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Abstract We show that nonlinearly elastic plates of thickness h → 0 with an ε-
periodic structure such that ε−2h → 0 exhibit non-standard behaviour in the asymptotic
two-dimensional reduction from three-dimensional elasticity: in general, their effective
stored-energy density is “discontinuously anisotropic” in all directions. The proof relies
on a new result concerning an additional isometric constraint that deformation fields must
satisfy on the microscale.

Mathematics Subject Classification 35Q74 · 74B20 · 74Q05 · 41A60 · 49S99

1 Introduction

Understanding the behaviour of elastic plates (and, more generally, thin elastic structures)
from the rigorousmathematical point of view has attractedmuch attention of applied analysts
over the recent years. The related activity was initiated by the papers [1] and [15], which
were followed by the work [8] by Friesecke, James andMüller concerning plate deformations
u with finite “bending energy”. The paper [8] appeared alongside the thesis [21] by Pantz
and was followed by a study of other energy scalings [9]. It puts forward the idea that
homogeneous plates of thickness h, viewed as three-dimensional nonlinearly elastic bodies,
afford a special compactness argument for sequences of deformation gradients ∇u with
elastic energy of order O(h3) as h → 0. This argument is based on a new “rigidity estimate”
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4080 M. Cherdantsev, K. Cherednichenko

[8] concerning the distance of local values of ∇u from the group of rotations SO(3). The
observation that this bounds the distance from a constant rotation field (which depends on
u) allowed the authors of [8] to show that the “limit” elastic energy functional as h → 0 is
given by

Elim(u) := 1

12

∫

ω

Q2(II(u)), u ∈ H2
iso(ω), (1)

where ω ⊂ R
2 represents the mid-surface of the undeformed plate, II(u) = (∇′u)�∇′(∂1u∧

∂2u), ∇′ = (∂1, ∂2), is the matrix of the second fundamental form of an isometric surface
u : ω → R

3, and Q2 is a quadratic form derived via dimension reduction from a quadratic
form appearing in the process of linearisation of elastic properties of the material in the
small-strain regime.

From the point of view of applications to real-world materials, it seems reasonable to ask
in what way the above result is affected by a possible inhomogeneity of material properties
of the plate in the directions tangential to its mid-surface. One can imagine, for instance,
that the plate has a periodic structure of period ε > 0 and try to replace the ε, h-dependent
family of h−3-scaled energy functionals by an “effective” functional in the sense of vari-
ational convergence [6]. Such analysis should reveal, in particular, whether the behaviour
of the plate really depends on the relative orders of smallness of the parameters ε and h.

Work on this programme was started in the thesis [17] by Neukamm, where a series of sim-
ilar questions was addressed for a periodically inhomogeneous rod, i.e. a one-dimensional
analogue of a plate. Further, a recent paper [14] has investigated the behaviour of periodic
plates in the cases when h 	 ε and h ∼ ε. This was followed by the work [23], where the
case ε2 � h � ε is addressed. In the present paper we develop an approach (see Sects. 3,
4) that in our view simplifies the derivation of the corresponding �-limit, via a “smoothing”
approximation procedure that precedes the two-scale compactness argument, see Sect. 3 of
the present work. Smoothing is known to be useful in the asymptotic analysis of sequences
of solutions to parameter-dependent PDE (see e.g. [10,25]). In the present work we exploit
similar considerations in the asymptotic analysis of bounded-energy sequences, where the
energy is represented by an integral functional. Our smoothing approach replaces the approx-
imation result [14, Lemma 3.8], when h 	 ε or h ∼ ε, and an additional technical statement
[23, Lemma 3.7], when ε2 � h � ε, by a two-scale compactness theorem for the sec-
ond gradients of smooth approximations (Theorem 3 below). Remarkably, in the situation
where the deformation uh ∈ H1(�) has no second derivatives, the smoothing procedure
takes us to a setting where the second derivatives exist and are bounded in the L2-norm, see
Lemma 2.

The added value of our approach, however, is revealed through its ability to deal with the
moredifficult caseh � ε2,whichhas remainedopenuntil now.Anadditional keyobservation
in handling this case is that the determinant of thematrix of second derivatives of the smoothed
approximation can be rewritten in a form amenable to the use of a compensated compactness
argument (see proof of Theorem 5) in order to derive an additional, “fast-scale”, isometry
constraint on the limit finite-energy deformations, see (2). It also perhaps worth mentioning
that the smoothing approach yields a somewhat shorter route to the statement of compactness
of finite-energy sequences in the case of homogeneous plates considered in [8].

Notably, a recent paper [18] contains an analysis of “zero-thickness” plates, where func-
tionals of the “limit” form (1) with explicit ε-periodic x-dependence of Q2 are studied in
the limit ε → 0. Our results are consistent with those of [18], in the sense of offering an
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Bending of thin periodic plates 4081

alternative route to the same “supercritically-thin plate” limit functional. However, while the
authors of [18] work with a two-dimensional formulation from the outset, our derivation is
in the spirit of “dimension reduction” from the full three-dimensional problem. In addition,
our approach offers a shorter route to the proofs of [18], which is checked directly.

