·) ≥ 2 Lipschitz continuous, thus improving, at least in this case, the
result given in Theorem 1, Step 5.

4.1 Compactness of minimizers andMonotonicity formula

The proof of Theorem 2 essentially needs two components to be carried out. The first is
the compactness of sequences of minimizers of (0.1) under uniform assumptions, while the
second is the monotonicity along solutions to (0.1) of a certain quantity strictly related to the
p(x)-energy. Those arguments are quite classical, see e. g. [23,27,46].

Lemma 11 (Compactness) Let (k j ) j∈N, (p j ) j∈N be two sequences of α-Hölder continuous
functions, α ∈ (0, 1], satisfying⎧⎪⎨

⎪⎩
sup j∈N[k j ]0,α < ck
λ ≤ k j (x) ≤ � for all x ∈ B1

‖k j − k‖L∞(B1) → 0, k(·) ∈ C0,α(B1)

and

⎧⎪⎨
⎪⎩

sup j∈N[p]0,α < cp
p j (x) ≥ γ1 > 1 for all x ∈ B1, j ∈ N

‖p j − p0‖L∞(B1) → 0, p0 ≥ γ1 > 1 constant,

(4.1)

respectively. For each j ∈ N, let u j ∈ W 1,p j (·)(B1,M) be a constrained local minimizer of

E j (w, B1) :=
∫
B1

k j (x)|Dw|p j (x) dx,

where M is as in (M1)-(M2). Then, there exists a subsequence, still denoted by (u j ) j∈N,
such that

u j⇀v weakly in W 1,(1+σ̃ )p0(Br ,M) (4.2)
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for some σ̃ > 0 and any r ∈ (0, 1) and v is a constrained local minimizer of the functional

E0(w, B1) :=
∫
B1

k(x)|Dw|p0 dx .

Moreover, E j (u j , Br ) → E0(v, Br ) for all r ∈ (0, 1). Finally, if x j is a singular point of u j

and x j → x̄ , then x̄ is a singular point for v.

Proof The proof is divided into three steps.
Step 1: weak W (1+σ̃ )p0 -convergence. Since M is compact, sup j∈N‖u j‖L∞(B1) ≤ c(M),

and given that γ1 > 1, we obtain, up to (non relabelled) subsequences,

u j⇀v weakly in Lγ1(B1,R
N ). (4.3)

Moreover, being the bounds in (4.1) uniform in j ∈ N, Lemma 9 and Corollary 3 (and
Lemma 10 for the associated frozen problems) hold for all the E j ’s with parameters indepen-
dent of j . By Lemma 9, we know that (u j ) j∈N ⊂ W 1,(1+δ)p(·)(B1,M) for all δ ∈ (0, δ̃0).
Let δ2 := 1

4 min{σ̃0, δ̃0}, where σ̃0 is the higher integrability threshold given by Lemma 10
and pick any δ ∈ (0, δ2). Because of the uniform convergence of the p j ’s to the constant p0,
taking j sufficiently large we can find positive constants γ1 ≤ q1 ≤ q2 ≤ γ2 such that

1 < q1 ≤ p j (·) ≤ q2 <∞ on B1, q2

(
1 + δ

2

)
≤ q1(1 + δ), q2 ≤ p0

(
1 + δ

2

)
.

(4.4)

For any B�(x0) ≡ B� ⊂ B1, Corollary 3 yields that
∫
B�/4

|Du j |(1+δ)p j (x) dx ≤ c

for all j ∈ N, with c = c(�, cp, n, N ,M, λ,�, γ1, γ2, α). This last estimate and (4.4)1,2
imply that

∫
B�/4

|Du j |(1+δ/2)q2 dx ≤ c, (4.5)

for c = c(�, cp, n, N ,M, λ,�, γ1, γ2, α). Now, for any fixed r ∈ (0, 1), we can cover
Br ≡ Br (0) by a finite number of balls B(1−�)/4(x0) with x0 ∈ Br , use (4.5) on each ball
and then sum them all to get

∫
Br

|Du j |(1+δ/2)q2 dx ≤ c (4.6)

for large j ∈ N. Here c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). From the compactness of M
and (4.6), we derive the uniform boundedness of the u j ’s in W 1,(1+δ/2)q2(Br ,M), so, up to
extract a (non relabelled) subsequence, we obtain that u j⇀v̄weakly inW 1,(1+δ/2)q2(Br ,M),
for some v̄ ∈ W 1,(1+δ/2)q2(Br ,M).Anyway, by (4.3), v̄(x) = v(x),v(x) ∈ M for a.e. x ∈ Br
and, by Rellich’s theorem,

u j → v strongly in L(1+δ/2)q2(Br ,M), (4.7)

