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Abstract For a sequence of approximate harmonic maps (un, vn) (meaning that they satisfy
the harmonic system up to controlled error terms) from a compact Riemann surface with
smooth boundary to a standard static Lorentzian manifold with bounded energy, we prove
that identities for the Lorentzian energy hold during the blow-up process. In particular, in the
special case where the Lorentzian target metric is of the form gN −βdt2 for some Riemannian
metric gN and some positive function β on N , we prove that such identities also hold for the
positive energy (obtained by changing the sign of the negative part of the Lorentzian energy)
and there is no neck between the limit map and the bubbles. As an application, we complete
the blow-up picture of singularities for a harmonic map flow into a standard static Lorentzian
manifold. We prove that the energy identities of the flow hold at both finite and infinite
singular times. Moreover, the no neck property of the flow at infinite singular time is true.
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1 Introduction

Harmonic maps constitute one of the fundamental objects in the field of geometric analysis.
When the domain is two-dimensional, particularly interesting features arise. The conformal
invariance of the energy functional leads to non-compactness of the set of harmonic maps in
dimension two, and the blow-up behavior has been studied extensively in [5,13,20,23,24,27]
for the interior case and [10,15,16] for the boundary case. Roughly speaking, the energy
identities for harmonic maps tell us that, during the weak convergence of a sequence of
harmonic maps, the loss of energy is concentrated at finitely many points and can be quantized
by a sum of energies of harmonic spheres and harmonic disks. Also for many other elliptic
and parabolic nonlinear variational problems arising in geometry and physics, such as J-
holomorphic curves or Yang–Mills fields, to understand the convergence properties of a
sequence and the emergence of singularities is of special importance.

In physics, harmonic maps arise as a mathematical representation of the nonlinear sigma
model and this leads to several generalizations. For example, motivated by the supersym-
metric sigma model, Dirac harmonic maps where a map is coupled with a spinor field have
been extensively studied. One can refer to [4,14,31] and the references therein. From the
perspective of general relativity, it is also natural to generalize the target of a harmonic map
to a Lorentzian manifold. Recent work on minimal surfaces in anti-de-Sitter space and their
applications in theoretical physics (see e.g. Alday and Maldacena [1]) shows the importance
of this extension. Geometrically, the link between harmonic maps into S

4
1 and the conformal

Gauss maps of Willmore surfaces in S
3 [3] also naturally leads to such harmonic maps.

Thus, in this paper, we investigate harmonic maps from Riemann surfaces into Lorentzian
manifolds. In order to gain some special structure, we consider a Lorentzian manifold N ×R

that is equipped with a warped product metric of the form

g = gN − β(dθ + ω)2, (1.1)

where (R, dθ2) is the 1-dimensional Euclidean space, (N , gN ) is an n-dimensional compact
Riemannian manifold which by Nash’s theorem can be isometrically embedded into some
R

K , β is a positive C∞ function on N and ω is a smooth 1-form on N . Since N is compact,
β and ω are both bounded on N . We suppose for any p ∈ N ,

0 < λ1 < β(p) < λ2, |ω(p)| + |∇ω(p)| + |∇β(p)| ≤ λ2.

A Lorentzian manifold with a metric of the form (1.1) is called a standard static manifold.
For more details on such manifolds, we refer to [17,22].

Let (M, h) be a compact Riemann surface with smooth boundary ∂M . For a map (u, v) ∈
C2(M, N × R) with fixed boundary data (u, v)|∂M = (φ, ψ), we define the functional

Eg(u, v) = 1

2

∫
M

{
|∇u|2 − β(u)|∇v + ωi (u)∇ui |2

}
dvh, (1.2)

which is called the Lorentzian energy of the map (u, v) on M . Critical points (u, v) in
C2(M, N × R) of the functional (1.2) are called Lorentzian harmonic maps from (M, h)

into the Lorentzian manifold (N × R, g). Besides the Lorentzian energy Eg(u, v), we also
consider

E(u) = 1

2

∫
M

|∇u|2dvh and E(u, v) = 1

2

∫
M

{|∇u|2 + |∇v|2} dvh (1.3)

and call it the positive energy of u and (u, v) on M respectively. It is obvious that both the
Lorentzian and positive energy functionals are conformally invariant when dim M = 2.
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Zhu [32] has derived the Euler–Lagrange equations for (1.2),

	u + A(u)(∇u,∇u) − H� = 0 in M, (1.4)

div
(
β(u)(∇v + ωi∇ui )

)
= 0 in M (1.5)

with the boundary data

(u, v)|∂M = (φ, ψ) ∈ C2+α(∂M, N × R) (1.6)

for some α ∈ (0, 1). Here A is the second fundamental form of N inRK , H� is the tangential
part of H = (H1, . . . , HK ) along the map (u, v) with

H j := β(∇v + ωi∇ui ) · ∇uk
(

∂ω j

∂yk
− ∂ωk

∂y j

)
− 1

2

∂β

∂y j
|∇v + ωi∇ui |2 , j = 1, . . . , K .

Let us now recall some related results. The existence of geodesics in Lorentzian manifolds
was studied in [2]. Variational methods for such harmonic maps were developed in [6,7].
Recently, [8] studied the corresponding heat flow under the assumption that ω ≡ 0 and proved
the existence of a Lorentzian harmonic map in any given homotopic class under either some
geometric conditions on N or a small energy condition of the initial maps. The regularity
theory of Lorentzian harmonic maps was studied in [11,12,19,32].

In [9], the authors proved identities of the Lorentzian energy for a blow-up sequence
of Lorentzian harmonic maps when M is a compact Riemann surface without boundary.
They showed the tangential Lorentzian energy of the sequence in the neck region has no
concentration by comparing the energy with piece-wise linear functions (i.e. geodesics).
Then they used the Hopf differentials to control the radial Lorentzian energy.

In any case, the analysis of Lorentzian harmonic maps is more difficult than that of standard
(Riemannian) harmonic maps, because one cannot no longer use positivity properties of the
target metric. This is a technical reason why we restrict ourselves to standard static Lorentzian
manifolds.

In this paper, we shall prove some energy identities of an approximate Lorentzian harmonic
map sequence and get the no neck property during a blow-up process when M is a compact
Riemann surface with boundary. We work with approximate sequences which means that
we allow for error terms in the Lorentzian harmonic maps system. The reason is that this
has a direct application in studying the singularities of the parabolic version, the Lorentzian
harmonic map flow (see [8]). Moreover, since we assume that the domain M is a manifold
with boundary, blow-up analysis on the boundary must be included in our case. Here, we will
use the method of integrating by parts (cf. [20] for harmonic maps) to prove a Pohozaev type
identity instead of using the Hopf differential. The Pohozaev identity method is more general
and powerful than the Hopf differential method. We first prove identities for the Lorentzian
energy for a blow-up sequence of approximate Lorentzian harmonic maps. Furthermore, for
the special case ω ≡ 0, we show that also such identities for the positive energy and no neck
properties hold.

Throughout this paper, we call a map into N × R a Lorentzian map and when we have a
map into the Riemannian manifold N , we just call it a map. We first give the definition of an
approximate Lorentzian harmonic map.

Definition 1.1 (u, v) ∈ W 2,2(M, N × R) is called an approximate Lorentzian harmonic
map with Dirichlet boundary data (φ, ψ), if there exist fields (τ (u, v), κ(u, v)) ∈ L1(M)

such that (u, v) satisfies
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	u + A(u)(∇u,∇u) − H� = τ(u, v) in M, (1.7)

div
(
β(u)(∇v + ωi∇ui )

)
= κ(u, v) in M (1.8)

with the boundary condition (u, v)|∂M = (φ, ψ).

Now we can present our first main result.

Theorem 1.1 Let (un, vn) ∈ W 2,2(M, N×R) be a sequence of approximate harmonicmaps
with Dirichlet boundary (un, vn)|∂M = (φ, ψ) ∈ C2+α(∂M, N × R) satisfying

E(un, vn) + ‖(τn, κn)‖L2(M) ≤  < ∞,

where‖(τn, κn)‖2
L2(M)

= ‖τn‖2
L2(M)

+‖κn‖2
L2(M)

. After takinga subsequence, still denoted by

{un, vn}, we canfindafinite setS = {p1, . . . , pI }anda limitmap (u0, v0) ∈ W 1,2(M, N×R)

with Dirichlet boundary data (u0, v0)|∂M = (φ, ψ) such that {(un, vn)} converges weakly in
W 2,2

loc (M \ S) to (u0, v0). Moreover, there are finitely many nontrivial Lorentzian harmonic
spheres (σ l

i , ξ
l
i ) : S2 → N ×R and nontrivial Lorentzian harmonic maps (σ k

i , ξ ki ) : R2+ :=
{(x1, x2) ∈ R

2|x2 ≥ 0} → N × R with constant boundary values, where i = 1, . . . , I ,
l = 1, . . . , li and k = 1, . . . , ki with li , ki ≥ 0 and li + ki ≥ 1, such that

lim
n→∞ Eg(un, vn) = Eg(u0, v0) +

I∑
i=1

li∑
l=1

Eg(σ
l
i , ξ

l
i ) +

I∑
i=1

ki∑
k=1

Eg(σ
k
i , ξ ki ). (1.9)

Here and in the sequel, “finite” includes “possibly empty”, that is, singularities need not
always arise. Since this is obvious, it will not be explicitly mentioned.

When ω ≡ 0, the equations for Lorentzian harmonic maps become

	u + A(u)(∇u,∇u) − B�(u)|∇v|2 = 0 in M, (1.10)

div(β(u)∇v) = 0 in M (1.11)

where B(u) := (B1, B2, . . . , BK ) with

B j := −1

2

∂β(u)

∂y j

and B� is the tangential part of B along the map u. In this case, the blow-up behavior is
simpler. We show that the identities for the positive energy hold and there is no neck during
the process.

Theorem 1.2 If we additionally assume ω ≡ 0 in Theorem 1.1, there cannot emerge any
Lorentzian harmonic maps (σ k

i , ξ ki ) : R2+ := {(x1, x2) ∈ R
2|x2 ≥ 0} → N × R during the

blow-up process [i.e. ki = 0 in (1.9)]. Moreover, the components ξ li of the maps (σ l
i , ξ

l
i ) are

constant and σ l
i : S2 → N, 1 ≤ l ≤ li are nontrivial harmonic spheres. In this case, (1.9)

becomes

lim
n→∞ E(un) = E(u0) +

I∑
i=1

li∑
l=1

E(σ l
i ), (1.12)

lim
n→∞ E(vn) = E(v0). (1.13)

and the image u0(M) ∪I
i=1 ∪li

l=1(σ
l
i (S

2)) is a connected set in N.
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As an application of Theorem 1.2, we consider a harmonic map heat flow{
∂t u = 	u + A(u)(∇u,∇u) − B�(u)|∇v|2, in M × [0, T )

−div(β(u)∇v) = 0, in M × [0, T )
(1.14)

with the boundary-initial data
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, t) = φ0(x) on M × {t = 0},
u(x, t) = φ(x), on ∂M × {t > 0},
v(x, t) = ψ(x), on ∂M × {t > 0},
φ0(x) = φ(x) on ∂M.

