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Abstract The purpose of this paper is to study weak solutions of a nonlinear Neumann
problem considered on a ball. Assuming that the potential is invariant, we consider an orbit
of critical points, i.e. we do not assume that critical points are isolated. We apply techniques of
equivariant analysis to examine bifurcations from the orbits of trivial solutions. We formulate
sufficient conditions for local and global bifurcations, in terms of the right-hand side of the
system and eigenvalues of the Laplace operator. Moreover, we characterise orbits at which
global symmetry breaking phenomena occur.

Mathematics Subject Classification Primary: 35B32 · Secondary: 35J20

1 Introduction

In this paper, we study bifurcations of weak solutions of elliptic systems of the form:
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{−�u = λ∇F(u) in BN

∂u
∂ν

= 0 on SN−1,
(1.1)

where BN is the open unit ball in R
N , SN−1 = ∂BN and the function F : Rm → R satisfies

additional assumptions, see Sect. 2.
In particular, we are interested in the equivariant case. Namely, we assume that on the

space R
m there is defined an action of a compact Lie group � and ∇F is a �-equivariant

mapping. Moreover, it is known that BN is SO(N )-invariant, where SO(N ) stands for the
special orthogonal group in dimension N .

Consider the set ∇F−1(0). For u0 ∈ ∇F−1(0) the constant function ũ0 ≡ u0 is a
solution of (1.1) for all λ ∈ R. Therefore, we obtain the family of trivial solutions {ũ0} ×R.
Investigating the change of the Conley index for different levels λ ∈ R, one can obtain a
sequence of nontrivial weak solutions bifurcating from the point (ũ0, λ0), for some values
λ0 ∈ R. Investigating the change of the topological degree, one can prove the existence of
the continuum, emanating from (ũ0, λ0), of nontrivial weak solutions of the system (i.e. the
global bifurcation of weak solutions).

For a system of elliptic differential equations with Dirichlet boundary conditions such
methods have been used in many papers, among others by the first and the second author in
[7,10,15]. A similar method has been also used in [9] for the system with Neumann boundary
conditions for bifurcation from infinity instead from critical points. The phenomenon of sym-
metry breaking for elliptic systems with Neumann boundary conditions has been considered
by the third author in [27].

The results described above are obtained with the assumption that u0 is an isolated critical
point of the potential F .

Assuming that ∇F is a �-equivariant mapping, we obtain that for u0 ∈ ∇F−1(0) also
γ u0 ∈ ∇F−1(0) for all γ ∈ �. It is therefore clear, that the assumption that the critical point
u0 is an isolated one, does not have to be satisfied in this case.

The method, that can be used in this situation, is an investigation of the index of the
isolated orbit. Under some additional assumptions, this method has been recently proposed
by Pérez-Chavela et al. [18]. In that paper it has been proved that the computation of the
Conley index of the orbit can be in some cases reduced to computation of the index of a point
from the space normal to the orbit.

To study weak solutions of the system (1.1) we apply variational methods, i.e. we associate
with the system a functional � defined on a suitable Hilbert space H. Its critical points are
in one-to-one correspondence with weak solutions of (1.1). The tools we use are the finite
and infinite dimensional equivariant Conley index (see [2,8] for the definition in the finite
dimensional case and [13] for the infinite dimensional case) and the degree for equivariant
gradient maps, defined in [22].

Consider the group G = �× SO(N ). Since Rm is a �-representation (by assumption) and
BN is an SO(N )-invariant set, it follows that the space H is a G-representation. Moreover,
for u0 ∈ (∇F)−1(0), (gũ0, λ) is a critical point of � for all g ∈ G, λ ∈ R.

Therefore we can consider the set of trivial solutions T = G(ũ0) × R. We are
going to investigate bifurcations of nontrivial solutions from the family T . Our aim is
to formulate necessary and sufficient conditions, in terms of the right-hand side of the
system and of the eigenvalues of the Laplace operator, for a bifurcation from the orbit
G(ũ0) × {λ0}.

We also consider global symmetry breaking phenomena at the orbit G(ũ0) × {λ0}.
More precisely, knowing that the trivial solutions are radial, we study when the bifur-
cating solutions are non-radial. The analogous problem has been studied by the third
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author in [23,24] on the sphere and on the geodesic ball, with the use of a lemma due
to Dancer (see [4]), characterising isotropy groups of bifurcating solutions. In our situa-
tion, if the group � is not a discrete one, we cannot use this result. Therefore we generalise
it.

After this introduction the paper is organised in the following way:
In Sect. 2 we introduce the problem and recall some definitions. With an elliptic system

on a ball we associate a functional. Next we study the properties of the linear system. We
end this section with the definitions of local and global bifurcations from an orbit and of the
admissible pair.

In Sect. 3 we formulate and prove the main results of this article, namely Theorem 3.5
concerning the global bifurcation of solutions, and Theorem 3.10, concerning the symmetry
breaking problem. First we consider the phenomenon of bifurcation from the critical orbit.
We start with some auxiliary results. In Lemma 3.1 we describe the set of parameters at
which the bifurcation of solutions can occur. In Theorem 3.3 we investigate the change of
the Conley index at the levels obtained in Lemma 3.1. This result is applied to prove Theo-
rem 3.5. Since the global bifurcation implies the local one, we obtain the result concerning
local bifurcations, see Corollary 3.6. This phenomenon can be proved also directly from
Theorem 3.3, what is described in Remark 3.7. The local bifurcation of solutions, under
weaker assumptions, is considered also in Theorem 3.8. Next we study the symmetry break-
ing problem. In Theorem 3.10 we prove the bifurcation of orbits of non-radial solutions
emanating from orbits of radial ones. To obtain this result, we generalise the result of Dancer
in Lemma 3.11.

In Sect. 4 we illustrate our results with a few examples. Using the properties of the
eigenspaces of the Laplace operator (with Neumann boundary conditions) on the ball, we
verify the assumptions of our main results.

Section 5 is the “Appendix”. In the main part of our paper we assume that the reader
is familiar with some classical definitions and facts, concerning for example the equivari-
ant Conley index, the degree for equivariant gradient maps or the properties of eigenspaces
of the Laplace operator on a ball. However, it is not easy to find a detailed discussion of
these properties. Therefore, for the completeness of the paper we collect in this section
the information which we use to prove our main results. In this section we present also an
equivariant version of the implicit function theorem in infinite dimensional spaces, due to
Dancer.

1.1 Notation

Suppose that G is a compact Lie group. We denote by sub(G) the set of closed subgroups of
G. For u from a given G-space X we denote by G(u) the orbit through u and Gu stands for
the isotropy group of u. By XG we denote the space of all fixed points of the action of the
group G on X .

Further, byU (G) we denote the Euler ring of G and we use the symbol χG(·) to denote the
G-equivariant Euler characteristic of a pointed finite G-CW-complex. Moreover, the symbols
C IG(S, f ) and CIG(S, f ) stand for the Conley indices of an isolated invariant set S of the
flow generated by f , considered respectively in finite and infinite dimensional cases. A more
precise description can be found in the “Appendix”.

Finally, for a Hilbert spaceH andu0 ∈ Hwe denote by Bδ(u0,H) (respectively Dδ(u0,H))
the open (respectively closed) ball in H centred at u0 and with radius δ. In particular, we use
the symbol BN for the open ball if δ = 1, u0 = 0 and H = R

N and we write SN−1 for ∂BN .
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2 Preliminaries

Throughout this paper � stands for a compact Lie group and R
m is an orthogonal represen-

tation of the group �. Consider F : Rm → R satisfying:

(B1) F ∈ C2(Rm,R) is such that for every u ∈ R
m we have |∇2F(u)| ≤ a+ b|u|q where

a, b ∈ R and 1 < q < 4
N−2 for N ≥ 3 and 1 < q < ∞ for N = 2,

(B2) F is �-invariant, i.e. F(γ u) = F(u) for every γ ∈ �, u ∈ R
m .

Our aim is to study bifurcations of weak solutions of the nonlinear Neumann problem,
parameterised by λ ∈ R, {−�u = λ∇F(u) in BN

∂u
∂ν

= 0 on SN−1.
(2.1)

Denote by H1(BN ) the usual Sobolev space on BN and consider the separable Hilbert space
H = ⊕m

i=1 H1(BN ) with the scalar product

〈v,w〉H =
m∑
i=1

〈vi , wi 〉H1(BN ) =
m∑
i=1

∫

BN

(∇vi (x),∇wi (x)) + vi (x) · wi (x)dx . (2.2)

Denote by G the group � × SO(N ), where SO(N ) is the special orthogonal group in
dimension N . Note that the space H with the scalar product given by (2.2) is an orthogonal
G-representation with the G-action given by

(γ, α)(u)(x) = γ u(α−1x) for (γ, α) ∈ G, u ∈ H, x ∈ BN . (2.3)

It is well known that weak solutions of the problem (2.1) are in one-to-one correspondence
with critical points (with respect to u) of the functional � : H × R → R defined by

�(u, λ) = 1

2

∫

BN

|∇u(x)|2dx − λ

∫

BN

F(u(x))dx . (2.4)

Computing the gradient of � with respect to u we obtain:

〈∇u�(u, λ), v〉H =
∫

BN

(∇u(x),∇v(x)) − (λ∇F(u(x)), v(x))dx, u, v ∈ H. (2.5)

Moreover,

〈∇2
u�(u, λ)w, v

〉
H

=
∫

BN

(∇w(x),∇v(x))

− (λ∇2F(u(x))w(x), v(x))dx, u, w, v ∈ H.

