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Abstract In this paper, we construct global distributional solutions to the volume-preserving
mean-curvature flow using a variant of the time-discrete gradient flow approach proposed
independently by Almgren et al. (SIAM J Control Optim 31(2):387–438, 1993) and Luckhaus
and Sturzenhecker (Calc Var Partial Differ Equ 3(2):253–271, 1995).
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1 Introduction

A family of open sets with smooth boundary {Et }0≤t≤T in R
n is said to move according to

volume-preserving mean-curvature flow if the motion law, expressed as an evolution equation
for the boundaries ∂Et , takes the form

v = 〈H〉 − H on ∂Et , (1.1)
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for all t ∈ [0, T ]. Here, at any point x on ∂Et , v(x) denotes the velocity component normal
to the boundary, in the direction of the outer normal, H(x) is the scalar mean curvature (with
the sign convention that H is positive for balls, see the next section), and the brackets 〈·〉
denote the average of a quantity over the boundary of Et .

It is immediately verified that the volume of the sets Et (i.e., its n-dimensional Lebesgue
measure, denoted by |Et |) is indeed preserved under the smooth flow (1.1) because

d

dt
|Et | =

∫
∂Et

v dHn−1 (1.1)= 0.

And thus, upon rescaling variables, we may assume that |Et | = |E0| = 1 for any t ∈ [0, T ].
Moreover, the perimeter of the sets Et is decreasing because

d

dt
Hn−1(∂Et ) =

∫
∂Et

vH dHn−1 (1.1)= −
∫

∂Et

v2 dHn−1 ≤ 0.

During a typical evolution, a volume-preserving mean-curvature flow exhibits singularities
of different kinds, even in the case of smooth initial data. These singularities correspond to
changes in the topology of the configuration and include shrinkage of islands to points
and disappearance, collisions and merging of neighboring islands, pinch-offs etc… If the
topology changes, the boundary of the evolving set looses regularity and, as a consequence,
the formulation (1.1) of the evolution law is inadequate. The goal of the present work is the
construction of a notion of a weak solution to the volume-preserving mean-curvature flow
that is global in time and thus overcomes these singular moments.

Several solutions to volume-preserving mean-curvature flow have been proposed in the
literature: existence and uniqueness of a global in time smooth solution and its convergence to
a sphere is shown in [17,22] for smooth convex initial data and in [15,24] for initial data close
to a sphere (for further related results see [4,7,8] and the references therein). In principle,
these results also yield local in time existence and uniqueness of smooth solutions. In [30]
and [31], the authors consider level-set and diffusion-generated solutions for the purpose
of numerical studies. In Bellettini et al. [5], construct solutions for the volume-preserving
anisotropic mean-curvature [or anisotropic variant of (1.1)] for convex sets using a method
similar to ours (that will be outlined below). In this paper, it is also shown that the solution
(the so-called flat flow) is unique and coincides with regular solutions when the latter are
defined. We also mention a mean field approximation approach to the volume preserving
mean-curvature flow as developed in [1,6,12].

It is well-known that volume-preserving mean-curvature can be (formally) interpreted as
the L2-gradient flow of the perimeter functional for configurations with a fixed volume, see,
e.g., [29, Sect. 2]. This gradient flow structure, however, is for the purpose of well-posedness
results impracticable, since the L2 (geodesic) distance is degenerate in the sense that two
well separated configurations may have zero L2 distance [28]. In the present manuscript,
we follow the method proposed independently by Almgren et al. [2] and Luckhaus and
Sturzenhecker [26] in the study of (forced) mean-curvature flows to bypass this difficulty.
The authors consider an implicit time-discretization of the flow, which comes as a gradient
flow of the perimeter functional with respect to a new non-degenerate distance function
that approximates the L2 distance. The limiting time-continuous flow constructed with this
method is usually referred to as the flat flow. The main difference between the present work
and [2,26] relies on the non-locality of the volume-preserving mean-curvature flow. As an
immediate consequence, there is no maximum-principle available for (1.1). Also related to
this aspect, there is the problem of proving the consistency of the scheme, i.e. the coincidence
of the flat volume-preserving mean-curvature flow with the smooth one when the latter exists.
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Under some assumption on the Lagrange multiplier of the flow, the consistency can be inferred
from the arguments in [2], but we do not know if these conditions are generally satisfied and
we do not discuss further the problem of the consistency in this paper. A more detailed
discussion on the different features of the flows in [2,26] and the one considered in the
present manuscript will follow in Sect. 3 below.

We conclude this subsection with a short discussion on the background of this evolu-
tion. Volume-preserving mean-curvature flow can be considered as a simplified model for
attachment-limited kinetics, and as such it plays an important role in the study of solidifi-
cation processes, where solid islands grow in an undercooled liquid of the same substance.
In such situations, solid particles melt at high-curvature regions and simultaneously precip-
itate at low-curvature regions, while the total mass of the solid remains essentially constant
[11,32,33]. In this way, the total surface area of solid islands is decreasing, and thus, this
process leads to the growth of larger islands at the expense of smaller ones: a phenomenon
called coarsening [29]. In general, solidification processes are mathematically often modelled
by Mullins–Sekerka equations (or a Stefan problem), where the Gibbs–Thompson relation is
modified by a kinetic drift term [21,25], and their phase-field counterparts respectively [9].
This model allows for both attachment kinetics (kinetic drift) and bulk diffusion (Mullins–
Sekerka/Stefan). It turns out that attachment kinetics is the relevant mass transport mechanism
in earlier stages of the evolution while bulk diffusion predominates the later stages [13]. In a
certain sense, volume-preserving mean-curvature flow naturally arises as the singular limit
of this more general solidification model in the regime of vanishing bulk diffusion. More
recently, variants of volume-preserving mean curvature flow were also applied in the context
of shape recovery in image processing [10].

The article is organized as follows: in Sect. 2 we fix the notation and state the main results
of the paper, which are then proved in Sects. 3 and 4 and are the existence of flat volume-
preserving mean-curvature flows and the existence of distributional solutions, respectively.

2 Statements of the main results

2.1 Notation

For any Lebesgue measurable set E ⊂ R
n , we denote by |E | the n-dimensional Lebesgue

measure of E and by χE the characteristic function of E , i.e. χE (x) = 0 if x /∈ E and
χE (x) = 1 if x ∈ E . The perimeter of E in an open set � ⊂ R

n is defined as

Per(E,�) := sup

{∫
E

divϕ dx : ϕ ∈ C1
c (�;Rn) with sup

�

|ϕ| ≤ 1

}
,

and we write Per(E) := Per(E,Rn). If the latter quantity is finite, we will call E a set
of finite perimeter. In the case that E is an open set with ∂E of class C1, we simply have
Per(E,�) = Hn−1(∂E ∩ �) and Per(E) = Hn−1(∂E). The reduced boundary of a set of
finite perimeter E is denoted by ∂∗E , cp. [16, Sect. 5.7], and for the unit outer normal to E
we write νE . The tangential divergence of a vector field � ∈ C1(Rn;Rn) with respect to ∂E
is defined by div∂E� := div� − νE · ∇�νE . We say that a set of finite perimeter E has a
(generalized) mean-curvature HE ∈ L1(∂∗E, dHn−1) provided that∫

∂∗E
div∂E� dHn−1 =

∫
∂∗E

� · νE HE dHn−1 for all � ∈ C1
c (R

n;Rn). (2.1)

Observe that with this sign convention it is HBR ≡ n−1
R .
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We write sdF for the signed distance from a Lebesgue measurable set F , with the con-
vention that sdF is negative inside F , i.e.,

sdF (x) =
{

dist(x, F) for x ∈ Fc,

− dist(x, Fc) for x ∈ F,

Here, Fc := R
n\F denotes the complement set of F , and the distance from a set F is by

definition

dist(x, F) = inf
y∈F |x − y|.