(1.15)

This kind of harmonic map heat flow is a parabolic-elliptic system and was first studied in [8].
We proved the problem (1.14) and (1.15) admits a unique solution (u, v) ∈ V(MT1

0 ; N ×R)

(see the notation at the end of this section), where T1 is the first singular time and some
bubbles (nontrivial harmonic spheres) split off at t = T1. In this paper, we complete the
blow-up picture at the singularities of this flow. First, we have

Theorem 1.3 Suppose the problem (1.14) and (1.15) admits a unique global solution
(u, v) ∈ V(M∞

0 ; N ×R)which blows up at infinity, i.e. T1 = ∞. By choosing some tn → ∞,
there exist a smooth Lorentzian harmonic map (u∞, v∞) : M → N ×R with boundary data
(u∞, v∞)|∂M = (φ, ψ) and finitely many harmonic spheres {σ i }Li=1 : R2 ∪ {∞} → N such
that

lim
n→∞ E(u(tn); M) = E(u∞, M) +

L∑
i=1

E(σ i ), (1.16)

lim
t→∞ Eg(u(t), v(t); M) = Eg(u∞, v∞; M) +

L∑
i=1

E(σ i ). (1.17)

Furthermore, there exist sequences {xin}Li=1 ⊂ M and {r in}Li=1 ⊂ R+ such that

lim
n→∞ ‖u(·, tn) − u∞(·) −

L∑
i=1

σ i
n(·)‖L∞(M) = 0, (1.18)

where σ i
n(·) = σ i

( ·−xin
r in

)
− σi (∞).

When the flow blows up at finite time, we have

Theorem 1.4 Let (u, v) ∈ V(MT1
0 ; N×R) be a solution to (1.14) and (1.15)with T1 < ∞ as

its first singular time. Then there exist finitely many harmonic spheres {σ i }Li=1 : R2 ∪{∞} →
N such that

lim
t↗T1

E(u(t); M) = E(u(T1), M) +
L∑

i=1

E(σ i ), (1.19)

lim
t↗T1

Eg(u(t), v(t); M) = Eg(u(T1), v(T1); M) +
L∑

i=1

E(σ i ), (1.20)

where (u(T1), v(T1)) is the weak limit of (u(t), v(t)) in W 1,2(M) as t → T1.
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The paper is organized as follows. In Sect. 2, we derive some basic lemmas including
the small energy regularity, a Pohozaev type identity and a removable singularity result. In
Sect. 3, we prove the energy identities and no neck property for a sequence of approximate
Lorentzian harmonic maps (Theorems 1.1, 1.2). In Sect. 4, we apply these two results to
the harmonic map heat flow and prove Theorems 1.3 and 1.4. Throughout this paper, we
use C to denote a universal constant and denote D1(0) := {(x, y) ∈ R

2||x |2 + |y|2 ≤ 1},
D+

1 (0) := {(x, y) ∈ R
2||x |2 + |y|2 ≤ 1, y ≥ 0}, ∂0D+

1 (0) := {(x, y) ∈ D+
1 (0)|y = 0} and

∂+D+
1 (0) := {(x, y) ∈ ∂D+

1 (0)|y > 0}.
Notation We denote

V(Mt
s ; N × R) := {

(u, v) : M × [s, t) → N × R, v ∈ L∞([s, t);C2+α(M)),

v,∇v ∈ ∩s<ρ<tC
α,α/2(M × [s, ρ]),

u ∈ ∩s<ρ<tC
2+α,1+α/2(M × [s, ρ])} .

2 some basic lemmas

In this section, we will prove some basic lemmas for Lorentzian harmonic maps, such as the
small energy regularity, a Pohozaev type identity and a removable singularity result.

First, we present two small energy regularity lemmas corresponding to the interior case
and the boundary case. For harmonic maps, such results have been obtained in [5,27] for the
interior case and in [10,15,16] for the boundary case. We use

ū� = 1

|�|
∫

�

udx

to denote the average value of a function u on the domain �. Here and in the sequel, we shall
view (φ, ψ) as the restriction of some C2+α(M, N × R) map on ∂M and for simplicity, we
still denote it by (φ, ψ).

Lemma 2.1 Let (u, v) ∈ W 2,p(D, N × R), 1 < p ≤ 2 be an approximate Lorentzian
harmonic map with (τ, κ) ∈ L p(D). There exist constants ε1 = ε1(p, λ1, λ2, N ) > 0 and
C = C(p, λ1, λ2, N ) > 0, such that if E(u, v; D) ≤ ε1, we have

‖u − ūD1/2‖W 2,p(D1/2) + ‖v − v̄D1/2‖W 2,p(D1/2)

≤ C(‖∇u‖L2(D) + ‖∇v‖L2(D) + ‖τ‖L p(D) + ‖κ‖L p(D)).

Moreover, by the Sobolev embedding W 2,p ↪→ C0, we have

‖u‖osc(D1/2) = sup
x,y∈D1/2

|u(x) − u(y)| ≤ C(‖(∇u,∇v)‖L2(D) + ‖(τ, κ)‖L p(D)).

For the boundary case, we have

Lemma 2.2 Let (u, v) ∈ W 2,p(D+, N × R), 1 < p ≤ 2 be an approximate Lorentzian
harmonic map with (τ, κ) ∈ L p(D+). On the boundary we assume that u|∂0D+ = φ(x) and
v|∂0D+ = ψ(x) where (φ, ψ) ∈ C2+α(D). There exist constants ε2 = ε2(p, λ1, λ2, N ) > 0
and C = C(p, λ1, λ2, N ) > 0, such that if E(u, v; D+

1 ) ≤ ε2, we have

‖u − φ̄∂0D+‖W 2,p(D+
1/2) + ‖v − ψ̄∂0D+‖W 2,p(D+

1/2)

≤ C
(‖(∇u,∇v)‖L2(D+) + ‖(∇φ,∇ψ)‖W 1,p(D+) + ‖(τ, κ)‖L p(D+)

)
,
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where φ̄∂0D+ = 1
2

∫
∂0D+

1
φdx and ψ̄∂0D+ = 1

2

∫
∂0D+

1
ψdx.

Moreover, by the Sobolev embedding W 2,p ↪→ C0, we have

‖u‖osc(D+
1/2) = sup

x,y∈D+
1/2

|u(x) − u(y)|

≤ C(‖(∇u,∇v)‖L2(D+) + ‖(∇φ,∇ψ)‖W 1,p(D+) + ‖(τ, κ)‖L p(D+)).

Since the proof of the interior case is similar to and simpler than that of the boundary case,
we only prove Lemma 2.2 and omit the proof of Lemma 2.1.

Proof Without loss of generality, we assume φ̄∂0D+ = ψ̄∂0D+ = 0. Choosing a cut-off
function η ∈ C∞

0 (D+) satisfying 0 ≤ η ≤ 1, η|D+
3/4

≡ 1, |∇η| + |∇2η| ≤ C and computing

directly, we get

|	(ηu)| = |η	u + 2∇η∇u + u	η|
≤ C (|u| + |∇u| + (|∇u| + |∇v|)(|η∇u| + |η∇v|) + |τ |)
≤ C(|∇u| + |∇v|)(|∇(ηu)| + |∇(ηv)|)

+ C (|u| + (1 + |v|)(|∇u| + |∇v|) + |τ |) .

Similarly,

|	(ηv)| = |η	v + 2∇η∇v + v	η|
≤ C (|v| + |∇v| + (|∇u| + |∇v|)(|η∇u| + |η∇v|) + |τ | + |κ|)
≤ C(|∇u| + |∇v|)(|∇(ηu)| + |∇(ηv)|)

+ C (|v| + (1 + |v|)(|∇u| + |∇v|) + |τ | + |κ|) .

First we assume that 1 < p < 2. By standard elliptic estimates and Poincare’s inequality,
we obtain

‖ηu‖W 2,p(D) + ‖ηv‖W 2,p(D)

≤ C‖(∇u,∇v)‖L2(D+)‖(∇(ηu),∇(ηv))‖
L

2p
2−p (D+)

+ C‖(u, v)‖W 1,p(D+)

+ C

(
‖(∇u,∇v)‖L2(D+)‖v‖

L
2p

2−p (D+)
+ ‖|(φ, ψ)|‖W 2,p(D+) + ‖|(τ, κ)|‖L p(D+)

)

≤ Cε2‖(∇(ηu),∇(ηv))‖
L

2p
2−p (D+)

+ C(‖(∇u,∇v)‖L2(D+) + ‖|(∇φ,∇ψ)|‖W 1,p(D+)

+ ‖|(τ, κ)|‖L p(D+)),

where we use the Sobolev inequality

‖v‖
L

2p
2−p (D+)

≤ C(p)‖∇v‖L2(D+).

Taking ε2 > 0 sufficiently small, we have

‖u‖W 2,p(D+
3/4) + ‖v‖W 2,p(D+

3/4) ≤ ‖ηu‖W 2,p(D+) + ‖ηv‖W 2,p(D+)

≤ C
(‖(∇u,∇v)‖L2(D+) + ‖|(∇φ,∇ψ)|‖W 1,p(D+) + ‖|(τ, κ)|‖L p(D+)

)
.

Thus we have proved the lemma for the case 1 < p < 2.
If p = 2, one can derive the above estimate for p = 4

3 at first. Such an estimate implies
that ∇u and ∇v are bounded in L4(D+

3/4). Then one can apply the W 2,2−boundary estimate
to the equation and get the conclusion of the lemma with p = 2. ��
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For an approximate Lorentzian harmonic map, we can prove the following Pohozaev type
identity which is useful in the blow-up analysis. This kind of equality was first introduced in
[20] for the interior case of harmonic maps and extended in [10,15,16] for some boundary
cases.

Lemma 2.3 Let D ⊂ R
2 be the unit disk and (u, v) ∈ W 2,2(D, N ×R) be an approximate

Lorentzian harmonic map with (τ, κ) ∈ L2(D), then for any 0 < ρ < 1
2 , we have

ρ

∫
∂Dρ

(
|ur |2 − β(u)|vr + ωi u

i
r |2 − 1

2
|∇u|2 + 1

2
β(u)|∇v + ωi∇ui |2

)
ds

=
∫
Dρ

rurτdx −
∫
Dρ

r(vr + ωi u
i
r )κdx . (2.1)

where (r, θ) are polar coordinates in D centered at 0. Since we use the Euclidean metric,
we have that the covariant derivative ∇r u equals to ∂u

∂r and we denote them with a unified

notation ∂u
∂r or just ur for brevity.