Assumption (B2) implies that ∇u� : H × R → H is G-equivariant.
Moreover, from imbedding theorems and the assumption (B1) it follows that the operator

∇u� is a completely continuous perturbation of the identity, see [21].

2.1 Linear equation

In this subsection we consider the Eq. (2.1) in the linear case, i.e. the system:{−�u = λAu in BN

∂u
∂ν

= 0 on SN−1,
(2.6)
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where A is a real, symmetric (m × m)-matrix.
Using formula (2.4) we can associate with (2.6) the functional �A : H × R → R given

by

�A(u, λ) = 1

2

∫

BN

|∇u(x)|2dx − λ

2

∫

BN

(Au(x), u(x))dx . (2.7)

Note that from (2.5) for every v ∈ H we have

〈∇u�A(u, λ), v〉H = 〈u, v〉H − 〈LλAu, v〉H,

where

〈LλAu, v〉H =
∫

BN

(u(x), v(x)) + (λAu(x), v(x))dx . (2.8)

The existence and boundedness of the operator LλA : H → H follow from the Riesz theorem.
By definition LλA is self-adjoint.

Let us denote by σ(−�; BN ) = {0 = β1 < β2 < . . . < βk < . . .} the set of distinct
eigenvalues of the Laplace operator (with Neumann boundary conditions) on the ball. Write
V−�(βk) for the eigenspace of −� corresponding to βk ∈ σ(−�; BN ). In the “Appendix”
we give a more precise description of these eigenspaces. By the spectral theorem it follows

that H1(BN ) = cl(
⊕∞

k=1
V−�(βk)). Let us denote by Hk the space

⊕m

i=1
V−�(βk). In

particular, u = ∑∞
k=1 uk for every u ∈ H, where uk ∈ Hk .

Let α1, . . . , αm denote the eigenvalues of A (not necessarily distinct) with corresponding
eigenvectors f1, . . . , fm , which form an orthonormal basis of Rm .

Let π j : H → H1(BN ) be the projection such that π j (u)(x) = (u(x), f j ), j = 1, . . . ,m.
Clearly, if uk ∈ Hk, then π j (uk) ∈ V−�(βk) for j = 1, . . . ,m.

In the lemma below we characterise the operator LλA, given by the formula (2.8).

Lemma 2.1 For every u ∈ H

LλAu =
∞∑
k=1

m∑
j=1

1 + λα j

1 + βk
π j (uk) · f j .

The proof of this lemma is standard, see for example the proof of Lemma 3.2 in [9].
Let us denote by σ(L) the spectrum of a linear operator L : H → H. From the above

lemma it immediately follows the corollary:

Corollary 2.2 Let LλA be defined by (2.8). Then:

σ(LλA) =
{

1 + λα j

1 + βk
: α j ∈ σ(A), βk ∈ σ(−�; BN )

}
.

Moreover,

σ(I d − LλA) =
{

βk − λα j

1 + βk
: α j ∈ σ(A), βk ∈ σ(−�; BN )

}
.

Fix eigenvalues α j0 ∈ σ(A) and βk0 ∈ σ(−�; BN ). Let VA(α j0) be the eigenspace
associated with the eigenvalue α j0 and μA(α j0) = dim VA(α j0). Let � j0 : Rm → R

m
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be the orthogonal projection such that � j0(R
m) = VA(α j0) and define �̃ j0 : H → H by

(�̃ j0(u))(x) = � j0(u(x)). Denote

V−�(βk0)
μA(α j0 ) = �̃ j0

⎛
⎝ m⊕

j=1

V−�(βk0)

⎞
⎠ .

It follows that

V−�(βk0)
μA(α j0 ) = span

{
h · f : h ∈ V−�(βk0), f ∈ VA(α j0)

} ⊂ H.

From Lemma 2.1 we obtain:

Corollary 2.3 If σ(λA) ∩ σ(−�; BN ) = {α j1 , . . . , α js }, then

ker(I d − LλA) = V−�(α j1)
μλA(α j1 ) ⊕ · · · ⊕ V−�(α js )

μλA(α js ).

2.2 The notion of bifurcation from the critical orbit

Fix u0 ∈ (∇F)−1(0). Since F is �-invariant, and therefore ∇F is �-equivariant, γ u0 ∈
(∇F)−1(0) for all γ ∈ �, i.e. �(u0) ⊂ (∇F)−1(0). We call such a set a critical orbit of F .

Note that Tu0�(u0) ⊂ ker ∇2F(u0) and therefore dim ker ∇2F(u0) ≥ dim Tu0�(u0) =
dim �(u0). We assume that in this inequality there holds:

dim ker ∇2F(u0) = dim �(u0). (2.9)

We call such an orbit non-degenerate.
By the equivariant Morse lemma, see [31], from (2.9) we conclude that �(u0) is isolated

in (∇F)−1(0).

Since u0 ∈ (∇F)−1(0), the constant function ũ0 ≡ u0 is a solution of the problem (2.1)
for all λ ∈ R. Therefore, (ũ0, λ), and consequently (γ ũ0, λ) for every γ ∈ �, is a critical
point of the functional � given by (2.4). Since from (2.3) we have G(ũ0) = �(ũ0), we obtain
a critical orbit of � and therefore a G-orbit of weak solutions of (2.1) for all λ ∈ R. Hence
we can consider a family of solutions T = G(ũ0) × R ⊂ H × R. We call the elements of T
the trivial solutions of (2.1). Put N = {(v, λ) ∈ (H × R) \ T : ∇v�(v, λ) = 0}.

Definition 2.4 A local bifurcation from the orbit G(ũ0) × {λ0} ⊂ T of solutions of (2.1)
occurs if the point (ũ0, λ0) is an accumulation point of the set N .

Remark 2.5 Note that if (ũ0, λ0) is an accumulation point ofN then for all g ∈ G, (gũ0, λ0) is
also an accumulation point, since H is an orthogonal representation of G. Therefore G(ũ0) ⊂
cl(N ).

Definition 2.6 A global bifurcation from the orbit G(ũ0) × {λ0} ⊂ T of solutions of (2.1)
occurs if there is a connected component C(λ0) of cl(N ), containing G(ũ0)×{λ0}, such that
either C(λ0) ∩ (T \ (G(ũ0) × {λ0})) �= ∅ or C(λ0) is unbounded.

The set of all λ0 ∈ R such that a local (respectively global) bifurcation from the orbit
G(ũ0) × {λ0} occurs we denote by BI F (respectively GLOB). Note that directly from the
above definitions it follows that GLOB ⊂ BI F.

123



Bifurcations from the orbit Page 7 of 23 21

2.3 Admissible pair

The notion of an admissible pair has been introduced in [18].
Fix a compact Lie group G and let H ∈ sub(G). Denote by (H)G the conjugacy class

of H.

Definition 2.7 A pair (G, H) is called admissible, if for any K1, K2 ∈ sub(H) the following
condition is satisfied: if (K1)H �= (K2)H , then (K1)G �= (K2)G .

Lemma 2.8 The pair (� × SO(N ), {e} × SO(N )) is admissible.

Proof Let us denote by H the group {e}×SO(N ) and recall that G = �×SO(N ). Moreover,
let K̃1, K̃2 ∈ sub(H). By definition of H there are K1, K2 ∈ sub(SO(N )) such that K̃1 =
{e}×K1 and K̃2 = {e}×K2. Suppose that (K̃1)G = (K̃2)G , i.e. ({e}×K1)G = ({e}×K2)G .

Therefore there exists (γ, α) ∈ G such that {e}× K1 = (γ, α)({e}× K2)(γ, α)−1 and hence

{e} × K1 = {γ eγ −1} × αK2α
−1 = {e} × αK2α

−1

= (e, α)({e} × K2)(e, α)−1.

Thus (K̃1)H = (K̃2)H and the proof is complete. ��

3 Main results

Consider the nonlinear system (2.1) with a potential F satisfying (B1), (B2). Fix u0 ∈
(∇F)−1(0) such that the orbit �(u0) is non-degenerate. We make two additional assumptions:

(B3) F(u) = 1
2 (Au, u)−(Au0, u)+g(u−u0), where A is a real symmetric (m×m)-matrix

and ∇g(u) = o(|u|) for |u| → 0,
(B4) �u0 = {e}.

From the assumption (B3) we conclude that the gradient of the functional associated with
the Eq. (2.1) has the following form:

∇u�(u, λ) = u − ũ0 − LλA(u − ũ0) + λ∇η(u − ũ0),

where LλA : H → H is an SO(N )-equivariant operator given by (2.8). Moreover, ∇η :
H → H given by 〈∇η(u), v〉H = ∫

BN (∇g(u(x)), v(x))dx is an SO(N )-equivariant operator
such that ∇η(u) = o(‖u‖H) for ‖u‖H → 0.

From the assumption (B4) it follows that Gũ0 = {e} × SO(N ).

