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Abstract A classification of SL(n) contravariant Minkowski valuations on convex functions
and a characterization of the projection body operator are established. The associated LYZ
measure is characterized. In addition, a new SL(n) covariant Minkowski valuation on convex
functions is defined and characterized.
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Several important norms on R” or convex bodies (that is, convex compact sets) in R” have
been associated to functions f : R” — R. On the Sobolev space wLI(R") (that is, the
space of functions f € L'(R") with weak gradient V f € L'(R")), Gaoyong Zhang [52]
defined the projection body I1 ( f). Using the support function of a convex body K (where
h(K,y) = max{y-x : x € K} with y - x the standard inner product of x, y € R") to describe
K, this convex body is given by

W(L(f). y) = fww V() dx
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for y € R". The operator that associates to f the convex body IT ( f) is easily seen to be
SL(n) contravariant, where, in general, an operator Z defined on some space of functions
f : R" — R and with values in the space of convex bodies, K", in R" is SL(n) contravariant
if Z(f o ¢~y = ¢p~" Z(f) for every function f and ¢ € SL(n). Here ¢~ is the inverse
of the transpose of ¢. The projection body of f turned out to be critical in Zhang’s affine
Sobolev inequality [52], which is a sharp affine isoperimetric inequality essentially stronger
than the L' Sobolev inequality. The convex body IT { f) is the classical projection body (see
Sect. 1 for the definition) of another convex body ( f), which is the unit ball of the so-called
optimal Sobolev norm of f and was introduced by Lutwak et al. [38]. The operator f > (f)
is called the LYZ operator. It is SL(n) covariant, where, in general, an operator Z defined
on some space of functions f : R” — R and with values in K" is SL(n) covariant if
Z(f o ¢*1) = ¢ Z(f) for every function f and ¢ € SL(n). See also [5,11,20,21,36,37,49].

In [33], a characterization of the operators f + IT(f) and f > (f) as SL(n) contravari-
ant and SL(n) covariant valuations on W1 (R") was established. Here, a function Z defined
on a lattice (£, V, A) and taking values in an abelian semigroup is called a valuation if

Z(f Ve +Z(f ng) =Z(f) +Z(») ey

for all f, g € L. A function Z defined on some subset S of L is called a valuation on S if (1)
holds whenever f, g, f vV g, f A g € S. For S the space of convex bodies, K", in R" with
V denoting union and A intersection, the notion of valuation is classical and it was the key
ingredient in Dehn’s solution of Hilbert’s Third Problem in 1901 (see [22,24]). Interesting
new valuations keep arising (see, for example, [23] and see [1-3,8,16,17,19,27,35] for some
recent results on valuations on convex bodies). More recently, valuations started to be studied
on function spaces. When S is a space of real valued functions, then we take u V v to be the
pointwise maximum of « and v while u A v is the pointwise minimum. For Sobolev spaces
[31,33,39] and L? spaces [34,46,47] complete classifications for valuations intertwining the
SL(n) were established. See also [4,7,10,13,14,25,32,41,50].

The aim of this paper is to establish a classification of SL(n) covariant and of SL(n) con-
travariant Minkowski valuations on convex functions. Let Conv(R") denote the space of
convex functions u : R" — (—o0, +00] which are proper, lower semicontinuous and coer-
cive. Here a function is proper if it is not identically +oo and it is coercive if

lim u(x) = +o0, 2)

|x|—400

where |x| is the Euclidean norm of x. The space Conv(IR") is one of the standard spaces in
convex analysis and here it is equipped with the topology associated to epi-convergence (see
Sect. 1). An operator Z : S — K" is a Minkowski valuation if (1) holds with the addition on
K" being Minkowski addition (thatis, K+L =f{x+y:x € K,y € L} for K, L € K"). The
projection body operator is an SL(n) contravariant Minkowski valuation on W11 (R") while
the LYZ operator itself is not a Minkowski valuation (for n > 3) but a Blaschke valuation
(see Sect. 1 for the definition).

In our first result, we establish a classification of SL(n) contravariant Minkowski valua-
tions on Conv(R"). To this end, we extend the definition of projection bodies to functions
¢ ou with u € Conv(R") and ¢ € D"2(R), where, for k > 0,

DKR) = {;‘ € C(R) : ¢ =0, ¢ is decreasing and / tk;(t) dr < oo}
0

We call an operator Z : Conv(R") — K" translation invariant if Z(u o =1 = Z(u) for
every u € Conv(R") and every translation t : R” — R”. Letn > 3.
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Theorem 1 A function Z : Conv(R") — K" is a continuous, monotone, SL(n) contra-
variant and translation invariant Minkowski valuation if and only if there exists { € D"~2(R)
such that

Z(u) =T1{¢ ou)
for every u € Conv(R").

Here Z : Conv(R") — K" is decreasing if Z(u) < Z(v) for all u, v € Conv(R") such
that u > v. It is increasing if Z(v) € Z(u) for all u, v € Conv(R") such that u > v. It is
monotone if it is decreasing or increasing.

While on the Sobolev space w1 (R") a classification of SL(n) contravariant Minkowski
valuations was established in [33], no classification of SL(n) covariant Minkowski valuations
was obtained on W11(R"). On Conv(R"), we introduce new SL(n) covariant Minkowski
valuations and establish a classification theorem. For u € Conv(R") and ¢ € DO(R), define
the level set body [¢ o u] by

+00
h([;’ou],y):/ h({¢ ou >1t}, y)dt
0
for y € R". Hence the level set body is a Minkowski average of the level sets. Let n > 3.

Theorem 2 An operator Z : Conv(R") — K" is a continuous, monotone, SL(n) covariant
and translation invariant Minkowski valuation if and only if there exists ¢ € DY(R) such
that

Z(u) =D[¢ ou]
for every u € Conv(R").

Here, the difference body, D K, of a convex body K is defined as D K = K + (—K), where
h(—K,y) = h(K, —y) for y € R" is the support function of the central reflection of K.
While on W1 (R") a classification of SL(n) covariant Blaschke valuations was estab-
lished in [33], on Conv(R") we obtain a more general classification of SL(n) contravariant
measure-valued valuations. For K € K", let S(K, -) denote its surface area measure (see
Sect. 1) and let M, (S"!) denote the space of finite even Borel measures on S"—1. See
Sect. 3 for the definition of monotonicity and SL(#) contravariance of measures. Let n > 3.

Theorem 3 An operator Y : Conv(R") — M (S"~") is a weakly continuous, monotone
valuation that is SL(n) contravariant of degree 1 and translation invariant if and only if
there exists { € D"~ 2(R) such that

Y(u, ) =S ou),-) 3)
for every u € Conv(R").
Here, for ¢ € D" 2(R) and u € Conv(R"), the measure S((£ o u), -) is the LYZ measure

of ¢ o u (see Sect. 3 for the definition). The above theorem extends results by Haberl and
Parapatits [18] from convex bodies to convex functions.
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1 Preliminaries

We collect some properties of convex bodies and convex functions. Basic references are the
books by Schneider [44] and Rockafellar & Wets [42]. In addition, we recall definitions and
classification results on Minkowski valuations and measure-valued valuations.

We work in R” and denote the canonical basis vectors by ey, .. ., e,. For a k-dimensional
linear subspace E C R”, we write proj; : R" — E for the orthogonal projection onto E and
Vi for the k-dimensional volume (or Lebesgue measure) on E. Let conv(A) be the convex
hull of A C R".

The space of convex bodies, K", is equipped with the Hausdorff metric, which is given
by

8(K, L) = supyegn-1 [1(K, y) — h(L, y)|

for K, L € K", where h(K, y) = max{y-x : x € K} is the support function of K at y € R".
The subspace of convex bodies in R" containing the origin is denoted by KCjj. Let P" denote
the space of convex polytopes in R"” and P the space of convex polytopes containing the
origin. All these spaces are equipped with the topology coming from the Hausdorff metric.

For p > 0, a function & : R" — R is p-homogeneous if h(t z) = t? h(z) for t > 0 and
z € R". 1t is sublinear if it is 1-homogeneous and h(y + z) < h(y) + h(z) for y,z € R".
Every sublinear function is the support function of a unique convex body. Note that for the
Minkowski sum of K, L € K", we have

h(K+L,y)=h(K,y)+h(L,y) “

fory e R".