We will sometimes use the notation dF = |sdF |.
By [t] we denote the integer part of a real number t , that is the biggest integer m such that

m ≤ t .
Finally, we denote by cn,Cn positive constants that depend on the space dimension only.

Moreover, cn,0, Cn,0, and Cn,0,T are constants that may additionally depend on the initial
data or the time T > 0. During the computations, the value of these constants may change
from line to line. However, for the sake of clarity we need to keep track of the dimensional
constant in Proposition 3.2, therefore we make an exception to the above convention and
denote it by γn . The volume of the n-dimensional unit ball will be denoted by ωn , and thus
its surface area is nωn .

2.2 Approximate solutions

In this paper we introduce a notion of global flat solution to the volume-preserving mean-
curvature flow which is based on the implicit time discretization of (1.1) in the spirit of
Almgren et al. [2] and Luckhaus and Sturzenhecker [26]. That is, we consider a time-discrete
gradient flow for the perimeter functional. For this purpose, we define

Fh(E, F) := Per(E) + 1

h

∫
E

sdF dx + 1√
h

||E | − 1|,

for any two sets of finite perimeter E and F in R
n . Here, h is a positive small number

that plays the role of the time step of approximate solutions. The second term in the above
functional approximates the degenerate L2 geodesic distance on the configuration space of
hypersurfaces. The functional differs from the one considered in the original papers [2,26]
only in the last term: a weak penalization that favors unit-volume of minimizing sets.

Definition 2.1 Let E0 be a set of finite perimeter with |E0| = 1, and h > 0. Let {E (h)
kh }k∈N

be a sequence of sets defined iteratively by

E (h)
0 = E0 and E (h)

kh ∈ arg minE⊂Rn

{
Fh(E, E (h)

(k−1)h)
}

for k ≥ 1.

We furthermore define

E (h)
t := E (h)

kh for any t ∈ [kh, (k + 1)h),

and call {E (h)
t }t≥0 an approximate flat solution to the volume-preserving mean-curvature

flow with initial datum E0.

The existence of minimizers E (h)
kh and thus the existence of an approximate flat solution

is guaranteed by Lemma 3.1 below. Incorporating the volume constraint in a soft way into
the energy functional rather than imposing a hard constraint on the admissible sets has the
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advantage that we are free to chose arbitrary competitors, most notably in the derivation of
density estimates. Thanks to the penalizing factor 1/

√
h, the constraint becomes active in the

limith ↓ 0. Even more can be shown: the number of time steps in which approximate solutions
violate the volume constraint |E (h)

t | = 1 can be bounded uniformly in h, cf. Corollary 3.10
below. A similar functional including a soft volume constraint was recently considered by
Goldman and Novaga [20] in the study of a prescribed curvature problem.

2.3 Main results

We can now state our main results. The first one is a convergence result for approximate
solutions.

Theorem 2.2 (Existence of flat flows) Let E0 be a bounded set of finite perimeter with
|E0| = 1 and, for any h > 0, let {E (h)

t }t≥0 be an approximate flat solution to the volume-
preserving mean-curvature flow with initial datum E0. Then, there exists a family of sets of
finite perimeter {Et }t≥0 and a subsequence hk ↓ 0 such that

|E (hk )
t 
Et | → 0 for a.e. t ∈ [0,+∞),

and, for every 0 ≤ s ≤ t ,

|Et | = 1,

|Et
Es | ≤ Cn,0|t − s|1/2,

Per(Et ) ≤ Per(Es).

Our next statement is the existence of a distributional solution in the sense of Luckhaus
and Sturzenhecker [26] to the volume-preserving mean-curvature flow under the hypothesis
that the perimeters of the approximate solutions converge to the perimeter of the limiting
solutions identified in the previous theorem.

Theorem 2.3 (Existence of distributional solutions) Suppose that n ≤ 7. Let (hk)k∈N and
{Et }t≥0 be as in Theorem 2.2. For any T > 0, if

lim
k→∞

∫ T

0
Per(E (hk )

t ) dt =
∫ T

0
Per(Et ) dt, (2.2)

then {Et }0≤t<T is a distributional solution to the volume-preserving mean-curvature flow
with initial datum E0 in the following sense:

(1) for almost every t ∈ [0, T ) the set Et has (generalized) mean curvature in the sense of
(2.1) satisfying ∫ T

0

∫
∂∗Et

|HEt |2 < +∞; (2.3)

(2) there exists v : Rn ×(0, T ) → Rwith v(·, t)|∂∗Et ∈ L2
0(∂

∗Et , dHn−1) for a.e. t ∈ (0, T )

and
∫ T

0

∫
∂∗Et

v2dHn−1dt < +∞ such that

−
∫ T

0

∫
∂∗Et

v φ dHn−1dt =
∫ T

0

∫
∂∗Et

(
HEt φ − λφ

)
dHn−1dt, (2.4)

∫ T

0

∫
Et

∂tφ dxdt +
∫
E0

φ(0, · ) dx = −
∫ T

0

∫
∂∗Et

v φ dHn−1dt, (2.5)
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for every φ ∈ C1
c ([0,∞) × R

n), where

λ(t) := 1

Hn−1(∂∗Et )

∫
∂∗Et

HEt dHn−1 f or a.e. t ∈ [0, T ). (2.6)

In the second part of the theorem, L2
0 is the set of all L2 functions with zero mean.

Note that (2.4) is a weak formulation of (1.1), while (2.5) establishes the link between v

and the velocity of the boundaries of Et . It is straightforward to check that smooth solutions
of (1.1) satisfy (2.4) and (2.5).

The restriction on the dimension n ≤ 7 is technical and is needed in the proof of Corol-
lary 4.2 where the Bernstein theorem for minimal surfaces is exploited.

3 Flat volume-preserving mean-curvature flows

In this section we prove the first main result in Theorem 2.2. We follow quite closely Luckhaus
and Sturzenhecker [26], providing all the details for the readers’ convenience.

3.1 Existence of approximate solutions

We start remarking that ∫
E

sdF dx =
∫
E
F

dF dx −
∫
F

dF dx . (3.1)

The existence of the approximate flat solutions is guaranteed by the following lemma.

Lemma 3.1 Let F ⊂ R
n be a bounded set of finite perimeter. For every h > 0, there exists

a minimizer E of Fh( · , F) and, moreover, E satisfies the discrete dissipation inequality

Per(E) + 1

h

∫
E
F

dF dx + 1√
h

||E | − 1| ≤ Per(F) + 1√
h

||F | − 1| . (3.2)

Proof Since F is an admissible competitor, we obtain by (3.1) that

0 < inf
Ẽ

Fh(Ẽ, F) + 1

h

∫
F

dF dx ≤ Per(F) + 1√
h

||F | − 1| < ∞. (3.3)

Let {Eν}ν∈N denote a minimizing sequence of Fh( · , F). Without loss of generality we may
assume that Eν ⊂⊂ BR for a suitable R > 0. Since {χEν }ν∈N is bounded in BV (BR),
there exists a subsequence (not relabeled) that converges weakly to a function χ in BV (BR),
and thus strongly in L1(BR). In particular, χ is the characteristic function of some set of
finite perimeter E . Since χẼ �→ ∫

Ẽ sdF dx is continuous and the perimeter is lower semi-
continuous with respect to L1 convergence, it follows that

Fh(E, F) ≤ lim inf
ν↑∞ Fh(Eν, F) = inf

Ẽ⊂Rn
Fh(Ẽ, F).