3.1 Bifurcation from the critical orbit

Following the standard notation we denote the linear part of ∇u�(·, λ) at ũ0 by ∇2
u�(ũ0, λ)u,

thus ∇2
u�(ũ0, λ)u = u − LλAu.

Let us denote by � the set
⋃

α j∈σ(A)\{0}
⋃

βk∈σ(−�;BN ){ βk
α j

}.
Lemma 3.1 If λ0 ∈ BI F, then λ0 ∈ �.

Proof We first observe that for all λ ∈ R, since G(ũ0) is a critical orbit of �(·, λ), we have
dim ker ∇2

u�(ũ0, λ) ≥ dim(G(ũ0) × {λ}).
Moreover if λ0 ∈ BI F , this inequality is strict. Indeed, if dim ker ∇2

u�(ũ0, λ0) =
dim(G(ũ0) × {λ0}), then by the equivariant implicit function theorem (see Theorem 5.1)
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there exists ε > 0 such that the only solutions of the equation ∇u�(u, λ) = 0 are elements
of G(ũ0) × {λ} for λ ∈ (λ0 − ε, λ0 + ε). From this we obtain λ0 /∈ BI F. Therefore, if
λ0 ∈ BI F,

dim ker ∇2
u�(ũ0, λ0) > dim(G(ũ0) × {λ0}). (3.1)

Since G(ũ0) = �(ũ0), we conclude from (2.9) and (3.1) that dim ker ∇2
u�(ũ0, λ0) >

dim(G(ũ0) × {λ0}) = dim ker ∇2F(u0), i.e. dim ker
(
I d − Lλ0A

)
> dim ker A. Using

Corollary 2.2 we obtain that this condition is satisfied if and only if {(α j , βk) ∈ σ(A) ×
σ(−�; BN ) : βk = λ0α j } �= {(0, 0)}. Therefore there are (α j , βk) ∈ σ(A) \ {0} ×
σ(−�, BN ) such that βk = λ0 · α j , i.e. λ0 ∈ �. ��

Fix λ0 ∈ � and choose ε > 0 such that � ∩ [λ0 − ε, λ0 + ε] = {λ0}. From the definition
of � such a choice is always possible.

Since λ0 ± ε /∈ �, Lemma 3.1 implies that λ0 ± ε /∈ BI F and therefore G(ũ0) ⊂ H is an
isolated critical orbit of the G-invariant functionals �(·, λ0 ± ε) : H → R. From this and the
properties of flows induced by gradient operators, we conclude that G(ũ0) is also an isolated
invariant set (in the sense of the equivariant Conley index theory, see [13]) for the flows
induced by the operators −∇u�(·, λ0 ± ε). Therefore, the indices CIG(G(ũ0),−∇u�(·, λ0

− ε)), CIG(G(ũ0),−∇u�(·, λ0 + ε)) are well-defined. In the following we study when they
are not equal.

Assume that σ(λ0A) ∩ σ(−�; BN ) = {α j1 , . . . , α js }. We consider the conditions:

(C1) λ0 �= 0 and there is i ∈ {1, . . . , s} satisfying dim V−�(α ji ) > 1,
(C2) λ0 �= 0, dim V−�(α ji ) = 1 for every i ∈ {1, . . . , s} and dim ker(I d − Lλ0A) −

dim ker A is an odd number,
(C3) λ0 = 0 and

∑
α∈σ+(A) μA(α) − ∑

α∈σ−(A) μA(α) is odd.

Remark 3.2 Note that we can reformulate conditions (C1)–(C3) in the following way:

(C1’) λ0 �= 0 and there is i ∈ {1, . . . , s} such that V−�(α ji ) is a nontrivial SO(N )-
representation,

(C2’) λ0 �= 0, dim V−�(α ji ) = 1 for every i ∈ {1, . . . , s} and
∑s

i=1 μλ0A(α ji ) − μA(0) is
odd,

(C3’) λ0 = 0 and m − dim ker A is odd.

Indeed,

(1) dim V−�(α ji ) > 1 if and only if V−�(α ji ) is a nontrivial SO(N )-representation, see
Remark 5.11;

(2) since dim V−�(α ji ) = 1, from Corollary 2.3 we obtain dim ker(I d − Lλ0A) =∑s
i=1 μλ0A(α ji );

(3) since
∑

α∈σ+(A) μA(α) + ∑
α∈σ−(A) μA(α) + μA(0) = m, if m − dim ker A is odd,

then so is
∑

α∈σ+(A) μA(α) − ∑
α∈σ−(A) μA(α).

Theorem 3.3 Assume that λ0 ∈ � and one of the conditions (C1)–(C3) is satisfied. Then

CIG(G(ũ0),−∇u�(·, λ0 − ε)) �= CIG(G(ũ0),−∇u�(·, λ0 + ε)).

Proof Denote by H̃ ⊂ H the linear subspace normal to G(ũ0) at ũ0, i.e. H̃ = T⊥
ũ0
G(ũ0) ⊂

H. We start the proof with showing that we can reduce comparing the Conley indices
CIG(G(ũ0),−∇u�(·, λ0 ± ε)) to comparing Euler characteristics of some indices on the
space H̃.
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For n ≥ 1 put Hn = ⊕n
k=1 Hk and

�n = �|Hn×R : Hn × R → R. (3.2)

Note that G(ũ0) = �(ũ0) ⊂ Tũ0�(ũ0)⊕T⊥
ũ0

�(ũ0) ≈ R
m ≈ H1 (by T⊥

ũ0
�(ũ0) we understand

the complement of the space Tũ0�(ũ0) inH1). ThereforeG(ũ0) is a critical orbit of �n(·, λ0±
ε) for n ≥ 1. Note that, from the choice of ε and the definition of �n , this orbit is non-
degenerate.

Since ∇u�(·, λ) is a completely continuous perturbation of the identity for all λ ∈ R,
from the definition of the infinite dimensional equivariant Conley index, see Sect. 5.2, the
assertion of the theorem is equivalent to

C IG(G(ũ0),−∇u�
n(·, λ0 − ε)) �= C IG(G(ũ0),−∇u�

n(·, λ0 + ε))

for n sufficiently large. Obviously, the above inequality is implied by

χG(C IG(G(ũ0),−∇u�
n(·, λ0 − ε))) �= χG(C IG(G(ũ0),−∇u�

n(·, λ0 + ε))). (3.3)

It is known that the G-action on H given by (2.3) defines a Gũ0 -action on H̃. Recall that
Gũ0 = {e} × SO(N ). Hence H̃ is an orthogonal SO(N )-representation.

For n ≥ 1 put H̃n = H
n ∩ H̃ = T⊥

ũ0
�(ũ0) ⊕ ⊕n

k=2 Hk and define �n± = �n(·, λ0 ±
ε)|H̃n : H̃n → R. From this definition the functionals �n± are SO(N )-invariant. Since G(ũ0)

is a non-degenerate critical orbit of �n(·, λ0 ± ε), ũ0 ∈ H̃ is a non-degenerate critical point
of �n±. Hence {ũ0} is an isolated invariant set (in the sense of the Conley index theory) of the
flows generated by −∇�n±.

Note that since Gũ0 = {e} × SO(N ), by Lemma 2.8 the pair (G,Gũ0) is admissible.
Therefore, using Fact 5.6 we obtain that the assertion reduces to

χGũ0
(C IGũ0

({ũ0},−∇�n−)) �= χGũ0
(C IGũ0

({ũ0},−∇�n+))

for n ∈ N sufficiently large. It is easy to see that this inequality is equivalent to

χSO(N )(C ISO(N )({ũ0},−∇�n−)) �= χSO(N )(C ISO(N )({ũ0},−∇�n+)). (3.4)

We proceed to show that there exists n0 ∈ N such that for n ≥ n0

C ISO(N )

({ũ0},−∇�n±
) = C ISO(N )

({ũ0},−∇�
n0±

)
. (3.5)

Let ν ∈ N. For δ > 0 sufficiently small and λ ∈ [λ0 − ε, λ0 + ε] we define
SO(N )-equivariant gradient homotopy H ν

λ : (Dδ(ũ0, H̃
ν)×[0, 1], ∂Dδ(ũ0, H̃

ν)×[0, 1]) →
(H̃ν, H̃ν \ {0}) by

H ν
λ (u, t) = u − ũ0 − LλA(u − ũ0) + tλ0Pν ◦ ∇η(u − ũ0),

where Pν : H̃ → H̃
ν is the orthogonal SO(N )-equivariant projection onto H̃

ν . Note that
from Lemma 2.1 we have Pν ◦ LλA = LλA ◦ Pν and hence this homotopy is well-defined.

Let us denote by ξν
λ : H̃ν → R the SO(N )-invariant potential of H ν

λ (·, 0). It is clear that
∇ξν

λ : H̃ν → H̃
ν is a self-adjoint SO(N )-equivariant linear map and is given by the formula

∇ξν
λ = (I d−LλA)|H̃ν . From the homotopy invariance of the Conley index, see Theorem 5.3,

we obtain

C ISO(N )({ũ0},−∇�ν±) = C ISO(N )({ũ0},−∇ξν
λ0±ε). (3.6)
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Recall that (βk) denotes the sequence of the eigenvalues of the Neumann Laplacian and

note that βk → +∞. Therefore, there exists n0 ∈ N such that the inequalities
βn−(λ0±ε)α j

1+βn
> 0 hold for every n ≥ n0 and α j ∈ σ(A). Hence, by Corollary 2.2, there exists n0 ∈ N

such that m−(∇ξnλ0±ε) = m−(∇ξ
n0
λ0±ε) for every n ≥ n0, where m−(·) is the Morse index.