A second important way to describe a convex body is through its surface area measure.
For a Borel set o € " ! and K € K", the surface area measure S(K, w) is the (n — 1)-
dimensional Hausdorff measure of the set of all boundary points of K at which there exists a
unit outer normal vector of d K belonging to w. The solution to the Minkowski problem states
that a finite Borel measure Y on S"~! is the surface area measure of an n-dimensional convex
body K if and only if Y is not concentrated on a great subsphere and fS,,,, udY(u)=0.1If
such a measure Y is given, the convex body K is unique up to translation.

For n-dimensional convex bodies K and L in R”, the Blaschke sum is defined as the
convex body with surface area measure S(K, -) + S(L, -) and with centroid at the origin. We
call an operator Z : S — K" a Blaschke valuation if (1) holds with the addition on " being
Blaschke addition.

1.1 Convex and quasi-concave functions
We collect results on convex and quasi-concave functions including some results on valuations
on convex functions. To every convex function u : R" — (—o00, 400], there are assigned
several convex sets. The domain, domu = {x € R"” : u(x) < +o0}, of u is convex and the
epigraph of u,

epiu = {(x,y) e R" x R:u(x) <y},

is a convex subset of R” x R. For t € (—o0, +00], the sublevel set,

{u<tt={xeR":ux) <t}
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is convex. For u € Conv(R"), it is also compact. Note that for u, v € Conv(R") and t € R,
furnv<tl={u=<t}U{v =<t} and fuvv<tl={u=<tinfv=<rt} O)

where for u A v € Conv(R") all occurring sublevel sets are either empty or in £”.

We equip Conv(R") with the topology associated to epi-convergence. Here a sequence
up : R" — (—o00, 00] is epi-convergent to u : R* — (—o0, oo] if for all x € R” the
following conditions hold:

(i) For every sequence xj that converges to x,

u(x) < liminf ug (xg).
k— 00
(i) There exists a sequence xi that converges to x such that

u(x) = lim wuy(xg).
k—o00

In this case we write u = epi-lim;_, o, ux and uy <P, 1. We remark that epi-convergence is
also called I'-convergence.

We require some results connecting epi-convergence and Hausdorff convergence of sub-
level sets. We say that {u; <t} — Jask — oo if there exists kg € Nsuch that {u; <t} =0
for all k > kq. Also note that if u € Conv(R"), then

infre u = mingr u € R.
Lemma 1.1 ([15], Lemma 5) Let ux, u € Conv(R"). If ux ~—> uy, then {ux < t}—{u <1t}
foreveryt € Rwitht % minycpn u(x).
Lemma 1.2 ([42], Proposition 7.2) Let uy, u € Conv(R"). If for each t € R there exists a
sequence ty of reals convergent to t with {uy < tr} — {u < t}, then uy L,

We also require the so-called cone property and uniform cone property for functions and
sequences of functions from Conv(R").

Lemma 1.3 ([12], Lemma 2.5) For u € Conv(R") there exist constants a, b € Rwitha > 0
such that
u(x) > alx|+b

for every x € R".
Lemma 1.4 ([15], Lemma 8) Let uy, u € Conv(R"™). If uy ﬂ) u, then there exist constants
a,b € Rwitha > 0 such that
ur(x) >alx|+b and u(x) >alx|+5b
for every k € Nand x € R".

Next, we recall some results on valuations on Conv(R"). For K € ICG, we define the
convex function £g : R" — [0, oo] by

epi{x = pos(K x {1}), (6)

where pos stands for positive hull, that is, pos(L) = {rz € Rt .z e Lt > 0} for
L C R""!. This means that the epigraph of £x is a cone with apex at the origin and
{lg <t} =1t K forallt > 0.Itis easy to see that £ is an element of Conv(R") for K € K.
Also the (convex) indicator function Ix for K € K" belongs to Conv(R"), where Ix (x) =0
forx € K and Ig (x) = oo forx ¢ K.
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Lemma 1.5 ([15], Lemma 20) For k > 1, let Y : Conv(R¥) — R be a continuous, transia-
tion invariant valuation and let y € C(R). If

YUp +1) =¥ @) Vi(P) )
for every P € 73(])‘ andt € R, then

(_1)k dk
Xl WW(I)

for every t € R. In particular,  is k-times differentiable.

Y(I[O,l]k + t) =

Lemma 1.6 ([15], Lemma 23) Let ¢ € C(R) have constant sign on [ty, 00) for some ty € R.
If there existk € N, ¢ € R and € C¥(R) with lim;— 400 ¥ (t) = O such that

dk
¢(t) = c @W(I)

fort > to, then

+o00
‘/ 1ty di| < +oo.
0

The next result, which is based on [33], shows that in order to classify valuations on
Conv(R"), it is enough to know the behavior of valuations on certain functions.

Lemma 1.7 ([15], Lemma 17) Let (A, +) be a topological abelian semigroup with can-
cellation law and let Z1,Z, : Conv(R") — (A, +) be continuous, translation invariant
valuations. If Zy(Lp +1) = Zr(Lp + 1) for every P € Py andt € R, then Zy = Z; on
Conv(R™).

A function f : R" — R is quasi-concave if its superlevel sets { f > ¢} are convex for
every t € R. Let QC(R") denote the space of quasi-concave functions f : R* — [0, +00]
which are not identically zero, upper semicontinuous and such that

lim f(x)=0.

|x|—+00

Note that £ o u € QC(R") for ¢ € D¥(R) with k > 0 and u € Conv(R"). A natural
extension of the volume in R” is the integral with respect to the Lebesgue measure, that is,
for f € QC(R"), we set

Vi) = [ fwar. ®)

See [9] for more information.
Following [9], for f € QC(R") and a linear subspace E C R", we define the projection
Sunction projg f : E — [0, +o0] for x € E by

projg f(x) = max f(x +y), ©))
yeEL
where E* is the orthogonal complement of E. For ¢ > 0, we have max,cpl f(x +y) =1
if and only if there exists y € E + such that f(x 4+ y) >t. Hence, fort > 0,

{projp f =t} = projp{f = 1}, (10)

where proj; on the right side denotes the usual projection onto E in R”.
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2 Valuations on convex bodies

We collect results on valuations on convex bodies and prove two auxiliary results.

2.1 SL(n) contravariant Minkowski valuations on convex bodies

For z € S*7!, let z- be the subspace orthogonal to z. The projection body, T1 K, of the
convex body K € K" is defined by

BITK,2) = Vi projes K) = 4 [ 13- <14S(K. ) (an

forz € S"71.
More generally, for a finite Borel measure ¥ on S"~!, we define its cosine transform
%Y : R" — R by

@@= [ 1yalare

for z € R". Since z — €Y (z) is easily seen to be sublinear and non-negative on R”, the
cosine transform %Y is the support function of a convex body that contains the origin.

The projection body has useful properties concerning SL(n) transforms and translations.
For ¢ € SL(n) and any translation t on R”, we have

M@$K)=¢ 'TIK and TI(tK)=TK (12)

for all K € K". Moreover, the operator K + IT K is continuous and the origin is an interior
point of IT K, if K is n-dimensional. See [44, Sect. 10.9] for more information on projection
bodies.

We require the following result where the support function of certain projection bodies is
calculated for specific vectors. Let n > 2.

Lemma 2.1 For P = conv{0, %(6‘1 +e2), e, ...,ep}and Q = conv{0, ea, ..., ey} we have
h(TIP, e1) = gy h(ITQ, e1) = Gipy
h(ITIP, €2) = 55y h(T1Q, e2) =0
h(IP,ei +e) = oy h(T1Q, e +2) = gy

Proof We use induction on the dimension and start with n = 2. In this case, P is a triangle
in the plane with vertices 0, %(el + e>) and e; and Q is just the line segment connecting the
origin with e;. It is easy to see that A(I1P, ex) = V; (projezL P) = % and A(IT Q,ez) =0
while 2(IT P, e;) = h(I1Q, e1) = 1. Itis also easy to see that

h(TIP, e + e2) = h(TIQ, €1 + &) = V2¥2 = 1.

