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Abstract
In this paper, we study a nonlinear Dirichlet problem of p-Laplacian type with combined
effects of nonlinear singular and convection terms.Anexistence theorem for positive solutions
is established as well as the compactness of solution set. Our approach is based on Leray–
Schauder alternative principle, method of sub-supersolution, nonlinear regularity, truncation
techniques, and set-valued analysis.
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1 Introduction

Let� ⊂ R
N (N ≥ 3)be aboundeddomainwithC2 boundary. In this paper,we investigate the

following singular elliptic equationwithDirichlet boundary condition, p-Laplace differential
operator, and a nonlinear convection term (i.e., the reaction function depends on the solution
u and its gradient ∇u):

⎧
⎨

⎩

−�pu(x) = f (x, u(x),∇u(x)) + g(x, u(x)) in �

u > 0 in �

u = 0 on ∂�.

(1)
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Here �p stands for the p-Laplace differential operator defined by

�pu = div(|∇u|p−2∇u) for all u ∈ W 1,p
0 (�)

with 1 < p < ∞ and gradient operator ∇. For the convection term f : � × R × R
N → R,

a suitable growth condition H( f ) in Sect. 3 is required. The semilinear function g : � ×
(0,∞) → R is singular at s = 0, that is,

lim
s→0+ g(x, s) = +∞.

In order to emphasize the main ideas, we suppose that p < N . The case N ≤ p can be
handled along the same lines. As usual, we denote p∗ := Np

N−p , which is the Sobolev critical
exponent. The solution of problem (1) is understood in the weak sense as described below.

Definition 1 We say that u ∈ W 1,p
0 (�) is a (weak) solution of problem (1) if

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx =
∫

�

[
f (x, u(x),∇u(x)) + g(x, u(x))

]
v(x) dx

for all v ∈ W 1,p
0 (�).

If p = 2, problem (1) reduces to the semilinear Dirichlet elliptic equation with a singular
term and gradient dependence considered by Faraci and Puglisi [14]:

⎧
⎨

⎩

−�u(x) = f (x, u(x),∇u(x)) + g(x, u(x)) in �

u > 0 in �

u = 0 on ∂�.

(2)

A typical case in (1) and (2) is when the singular term is in the form g(x, u(x)) = h(x)u(x)−μ

forμ > 0 and a suitable function h, which gives rise to the nonlinearDirichlet elliptic equation
with combined effects of singular and convection terms

⎧
⎨

⎩

−�pu(x) = f (x, u(x),∇u(x)) + h(x)u(x)−μ in �

u > 0 in �

u = 0 on ∂�.

(3)

Elliptic equations with singular terms represent a class of hot-point problems because
they appear in applications to chemical catalysts processes, non-Newtonian fluids, and in
models for the temperature of electrical conductors, see, e.g., [4,11]. An extensive literature
is devoted to such problems, especially from the point of view of theoretical analysis. For
instance, Ghergu and Rădulescu [21] established several existence and nonexistence results
for boundary value problems with singular term and parameters; Gasínski and Papageor-
giou [20] studied a nonlinear Dirichlet problem with a singular term, a (p − 1)-sublinear
term, and a Carathéodory perturbation; Hirano et al. [23] proved Brezis–Nirenberg type the-
orems for a singular elliptic problem. More details on the topics related to singular problems
can be found in Crandall et al. [8], Cîrstea et al. [7], Dupaigne et al. [12], Kaufmann and
Medri [25], D’Ambrosio and Mitidieri [9], Carl et al. [6], Giacomoni et al. [22], Gasiński
and Papageorgiou [19], Bai et al. [2], Carl [5] and the references therein.

On the other hand, as another challenging topic, elliptic problems with convection terms
have been considered in various frameworks. Amongst the results we mention: Faraci et
al. [13] proved the existence of a positive solution and of a negative solution for a quasi-
linear elliptic problem with dependence on the gradient; Faria et al. [15] proved the existence
of a positive solution for a quasi-linear elliptic problem involving the (p, q)-Laplacian and a
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convection term; Zeng et al. [39] proved the existence of positive solutions for a generalized
elliptic inclusion problem driven by a nonhomogeneous partial differential operator with
Dirichlet boundary condition and a convection multivalued term; Papageorgiou et al. [35]
proved that a nonlinear boundary value problem driven by a nonhomogeneous differential
operator has at least five nontrivial smooth solutions, four of constant sign, and one nodal.
For other results in this area the reader may consult: Motreanu et al. [32], Motreanu and
Tanaka [33], Averna et al. [1], Faria et al. [16], Gasiński and Papageorgiou [18], and the
references therein.

In this paper, under verifiable conditions, we provide the existence of positive solutions
for problem (1). It is for the first time when such a result is obtained for problem (1), in
particular (3), exhibiting singular and convection terms in the nonlinear case p 
= 2. The
approach uses the method of subsolution-supersolution, truncation techniques, nonlinear
regularity theory, Leray–Schauder alternative principle, and set-valued analysis. It is worth
mentioning that in our analysis of problem (1) we strongly rely on multi-valued mappings
arguments. Specifically, themulti-valued setting offers an efficient way to handle the smallest
solution of the constructed auxiliary problem. This is another trait of novelty in our paper.
The compactness of the solution set of problem (1) is proved, too.

We briefly describe the main ideas in our approach. Corresponding to a fixed smooth
function w, we associate to the original statement (1) an intermediate problem replacing
the gradient ∇u in f (x, u,∇u) with ∇w and keeping unchanged the singular term. For
the intermediate problem, a positive subsolution u is constructed independently of w and
is shown the existence of a solution greater than u. We are thus enabled to consider the
set-valued mappingS assigning to w the setS (w) of all such solutions of the intermediate
problem. On the basis of the properties of the set-valued mapping S we can prove that the
mapping � defined by �(w) equal to the minimal element ofS (w) is compact. The positive
solution of the original problem is obtained by applying Leray–Schauder alternative principle
to the mapping �. At this point we need the following smallness condition

c1 + c2λ
p−1
p

1 < λ1,

where the constants c1 > 0 and c2 > 0 are the coefficients of |u| and |∇u|, respectively, in
the subcritical growth condition of f (x, u,∇u), while λ1 is the first eigenvalue of −�u on
W 1,p

0 (�). This condition requires a certain compatibility between the growth of f (x, u,∇u)

and the geometry of the bounded domain � imposing some restrictions on � as can be
seen from known estimates from above and from below for λ1. For instance, if � is the ball
B(0, R) in R

N of radius R > 0 and centered at the origin, we have the estimates

Np

Rp
≤ λ1 ≤ (p + 1) . . . (p + N )

N !Rp
.