Therefore, E minimizes Fh( · , F) and (3.2) follows from (3.3). ��
By standard results on minimal surfaces (see [27]), it holds that the minimizers E of

Fh( · , F) can be chosen to be closed subsets with ∂E of class C1,α up to a (relatively closed)
singular set of dimension at most n − 7. Using the Euler–Lagrange equation for Fh( · , F),
one can also show that the regular part of the boundary ∂E is actually C2,κ (cp. Lemma 3.7).
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3.2 L∞ and L1-estimates

Our next statement gives a uniform bound on the distance between the boundary of the
minimizing set and the boundary of the reference set.

Proposition 3.2 (L∞-estimate) There exists a dimensional constant γn > 0 with the follow-
ing property. Let F ⊂ R

n be a bounded set of finite perimeter and let E be a minimizer of
Fh( · , F). Then,

sup
E
F

dF ≤ γn
√
h. (3.4)

Proof The proof of this proposition is based on the density estimates for one-side minimizing
set which for readers’ convenience we prove in the Appendix 1. We claim indeed that the
statement holds with

γn = max

{
3,

4nωn

cn

}
,

where cn is the dimensional constant in Lemma 4.4. The argument is by contradiction. Let

c > max
{

3, 4nωn
cn

}
and let x0 ∈ F
E contradict (3.4) with γn replaced by c. Without loss

of generality, we can assume that x0 ∈ F\E : the other case is at all analogous. We then have
that

sdF (x0) < −c
√
h. (3.5)

Then any ball Br (x0) of radius r ≤ c
√
h

2 is contained in F . By the minimality of E , we have
Fh(E, F) ≤ Fh(E ∪ Br (x0), F), and thus

Per(E) ≤ Per(E ∪ Br (x0)) + 1

h

∫
Br (x0)\E

sdF dx + 1√
h

|Br (x0)\E |. (3.6)

We use (3.5) and r ≤ c
√
h

2 to infer that

1

h

∫
Br (x0)\E

sdF dx < − c

2
√
h

|Br (x0)\E |. (3.7)

Then (3.6) and (3.7) yield

Per(E) ≤ Per(E ∪ Br (x0)) − h−1/2
( c

2
− 1

)
|Br (x0)\E |. (3.8)

By assumption c > 3 and we can apply Lemma 4.4 with μ = 0 and obtain

|Br (x0)\E | ≥ cnr
n for a.e. 0 < r <

c
√
h

2
. (3.9)

On the other hand, from (3.8) we deduce also that for a.e. 0 < r < c
√
h

2

h−1/2
( c

2
− 1

)
|Br (x0)\E | ≤ Per(E ∪ Br (x0)) − Per(E)

≤ Hn−1(∂Br (x0)\E) ≤ n ωn r
n−1. (3.10)

Combining (3.9) and (3.10), we get that

cnr
n ≤ |Br (x0)\E | ≤ n ωn

( c
2

− 1
)−1 √

h rn−1,
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for almost all 0 < r < c
√
h

2 , which gives the desired contradiction to the choice of c as soon

as r ↑ c
√
h

2 . ��
The following density estimates are now an immediate consequence.

Corollary 3.3 Let F ⊂ R
n be a bounded set of finite perimeter and let E be a minimizer of

Fh( · , F). Then, for every r ∈ (0, γn
√
h) and for every x0 ∈ ∂E, it holds

min {|Br (x0)\E |, |E ∩ Br (x0)|} ≥ cn r
n, (3.11)

cnr
n−1 ≤ Per(E, Br (x0)) ≤ Cn r

n−1. (3.12)

Proof Since E is a minimizer of Fh( · , F), for any x0 ∈ ∂E , it holds that Fh(E, F) ≤
Fh(E\Br (x0), F), which implies

Per(E) + 1

h

∫
E∩Br (x0)

sdF dx ≤ Per(E\Br (x0)) + 1√
h

|E ∩ Br (x0)|.

Estimating the second term via Proposition 3.2, we obtain

Per(E) ≤ Per(E\Br (x0)) + Cn√
h

|E ∩ Br (x0)|. (3.13)

A similar analysis shows that

Per(E) ≤ Per(E ∪ Br (x0)) + Cn√
h

|Br (x0)\E |.

Therefore, by Lemma 4.4 we deduce (by possibly redefining cn)

min {|E ∩ Br (x0)|, |Br (x0)\E |} ≥ cn r
n ∀ 0 < r ≤ γn

√
h.

The first inequality in (3.12) is now an immediate consequence of the relative isoperimetric
inequality (cf. [19, Corollary 1.29]). For the second inequality, we rewrite (3.13) as

Hn−1(∂E ∩ Br (x0)) ≤ Hn−1(∂Br (x0) ∩ E) + Cn√
h

|E ∩ Br (x0)|.

Since r < γn
√
h, the upper bound is obvious. ��

Next we prove an estimate on the volume of the symmetric difference of two consecutive
sets of the approximate solutions.

Proposition 3.4 (L1-estimate) Let F ⊂ R
n be a bounded set of finite perimeter and let E

be a minimizer of Fh( · , F). Then,

|E
F | ≤ Cn

(
� Per(E) + 1

�

∫
E
F

dF dx

)
∀ � ≤ γn

√
h. (3.14)

Proof In order to estimate E
F , we split it into two parts:

|E
F | ≤ |{x ∈ E
F : dF (x) ≤ �}| + |{x ∈ E
F : dF (x) ≥ �}|.
The second term is easily estimated by

|{x ∈ E
F : dF (x) ≥ �}| ≤ 1

�

∫
E
F

dF (x) dx .
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To estimate the first term, we use a simple covering argument to find a collection of disjoint
balls {B�(xi )}i∈I with xi ∈ ∂∗E and I ⊂ N a finite set such that ∂∗E ⊂ ∪i∈I B2�(xi ). Note
that by (3.11) and the relative isoperimetric inequality (cf. [19, Corollary.1.29]) we have for
every i ∈ I

|B3�(xi )|
(3.11)≤ Cn min{|E ∩ B�(xi )|, |B�(xi )\E |}
≤ Cn�Hn−1(∂∗E ∩ B�(xi )).

Note finally that the set {x ∈ E
F : dF (x) ≤ �} is covered by {B3�(xi )}i∈I . Summing over
i and the choice of the balls {B�(xi )}i∈I yields

|{x ∈ E
F : dF (x) ≤ �}| ≤
∑
i∈I

|B3�(xi )|

≤ Cn �
∑
i∈I

Hn−1(∂∗E ∩ B�(xi ))

≤ Cn � Per(E).