Proof Multiplying (1.8) by r(vr + ωi uir ) and integrating by parts, we get∫
Dρ

r(vr + ωi u
i
r )κdx

=
∫
Dρ

div(β(u)(∇v + ωi∇ui )) · r(vr + ωi u
i
r )dx

=
∫

∂Dρ

rβ(u)|vr + ωi u
i
r |2ds −

∫
Dρ

β(u)(∇v + ωi∇ui ) · ∇
(
r(vr + ωi u

i
r )
)
dx

=
∫

∂Dρ

rβ(u)|vr + ωi u
i
r |2ds −

∫
Dρ

β(u)|∇v + ωi∇ui |2dx

−
∫
Dρ

β(u)(∇v + ωi∇ui ) · r
(

∂

∂r
(∇v + ωi∇ui ) − ∂ωi

∂r
∇ui + ∂ui

∂r
∇ωi

)
dx .

By direct computations, noting that

−
∫
Dρ

β(u)(∇v + ωi∇ui ) · r ∂

∂r
(∇v + ωi∇ui )dx

= −1

2

∫
Dρ

β(u)r
∂

∂r
|∇v + ωi∇ui |2dx

= −1

2

∫
∂Dρ

rβ(u)|∇v + ωi∇ui |2ds +
∫
Dρ

β(u)|∇v + ωi∇ui |2dx

+ 1

2

∫
Dρ

r
∂β(u)

∂r
|∇v + ωi∇ui |2dx,

we have∫
Dρ

r(vr + ωi u
i
r )κdx =

∫
∂Dρ

rβ(u)

(
|vr + ωi u

i
r |2 − 1

2
|∇v + ωi∇ui |2

)
ds

+
∫
Dρ

β(u)(∇v + ωi∇ui ) · r
(

∂ωi

∂r
∇ui − ∂ui

∂r
∇ωi

)
dx

+ 1

2

∫
Dρ

r
∂β(u)

∂r
|∇v + ωi∇ui |2dx . (2.2)
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Similarly, multiplying (1.7) by rur and integrating by parts, we get∫
Dρ

rurτdx =
∫
Dρ

(	u − H�)rurdx

=
∫

∂Dρ

r |ur |2ds −
∫
Dρ

∇u · ∇(rur )dx −
∫
Dρ

H · rurdx

=
∫

∂Dρ

r

(
|ur |2 − 1

2
|∇u|2

)
−
∫
Dρ

H · rurdx . (2.3)

Noting that

H · rur = r H ju j
r

= r

(
β(∇v + ωi∇ui ) · ∇uk

(
∂ω j

∂yk
− ∂ωk

∂y j

)
− 1

2

∂β

∂y j
|∇v + ωi∇ui |2

)
u j
r

= rβ(∇v + ωi∇ui )

(
u j
r ∇ω j − ∂ω j

∂r
∇u j

)
− 1

2
r
∂β(u)

∂r
|∇v + ωi∇ui |2 (2.4)

and combining (2.4) with (2.2) and (2.3), we obtain the conclusion of the lemma.

By Hölder’s inequality and integrating (2.1) about ρ from r0 to 2r0, we get

Corollary 2.4 For (u, v) in Lemma 2.3, if ‖(∇u,∇v)‖L2(D) + ‖(τ, κ)‖L2(D) ≤ , then for

any 0 < r0 < 1
4 , we have∫

D2r0 \Dr0

(
|ur |2 − β(u)|vr + ωi u

i
r |2 − 1

2
|∇u|2 + 1

2
β(u)|∇v + ωi∇ui |2

)
dx ≤ Cr0,

where C = C(λ1, λ2,, N ) > 0 is a constant.

Denote ũ = u − φ and ṽ = v − ψ. For the boundary case, we have

Lemma 2.5 Let D+ ⊂ R
2 be the upper unit disk and (u, v) ∈ W 2,2(D+, N × R) be an

approximate Lorentzian harmonicmapwithDirichlet boundary data (u, v)|∂0D+ = (φ, ψ) ∈
C2+α(D) and (τ, κ) ∈ L2(D+), then for any 0 < ρ < 1

2 , we have

ρ

∫
∂+D+

ρ

(|ur |2 − β(u)|vr + ωi u
i
r |2 − 1

2
|∇u|2 + 1

2
β(u)|∇v + ωi∇ui |2)ds

=
∫
D+

ρ

r ũrτdx −
∫
D+

ρ

r (̃vr + ωi ũ
i
r )κdx +

∫
∂+D+

ρ

r
∂u

∂r

∂φ

∂r
ds −

∫
D+

ρ

∇u∇(rφr )dx

+
∫
D+

ρ

(A(u)(∇u,∇u) − H�) · rφr dx −
∫

∂+D+
ρ

rβ(u)(vr + ωi u
i
r )(ψr + ωiφ

i
r )ds

+
∫
D+

ρ

β(u)(∇v + ωi∇ui ) · (∇ψ + ωi∇φi )dx

+
∫
D+

ρ

rβ(u)(∇v + ωi∇ui ) · ∇(ψr + ωiφ
i
r )dx (2.5)

where (r, θ) are polar coordinates in D centered at 0.

Proof The proof is similar to the proof of Lemma 2.3.
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Multiplying (1.8) by r (̃vr + ωi ũir ) and integrating by parts, we get

∫
D+

ρ

r (̃vr + ωi ũ
i
r )κdx =

∫
D+

ρ

div(β(u)(∇v + ωi∇ui )) · r (̃vr + ωi ũ
i
r )dx

=
∫

∂+D+
ρ

β(u)(vr + ωi u
i
r ) · r (̃vr + ωi ũ

i
r )ds

−
∫
D+

ρ

β(u)(∇v + ωi∇ui ) · ∇(r (̃vr + ωi ũ
i
r ))dx

=
∫

∂+D+
ρ

β(u)(vr + ωi u
i
r ) · r (̃vr + ωi ũ

i
r )ds

−
∫
D+

ρ

β(u)(∇v + ωi∇ui ) · (∇ṽ + ωi∇ũi )dx

−
∫
D+

ρ

rβ(u)(∇v + ωi∇ui ) · ∇ (̃vr + ωi ũ
i
r )dx = I + II + III.

By direct computations, we have

I =
∫

∂+D+
ρ

rβ(u)|vr + ωi u
i
r |2ds −

∫
∂+D+

ρ

rβ(u)(vr + ωi u
i
r )(ψr + ωiφ

i
r )ds,

II = −
∫
D+

ρ

β(u)|∇v + ωi∇ui |2dx +
∫
D+

ρ

β(u)(∇v + ωi∇ui ) · (∇ψ + ωi∇φi )dx,

and

III = −1

2

∫
D+

ρ

rβ(u)
∂

∂r
|∇v + ωi∇ui |2dx +

∫
D+

ρ

rβ(u)(∇v + ωi∇ui ) · ∇(ψr + ωiφ
i
r )dx

+
∫
D+

ρ

rβ(u)(∇v + ωi∇ui ) ·
(

∂ωi

∂r
∇ui − ∇ωi u

i
r

)
dx .

Noting that

− 1

2

∫
D+

ρ

β(u)r
∂

∂r
|∇v + ωi∇ui |2dx

= −1

2

∫
∂+D+

ρ

rβ(u)|∇v + ωi∇ui |2ds +
∫
D+

ρ

β(u)|∇v + ωi∇ui |2dx

+ 1

2

∫
D+

ρ

r
∂β(u)

∂r
|∇v + ωi∇ui |2dx,
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we have∫
D+

ρ

r (̃vr + ωi ũ
i
r )κdx =

∫
∂+D+

ρ

rβ(u)

(
|vr + ωi u

i
r |2 − 1

2
|∇v + ωi∇ui |2

)
ds

+
∫
D+

ρ

β(u)(∇v + ωi∇ui ) · r
(

∂ωi

∂r
∇ui − ∂ui

∂r
∇ωi

)
dx

+ 1

2

∫
D+

ρ

r
∂β(u)

∂r
|∇v + ωi∇ui |2dx

−
∫

∂+D+
ρ

rβ(u)(vr + ωi u
i
r )(ψr + ωiφ

i
r )ds

+
∫
D+

ρ

β(u)(∇v + ωi∇ui ) · (∇ψ + ωi∇φi )dx

+
∫
D+

ρ

rβ(u)(∇v + ωi∇ui ) · ∇(ψr + ωiφ
i
r )dx . (2.6)

Similarly, multiplying (1.7) by r ũr and integrating by parts, we get∫
D+

ρ

r ũrτdx =
∫
D+

ρ

(	u + A(u)(∇u,∇u) − H�) · r ũr dx

=
∫

∂+D+
ρ

r(|ur |2 − 1

2
|∇u|2)ds −

∫
∂+D+

ρ

r
∂u

∂r

∂φ

∂r
+
∫
D+

ρ

∇u∇(rφr )dx

−
∫
D+

ρ

(A(u)(∇u,∇u) − H�) · rφr dx −
∫
D+

ρ

H · rurdx . (2.7)

Combining (2.4) with (2.6) and (2.7), we obtain the conclusion of the lemma. ��
Corollary 2.6 For (u, v) in Lemma 2.5, if ‖(∇u,∇v)‖L2(D+) + ‖(τ, κ)‖L2(D+) ≤ , then

for any 0 < r0 < 1
4 , we have∫

D+
2r0

\D+
r0

(|ur |2 − β(u)|vr + ωi u
i
r |2 − 1

2
|∇u|2 + 1

2
β(u)|∇v + ωi∇ui |2)dx ≤ Cr0,

where C = C(λ1, λ2,, N ) > 0 is a constant.

Proof By Hölder’s inequality, it is easy to find that the right hand side of (2.5) is bounded
by

Cρ

∫
∂+D+

ρ

(|∇u| + |∇v|) + Cρ,

where C = C(λ1, λ2, N , ‖φ‖C2 , ‖ψ‖C2). Then the conclusion of the corollary follows by
an integration about ρ from r0 to 2r0. ��

Similar as for harmonic maps into a Riemannian manifold, there is also an energy gap for
a nontrivial Lorentzian harmonic map.

Theorem 2.7 (Gap phenomenon) Suppose either (u, v) : S
2 → N × R is a smooth

Lorentzian harmonic map or (u, v) : R
2+ → N × R is a smooth Lorentzian harmonic

map with Dirichlet boundary condition:

(u, v)|∂R2+ = constant,
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then there exists a constant ε0 > 0 depending on (N × R, g), such that if either

E(u, v;S2) ≤ ε0 or E(u, v;R2+) ≤ ε0,

then (u, v) is a constant map. Here S2 denotes the unit sphere in R
3.

Proof One can find the proof of the theorem in [9] for the case (u, v) : S2 → N × R.
By Eqs. (1.4) and (1.5), we have

|	u| + |	v| ≤ C(|∇u|2 + |∇v|2).
The standard elliptic theory tells us that

‖∇u‖
W 1, 4

3
+ ‖∇v‖

W 1, 4
3

≤ C(‖	u‖
L

4
3

+ ‖	v‖
L

4
3
)

≤ CE
1
2 (u, v;S2)(‖∇u‖L4 + ‖∇v‖L4)

≤ C
√

ε0(‖∇u‖
W 1, 4

3
+ ‖∇v‖

W 1, 4
3
).