We refer to Benedikt and Drábek [3] and Kajikiya [24] for estimates of λ1 on different
bounded domains � ⊂ R

N related to geometric quantities.
The rest of the paper is organized as follows. In Sect. 2 we present the needed preliminary

material. Section 3 is devoted to establishing our results.
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2 Mathematical background

Let 1 < p < ∞ and p′ defined by 1
p + 1

p′ = 1. The Lebesgue space L p(�) is endowed with
the standard norm

‖u‖p =
( ∫

�

|u(x)|p dx
) 1

p

for all u ∈ L p(�).

The Sobolev space W 1,p
0 (�) is equipped with the usual norm

‖u‖ =
( ∫

�

|∇u(x)|p dx
) 1

p

for all u ∈ W 1,p
0 (�).

We denote by Ck(�) for k ∈ N the space of real-valued k-times continuously differentiable
functions u in� such that the partial derivatives Dαu continuously extend to� for all |α| ≤ k.
The space Ck(�) is endowed with the norm

‖u‖Ck (�) := max|α|≤k
sup
x∈�

|Dαu(x)|.

We shall also use the Banach space

C1
0(�) = {u ∈ C1(�) : u = 0 on ∂�}

and its cone of nonnegative functions

C1
0 (�)+ = {u ∈ C1

0 (�) : u ≥ 0 in �},
which has a nonempty interior in C1

0 (�) given by

int(C1
0 (�)+) =

{

u ∈ C1
0 (�) : u > 0 in �,

∂u

∂ν
< 0 on ∂�

}

,

where the notation ∂u/∂ν stands for the normal derivative of u with the unit outer normal ν
to ∂�.

For clarity regarding arguments that involve order we recall the following notions.

Definition 2 Let (P,≤) be a partially ordered set.

(i) A subset E ⊂ P is called upward directed, if for each pair u, v ∈ E there exists w ∈ E
with w ≥ u and w ≥ v.

(ii) A subset E ⊂ P is called downward directed, if for each pair u, v ∈ E there exists
w ∈ E such that w ≤ u and w ≤ v.

For any s ∈ R, we set s± = max{±s, 0}. If u ∈ W 1,p
0 (�), one has

u± ∈ W 1,p
0 (�), u = u+ − u−, |u| = u+ + u−.

The gradients of these functions are equal to

∇u+(x) =
{∇u(x) if u(x) > 0
0 if u(x) ≤ 0,

∇u−(x) =
{−∇u(x) if u(x) < 0
0 if u(x) ≥ 0,

∇|u|(x) =
⎧
⎨

⎩

∇u(x) if u(x) > 0
0 if u(x) = 0
−∇u(x) if u(x) < 0.
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Given the functions u1, u2 : � → R, we utilize the notation {u1 > u2} = {x ∈ � : u1(x) >

u2(x)}, and accordingly {u1 ≥ u2}. For a subset K ⊂ �, its characteristic function is denoted
by χK , which means

χK (x) =
{
1 if x ∈ K
0 elsewhere.

We recall the eigenvalue problem for the p-Laplacian with Dirichlet boundary condition
{−�pu(x) = λ|u(x)|p−2u(x) in �

u = 0 on ∂�.

The first eigenvalue denoted λ1 is positive, isolated, simple, and has the following variational
characterization

λ1 = inf

{‖u‖p

‖u‖p
p

: u ∈ W 1,p
0 (�), u 
= 0

}

.

Finally, we review some background material of set-valued analysis. More details can be
found in [10,17,31,34,38].

Definition 3 Let X and Y be topological spaces. A set-valued mapping F : X → 2Y is called

(i) upper semicontinuous (u.s.c., for short) at x ∈ X , if for every open set O ⊂ Y with
F(x) ⊂ O there exists a neighborhood N (x) of x such that

F(N (x)) := ∪y∈N (x)F(y) ⊂ O;
when this holds for every x ∈ X , F is called upper semicontinuous;

(ii) lower semicontinuous (l.s.c., for short) at x ∈ X , if for every open set O ⊂ Y with
F(x) ∩ O 
= ∅ there exists a neighborhood N (x) of x such that

F(y) ∩ O 
= ∅ for all y ∈ N (x);
when this holds for every x ∈ X , F is called lower semicontinuous;

(iii) continuous at x ∈ X , if F is both upper semicontinuous and lower semicontinuous at
x ∈ X ; when this holds for every x ∈ X , F is called continuous.

Proposition 4 The following properties are equivalent:

(i) F is u.s.c.;
(ii) for every closed subset C ⊂ Y , the set

F−(C) := {x ∈ X | F(x) ∩ C 
= ∅}
is closed in X;

(iii) for every open subset O ⊂ Y , the set

F+(O) := {x ∈ X | F(x) ⊂ O}
is open in X.

Proposition 5 The following properties are equivalent:

(a) F is l.s.c.;
(b) if u ∈ X, {uλ}λ∈J ⊂ X is a net such that uλ → u, and u∗ ∈ F(u), then for each λ ∈ J

there is u∗
λ ∈ F(uλ) with u∗

λ → u∗ in Y .
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Proposition 6 Let X , Y be topological spaces and let F : X → 2Y be u.s.c. with compact
values. Let {uλ}λ∈J be a net in X with uλ → u and let u∗

λ ∈ F(uλ) for each λ ∈ J . Then
there exist u∗ ∈ F(u) and a subnet {u∗

γ } of {u∗
λ} such that u∗

γ → u∗.

An essential tool in the sequel is the Leray–Schauder alternative principle (or Schaefer’s
fixed point theorem), see, e.g., Gasiński and Papageorgiou [17, p. 827].

Theorem 7 Let X be a Banach space and let C ⊂ X be nonempty and convex. Assume that
� : C → C is a compact mapping, i.e.,� is continuous and maps bounded sets into relatively
compact sets. Then it holds exactly one of the following statements:

(a) � has a fixed point;
(b) the set �(�) := {u ∈ C : u = t�(u) for some t ∈ (0, 1)} is unbounded.