All of the above earlier works follow a traditional methodology of �-convergence relying
solely on convergence properties of sequenceswith bounded energy combinedwith “structure
theorems” for combinations of their gradients, without analysing their asymptotic structure
as a two-scale series in powers of the parameters ε, h. Our approach, on the contrary, is
guided by an analysis of the original sequence of energy functionals via two-scale power
series expansions (For a detailed discussion of the viewpoint provided by the method of
asymptotic expansions, see Appendix 2). For “supercritical” scalings h � ε2 it suggests in
particular that, to the leading order, the approximating (“exact” or “recovery”) sequences
have to satisfy an additional constraint

det(II + ∇2
yψ) = 0, (2)

where ψ = ψ(x ′, y), x ′ ∈ ω, y ∈ Y := [0, 1)2, is a term that appears in the two-scale
limit of the original sequence of deformations and is responsible for the behaviour of the
plate on ε-scale. One key aspect that facilitates this approach is that the limit stored-energy
function Q2 is quadratic with respect to the second fundamental form of the surface, which
makes the analysis of ε, h-dependent plate energies somewhat amenable to a perturbation
technique.

The observation that the space of deformations with finite bending energy acquires the
constraint (2), combined with a characterisation of isometric embeddings by Pakzad [20]
and the earlier ansatz of [8], see (77), allows us to carry out a rigorous proof of variational
convergence. Thanks to the two-scale asymptotic structure, the presence of the second gra-
dient of the corrector ψ in the two-scale limit of deformation sequences provides a natural
construction for the recovery sequences, cf. (37) for the moderate regime. The supercritical
regime h � ε2 is studied in Sect. 7, which contains our main result, Theorem 9: the limit
energy functional is given by

E sc
hom = 1

12

∫

ω

Qsc
hom

(
II(u)

)
,

where

Qsc
hom = min

∫

Y

Q2(y, II + ∇2
yψ)dy, ψ ∈ H2

loc(R
2) Y − periodic, subject to (2).

The isometry constraint (2) implies, in particular, that Qsc(II) is “discontinuously anisotropic
in all directions of bending” as a function of the macroscopic deformation gradient ∇u,

see Theorem 8 and the subsequent discussion. To the best of our knowledge, this is a new
phenomenon for nonlinearly elastic plates. Finally,we remark that the analysis of the “critical”
scaling h ∼ ε2 is currently open.

Throughout the text Id denotes the d × d identity matrix, d = 2, 3. Unless indicated
otherwise, we denote by C a positive constant whose precise value is of no importance and
may vary between different formulae. We use the notation ∂i , i = 1, 2, 3, for the partial
derivative with respect to xi , ∂yi , i = 1, 2, for the partial derivative with respect to yi , and
∇y for the gradient with respect to y.
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2 Setting of the problem

Let ω be a bounded convex1 domain in R
2, and let �h := ω × (− h

2 , h
2 ) be a reference

configuration of an undeformed elastic plate, where h is a small positive parameter, 0 <

h � 1. A deformation u of the plate �h is an H1-function from �h into R
3. We assume

that the material properties of the plate �h vary over ω with a period ε, which goes to zero
simultaneously with h. For a plate made of a hyperelastic material (see e.g. [4]), the elastic
energy of a deformation u is given by the functional∫

�h

W (ε−1x ′,∇u)dx,

where x ′ := (x1, x2) ∈ ω. The stored-energy density W (y, F) is assumed to be a
Carathéodory function (i.e. measurable in y ∈ Y := [0, 1)2 and continuous in F ∈ R

3×3),
periodic with respect to y ∈ Y, and to satisfy the standard conditions of nonlinear elasticity
(see e.g. [4]):

(A) The density W is frame-indifferent, i.e. W (y, RF) = W (F) for any R ∈ SO(3) and
any F ∈ R

3×3, where SO(3) is a group of rotation matrices in R
3×3.

(B) The identity deformation u(x) = x is a natural state, i.e. W (y, I3) = minF W (y, F) =
0.

(C) There exists a constant C > 0 such that for all y ∈ Y, F ∈ R
3×3 he inequality

W (y, F) ≥ C dist2(F,SO(3)) (3)

holds.

Additionally we assume that (cf. [3,8,14])
(D) The densityW, as a function of the deformation gradient, admits a quadratic expansion

at the identity, i.e. there exists a non-negative quadratic form Q3 on R
3×3 such that

W (y, I3 + G) = Q3(y,G) + r(y,G) (4)

for all G ∈ R
3×3, where

r(y,G) = o(|G|2) as |G| → 0 uniformly with respect to y ∈ Y. (5)

We assume additionally that Q3 is measurable in y ∈ Y for all G, |G| = 1, so that r is a
Carathéodory function.