It is easy to get that, if ε0 is small enough, (u, v) must be a constant map.
If (u, v) : R2+ → N × R is a smooth Lorentzian harmonic map with constant Dirichlet

boundary condition, choosing ε0 ≤ ε2 where ε2 is the positive constant in Lemma 2.2, then
by Lemma 2.2 (taking (φ, ψ) = constant , (τ, κ) = 0 and any constant p > 2) and Sobolev
embedding, for any R > 0, we have

R‖∇u‖L∞(D+
R/2) + R‖∇v‖L∞(D+

R/2) ≤ CE
1
2 (u, v; D+

R ) ≤ Cε
1
2
0 .

Sending R to infinity yields that (u, v) must be a constant map. ��
It is necessary for the singularities to be removable during the blow-up process. Remov-

ability of singularities for a Lorentzian harmonic map (i.e. τ = κ = 0) is proved in [9].
By assuming additionally that ω ≡ 0, for an approximate Lorentzian harmonic map (i.e.
(τ, κ) �= 0) with singularities either in the interior or on the boundary, we can also remove
them.

Theorem 2.8 Suppose (u, v) ∈ W 2,2
loc (D \ {0}) is an approximate Lorentzian harmonic

map from the punctured disk D \ {0} to (N × R, gN − βd2θ). If E(u, v; D) < ∞ and
(τ, κ) ∈ L2(D), then (u, v) can be extended to the whole disk D in W 2,2(D).

For an approximate Lorentzian harmonic map (u, v) ∈ W 2,2
loc (D+ \ {0}) which is from

D+\{0} to (N×R, gN −βd2θ)with boundary data (u, v)|∂0D+ = (φ, ψ). If E(u, v; D+) <

∞ and (τ, κ) ∈ L2(D+), then (u, v) can also be extended to D+ in W 2,2(D+).

Proof We prove the theorem for the boundary case and the interior case can be proved
similarly.

On the one hand, it is easy to see that (u, v) is a weak solution of (1.7) and (1.8). By
Theorem 1.2 in [30] which is developed from the regularity theory for critical elliptic systems
with an anti-symmetric structure in [25,26,28,29,32], we know that v ∈ W 2,p(D+

ρ (0)) for
some ρ > 0 and any 1 < p < 2. In fact, the anti-symmetric term in the equation for v equals
to zero. This implies that ∇v ∈ L4(D+).

On the other hand, since the Eq. (1.7) can be written as an elliptic system with an anti-
symmetric potential ([25])

	u = � · ∇u + f
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with � ∈ L2(D+, so(n) ⊗R
2) and f ∈ L2(D+), using Theorem 1.2 in [30] again, we have

u ∈ W 2,p(D+
ρ (0)) for some ρ > 0 and any 1 < p < 2. Then the higher regularity can be

derived by a standard bootstrap argument. ��

3 Energy identity and analysis on the neck

In this section, we shall study the behavior at blow-up points both in the interior and on the
boundary for an approximate Lorentzian harmonic map sequence {(un, vn)}. To this end, we
first define the blow-up set and show that the blow-up points for such a sequence are finite
in number. Throughout this section, we suppose that there exists a constant  > 0 such that
the sequence satisfies

‖(∇un,∇vn)‖L2(D1(0)) + ‖(τn, κn)‖L2(D1(0)) ≤ . (3.1)

Definition 3.1 For an approximate Lorentzian harmonic map sequence {(un, vn)}, define

S1 := ∩r>0

{
x ∈ M | lim inf

n→∞

∫
Dr (x)

(|∇un |2 + |∇vn |2)dvh ≥ ε1

}
,

and

S2 := ∩r>0

{
x ∈ ∂M | lim inf

n→∞

∫
D+
r (x)

(|∇un |2 + |∇vn |2)dvh ≥ ε2

}
,

where ε1 and ε2 are constants in Lemmas 2.1 and 2.2. The blow-up set of {(un, vn)} is defined
to be S := S1 ∪ S2.

Lemma 3.1 For an approximate harmonic map sequence satisfying (3.1), the blow-up set
S is a finite set.

Proof By (3.1), we can take a subsequence and still denote it by {(un, vn)}, such that
{(un, vn)} converges weakly in W 1,2(M) to a limit map (u, v) : M → (N × R, g) . If
for any point x ∈ M ,

lim
r→0

lim sup
n→∞

∫
Dr (x)

|∇un |2 + |∇vn |2 < ε1, (3.2)

Lemma 2.1 tells that the convergence is strong in W 1,2(M). Obviously in this case, S1 is
empty. Otherwise, if there exists a point p1 ∈ M such that

lim
r→0

lim sup
n→∞

∫
Dr (p1)

|∇un |2 + |∇vn |2 ≥ ε1, (3.3)

By taking a subsequence, we can assume that

lim
r→0

lim
n→∞

∫
Dr (p1)

|∇un |2 + |∇vn |2 ≥ ε1.

If (3.2) holds for any point x ∈ M \ {p1}, we get that S1 = {p1}. Otherwise, we can find a
point p2 where the energy concentration (3.3) happens. Since the energy of the sequence is
bounded, this process must stop after finite steps.

For points on the boundary of M , we can proceed similarly and finally, we get a
subsequence {(un, vn)} which converges strongly to some (u, v) in W 1,2

loc (M \ S), where
S = S1 ∪ S2 = {p1, p2, . . . , pI } is a finite set. ��
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We consider the case that the blow-up points are in the interior first. Since the blow-up set
S1 is finite, we can find small geodesic disks Dδi (by conformal invariance, we can assume
that they are flat disks) for each blow-up point pi such that Dδi ∩ Dδ j = ∅ for i �= j ,
i, j = 1, 2, . . . , I , and on M \ ∪I

i=1Dδi , (un, vn) converges strongly to a limit map (u, v).
Without loss of generality, we discuss the case that there is only one blow-up point 0 ∈ D1(0)

in S1 and the sequence {(un, vn)} satisfies that there is some (u, v) such that

(un, vn) → (u, v) weakly in W 2,2
loc (D1(0) \ {0}) as n → ∞. (3.4)

Lemma 3.2 Let {(un, vn)} ∈ W 2,2(D1(0), N×R) be a sequence of approximate Lorentzian
harmonic maps satisfying (3.1) and (3.4). Up to a subsequence which is still denoted by
{(un, vn)}, there exist a positive integer L and nontrivial Lorentzian harmonic spheres
(σ i , ξ i ) : R2 ∪ {∞} → N × R, i = 1, . . . , L satisfying

lim
n→∞ Eg(un, vn; D1(0)) = Eg(u, v; D1(0)) +

L∑
i=1

Eg(σ
i , ξ i ). (3.5)

Proof According to the standard induction argument in [5], we can assume that there is only
one bubble at the singular point 0 ∈ D1(0). To prove (3.5) is equivalent to prove that there
exists a Lorentzian harmonic sphere (σ, ξ) such that

lim
δ→0

lim
n→∞ Eg(un, vn, Dδ) = Eg(σ, ξ). (3.6)

By the standard argument of blow-up analysis, for any n, there exist sequences xn → 0
and rn → 0 such that

E(un, vn; Drn/2(xn)) = sup
x∈Dδ ,r≤rn
Dr (x)⊂Dδ

E(un, vn; Dr/2(x)) = ε1

8
. (3.7)

Without loss of generality, we may assume that xn = 0 and denote ũn = un(rnx), ṽn =
vn(rnx). Then we have

E(ũn, ṽn; D1/2) = E(un, vn; Drn/2) = ε1

8
< ε1 (3.8)

and
E(ũn, ṽn; DR) = E(un, vn; Drn R) < .

By (3.7), we can apply Lemma 2.1 on DR for {(ũn, ṽn)} and get that {(ũn, ṽn)} converges
strongly to some Lorentzian harmonic map (σ, ξ) in W 1,2(DR, N × R) for any R ≥ 1. By
stereographic projection and the removable singularity theorem [9], we get a nonconstant
harmonic sphere (σ, ξ). Thus we get the first bubble at the blow-up point and to prove (3.6)
is equivalent to prove that

lim
R→∞ lim

δ→0
lim
n→∞ Eg(un, vn; Dδ(0) \ Drn R(0)) = 0. (3.9)

Since we assume that there is only one bubble, we have that, for any ε > 0, there holds
that

E(un, vn; D4ρ \ D ρ
2
) ≤ ε2 for ρ ∈ [rn R,

δ

2
] (3.10)

as n → ∞, R → ∞ and δ → 0. Otherwise, we will get a second bubble and this is a
contradiction to the assumption that L = 1. One can refer to [5,15,31] for details of this kind
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of arguments. Then by Lemma 2.1 and a standard scaling argument, for any ρ ∈ [rn R, δ
2 ],

we have

‖un‖osc(D2ρ\Dρ) + ‖vn‖osc(D2ρ\Dρ)

≤ CE
1
2 (un, vn; D4ρ \ D ρ

2
) + Cρ‖(τn, κn)‖L2(D4ρ\D ρ

2
). (3.11)

Define

u∗
n(r) := 1

2π

∫ 2π

0
un(r, θ)dθ, v∗

n(r) := 1

2π

∫ 2π

0
vn(r, θ)dθ.

By (3.11), we know that

‖un − u∗
n‖L∞(Dδ\Drn R) = sup

rn R≤t≤ δ
2

‖un − u∗
n‖L∞(D2t\Dt )

≤ sup
rn R≤t≤ δ

2

‖un‖osc(D2t\Dt ) ≤ C(ε + δ) (3.12)

and similarly,

‖vn − v∗
n‖L∞(Dδ\Drn R) ≤ C(ε + δ).

Then we get by integrating by parts that
∫
Dδ\Drn R

−	un(un − u∗
n)dx

=
∫
Dδ\Drn R

∇un∇(un − u∗
n)dx −

∫
∂Dδ

∂un
∂r

(un − u∗
n) +

∫
∂Drn R

∂un
∂r

(un − u∗
n)

≥
∫
Dδ\Drn R

|∇un |2dx −
∫
Dδ\Drn R

|∂un
∂r

|2dx −
∫

∂Dδ

∂un
∂r

(un − u∗
n)

+
∫

∂Drn R

∂un
∂r

(un − u∗
n)

=
∫
Dδ\Drn R

|r−1 ∂un
∂θ

|2dx −
∫

∂Dδ

∂un
∂r

(un − u∗
n) +

∫
∂Drn R

∂un
∂r

(un − u∗
n). (3.13)

Since (un, vn) is an approximate harmonic map, we have

|	un | + |	vn | ≤ C(λ1, λ2, N )(|∇un |2 + |∇vn |2). (3.14)

Then we get from (3.12), (3.13) and (3.14) that
∫
Dδ\Drn R

|r−1 ∂un
∂θ

|2dx

≤
∫
Dδ\Drn R

−	un(un − u∗
n)dx +

∫
∂Dδ

∂un
∂r

(un − u∗
n) −

∫
∂Drn R

∂un
∂r

(un − u∗
n)

≤ C(ε + δ)

(∫
Dδ\Drn R

(|∇un |2 + |∇vn |2)dx +
∫

∂Dδ

|∂un
∂r

| +
∫

∂Drn R

|∂un
∂r

|
)

. (3.15)
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By Lemma 2.1 and the trace theory, we obtain for the boundary term in (3.15) that
∫

∂Dδ

|∂un
∂r

| ≤ C(‖∇un‖L2(D 3
2 δ

\Dδ)
+ δ‖∇2un‖L2(D 3

2 δ
\Dδ)

)

≤ C(E
1
2 (un, vn; D2δ \ D δ

2
) + δ‖(τn, κn)‖L2(D2δ\D δ

2
))

≤ C(ε + δ).