3 Existence of positive solutions

Our assumptions on the data in problem (1) are as follows.
H( f ): The convection term f : � × R × R

N → [0,+∞) verifies:

(i) f is a Carathéodory function, i.e., x �→ f (x, s, ξ) is measurable for each s ∈ R and
ξ ∈ R

N , and (s, ξ) �→ f (x, s, ξ) is continuous for a.e. x ∈ �;
(ii) for each constant M > 0, there exist constants cM > 0 and 0 < dM < λ1 with

| f (x, s, ξ)| ≤ cM + dM |s|p−1

for a.e. x ∈ �, all s ∈ R and ξ ∈ R
N with |ξ | ≤ M .

H(g): The singular term g : � × (0,+∞) → [0,+∞) satisfies:

(i) g is a Carathéodory function;
(ii) g(x, ·) is nonincreasing on the interval (0, 1) for a.e. x ∈ �, g(x, s) ≥ g(x, 1) for a.e.

x ∈ �, all s < 1, and g(·, 1) is not identically zero;
(iii) there exist a function ϑ ∈ int(C1

0 (�)+), and constants q > max{N , p′} as well as
ε0 > 0 such that

x �→ g(x, εϑ(x)) ∈ Lq(�) for all ε ∈ (0, ε0).

Remark 8 Hypotheses H( f ) and H(g) permit to construct a sub-supersolution for interme-
diate problem (4), see below. Condition H( f ) was employed in Faraci et al. [13], whereas
condition H(g)wasdealtwith inFaraci andPuglisi [14] andgoes back toPerera andSilva [36]
and Perera and Zhang [37].

Examples of singular functions fulfilling all the requirements in H(g) can be constructed
with any γ > 0 and h ∈ Lq(�)+. For instance, one can take � to be an open ball in RN and
choose any function as

g(x, s) = h(x)s−γ ;
g(x, s) = h(x)e

1
sγ ;

g(x, s) =
{−h(x) ln(s) if s ≤ e−1

h(x) e
−γ

sγ if s > e−1,

with s ∈ (0, 1) and appropriately extending for s > 1, and suitable corresponding functions
h on � (see [36,37]).
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For w ∈ C1
0(�) fixed, we first focus on an intermediate singular Dirichlet problem

⎧
⎨

⎩

−�pu(x) = f (x, u(x),∇w(x)) + g(x, u(x)) in �

u > 0 in �

u = 0 on ∂�.

(4)

Definition 9 We say that

(i) u ∈ W 1,p
0 (�) is a (weak) solution of problem (4) if

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx =
∫

�

[
f (x, u(x),∇w(x)) + g(x, u(x))

]
v(x) dx

for all v ∈ W 1,p
0 (�);

(ii) u ∈ W 1,p(�) with u ≥ 0 on ∂� (in the sense of trace) is a supersolution of problem
(4) if

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx ≥
∫

�

[
f (x, u(x),∇w(x)) + g(x, u(x))

]
v(x) dx

for all v ∈ W 1,p
0 (�) with v(x) ≥ 0 for a.e. x ∈ �.

(iii) u ∈ W 1,p(�) with u ≤ 0 on ∂� (in the sense of trace) is a subsolution of problem (4)
if

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx ≤
∫

�

[
f (x, u(x),∇w(x)) + g(x, u(x))

]
v(x) dx

for all v ∈ W 1,p
0 (�) with v(x) ≥ 0 for a.e. x ∈ �.

The next lemma is essential for our development.

Lemma 10 If u1, u2 ∈ W 1,p(�) are two supersolutions for problem (4), then the function
u := min{u1, u2} ∈ W 1,p(�) is also a supersolution for problem (4).

Proof Let u1, u2 ∈ W 1,p(�) be supersolutions for problem (4). Corresponding to any ε > 0,
consider the truncation ηε : R → R given by

ηε(t) =
⎧
⎨

⎩

0 if t ≤ 0
t
ε

if 0 < t < ε

1 otherwise,

which is Lipschitz continuous. FromMarcus andMizel [30], we know about the composition

ηε(u2 − u1) ∈ W 1,p(�)

that

∇(ηε(u2 − u1)) = η′
ε(u2 − u1)∇(u2 − u1).

For any function v ∈ C∞
0 (�)+ := {v ∈ C∞

0 (�) : v(x) ≥ 0 for a.e. x ∈ �}, we have
ηε(u2 − u1)v ∈ W 1,p

0 (�) with
(
ηε(u2 − u1)v

)
(x) ≥ 0 for a.e. x ∈ �,

and

∇(
ηε(u2 − u1)v

) = v∇(ηε(u2 − u1)) + ηε(u2 − u1)∇v.
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The definition of supersolution for problem (4) yields
∫

�

|∇ui (x)|p−2(∇ui (x),∇h(x))RN dx ≥
∫

�

f (x, ui (x),∇w(x))h(x) dx

+
∫

�

g(x, ui (x))h(x) dx

for all h ∈ W 1,p
0 (�) with h(x) ≥ 0 a.e. x ∈ �, i = 1, 2. Inserting h = ηε(u2 − u1)v for

i = 1 and h = (
1−ηε(u2 −u1)

)
v for i = 2, and then summing up the resulting inequalities,

we get
∫

�

|∇u1(x)|p−2(∇u1(x),∇
(
ηε(u2 − u1)v

)
(x))RN dx

+
∫

�

|∇u2(x)|p−2(∇u2(x),∇
((
1 − ηε(u2 − u1)

)
v
)
(x)

)

RN dx

≥
∫

�

g(x, u1(x)) + f (x, u1(x),∇w(x))
(
ηε(u2 − u1)v

)
(x) dx

+
∫

�

g(x, u2(x)) + f (x, u2(x),∇w(x))
((
1 − ηε(u2 − u1)

)
v
)
(x) dx .

We note that
∫

�

|∇u1(x)|p−2(∇u1(x),∇
(
ηε(u2 − u1)v

)
(x))RN dx

= 1

ε

∫

{0<u2−u1<ε}
|∇u1(x)|p−2(∇u1(x),∇(u2 − u1)(x))RN v(x) dx

+
∫

�

|∇u1(x)|p−2(∇u1(x),∇v(x))RN

(
ηε(u2 − u1)

)
(x) dx

and
∫

�

|∇u2(x)|p−2(∇u2(x),∇
((
1 − ηε(u2 − u1)

)
v
)
(x))RN dx

= −1

ε

∫

{0<u2−u1<ε}
|∇u2(x)|p−2(∇u2(x),∇(u2 − u1)(x))RN v(x) dx

+
∫

�

|∇u2(x)|p−2(∇u2(x),∇v(x))RN

(
1 − ηε(u2 − u1)

)
(x) dx .