We next rescale the transverse variable x3 in order to work on a fixed domain. Namely,
we multiply the transverse variable by h−1 so that the new variable belongs to the interval
I := (− 1

2 ,
1
2 ). We reassign the notation x3 to the new variable (this should not cause any

misunderstanding since we will always deal only with the rescaled domain in the future), so
x ∈ � := ω × I . We also use the rescaled gradient

∇h :=
(

∇′, 1

h

∂

∂x3

)
:=
(

∂

∂x1
,

∂

∂x3
,
1

h

∂

∂x3

)
,

so that the rescaled functional is given by

Eh(u) :=
∫

�

W (ε−1x ′,∇hu)dx,

1 The convexity of ω is a technical requirement which allows us to use the results describing the properties
of isometric immersions for the supercritical case h � ε2. From the point of view of the aim of the present
work this requirement is insignificant, since the limit effective behaviour of an elastic plate is a local property.
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Bending of thin periodic plates 4083

where u ∈ H1(�). We consider sequences of deformations uh in the bending regime, that is
such that

Eh(uh) ≤ Ch2. (6)

(In the non-rescaled setting this corresponds to the energies of order h3). In this paper we
focus on the case when h � ε.We consider ε as a function of h, i.e. h is our “main” parameter
and ε is the “dependent” parameter.

The non-degeneracy property (3) and the assumption (6) imply that∫

�

dist2
(∇huh,SO(3)

)
dx ≤ Ch2. (7)

In what follows, we say that a sequence satisfying (7) has finite bending energy.

3 Two-scale compactness and second gradients

The two cases when ε is of order h and h 	 ε were considered in [14]. In these regimes
the behaviour of the mid-surface of the plate is essentially macroscopic and the microscale
only plays a role away from the mid-surface. In our case the microscopic behaviour of the
mid-surface of the plate is very important. This is due to the fact that for each ε-cell the
corresponding piece of the plate itself behaves like a miniature plate. This “micro-plate”
behaviour becomes even more dominant when h � ε2. In order to study this property we
employ the method of two-scale convergence. The structure of the limit functional in the case
of a homogeneous plate, namely, the fact that it is basically defined on the second gradient
of the limit surface, suggests that the information about the microscopic behaviour should
also appear in the form of a second gradient. The problem is that the original functional is
defined only on H1-functions, and how one would obtain the second derivatives with respect
to the fast variable y in the limit is not clear at the outset. However, while this is not possible
in general, in the bending regime deformations possess an additional property which in a
certain sense is equivalent to the existence of the second gradient, which we explain in detail
in what follows.

Let us recall some results from [8]. We denote

Ya,h := a + hY, a ∈ hZ
2, ωh :=

⋃
Ya,h⊂ω

Ya,h .

Theorem 1 Suppose that a sequence uh in H1(�) has finite bending energy. Then:

1. Up to a subsequence

∇huh → (∇′u, n) strongly in L2(�),

where u = u(x ′) belongs to the space H2
iso(ω) of isometric immersions, i.e. such maps

u : ω → R
3 that (∇′u)�∇′u = I2, and n := u,1 ∧ u,2;

2. There exists a piecewise constant map Rh : ωh → SO(3) such that∫

ωh×I

|∇huh − Rh |2 dx ≤ Ch2

for some C > 0 independent of h;
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3. The difference between the values of Rh in each pair of neighbouring h-cells is small in
the sense that ∫

ωh

max
ζ∈ϒx ′

∣∣Rh(x
′ + ζ ) − Rh(x

′)
∣∣2dx ′ ≤ Ch2,

where C > 0 is independent of h, and ϒx ′ consists of those ζ ∈ {−h, 0, h}2 for which
Ya+ζ,h ⊂ ωh for the value a ∈ hZ

2 such that x ′ ∈ Ya,h .

Apart from the strong compactness of the gradients ∇huh , which is true in our setting as
well as for homogeneous plates, this theorem implies that oscillations of the gradients on the
h-scale are bounded. The third property in Theorem 1 implies that the difference between
values of Rh in neighbouring h-cells divided by h (which basically is the difference quotient)
is bounded on average and a similar statement can be formulated for ∇huh due to the second
part of the theorem. Hence one can try to mollify uh, expecting that the second gradient of
the mollification will be bounded. In what follows we always assume that uh is a sequence
with finite bending energy.