Since (∇ξnλ0±ε)|H̃n0 = ∇ξ
n0
λ0±ε , the eigenspaces corresponding to the negative eigenvalues of

∇ξnλ0±ε and ∇ξ
n0
λ0±ε are the same SO(N )-representations. Thus, from Theorem 5.2,

C ISO(N )

({ũ0},−∇ξnλ0±ε

) = C ISO(N )

(
{ũ0},−∇ξ

n0
λ0±ε

)
,

which implies (3.5).
To finish the proof of (3.4), and therefore also of the assertion, we will show that

χSO(N )

(
C ISO(N )({ũ0},−∇�

n0+ )
) �= χSO(N )

(
C ISO(N )({ũ0},−∇�

n0− )
)
.

Denote byW(λ) the direct sum of the eigenspaces of I d−LλA (i.e. of ∇ξ
n0
λ ) corresponding

to the negative eigenvalues and by V(λ) the eigenspace corresponding to the zero eigenvalue.
Note that from Corollary 2.2,

W(λ) =
( ⊕

α j∈σ(A)

⊕
βk∈σ(−�;BN )

βk<λα j

V−�(βk)
μA(α j )

)
∩ H̃,

V(λ) =
( ⊕

α j∈σ(A)

⊕
βk∈σ(−�;BN )

βk=λα j

V−�(βk)
μA(α j )

)
∩ H̃.

From Theorem 5.2, C ISO(N )({ũ0},−∇ξ
n0
λ0±ε) are SO(N )-homotopy types of SW(λ0±ε).

Hence, from (3.6),

χSO(N )

(
C ISO(N )({ũ0},−∇�

n0± )
) = χSO(N )

(
SW(λ0±ε)

)
.

(1) Suppose that λ0 > 0 and ε is such that λ0 − ε > 0. Recall that βk ≥ 0 for all βk ∈
σ(−�; BN ). Then W(λ0 +ε) = W(λ0 −ε)⊕V(λ0). If the assumption (C1) is satisfied,
then, by Theorem 5.4 and Remark 5.11, we obtain χSO(N )(SV(λ0)) �= I ∈ U (SO(N )).

Similarly, if (C2) is fulfilled, then V(λ0) is a trivial SO(N )-representation and, from
Corollary 2.2 and the definition of H̃, dim V(λ0) = dim ker(I d − Lλ0A) − dim ker A is
odd. Therefore:

χSO(N )(S
V(λ0)) = (−1)dim V(λ0)χSO(N )

(
SO(N )/SO(N )+

) = −I.

In both cases we have

χSO(N )

(
C ISO(N )({ũ0},−∇�

n0+ )
)

= χSO(N )(S
W(λ0−ε)⊕V(λ0))

= χSO(N )(S
W(λ0−ε)) � χSO(N )(S

V(λ0))

�= χSO(N )(S
W(λ0−ε))

= χSO(N )

(
C ISO(N )({ũ0},−∇�

n0− )
)
.

In the second equality we use the fact that SW(λ0−ε)⊕V(λ0) is SO(N )-homeomorphic
to SW(λ0−ε) ∧ SV(λ0) and the formula for multiplication in U (SO(N )), see (5.1). Then
we use invertibility of χSO(N )(SW(λ0−ε)) in U (SO(N )), see [10].
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(2) Suppose that λ0 < 0. Then W(λ0 − ε) = W(λ0 + ε) ⊕ V(λ0) and hence

χSO(N )

(
C ISO(N )({ũ0},−∇�

n0+ )
) �= χSO(N )

(
C ISO(N )({ũ0},−∇�

n0− )
)
,

as before.
(3) Finally, suppose that λ0 = 0. Then, since

W(±ε) =
⊕

α j∈σ±(A)

V−�(0)μA(α j ),

and therefore W(±ε) are trivial SO(N )-representations,

χSO(N )

(
C ISO(N )({ũ0},−∇�

n0± )
)

= χSO(N )(S
W(±ε))

= (−1)dim W(±ε) · χSO(N )

(
SO(N )/SO(N )+

)
= (−1)dim W(±ε) · I.

Hence, because the assumption (C3) implies that dim W(ε) − dim W(−ε) is odd, we
have

χSO(N )

(
C ISO(N )({ũ0},−∇�

n0+ )
) �= χSO(N )

(
C ISO(N )({ũ0},−∇�

n0− )
)
,

which completes the proof.

��
Remark 3.4 Note that in the proof of Theorem 3.3 we have obtained that there is in fact a
change of the Euler characteristic of the Conley index at G(ũ0) × {λ0}. More precisely, we
have the inequality (3.3), i.e.

χG(C IG(G(ũ0),−∇u�
n(·, λ0 − ε))) �= χG(C IG(G(ũ0),−∇u�

n(·, λ0 + ε))),

where �n is defined by (3.2) and n is sufficiently large.

Now we are in a position to prove one of the main results of our paper, namely the global
bifurcation theorem.

Theorem 3.5 Consider the system (2.1) with the potential F and u0 ∈ ∇F−1(0) satisfying
assumptions (B1)–(B4). Assume that λ0 ∈ � and one of the conditions (C1)–(C3) is satisfied.
Then a global bifurcation of solutions of (2.1) occurs from the orbit G(ũ0) × {λ0}.
Proof Throughout the proof we follow the notation of the proof of Theorem 3.3. Let U ⊂ H

be an open, bounded and G-invariant subset such that ∇u�(·, λ0 ± ε)−1(0) ∩ U = G(ũ0).

From Theorem 5.7 it follows that to prove the assertion it is enough to show

∇G-deg(∇u�(·, λ0 + ε),U) �= ∇G-deg(∇u�(·, λ0 − ε),U),

where ∇G-deg(·, ·) is the degree for equivariant gradient maps, see Sect. 5.3. From the
definition of the degree, see (5.2), it follows that

∇G-deg(∇u�(·, λ0 ± ε),U) = ∇G-deg(∇u�
n0(·, λ0 ± ε),U ∩ H

n0)

for n0 sufficiently large. Note that G(ũ0) ⊂ U ∩H
n0 and hence, by Theorem 5.8, we obtain

∇G-deg(∇u�
n0(·, λ0 ± ε),U ∩ H

n0) = χG
(
C IG(G(ũ0),−∇u�

n0(·, λ0 ± ε))
)
.

Therefore, the assertion follows from Remark 3.4.
��
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Since the global bifurcation implies the local one, as an immediate corollary of the above
theorem we obtain the following:

Corollary 3.6 Consider the system (2.1) with the potential F and u0 ∈ ∇F−1(0) satisfying
assumptions (B1)–(B4). Assume that λ0 ∈ � and one of the conditions (C1)–(C3) is satisfied.
Then a local bifurcation of solutions of (2.1) occurs from the orbit G(ũ0) × {λ0}.
Remark 3.7 The above corollary can be obtained directly from Theorem 3.3. Indeed,
from this theorem it follows that if one of the conditions (C1)–(C3) is satisfied then
CIG(G(ũ0),−∇u�(·, λ0−ε)) �= CIG(G(ũ0),−∇u�(·, λ0+ε)), for sufficiently small ε > 0.

Following for example the idea of the proof of Theorem 2.1 of [26], using the continuation
property of the Conley index, one can prove that the change of the Conley index implies a
local bifurcation of critical orbits.

In Theorem 3.5 we have proved that if the assumption (C3) is satisfied, then 0 ∈ GLOB.
On the other hand, repeating the argument from the proof of this theorem it is easy to show that
if the number

∑
α j∈σ+(A) μA(α j )−∑

α j∈σ−(A) μA(α j ) is even, then the Euler characteristics
χG (C IG(G(ũ0),−∇u�

n0(·, ε)) and χG (C IG(G(ũ0),−∇u�
n0(·,−ε))) are equal. Therefore,

we do not know whether 0 ∈ GLOB. However, under the assumption weaker than (C3) we
can prove the result concerning the local bifurcation.

Theorem 3.8 Consider the system (2.1) with the potential F and u0 ∈ ∇F−1(0) satisfying
assumptions (B1)–(B4). Assume that λ0 = 0 and

∑
α j∈σ+(A) μA(α j ) �= ∑

α j∈σ−(A) μA(α j ).
Then a local bifurcation of solutions of (2.1) occurs from the orbit G(ũ0) × {0}.
Proof Using the notation of the proof of Theorem 3.3, we observe that W(±ε) are trivial
SO(N )-representations. Therefore C ISO(N )({ũ0},−∇�

n0± ) are SO(N )-homotopy types of
Sdim W(±ε). Using information from [18] (namely Theorem 3.1 and the equality (2.11)) and
from [14] (Lemma 1.88) we obtain that C IG(G(ũ0),−∇u�

n0(·,±ε)) are G-homotopy types
of (

G/Gũ0 × Sdim W(±ε)
)

/
(
G/Gũ0 × {∗}) .