Altogether, we obtain
∫

�

|∇u1(x)|p−2(∇u1(x),∇v(x))RN

(
ηε(u2 − u1)

)
(x) dx

+
∫

�

|∇u2(x)|p−2(∇u2(x),∇v(x))RN

(
1 − ηε(u2 − u1)

)
(x) dx

≥
∫

�

[g(x, u1(x)) + f (x, u1(x),∇w(x))](ηε(u2 − u1)v
)
(x) dx

+
∫

�

[g(x, u2(x)) + f (x, u2(x),∇w(x))]((1 − ηε(u2 − u1)
)
v
)
(x) dx .

Now we pass to the limit as ε → 0+. Using Lebesgue’s Dominated Convergence Theorem
(see, e.g., [31, Theorem 2.38]) and

ηε

(
(u2 − u1)(x)

) → χ{u1<u2}(x) for a.e. x ∈ � as ε → 0+,
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we find
∫

{u1<u2}
|∇u1(x)|p−2(∇u1(x),∇v(x))RN dx

+
∫

{u1≥u2}
|∇u2(x)|p−2(∇u2(x),∇v(x))RN dx

≥
∫

{u1<u2}
[g(x, u1(x)) + f (x, u1(x),∇w(x))]v(x) dx

+
∫

{u1≥u2}
[g(x, u2(x)) + f (x, u2(x),∇w(x))]v(x) dx (5)

for all v ∈ C∞
0 (�)+. Notice that u = min{u1, u2} ∈ W 1,p(�) with u ≥ 0 on ∂� and

∇u(x) =
{∇u1(x) for a.e. x ∈ {u1 < u2}

∇u2(x) for a.e. x ∈ {u1 ≥ u2}.
Combining with (5) leads to

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx ≥
∫

�

g(x, u(x))v(x) dx

+
∫

�

f (x, u(x),∇w(x))v(x) dx (6)

for all v ∈ C∞
0 (�)+. The density of C∞

0 (�)+ into W 1,p
0 (�)+ := {u ∈ W 1,p

0 (�) : u ≥
0 a.e. on �} ensures that (6) holds true for all v ∈ W 1,p

0 (�)+, so u is also a supersolution of
problem (4). ��

Similarly, we can prove the corresponding statement for subsolutions.

Lemma 11 If v1, v2 ∈ W 1,p(�) are two subsolutions for problem (4), then the function
v = max{v1, v2} ∈ W 1,p(�) is also a subsolution for problem (4).

Denote by Uw ⊂ W 1,p(�) and Uw ⊂ W 1,p(�) the supersolution set and subsolution
set of problem (4), respectively. The following result is a direct consequence gathering Lem-
mata 10 and 11.

Corollary 12 The sets Uw andUw are upward directed and downward directed, respectively.

Next we establish the existence of subsolutions of problem (4).

Lemma 13 Under the assumptions H(g) and H( f ), there exists a subsolution u of problem
(4).

Proof Let ϑ ∈ int(C1
0 (�)+) be given in hypothesis H(g)(iii). Hence, there is ε1 > 0 such

that

‖εϑ‖L∞(�) ≤ 1 for all ε ∈ (0, ε1).

Then the monotonicity of g required in H(g)(ii) implies that

0 ≤ g(x, 1) ≤ g(x, εϑ(x)) for a.e. x ∈ � and ε ∈ (0,min{ε0, ε1}).
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Condition H(g)(iii) entitles that for each ε ∈ (0, ε0) the function x �→ g(x, εϑ(x)) belongs
to Lq(�) for some q > N , which results in

x �→ g(x, 1) ∈ Lq(�).

According to H(g)(iii), the function x �→ g(x, 1) is not identically zero. Then there exists a
unique u∗ ∈ int(C1

0 (�)+) that resolves the Dirichlet problem
⎧
⎨

⎩

−�pu(x) = g(x, 1) in �

u > 0 in �

u = 0 on ∂�.

Set u = αu∗ ∈ int(C1
0 (�)+), where α = min{1, 1

‖u∗‖L∞(�)
}. Using the monotonicity of g on

(0, 1) again, it turns out

0 ≤ g(x, 1) ≤ g(x, u(x)) for a.e. x ∈ �. (7)

Because of ϑ, u ∈ int(C1
0 (�)+), we can choose ε > 0 small enough to fulfill

u − εϑ ∈ int(C1
0 (�)+).

Taking into account hypothesis H(g), we derive
{
0 ≤ g(x, u(x)) ≤ g(x, εϑ(x)) for a.e. x ∈ �

x �→ g(x, u(x)) ∈ Lq(�).
(8)

Since q > N > (p∗)′, we have q ′ < p∗, where for r > 1, we denote r ′ = r/(r − 1).
Therefore we can use the Sobolev embedding theorem (see, e.g., [17, Theorem 2.5.3]), to
infer that the embedding ofW 1,p

0 (�) into Lq ′
(�) is continuous. On account of (8) we deduce

x �→ g(x, u(x))v(x) ∈ L1(�) for all v ∈ W 1,p
0 (�).

From
∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx = α p−1
∫

�

|∇u∗(x)|p−2(∇u∗(x),∇v(x))RN dx

= α p−1
∫

�

g(x, 1)v(x) dx for all v ∈ W 1,p
0 (�),

and due to α ≤ 1 and (7), one has
∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx ≤
∫

�

g(x, 1)v(x) dx ≤
∫

�

g(x, u(x))v(x) dx (9)

for all v ∈ W 1,p
0 (�) with v(x) ≥ 0 for a.e. x ∈ �. In view of f (x, s, ξ) ≥ 0 for a.e. x ∈ �,

all s ∈ R and ξ ∈ R
N , by (9) it holds

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx ≤
∫

�

[
f (x, u(x),∇w(x)) + g(x, u(x))

]
v(x) dx

for all v ∈ W 1,p
0 (�) with v(x) ≥ 0 and for a.e. x ∈ �. Consequently, u is a subsolution of

problem (4), which completes the proof. ��
Remark 14 From the proof Lemma13 it is clear that the obtained subsolution u is independent
of function w and belongs to int(C1

0 (�)+).

We are able to show the existence of positive solutions to auxiliary problem (4).

123



Positive solutions for nonlinear singular elliptic equations… Page 11 of 22 28

Lemma 15 Assume that conditions H(g) and H( f ) hold. Then problem (4) admits a positive
solution u with regularity u ∈ int(C1

0 (�)+), which is greater than the subsolution u.