Similarly, ∫
∂Drn R

|∂un
∂r

| ≤ C(ε + δ).

Combining these, we have
∫
Dδ\Drn R

|r−1 ∂un
∂θ

|2dx ≤ C(ε + δ). (3.16)

Similarly, we can obtain that
∫
Dδ\Drn R

|r−1 ∂vn

∂θ
|2dx ≤ C(ε + δ).

Without loss of generality, we may assume δ = 2mnrn R, where mn is a positive integer
which tends to ∞ as n → ∞. By Corollary 2.4, for i = 0, 1, . . . ,mn − 1, we have

∫
D2i+1rn R

\D2i rn R

(
|∂un

∂r
|2 − β(un)|∂vn

∂r
+ ω j

∂u j
n

∂r
|2
)
dx

≤ C

(∫
D2i+1rn R

\D2i rn R

|r−1 ∂un
∂θ

|2dx +
∫
D2i+1rn R

\D2i rn R

|r−1 ∂vn

∂θ
|2dx + 2i rn R

)
.

Since

mn−1∑
i=0

2i rn R = 2mnrn R = δ,

we get

∫
Dδ\Drn R

(
|∂un

∂r
|2 − β(un)|∂vn

∂r
+ ω j

∂u j
n

∂r
|2
)
dx

=
mn−1∑
i=0

∫
D2i+1rn R

\D2i rn R

(
|∂un

∂r
|2 − β(un)|∂vn

∂r
+ ω j

∂u j
n

∂r
|2)dx ≤ C(ε + δ

)
, (3.17)

from which (3.9) follows immediately. ��
When the 1-form ω ≡ 0, the behavior of the sequence at the blow-up points is clearer. In

fact, we can get identities for the positive energy E instead of for the Lorentzian energy Eg

and there is no neck between the limit map and the bubbles. More precisely, we have

Lemma 3.3 Assume that {(un, vn)} is an approximate Lorentzian harmonic map sequence
as in Lemma 3.2 and additionally, we assume thatω ≡ 0 and ‖∇vn‖L p ≤  for some p > 2,
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then we have that σ i : R2 ∪ {∞} → N is a nontrivial harmonic sphere, ξ i is a constant map
and (3.5) becomes

lim
n→∞ E(un; D1(0)) = E(u; D1(0)) +

L∑
i=1

E(σ i ), (3.18)

lim
n→∞ E(vn; D1(0)) = E(v; D1(0)). (3.19)

Furthermore, The image

u(D1(0)) ∪
L⋃

i=1

σ i (R2) (3.20)

is a connected set.

Proof Similar to the proof of Lemma 3.2, to prove (3.18) and (3.19) is equivalent to proving

lim
R→∞ lim

δ→0
lim
n→∞ E(un, vn; Dδ(0) \ Drn R(0)) = 0. (3.21)

Since ‖∇vn‖L p(D) ≤  for some p > 2, we get

∫
Dδ\Drn R

|∇vn |2dx ≤ Cδ
1− 2

p

(∫
Dδ\Drn R

|∇vn |pdx
) 2

p

≤ Cδ
1− 2

p . (3.22)

Since ω ≡ 0, (3.17) implies that

∫
Dδ\Drn R

|∂un
∂r

|2dx ≤ C
∫
Dδ\Drn R

|∇vn |2dx + C(ε + δ). (3.23)

Combining (3.16), (3.22) with (3.23), we can get (3.21).
To prove (3.20) is equivalent to prove

lim
R→∞ lim

δ→0
lim
n→∞ ‖un‖osc(Dδ(0)\Drn R(0)) = 0. (3.24)

To prove (3.24), denote Q(s) := D2s0+srn R \ D2s0−srn R and consider

f (s) :=
∫
Q(s)

|∇un |2dx,

where 0 ≤ s0 ≤ mn and 0 ≤ s ≤ min{s0,mn − s0}. Integrating by parts, we get

∫
Q(s)

−	un(un − u∗
n)dx

=
∫
Q(s)

∇un∇(un − u∗
n)dx −

∫
∂Q(s)

∂un
∂r

(un − u∗
n)

≥ 1

2

∫
Q(s)

|∇un |2dx +
∫
Q(s)

(
1

2
|∇un |2 − |∂un

∂r
|2
)
dx −

∫
∂Q(s)

∂un
∂r

(un − u∗
n).

123



175 Page 18 of 31 X. Han et al.

By (3.12) and (3.14), we obtain

(
1

2
− C(ε + δ)

)∫
Q(s)

|∇un |2dx

≤
∫
Q(s)

(
|∂un

∂r
|2 − 1

2
|∇un |2

)
dx + C(ε + δ)

∫
Q(s)

|∇vn |2dx

+
∫

∂D2s0+s rn R

∂un
∂r

(un − u∗
n) −

∫
∂D2s0−s rn R

∂un
∂r

(un − u∗
n). (3.25)

We deduce from Corollary 2.4 that

∫
Q(s)

(
|∂un

∂r
|2 − 1

2
|∇un |2

)
dx ≤ C

∫
Q(s)

|∇vn |2dx + C2s0+srn R

≤ C(2s0+srn R)
1− 2

p

(∫
Q(s)

|∇vn |pdx
) 2

p + C2s0+srn R

≤ C(2s0+srn R)
1− 2

p .

For the boundary term in (3.25), by Hölder’s inequality and Poincare’s inequality, we have

|
∫

∂D2s0+s rn R

∂un
∂r

(un − u∗
n)| ≤

(∫
∂D2s0+s rn R

|∂un
∂r

|2
) 1

2
(∫

∂D2s0+s rn R

|un − u∗
n |2
) 1

2

≤
(∫

∂D2s0+s rn R

|∂un
∂r

|2
) 1

2
(

2s0+srn R
∫

∂D2s0+s rn R

|∂un
∂θ

|2
) 1

2

≤ C2s0+srn R
∫

∂D2s0+s rn R

|∇un |2.

Similarly, we also have

|
∫

∂D2s0−s rn R

∂un
∂r

(un − u∗
n)| ≤ C2s0−srn R

∫
∂D2s0−s rn R

|∇un |2.

Taking ε and δ sufficiently small, we get from (3.25) that

f (s) ≤ C

ln 2
f ′(s) + C(2s0+srn R)

1− 2
p ,

which implies

(
2− s

C f (s)
)′ ≥ −C(2s0rn R)

1− 2
p 2(1− 2

p − 1
C )s

,

where we can take C sufficiently large such that 1 − 2
p − 1

C > 0. Integrating from 2 to L ,
we arrive at

f (2) ≤ C2− 1
C L f (L) + C(2s0rn R)

1− 2
p 2

(
1− 2

p − 1
C

)
L
.
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Let s0 = i and L = Li := min{i,mn − i}. Noting that Q(Li ) ⊂ Dδ \ Drn R , we have
∫
D2i+2rn R

\D2i−2rn R

|∇un |2dx

≤ CE(un, Dδ \ Drn R)2− 1
C Li + C(2i rn R)

1− 2
p 2

(
1− 2

p − 1
C

)
Li

≤ CE(un, Dδ \ Drn R)2− 1
C Li + C(2i rn R)

1− 2
p 2

(
1− 2

p − 1
C

)
(mn−i)

= CE(un, Dδ \ Drn R)2− 1
C Li + C(2mnrn R)

1− 2
p 2− 1

C (mn−i)

= CE(un, Dδ \ Drn R)2− 1
C Li + Cδ

1− 2
p 2

(
− 1

C

)
(mn−i)

≤ Cε2− 1
C i + Cδ

1− 2
p 2

1
C (i−mn), (3.26)

where the last inequality follows from the energy identity (3.21). By using Lemma 2.1, now
it is easy to deduce (3.24) from (3.22) and the above estimates (3.26) for energy decay. ��

For the case that the blow-up point is on the boundary of the manifold, the behavior
is similar to those in Lemmas 3.2 and 3.3. But the analysis is more complicated. More
precisely, we consider an approximate Lorentzian harmonic map sequence {(un, vn)} ∈
W 2,2(D+

1 (0), N × R) with the Dirichlet boundary condition

(un, vn)|∂0D+
1 (0) = (ϕ, ψ) ∈ C2+α(∂0D+

1 (0)) (3.27)

for some 0 < α < 1 which satisfies that

‖(∇un,∇vn)‖L2(D+
1 (0)) + ‖(τn, κn)‖L2(D+

1 (0)) ≤ . (3.28)

Without loss of generality, we still suppose that there is only one blow-up point 0 ∈ D+
1 (0)

and the sequence {(un, vn)} satisfies that there is some (u, v) such that

(un, vn) → (u, v) weakly in W 2,2
loc (D+

1 (0) \ {0}) as n → ∞. (3.29)

For such a sequence, we have

Lemma 3.4 Let {(un, vn)} ∈ W 2,2(D+
1 (0), N×R) be a sequence of approximate Lorentzian

harmonicmaps satisfying (3.27), (3.28) and (3.29). Up to a subsequencewhich is still denoted
by {(un, vn)}, we can find a positive integer L, points xin ∈ D+

1 (0) and rin > 0 satisfying
xin → 0 and rin → 0, i = 1, . . . , L as n → ∞ and both of the following two cases may
appear during the blow-up process.

(a) If
dist (xin ,∂

0D+
1 (0))

r in
→ ai < ∞, there is a nonconstant Lorentzian harmonic map (σ i , ξ i ) :

R
2
ai

→ N × R with a constant boundary condition which is the weak limit of (un(xin +
r inx), vn(x

i
n + r inx)) in W 1,2

loc (R2+
ai

), where

R
2
ai := {(x1, x2) ∈ R

2|x2 ≥ ai } and R
2+
ai

:= {(x1, x2) ∈ R
2|x2 > ai };

(b) If
dist (xin ,∂

0D+
1 (0))

r in
→ ∞, there is a nontrivial Lorentzian harmonic sphere (σ i , ξ i ) :

R
2 ∪{∞} → N×Rwhich is the weak limit of (un(xin +r inx), vn(x

i
n +r inx)) in W

1,2
loc (R2).
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Furthermore, for both of the two cases, there holds the energy identity

lim
n→∞ Eg(un, vn; D+

1 (0)) = Eg(u, v; D+
1 (0)) +

L∑
i=1

Eg(σ
i , ξ i ). (3.30)

Here, L just stands for a nonnegative integer which may different from the constant in
Lemma 3.2.