Let ϕ ∈ C∞
0 (B1), ϕ ≥ 0, be radially symmetric, where B1 is a unit disc centred at

the origin,
∫
B1

ϕ = 1, and for each h > 0 denote by ϕh(x ′) := h−2ϕ(h−1x ′), x ′ ∈ R
2,

the corresponding mollifier. Let ω′ be a domain whose closure is contained in ω. For each
sufficiently small h > 0, consider the function ũh = ũh(x ′), x ′ ∈ ω′, defined as the result of
the simultaneous mollification of uh with ϕh and averaging with respect to the variable x3:

ũh(x
′) :=

∫

I

∫

R2

ϕh(ξ − x ′)uh(ξ, x3) dξdx3 =
∫

I

∫

R2

ϕh(ξ)uh(ξ+x ′, x3) dξdx3, x ′ ∈ ω′.

(8)

(The above integral is well defined in ω′ for sufficiently small h, since in this case the support
of ϕh(ξ −x ′) is contained inω). It is well known that the mollification ũh is infinitely smooth.
We will need to estimate in H1 the difference between ũh and the average of uh with respect
to x3,

uh(x
′) :=

∫

I

uh(x)dx3, x ′ ∈ ω′,

as well as its derivatives up to the second-order. Such estimates are obtained in the next
statement.

Theorem 2 Letω′ be a domainwhose closure is contained inω. Themollification (8) satisfies
the following inequalities with a constant C > 0 independent of ω′ and h:

‖ũh − uh‖H1(ω′) ≤ Ch, (9)

‖∇′ 2ũh‖L2(ω′) ≤ C,

‖∇′ũh‖L∞(ω′) ≤ C. (10)

Proof In the subsequent estimates we use a generalised Minkowski inequality (also some-
times referred to as the Minkowski integral inequality):
⎡
⎣
∫

Y

∣∣∣∣
∫

X
F(x, y)dμX (x)

∣∣∣∣
p

dμY (y)

⎤
⎦
1/p

≤
∫

X

⎡
⎣
∫

Y

∣∣∣∣F(x, y)

∣∣∣∣
p

dμY (y)

⎤
⎦
1/p

dμX (x),
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where X and Y are measure spaces with measures μX (x) and μY (y) respectively, F :
X × Y → R is measurable and 1 < p < ∞, see e.g. [11]. We obtain the L2-estimate in (9)
as follows:

‖ũh − uh‖L2(ω′)

=
⎛
⎜⎝
∫

ω′

⎛
⎜⎝
∫

R2

ϕh(ξ)
(
uh(ξ + x ′) − uh(x

′)
)
dξ

⎞
⎟⎠

2

dx ′

⎞
⎟⎠

1/2

≤
∫

R2

⎛
⎝
∫

ω′

(
ϕh(ξ)

(
uh(ξ+x ′)−uh(x

′)
))2

dx ′
⎞
⎠

1/2

dξ ≤ max|ξ |≤h

∥∥uh(ξ+x ′)−uh(x
′)
∥∥
L2(ω′)

= max|ξ |≤h

∥∥∥∥
∫ 1

0
∇′uh(tξ + x ′) · ξ dt

∥∥∥∥
L2(ω′)

≤ max|ξ |≤h
|ξ |
∫ 1

0

∥∥∇′uh(tξ + x ′)
∥∥
L2(ω′) dt

≤ Ch
∥∥∇′uh(x ′)

∥∥
L2(ω)

≤ Ch.

Now we estimate the difference of the gradients of ũh and uh . First notice that by the
properties of mollification, ∇′ũh equals to the mollification of ∇′uh . Second, one has

‖∇′uh − R̂h‖L2(ω′) ≤ ‖∇′uh − R̂h‖L2(�′) ≤ Ch, (11)

where R̂h stands for the first two columns of the matrix Rh , and �′ := ω′ × I . The bound
(11) is a simple consequence of application of the generalised Minkowski inequality and the
Hölder inequality. Further, the following estimate holds:

‖∇′ũh − ∇′uh‖L2(ω′)

=

∥∥∥∥∥∥∥
∫

R2

ϕh(ξ)
(∇′uh(ξ + x ′) − ∇′uh(x ′)

)
dξ

∥∥∥∥∥∥∥
L2(ω′)

≤
∫

R2

∥∥ϕh(ξ)
(∇′uh(ξ + x ′) − ∇′uh(x ′)

)∥∥
L2(ω′) dξ

≤ max|ξ |≤h

∥∥∇′uh(ξ + x ′) − ∇′uh(x ′)
∥∥
L2(ω′)

≤ max|ξ |≤h

∥∥∇′uh(ξ + x ′) − R̂h(x
′ + ξ)

∥∥
L2(ω′) + max|ξ |≤h

∥∥R̂h(ξ + x ′) − R̂h(x
′)
∥∥
L2(ω′)

+ ∥∥R̂h(x
′) − ∇′uh(x ′)

∥∥
L2(ω′) ≤ Ch, (12)

where we use the generalised Minkowski inequality and Theorem 1.
Next we estimate the second gradient of ũh , given by