Proof Consider the nonlinear singular truncated Dirichlet problem
⎧
⎨

⎩

−�pu(x) = f̂ (x, u(x)) + ĝ(x, u(x)) in �

u > 0 in �

u = 0 on ∂�,

(10)

where f̂ : � × R → R and ĝ : � × R → R are truncated functions corresponding to f and
g defined by

f̂ (x, s) =
{
f (x, u(x),∇w(x)) if s ≤ u(x)
f (x, s,∇w(x)) if s > u(x)

and

ĝ(x, s) =
{
g(x, u(x)) if s ≤ u(x)
g(x, s) if s > u(x)

for a.e. x ∈ � and s ∈ R. Consider also the primitives G : � ×R → R and F : � ×R → R

given by

G(x, s) =
∫ s

0
ĝ(x, t) dt and F(x, s) =

∫ s

0
f̂ (x, t) dt

for a.e. x ∈ � and s ∈ R. The energy functional Ew : W 1,p
0 → R associated to problem (10)

has the expression

Ew(u) = 1

p
‖u‖p −

∫

�

G(x, u(x)) dx −
∫

�

F(x, u(x)) dx for all u ∈ W 1,p
0 (�).

Claim 1 The energy functional Ew is of class C1.

Let u, v ∈ W 1,p
0 (�) and t > 0. By Mean Value Theorem we may write

1

tp
(‖u + tv‖p − ‖u‖p) = 1

tp

(∫

�

|∇(u + tv)(x)|p dx −
∫

�

|∇u(x)|p dx
)

=
∫

�

(|∇u(x) + tτ∇v(x)|p−2(∇u(x) + tτ∇v(x)),∇v(x)
)

RN dx

with some τ ∈ (0, 1). Using Lebesgue’s Dominated Convergence Theorem entails

lim
t→0+

1

tp
(‖u + tv‖p − ‖u‖p) =

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx .

The expressions of G and F imply

∫

�

G(u + tv) + F(u + tv) − G(u) − F(u)

t
dx =

∫

�

∫ (u+tv)(x)
u(x) ĝ(x, s) ds

t
dx

+
∫

�

∫ (u+tv)(x)
u(x) f̂ (x, s) ds

t
dx =

∫

�

ĝ(x, u(x) + τ1v(x))v(x) dx

+
∫

�

f̂ (x, u(x) + τ2v(x))v(x) dx
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28 Page 12 of 22 Z. Liu et al.

with some τ1, τ2 ∈ (0, t). Invoking Lebesgue’s Dominated Convergence Theorem again, we
obtain

lim
t→0+

∫

�

G(u + tv) + F(u + tv) − G(u) − F(u)

t
dx

=
∫

�

[̂g(x, u(x)) + f̂ (x, u(x))]v(x) dx .

Thus it holds true

lim
t→0+

Ew(u + tv) − Ew(u)

t
=

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx

+
∫

�

[̂g(x, u(x)) + f̂ (x, u(x))]v(x) dx for all v ∈ W 1,p
0 (�).

We can conclude that Ew is of class C1 because ĝ(x, ·) and f̂ (x, ·) are continuous.
Claim 2 The energy functional Ew is coercive.

Through the definition of ĝ, hypothesis H(g)(ii) and u ≤ 1, the following estimate is
valid

Ew(u) = 1

p
‖u‖p −

∫

�

∫ u(x)

0
ĝ(x, t) dt dx −

∫

�

∫ u(x)

0
f̂ (x, t) dt dx

≥ 1

p
‖u‖p −

∫

�

∫ u(x)

0
g(x, u(x)) dt dx −

∫

�

∫ u(x)

0
f̂ (x, t) dt dx .

The definition of f̂ and growth condition H( f )(ii) render
∫

�

∫ u(x)

0
f̂ (x, t) dt dx =

∫

�

∫ u(x)

0
f̂ (x, t) dt dx +

∫

�

∫ u(x)

u(x)
f̂ (x, t) dt dx

≤
∫

�

u(x) f (x, u(x),∇w(x)) dx +
∫

�

cM (|u(x)| + |u(x)|) dx

+dM
p

∫

�

(|u(x)|p + |u(x)|p) dx,

where M = ‖w‖C1
0 (�), whence

∫

�

∫ u(x)

0
f̂ (x, t) dt dx ≤ C1(1 + ‖u‖) + dM

λ1 p
‖u‖p,

with a constant C1 > 0. Therefore we get

Ew(u) ≥ 1

p

(

1 − dM
λ1

)

‖u‖p − C1(1 + ‖u‖) − C2,

where C2 = ∫

�
u(x)g(x, u(x)) dx < ∞. The smallness condition dM < λ1 (see H( f )(ii))

determines that the energy functional Ew is coercive.

Claim 3 The energy functional Ew is weakly sequentially lower semicontinuous.

Let un⇀u in W 1,p
0 (�). It follows from the convexity of the norm that

lim inf
n→∞

1

p
‖un‖p ≥ 1

p
‖u‖p.
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By Rellich-Kondrachov Embedding Theorem (see, e.g., [17, Theorem 2.5.17]), we have
un → u in L p(�), so along a relabeled subsequence un(x) → u(x) for a.e. x ∈ �. But,
Lebesgue’s Dominated Convergence Theorem confirms

lim
n→∞

( ∫

�

G(x, un(x)) dx +
∫

�

F(x, un(x)) dx

)

=
∫

�

G(x, u(x)) dx

+
∫

�

F(x, u(x)) dx .

Claim 3 ensues.
On the basis of Claims 1–3 we are able to apply Weierstrass-Tonelli Theorem finding

u ∈ W 1,p
0 (�) such that

Ew(u) = inf
v∈W 1,p

0 (�)

Ew(v).

Claim 4 If u is a critical point of Ew, then u ≥ u and u is a solution of problem (4).

Let u ∈ W 1,p
0 (�) be a critical point of Ew, that is,

E ′
w(u) = 0.