Assume now that the statement holds for (n — 1). All the projections to be considered are
simplices that are the convex hull of ¢, and a base in ej- which is just the projection as in
the (n — 1)-dimensional case. Therefore, the corresponding (n — 1)-dimensional volumes
are just n%] multiplied with the (n — 2)-dimensional volumes from the previous case. To
illustrate this, we will calculate 4 (ITP, e; + e2) and remark that the other cases are similar.
Note that proj,, 1,1 P = conv{e,, proj,, )L P@=D} where P"~1 is the set in R"~!
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from the (n — 1)-dimensional case embedded via the identification of R"~! and ej- C R
Using the induction hypothesis and |e; + e2| = +/2, we obtain

. . —1
Vi—1(Proj (¢, 4e,)+ P) = ﬁ Vin—2(Proj e, 1e,)+ P )) = «/E(r:—l)!’

and therefore h(ITP, e + ¢2) = ﬁ =

The first classification of Minkowski valuations was established in [28], where the pro-
jection body operator was characterized as an SL(n) contravariant and translation invariant
valuation. The following strengthened version of results from [29] is due to Haberl. Let
n>3.

Theorem 2.2 ([16], Theorem 4) An operator Z : Kij — K" is a continuous, SL(n) contra-
variant Minkowski valuation if and only if there exists ¢ > 0 such that

ZK =cIIK

forevery K € K.
For further results on SL(n) contravariant Minkowski valuations, see [26,30,45].

2.2 SL(n) covariant Minkowski valuations on convex bodies

The difference body D K of a convex body K € K" is defined by D K = K + (—K), that s,
h(DK,2) = h(K,2) +h(=K, 2) = Vi(projz, K)

for every z € S"~!, where E(z) is the span of z. The moment body M K of K is defined by
hK. 2 = [ bzl
K

for every z € S"~!. The moment vector m(K) of K is defined by

m(K) = / xdx
K
and is an element of R”".

We require the following result where the support function of certain moment bodies and
moment vectors is calculated for specific vectors. Let n > 2.

Lemma 2.3 Fors > 0and Ty = conv{0, s ey, e2, ..., ey},
h(Ts,el):S h(_Ts,el):O
2 2
h(m(Ty), e1) = ﬁ hMTy, er) = m

Proof 1t is easy to see that h(Ts, e;) = s and h(—Ty, e;) = 0. Let ¢ € GL(n) be such that
el sejande; > ejfori =2,...,n. Then Ty = ¢;T", where T" = conv{0, e1, ..., e,}
is the standard simplex. Hence,
h(m(Ty), e1) = h(m(psT"), e1) = |det gg| h(m(T"), (¢5)"e1)
2
= s h(m(T"), e1) = Gy
where det stands for determinant. Finally, since e; - x > 0 for every x € T;, we have
h(M Ty, e;) = h(m(Ty), e1). o
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A first classification of SL(n) covariant Minkowski valuations was established in [29],
where also the difference body operator was characterized. The following result is due to
Haberl. Let n > 3.

Theorem 2.4 ([16], Theorem 6) An operatorZ : K — K" is a continuous, SL(n) covariant
Minkowski valuation if and only if there exist c1, c2, ¢3 > 0 and c4 € R such that

ZK=c1 K+ c(—-K)+c3MK + cgm(K)
for every K € K.
We also require the following result which holds for n > 2.

Theorem 2.5 ([29], Corollary 1.2) An operator Z : P" — K" is an SL(n) covariant and
translation invariant Minkowski valuation if and only if there exists ¢ > 0 such that

ZP=cDP

for every P € P".

For further results on SL(n) covariant Minkowski valuations, see [26,30,51].

2.3 Measure-valued valuations on convex bodies

Denote by M(S"~!) the space of finite Borel measures on S"~!. Following [18], for p € R,
we say that a valuation Y : Py — M(S" 1) is SL(n) contravariant of degree p if

/ b(z)dY(qf)P,Z):/ b '2)dY(P,2) 13)
sn—1 sn—1

for every map ¢ € SL(n), every P € Pj and every continuous p-homogeneous function
b : R"\{0} — R.
The following result is due to Haberl and Parapatits. Let n > 3.

Theorem 2.6 ([18], Theorem 1) A map Y : Py — MS" ) is a weakly continuous
valuation that is SL(n) contravariant of degree 1 if and only if there exist c1, co > 0 such
that

Y(P,:)=c1S(P,)+c2S(—P, )

for every P € Py.

We denote by M, (S"1) the set of finite even Borel measures on S"=1 that is, measures
Y € M@S" ) with Y(w) = Y(—w) for every Borel set @ C S"~!. We remark that
if in the above theorem we also require the measure Y(P,-) to be even and hence
Y: Py — M, (S"™1), then there is a constant ¢ > 0 such

Y(P,) =c(S(P,")+ S(—=P, ") (14)

for every P € Py.

@ Springer



162 Page 10 of 29 A. Colesanti et al.

3 Measure-valued valuations on Conv(R")

In this section, we extend the LYZ measure, that is, the surface area measure of the image
of the LYZ operator, to functions ¢ o u, where ¢ € D" 2(R) and u € Conv(R"). First, we
recall the definition of the LYZ operator on wLLRY by Lutwak et al. [38].

Following [38], for f € W!!(R") not vanishing a.e., we define the even Borel mea-
sure S({f),+) on sn-l (using the Riesz-Markov-Kakutani representation theorem) by the
condition that

[ p@ascr.a = /R b(V £ (1)) dx (15)

for every b : R” — R that is even, continuous and 1-homogeneous. Since the LYZ measure
S((f),-) is even and not concentrated on a great subsphere of S"—1 (see [38]), the solution
to the Minkowski problem implies that there is a unique origin-symmetric convex body ( f)
whose surface area measure is S({f), -).

If, in addition, f = ¢ ou € C®(R") with £ € D" 2(R) and u € Conv(R"), the set
{f = t} is a convex body for 0 < < max,cr» f(x), since the level sets of u are convex
bodies and ¢ is non-increasing with lims_, 1, ¢ (s) = 0. Hence we may rewrite (15) as

+00
/ b(2)dS((f). 2) = / f b(2)dS(S > 1}, 2) dr. (16)
Sn—l 0 Sn—l

Indeed, using that b is 1-homogeneous, the co-area formula (see, for example, [6, Sect. 2.12]),
Sard’s theorem, and the definition of surface area measure, we obtain

/ b(V f(x))dx =/ b( ki) IV £ ()] dx
R R N{V f70} ’

oo Vi) 1
= b 2 dH" () dt
/0 f&{fzt} (IVf(y)I)

—+00
_ / / b()AS(f = 1)) dr,
0 Snfl

where H"~! denotes the (n — 1)-dimensional Hausdorff measure.
Formula (16) provides the motivation of our extension of the LYZ operator, for which we
require the following result.

Lemma 3.1 If¢ € D""%(R), then
+o00
/ H'NO{¢ ou > 1})dr < +o0
0

for every u € Conv(R").

Proof Fix ¢ > 0 and u € Conv(R"). Let p. € C*°(R) denote a standard mollifying kernel
such that f]R" pe dx = L and p.(x) > O for all x € R” while the support of p. is contained in
a centered ball of radius . Write 7, for the translation ¢ — t + & on R and define ¢, (¢) for
t € Rby

+e
Le(t) = (pe* (ot N +e' = ((t—e—s)pe(s)ds +e".