From Proposition 1.53 of [14], we obtain that the above is G-homotopy equivalent to

X± =
(
G(ũ0) × Sdim W(±ε)

)
/ (G(ũ0) × {∗}) .

But X+ and X− are different G-homotopy types. Indeed, if X+ and X− are the same G-
homotopy types, then the orbit spaces X+/G and X−/G are the same homotopy types. This
is impossible, since the spaces X±/G are homotopy types of Sdim W(±ε), see [29]. Similarly
as in Remark 3.7 we use the fact, that the change of the Conley indices implies the local
bifurcation. This shows the assertion. ��
3.2 Symmetry breaking

In this section we consider the symmetry breaking problem, i.e. the change of the isotropy
groups of solutions of (2.1) along connected sets. More precisely, we characterise bifurca-
tion orbits of the Eq. (2.1) at which global symmetry breaking phenomena occur. Here and
thereafter we use the notation of Sect. 3.1. Recall that T denotes the set of trivial solutions.

Definition 3.9 We say that a global symmetry breaking phenomenon occurs at the orbit
G(ũ0) × {λ0} if λ0 ∈ GLOB and there exists U ⊂ H × R such that G(ũ0) × {λ0} ⊂ U and
G(u,λ) �= G(ũ0,λ0) for all (u, λ) ∈ (U ∩ (∇u�)−1(0)) \ T .
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Note that since the group G acts trivially on the set of parameters λ, the condition G(u,λ) �=
G(ũ0,λ0) is equivalent to Gu �= Gũ0 . In particular we are interested in studying SO(N )-
symmetries of solutions. We say that the function u satisfying SO(N )u = SO(N ) is radially
symmetric.

Our aim in this section is to prove the following characterisation of global symmetry
breaking phenomena of solutions of (2.1):

Theorem 3.10 Consider the system (2.1) with the potential F and u0 ∈ ∇F−1(0) satisfy-
ing assumptions (B1)–(B4). Fix λ0 ∈ � and suppose that σ(λ0A) ∩ σ(−�; BN ) \ {0} =
{α j1 , . . . , α js } and V−�(α ji )

SO(N ) = {0} for every i = 1, . . . , s. Then the global symmetry
breaking phenomenon occurs at the orbit G(ũ0) × {λ0}.
Note that the assumption V−�(α ji )

SO(N ) = {0} means that there is no radially symmetric
eigenfunction associated with α ji .

To prove this theorem we first verify the following lemma:

Lemma 3.11 Fix λ0 ∈ �. Then there exists U ⊂ H × R such that G(ũ0) × {λ0} ⊂ U and
for all (u, λ) ∈ (U ∩ (∇u�)−1(0)) \ T there exists u ∈ ker ∇2

u�|H⊥
1
(ũ0, λ0) \ {0} such that

Gu ⊂ Gu.

Proof Consider U1 = im ∇2
u�|H⊥

1
(ũ0, λ0) ⊕ H1 and U2 = ker ∇2

u�|H⊥
1
(ũ0, λ0). Note that

H = U1 ⊕ U2 and the spaces U1 and U2 are G-representations. For u ∈ H we put u =
(u1, u2) ∈ U1 ⊕ U2. In particular, since ũ0 ∈ H1, we identify this element with (ũ0, 0) ∈
U1 ⊕ U2.

The equation

∇u�(u, λ) = 0 (3.7)

is equivalent to the system

π1(∇u�(u1, u2, λ)) = 0, (3.8)

π2(∇u�(u1, u2, λ)) = 0, (3.9)

where π1 : H → U1 and π2 : H → U2 are G-equivariant projections. Moreover, since
G(ũ0) ⊂ H1 ⊂ U1,

dim ker ∇2
u�|U1(ũ0, λ0) = dim G(ũ0),

i.e. G(ũ0) is a non-degenerate critical orbit of �(·, λ0)|U1 . Therefore, by the equivariant
implicit function theorem (see Theorem 5.1) applied to the functional � : U1⊕(U2×R) → R,
the point (0, λ0) and the Eq. (3.8), there exist open sets O0 ⊂ U2, Oλ0 ⊂ R such that
0 ∈ O0, λ0 ∈ Oλ0 and a G-equivariant map τ : G(ũ0) × O0 × Oλ0 → U1 such that

(i) τ(u1, 0, λ0) = u1 for u1 ∈ G(ũ0),
(ii) π1(∇u�(τ(u1, u2, λ), u2, λ)) = 0 if u1 ∈ G(ũ0), u2 ∈ O0 and λ ∈ Oλ0 and these

are the only solutions of π1(∇u�(u1, u2, λ)) = 0 near the orbit if u2 ∈ O0 and
λ ∈ Oλ0 .

Hence all the solutions of the Eq. (3.8), and consequently the solutions of (3.9) and (3.7),
can have (in the neighbourhood of the orbit) only the following isotropy groups:

G(τ (u1,u2,λ),u2,λ) = Gτ(u1,u2,λ) ∩ Gu2 ∩ Gλ = Gτ(u1,u2,λ) ∩ Gu2 ⊂ Gu2 .
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Denote this neighbourhood by U . More precisely, U = int (τ (G(ũ0) × O0 × Oλ0)) ×
O0 × Oλ0 . To finish the proof observe that in the case u2 = 0 we have (τ (u1, 0, λ), 0, λ) ∈
U1 ×{0}×R for u1 ∈ G(ũ0), λ ∈ Oλ0 . Considering only the solutions of (3.8) and observing
that such solutions in U1 × {0} × R are the trivial ones, we obtain (τ (u1, 0, λ), 0, λ) ∈ T ,
which completes the proof.

��
Lemma 3.11 generalises a lemma due to Dancer from [4]. Dancer’s result states that if

the kernel of the second derivative of the functional at a bifurcation point does not contain
nonzero radially-symmetric elements, then at a neighbourhood of this point all nontrivial
solutions are not radial. This lemma cannot be applied to prove Theorem 3.10 in the case
dim G(ũ0) > 0, since ker ∇2

u�(ũ0, λ0) contains constant (and therefore radially symmetric)
functions from the space tangent to the orbit.

Proof of Theorem 3.10 Note that by the assumptions of the theorem, from Remark 5.11
it follows that the assumption (C1) is satisfied. Therefore Theorem 3.5 implies that λ0 ∈
GLOB. Moreover, from Corollary 2.3 we have

ker ∇2
u�|H⊥

1
(ũ0, λ0) = ker(I d − Lλ0A) ∩ H

⊥
1

= V−�(α j1)
μλ0 A(α j1 ) ⊕ · · · ⊕ V−�(α js )

μλ0 A(α js ).

Since α j1 , . . . , α js �= 0 are such that V−�(α ji )
SO(N ) = {0} for every i = 1, . . . , s, we

conclude that

ker ∇2
u�|H⊥

1
(ũ0, λ0)

SO(N ) = {0}. (3.10)

Lemma 3.11 yields that there existsU ⊂ H×R such that if ∇u�(u, λ) = 0 and (u, λ) ∈ U\T
then there exists u ∈ ker ∇2

u�|H⊥
1
(ũ0, λ0)\{0} such that Gu ⊂ Gu . Since Gũ0 = {e}×SO(N ),

to prove that Gu �= Gũ0 it suffices to note that the isotropy group of u is not of the form
H × SO(N ), where H ∈ sub(�). Indeed, if Gu = H × SO(N ), then u(α−1x) = u(x) for
every α ∈ SO(N ), x ∈ BN , i.e. SO(N )u = SO(N ) and therefore from (3.10) we obtain
u = 0, which contradicts u ∈ ker ∇2

u�|H⊥
1
(ũ0, λ0) \ {0}. ��

Note that if the assumptions of Theorem 3.10 are satisfied, i.e. ker ∇2
u�|H⊥

1
(ũ0, λ0)

SO(N ) =
{0}, then there is a neighbourhood U of the bifurcation orbit such that all nontrivial solutions
from U are non-radial. In other words, in Theorem 3.10 we obtain a connected family of
orbits of non-radial solutions bifurcating from the set of radial ones.

Remark 3.12 Let λ0 ∈ BI F. By the proof of Lemma 3.11 we deduce that there is a neigh-
bourhood of the orbit G(ũ0) × {λ0} such that all nontrivial solutions of ∇u�(u, λ) = 0 can
have only isotropy groups of the form Gτ(u1,u2,λ) ∩ Gu2 . Note that u1 ∈ G(ũ0) and hence
Gu1 = {e} × SO(N ).

Consider the additional assumption:

ker ∇2
u�|H⊥

1
(ũ0, λ0)

SO(N ) = ker ∇2
u�|H⊥

1
(ũ0, λ0).

Then Gu2 = �u2 × SO(N ). Therefore by the proof of Lemma 3.11, and since a G-equivariant
function τ increases isotropy groups (i.e. G(u1,u2,λ) ⊂ Gτ(u1,u2,λ)), we have

Gu1 ∩ Gu2 = ({e} × SO(N )) ∩ (�u2 × SO(N ))

= {e} × SO(N ) ⊂ Gτ(u1,u2,λ) ∩ Gu2 ,
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i.e. solutions of ∇u�(u, λ) = 0 in the neighbourhood of the orbit G(ũ0)×{λ0} have isotropy
groups of the form H × SO(N ), where H ∈ sub(�). Hence all solutions from the neigh-
bourhood of the orbit are radial.