∇′ 2ũh =
∫

R2

∇′(ϕh(ξ − x ′)) ⊗ ∇′uh(ξ) dξ = −
∫

R2

∇′ϕh(ξ) ⊗ ∇′uh(x ′ + ξ) dξ,

where∇′ϕh(ξ) = h−3∇′ϕ(h−1ξ). Since the mollifier ϕ is radially symmetric, ∂ξ1ϕh(ξ) is an
odd function of ξ1 and an even function of ξ2, and analogously for ∂ξ2ϕh(ξ), hence we write

∂i∇′ũh = −
∫

{|ξ |≤h,ξi>0}
∂iϕh(ξ)

(∇′uh(x ′ + ξ) − ∇′uh(x ′ − ξ)
)
dξ, i = 1, 2.
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Using the generalised Minkowski inequality once again we have, for i = 1, 2,

‖∂i∇′ũh‖L2(ω′) ≤
∫

{|ξ |≤h,ξi>0}

∥∥∂iϕh(ξ)
(∇′uh(x ′ + ξ) − ∇′uh(x ′ − ξ)

)∥∥
L2(ω′) dξ

≤ Ch−1 max|ξ |≤h

∥∥∇′uh(x ′ + ξ) − ∇′uh(x ′ − ξ)
∥∥
L2(ω′) ≤ C. (13)

The last inequality is obtained analogously to (12).
Finally, we argue that ∇′ũh is bounded pointwise independently of h:

∣∣∇′ũh(x ′)
∣∣ =

∣∣∣∣∣∣∣
∫

R2

ϕh(ξ)∇′uh(ξ + x ′) dξ

∣∣∣∣∣∣∣
≤ ‖ϕh(ξ)‖L2(Bh) ‖∇′uh(ξ + x ′)‖L2(Bh )

≤ Ch−1
∥∥∇′uh(ξ+x ′)−Rh(ξ+x ′)

∥∥
L2(Bh)

+Ch−1
∥∥Rh(ξ+x ′)

∥∥
L2(Bh )

≤ C,

for all points x ′ ∈ ω and sufficiently small values of h.

As one can see from the above, ∇′ũh is a “reasonably good” approximation of ∇′uh . It
remains to approximate h−1∂3uh by a smooth vector function. Let ñh be the vector orthogonal
to the surface ũh defined by

ñh := ∂1ũh ∧ ∂2ũh .

We show that the L2-norm of ñh − Rh,3 is at most of order h, where Rh,i stands for the i-th
column of Rh . To this end we first transform the above expression for ñh , as follows:

ñh = ∂1ũh ∧ ∂2ũh = (Rh,1 + (∂1ũh − Rh,1)
) ∧ (Rh,2 + (∂2ũh − Rh,2)

)
= Rh,3 + (∂1ũh − Rh,1) ∧ Rh,2 + Rh,1 ∧ (∂2ũh − Rh,2)

+ (∂1ũh − Rh,1) ∧ (∂2ũh − Rh,2).

Since Rh and ∇′ũh are L∞-bounded, the L2-norms of the last three terms are of order h,
hence

‖̃nh − Rh,3‖L2(ω′) ≤ Ch. (14)

Additionally, it is clear from (13) and (10) that

‖∇′ñh‖L2(ω′) ≤ C. (15)

Putting together the above estimates for ñh , Theorems 2 and 1, we obtain the following
result.

Proposition 1 Let ω′ be a domain whose closure is contained in ω. Under the assumptions
of Theorem 1 the following estimates hold:∥∥(∇′ũh | ñh) − ∇huh

∥∥
L2(�′) ≤ Ch,∥∥(∇′ũh | ñh) − Rh
∥∥
L2(ω′) ≤ Ch.

As is customary in periodic homogenisation, and due to the fact that our problem is of
two-scale nature, we require a suitable notion of convergence which takes into account the
microscopic behaviour, e.g. the so-called two-scale convergence, introduced by Nguetseng
[19]. Out of several equivalent definitions of two-scale convergence, we will use the one
based on periodic unfolding, see e.g. [5]. For convenience of the reader we give the definition
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Bending of thin periodic plates 4087

of two-scale convergence that we use and some of its properties in Appendix 1. Next we
prove a general statement about the two-scale convergence of a second gradient, without
any reference to a specific problem. This assertion may be used in various contexts where
two-scale convergence of a second gradient is required. In the present paper we make use of
this statement in Theorems 4 and 9. In the remainder of this section we consider an arbitrary
d-dimensional space, returning to the case d = 2 in Sect. 4 onwards.

Theorem 3 (Second gradient and two-scale convergence) Letω ⊂ R
d be a bounded domain

and Y := [0, 1)d . Assume that a sequence vε ∈ H2(ω) is bounded in H2(ω). Then up to a
subsequence

∇2vε
2
⇀ ∇2v(x) + ∇2

yϕ(x, y), (16)

where v ∈ H2(ω) is the weak limit in H2(ω) (hence, strong limit in H1(ω)) of the sequence
vε and2 ϕ ∈ L2

(
ω; H2

per(Y )
)
with zero mean with respect to y ∈ Y .