—&
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It is easy to see, that ¢ is non-negative and smooth. Since ¢ +— fj; £(t — e —s)pe(s)ds is
decreasing, ¢, is strictly decreasing. Since

+e +e
¢t —e—s)pe(s)ds = ¢()pe(s)ds = £(),

—e —&
we get o () > ¢(¢) forevery t € R. Finally, ¢, has finite (n — 2)-nd moment, since t > e’

has finite (n — 2)-nd moment and
+00 +e +e& +00
f "2 C(t — & — s)pe(s)ds dr :/ ,Og(s)/ "2t —e —s)drds
0 —& —& 0

+e +00
< / Pe(8) ds/ t"_zg(t —2g)dt < 4o0.
0

—&
Since {; > ¢, we have { ou >t} C {{; ou > t} forevery t € R. Since those are compact

convex sets for every ¢ > 0, we obtain H" "' (8{¢ ou > t}) < H"1(8{¢s ou > 1}) for every
t > 0. Hence, it is enough to show that

+00
f H' 1 @3{t, ou > 1)) df < 400.
0

By Lemma 1.3, there exist constants a, b € R with a > 0 such that u(x) > v(x) = a|x|+b
for all x € R". Therefore {; o u < ¢ o v, which implies that {{; ou >t} C {{ o v >t}
for every t > 0. Hence, by convexity, the substitution t = ¢, (s) and integration by parts, we
obtain

A

+o00 +o00
f H' N 0{Le ou > 1)) dr / H' N 3{¢e ov > 1)) dr
0 0

Le(b) . .
= ;nlinl / (457 (t) - b)n7 dr
0

+00
= — [l / (s —b)" 1l (s) ds
b —_—_———

a1
<0

it lim inf (s — b)" ¢ (s)

IA

€[0,+00]

+00
+M/; (s — b)" 2. (s)ds

an~

<+o00
< 400,

where v,, is the volume of the n-dimensional unit ball. O

The previous lemma admits a reverse statement. Let { € C(R) be non-negative and
decreasing, and assume that

+00
/ H'ND{¢ ou > t})dr < 400 (17)
0
for every u € Conv(R"). Then necessarily

+oo
/ "72¢ (1) dt < 400, (18)
0
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i.e. ¢ € D" %(R). Indeed, the following identity holds

+o00 0o
f H”“(a{x:;(|x|>zr})dr=<n—1>H”—‘(S"—1>f 2e@yd. (19)
0 0

Therefore, substituting u(x) = |x| in (17) we immediately get (18). Identity (19) can be
easily proved by the co-area formula, when ¢ is smooth, strictly decreasing and it vanishes
in [t9, +00), for some #yp > 0. The general case is the obtained by a standard approximation
argument.

Lemma 3.2 (and Definition) For u € Conv(R") and ¢ € D" 2(R), an even finite Borel
measure S((¢ ou), -) on S*~V is defined by the condition that

400
f b(2)dS((¢ o), 2) = / / b(2)dS(¢ o = 1}, 2) di (20)
S”_l 0 Sn—l

for every even continuous function b : S*~' — R. Moreover, if uy, u € Conv(R") are such

that uy, N u, then the measures S({(¢ o uy), -) converge weakly to S({¢ o u), -).

Proof For fixed u € Conv(R") and ¢ € D"~2(R), we have

“+00

+00
f / @S¢ ou > 1}, di| < max c@] [ H U@ ou = 1) dr
0 sn=1 zesr-1 0

for every continuous function ¢ : $"~! — R. Hence Lemma 3.1 shows that

+00
c f / () dS(E ou = 1), 2) dr
o Jerm

defines a non-negative, bounded linear functional on the space of continuous functions on
S"=! Tt follows from the Riesz—Markov—Kakutani representation theorem (see, for example,
[43]), that there exists a unique Borel measure Y (¢ o u, ) on S"—1 such that

+00
/ c(z)dY(;ou,@:/ / () dS(( ou > 1), 2)di
Sn—l 0 Sn—l

for every continuous function ¢ : S"-1 — R. Moreover, the measure is finite. For u €
Conv(R") and ¢ € D"~%(R), define the even Borel measure S({¢ o u), -) on "~ ! as

S{Cou),)=5(YCou,)+Y(&ou,)),

where #~ (x) = u(—x) for x € R”. Note that (20) holds and that S({(¢ o u), -) is the unique
even measure with this property.

Next, fix an even continuous function b : §"~! — R. Let u, u € Conv(R") with uy L.
By Lemma 1.1, the convex sets {u; < t} converge in the Hausdorff metric to {# < ¢} for
every t 7 min,cre u(x), which implies the convergence of {{ o uy >t} — {¢ ou > t} for
every t # maXycpre ¢(u(x)). Since the map K — S(K, -) is weakly continuous on the space
of convex bodies, we obtain

[ poaston =00~ [ p@dsdcounzn.a,

for a.e. r > 0. By Lemma 1.4, there exist a, d € R with a > 0 such that uz(x) > v(x) =
al|x| + d and therefore ¢ o ux(x) < ¢ o v(x) for x € R” and k € N. By convexity,

H' N @{c oup = 1)) < H" N3¢ ov > 1))
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for every k € N and 7 > 0 and therefore
| [ b@dstcom = n.0] = max b H01 o = 1)
N zeS"™
< max |b(z)| H" ' @{c ov > 1}).
ZES”_I

By Lemma 3.1, the function ¢ fsn—l |b(z)| dS({¢ ov > 1}, 7) is integrable. Hence, we can
apply the dominated convergence theorem to conclude the proof. O

For p € R, we say that an operator Y : Conv(R") — M(S" 1YY is SL(n) contravariant
of degree p if for u € Conv(R"),

/ b(z)dY(uoqs—l,z):/ bo¢p "(2)dY(u,z)
Sn—l gn—l

for every ¢ € SL(n) and every continuous p-homogeneous function b : R"\{0} — R.
This definition generalizes (13) from convex bodies to convex functions. We say that Y
is decreasing on Conv(R"), if the real valued function u — Y (u, S”_l) is decreasing on
Conv(R™), that is, if u > v, then Y(u, $*™') < Y(v, S*~!). Similarly, we define increasing
and we say that Y is monotone if it is decreasing or increasing.

Lemma 3.3 For ¢ € D" 2(R), the map
ur> S ouj,-) (21)

defines a weakly continuous, decreasing valuation on Conv(R") that is SL(n) contravariant
of degree 1 and translation invariant.

Proof As K — S(K,-) is translation invariant, it follows from the definition that also
S((¢ ou), ) is translation invariant. Lemma 3.2 gives weak continuity. If u, v € Conv(R")
are such that u > v, then

fu<st<{v=s} {Cou=t} S {ov=>r}
and consequently by convexity
S ou=1).8"") < S({gov=1),5"7),
forall s € Rand ¢t > 0. For ¢ € SL(n),
{ouodp™ =t} =¢{tou=1),

and hence by the properties of the surface area measure, we obtain
+00
[ p@asconco o= [ [ basoicouzn.a
Sn= 0 Sn=
+00
:/ / bo¢ "(z)dS{¢ ou > t},z)dt
0 §n—1

= / 1 bo¢~'(2)dS((L ou), z)
Sn—
for every continuous 1-homogeneous function b : R*\{0} — R. Finally,letu, v € Conv(R")

be such that u A v € Conv(R"). Since ¢ € D" 2(R) is decreasing, we obtain by (5) and the
valuation property of the surface area measure that
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[ p@a(se o v )2+ 5 o wav).2)
+00
= [ [ p@asdceuncovzn+sicouveovzn.a)dr
o Jer-

+00
=/ /S D@ A(S{gouz=1N{gov=1}2)
0 /=

+S8({¢ou=1Uffov=1},2)dt

+o0
=/ / b d(SUE ou = 1).2) + S o v = 1), 2)) dr
0o Jer-

= /SH b(2) d(S((¢ o u), 2) + dS((¢ 0 v), 2)).

Hence (21) defines a valuation. m]

We remark that Tuo Wang [48] extended the definition of the LYZ measure from W1 ! (R")
to the space of functions of bounded variation, BV(R"), using a generalization of (15). The
co-area formula (see [6, Theorem 3.40]) and Lemma 3.1 imply that ¢ o u € BV(R") for
every ¢ € D" 2(R) and u € Conv(R"). However, our approach is slightly different from
[48]. The extended operators are the same for functions in Conv(R") that do not vanish a.e.,
but we assign a non-trivial measure also to functions whose support is (n — 1)-dimensional.
In this case, the LYZ measure is concentrated on a great subsphere of S”~! and hence we are
able to associate to such a function an (n — 1)-dimensional convex body as a solution of the
Minkowski problem but not an n-dimensional convex body. Since Blaschke sums are defined
on n-dimensional convex bodies, we do not obtain a characterization of the LYZ operator as
a Blaschke valuation on Conv(R"). Note that Wang’s definition allows to extend the LYZ
operator to BV(R") with values in the space of n-dimensional convex bodies. However,
Wang’s extended operators f +— S({f),-) and f +> (f) are only semi-valuations (see [50]
for the definition) but no longer valuations on BV (R") and Wang [50] characterizes f +—> (f)
as a Blaschke semi-valuation.

4 SL(n) contravariant Minkowski valuations on Conv(IR")

The operator that appears in Theorem 1 is defined. It is shown that it is a continuous, monotone,
SL(n) contravariant and translation invariant Minkowski valuation.