��
3.3 Hölder continuity in time

As an immediate consequence of the discrete dissipation inequality (3.2), we remark that

Per(E (h)
t ) + 1

h

∫
E (h)
t 
E (h)

t−h

d
E (h)
t−h

dx + 1√
h

∣∣|E (h)
t | − 1

∣∣

≤ Per(E (h)
t−h) + 1√

h

∣∣|E (h)
t−h | − 1

∣∣ ∀ t ∈ [h,+∞), (3.15)

and, by iterating (3.15) and using |E0| = 1,

Per(E (h)
t ) ≤ Per(E0) ∀ t ≥ 0, (3.16)

1√
h

∣∣|E (h)
t | − 1

∣∣ ≤ Per(E0) ∀ t ≥ 0, (3.17)

∫ T

h

∫
E (h)
t 
E (h)

t−h

d
E (h)
t−h

h
dx ≤ Per(E0), (3.18)

for every T > h. Similarly, using Proposition 3.4 with � = h < γn
√
h, we also get

∫ T

h
|E (h)

t 
E (h)
t−h | ≤ Cn

[T/h]∑
k=1

(
h Per(E (h)

kh ) +
∫
E (h)
kh 
E (h)

(k−1)h

d
E (h)
t−h

h
dx

)

≤ Cn (T + 1) Per(E0). (3.19)

Proposition 3.5 (C1/2 regularity in time) Let h ≤ 1 and let {Et }t≥0 be an approximate flat
flow. Then it holds

|E (h)
t 
E (h)

s | ≤ Cn,0|t − s|1/2 ∀ 0 ≤ t ≤ s < +∞.

Proof Clearly it is enough to consider the case s − t ≥ h. Let j ∈ N and k ∈ N\{0} be such
that t ∈ [ jh, ( j + 1)h) and s ∈ [( j + k)h, ( j + k + 1)h). Then, we can use Proposition 3.4
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with � = γnh/|t − s|1/2 (note that � ≤ γn
√
h by the assumption s − t ≥ h) and (3.16), and

estimate in the following way:

|E (h)
t 
E (h)

s | ≤
k∑

m=1

|E (h)
( j+m)h
E (h)

( j+m−1)h |

≤ Cn

k∑
m=1

h

|t − s|1/2 Per(E (h)
( j+m)h)

+ Cn

k∑
m=1

|t − s|1/2

h

∫
E (h)

( j+m)h
E (h)
( j+m−1)h

d
E (h)

( j+m−1)h
dx .

By using (3.15) we estimate the sum above by

|E (h)
t 
E (h)

s | ≤ Cn

k∑
m=1

h

|t − s|1/2 Per(E0)

+ Cn

k∑
m=1

|t − s|1/2
(

Per(E (h)
( j+m−1)h) − Per(E (h)

( j+m)h)
)

+ Cn

k∑
m=1

|t − s|1/2

√
h

(∣∣|E (h)
( j+m−1)h | − 1

∣∣ − ∣∣|E (h)
( j+m)h | − 1

∣∣)

≤ Cn
kh

|t − s|1/2 Per(E0) + Cn |t − s|1/2(Per(Et ) − Per(Es)
)

+ Cn
|t − s|1/2

√
h

(∣∣|Et | − 1
∣∣ − ∣∣|Es | − 1

∣∣). (3.20)

Therefore, by (3.16) and (3.17), we get

|E (h)
t 
E (h)

s | ≤ Cn |t − s|1/2Per(E0), (3.21)

where we used kh ≤ |t − s| + h ≤ 2|t − s|, thus concluding the proof of the proposition. ��
3.4 First variations and first consequences

We now introduce the time-discrete normal velocity: for all t ≥ 0 and x ∈ R
n , we set

v(h)(t, x) :=
{

1
h sd

E (h)
t−h

(x) for t ∈ [h,+∞),

0 for t ∈ [0, h).

Lemma 3.6 (L2-bound on the velocity) Let {E (h)
t }t≥0 be an approximate flat flow. Then it

holds ∫ ∞

0

∫
∂E (h)

t

(v(h))2 dHn−1dt ≤ Cn,0. (3.22)

Proof We fix t ∈ [h,+∞) and consider for every � ∈ Z with 2� ≤ γn/
√
h the sets

K (�) := {x ∈ R
d : 2� < |v(h)(t, x)| ≤ 2�+1},

123



Global solutions to the volume-preserving. . . Page 11 of 23 18

so that Rn = ⋃
� K (�). It follows from 2�−1h ≤ γn

√
h/2 and from Corollary 3.3 that, for

every x ∈ ∂E (h)
t ,

|E (h)
t ∩ B2�−1h(x)| ≥ cn

(
2�−1h

)n
, (3.23)

Hn−1(∂E (h)
t ∩ B2�−1h(x)) ≤ Cn

(
2�−1h

)n−1
. (3.24)

Using 2�−1 ≤ |v(h)(t, y)| ≤ 4 ·2�−1 for all y ∈ B2�−1h(x) with x ∈ ∂E (h)
t ∩ K (�), we obtain

for every x ∈ ∂E (h)
t ∩ K (�)

∫
B2�−1h(x)∩(E (h)

t 
E (h)
t−h)

|v(h)| dy (3.23)≥ cn 2�−1
(

2�−1h
)n

,

∫
B2�−1h(x)∩∂E (h)

t

(v(h))2 dHn−1 (3.24)≤ Cn(2
�−1)2

(
2�−1h

)n−1
.

Hence, combining these two estimates, we have
∫
B2�−1h(x)∩∂E (h)

t

(v(h))2 dHn−1 ≤ Cn

h

∫
B2�−1h(x)∩(E (h)

t 
E (h)
(k−1)h )

|v(h)| dy.

Now, by a simple application of Besicovitch’s covering theorem [16, Chapter 1.5.2] to
{B2�−1h(x) : x ∈ ∂E (h)

t ∩ K (�)}, we obtain
∫

∂E (h)
t ∩K (�)

(
v(h)

)2
dHn−1 ≤ Cn

h

∫
(E (h)

t 
E (h)
t−h)∩{2�−2≤|v(h)|≤2�+2}

|v(h)| dx . (3.25)

Finally, summing up over � ∈ Z with 2� ≤ γn√
h

in (3.25) yields

∫
∂E (h)

t

(v(h))2 dHn−1 ≤ Cn

h

∫
E (h)
t 
E (h)

t−h

|v(h)| dx .

We now show how the above estimate implies (3.22). In view of (3.15) we have
∫

∂E (h)
t

(v(h))2 dHn−1

≤ Cn

h

(
Per(E (h)

t−h) + 1√
h

||E (h)
t−h | − 1| − Per(E (h)

t ) − 1√
h

||E (h)
t | − 1|

)
.

Integrating in time and using |E0| = 1, we obtain
∫ T

0

∫
∂E (h)

t

(v(h))2 dHn−1dt

≤ Cn

(
Per(E (h)

0 ) − Per(E (h)
T ) − 1√

h
||E (h)

T | − 1|
)

≤ CnPer(E0),

from which, by a simple limit for T → +∞, (3.22) follows. ��
We now derive the Euler–Lagrange equations which constitute the weak motion law for

the time-discrete evolution.
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Lemma 3.7 (Euler–Lagrange equations) For every t ∈ [h,+∞) and � ∈ C1
c (R

n;Rn), it
holds∫

∂E (h)
t

(
div

∂E (h)
t

� + v(h)ν
E (h)
t

· �
)
dHn−1 = λ(h)(t)

∫
∂E (h)

t

ν
E (h)
t

· � dHn−1, (3.26)

where

λ(h)(t) := 1

Hn−1(∂E (h)
t )

∫
∂E (h)

t

(
H
E (h)
t

+ v(h)
)
dHn−1. (3.27)

Moreover, if |E (h)
t | �= 1, then it also holds λ(h)(t) = 1√

h
sgn(1 − |E (h)

t |).

As we shall see in the proof below, the constants λ(h)(t) defined in (3.27) are Lagrange
multipliers corresponding to the volume constraint, whenever it is active. Since this constraint
is satisfied up to a finite number of times (uniformly in h) by Corollary 3.10 below, by a slight
abuse of terminology, we call λ(h)(t) a Lagrange multiplier, even if the volume constraint is
not active.