This reads as
∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx −
∫

�

[̂g(x, u(x)) + f̂ (x, u(x))]v(x) dx = 0

for all v ∈ W 1,p
0 (�), i.e., u ∈ W 1,p

0 (�) is a solution of problem (10).
Inserting v = (u − u)+ in the above equality and in (9) produces

∫

{u<u}
|∇u(x)|p−2(∇u(x),∇(u − u)(x))RN dx

≥
∫

{u<u}
g(x, u(x))(u − u)(x) dx

and
∫

{u<u}
|∇u(x)|p−2(∇u(x),∇(u − u)(x))RN dx

≤
∫

{u<u}
g(x, u(x))(u − u)(x) dx,

due to f (x, s, ξ) ≥ 0 for a.e. x ∈ �, all s ∈ R and ξ ∈ R
N . We are led to

∫

{u<u}
(|∇u(x)|p−2∇u(x) − |∇u(x)|p−2∇u(x),∇(u − u)(x))RN dx ≤ 0,

which forces u ≥ u.
On the basis of Claim 4, by virtue of the definitions of ĝ and f̂ , the solution u of (10)

becomes a solution of problem (4). This completes the proof. ��
Remark 16 The Moser iteration technique (see, e.g., [27, Theorem 4.1]) shows that each
solution u of problem (4) is an element of L∞(�). Moreover, the nonlinear regularity theory
in [26,28,29] ensures that u belongs to C1,α(�) for some α ∈ (0, 1).
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We introduce the set-valued mapping S : C1
0 (�) → 2C

1
0 (�) as follows

S (w) := {
u ∈ C1

0 (�) : uis a solution of problem (4) with u ≥ u
}
.

Via Lemma 15 and Remark 16 we see that S is well-defined meaning that its values are
nonempty.

Lemma 17 Assume that H(g) and H( f ) hold. Then the set-valued mapping S is compact,
that is, S maps the bounded sets in C1

0 (�) into relatively compact subsets of C1
0 (�).

Proof. Let B be a bounded subset of C1
0(�), so there is a constant M > 0 such that

‖B‖ := sup
w∈B

‖w‖C1
0 (�) ≤ M .

For w ∈ B and u ∈ S (w), we have
∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx =
∫

�

[g(x, u(x)) + f (x, u(x),∇w(x))]v(x) dx

whenever v ∈ W 1,p
0 (�). Setting v = u, it follows from hypotheses H(g), H( f ), the property

u ≥ u, (8), and Hölder’s inequality that

‖u‖p =
∫

�

[g(x, u(x)) + f (x, u(x),∇w(x))]u(x) dx

≤
∫

�

[g(x, u(x)) + f (x, u(x),∇w(x))]u(x) dx

≤
∫

�

[g(x, εϑ(x)) + cM + dMu(x)p−1]u(x) dx

≤ dM‖u‖p
p + ‖u‖p(‖g(·, εϑ(·))‖p′ + cM |�| 1p ).

Thanks to ‖u‖p
p ≤ ‖u‖p/λ1, we obtain

‖u‖p ≤ dM
λ1

‖u‖p + ‖g(·, εϑ(·))‖p′ + cM |�| 1p

λ
1
p
1

‖u‖.

The smallness condition dM < λ1 allows us to derive that S (B) is bounded in W 1,p
0 (�).

Through the nonlinear regularity theory in [26,28,29], there exists α ∈ (0, 1) such that
S (B) ⊂ C1,α(�) is bounded as well. Since C1,α(�) is compactly embedded in C1(�), we
infer that S (B) is relatively compact in C1

0 (�). �
The next results establish the continuity of S .

Lemma 18 Assume that H(g) and H( f ) hold. Then the set-valued mapping S is upper
semicontinuous.

Proof According to Proposition 4, we must prove that for any closed subset C of C1
0 (�), the

set

S −(C) = {
w ∈ C1

0(�) : S (w) ∩ C 
= ∅}
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is closed in C1
0(�). To this end, let {wn} ⊂ S −(C) satisfy wn → w in C1

0(�). For each
n ∈ N there exists un ∈ S (wn) ∩ C , so

∫

�

|∇un(x)|p−2(∇un(x),∇v(x))RN dx =
∫

�

g(x, un(x))v(x) dx

+
∫

�

f (x, un(x),∇wn(x))v(x) dx (11)

for all v ∈ W 1,p
0 (�). It follows from Lemma 17 that the sequence {un} is relatively compact

inC1
0 (�). Passing to a relabeled subsequence, we may assume that un → u inC1

0(�). Recall
that un ≥ u and C is closed in C1

0(�). Hence we have

u ≥ u and u ∈ C . (12)

The continuity of f (x, ·, ·) and g(x, ·) implies

g(x, un(x)) → g(x, u(x)) and f (x, un(x),∇wn(x)) → f (x, u(x),∇w(x))

for a.e. x ∈ � because un → u and wn → w in C1
0 (�). From (8), un ≥ u and H( f )(ii),

corresponding to v ∈ W 1,p
0 (�) we can find a function h ∈ L1+(�) satisfying

|[g(x, un(x)) + f (x, un(x),∇wn(x))]v(x)| ≤ h(x)

for a.e. x ∈ �. Letting n → ∞ in (11), by means of Lebesgue’s Dominated Convergence
Theorem, we see that

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx =
∫

�

[g(x, u(x)) + f (x, u(x),∇w(x))]v(x) dx

for all v ∈ W 1,p
0 (�), thus u is a solution of problem (4). The latter and (12) reveal that

u ∈ S (w) ∩ C , or in other terms, w ∈ S −(C), achieving the proof that S is upper
semicontinuous. ��
Corollary 19 Assume that H(g) and H( f ) hold. If {wn} and {un} are sequences in C1

0 (�)

satisfying

wn → w as n → ∞ and un ∈ S (wn) for all n ∈ N,

then there exist u ∈ S (w) and a subsequence {unk } of {un} such that unk → u in C1
0 (�) as

k → ∞.

Proof It is straightforward to check that S has closed values. Then Lemma 17 guarantees
that S has compact values. The desired conclusion is readily obtained from Lemma 18 and
Proposition 6. ��
Lemma 20 Assume that H(g) and H( f ) hold. Then the set-valued mapping S is lower
semicontinuous.

Proof In order to invoke Proposition 5, let {wn} ⊂ C1
0 (�) satisfy wn → w in C1

0 (�) and let
v ∈ S (w). For each n ∈ N, we formulate the Dirichlet problem

⎧
⎨

⎩

−�pu(x) = g(x, v(x)) + f (x, v(x),∇wn(x)) in �

u > 0 in �

u = 0 on ∂�.