By (11) and the definition of the cosine transform, the support function of the classical
projection body is the cosine transform of the surface area measure. Since the measure
S((¢ ou), ), defined in Lemma 3.2, is finite for all ¢ € D" %(R) and u € Conv(R"), the
cosine transform of S({(¢ o u), -) is finite and setting

R(TT (¢ ou), z) = +ES({ o u), )(2)

for z € R”, defines a convex body IT (¢ o u) for { € D" 2(R) and u € Conv(R"). Here
we use that the cosine transform of a measure gives a non-negative and sublinear function,
which also shows that IT (¢ o u) contains the origin. By the definition of the cosine transform
and the definition of the LYZ measure S({¢ o u}), -), we have
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WL ou), 2) = ;/S |y 2S¢ o). y)

+00
%f / v-21dSAE o = 1), y) di 22)
0o Je

+o0
=f h(TT{Z ou > t},2)dt
0

for ¢ € D" 2(R) and u € Conv(R"). Hence the projection body of ¢ o u is a Minkowski
average of the classical projection bodies of the sublevel sets of ¢ o u.

Using the definition of the classical projection body (11), (10), the definition (9) of pro-
jections of quasi-concave functions and (8), we also obtain for z € §"~!

—+00
h(l'[(;ou),z)zf h(IT{¢ ou > t}, z)dt
0
+0o0
_ f Vo1 (proj, 1 (€ ou > 1)) dr
0

+00
_ /0 Voot (Iproj.s (€ o u) = 1)) dt
= V1 (proj,. (¢ o). 23)

Thus the definition of the projection body of the function ¢ o u is analog to the definition
of the projection body of a convex body (11). In [5], this connection was established for
functions that are log-concave and in W11 (R").

Lemma 4.1 For ¢ € D" %(R), the map
u > I1{¢ ou) 24)

defines a continuous, decreasing, SL(n) contravariant and translation invariant Minkowski
valuation on Conv(R").

Proof Let¢ € D" 2(R) and u € Conv(R"). By (12) and (22), we get for every ¢ € SL(n)
andz € "1,

h<n<;ouo¢*‘>,z)=/ W (Couod™ = 1).2)dr
0
:/Ooh(n¢{§ouzt},z)dt
0

=/Ooh(¢_tl'[{§ou2z},z)dt
0

= /Ooh(l_l {Cou=> t},qb_lz) dr = h(I1(¢ ou,)¢_lz).
0

Similarly, we get for every translation T on R” and z € $"~!,
h(I1(Couot "), 2) = h(I1 (¢ ou), 2).
Thus for every ¢ € SL(n) and every translation T on R”,
M{ouop Yy =¢ 'M(¢ou) and TI(ouot ') =TI(Cou)

and the map defined in (24) is translation invariant and SL(n) contravariant. By Lemma 3.3,
the map u +— S((¢ ou),-) is a weakly continuous valuation. Hence, the definition of
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IT (¢ o u) via the cosine transform and (4) imply that (24) is a continuous Minkowski valua-
tion. Finally, let ¢ € D""2(R) and u, v € Conv(R") be such that u > v. Then {Cou=>1t} C
{¢ ov >t} for every t > 0 and consequently, h(IT{¢ ou > t},z) < h(I1{¢ ov > t}, 7) for
every z € S"=!and ¢t > 0. Hence, for every z € s,

+o00 +00

h(IT(¢ ou),z) = / h(IT{¢ou > t},z)dr < / h(IT{¢ov > t},z)dt = h(IT (¢ o v), 2),
0 0

or equivalently IT (¢ o u) C I (¢ o v). Thus the map defined in (24) is decreasing. O

5 Classification of SL(n) contravariant Minkowski valuations
The aim of this section is to prove Theorem 1. Let n > 3 and recall the definition of the cone
function £x from (6).

Lemma 5.1 If Z : Conv(R") — K" is a continuous and SL(n) contravariant Minkowski
valuation, then there exist continuous functions ¥, ¢ : R — [0, 0co) such that

Z(lg +1) =y OIK,
Z(Ax +1) = ¢(1)IIK
forevery K € K andt € R.
Proof Fort € R, define Z, : K — K" as
Z: K =Z(g +1).

Now, for K, L € Kfj such that K U L € K}, we have ({x +1) A ({p +1t) = £xur + ¢ and
g +1)Vv (UL +1) = Llgnr + t. Using that Z is a valuation, we get

ZiK+7Z,L =7k +1)+7Z(L +1)
=Z((Ug +) VL +1) +Z(Lg +1) A (LL +1))
—Z(KUL) +Z,(KNL),

which shows that Z, is a Minkowski valuation for every ¢ € R. Since Z is SL(n) contravariant,
we obtain for ¢ € SL(n) that

Z($K) =Z(lyx +1) =Z(Ux + 10~ ) = ¢~ ZUk +1) = ¢ ' Z, K.

Therefore, Z; is a continuous, SL(#n) contravariant Minkowski valuation, where the continuity
follows from Lemma 1.1. By Theorem 2.2, there exists a non-negative constant c; such that

Z(ZK+t):ZtK:CtHK

for all K € K. This defines a function v/ (t) = ¢;, which is continuous due to the continuity
of Z. Similarly, using Z,;(K) = Z(Ix + t), we obtain the function ¢. ]

For a continuous, SL(n) contravariant Minkowski valuation Z : Conv(R") — K", we
call the function v from Lemma 5.1 the cone growth function of Z. The function ¢ is called
its indicator growth function. By Lemma 1.7, we immediately get the following result.

Lemma 5.2 Every continuous, SL(n) contravariant and translation invariant Minkowski
valuation Z : Conv(R") — K" is uniquely determined by its cone growth function.
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Next, we establish an important connection between cone and indicator growth functions.

Lemma 5.3 LetZ : Conv(R") — K" be a continuous, SL(n) contravariant and translation
invariant Minkowski valuation. The growth functions satisfy

(_1)1171 dnfl
(n—1)! dr-1

HOES V()

foreveryt € R.

Proof We fix the (n — 1)-dimensional linear subspace £ = ej- of R”. Since E is of dimension
(n — 1), we can identify the set of functions u € Conv(R") such that domu C E with
Conv(R"*~') = Conv(E). We define Y : Conv(E) — R by

Y (u) = h(Z(u), en).

Since Z is a Minkowski valuation, Y is a real valued valuation. Moreover, Y is continuous and
translation invariant, since Z has these properties. By the definition of the growth functions
we now get

Y(p+1)=hZ{Lp +1),en) =Y ORI P, en) = Y (1) Vn-1(P)

and
Y(Ip +1) =h(Z(p + 1), ey) = S(ORIT P, en) = £(t) Vyp—1(P)

forevery P € ngl(E) ={PePj : PC E}andr € R. Hence, by Lemma 1.5,

(_l)n—l dn—l
(n—1)! d-1

for every ¢t € R, where [0, 11" '=[0,11"NE. O

£(6) = (1) Var (10, 11771 = Y(0pg o1 +1) = o)

Next, we establish important properties of the cone growth function.

Lemma 5.4 [f Z : Conv(R") — K" is a continuous, SL(n) contravariant and translation
invariant Minkowski valuation, then its cone growth function \ is decreasing and satisfies

lim (1) = 0. (25)

Proof In order to prove that v is decreasing, we have to show that ¥ (s) > v (¢) for all
s < t. Without loss of generality, we assume that s = 0, since for arbitrary s we can consider
Z(u) = Z(u + s) with cone growth function J and IZ(O) = ¥ (s). Hence, for the remainder
of the proof we fix an arbitrary # > 0 and we have to show that ¥ (z) < ¥ (0).

Define the polytopes P and Q as in Lemma 2.1. Choose u#; € Conv(R") such that
epiu; = epilp N{x; < %}. Let t; be the translation x — x + é(el + e2) and define
€p(x) =€p(x) ot ' 41 and similarly £ ,(x) = £o(x) o 7, ' + 7. Note that

M[/\ZP’IZKP and MIVZPJZZQ,[.
Thus, the valuation property of Z gives
Z(ur) +Z(lp ) =Z(us Np ) +Z(us V Lp) =Z(Lp) +Z(Lo,r)-

Using the translation invariance of Z and the definition of the cone growth function, this gives
for the support functions

h(Z(up), ) = (Y (O) =y (@O)h(ITP, ) + ¥ (Oh(T1Q, ). (26)

@ Springer



162 Page 18 of 29 A. Colesanti et al.

Since Z(u,) is a convex body, its support function is sublinear. This yields
h(Z(us), e + €2) < h(Z(uy), e1) + h(Z(uy), €2)
and

W (0) =y @)h(IT P, e; + e2) + Y (DRI Q, e1 + €2)
< @0 =y @) (R P, e1) + h(TL P, e2)) + ¢ (1) (R(TT Q, e1) + h(I1 Q, €2)).