Proof If |E (h)
t | �= 1, it is very simple to compute the variations ofFh(·, E (h)

t−h) along the vector

field � ∈ C1
c (R

n;Rn) and see that they are given by (3.26) with λ(h)(t) = 1√
h

sgn(1−|E (h)
t |).

In the case |E (h)
t | = 1, we have

E (h)
t ∈ arg min

{
Per(F) +

∫
F
E (h)

t−h

d
E (h)
t−h

dx : |F | = 1

}
.

Hence, performing variations of

Per(F) +
∫
F
E (h)

t−h

d
E (h)
t−h

dx

within the class of sets of unit volume, for every � ∈ C1
c (R

n;Rn), we again find (3.26),
where λ(h)(t) is the Lagrange multiplier related to the constraint |F | = 1. Observe that in
both cases, we can choose a sequence of � ∈ C1

c (R
n;Rn) approximating ν

E (h)
t

on ∂E (h)
t ,

and conclude that λ(h)(t) is given by (3.27). ��
It is now clear that the regular part of ∂∗E (h)

t is of classC2,κ . Indeed, by choosing a suitable
system of coordinates, ∂∗E (h)

t can be written in a neighbourhood of any regular point as the
graph of a C1,κ function u solving the following equation in the sense of distributions:

div

(
∇u√

1 + |∇u|2
)

= v(h) − λ(h).

Since v(h) is Lipschitz continuous, by standard elliptic regularity theory (cp., e.g., [18]), one
then deduce that u ∈ C2,κ for every κ ∈ (0, 1).

Next we prove that the whole family of sets defining the discrete flow up to time T > 0 is
contained in a large ball, whose radius does not depend on the discrete time-step h but may
depend on the T .

Lemma 3.8 (Boundedness of minimizing sets) Let {E (h)
t }t≥0 be an approximate solution

and let T > 0. Then there exist h0, RT > 0 (depending on T , n, and E0 only) such that, if
h ≤ h0, then E (h)

t ⊂ BRT for all t ∈ [0, T ].
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Proof We fix h > 0, and for every t ∈ [0, T ) we let

rt := inf{r > 0 : E (h)
t ⊂ Br }.

We notice B̄rt ∩∂E (h)
t �= ∅ is made of regular points (because there are no singular minimizing

cones contained in a half space, cp. [19, Theorem 15.5]), and moreover

B̄rt ∩ ∂E (h)
t ⊂

{
y ∈ ∂E (h)

t : H
E (h)
t

(y) ≥ 0
}

.

By this observation and the Euler–Lagrange equation v(h)(t, y) = λ(h)(t) − H
E (h)
t

(y), it

follows that

rt ≤ rt−h + h |λ(h)(t)|.
Iterating the above estimate, we then deduce that

rτ ≤ r0 +
∫ τ

0
|λ(h)(t)| dt ∀ τ ∈ [0, T ]. (3.28)

To get some control on λ(h)(t) we consider � ∈ C1
c (R

n;Rn) such that �(x) = x in Brt , and,

since for h small enough |E (h)
t | ≥ 1

2 by (3.17), using � as test in (3.26), we obtain

n

2
|λ(h)(t)| ≤

∣∣∣∣∣λ(h)(t)
∫
E (h)
t

div� dx

∣∣∣∣∣ =
∣∣∣∣∣λ(h)(t)

∫
∂E (h)

t

ν
E (h)
t

· � dHn−1

∣∣∣∣∣
=

∣∣∣∣∣
∫

∂E (h)
t

(
div

∂E (h)
t

� + v(h)ν
E (h)
t

· �
)
dHn−1

∣∣∣∣∣
≤ (n − 1)Per(E (h)

t ) + rtPer(E (h)
t )1/2‖v(h)(t, · )‖

L2(∂E (h)
t )

, (3.29)

where we used |�| ≤ rt on ∂E (h)
t . Integrating in time and using the Cauchy–Schwarz

inequality together with (3.16) and (3.22), we obtain

∫ τ

0
|λ(h)(t)| dt ≤ Cn,0τ + Cn,0

(∫ τ

0
r2
t dt

)1/2

. (3.30)

Combining (3.28) and (3.30), it follows that

rτ ≤ r0 + Cn,0τ + Cn,0

(∫ τ

0
r2
t dt

)1/2

for all τ ∈ [0, T ]. (3.31)

The remainder of the proof is a standard ODE argument. Indeed, squaring both sides of the
equation and redefining Cn,0 yields

d

dτ

(
e−Cn,0τ F(τ )

)
≤ Cn,0e

−Cn,0τ
(
r2

0 + τ 2) for all τ ∈ [0, T ],

where F(τ ) = ∫ τ

0 r2
t dt . Integration in τ over the interval [0, T ] yields

∫ T

0
r2
t dt ≤ Cn,0,T ,

and thus the statement in Lemma 3.8 follows via (3.31). ��
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Corollary 3.9 For every h > 0 small enough, it holds
∫ T

0

∫
∂E (h)

t

H2
E (h)
t

dHn−1dt +
∫ T

0
|λ(h)(t)|2 dt ≤ Cn,0,T .

Proof The integrability of λ(h) follows from (3.29) and from Lemma 3.8; the one of H
E (h)
t

follows taking into account the first variation (3.26) and the integrability of the discrete
velocity, Lemma 3.6. ��

For every h > 0 we set

�(h) := {t : |E (h)
t | �= 1}.

Corollary 3.10 For every h > 0 small enough, we have

|�(h)| ≤ Cn,0,T h.

Proof In view of Lemma 3.7, it is

�(h) ⊂
{
t ∈ [0, T ) : |λ(h)(t)| ≥ 1/

√
h
}

,

and thus we have by Corollary 3.9

|�(h)| ≤ h
∫ T

0
|λ(h)(t)|2 dt ≤ Cn,0,T h.

��
3.5 Proof of Theorem 2.2

The proof of the existence of a flat flow is now a simple consequence of the results above.
Indeed, by (3.16), (3.17) and Lemma 3.8, one can find sets {Et }t∈Q+ , where Q

+ denotes the
set of positive rational numbers, and a subsequence hk ↓ 0 such that

lim
k→+∞ |E (hk )

t 
Et | = 0 ∀ t ∈ Q
+.

Using the triangular inequality and Proposition 3.5, we deduce that

|Et
Es | ≤ lim
k→+∞

(
|Et
E (hk )

t | + |E (hk )
t 
E (hk )

s | + |E (hk )
s 
Es |

)

≤ Cn,0|s − t |1/2 ∀ 0 ≤ s ≤ t ∈ Q
+. (3.32)

Now a simple continuity argument implies that the sequence E (hk )
t converges to sets Et for

all times t ≥ 0 and satisfies (3.32) for all s, t ∈ [0,+∞). Finally, note that passing to the
limit in (3.15) yields that |Et | = 1 and Per(Et ) ≤ Per(E0) (cf. [16, Sect 5.2.1]) for a.e.
t ∈ (0, T ).

Remark 3.11 It is also possible to show that the sequence of characteristic functions

χ(h)(t, x) := χ
E (h)
t

(x)

are precompact in L1((0, T ) × R
n) for every T > 0, thus giving an alternative proof of the

theorem.
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4 Distributional solutions

In this section we prove Theorem 2.3 on the existence of distributional solutions. The two
main ingredients of the proof besides the estimates of the previous section are the hypothesis
(2.2) on the continuity of the perimeters of the approximate solutions and the following
proposition which links the discrete velocity to the distributional time derivative of the flat
flow.