Du j → Dv weakly in L(1+δ/2)q2(Br ,RN×n). (4.8)
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From (4.4)1 and (4.1)2 we see that q2 ≥ p0, so (4.2) is proved with σ̃ ≡ δ/2. In particular,
the weak lower semicontinuity of the norm renders that

∫
Br

|Dv|(1+δ/2)q2 dx ≤ c, (4.9)

with c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α).
Step 2: compactness. We aim to show that v is an M-constrained local minimizer of E0.

To do so, we first claim that

E0(v, Br ) ≤ lim inf
j→∞ E j (u j , Br ), (4.10)

for all r ∈ (0, 1). Let us rewrite E j (u j , Br ) = (
E j (u j , Br )− E0(u j , Br )

) + E0(u j , Br ).
From (4.2) and weak lower semicontinuity we have

E0(v, Br ) ≤ lim inf
j→∞ E0(u j , Br ). (4.11)

On the other hand, from (4.4)1, Lemma 2 (i.) with ε0 ≡ δ/2 and (4.1) we have

∣∣ E j (u j , Br )− E0(u j , Br )
∣∣ ≤c‖p j − p0‖L∞(B1)

∫
Br

1 + |Du j |(1+δ/2)q2 dx

+ ‖k j − k‖L∞(B1)

∫
Br

|Du j |p0 dx
(4.6)≤ c

(‖p j − p0‖L∞(B1) + ‖k j − k‖L∞(B1)
) → 0, (4.12)

where c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). Combining (4.12) and (4.11) we obtain (4.10).
Let ṽ ∈ W 1,p0(Br ,M) be a solution to the Dirichlet problem

W 1,p0
v (Br ,M) � w �→ min E0(w, Br ),

and extend it to be equal to v outside Br . In this way, ṽ ∈ W 1,p0
loc (B1,M) ∩ W 1,p0

v (Br ,M).
Since we are assuming that (p j ) j∈N converges uniformly to p0 on B1, we can take j ∈ N so
large that

‖p j‖L∞(B1)

(
1 + δ

4

)
≤ p0

(
1 + δ

2

)
(4.13)

holds. Moreover, by (4.9) and (4.4)1 we have that v ∈ W 1,(1+δ/2)q2(Br ,M) ⊂
W 1,(1+δ/2)p0(Br ,M), so, from Lemma 10 with p ≡ p0 we obtain that ṽ ∈ W 1,(1+δ/2)p0
(Br ,M) ⊂ W 1,(1+δ/4)p j (·)(Br ,M)∩W 1,q2(Br ,M), where the last inclusion is due to (4.13)
and (4.4)3. From (4.13), Lemma 10 and (4.9) we get

∫
Br

|Dṽ|(1+δ/4)p j (x) dx ≤
∫
Br

1 + |Dṽ|(1+δ/2)p0 dx ≤ c
∫
Br

1 + |Dv|(1+δ/2)p0 dx ≤ c,

(4.14)

where c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). Let θ ∈ (0, 1) be a small parameter to be fixed
and η a cut-off function with the following specifics

η ∈ C1
c (Br ), χBr(1−θ) ≤ η ≤ χBr , |Dη| ≤ (rθ)−1 on Arθ . (4.15)
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In correspondence of such a choice of η, we define the comparisonmapw j := (1−η)u j +ηṽ
and notice that w j

∣∣
∂Br(1−θ) = ṽ|∂Br(1−θ) and w j

∣∣
∂Br

= u j
∣∣
∂Br

. So Lemma 5 applies to w j

on Arθ thus rendering a map w′
j ∈ W 1,p j (·)(Arθ ,M) such that

w′
j

∣∣∣
∂Br(1−θ)

= ṽ|∂Br(1−θ) , w′
j

∣∣∣
∂Br

= u j
∣∣
∂Br
,

∫
Arθ

|Dw′
j |p j (x) dx ≤ c

∫
Arθ

|Dw j |p j (x) dx,

(4.16)

with c = c(N ,M, γ2). Finally we define

w̃ j :=
{
ṽ on Br(1−θ)
w′

j on Arθ ,
(4.17)

which, by (4.16)2,3 and (4.14) is an admissible competitor for u j on Br . From the minimality
of u j and (4.16)2,3 we have