Using Lemma 2.1, we obtain

W (©0) = ¥ () gty + VO gty < W (O) = ¥ (O) Gty + 3gmmn) + ¥ O (Gt + 0,
0= WO =¥ (®) 5y

which holds if and only if ¥ () < ¥ (0).

In order to show (25), let ¢ in the construction above go to +00. It is easy to see, that in this
case u, is epi-convergent to £ p. Since ¥ is decreasing and non-negative, lim;_, ;oo ¥ (1) = VYoo
exists. Taking limits in (26) therefore yields

YOI P, ) = h(Z(Lp), ) = (Y (0) = Yoo) h(IT P, ) + Yoo R(IT Q, ).

Evaluating at ep now gives Yoo = 0. O

By Lemma 1.7, we obtain the following result as an immediate corollary from the last
result. We call a Minkowski valuation on Conv(R") trivial if Z(u) = {0} for u € Conv(R").

Lemma 5.5 Every continuous, increasing, SL(n) contravariant and translation invariant
Minkowski valuation on Conv(R") is trivial.

Lemma 5.3 shows that the indicator growth function ¢ of a continuous, SL(n) contravariant
and translation invariant Minkowski valuation Z determines its cone growth function ¥ up
to a polynomial of degree less than n — 1. By Lemma 5.4, lim;—.», ¥ (f) = 0 and hence
the polynomial is also determined by ¢. Thus ¥ is completely determined by the indicator
growth function of Z and Lemma 5.2 immediately implies the following result.

Lemma 5.6 Every continuous, SL(n) contravariant and translation invariant Minkowski
valuation Z : Conv(R") — K" is uniquely determined by its indicator growth function.

5.1 Proof of Theorem 1

If¢ e D"~2(R), then Lemma 4.1 shows that the operator u +— I1(¢ ou) defines a con-
tinuous, decreasing, SL(n) contravariant and translation invariant Minkowski valuation on
Conv(R™).

Conversely, let a continuous, monotone, SL(n) contravariant and translation invariant
Minkowski valuation Z be given and let ¢ be its indicator growth function. Lemma 5.5
implies that we may assume that Z is decreasing. It follows from the definition of ¢ in
Lemma 5.1 that ¢ is non-negative and continuous. To see that ¢ is decreasing, note that by
the definition of ¢ in Lemma 5.1,

h(Zpo, 1 + 1), e1) = ¢ (@) h(TT[0, 11", e1) = (1)

for every t € R and that Z is decreasing. By Lemma 5.3 combined with Lemma 1.6, the
function ¢ has finite (n — 2)-nd moment. Thus ¢ € D""2(R).
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Foru =1p +t with P € Py and ¢ € R, we obtain by (22) that
400
h(I1 ({ou),Z)Z/ h(IT{¢ ou > s},2)ds =¢(@) h(IT P, 2)
0
for every z € S"=!. Hence T (¢ o (Ip +1)) = ¢()[IP for P € Py and t € R. By
Lemma 4.1,
ur> I1({¢ou)

defines a continuous, decreasing, SL(n) contravariant and translation invariant Minkowski
valuation on Conv(R") and ¢ is its indicator growth function. Thus Lemma 5.6 completes
the proof of the theorem.

6 Classification of measure-valued valuations

The aim of this section is to prove Theorem 3. Let n > 3.

Lemma 6.1 If Y : Conv(R") — M (S VYisa weakly continuous valuation that is SL(n)
contravariant of degree 1, then there exist continuous functions ¥, ¢ : R — [0, 00) such
that

Ytk +1,) = 3y (SKK, )+ S(—K. ),
Y(x +1.2) = $(0(S(K. )+ S(—K. )

forevery K € K andt € R.

Proof Fort € R, define Y, : Kj — Mo (S" 1) as
Yi(K,) =Yk +1,).

As in the proof of Lemma 5.1, we see that Y, is a weakly continuous valuation that is SL(n)
contravariant of degree 1 for every t € R. By Theorem 2.6 and (14), for¢ € R, thereisc¢; > 0
such that

Yi(K,)=Y(Ug +1,) =c:(SK,) + S(—K, )

forall K € K. This defines a non-negative function y (¢) = %c,. Sincet — Y(lg +1,S" 1)
is continuous, also v is continuous. The result for indicator functions and ¢ follows along
similar lines. O

For a weakly continuous valuation Y : Conv(R") — M, (S"~!) that is SL(n) contravari-
ant of degree 1, we call the function v from Lemma 6.1, the cone growth function of Y and
we call the function ¢ its indicator growth function.

Lemma 6.2 If Y : Conv(R") — M (S" YHisa weakly continuous valuation that is SL(n)
contravariant of degree 1 and translation invariant, then

( l)n 1 dn—= 1
(n— D! dn-l

¢ = v ().

Moreover, r is decreasing and lim;_, y~, ¥ (1) = 0.
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Proof Recall that the cosine transform €Y (u, -) is the support function of a convex body that
contains the origin for every u € Conv(R"). By the properties of Y, this induces a continuous,
SL(n) contravariant and translation invariant Minkowski valuation Z : Conv(R") — K" via

h(Z(u), y) = X6Y u, ) (y)

for y € R". By Lemma 6.1, we have
hZ(g +1),y) = 363U (O(S(K, ) + S(—K, ) () = ¢ (Oh(TIK, y)

for every K € ICS, t € Rand y € R". Hence, by Lemma 5.1, the function v is the cone
growth function of Z. Similarly, it can be seen, that ¢ is the indicator growth function of Z.
The result now follows from Lemma 5.3 and Lemma 5.4. O

Lemma 6.3 Every weakly continuous, increasing valuation Y : Conv(R") — M, (S"~1)
that is SL(n) contravariant of degree 1 and translation invariant is trivial.

Proof Since Y is increasing, Lemma 6.1 implies that for s < ¢

Y(g +5, SN < Y +1,87h,
() (SKK,S"H + S(—K, ") < y()(SKK,S" ) + S(—K, "))

for every K € Kfj. Hence, ¥ is an increasing function. By Lemma 6.2, ¢ = 0. Lemma 1.7
implies that Y is trivial. O

Lemma 6.4 Every weakly continuous valuation Y : Conv(R") — M, (S"1Y that is SL(n)
contravariant of degree 1 and translation invariant is uniquely determined by its indicator
growth function.

Proof By Lemma 6.2, we have lim,, 1o ¥(r) = 0 and ¢(r) = GO0 ¢y ) Thig

(n=D! de-1
shows that ¢ uniquely determines . Since Lemma 1.7 implies that Y is determined by its

cone growth function, this implies the statement of the lemma.

6.1 Proof of Theorem 3

By Lemma 3.3, the map Y : Conv(R") — M, (S"~!) defined in (3) is a weakly continuous,
decreasing valuation that is SL.(n) contravariant of degree 1 and translation invariant.

Conversely, let Y : Conv(R") — M (S" Hbea weakly continuous, monotone valuation
that is SL(n) contravariant of degree 1 and translation invariant. Let ¢ : R — [0, co) be its
indicator growth function. If Y is increasing, then Lemma 6.3 shows that Y is trivial. Hence
we may assume that Y is decreasing. Lemma 6.2 combined with Lemma 1.6 implies that
. € D" 2(R).

Now, for u = Igx + ¢ with K € K{j and t € R we obtain by Lemma 6.1 and by the
definition of S({¢ o u), -) in Lemma 3.2 that

Y, ) = 3C)(S(K, ) + S(=K, ) = S ou), ).
By Lemma 3.3,
ut—> S{¢ou,-)

defines a weakly continuous, decreasing valuation on Conv(R") that is SL(n) contravariant
of degree 1 and translation invariant and ¢ is its indicator growth function. Thus Lemma 6.4
completes the proof of the theorem.
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7 SL(n) covariant Minkowski valuations on Conv(R")

The operator that appears in Theorem 2 is discussed. It is shown that it is a continuous, mono-
tone, SL(n) covariant and translation invariant Minkowski valuation. Moreover, a geometric
interpretation is derived.