Proof Similar to what we have done in the proof of Lemma 3.2, for any n, there exist
sequences xn → 0 and rn → 0 such that

E(un, vn; D+
rn (xn)) = sup

x∈D+
δ ,r≤rn

D+
r (x)⊂D+

δ

E(un, vn; D+
r (x)) = 1

8
min{ε1, ε2}, (3.31)

where D+
rn (xn) := {(y = (y1, y2) ∈ R

2| |y − xn | ≤ rn, y2 ≥ 0)}. Denote dn =
dist (xn, ∂0D+). We have that either lim supn→∞ dn

rn
< ∞ or lim supn→∞ dn

rn
= ∞. We

discuss these two cases respectively.
Case (a) lim supn→∞ dn

rn
< ∞.

By taking a subsequence, we may assume that limn→∞ dn
rn

= a ≥ 0. Denote

Bn := {x ∈ R
2|xn + rnx ∈ D+} .

We have that as n → ∞,

Bn → R
2
a := {(x1, x2)|x2 ≥ −a}

and for any x ∈ {x2 = −a} on the boundary, xn + rnx → 0.
Define

ũn(x) := un(xn + rnx), ṽn(x) := vn(xn + rnx).

It is easy to get that (̃un, ṽn) : Bn → N × R is an approximate Lorentzian harmonic map
with (̃τn, κ̃n) = r2

n (τn, κn) and

(̃un(x), ṽn(x)) = (ϕ(xn + rnx), ψ(xn + rnx)), if xn + rnx ∈ ∂0D+.

Lemma 2.2 and (3.31) tell us that for any DR(0) ⊂ R
2,

‖ũn‖W 2,2(DR(0)∩Bn) + ‖̃vn‖W 2,2(DR(0)∩Bn) ≤ C(λ1, λ2,, R, N ).

By a similar argument as in Section 4 of [8], after taking a subsequence of (̃un, ṽn) if necessary
(still denoted by (̃un, ṽn)), there is a Lorentzian harmonic map (̃u, ṽ) ∈ W 1,2(R2

a, N × R)

with the constant boundary condition (̃u, ṽ)|∂R2
a

= (φ(0), ψ(0)) such that, for any R > 0,

lim
n→∞ ‖∇ũn‖L2(DR(0)∩Bn) = ‖∇ũ‖L2(DR(0)∩R2

a)
,

lim
n→∞ ‖∇ṽn‖L2(DR(0)∩Bn) = ‖∇ṽ‖L2(DR(0)∩R2

a)
.

Moreover, since E (̃u, ṽ; D1(0) ∩ R
2
a) = 1

8 min{ε1, ε2}, (̃u, ṽ) is a nontrivial Lorentzian
harmonic map with constant boundary (φ(0), ψ(0)).
Case (b) lim supn→∞ dn

rn
= ∞.
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In this case, (̃un, ṽn) lives in Bn which tends to R
2 as n → ∞. Moreover, for any x ∈ R

2,
when n is sufficiently large, by (3.31), we have

E (̃un, ṽn; D1(x)) ≤ ε1

8
.

According to Lemma 2.1, there exist a subsequence of (̃un, ṽn) which is still denoted by
(̃un, ṽn)) and a Lorentzian harmonic map (̃u(x), ṽ(x)) ∈ W 1,2(R2, N × R) such that

lim
n→∞(̃un(x), ṽn(x)) = (̃u(x), ṽ(x)) in W 1,2

loc (R2).

By Theorem 2.8, (̃u, ṽ) can be extended to a Lorentzian harmonic sphere and (3.31) tells us
that it is nontrivial.

We call the Lorentzian harmonic map (̃u, ṽ) obtained in these two cases the first bubble.
Without loss of generality, we assume that there is only one bubble at the blow-up point
0 ∈ D+

1 (0). Under this assumption, similar to (3.10), we have that, for any ε > 0, there exist
constants δ > 0 and R > 0 such that

E(un, vn; D+
4ρ(xn) \ D+

ρ
2
(xn)) ≤ ε2 for any ρ ∈ [rn R,

δ

2
] (3.32)

when n is large enough.
Now to prove the energy identity (3.30) is equivalent to prove

lim
R→∞ lim

δ→0
lim
n→∞ Eg(un, vn; D+

δ (xn) \ D+
rn R

(xn)) = 0. (3.33)

We shall prove (3.33) for the two cases respectively.
For case (a) limn→∞ dn

rn
= a < ∞.

For n and R are sufficiently large, we decompose the neck domain D+
δ (xn) \ D+

rn R
(xn)

into three parts which follows the decomposition in [15,16].

D+
δ (xn) \ D+

rn R
(xn) = D+

δ (xn) \ D+
δ
2
(x ′

n) ∪ D+
δ
2
(x ′

n) \ D+
2rn R

(x ′
n) ∪ D+

2rn R
(x ′

n) \ D+
rn R

(xn)

:= �1 ∪ �2 ∪ �3.

Here x ′
n ∈ ∂0D+ is the projection of xn , i.e. dn = |xn − x ′

n |.
Since limn→∞ dn

rn
= a, when n and R are large enough, it is easy to get that

�1 ⊂ D+
δ (xn) \ D+

δ
4
(xn) and �3 ⊂ D+

4rn R
(xn) \ D+

rn R
(xn).

Moreover, for any ρ ∈ [rn R, δ
2 ], there holds

D+
2ρ(x ′

n) \ D+
ρ (x ′

n) ⊂ D+
4ρ(xn) \ D+

ρ/2(xn).

Then we get from (3.32) that

E(un, vn;�1) + E(un, vn;�3) ≤ ε2 (3.34)

and

E(un, vn; D+
2ρ(x ′

n) \ D+
ρ (x ′

n)) ≤ ε2 for any ρ ∈
[
rn R,

δ

2

]
.
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By Lemma 2.1, we have

‖un‖osc(D+
2ρ(x ′

n)\D+
ρ (x ′

n))
+ ‖vn‖osc(D+

2ρ(x ′
n)\D+

ρ (x ′
n))

≤ C(‖(∇un,∇vn)‖L2(D+
4ρ(x ′

n)\D+
ρ/2(x ′

n))
+ ‖(∇φ,∇ψ)‖L2(D+

4ρ(x ′
n)\D+

ρ/2(x ′
n))

+ ρ‖(∇2ϕ,∇2ψ)‖L2(D+
4ρ(x ′

n)\D+
ρ/2(x ′

n))
+ ρ‖(τn, κn)‖L2(D+

4ρ(x ′
n)\D+

ρ/2(x ′
n))

) (3.35)

for any ρ ∈ [rn R, δ
2 ].

To estimate the energy concentration in �2, we define μn(x) := un(x)−ϕ(x) for x ∈ �2

and

μ̂n(x) :=
{

μn(x) x ∈ �2,

−μn(x ′) x ∈ �̂2 \ �2,

where �̂2 := D δ
2
(x ′

n) \ D2rn R(x ′
n), x = (x1, x2) and x ′ = (x1,−x2). It is easy to get that

μ̂n(x) ∈ W 2,2(�̂2) and satisfies

|	μ̂n(x)| ≤
{
C(|∇un(x)|2 + |∇vn(x)|2) + |τn(x)| + |	ϕ(x)|, x ∈ �2,

C(|∇un(x ′)|2 + |∇vn(x ′)|2) + |τn(x ′)| + |	ϕ(x ′)|, x ∈ �̂2 \ �2.

Define

μ̂∗
n(r) := 1

2π

∫ 2π

0
μ̂n(r, θ)dθ,

where (r, θ) is the polar coordinates at x ′
n . By (3.35), we have

‖μ̂n(x) − μ̂∗
n(x)‖L∞(�̂2) ≤ sup

rn R≤ρ≤ δ
2

‖μ̂n(x)‖osc(D2ρ(x ′
n)\Dρ(x ′

n))

≤ 2 sup
rn R≤ρ≤ δ

2

‖μn(x)‖osc(D+
2ρ(x ′

n)\D+
ρ (x ′

n))

≤ C(ε + δ).

Similar to the proof of (3.15), we can obtain
∫

�̂2

|r−1 ∂μ̂n

∂θ
|2dx

≤ C(ε + δ)

⎛
⎝
∫

�̂2

|	μ̂n |dx +
∫

∂D δ
2
(x ′

n)

|∂μ̂n

∂r
| +
∫

∂D2rn R(x ′
n)

|∂μ̂n

∂r
|
⎞
⎠ . (3.36)

By direct computations, one can get that
∫

�̂2

|r−1 ∂μ̂n

∂θ
|2dx = 2

∫
�2

|r−1 ∂μn

∂θ
|2dx

= 2
∫

�2

|r−1 ∂un
∂θ

|2dx − 4
∫

�2

r−2 ∂un
∂θ

∂φ

∂θ
dx + 2

∫
�2

|r−1 ∂φ

∂θ
|2dx

≥ 2
∫

�2

|r−1 ∂un
∂θ

|2dx − Cδ (3.37)
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and ∫
�̂2

|	μ̂n |dx ≤ C
∫

�2

(|∇un |2 + |∇vn |2)dx +
∫

�̂2

(|τn | + |	φ|)dx

≤ C
∫

�2

(|∇un |2 + |∇vn |2)dx + Cδ. (3.38)

For the boundary terms of the right hand side of (3.36), by the trace theory and Lemma 2.2,
we have∫

∂Dδ/2(x ′
n)

|∂μ̂n

∂r
| = 2

∫
∂+Dδ/2(x ′

n)

|∂μ̂n

∂r
| ≤ C

∫
∂+Dδ/2(x ′

n)

(|∇un | + |∇ϕ|)

≤ C
(‖(∇un,∇vn)‖L2(D+

δ (x ′
n)\D+

1
4 δ

(x ′
n))

+ δ‖(∇2un,∇2vn)‖L2(D+
δ (x ′

n)\D+
1
4 δ

(x ′
n))

+ δ
)

≤ C
(‖(∇un,∇vn)‖L2(D+

4
3 δ

(xn)\D+
1
6 δ

(xn))
+ ‖(∇φ,∇ψ)‖L2(D+

4
3 δ

(xn)\D+
1
6 δ

(xn))

+ δ‖(∇2φ,∇2ψ)‖L2(D+
4
3 δ

(xn)\D+
1
6 δ

(xn))
+ δ‖(τn, κn)‖L2(D+

4
3 δ

(xn)\D+
1
6 δ

(xn))
+ δ
)

≤ C(ε + δ).