Remark 3.13 Fix λ0 ∈ � and suppose that σ(λ0A) ∩ σ(−�; BN ) \ {0} = {α j1 , . . . , α js }
are such that α j1 , . . . , α js /∈ A0, where A0 is defined in Sect. 5.4. Then from Remark 5.12
it follows that V−�(α ji )

SO(N ) = {0} and therefore the assumptions of Theorem 3.10 are
satisfied. Hence the global symmetry breaking phenomenon occurs at the orbit G(ũ0)×{λ0}.

4 Examples

In this section we discuss a few examples in order to illustrate the abstract results proved in
the previous section. Using the properties of the eigenspaces of the Laplace operator (with
Neumann boundary conditions) on the ball, we verify assumptions (C1)–(C3). More precisely
we apply the material collected in Sect. 5.4.

Example 1 Consider the system (2.1) for N = 2 with a potential F and u0 ∈ ∇F−1(0)

satisfying assumptions (B1)–(B4). Assume that λ0 ∈ R\{0} and σ(λ0A)∩σ(−�; B2)\{0} =
{α}, where

√
α is not a root of J ′

0(x) = 0 for J0 being the Bessel function of order 0. Following
the notation of Sect. 5.4 it means that α /∈ A0.

In this situation, from Theorem 5.9 and Fact 5.10 the assumption (C1) of Sect. 3 is satisfied.
By Theorem 3.5 we obtain that a global bifurcation occurs from the orbit G(ũ0) × {λ0}.

Moreover, from Remark 5.12 it follows that V−�(α)SO(2) = {0}. Then by Theorem 3.10
the global symmetry breaking occurs at the orbit G(ũ0) × {λ0}.
Example 2 Consider the system (2.1) for N = 2 with the potential F and u0 ∈ ∇F−1(0)

satisfying assumptions (B1)–(B4). Assume that λ0 ∈ R \ {0}, σ (λ0A)∩ σ(−�; B2) \ {0} =
{α1, . . . , αs} and there exists i ∈ {1, . . . , s} such that

√
αi is not a root of J ′

0(x) = 0.

As in Example 1, a global bifurcation occurs from the orbit G(ũ0) × {λ0}. If moreover
αi /∈ A0 for all i ∈ {1, . . . , s}, then the global symmetry breaking occurs at the orbit
G(ũ0) × {λ0}.
Example 3 Consider the system (2.1) for N = 3 with the potential F and u0 ∈ ∇F−1(0)

satisfying assumptions (B1)–(B4). Assume that λ0 ∈ R \ {0}, σ(λ0A) ∩ σ(−�; B3) \ {0} =
{α1, . . . , αs} and there exists i ∈ {1, . . . , s} such that

√
αi is not a solution of the equation:

J ′
1
2
(x) − 1

2x
J 1

2
(x) = 0,

where J 1
2

is the Bessel function of order 1
2 . Therefore αi /∈ A0.

In this situation, since H3
l ⊂ V−�(αi ) for some l > 0 (by Fact 5.10), the assumption (C1)

is satisfied and from Theorem 3.5 we obtain that a global bifurcation occurs from the orbit
G(ũ0) × {λ0}.

Moreover, if αi /∈ A0 for all i ∈ {1, . . . , s}, then from Remark 5.12 we conclude that
V−�(αi )

SO(3) = {0} for all i ∈ {1, . . . , s}. Therefore, by Theorem 3.10 it follows that the
global symmetry breaking occurs at the orbit G(ũ0) × {λ0}.
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Example 4 Consider the system (2.1) with the potential F and u0 ∈ ∇F−1(0) satisfying
assumptions (B1)–(B4). Assume that λ0 ∈ R \ {0} and that σ(λ0A) ∩ σ(−�; BN ) \ {0} =
{α1, . . . , αs}, where

√
αi is a solution of the equation

J ′
N−2

2
(x) − N − 2

2x
J N−2

2
(x) = 0

for every i ∈ {1, . . . , s}.
If there exists i ∈ {1, . . . , s} such that dim V−�(αi ) > 1 then the assumption (C1)

is satisfied and by Theorem 3.5 we obtain that a global bifurcation occurs from the orbit
G(ũ0) × {λ0}.

If dim V−�(αi ) = 1 for all i ∈ {1, . . . , s}, then we assume additionally that∑s
i=1 μλ0A(αi ) − μA(0) is an odd number. In this situation the assumption (C2) is satisfied

and by Theorem 3.5 we obtain that a global bifurcation occurs from the orbit G(ũ0) × {λ0}.
Note that, if dim V−�(αi ) = 1 for all i ∈ {1, . . . , s}, then ker(I d − Lλ0A)SO(N ) =

ker(I d − Lλ0A) (see Remark 5.11(2)). Therefore, from Remark 3.12, we conclude that all
nontrivial solutions at a neighbourhood of G(ũ0) × {λ0} (bifurcating from this orbit) are
radial, i.e. there is no symmetry breaking at the orbit.

Example 5 Consider the system (2.1) with the potential F and u0 ∈ ∇F−1(0) satisfying
assumptions (B1)–(B4). Assume that λ0 = 0.

If m − dim ker A is odd, then the assumption (C3) is satisfied and we obtain a global
bifurcation from the orbit G(ũ0) × {0}. If m − dim ker A > 0, then Theorem 3.8 implies a
local bifurcation from the orbit G(ũ0) × {0}.

As in Example 4, it is easy to see that all nontrivial solutions at a neighbourhood of the
orbit are radial.
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5 Appendix

In the following section, to make the paper self-contained, we collect some classical defini-
tions and facts which we use to prove our main results.

5.1 The equivariant implicit function theorem

Below we reformulate an equivariant version of the implicit function theorem in infinite
dimensional spaces, due to Dancer (see [5], paragraph 3).

Theorem 5.1 Let G be a compact Lie group and suppose that

(i) H1, H2 are Hilbert spaces, which are orthogonal G-representations,
(ii) � : H1 ⊕ H2 → R is a G-invariant functional of class C2,

(iii) there is v0 ∈ H2 such that ∇2
u�(u, v0) is Fredholm for every u ∈ H1, there is u0 ∈ H1

such that ∇u�(u0, v0) = 0 and G(u0) is a non-degenerate critical orbit of �(·, v0).

123

http://creativecommons.org/licenses/by/4.0/


Bifurcations from the orbit Page 17 of 23 21

Then there exist δ > 0 and a continuous G-invariant map τ : G(u0) × Bδ(v0,H2) → H1

such that

(1) τ(u, v0) = u on G(u0),
(2) ∇u�(τ(u, v), v) = 0 if u ∈ G(u0) and v ∈ Bδ(v0,H2) and these are the only solutions

of ∇u�(u, v) = 0 near G(u0) if v ∈ Bδ(v0,H2),
(3) for each v ∈ Bδ(v0,H2), the map u �→ τ(u, v) is one-to-one.

5.2 Equivariant Conley index

In this subsection we collect properties of the equivariant Conley index. For a more detailed
exposition we refer to [2,8] in the finite dimensional case and to [13] for the infinite dimen-
sional case. Note that the Conley index (in the finite dimensional as well as in the infinite
dimensional case) is defined for an arbitrary compact Lie group G. In our paper we use it in
special cases G = G = � × SO(N ) and G = SO(N ).

Let G be a compact Lie group and suppose that � is a G-invariant subset of a finite
dimensional G-representation V. The G-equivariant Conley index of an isolating neighbour-
hood of a (local) flow is defined as the G-homotopy type of a pointed G-space, see [2,8]. If
f : � → V is a G-equivariant map of class C1, then it generates a local G-flow η, such that
η(x0, ·) is the local solution of the problem y′(t) = f (y(t)), y(0) = x0. Moreover, if S is an
isolated invariant set of the flow, then there exists an isolating neighbourhood for this set. To
simplify the notation in the main part of our paper, we denote byC IG(S, f ) the Conley index
of an isolating neighbourhood of the isolated invariant set S of the flow generated by f .

Put SV = D1(0,V)/∂D1(0,V) and denote by [SV]G the G-homotopy type of a pointed
G-space SV. From the definition of the Conley index and the Hartman–Grobman theorem it
follows (see also [26]):

Theorem 5.2 Let f : V → R be a G-invariant map of class C2 and suppose that v0 ∈ V

is such that G(v0) = {v0}, ∇ f (v0) = 0 and det ∇2 f (v0) �= 0. Then C IG({v0},−∇ f ) =
[SV−]G, whereV− is the direct sum of eigenspaces of∇2 f (v0) corresponding to the negative
eigenvalues.

The following theorem is a direct consequence of the Continuation Property of the Conley
index, see [2]:

Theorem 5.3 (Homotopy invariance) Let v0 ∈ V be such that G(v0) = {v0} and suppose
that f ∈ C2(V × [0, 1],R) is G-invariant. If ∇v f (v0, t) = 0 and det ∇2

v f (v0, t) �= 0 for
every t ∈ [0, 1], then

C IG({v0},∇v f (·, 0)) = C IG({v0},∇v f (·, 1)).