We require the following results.

400

Lemma 7.1 For¢ € D°(R), we have ’ / h({¢ou > t}, 2) dt| < 400 forevery function
0

u € Conv(R") and z € S" 1.

Proof Fix ¢ > 0 and u € Conv(R"). Let p, € C*(R) denote a standard mollifying kernel
such that fRn pe(x)dx =1, supp pe € B:(0) and p.(x) > 0O for all x € R". Write t, for the

translation 7 — ¢ + ¢ on R and define ¢.(¢) fort € R as

+&
G)=(pex Cor, N +e' = | ¢t —e—s)pe(s)ds +e".
—&
As in the proof of Lemma 3.1, it is easy to see that ¢, is smooth and strictly decreasing and
that

+00
/ Le (1) dt < 4-o00.
0

Moreover, ¢.(t) > ¢(t) > 0 forevery t € R. Hence, {¢ ou > t} C {¢; ou > t} for every
t > 0 and therefore it suffices to show that

“+00
|/ h({Ze ou > 1}, 2) dt| < 400
0
for every z € snl. By Lemma 1.3, there exist constants a, b € R with @ > 0 such that

u(x) > v(x) = alx| + b for all x € R". Hence, by substituting = ¢ (s) and by integration
by parts, we obtain

+00 “+00
}/ h({ge 0 > 1), 2) di] 5/ h({ge o v = 1).2)dr
0 0
Le(b)
= %/ € ') —byde
0

+00
=-1 / (s —b) g/(s) ds
b N—— ——’

<0
+00
< —% liminf(s — b) ¢ (s) +%/ Le(s)ds < +o0,
§s—>+00 b
€[0,+00] <too
which concludes the proof. -

Lemma 7.2 (and Definition) For ¢ € DO(R), the map u +— [¢ o u] from Conv(R") to K",
defined for z € S*~! by

+00

h([§ ou], z) = / h({S ou =1}, z)dt,
0

is a continuous, decreasing, SL(n) covariant Minkowski valuation.
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Proof Letu, v € Conv(R") be such that u > v. Then
{ou=t} S{fov=1}
for every + > 0 and consequently,
h({Cou=t},2) <h({fov =1}, 2)

for every z € S"~ . Since the integral in the definition of [¢ o u] converges by Lemma 7.1,
this shows that u — [¢ o u] is well-defined and decreasing on Conv(R").

Now, let u € Conv(R") and u; € Conv(R") be such that epi-lim;_, . ux = u. By
Lemma 1.1, the sets {ux < ¢} converge in the Hausdorff metric to the set {u < ¢} for every
t % min,egrr u(x), which is equivalent to the convergence {¢ o uy >t} — {¢ ou > t} for
every t # max,ere {(#(x)). By Lemma 1.4, there exist constants a, b € R with a > 0 such
that for every k € N and x € R”

ur(x) >v(x) =alx|+5b
and therefore ¢ (ux(x)) < ¢(v(x)) for every x € R” and k € N and hence also
[h({¢ cux > 1}, )| < h({ ov > 1}, 2)

foreveryt > 0,k € Nand z € S"~! where we have used the symmetry of v. By Lemma 7.1,
we can apply the dominated convergence theorem, which shows that u — [¢ o u] is contin-
uous.
Finally, since
ur>{Cou >t}

defines an SL(n) covariant Minkowski valuation for every ¢ > 0, it is easy to see that also
u > [¢ o u] has these properties. O

Let f = ¢ouwith¢ € DO(R) and u € Conv(R"). Write E(z) for the linear span of
z € S*~!. By the definition of the level set body, the difference body, the projection of a
quasi-concave function (9), and (10), we have

hOLf1. 2) = h(Lf1, 2) + h(=LF1. 2)
+00
=/ WS = 1,2+ h(={f = 1}, di
0

00
=/ WDUF = 1), 2)dt
0

+0o0
= / Vi(projp{f = t}) dz
0
=V (prOjE(Z) ).

This corresponds to the geometric interpretation of the projection body from (23).

Lemma 7.3 For { € DO(R), the map u +— D [¢ o u] from Conv(R") to K" is a continuous,
decreasing, SL(n) covariant and translation invariant Minkowski valuation.
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Proof For every translation 7 on R” and u € Conv(R"), we have
+00
h(D[ouot '], 2) = / h(D{t ouot™' >1, z}dr

0
+00

= / h(D{¢ ou > t,z}dt =h(D[¢ oul, z),
0

since the difference body operator is translation invariant. The further properties follow
immediately from the properties of the level set body proved in Lemma 7.2. O

8 Classification of SL(n) covariant Minkowski valuations

The aim of this section is to prove Theorem 2. Let n > 3.

Lemma 8.1 If Z : Conv(R") — K" is a continuous, SL(n) covariant Minkowski valuation,
then there exist continuous functions ¥1, ¥, ¥3 : R — [0, 00) and ¥4 : R — R such that

Z(lk +1) =Y1K +92(0)(—K) + ¥3() MK + ¥4(1) m(K)
forevery K € Kjjandt € R. If Z is also translation invariant, then there exists a continuous
function ¢ : R — [0, 00) such that
Z(Igx +1)=¢@)DK
forevery K € K" andt € R.
Proof Fort € R, define Z; : Kjj — K" asZ; K = Z(£k +1). Itis easy to see, that Z; defines

a continuous, SL(n) covariant Minkowski valuation on KCfj for every ¢ € R. Therefore, by
Theorem 2.4, for every ¢ € R there exist constants ¢ ;, ¢2 1, ¢3; > 0 and ¢4 ; € R such that

ZUg +t)=7Z; K =c1:K +c2:(—K) +c3: MK + ¢4, m(K)

for every K € KCfj. This defines functions v; () = ¢;, for 1 <i < 4. By the continuity of Z,

52

(n+1)!

is continuous for every s > 0, where T is defined as in Lemma 2.3. Setting s = 1 and s = 2
shows that

1> h(Z{r, +1),e1) = sY1 (1) + (W3(t) + ¥a (1))

1
t= Y1) + m(lm(f) + Y4(1)),

4
r=>29() + m(‘/&(t) + Y4 (1))

are continuous functions. Hence 43 + ¥4 and v are continuous functions. The continuity
of the map ¢t — h(Z({r, 4 1), —ey) shows that Y3 — ¥4 and Y, are continuous. Hence, also
Y3 and Y4 are continuous functions.

Similarly, if Z is also translation invariant, we consider Y, (K) = Z(Ix +1t), which defines
a continuous, translation invariant and SL(n) covariant Minkowski valuation on K" for every
t € R. Therefore, by Theorem 2.5, there exists a non-negative constant d; such that

Zax +1) =Y, (K) =d, DK
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for every t € Rand K e K. This defines a function ¢ (#) = d;, which is continuous due to
the continuity of Z. O

Lemma 8.2 [f Z : Conv(R") — K" is a continuous, SL(n) covariant Minkowski valuation,
then, for e € S"1,
h(Z(v),e) =0

foreveryv € Conv(R") such that dom v lies in an affine subspace orthogonal to e. Moreover,
if O is the orthogonal reflection at e, then

h(Zu), e) = h(Zuov™ Y, —e)
for every u € Conv(R").

Proof By Lemma 8.1, wehave h(Z(£k), e) = Oforevery K € Kf suchthat K C e1. Hence,
Lemma 1.7 implies that 4 (Z(v), e) = 0 for every u € Conv(R") such that domv C el.
By the translation invariance of Z, this also holds for v € Conv(R") whose dom v lies in an
affine subspace orthogonal to e.

Similarly, for every K € K7, we have h(K,e) = h(®K,—e) and h(—K,e) =
h(—v K, —e)whileh(m(K), e) = h(m(PK), —e)andh(M K, e) = h(M(¥ K), —e). Hence
Lemma 8.1 implies that h(Z({k), e) = h(Z({k o ®~1), —e). The claim follows again from
Lemma 1.7. O

In the proof of the next lemma, we use the following classical result due to H.A. Schwarz
(cf. [40, p. 37]). Suppose a real valued function ¥ is defined and continuous on the closed

interval 7. If
. Y@ +h) =2¢@)+y@E—h)
im =

h—0 h? 0

everywhere in the interior of /, then v is an affine function.