Similarly, we have ∫
∂D2rn R(x ′

n)

|∂μ̂n

∂r
| ≤ C(ε + δ).

Combining these two estimates with (3.36), (3.37) and (3.38), we get∫
�2

|r−1 ∂un
∂θ

|2dx ≤ C(ε + δ). (3.39)

Similarly, we have ∫
�2

|r−1 ∂vn

∂θ
|2dx ≤ C(ε + δ). (3.40)

By Corollary 2.6, we have
∫
D+

2i+1rn R
(x ′

n)\D+
2i rn R

(x ′
n)

(
|∂un

∂r
|2 − β(un)|∂vn

∂r
+ ω j

∂u j
n

∂r
|2
)
dx

≤ C
∫
D+

2i+1rn R
(x ′

n)\D+
2i rn R

(x ′
n)

|r−1 ∂un
∂θ

|2dx

+ C
∫
D+

2i+1rn R
(x ′

n)\D+
2i rn R

(x ′
n)

|r−1 ∂vn

∂θ
|2dx + 2i rn R. (3.41)

Thus, we arrive at
∫

�2

(
|∂un

∂r
|2 − β(un)|∂vn

∂r
+ ω j

∂u j
n

∂r
|2
)
dx

=
mn−1∑
i=0

∫
D+

2i+1rn R
(x ′

n)\D+
2i rn R

(x ′
n)

(
|∂un

∂r
|2 − β(un)|∂vn

∂r
+ ω j

∂u j
n

∂r
|2
)
dx

≤ C(ε + δ). (3.42)

Then (3.39), (3.40), (3.41), (3.42) and (3.34) imply (3.33).
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For case (b) limn→∞ dn
rn

= ∞.
The result for this case can be derived from case (a) and Lemma 3.2. In fact, in this case,

for n sufficiently large, we decompose the neck domain D+
δ (xn) \ D+

rn R
(xn) as in [15,16] as

follows

D+
δ (xn) \ D+

rn R
(xn) = D+

δ (xn) \ D+
δ
2
(x ′

n) ∪ D+
δ
2
(x ′

n) \ D+
2dn

(x ′
n)

∪ D+
2dn

(x ′
n) \ D+

dn
(xn) ∪ D+

dn
(xn) \ D+

rn R
(xn)

:= �1 ∪ �2 ∪ �3 ∪ �4. (3.43)

Since limn→∞ dn = 0 and limn→∞ dn
rn

= ∞, when n is large enough, it is easy to get that

�1 ⊂ D+
δ (xn) \ D+

δ
4
(xn), and �3 ⊂ D+

4dn
(xn) \ D+

dn
(xn).

Moreover, for any ρ ∈ [dn, δ
2 ], there holds

D+
2ρ(x ′

n) \ D+
ρ (x ′

n) ⊂ D+
4ρ(xn) \ D+

ρ/2(xn).

By assumption (3.32), we have

E(un;�1) + E(un;�3) ≤ ε2

and ∫
D+

2ρ(x ′
n)\D+

ρ (x ′
n)

|∇un |2dx ≤ ε2 for any ρ ∈
(
dn,

δ

2

)
.

Noting that �4 = D+
dn

(xn) \ D+
rn R

(xn) = Ddn (xn) \ Drn R(xn), by Lemma 3.2, there holds

lim
R→∞ lim

n→0
Eg(un, vn; Ddn (xn) \ Drn R(xn)) = 0.

To estimate the energy concentration in �2, we can use the same arguments as for case
(a) to get that

Eg(un, vn;�2) ≤ C(ε + δ). (3.44)

Thus we finish the proof of the lemma. ��
Similar to Lemma 3.3, when ω ≡ 0, we have

Lemma 3.5 Assume that {(un, vn)} is an approximate Lorentzian harmonic map sequence
as in Lemma 3.4 and additionally, we assume that ω ≡ 0 and ‖∇vn‖L p(D+) ≤  for
some p > 2, then case (a) in Lemma 3.4 will not happen and in case (b), we have that
σ i : R

2 ∪ {∞} → N is a nontrivial harmonic sphere, ξ i is a constant map and (3.30)
becomes

lim
n→∞ E(un; D+

1 (0)) = E(u; D+
1 (0)) +

L∑
i=1

E(σ i ), (3.45)

lim
n→∞ E(vn; D+

1 (0)) = E(v; D+
1 (0)). (3.46)

Furthermore, the image

u(D+
1 (0)) ∪

L⋃
i=1

σ i (R2) (3.47)

is a connected set.
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Proof We use the same symbols as in Lemma 3.4. First, let us show that if ω ≡ 0, Case (a)
will not happen. In fact, since ṽ satisfies

div(β(̃u)∇ṽ) = 0 in R
2
a

and ṽ|∂R2
a

≡ ψ(0), ṽ must be a constant map. Thus, ũ is a harmonic map from R
2
a with

constant boundary data ũ|∂R2
a

= φ(0) which implies that ũ is a constant map [18]. This is a

contradiction with E (̃u, ṽ;R2
a) ≥ 1

8 min{ε1, ε2}.
For case (b), when ω ≡ 0, it is clear that ṽ satisfies the equation

div(β(̃u)∇ṽ) = 0

in S
2 with finite energy ‖∇ṽ‖L2(S2) ≤ C which implies that ṽ must be a constant map.

Therefore ũ : S2 → N is a nontrivial harmonic sphere.
Now to prove the energy identities (3.45) and (3.46) is equivalent to prove

lim
R→∞ lim

δ→0
lim
n→∞ E(un, vn; D+

δ (xn) \ D+
rn R

(xn)) = 0. (3.48)

To prove the no neck result (3.47) is equivalent to prove

lim
R→∞ lim

δ→0
lim
n→∞ ‖un‖osc(D+

δ (xn)\D+
rn R

(xn))
= 0. (3.49)

We decompose the neck domain as (3.43). Since limn→∞ dn = 0 and limn→∞ dn
rn

= ∞,
when n is large enough, it is easy to see that

�1 ⊂ D+
δ (xn) \ D+

δ
4
(xn) and �3 ⊂ D+

4dn
(xn) \ D+

dn
(xn).

By (3.32), we have
E(un;�1) + E(un;�3) ≤ ε2, (3.50)

which implies that there is no energy loss on �1 ∪ �3. By Lemmas 2.1, 2.2 and (3.32), we
get

‖un‖Osc(D+
δ (xn)\D+

δ
4
(x ′

n))

≤ ‖un‖Osc(D+
δ (xn)\D+

δ
5
(xn))

≤ C(‖(∇un,∇vn)‖L2(D+
4δ
3

(xn)\D+
δ
6
(xn))

+ ‖(∇φ,∇ψ)‖L2(D+
4δ
3

(xn)\D+
δ
6
(xn))

+ δ‖(∇2φ,∇2ψ)‖L2(D+
4δ
3

(xn)\D+
δ
6
(xn))

+ δ‖(τn, κn)‖L2(D+
4δ
3

(xn)\D+
δ
6
(xn))

)

≤ C(ε + δ) (3.51)

and

‖un‖Osc(D+
2dn

(x ′
n)\D+

dn
(xn))

≤ ‖un‖Osc(D+
3dn

(xn)\D+
dn

(xn))

≤ C(‖(∇un,∇vn)‖L2(D+
4dn

(xn)\D+
dn
2

(xn))
+ ‖(∇φ,∇ψ)‖L2(D+

4dn
(xn)\D+

dn
2

(xn))

+ dn‖(∇2φ,∇2ψ)‖L2(D+
4dn

(xn)\D+
dn
2

(xn))
+ dn‖(τn, κn)‖L2(D+

4dn
(xn)\D+

dn
2

(xn))
)

≤ C(ε + δ), (3.52)
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when n, R are large and δ is small, which implies that there is no neck on �1 ∪ �3.
Moreover, for any dn ≤ ρ ≤ δ

2 , there holds

D+
2ρ(x ′

n) \ D+
ρ (x ′

n) ⊂ D+
4ρ(xn) \ D+

ρ/2(xn).

when n is big enough, then (3.32) tells us
∫
D+

2ρ(x ′
n)\D+

ρ (x ′
n)

|∇un |2dx ≤ ε2 for any ρ ∈ (dn,
δ

2
).

Combining this with Lemma 2.2, we get

‖un‖osc(D+
2ρ(x ′

n)\D+
ρ (x ′

n))

≤ C(‖(∇un,∇vn)‖L2(D+
4ρ(x ′

n)\D+
ρ/2(x ′

n))
+ ‖(∇φ,∇ψ)‖L2(D+

4ρ(x ′
n)\D+

ρ/2(x ′
n))

+ ρ‖(∇2ϕ,∇2ψ)‖L2(D+
4ρ(x ′

n)\D+
ρ/2(x ′

n))
+ ρ‖(τn, κn)‖L2(D+

4ρ(x ′
n)\D+

ρ/2(x ′
n))

)

for any ρ ∈ (dn,
δ
2 ).

Noting that �4 = D+
dn

(xn) \ D+
rn R

(xn) = Ddn (xn) \ Drn R(xn), the proofs of (3.48) and
(3.49) are reduced to the case in Lemma 3.3 and we have

lim
R→∞ lim

n→0
E(un, vn; Ddn (xn) \ Drn R(xn)) = 0 (3.53)

and
lim
R→∞ lim

n→0
osc(un)Ddn (xn)\Drn R(xn) = 0. (3.54)

To prove that there is no energy loss on �2, noting that ‖∇vn‖L p(D+) ≤  for some
p > 2, we get
∫
D+

δ (xn)\D+
rn R

(xn)
|∇vn |2dx ≤ Cδ

1− 2
p (

∫
D+

δ (xn)\D+
rn R

(xn)
|∇vn |pdx)

2
p ≤ Cδ

1− 2
p . (3.55)

Combining this with (3.44), we obtain

E(un,�2) ≤ CE(vn,�) + C(ε + δ) ≤ C(ε + δ
1− 2

p ). (3.56)

Then, (3.48) follows from (3.50), (3.53), (3.55) and (3.56).
Now we only need to analyze the neck on �2.
We denote Q(s) := D+

2s0+s2rn R
(x ′

n) \ D+
2s0−s2rn R

(x ′
n) and Q̂(s) := D2s0+s2rn R(x ′

n) \
D2s0−s2rn R(x ′

n), where 0 ≤ s0 ≤ mn and 0 ≤ s ≤ min{s0,mn − s0}. Let

f (s) :=
∫
Q(s)

|∇un |2dx .