Proposition 4.1 Let n ≤ 7 and {E (h)
t }t≥0 be an approximate solution to the volume-

preserving mean-curvature flow. Then, for every φ ∈ C∞
c ([0,+∞) × R

n) it holds

lim
h→0

∣∣∣
∫ +∞

h

1

2h

[ ∫
E (h)
t

φ dx −
∫
E (h)
t−h

φ dx
]
dt −

∫ +∞

h

∫
∂E (h)

t

φ vh dHn−1dt
∣∣∣ = 0. (4.1)

Assuming the proposition we give a proof of the theorem.

4.1 Proof of Theorem 2.3

It follows straightforwardly from (2.2) (cp., for instance, [3, Proposition 1.80]) that
Hn−1∂∗E (hk )

t weakly converges to Hn−1∂∗Et for almost every t ∈ [0,+∞). In particu-
lar this implies that, for almost every t ∈ [0,+∞), the boundaries ∂∗E (hk )

t converge to ∂∗Et

in the sense of varifolds: namely, for a.e. t ∈ [0,+∞) it holds

lim
k→∞

∫
∂∗E (hk )

t

F
(
x, ν

E
(hk )
t

(x)
)
dHn−1(x) =

∫
∂∗Et

F
(
x, νEt (x)

)
dHn−1(x), (4.2)

for every F ∈ Cc(R
n ×R

n). Indeed, by a simple approximation argument it is easy to verify
that it is enough to consider F ∈ C1

c (R
n × R

n). Then, for every ε > 0 we pick a continuous
function νε : Rn → R

n such that
∫

∂∗Et

|νEt − νε|2 dHn−1 ≤ ε2,

and estimate as follows

lim
k→+∞

∣∣∣∣∣
∫

∂∗E (hk )
t

(
F

(
x, ν

E
(hk )
t

(x)
) − F

(
x, νε(x)

))
dHn−1(x)

∣∣∣∣∣
≤ lim

k→+∞ ‖DF‖L∞
∫

∂∗E (hk )
t

|ν
E

(hk )
t

− νε| dHn−1

≤ lim
k→+∞ ‖DF‖L∞ Per(E (hk )

t )1/2

(∫
∂∗E (hk )

t

|ν
E

(hk )
t

− νε|2 dHn−1

)1/2

= ‖DF‖L∞ Per(Et )
1/2

(∫
∂∗Et

|νEt − νε|2 dHn−1
)1/2

≤ ‖DF‖L∞ Per(Et )
1/2ε,

where we used (2.2) and the weak convergence of the the vector valued measures

ν
E

(hk )
t

Hn−1∂∗E (hk )
t

∗
⇀ νEtHn−1∂∗Et in the following way:
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lim
k→+∞

∫
∂∗E (hk )

t

|ν
E

(hk )
t

− νε|2 dHn−1

= lim
k→+∞

∫
∂∗E (hk )

t

(
1 + |νε|2 − 2ν

E
(hk )
t

· νε

)
dHn−1

=
∫

∂∗Et

(
1 + |νε|2 − 2νEt · νε

)
dHn−1

=
∫

∂∗Et

|νEt − νε|2 dHn−1.

Next we use Lemma 3.6 and Corollary 3.9 in conjunction with the results in Hutchinson
[23, Theorem 4.4.2] to deduce the existence of functions v : [0,+∞) × R

n → R, λ̂ :
[0,+∞) → R and H : [0,+∞) × R

n → R such that
∫ T

0
|̂λ|2 dt +

∫ T

0

∫
∂∗Et

(|v|2 + |H |2) Hn−1dt < Cn,0,T ,

and

lim
k→∞

∫ T

0

∫
∂E

(hk )
t

vhkφ dHn−1dt =
∫ T

0

∫
∂∗Et

v φ dHn−1dt, (4.3)

lim
k→∞

∫ T

0

∫
∂E

(hk )
t

λ(hk )φ dHn−1dt =
∫ T

0

∫
∂∗Et

λ̂ φ dHn−1dt, (4.4)

lim
k→∞

∫ T

0

∫
∂E (hk )

H
E

(hk )
t

νE (hk ) · � dHn−1dt =
∫ T

0

∫
∂∗Et

H · � dHn−1dt, (4.5)

for every φ ∈ C0
c ([0, T ) × R

n) and every � ∈ C0
c ([0, T ) × R

n;Rn).
In particular, testing (4.2) with F(x, ν) := div� − ν · ∇�ν for some � ∈ C1

c (R
n;Rn)

and using (4.5), by a simple approximation argument we conclude that, for a.e. t ∈ [0,+∞),∫
∂∗Et

div∂Et � dHn−1 = lim
k→+∞

∫
∂∗E (hk )

t

div
∂E

(hk )
t

� dHn−1

= lim
k→+∞

∫
∂∗E (hk )

t

ν
E

(hk )
t

· � H
E

(hk )
t

dHn−1

=
∫

∂∗Et

νEt · � H dHn−1,

thus showing that H(t, ·) is the generalized mean-curvature of Et for a.e. t ∈ [0,+∞)

(cp. (2.1)) and proving (2.3) of Theorem 2.3.
Similarly, (2.4) and (2.6) follows from (3.26) and (3.27) by using (4.3) and (4.4).
We need only to show (2.5). To this aim we use Proposition 4.1. For every φ ∈

C1
c ([0,+∞) × R

n), by a change of variables we have that∫ ∞

h

[ ∫
E (h)
t

φ dx −
∫
E (h)
t−h

φ dx
]
dt=

∫ ∞

h

∫
E (h)
t

(
φ(t, x) − φ(t + h, x)

)
dx dt − h

∫
E0

φ dx,

where we used that E (h)
t = E0 for t ∈ [0, h). Therefore it follows by a simple convergence

argument that

lim
h→0

∫ ∞

h

1

h

[∫
E (h)
t

φ dx −
∫
E (h)
t−h

φ dx

]
dt = −

∫ ∞

0

∫
Et

∂φ

∂t
(t, x) dx dt −

∫
E0

φ dx .
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In view of (4.3) and (4.1), we conclude (2.5) straightforwardly.

4.2 Tilting of the tangent planes

In this subsection and in the next one we give the proof of Proposition 4.1. We follow closely
the arguments in [26] and for the sake of completeness we provide a detailed proof in different
steps.

This subsection is devoted to the estimate of the tilting of the normals around points of
small curvature. We recall that we assume in this section n ≤ 7 (in particular, the approximate
solutions of the volume-preserving mean-curvature flow are everywhere of class C2,κ ).