(13)
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In view of v ≥ u, (8) and
{
g(x, v(x)) + f (x, v(x),∇wn(x)) ≥ 0 for a.e. x ∈ �

g(·, v(·)) + f (·, v(·),∇wn(·)) 
≡ 0,

it is clear that problem (13) has a unique solution u0n ∈ int(C1
0 (�)+). As in the proof of

Lemma 17, we can verify that, since wn → w in C1
0 (�), then the sequence {u0n} is relatively

compact in C1
0(�). So, there exists a subsequence {u0nk } of {un} such that u0nk → u in C1

0 (�)

as k → ∞ and u is the unique solution of the problem
⎧
⎨

⎩

−�pu(x) = g(x, v(x)) + f (x, v(x),∇w(x)) in �

u > 0 in �

u = 0 on ∂�.

We point out that v ∈ S (w) provides
⎧
⎨

⎩

−�pv(x) = g(x, v(x)) + f (x, v(x),∇w(x)) in �

u > 0 in �

u = 0 on ∂�.

A simple comparison gives u = v. Since every subsequence {u0nk } of {un} converges to the
same limit v, it is true that

lim
n→∞ u0n = v.

Next, for each n ∈ N, we consider the Dirichlet problem
⎧
⎨

⎩

−�pu(x) = g(x, u0n(x)) + f (x, u0n(x),∇wn(x)) in �

u > 0 in �

u = 0 on ∂�.

Proceeding as before, we show that this problem has a unique solution u1n , which belongs to
int(C1

0 (�)+), and

lim
n→∞ u1n = v.

Continuing the process, we generate a sequence {ukn}k,n≥1 such that
⎧
⎨

⎩

−�pukn(x) = g(x, uk−1
n (x)) + f (x, uk−1

n (x),∇wn(x)) in �

ukn > 0 in �

ukn = 0 on ∂�

and

lim
n→∞ ukn = v for all k ∈ N. (14)

Fix n ≥ 1. As in the proof of Lemma 17, we notice that the sequence {ukn}k≥1 is relatively
compact in C1

0 (�), so we may suppose

ukn → un in C1
0(�) as k → ∞.

Then it appears that
⎧
⎨

⎩

−�pun(x) = g(x, un(x)) + f (x, un(x),∇wn(x)) in �

un > 0 in �

un = 0 on ∂�,
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and un ≥ u (see Lemma 15), which amounts to saying that un ∈ S (wn).
We carry on the proof by the nonlinear regularity [26,28,29], the convergence in (14), and

the double limit lemma (see, e.g., [17, p. Proposition A.2.35]) to obtain

un → v in C1
0 (�) as n → ∞.

We conclude that for every sequence {wn} in C1
0 (�) such that wn → w in C1

0(�) and for
every v ∈ S (w) we can find a sequence {un} ⊂ C1

0 (�) satisfying un ∈ S (wn) for each
n ∈ N and un → u in C1

0 (�). Consequently, by Proposition 5, S is lower semicontinuous.
��

The following statement summarizes Lemmata 17, 18 and 20.

Corollary 21 Assume that H(g) and H( f ) hold. Then the set-valued mappingS : C1
0 (�) →

2C
1
0 (�) is continuous in the sense of Definition 3(iii) and has compact values.

For each w ∈ C1
0 (�), the set S (w) has a rich order structure.

Lemma 22 Assume that H(g) and H( f ) hold. Then for each w ∈ C1
0(�), the set S (w) is

downward directed in the sense of Definition 2.

Proof For any w ∈ C1
0(�), let u1, u2 ∈ S (w) and u := min{u1, u2}. Consider the Dirichlet

problem
⎧
⎨

⎩

−�pu(x) = f̃ (x, u(x)) in �

u > 0 in �

u = 0 on ∂�,

(15)

where f̃ : � × R → R is defined by

f̃ (x, s) =
⎧
⎨

⎩

g(x, u(x)) + f (x, u(x),∇w(x)) if s ≤ u(x)
g(x, s) + f (x, s,∇w(x)) if u < s < u(x)
g(x, u(x)) + f (x, u(x),∇w(x)) if u(x) ≤ s.

Arguing as in the proof of Lemma 15, we see that problem (15) admits a positive solution ũ
with ũ ≥ u.

We now show that ũ ≤ u. Since
∫

�

|̃u(x)|p−2 (̃u(x),∇v(x))RN dx =
∫

�

f̃ (x, ũ(x))v(x) dx

for all v ∈ W 1,p
0 (�), we may insert v = (̃u − u)+, which results in

∫

{̃u>u}
|∇ũ(x)|p−2(∇ũ(x),∇ (̃u − u)(x))RN dx

=
∫

{̃u>u}
g(x, u(x))(̃u − u)(x) dx +

∫

{̃u>u}
f (x, u(x),∇w(x))(̃u − u)(x) dx

≤
∫

{̃u>u}
|∇u(x)|p−2(∇u(x),∇ (̃u − u)(x))RN dx .

The last inequality holds because, by Lemma 10, u is a supersolution of problem (4). Observe
that the obtained inequality ensures that ũ ≤ u. Then from (15) and the definition of f̃ we
deduce that ũ ∈ S (w), which completes the proof. ��
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Theorem 23 Assume that H(g) and H( f ) hold. Then, for each w ∈ C1
0 (�) problem (4)

admits a smallest solution uw greater than the subsolution u.

Proof Lemma 22 asserts that for each w ∈ C1
0 (�) the ordered set S (w) is downward

directed. Let B be a chain in S (w). We can find a sequence {un} ⊂ B such that

lim
n→∞ un = inf B.

Since every un is a solution of (4) with un ≥ u, Lemma 17 claims that the sequence {un}
is relatively compact in C1

0(�). So, passing to a subsequence if necessary, there exists v ∈
C1
0 (�) such that

un → v in C1
0(�) and v ≥ u.

Therefore v = inf B, which allows us to apply Zorn’s Lemma (see, e.g., [38]) to provide a
minimal element uw for S (w).

We check that uw is the smallest solution of (4) greater than the subsolution u. Let
u ∈ S (w). Since, as known from Lemma 22, the ordered set S (w) is downward directed,
we can find ũ ∈ S (w) verifying ũ ≤ min{uw, u}. However, the minimality of uw ∈ S (w)

entails

u ≤ uw ≤ ũ ≤ u,

which yields that uw is the smallest solution greater than the subsolution u. ��
Theorem 23 demonstrates that the map � : C1

0(�) → C1
0 (�) given by

�(w) = uw

is well defined.