The Conley index of a flow generated by a gradient map is the homotopy type of a pointed
finite G-CW-complex, see Proposition 5.6 of [8] for the proof. With a G-homotopy type
of a pointed finite G-CW-complex X one can associate a G-equivariant Euler characteristic
χG(X), which is an element of the Euler ring U (G) with the unit I = χG(G/G+). The
actions in U (G) are defined by

χG(X) + χG(Y ) = χG(X ∨ Y ),

χG(X) � χG(Y ) = χG(X ∧ Y ),
(5.1)

where X ∨ Y is the wedge sum and X ∧ Y is the smash product of pointed finite
G-CW-complexes X, Y . It is known that (U (G),+) is a free abelian group with basis
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χG(G/H+), (H)G ∈ sub[G] (by sub[G] we denote the set of conjugacy classes (H)G
of closed subgroups of the group G). A more detailed exposition of this theory can be found
for example in [28,29].

The following theorem is an immediate consequence of Lemma 3.4 of [6]:

Theorem 5.4 If the group G is connected and V is a nontrivial G-representation, then
χG(SV) �= I ∈ U (G).

Consider the potential ϕ : V × R → R and assume that for λ−, λ+ ∈ R the critical
orbit G(ũ0) of ϕ(·, λ±) is non-degenerate. In Sect. 3 we compare equivariant Conley indices
C IG(G(ũ0),−∇ϕ(·, λ±)). Following the method introduced in [18], we want to reduce this
problem to comparing the Euler characteristics of the Conley indices of potentials restricted
to the space orthogonal to the orbit. This method bases on the relation between Conley indices
obtained with the use of the smash product over Gũ0 . To make our paper self-contained, we
recall the relevant material.

Let H ∈ sub(G) and X be a pointed H -space with a base point ∗. Denote by G+ the
group G with disjoint base point added. The smash product of G+ and X is defined by
G+ ∧X = (G+ ×X)/(G+ ∨X) = G ×X/G × {∗}. The space G+ ∧X is an H -space with
an action given by (h, [g, x]) �→ [gh−1, hx]. The orbit space of this action is called the smash
product over H and denoted by G+∧H X, see [29]. Note that formula (g′, [g, x]) �→ [g′g, x]
induces a G-action on G+ ∧H X and therefore this is a pointed G-space.

Theorem 5.5 (Theorem 3.1 of [18]) Let � be an open, G-invariant subset of V. Let
ϕ ∈ C2(�,R) be a G-invariant map and ũ0 ∈ �. Suppose that the orbit G(ũ0) ⊂
(∇ϕ)−1(0) is non-degenerate. Define φ = ϕ|T⊥

ũ0
G(ũ0). Then C IG(G(ũ0),−∇ϕ) = G+ ∧H

C IH ({ũ0},−∇φ), where H = Gũ0 .

It is known that if the pair (G, H) is admissible, then coordinates of the Euler char-
acteristics of the H -CW-complex X and the G-CW-complex G ∧H X coincide. More
precisely, Theorem 2.3 of [18] states that if χH (X) = ∑

(K )H∈sub[H ] nK · χH (H/K+),

then χG(G+ ∧H X) = ∑
(K )H∈sub[H ] nK ·χG(G/K+). From this relation and Theorem 5.5,

we obtain the following fact:

Fact 5.6 Let � ⊂ V be an open and G-invariant subset and ϕ ∈ C2(� × R,R) be G-
invariant. Moreover, let λ−, λ+ ∈ R and G(ũ0) ⊂ (∇uϕ(·, λ±))−1(0) be a non-degenerate
critical orbit. Set φ = ϕ|T⊥

ũ0
G(ũ0). If the pair (G,Gũ0) is admissible and

χGũ0
(C IGũ0

({ũ0},−∇uφ(·, λ−)) �= χGũ0
(C IGũ0

({ũ0},−∇uφ(·, λ+))

then

χG(C IG(G(ũ0),−∇uϕ(·, λ−))) �= χG(C IG(G(ũ0),−∇uϕ(·, λ+))).

In the following we briefly describe the infinite dimensional version of the G-equivariant
Conley index of an isolated invariant set of a (local) G-LS-flow. This index is defined as a
G-homotopy type of a G-equivariant spectrum, see [13]. Below we recall this definition in
a special case. Namely, since in our computation we use the G-equivariant gradient maps
of the form of a completely continuous perturbation of the identity, we consider only flows
generated by such maps.

We start with a definition of a G-spectrum. Fix a sequence ξ = (Vn)
∞
n=0 of finite-

dimensional orthogonal G-representations. A pair of sequences:

E =
(
(En)∞n=n(E), (εn)

∞
n=n(E)

)
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of finite pointed G-CW-complexes En and morphisms εn : SVn ∧ En → En+1 is called a
G-spectrum if there exists n0 > n(E) such that εn is a G-homotopy equivalence for all
n ≥ n0.

Let H be an infinite-dimensional, separable Hilbert space, which is an orthogonal G-
representation. Assume that H = cl(

⊕∞
n=0 Hn), where all subspaces Hn are disjoint finite-

dimensional G-representations and put Hn = ⊕n
k=0 Hk . Let ξ ∈ C1(H,R) be a G-invariant

functional such that ∇ξ : H → H is a completely continuous, G-equivariant operator. Put
f = I d − ∇ξ.

Denote by τn : H → H
n the G-equivariant orthogonal projection. Define fn : Hn → H

n

by setting fn(u) = u − τn(∇ξ(u)) for any u ∈ H
n . It is known (see [13]) that if X is an

isolating neighbourhood for the flow generated by f , then Xn = X ∩ H
n is an isolating

neighbourhood for the flow generated by fn , for n sufficiently large. It follows that Xn

admits an index pair (Yn, Zn) with respect to the flow generated by fn , and consequently,
C IG(Xn, fn) = [Yn/Zn]G . From the continuation property of the Conley index, the sequence
(En)∞n=n0

= (Yn/Zn)
∞
n=n0

uniquely determines the G-homotopy type of a spectrum. The G-
equivariant Conley index of X with respect to the flow generated by f , denoted byCIG(X, f ),
is defined as this G-homotopy type.

As in the finite dimensional case, we use the simplified notation CIG(S, f ) for the Conley
index of an isolating neighbourhood of the isolated invariant set S of the flow generated by
f .

5.3 The degree for equivariant gradient maps

In this subsection we recall the definition and basic properties of the degree for G-equivariant
gradient maps of the form of a completely continuous perturbation of the identity, denoted by
∇G - deg(·, ·), defined by Rybicki [22]. This degree is an element of the Euler ringU (G). LetH
be an infinite-dimensional, separable Hilbert space which is an orthogonal G-representation.
We keep the notation of the previous section, namely we consider finite dimensional subrep-
resentations Hn of H and the projections τn : H → H

n .
Assume that � ⊂ H is an open, bounded and G-invariant subset and ξ ∈ C1(H,R) is a

G-invariant map such that

(1) ∇ξ : H → H is a completely continuous, G-equivariant operator,
(2) 0 /∈ (I d − ∇ξ)−1(∂�).

The degree of Rybicki is defined with the use of the degree for finite dimensional equiv-
ariant gradient maps introduced by Gęba [8], also being an element of the Euler ring U (G).
For simplicity of notation, we use the same symbol ∇G - deg(·, ·) for both degrees.

Restricting I d − ∇ξ to H
n , one can study Gęba’s degree of these restrictions. It appears

(see [22]) that it stabilises for n sufficiently large, i.e. there is n0 such that

∇G - deg(τn(I d − ∇ξ),� ∩ H
n) = ∇G - deg(τn0(I d − ∇ξ),� ∩ H

n0)

for every n ≥ n0.
Using this equality one can define the degree for infinite dimensional equivariant gradient

maps. More precisely, fix n0 as in the above lemma and define the degree for G-equivariant
gradient maps of I d − ∇ξ on � by

∇G - deg(I d − ∇ξ,�) = ∇G - deg(τn0(I d − ∇ξ),� ∩ H
n0). (5.2)

A possible application of this degree is studying phenomena of global bifurcations and,
in particular, an equivariant version of the Rabinowitz alternative. Let us make this more
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precise. Consider a family of G-invariant functionals � ∈ C2(H × R,R) and suppose that
there is u0 ∈ H such that ∇u�(u0, λ) = 0 for every λ ∈ H. The invariance of � implies that
G(u0) ⊂ (∇u�(·, λ))−1(0) for every λ ∈ H. We call the elements of G(u0) × R the trivial
solutions of ∇u�(u, λ) = 0.

Assume additionally that ∇u�(u, λ) = u − ∇uζ(u, λ), where ∇uζ : H × R → H is a
completely continuous, G-equivariant operator. Consider λ0 ∈ R such that the orbit G(u0)

is degenerate in (∇u�(·, λ0))
−1(0). Suppose that there is ε > 0 such that G(u0) is non-

degenerate in (∇u�(·, λ))−1(0) for every λ ∈ [λ0 − ε, λ0 + ε] \ {λ0}. Fix a G-invariant
open set � ⊂ H such that (∇u�(·, λ0 ± ε))−1(0) ∩ � = G(u0). Below we formulate an
equivariant version of the Rabinowitz alternative.