Lemma 4.2 For given constants 1
2 < β < α < 1, there exists a continuous increasing

function ω : [0, 1] → R with ω(0) = 0 with the following property. Let t ∈ [2h,+∞),
{E (h)

t }t≥0 be an approximate solution to the volume-preserving mean-curvature flow, and let

x0 ∈ ∂E (h)
t be such that

|v(h)(t, y)| ≤ hα−1 ∀ y ∈ Bγn
√
h(x0) ∩ (E (h)

t 
E (h)
t−h). (4.6)

Then there exists ν ∈ R
n such that |ν| = 1 and

|ν
∂E (h)

t
(y) − ν| ≤ ω(h) ∀ y ∈ Bhβ (x0) ∩ ∂E (h)

t , (4.7)

|ν
∂E (h)

t−h
(y) − ν| ≤ ω(h) ∀ y ∈ Bhβ (x0) ∩ ∂E (h)

t−h . (4.8)

Proof Let 0 < R ≤ h
1
2 −β and let F ⊂ R

n be any set such that E (h)
t 
F ⊂⊂ BRhβ (x0). By

the minimizing property of E (h)
t we have that

Per(E (h)
t , BRhβ (x0)) ≤ Per(F, BRhβ (x0)) + 1

h

∫
F
E (h)

t

d
E (h)
t−h

(y) dy

+ 1√
h

(∣∣|F | − 1
∣∣ − ∣∣|E (h)

t | − 1
∣∣). (4.9)

A straightforward computation yields
∣∣|F | − 1

∣∣ − ∣∣|E (h)
t | − 1

∣∣ ≤ |F
E (h)
t |,

1

h

∫
F
E (h)

t

d
E (h)
t−h

(y) dy ≤ γn + 1√
h

|F
E (h)
t |,

where we used that |v(h)(t, y)| ≤ Rhβ−1 + γn h−1/2 ≤ (γn + 1) h− 1
2 for all y ∈ BRhβ (x0)∩

(E (h)
t 
F) thanks to the fact that x0 ∈ ∂E (h)

t , Proposition 3.2 and the 1-Lipschitz continuity
of the signed distance sd

E (h)
t−h

. Combining the above estimates with (4.9), we obtain

Per(E (h)
t , BRhβ (x0)) ≤ Per(F, BRhβ (x0)) + γn + 2√

h
|F
E (h)

t |. (4.10)

Next we introduce the sets

E (h),β
t :=

{
z ∈ R

n : z = y − x0

hβ
, y ∈ E (h)

t

}
,

E (h),β
t−h :=

{
z ∈ R

n : z = y − x0

hβ
, y ∈ E (h)

t−h

}
.
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By a simple rescaling argument, from (4.10) and from the analogous estimates at time t − h
(recall that t ≥ 2h) we deduce that for s = t, t − h

Per(E (h),β
s , BR) ≤ Per(F, BR) + (γn + 2) hβ− 1

2 |F
E (h),β
s |

∀R ≤ h1/2−β, ∀ F
E (h),β
s ⊂⊂ BR .

This implies that E (h),β
t and E (h),β

t−h are both (�h, rh)-minimizers of the perimeter on �h :=
(γn + 2)hβ− 1

2 and rh := h
1
2 −β . By the precompactness for sequences of �h-minimizers

(cf. [27, Proposition 21.13]), we conclude that we can find a subsequence (not relabeled)
verifying

lim
h→0

χ
E (h),β
t

= χ
Eβ

1
and lim

h→0
χ
E (h),β
t−h

= χ
Eβ

2
in L1

loc(R
n).

Moreover, using the lower semicontinuity of the perimeter with respect to L1 convergence and
β > 1

2 , we deduce that Eβ
1 and Eβ

2 are locally minimizing the perimeter. By the assumption

n ≤ 7 and a Bernstein theorem (see [19, Theorem 17.3]), Eβ
1 , Eβ

2 are half-spaces. Moreover,
by hypothesis it holds

d
E (h),β
t−h

(z) ≤ hα−β ∀z ∈ B
h

1
2 −β

(0) ∩
(
E (h),β
t 
E (h),β

t−h

)
,

thus implying that Eβ
1 = Eβ

2 , and by the fact that both are hyperplanes there exists ν ∈ R
n

with |ν| = 1 such that

Eβ
1 = Eβ

2 = {
z ∈ R

n : z · ν < 0
}
.

To reach the conclusion of the lemma we need only to invoke the regularity theory of
�-minimizing set (cp. [27, Theorem 26.3]) and conclude that ∂E (h),β

s is uniformly C1,κ in
B1 for s = t, t − h, thus leading straightforwardly to (4.7) and (4.8). ��
Corollary 4.3 Under the hypotheses of Lemma 4.2, let Chβ/2(x0, ν) ⊂ R

n be the open
cylinder defined as

Chβ/2(x0, ν)

:=
{
x ∈ R

n : |(x − x0) · ν| < hβ/2,
√

|x − x0|2 − |(x − x0) · ν|2 < hβ/2
}

.

Then, there exists a dimensional constant C > 0 such that∣∣∣∣∣
∫
Chβ /2(x0,ν)

(
χ
E (h)
t

− χ
E (h)
t−h

)
dx −

∫
∂E (h)

t ∩Chβ /2(x0,ν)

sd
E (h)
t−h

dHn−1

∣∣∣∣∣
≤ C ω(h)

∫
Chβ /2(x0,ν)

∣∣χ
E (h)
t

− χ
E (h)
t−h

∣∣ dx . (4.11)

Proof From Lemma 4.2 we know that, for h sufficiently small, ∂E (h)
t and ∂E (h)

t−h in
Chβ/2(x0, ν) can both be written as graphs of functions of class C1,κ . Namely, by an affine
change of coordinates we can assume without loss of generality that x0 = 0 and ν = en ,
and for simplicity we set C := Chβ/2(0, en). With this assumption we then have that for
s = t, t − h

∂E (h)
s ∩ C = {

(y, fs(y)) ∈ R
n−1 × R : |y| ≤ hβ/2

}
,
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where fs : Bhβ/2 ⊂ R
n−1 → R are C1,κ functions with

‖∇ fs‖L∞(Bhβ /2) ≤ ω(h). (4.12)

In view of Fubini’s theorem it is then clear that

∫
C

(
χ
E (h)
t

− χ
E (h)
t−h

)
dx =

∫
Bhβ /2

(
ft (y) − ft−h(y)

)
dy,

∫
C

∣∣χ
E (h)
t

− χ
E (h)
t−h

∣∣ dx =
∫
Bhβ /2

∣∣ ft (y) − ft−h(y)
∣∣ dy.

Moreover, from (4.12) it follows that there exists a geometric constant C > 0 such that, for
every y ∈ Bhβ/2,

∣∣sd
E (h)
t−h

(y, ft (y))
√

1 + |∇ ft (y)|2 − ( ft (y) − ft−h(y))
∣∣ ≤ C ω(h) | ft (y) − ft−h(y)|.

Therefore, one infers (4.11) as follows

∣∣∣∣∣
∫

∂E (h)
t ∩C

sd
E (h)
t−h

dHn−1 −
∫
Bhβ /2

( ft (y) − ft−h(y)) dy

∣∣∣∣∣

=
∣∣∣∣∣
∫
Bhβ /2

(
sd

E (h)
t−h

(y, ft (y))
√

1 + |∇ ft (y)|2 − ( ft (y) − ft−h(y))
)
dy

∣∣∣∣∣
≤ C ω(h)

∫
Bhβ /2

| ft − ft−h | dy,

where we used that (4.12). ��

We are finally ready for the proof of Proposition 4.1.

4.3 Proof of Proposition 4.1

We fix any time t ∈ [2h,+∞). For every x0 ∈ ∂E (h)
t , we fix α ∈ ( 1

2 , n+2
2(n+1)

)
and consider

the following open set Ax0 defined as follows:

(i) if (4.6) holds, then we set Ax0 := Chβ/2(x0, ν) where ν ∈ R
n is the unit vector in

Lemma 4.2;
(ii) otherwise we set Ax0 := Bγn

√
h(x0).

Note that by Proposition 3.2 we have that {Ax0}x0∈∂E (h)
t

is a covering of E (h)
t 
E (h)

t−h .