Lemma 24 Assume that H(g) and H( f ) hold. Then, the map � : C1
0(�) → C1

0(�) is com-
pact.

Proof The fact that � maps the bounded subsets of C1
0(�) into relatively compact subsets in

C1
0 (�) is the direct consequence of Lemma 17. Indeed, if B is a bounded subset of C1

0 (�),
then S (B) is relatively compact in C1

0(�), so does �(B) ⊂ S (B).
It remains to verify that � is continuous. Let {wn} ⊂ C1

0 (�) satisfy wn → w and denote
un = �(wn), which reads as

⎧
⎨

⎩

−�pun(x) = f (x, un(x),∇wn(x)) + g(x, un(x)) in �

un > 0 in �

un = 0 on ∂�.

(16)

Invoking Lemma 17 again, the sequence {un} is relatively compact in C1
0(�). Up to a subse-

quence, we may assume that un → u in C1
0(�). It is obvious that u ≥ u owing to un ≥ u.

On the other hand, in the limit (16) yields
⎧
⎨

⎩

−�pu(x) = f (x, u(x),∇w(x)) + g(x, u(x)) in �

u > 0 in �

u = 0 on ∂�,

thus u ∈ S (w). The lower semicontinuity ofS proved in Lemma 20 and the characterization
of semicontinuity in Proposition 5 ensure that there exists a sequence {vn} ⊂ C1

0(�) with
the properties

vn ∈ S (wn) for each n ∈ N, and vn → �(w) ∈ S (w).
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Notice that un = �(wn) ≤ vn and u ∈ S (w). Letting n → ∞ implies

�(w) ≤ u = lim
n→∞ un ≤ lim

n→∞ vn = �(w),

that is u = �(w), so the map � is continuous. ��

We are now in a position to prove our main result.

Theorem 25 Assume that H(g) and H( f ) hold. If there exist positive constants c0, c1, c2

with c1 + c2λ
p−1
p

1 < λ1 such that

| f (x, s, ξ)| ≤ c0 + c1|s|p−1 + c2|ξ |p−1 for a.e.x ∈ �, all s ∈ R, and ξ ∈ R
N ,

then problem (1) admits a (weak, positive) solution u ∈ int(C1
0 (�)+). Moreover, the (weak,

positive) solution set of problem (1) is compact in C1
0 (�).

Proof First, let us emphasize that every solution of problem (1) must be positive. We claim
that each solution of problem (1) is greater than the subsolution u of problem (4) constructed
in Lemma 13. Let u be a solution of (1). This is expressed by

∫

�

|∇u(x)|p−2(∇u(x),∇v(x))RN dx =
∫

�

[g(x, u(x)) + f (x, u(x),∇u(x))]v(x) dx

for all v ∈ W 1,p
0 (�). Acting with v = (u − u)+ and using the monotonicity hypothesis

H(g)(ii), nonnegativity of f and (9), one has
∫

{u>u}
|∇u(x)|p−2(∇u(x),∇(u − u)(x))RN dx =

∫

{u>u}
g(x, u(x))(u − u)(x) dx

+
∫

{u>u}
f (x, u(x),∇u(x))(u − u)(x) dx ≥

∫

{u>u}
g(x, u(x))(u − u)(x) dx

≥
∫

{u>u}
g(x, u(x))(u − u)(x) dx

≥
∫

{u>u}
|∇u(x)|p−2(∇u(x),∇(u − u)(x))RN dx .

From the above inequality we deduce that u ≥ u.
In order to justify that problem (1) possesses a (positive) solution we make use of The-

orem 7. From Lemma 24, we know that � is a compact map. It remains to prove that the
set

�(�) := {
u ∈ C1

0(�) : u = t�(u) for some t ∈ (0, 1)
}

is bounded in C1
0(�). For any u ∈ �(�), we have u = t�(u) for some t ∈ (0, 1), or

equivalently
∫

�

∣
∣
∣∇ u(x)

t

∣
∣
∣
p−2(∇ u(x)

t
,∇v(x)

)

RN
dx =

∫

�

f
(
x,

u(x)

t
,∇u(x)

)
v(x) dx

+
∫

�

g
(
x,

u(x)

t

)
v(x) dx

123



28 Page 20 of 22 Z. Liu et al.

for all v ∈ W 1,p
0 (�). From this equation we get that u ∈ int(C1

0 (�)+). Choosing v = u
t and

using H( f ) and Hölder’s inequality provide

‖u‖p ≤ t p
∫

�

[c0u(x)

t
+ c1

u(x)p

t p
+ c2

|∇u(x)|p−1u(x)

t

]
dx

+t p
∫

�

g
(
x,

u(x)

t

)u(x)

t
dx ≤

∫

�

g
(
x,

u(x)

t

)
u(x) dx

+c0|�| p−1
p ‖u‖p + c1‖u‖p

p + c2‖u‖p−1‖u‖p.

Addressing hypothesis H(g) (with an ε > 0 small enough) and the inequalities ‖u‖p
p ≤ ‖u‖p

λ1
and u ≥ u, we get the estimate

‖u‖p ≤
∫

�

g(x, εϑ(x))u(x) dx + c0|�| 1p ‖u‖p + c1‖u‖p
p + c2‖u‖p−1‖u‖p

≤ (‖g(·, εϑ(·))‖p′ + c0|�| 1p )‖u‖p + c1‖u‖p
p + c2‖u‖p−1‖u‖p

≤ c1
‖u‖p

λ1
+ c2

‖u‖p

λ
1/p
1

+ (‖g(·, εϑ(·))‖p′ + c0|�|1/p) ‖u‖
λ
1/p
1

.

The imposed smallness condition c1 + c2λ
(p−1)/p
1 < λ1 and p > 1 enable us to infer that

�(�) is bounded in W 1,p
0 (�). Then, as before, we can apply the nonlinear regularity theory

(see [26,28,29]) to confirm that�(�) is bounded inC1
0(�). Through Theorem 7we conclude

that problem (1) has at least one positive solution u ∈ int(C1
0 (�)+).

The final step in the proof is to show that the solution set for problem (1) is compact in
C1
0 (�). It is straightforward to verify that the solution set of problem (1) is closed in C1

0 (�).

From the proof of the first part we know that it is bounded in W 1,p
0 (�). Then the nonlinear

regularity theory (see [26,28,29]) indicates that it is bounded inC1,α(�) for some α ∈ (0, 1),
so relatively compact in C1

0 (�). The proof is thus complete. ��
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