Theorem 5.7 If ∇G- deg(∇u�(·, λ0 − ε),�) �= ∇G- deg(∇u�(·, λ0 + ε),�), then there is
a connected component C(λ0) of cl{(v, λ) ∈ (H × R) \ (G(u0) × R) : ∇u�(u, λ) = 0},
containing G(u0) × {λ0}, such that either C(λ0) ∩ (G(u0) × (R \ {λ0})) �= ∅ or C(λ0) is
unbounded. This means that a global bifurcation of solutions of ∇u�(u, λ) = 0 occurs from
the orbit G(u0) × {λ0}.

The proof of this theorem is standard. It is enough to replace in the classical proof (see [3,19,
20]) the Leray–Schauder degree by the degree for equivariant gradient operators. Equivariant
versions have been formulated in [22] (Theorem 4.9) and [10] (Theorem 3.3). A version for
bifurcations from an orbit in finite dimensional representations has been proved in [16]
(Theorem 3.4).

Now we turn our attention to relations between the degree theory and the theory of the
Conley index. For the Gęba’s degree and the Conley index for equivariant maps defined on
finite dimensional representations such a relation has been obtained by Gęba [8] (see also
Corollary 1 in [11]). We recall it in the following theorem:

Theorem 5.8 Let V be a finite dimensional G-representation and ϕ ∈ C2(V,R) a G-
invariant map such that G(u0) ⊂ (∇ϕ)−1(0) for some u0 ∈ V. Assume that the orbit G(u0)

is non-degenerate and fix � ⊂ V such that (∇ϕ)−1(0) ∩ � = G(u0). Then

∇G- deg(∇ϕ,�) = χG (C IG(G(u0),−∇ϕ)) .

5.4 Eigenspaces of the Laplace operator

In this subsection we introduce basic properties of the eigenspaces of the Laplace operator
(with Neumann boundary conditions) on the ball. More precisely, we study the problem:

{−�u = βu in BN

∂u
∂ν

= 0 on SN−1.
(5.3)

These properties are known, but it is difficult to find a reference in the literature, except for
the case N = 2, 3, see for example [1,17]. To make our article self-contained, we sketch
here the general case.

LetHN
l denote the linear space of harmonic, homogeneous polynomials of N independent

variables, of degree l, restricted to the sphere SN−1.

Theorem 5.9 The spacesHN
l are irreducible representations of the group SO(N ). Further-

more, if l ≥ 1 then HN
l is a nontrivial representation of SO(N ) and for l = 0 it is a trivial

one. Moreover,
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dim HN
l =

⎧⎨
⎩

1 if N = 2, l = 0
2 if N = 2, l ≥ 1
(2l + N − 2)

(N−3+l)!
l!(N−2)! if N ≥ 3, l ≥ 0.

For the proof of the irreducibility of the spaces HN
l we refer the reader to [12] (Theorem

5.1). The proof of the latter part of the theorem can be found in [25] (Theorem 4.1).
To find eigenspaces of the Eq. (5.3) we write the Laplacian in polar coordinates r ≥ 0,

ϕ = (ϕ1, . . . , ϕN ), 0 ≤ ϕi < π for i = 1, . . . , N − 1, 0 ≤ ϕN < 2π :

�u = r1−N ∂

∂r

(
r N−1 ∂u

∂r

)
+ 1

r2 �SN−1u,

where �SN−1 is the Laplace–Beltrami operator on SN−1. Applying a standard separation of
variables u(ϕ, r) = v(ϕ) · f (r) to (5.3), we obtain the system

−�SN−1v(ϕ) = μv(ϕ) on SN−1, (5.4)

r2 f ′′(r) + (N − 1)r f ′(r) + (
βr2 − μ

)
f (r) = 0 on (0, 1), (5.5)

| f (0)| < ∞, (5.6)

f ′(1) = 0. (5.7)

The Eq. (5.4) has solutions only if μ is an eigenvalue of −�SN−1 , i.e. μ = μl := l(l+N−2),
l = 0, 1, . . ., with associated eigenspaces equalHN

l , see [25]. Substituting μ = μl , ρ = √
βr

and f (r) = g(ρ)/ρ
N−2

2 into (5.5), we get the Bessel equation of order l + N−2
2 :

ρ2g′′(ρ) + ρg′(ρ) +
(

ρ2 −
(
l + N − 2

2

)2
)
g(ρ) = 0 on (0,

√
β).

Using (5.6) we obtain that the solution of this equation is g(ρ) = Cl Jl+ N−2
2

(ρ), whereCl ∈ R

and Jl+ N−2
2

is the Bessel function of the first kind of order l + N−2
2 .

Since we are interested only in solutions satisfying (5.7), taking into consideration that

f ′(r) = √
β(

√
βr)1− N

2

(
g′(

√
βr) − N−2

2
√

βr
g(

√
βr)

)
, we obtain that

√
β satisfies the equa-

tion:

J ′
l+ N−2

2
(x) − N − 2

2x
Jl+ N−2

2
(x) = 0. (5.8)

For m ∈ N we denote by xlm the m-th solution of (5.8) in (0,∞). Put x00 = 0 and Al =
{βlm = x2

lm}∞m=1 for l > 0 and A0 = {β0m = x2
0m}∞m=0.

Fact 5.10 From the above considerations:

(1) σ(−�; BN ) is the union of the sets Al ,
(2) if β ∈ Al , then HN

l ⊂ V−�(β), i.e. HN
l is SO(N )-equivalent to a subspace of

V−�(β). For β ∈ σ(−�; BN ) we have V−�(β) ≈SO(N )

⊕
l∈{l≥0 : β∈Al }

HN
l (by

≈SO(N ) we denote the equivalence relation of SO(N )-representations).

Remark 5.11 Since from Theorem 5.9 we have dim HN
0 = 1 and dim HN

l > 1 for l ≥ 1, it
follows that for β ∈ σ(−�; BN ):

(1) if dim V−�(β) > 1, then there exists l > 0 such that HN
l ⊂ V−�(β) and thus

V−�(β) is a nontrivial SO(N )-representation,
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(2) if dim V−�(β) = 1, then V−�(β) ≈SO(N ) HN
0 and therefore it is a trivial represen-

tation of SO(N ).

Remark 5.12 From Theorem 5.9 we obtain that if β ∈ σ(−�; BN ) and β /∈ A0, then
V−�(β)SO(N ) = {0}.

To illustrate the above description of the eigenspaces, we will look more closely at the
cases N = 2, 3.

Suppose that N = 2. Then, for l ∈ N ∪ {0}, the Eq. (5.8) is of the form J ′
l (x) = 0 and

therefore xlm is the m-th solution of J ′
l (x) = 0 in (0,∞) and x00 = 0.

Fact 5.13 Under the above notation, σ(−�; B2) = ⋃∞
l=0 Al = {βlm = x2

lm}∞l=1,m=1 ∪
{β0m = x2

0m}∞m=0 with corresponding eigenvectors given by

(1) v1
lm(r, φ) = Jl(xlmr) cos lϕ and v2

lm(r, φ) = Jl(xlmr) sin lϕ forβlm in the case l > 0,

(2) v0m(r, φ) = J0(x0mr) for β0m in the case l = 0.

Note that from the above fact it follows that H2
l ≈SO(2) span{v1

lm, v2
lm} for l > 0 and

H2
0 ≈SO(2) span{v0m}.

Corollary 5.14 Let β ∈ σ(−�; B2), then

(1) If β ∈ Al for l > 0, i.e. β = βlm for given l,m > 0, then V−�(β) is a nontrivial
SO(2)-representation. Moreover, if dim V−�(β) is even, then V−�(β)SO(2) = {0}
and if dim V−�(β) is odd, then V−�(β)SO(2) ≈SO(2) H2

0.
(2) If β ∈ A0, i.e. β = β0m for a givenm ∈ N, then dim V−�(β) is an odd number.More-

over, if dim V−�(β) = 1, thenV−�(β) ≈SO(2) H2
0 is a trivial SO(2)-representation.

Suppose now that N = 3. Then, for l ∈ N ∪ {0}, the equation (5.8) is of the form
J ′
l+ 1

2
(x) − 1

2x Jl+ 1
2
(x) = 0 and therefore xlm is the m-th solution of this equation in (0,∞)

and x00 = 0.

Fact 5.15 Under the above notation, σ(−�; B3) = ⋃∞
l=0 Al = {βlm = x2

lm}∞l=1,m=1 ∪
{β0m = x2

0m}∞m=0 with corresponding eigenvectors:

(1) For βlm in the case l > 0:

v1
kml(r, ϕ1, ϕ2) = 1√

r
Jl+ 1

2
(xlmr)Plk(cos ϕ1) sin kϕ2,

v2
kml(r, ϕ1, ϕ2) = 1√

r
Jl+ 1

2
(xlmr)Plk(cos ϕ1) cos kϕ2,

v0ml(r, ϕ1, ϕ2) = Jl+ 1
2
(xlmr)Pl(cos ϕ1),

where k = 1, . . . , l and Plk , Pl are Legendre functions,
(2) For β0m: v0m0(r, ϕ1, ϕ2) = J 1

2
(x0mr).

From the above fact it follows that H3
l ≈SO(3) span{v0ml , v

1
1ml , v

2
1ml , . . . v

1
lml , v

2
lml} for

l > 0 and H3
0 ≈SO(3) span{v0m0}.

The description of HN
l in the general case can be found in [30] (Chapter IX).
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