Similar to the derivation of (3.15), we can obtain
∫
Q̂(s)

|∇μ̂n |2dx −
∫
Q̂(s)

|∂μ̂n

∂r
|2dx

≤ C(ε + δ)

∫
Q̂(s)

|	μ̂n |dx +
∫

∂ Q̂(s)

∂μ̂n

∂r
(μ̂n − μ̂n

∗). (3.57)
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By direct computations, we obtain∫
Q̂(s)

|∇μ̂n |2dx −
∫
Q̂(s)

|∂μ̂n

∂r
|2dx =

∫
Q(s)

|∇μn |2dx − 2
∫
Q(s)

(
|∂μn

∂r
|2− 1

2
|∇μn |2

)
dx

=
∫
Q(s)

|∇un |2dx − 2
∫
Q(s)

(
|∂un

∂r
|2− 1

2
|∇un |2

)
dx+4

∫
Q(s)

(
∂un
∂r

∂φ

∂r
−∇un∇φ

)
dx

+ 2
∫
Q(s)

(
|∇φ|2 − |∂φ

∂r
|2
)
dx

≥
∫
Q(s)

|∇un |2dx − 2
∫
Q(s)

(
|∂un

∂r
|2 − 1

2
|∇un |2

)
dx − C2s0+srn R.

It is easy to check that (3.38) still holds on �2. Combining this with ‖∇vn‖L p(D+) ≤ C , we
have ∫

Q̂(s)
|	μ̂n |dx ≤ C

∫
Q(s)

(|∇un |2 + |∇vn |2)dx + C2s0+srn R

≤ C
∫
Q(s)

|∇un |2dx + C(2s0+srn R)
1− 2

p .

Then (3.57) implies

(1 − C(ε + δ))

∫
Q(t)

|∇un |2dx

≤
∫

∂ Q̂(s)

∂μ̂n

∂r
(μ̂n − μ̂∗

n) + 2
∫
Q(s)

(
|∂un

∂r
|2 − 1

2
|∇un |2

)
dx + C(2s0+srn R)

1− 2
p

≤
∫

∂ Q̂(s)

∂μ̂n

∂r
(μ̂n − μ̂∗

n) + C(2s0+srn R)
1− 2

p , (3.58)

where the last inequality follows from Corollary 2.6 and (3.22).
For the boundary term on the right hand side of (3.58), by Hölder’s inequality and

Poincare’s inequality, we have

∫
∂D2s0+s2rn R

(x ′
n)

∂μ̂n

∂r
(μ̂n − μ̂∗

n) ≤
(∫

∂D2s0+s2rn R
(x ′

n)

|∂μ̂n

∂r
|2
∫

∂+D2s0+s2rn R
(x ′

n)

|μ̂n − μ̂∗
n |2
)1

2

≤ C

(∫
∂D2s0+s2rn R

(x ′
n)

|∂μ̂n

∂r
|2
) 1

2 (
2s0+srn R

∫ 2π

0
|∂μ̂n

∂θ
|2
)1

2

≤ C2s0+sdn

∫
∂D2s0+s2rn R

(x ′
n)

|∇μ̂n |2

≤ C2s0+sdn

∫
∂+D+

2s0+s2rn R
(x ′

n)

|∇μn |2

≤ C2s0+sdn

∫
∂+D+

2s0+s2rn R
(x ′

n)

|∇un |2 + C(2s0+srn R)2.

Similarly, we can obtain∫
∂D2s0−s2rn R

(x ′
n)

∂μ̂n

∂r
(μ̂n − μ̂∗

n) ≤ C2s0−sdn

∫
∂+D+

2s0−s2rn R
(x ′

n)

|∇un |2 + C(2s0−srn R)2.
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Taking ε and δ sufficiently small, we have∫
Q(s)

|∇un |2dx ≤C2s0+s2dn

∫
∂+(D+

2s0+s2rn R
(x ′

n))

|∇un |2

+ C2s0−s2dn

∫
∂+(D+

2s0−s2rn R
(x ′

n))

|∇un |2 + C(2s0+srn R)
1− 2

p ,

which gives us

f (s) ≤ C

log 2
f ′(s) + C(2s0+srn R)

1− 2
p . (3.59)

(3.59) implies that

(2− s
C f (s))′ ≥ −C(2s0rn R)

1− 2
p 2(1− 2

p − 1
C )s

.

Integrating from 2 to L , we arrive at

f (2) ≤ C2− 1
C L f (L) + C(2s0rn R)

1− 2
p 2(1− 2

p − 1
C )L

.

The rest proof is the same as the proof in Lemma 3.3. Thus we finish the analysis of energy
loss and no neck property on �1 ∪ �3, �4 and �2 and get (3.48) and (3.49). ��

We can now prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2 Theorem 1.1 is a direct conclusion of Lemmas 3.2 and 3.4.
If ω ≡ 0, ṽ = v − ψ satisfies

div(β(u)∇ṽ) = −div(β(u)∇ψ) + κ

with the boundary condition ṽ|∂M = 0. By Theorem 1 in [21], for any 1 < p < ∞, we have

‖∇ṽ‖L p(M) ≤ C(‖∇ψ‖L p(M) + ‖κ‖L2(M)).

Thus we have

‖∇v‖L p(M) ≤ C(‖∇ψ‖L p(M) + ‖κ‖L2(M)).

Then, Theorem 1.2 is a direct conclusion of Lemmas 3.3 and 3.5. ��

4 Applications to the Lorentzian harmonic map flow

At the beginning of this section, let us recall a lemma in [8] which is useful in this part.

Lemma 4.1 (Lemmas 2.1, 2.4 in [8]) Suppose (u, v) ∈ V(MT1
0 ; N × R) is a solution of

(1.14) and (1.15), then the Lorentzian energy Eg(u(t), v(t)) is non-increasing on [0, T1) and
for any 0 ≤ s ≤ t < T1, there holds

Eg(u(t), v(t)) +
∫ t

s

∫
M

|∂t u|2dxdt ≤ Eg(u(s), v(s)).

Moreover, for any 1 < p < ∞, t > 0, there holds∫
M

|∇u(·, t)|2dx +
∫
M

|∇v(·, t)|pdx +
∫ t

0

∫
M

|∂t u|2dxdt ≤ C(p, λ1, λ2, φ, ψ).
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Lemma 4.2 Let (u, v) ∈ V(MT1
0 ; N × R) be a solution to (1.14) and (1.15). There exists a

positive constant R0 < 1 such that, for any x0 ∈ M, 0 ≤ R ≤ R0 and 0 < s ≤ t < T1, there
hold

E(u(t); BM
R (x0)) ≤ E(u(s); BM

2R(x0)) + C
t − s

R2 , (4.1)

and

E(u(s); BM
R (x0)) ≤ E(u(t); BM

2R(x0)) + C
t − s

R2 + C
∫ t

s

∫
M

|∂t u|2dxdt, (4.2)

where BM
R (x0) ⊂ M is the geodesic ball centered at point x0 with radius R, C is a positive

constant depending on λ1, λ2, M, N , E(φ), ‖ψ‖W 1,4(M).

Proof Let η ∈ C∞
0 (BM

2R(x0)) be a cut-off function such that η(x) = η(|x − x0|), 0 ≤ η ≤ 1,
η|BM

R (x0) ≡ 1 and |∇η| ≤ C
R . By direct computations, we get

d

dt

1

2

∫
M

|∇u|2η2 =
∫
M

〈∇u,∇ut 〉η2

=
∫

∂BM
2R(x0)

∂u

∂r
· utη2 −

∫
M

〈	u, ut 〉η2 − 2
∫
M

∇u · ∇ηηut

=
∫
M

〈−ut − B�(u)|∇v|2, ut 〉η2 − 2
∫
M

∇u · ∇ηηut

= −
∫
M

|ut |2η2 −
∫
M
B�(u)|∇v|2 · utη2 − 2

∫
M

∇u · ∇ηηut .

On the one hand, by Lemma 4.1 and Young’s inequality, we have

d

dt

1

2

∫
M

|∇u|2η2 ≤ −1

2

∫
M

|ut |2η2 + C
∫
M

|∇u|2|∇η|2 + C
∫
M

|∇v|4η2 ≤ C

R2 .

By integrating the above inequality from s to t , we can get (4.1).
On the other hand, by Lemma 4.1 and Young’s inequality, we also have

d

dt

1

2

∫
M

|∇u|2η2 ≥ −3

2

∫
M

|ut |2η2 − C
∫
M

|∇u|2|∇η|2 − C
∫
M

|∇v|4η2

≥ −3

2

∫
M

|ut |2η2 − C

R2 .

Then (4.2) follows immediately from integrating the above inequality from s to t . ��
With the help of Lemma 4.2, we can apply the standard argument (see Lemma 6.4.10 in

[20]) to obtain

Lemma 4.3 Let (u, v) ∈ V(MT1
0 ; N × R) be a solution to (1.14) and (1.15). Assume that

there is only one singular point x0 ∈ M at time T1. Then there exists a positive number m > 0
such that, as t ↑ T1,

|∇u|2(x, t)dx → mδx0 + |∇u|2(x, T1)dx as Radon measures. (4.3)

Here δx0 denotes the δ−mass at x0.

Now we shall prove Theorems 1.3 and 1.4.
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Proof of Theorem 1.3 In fact, Theorem 1.3 is a consequence of Lemma 4.1, Theorems 1.1
and 1.2.

By Lemma 4.1, we can find a positive sequence tn → ∞, such that

lim
n→∞

∫
M

|∂t u|2(·, tn)dx = 0 and E(u(·, tn), v(·, tn)) ≤ C.

Taking the sequence to be (un, vn) = (u(·, tn), v(·, tn)) with (τn, hn) = (∂t u(·, tn), 0) in
Theorems 1.1 and 1.2, the conclusions of Theorem 1.3 follow immediately. ��
Proof of Theorem 1.4 With the help of Lemmas 4.2, 4.3, Theorems 1.1 and 1.2, the proof
of (1.19) is almost the same as the proof for the harmonic map flow and we omit the details
here. One can refer to [20] for the interior case and to [15,16] for the boundary case.

It is not hard to prove that there is a unique weak limit (u(T1), v(T1)) ∈ W 1,2(M, N ×R)

of (u(t), v(t)) in W 1,2(M) as t → T1 (one can refer to the proof of Theorem 1.2 in [14] for
a similar argument). Moreover, by Lemma 4.1,

v(t) ⇀ v(T1) weakly in W 1,4(M).

Then, we have∫
M

β(u(t))|∇v(t)|2dx −
∫
M

β(u(T1))|∇v(T1)|2dx

=
∫
M

β(u(t))∇v(t)∇(v(t) − v(T1)) + (β(u(t))∇v(t) − β(u(T1))∇v(T1))∇v(T1)dx

=
∫
M

(β(u(t)) − β(u(T1))) ∇v(t)∇v(T1) + β(u(T1)) (∇v(t) − ∇v(T1)) ∇v(T1)dx

= I + II,

where the first term of the second line is zero by integrating by parts and Eq. (1.14). Noting
that

I ≤ C‖∇v(t)‖L4(M)‖∇v(T1)‖L4(M)‖u(t) − u(T1)‖L2(M),

by weak convergence, we have

lim
t→T1

∫
M

β(u(t))|∇v(t)|2dx =
∫
M

β(u(T1))|∇v(T1)|2dx .

Combining this with (1.19), we get (1.20). ��
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