Lemma 8.3 Let Z : Conv(R") — K" be a continuous, SL(n) covariant and translation
invariant Minkowski valuation and let V1, Y2, W3 and W4 be the functions from Lemma 8.1.
Then yry and yry are continuously differentiable, w{ = wé and both 3 and 4 are constant.

Proof For a closed interval I in the span of ey, let the function u; € Conv(R") be defined
by
{uy <0y =0, {u; <s}=1+conv{0,ser,...,s¢e,}

for every s > 0. By the properties of Z it is easy to see that the map I — h(Z(u; + 1), e1)
is a real valued, continuous, translation invariant valuation on X! for every t € R. Hence, it
is easy to see that there exist functions &g, ¢ : R — R such that

h(Z(up +1), e1) = §o(t) + S1() Vi) 27)

forevery I € Klandr e R (see, for example, [24, p. 39]). Note, that by the continuity of Z,
the functions ¢p and ¢ are continuous.
Forr,h > 0, let T/, = conv{0, %el ,e2, ..., ey} Define the function uf by

{ul <s}={tr,, <s}nfx; <r}
for every s € R. It is easy to see that u” € Conv(R") and that
{u} <syUflr,, ot +h<s}={lr, <s}

Wl <synitr, ot +h <s)Clx=r}
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for every s € R, where 7, is the translation x + x + rej. By translation invariance, the
valuation property and Lemma 8.2, this gives

hZu! +1),e1) = h(Z{t,, +1),e1) —h(Zlr,,, +1+h), e1)
for every ¢t € R. Note, that by Lemma 1.2 we have uf P upo,r] as h — 0. Hence, using
the continuity of Z, Lemma 8.1 and Lemma 2.3, we obtain

h(Z(ugo,r) + 1), e1)
= lim h(Zu" +1),e1)
h—0t

_ ( Vi) -yt +h) r? (1/13+¢4)(l)—(103+w4)(t+h)>
= lim (r
h—0+ h (n+1)! h?

for every t € R and r > 0. Comparison with (27) now gives

Yi(t) — it +h) 0= i (W3 + Ya) (@) — (Y3 + )t + h)
— =, 0= lim .
h h—0+ h?

¢1(t) = lim
h—07F
(28)

.. . epi X
Similarly, since also u” — h 2 upo,r) as h — 0, we obtain

t=h—vi@® . W3ty —h) - W3+ Ya)@)
——= 0= lim .
h h—0+ h?

)= 1
¢1(8) Jim,

Hence, 1 is continuously differentiable with —y{ = ¢;. In addition, by H.A. Schwarz’s
result, the function 3 4 V4 is linear and hence by (28) it must be constant.

Now, let ¥ denote the reflection at {x; = 0} = ef-. Lemma 8.2 and the translation
invariance of Z give

h(Z(uo. + 1), e1) = h(Z(up, 00~ +1), —e1)
= h(Z(u—r0 +1), —e1) = h(Z(u,- + 1), —e1)
for every t € R. Repeating the arguments from above, but evaluating at —ej, shows that

—5 = 1 and ¥3 — 4 is constant. Hence, both /3 and /4 are constant. O

Lemma 8.4 [f the operator Z : Conv(R") — K" is a continuous, SL(n) covariant and
translation invariant Minkowski valuation, then there exists a non-negative v € C'(R) such
that

ZUtk +1) =y (@) DK

foreveryt € Rand K e Kjj. Moreover, lim;_, 4o ¥ (¢) = 0.

Proof Let Y1, ..., ¥4 be asin Lemma 8.1. By Lemma 8.3, there exist constants c3, c4 such
that ¥3(t) = c¢3 and Y4(t) = c4. Moreover, 1| and i, are non-negative and only differ
by a constant. Hence, it suffices to show that lim;—, ;o0 ¥ () = lim;— 400 Y¥2(¢) = 0 and
c3 = ¢4 = 0. To show this, let r,b > 0 and let vf € Conv(R") be defined by epi vf =
epif1, N {x1 < b}, where T; is defined as in Lemma 2.3. Note, that epi-lim;,_, | o, vb =ty
Let 3 be the translation x — x + bej and set Ef =L, 0 ‘Cb_l + %. Then

VAl =tr, dom(? v eb) c {x; =b).
Thus, by the valuation property and Lemma 8.2, we obtain

h(ZWP), e1) = h(Z(Lr,), e1) — h(Z(£0), e1).
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Using the translation invariance and continuity of Z now gives
)3+ cCa

(n+ 1!
for every r > 0. Hence, lim;— 4o ¥1(tf) = 0 and ¢3 + ¢4 = 0. Similarly, evaluating

the support functions at —ej gives lim;— 4 ¥2(f) = 0 and ¢3 — ¢4 = 0. Consequently,
c3=c4 =0. ]

ryr1(0) +r

= h(Zr) 1) = lim hZP) e = Tim_r(710) = ya(2)

By Lemma 1.7, we obtain the following result as an immediate corollary of the last result.

Lemma 8.5 Every continuous, increasing, SL.(n) covariant, translation invariant Minkowski
valuation on Conv(R") is trivial.

For a given continuous, SL(n) covariant and translation invariant Minkowski valuation
Z : Conv(R") — K", we call the function ¢ from Lemma 8.4 the cone growth function of
Z.

Lemma 8.6 If the operator Z. : Conv(R") — K" is a continuous, SL(n) covariant and
translation invariant Minkowski valuation with cone growth function \r, then \ is decreasing
and

Z(dg +1) =—y'(1)DK
foreveryt € Rand K € K.

Proof Let ¢ be as in Lemma 8.1. Since ¢ > 0, it suffices to show that ¢ = —1’. Therefore,
forh > Oletuy € Conv(IR") be defined by epiu, = epi£jg ¢, 5 N{x; < 1}. By Lemma 1.2,
we have epi-lim,_,qu, = Ijp¢,]. Denote by 7 the translation x +— x + e and define
Lp = L10,e;/n) © 771 4 h. Then,
up ANy = L0,e1/h1s up VvV Ly =iy + h.

Hence, by the properties of Z and the definitions of ¢ and ¢ this gives
v —yia+h

h

for every t € R. The claim follows, since v is differentiable. O

() = h(Z(o,e) +1),e1) = Lim h(Z(up +1),e1) = lim
h—0t h—0t

The function { = —v' appearing in the above Lemma is called the indicator growth
Sunction of Z. Lemma 8.3 shows that the indicator growth function ¢ of a continuous, SL(n)
covariant and translation invariant Minkowski valuation Z determines its cone growth func-
tion v up to a constant. Since lim;_, o, ¥ () = 0, the constant is also determined by ¢. Thus
Y is completely determined by the indicator growth function of Z and Lemma 1.7 implies
the following result.

Lemma 8.7 Every continuous, SL(n) covariant, translation invariant Minkowski valuation
on Conv(R") is uniquely determined by its indicator growth function.

8.1 Proof of Theorem 2

By Lemma 7.3,for ¢ € DO (R), the operator u + D [¢ o u] defines a continuous, decreasing,
SL(n) covariant and translation invariant Minkowski valuation on Conv(R").

Conversely, let now a continuous, monotone, SL(n) covariant and translation invariant
Minkowski valuation Z be given and let ¢ be its indicator growth function. Lemma 8.5
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implies that we may assume that Z is decreasing. By Lemma 8.7, the valuation Z is uniquely
determined by ¢. For P = [0, e;] € P, we have

h(Z(1p +1),e1) = () k(D P, e1) = £ (1)

for every ¢ € R. Since Z is decreasing, also ¢ is decreasing. Since { = —v’, it follows from
Lemma 8.3 that

/0 ¢ =y (0) — lim ¥ (1) = ¥ (0).

Thus ¢ € DO(R).
For u = Ip + ¢ with arbitrary P € 73(’)1 and r € R, we have

+00
h(D[¢ ou], z) 2/ h(D{¢ ou > s},z2)ds =) h(D P, 2)
0

for every z € S"~!. Hence D[ o (Ip +1)] = ¢(t)DP for P € Py and t € R. By
Lemma 7.3,

ur>D[Cou]

defines a continuous, decreasing, SL(n) covariant and translation invariant Minkowski val-
uation on Conv(R") and ¢ is its indicator growth function. Thus Lemma 8.7 completes the
proof of the theorem.
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