Note that here vε is a scalar function. The theorem directly applies to the vector case
component-wise.

Proof Following the idea of the proof of the two-scale convergence for the first gradients in
[5] we introduce the following function of x and y:

ṽε(x, y) := ε−1 (ε−1 (Tε(vε) − MY (Tε(vε))) − yc · MY (Tε(∇vε))
)
, (17)

where Tε is the unfolding operator (see Appendix 1), MY ( f ) := ∫
Y f dy is the operator of

averaging with respect to the variable y, and yc := y − (1/2, . . . , 1/2)�. We calculate the
first and second gradients of ṽε with respect to y:

∇y ṽε = ε−1 (Tε(∇vε) − MY (Tε(∇vε))) , ∇2
y ṽε = Tε(∇2vε).

Notice that the function ṽε and its gradient ∇y ṽε have zero mean value in y. Hence, we can
apply the Poincaré inequality:

‖̃vε‖L2(ω×Y ) ≤ C‖∇y ṽε‖L2(ω×Y ) ≤ C‖∇2
y ṽε‖L2(ω×Y ) ≤ C,

where the last bound follows from the assumptions of the theorem. Hence, the sequence ṽε

is bounded in L2
(
ω; H2(Y )

)
and it converges weakly in this space, up to a subsequence:

ṽε ⇀ ϕ̃ weakly in L2(ω; H2(Y )
)
.

Let a function ϕ̂ ∈ L2
(
ω; H2(Y )

)
be such that

ϕ̃ = 1

2
yc · (∇2v)yc + ϕ̂. (18)

Clearly, under this notation one has

∇2
y ṽε ⇀ ∇2v(x) + ∇2

y ϕ̂(x, y) weakly in L2(ω × Y ),

which is equivalent to (16) upon setting

ϕ(x, y) := ϕ̂(x, y) −
∫
Q

ϕ̂(x, y)dy, (x, y) ∈ ω × Y.

Now it only remains to prove the periodicity of ϕ with respect to y. To this end, letψ(x, y′) be
an arbitrary function from C∞

0 (ω × Y ′), where y′ := (y1, . . . , yd−1)
� and Y ′ := [0, 1)d−1.

2 We define H2
per (Y ) as the space of functions in H2

loc(R
2) that are Y -periodic.
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Wewrite the difference betweenvalues of ṽε on the opposite faces of the cubeY corresponding
to yd = 1 and yd = 0 (the proof for other components of y being exactly the same):

ṽε(x, y
′, 1) − ṽε(x, y

′, 0)
= ε−2 (Tε(vε)(x, y

′, 1) − Tε(vε)(x, y
′, 0)

)− ε−1MY (Tε(∂dvε))

= ε−2 (Tε(vε)(x, y
′, 1) − Tε(vε)(x, y

′, 0) − MY (∂ydTε(vε))
)

= ε−2

⎛
⎝Tε(vε)(x, y

′, 1)−Tε(vε)(x, y
′, 0)−

∫

Y ′

(
Tε(vε)(x, y

′, 1)−Tε(vε)(x, y
′, 0)

)
dy′
⎞
⎠.

Notice that Tε(vε)(x, y′, 1) = Tε(vε)(x + εed , y′, 0), where ed is a unit vector in the
direction of xd axis, hence we derive that
∫

ω×Y ′

(̃
vε(x, y

′, 1) − ṽε(x, y
′, 0)

)
ψ dxdy′

=
∫

ω×Y ′
ε−2

⎛
⎝Tε(vε)(x, y

′, 0)−
∫

Y ′
Tε(vε)(x, y

′, 0)dy′
⎞
⎠(ψ(x−εed , y

′)−ψ(x, y′)
)
dxdy′

(19)

The sequence ε−1(ψ(x − εed , y′) − ψ(x, y′)) converges to −∂dψ strongly in L2(ω × Y ′).
Let us denote

Zε(x, y) := ε−1
(
Tε(vε)(x, y) −

∫
Y ′

Tε(vε)(x, y)dy
′
)

.

Using a slight variation of the argument in Proposition 3.4 in [5] one can see that Zε converges
strongly in L2(ω; H1(Y )) to (yc)′ · ∇′v as ε → 0. Hence, its trace

Zε(x, y
′, 0) = ε−1

(
Tε(vε)(x, y

′, 0) −
∫
Y ′

Tε(vε)(x, y
′, 0)dy′

)

converges to (yc)′ · ∇′v weakly in L2(ω × Y ′), see Proposition 2 below. Passing to the limit
in (19) yields

lim
ε→0

∫

ω×Y ′

(̃
vε(x, y

′, 1) − ṽε(x, y
′, 0)

)
ψ dxdy′ = −

∫

ω×Y ′
(yc)′ · ∇′v ∂dψ dxdy′. (20)

We carry out the the same calculations for z(x, y) := 1
2 yc · (∇2v) yc, which results in

z(x, y′, 1) − z(x, y′, 0) = (yc)′ · ∂d∇′v.