E j (u j , Br ) ≤E j (w̃ j , Br ) = E j (ṽ, Br(1−θ))+ E j (w
′
j , Arθ )

≤
∫
Br

k j (x)|Dṽ|p j (x) dx + c
∫
Arθ

k j (x)|Dw j |p j (x) dx := (I) j + (II) j ,

for c = c(N ,M, λ,�, γ2). By (4.1), (4.13), (4.4)1, (4.9) and Lemma 2 (i.) with ε0 ≡ δ/4
we see that∣∣∣∣

∫
Br

k j (x)|Dṽ|p j (x) dx −
∫
Br

k(x)|Dṽ|p0 dx
∣∣∣∣

(4.14)≤ c
(‖k j − k‖L∞(B1) + ‖p j − p0‖L∞(B1)

) ∫
Br

1

+ |Dv|(1+δ/2)p0 dx → 0,

where c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). So we get that

(I) j → E0(ṽ, Br ). (4.18)

Exploiting the very definition of the w j ’s and (4.15)3 we have

(II) j ≤c
∫
Arθ

k j (x)

[
|Du j |p j (x) + |Dṽ|p j (x) +

∣∣∣∣u j − ṽ
rθ

∣∣∣∣
p j (x)

]
dx

≤c
∫
Arθ

k j (x)

[
|Du j |p j (x) + |Dṽ|p j (x) +

∣∣∣∣u j − v
rθ

∣∣∣∣
p j (x)

+
∣∣∣∣ ṽ − v

rθ

∣∣∣∣
p j (x)

]
dx

=: (II)1j + (II)2j + (II)3j ,

with c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). Using (4.4)1, (4.5), (4.14) and (4.1) we get

(II)1j ≤�
∫
Arθ

|Du j |p j (x) + |Dṽ|p j (x) dx ≤ c, (4.19)

where c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). By (4.4)1 and (4.7), a well known variation
on Lebesgue’s dominated convergence theorem allows concluding that

(II)2j → 0. (4.20)
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Finally, by (3.2) with p(·) ≡ p j (·) and (4.14) we obtain

(II)3j ≤ c
∫
Arθ

|Dv − Dṽ|p j (x) dx + c|Arθ | ≤ c
∫
Arθ

1 + |Dv|(1+δ/2)p0 dx + c|Arθ | ≤ c,

(4.21)

for c = c(r , cp, n, N ,M, λ,�, γ1, γ2, α). By the absolute continuity of Lebesgue’s integral,
(4.19) and (4.21), given σ > 0 we can always choose θ sufficiently small in such a way that

(II)1j + (II)3j ≤ σ

2
, (4.22)

and, by (4.20), j large enough such that

(II)2j ≤ σ

2
. (4.23)

All in all, collecting (4.10), (4.18), (4.22) and (4.23) we can conclude that

E0(v, Br ) ≤ lim inf
j→∞ E j (u j , Br ) ≤ lim sup

j→∞
E j (u j , Br )

≤ lim sup
j→∞

E j (ṽ, Br )+ σ = E0(ṽ, Br )+ σ,

so, by the arbitrariety of σ and the minimality of ṽ, we can conclude that E0(ṽ, Br ) =
E0(v, Br ). Being this true for any r ∈ (0, 1), v is an M-constrained local minimizer of E0
and, as a direct consequence of the last chain of inequalities, E j (u j , Br )→ E0(v, Br ).

Step 3: singular points.Once we have the results contained in Steps 1-2 by hand, the proof
of Step 3 goes as the one in [46, Lemma 3.1] and we shall omit it. ��
We stress that Lemma 11 holds with p(·) ≥ γ1 > 1 Hölder continuous rather than Lipschitz.
We need stronger assumptions only to prove a suitable monotonicity formula.

Lemma 12 (Monotonicity formula) Let k(·) ∈ C0,α(�), α ∈ (0, 1] be such that k(0) = 1,
p(·) ∈ Lip(�) and n > γ2 ≥ p(x) ≥ 2 for all x ∈ �. If u ∈ W 1,p(·)(�,M) is a constrained
local minimizer of (0.1) on B1, then for any γ ∈ (0, 1) there exist a positive c = c(data, γ )
and T ∈ (0, 1) such that for all 0 < r < R < T , we have

∫
∂B1

|u(Rx)− u(r x)|p2(r) dHn−1(x) ≤ cr p2(r)−p2(R)
(
log

R

r

)p2(r)−1

(
( (R)− (r))+ (Rγ − rγ )

)
,

where

 (t) := t p2(t)−n exp(Atα)
∫
Bt
k(x)|Du|p2(t) dx,

with A = A(n, [k]0,α, [p]0,1, α) > 0.