Moreover, by a simple application of Besicovitch’s covering theorem, cp. [16, Chapter 1.5.2]
(applied, for example, to the balls to Bhβ/2(x0) ⊂ Ax0 ), there exists a finite collections of

points I ⊂ ∂E (h)
t such that {Ax0}x0∈I is a covering of E (h)

t 
E (h)
t−h .

We estimate the contribution of the integrals in (4.1) in every Ax0 with x0 ∈ I in two
steps, depending on whether (i) above applies or (ii).
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Estimate in case (i). We use Corollary 4.3 and deduce that

∣∣∣
∫
Ax0

(
χ
E (h)
t

− χ
E (h)
t−h

)
φ dx −

∫
∂E (h)

t ∩Ax0

sd
E (h)
t−h

φ dHn−1
∣∣∣

≤ |φ(x0)|
∣∣∣
∫
Ax0

(
χ
E (h)
t

− χ
E (h)
t−h

)
dx −

∫
∂E (h)

t ∩Ax0

sd
E (h)
t−h

dHn−1
∣∣∣

+
∣∣∣
∫
Ax0

(
χ
E (h)
t

− χ
E (h)
t−h

)
(φ − φ(x0)) dx −

∫
∂E (h)

t ∩Ax0

sd
E (h)
t−h

(φ − φ(x0)) dHn−1
∣∣∣

≤ C
(
ω(h) ‖φ‖L∞ + hβ ‖∇φ‖L∞

) ∫
Ax0

∣∣χ
E (h)
t

− χ
E (h)
t−h

∣∣ dHn−1, (4.13)

where we used the fact that Ax0 = Chβ/2(x0, ν).

Estimate in case (ii). By assumption there exists a point y0 ∈ Bγn
√
h(x0) ∩ (E (h)

t 
E (h)
t−h)

such that |v(h)(t, y0)| > hα−1. Without loss of generality we can assume that y0 ∈ E (h)
t

(the other case can be treated analogously and we leave the details to the reader). It is then
clear that Bhα/2(y0) ⊂ R

n\E (h)
t−h and v(h)(t, y) > hα−1/2 for every y ∈ Bhα/2(y0). Since

hα < 2γnh1/2, we can apply the density estimate in (3.11) and deduce that

Cn h
(n+1)α−1 ≤

∫
Bhα/2(y0)∩(E (h)

t 
E (h)
t−h)

|vh | dx . (4.14)

Similarly, by the density estimate in (3.12) and Proposition 3.2 we deduce that
∫
B

γn
√
h(x0)∩∂E (h)

t

|dEh
t−h

| dHn−1 ≤ Cn h
n/2. (4.15)

From (4.14), (4.15) and Bhα/2(y0) ⊂ B2γn
√
h(x0) we then deduce that

∫
Ax0

∣∣χ
E (h)
t

−χ
E (h)
t−h

∣∣ +
∫
Ax0 ∩∂E (h)

t

d
E (h)
t−h

dHn−1

≤ Cnh
n/2−(n+1)α+1

∫
B2 γn

√
h(x0)∩(E (h)

t 
E (h)
t−h)

|vh | dx . (4.16)

We can then sum (4.13) and (4.16) over x0 ∈ I and, recalling (3.15), (3.16) and (3.17),
we get

∣∣∣
∫ (

χ
E (h)
t

− χ
E (h)
t−h

)
φ dx −

∫
∂E (h)

t

sd
E (h)
t−h

φ dHn−1
∣∣∣

≤
∑
x0∈I

∣∣∣
∫
Ax0

(
χ
E (h)
t

− χ
E (h)
t−h

)
φ dx −

∫
∂E (h)

t ∩Ax0

sd
E (h)
t−h

φ dHn−1
∣∣∣

≤ Cn,0

(
ω(h) ‖φ‖L∞ + hβ ‖∇φ‖L∞ + hn/2−(n+1)α+1 ‖φ‖L∞

)

×
(

|E (h)
t 
E (h)

t−h | +
∫
E (h)
t 
E (h)

t−h

|vh | dx
)

(4.17)

where we used the finite finiteness of the covering.
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Finally, integrating in time and using (3.18) and (3.19) we get

∣∣∣
∫ +∞

2h

1

h

[ ∫
E (h)
t

φ dx −
∫
E (h)
t−h

φ dx
]
dt −

∫ +∞

h

∫
∂E (h)

t

φ vh dHn−1dt
∣∣∣

≤ Cn,0,T

(
ω(h) ‖φ‖L∞ + hβ ‖∇φ‖L∞ + hn/2−(n+1)α+1 ‖φ‖L∞

)
,

where T > 0 is such that supp(φ) ⊂ [0, T ] × R
n . Recalling the definition of α and taking

the limit as h goes to 0, we conclude (4.1).
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Appendix: A density lemma

We premise the following density estimate for one-sided minimizers of the perimeter. The
estimate can be easily deduced from the original arguments by De Giorgi exploited for
minimizers [14].

Lemma 4.4 There exists a dimensional constant cn > 0 with this property. Let E ⊂ R
n be

a set of finite perimeter, R, μ > 0 and x0 ∈ ∂E be such that

Per(E) ≤ Per(E ∪ Br (x0)) + μ |Br (x0)\E | ∀ 0 < r < R. (4.18)

Then,
cn r

n ≤ |Br (x0)\E | ∀ 0 < r < min
{
R, μ−1} . (4.19)

Recall that x0 ∈ ∂E if min{|Br (x0)\E |, |E ∩ Br (x0)|} > 0 for every r > 0.

Proof Without loss of generality, we can assume x0 = 0. We use the following indentity
which are true a.e. r > 0:

Per(E ∪ Br ) = Hn−1(∂Br\E) + Per(E,Rn\Br (x)), (4.20)

Per(Br\E) = Hn−1(∂Br\E) + Per(E, Br ), (4.21)

Per(E) = Per(E, Br ) + Per(E,Rn\Br ). (4.22)

Indeed, if E were smooth, these formulas follow for all the r such that Br and E have
transversal intersections. Otherwise one can argue by approximation. Using now (4.18), we
deduce that, for a.e. r > 0,

Per(Br\E)
(A.4)= Hn−1(∂Br\E) + Per(E, Br )

(A.5)≤ Hn−1(∂Br\E) + Per(E) − Per(E,Rn\Br )
(A.1) & (A.3)≤ 2Hn−1(∂Br\E) + μ |Br\E |. (4.23)
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By the isoperimetric inequality [19, Corollary 1.29], there exists a dimensional constant
C > 0, such that

C |Br\E | n−1
n ≤ Per(Br\E)

(A.6)≤ 2Hn−1(∂Br\E) + μ |Br\E |. (4.24)

Setting f (r) := |Br\E |, by the coarea formula [16, 3.4.4], it holds

Hn−1(∂Br\E) = f ′(r) for a.e. r > 0.

Hence, (4.24) reads as

C f (r)
n−1
n ≤ 2 f ′(r) + μ f (r). (4.25)

Finally, note that f (r) ≤ ωn rn , from which f (r) ≤ ω
1/n
n r f (r)n−1/n . Therefore, there exists

a dimensional constant Cn > 0 such that if 0 < r < min{R,Cn μ−1}, then the last term in
(4.25) can be absorbed in the left hand side and deduce that

f (r)
n−1
n ≤ C f ′(r).

Integrating (4.24) (recall that f (r) > 0 for every r > 0) we get the desired (4.19) for every
0 < r < min{R,Cn μ−1} and, by changing the dimensional constant cn > 0, for every
0 < r < min{R, μ−1}. ��
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