Multiplying the last expression by ψ and integrating by parts we get∫

ω×Y ′

(
z(x, y′, 1) − z(x, y′, 0)

)
ψ dxdy′ = −

∫

ω×Y ′
(yc)′ · ∇′v ∂dψ dxdy′.

Comparing the latter with (20) we conclude that ϕ(x, y) is periodic with respect to y.
Analogously we prove the periodicity of ∇yϕ. Indeed, we have

∇y ṽε(x, y
′, 1) − ∇y ṽε(x, y

′, 0) = ε−1 (Tε(∇vε)(x, y
′, 1) − Tε(∇vε)(x, y

′, 0)
)
.
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Note that by the assumptions of the theorem and properties of two-scale convergence (see
Appendix 1) the sequence Tε(∇vε) converges to ∇v strongly in L2(ω; H1(Y )). Hence, by
Proposition 2 below the trace Tε(∇vε)(x, y′, 0) converges to ∇v weakly in L2(ω × Y ′), and
therefore

lim
ε→0

∫

ω×Y ′

(∇y ṽε(x, y
′, 1) − ∇y ṽε(x, y

′, 0)
)
ψ dxdy′

= lim
ε→0

∫

ω×Y ′
Tε(∇vε)(x, y

′, 0) ε−1 (ψ(x − εed , y
′) − ψ(x, y′)

)
dxdy′

= −
∫

ω×Y ′
∇v ∂dψ dxdy′.

Since ∇y z(x, y′, 1) − ∇y z(x, y′, 0) = ∂d∇v we have
∫

ω×Y ′

(∇y z(x, y
′, 1) − ∇y z(x, y

′, 0)
)
ψ dxdy′ = −

∫

ω×Y ′
∇v ∂dψ dxdy′,

which implies the periodicity of ∇yϕ. Summarising all of the above we conclude that ϕ ∈
L2(ω; H2

per(Y )).

Proposition 2 Suppose that a sequence fn(x, y) converges to f (x, y) weakly in
L2(ω; H1(Y )) and strongly in L2(ω × Y ). Then its trace on ω × ∂Y converges to the trace
of f weakly in L2(ω × ∂Y ).

Proof Without loss of generality we will assume that f = 0 and prove the assertion for the
part of the boundary corresponding to yn = 0. We need to show that

lim
n→∞

∫

ω×Y ′
fn(x, y

′, 0)ψ(x, y′) dxdy′ = 0, (21)

for all ψ ∈ C∞
0 (ω × Y ′). Let us fix ψ and consider it as a function defined on ω × Y via

ψ(x, y) := ψ(x, y′). Let us define the function hn = hn(y) as
∫
ω
fnψ dx . It is easy to see

that hn ∈ H1(Y ) and ‖hn‖L2(Y ) ≤ C‖ fn‖L2(ω×Y ), ‖hn‖H1(Y ) ≤ C‖ fn‖L2(ω;H1(Y )). Hence
hn → 0weakly in H1(Y ) and strongly in L2(Y ). By the trace theorem hn(y′, 0) → 0 strongly
in L2(Y ′). In particular,

∫
Y ′ hn(y′, 0) dy′ → 0. But hn(y′, 0) = ∫

ω
fn(x, y′, 0)ψ(x, y′) dx ,

hence (21) follows.

Now we have all necessary tools to proceed to the �-convergence statement.

4 Limit functional and �-convergence for the “moderate”
thickness-to-period ratio ε � h � ε2

Our main result is establishing �-convergence of the rescaled functional Eh to the limit
homogenised functional defined on isometric surfaces. �-convergence is a standard tool to
describe the asymptotic behaviour of nonlinear functionals, introduced by De Giorgi [6]. The
general definition of �-convergence is the following:
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Definition 1 Let Fi , i = 1, 2, . . . and F∞ be some functionals defined on metric function
spaces Hi and H∞. Then we say that the sequence of functionals Fi �-converges to the
functional F∞,

F∞ = � − lim
i→∞ Fi ,

if the following two properties hold:

1. Lower bound. For any sequence ui ∈ Hi converging in a certain sense to u∞ ∈ H∞
one has

lim inf
i→∞ Fi (ui ) ≥ F∞(u∞).

2. Recovery of the lower bound. For any u∞ ∈ H∞ with F∞(u∞) < ∞ there exists a
sequence ui ∈ Hi converging to u∞ in a certain sense such that

lim
i→∞ Fi (ui ) = F∞(u∞).