Proof The proof is actually the same as the one given in [46, Lemma 4.1]. There is only
one small detail to change: the map v introduced during the proof of Lemma 4.1 to obtain
estimate (4.17) must be replaced by a solution to the Dirichlet problem

W 1,p2(t)
u (Bt ,M) � w �→ inf

∫
Bt
k(x)|Dw|p2(t) dx .

The rest stays unchanged. ��
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4.2 Proof of Theorem 2

Combining the compactness Lemma 11 and themonotonicity formula obtained in Lemma 12,
we are ready to prove Theorem 2. If �+ is as in (3.11), then u ∈ W 1,n+δ0/4(�+,M). So,
by Morrey’s embedding theorem, u ∈ C0,β ′

(�+,M) for β ′ := δ0/(4n + δ0) and, by Step
7 of Theorem 1, we can conclude that Du is locally β0-Hölder continuous on �+ for some
β0 ∈ (0, 1). This observation shows that, to prove Theorem 2 it is enough to assume that
γ2 < n, and this condition assures the applicability of Lemma 12.

Case 1: n ≤ [γ1] + 1. Since t �→  (t) can be seen as a difference between an increasing
function of t and ctγ for some γ ∈ (0, 1) and a positive constant c, it admits a finite limit as
t → 0. Assume that u has a singular point at x̄ = 0 which is not isolated. Then we can find
a sequence of singular points (x j ) j∈N such that x j → 0. Setting R j := 2|x j | < T < 1 we
see that, for any j the scaled function u j (x) := u(R j x) is a constrained local minimizer of
the functional

E j (w, B1) :=
∫
B1

R
p(0)−p j (x)
j |Dw|p j (x) dx, p j (x) := p(R j x)

and each u j has a singular point y j := R−1
j x j with |y j | = 1/2. Now we notice that the

sequences (R
p(0)−p j (·)
j ) j∈N and (p j (·)) j∈N satisfy (4.1), so by Lemma 11 we get, up to

extract a subsequence that the u j ’s L2-weakly converge to a function v, constrained local
minimizer of E0(w, B1) := ∫

B1
|Dw|p(0) dx and that the y j ’s converge to ȳ, singular point

of v with |ȳ| = 1/2. Now pick two constants 0 < λ < μ < 1 and apply Lemma 12 with
r ≡ λR j and R ≡ μR j to get
∫
∂B1

|u j (μx)− u j (λx)|p2(λR j )dHn−1(x) =
∫
∂B1

|u(μR j x)− u(λR j x)|p2(λR j )dHn−1(x)

≤c(λR j )
p2(λR j )−p2(μR j ) (log(μ/λ))p2(λR j )−1

(
( (μR j )− (λR j ))+ (μγ − λγ )Rγj

)

→ 0. (4.24)

Moreover, Lemma 11 also says that u j → v in L(1+σ̃ )p(0)(Br ,M) for all r ∈ (0, 1) and this
leads to

|u j (μx)− u j (λx)|p2(λR j ) → |v(μx)− v(λx)|p(0) a.e. in B1. (4.25)

Finally, the compactness of M renders the u j ’s uniformly bounded, so, by the dominated
convergence theorem, (4.24) and (4.25) we deduce that

∫
∂B1

|v(μx)− v(λx)|p(0)dHn−1(x) = 0,

for a.e. λ andμ. This means that v is homogeneous of degree 0, so the whole segment joining
x̄ and ȳ is made of singular points of v, but, since we are assuming n ≤ [γ1]+1 ≤ [p(0)]+1,
we obtain a contradiction to [28, Theorem 4.5], which states that, under these conditions, v
can have only isolated singularities.

Case 2: n > [γ1] + 1. Let us assume that for some l > 0, Hl(�0(u)) > 0. Then, by
blowing up, we obtain a constrained local minimizer v of E0 withHl(�0(v)) > 0, (see [23],
Chapter 10). On the other hand, by [28, Theorem 4.5], l < n − [p(0)] − 1 ≤ n − [γ1] − 1
and this concludes the proof.
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