In the above definition the notion of convergence depends on the underlying properties of
the functionals and may be non-standard, in particular, because the spacesHi andH∞ often
do not coincide, as in the present paper, for example. Moreover, the notion of convergence
in the second part of the definition may be different from the convergence in the first part. In
this case the former must normally be “stronger” that the latter in order to facilitate the main
purpose of the definition (nevertheless, this requirement is not always critical, e.g. see [2]).
Under the assumption of equi-coercivity of the functionals Fi on the underlying sequence
of function spaces, the lower bound inequality ensures that the limit functional gives in the
limit a lower bound for the values of the functionals Fi . The recovery property implies that
the lower bound F∞ is the greatest lower bound. In particular, the definition implies that

lim
i→∞(inf Fi ) = inf F∞,

and, if a sequence ui of “almost minimisers” of Fi converges to u∞, then the latter is a
minimiser of F∞.

Remark 1 The �-convergence statements proved in Theorems 4 and 9 below should be
used in conjunction with the fact that the energy functionals involved are equi-coercive, see
Theorem 1 above. In situations when the functionals are subject to appropriate boundary
conditions, this implies convergence properties for the corresponding infima and minimising
sequences.

In the present work we obtain different �-limits for the regimes ε 	 h 	 ε2 and ε2 	 h.
In this section we present our results for the “moderate” regime ε 	 h 	 ε2, for which the
limit homogenised functional is given by

Em
hom(u) := 1

12

∫

ω

Qm
hom(II)dx ′, u ∈ H2

iso(ω),

where II is the matrix of the second fundamental form of u,

II := (∇′u)�∇′n, n = ∂1u ∧ ∂2u,

and the homogenised stored-energy function is given by

Qm
hom(II) := min

ψ∈H2
per(Y )

∫

Y

Q2

(
y, II + ∇2

yψ(y)
)
dy, (22)
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where Q2 is the quadratic form defined on 2×2matrices and is obtained from the form Q3 by
minimising when reducing to two dimensions (notice that Q3 vanishes on skew-symmetric
matrices):

Q2(y, A) := min
a∈R3

Q3(y, A + e3 ⊗ a + a ⊗ e3) = min
a∈R3

Q3(y, A + a ⊗ e3). (23)

where we implicitly assume that the space R
2×2 matrices is naturally embedded in the space

R
3×3 by adding zero third column and zero third row, cf. [8].

Theorem 4 Suppose that ε 	 h 	 ε2, i.e. ε−1h = o(1) and h−1ε2 = o(1) as h → 0. Then
the rescaled sequence of functionals h−2Eh �-converges to the limit functional Em

hom in the
following sense.

1. Lower bound. For every bounded bending energy sequence uh ∈ H1(�) such that∇′uh
converges to∇′u weakly in L2(�), u ∈ H2

iso(ω), the lower semicontinuity type inequality
holds:

lim inf
h→0

h−2Eh(uh) ≥ Em
hom(u).

2. Recovery of the lower bound. For every u ∈ H2
iso(ω) there exists a sequence urech ∈

H1(�) such that ∇′urech converges to ∇′u strongly in L2(�) and

lim
h→0

h−2Eh(u
rec
h ) = Em

hom(u).

Proof Lower bound. Since ∇hu is close to a rotation-valued function Rh we can use the
frame indifference property of the stored energy function W and its Taylor expansion near
identity to linearise the functional. Roughly speaking, we will use the observation that

W (y,∇huh) = W (y, R�
h ∇huh) = W

(
y, I3 + (R�

h ∇huh − I3)
)

≈ Q3(y, hGh), (24)

where

Gh := h−1
(
R�
h ∇huh(x) − I3

)
.

However, the last asymptotic equality in (24) has to be made precise, since the smallness
of the term hGh is not pointwise. We also need to understand the structure of the (weak)
two-scale limit of Gh . To this end we will use a special representation of uh . Let ω′ be a
domain whose closure is contained in ω, and let �′ = ω′ × I . For small enough h we can
write uh in �′ in the form

uh(x) = ũh(x
′) + hx3ñh(x

′) + hzh(x),

where ũh is the mollified mid-surface of uh defined in the previous section and ñh is the
corresponding normal. Then one has

Gh = h−1R�
h

(
(∇′ũh |̃nh) − Rh

)+ x3R
�
h (∇′ñh |0) + R�

h ∇hzh . (25)

Notice that Gh is bounded in L2(�′) by Theorem 1. The first term on the right-hand side is
bounded due to Proposition 1. The second term on the right-hand side is bounded by (15).
Hence, the third term is also bounded.

Since we perform the dimension reduction when passing to the limit, we are interested
only in the behaviour of the top left 2 × 2 block of the matrix Gh . Let us use the following
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notation: if A ∈ R
3×3, then Â denotes the first two columns of A, and A is obtained from A

by omitting the third column and the third row. We have

Gh = h−1 R̂�
h (∇′ũh − R̂h) + x3 R̂

�
h ∇′ñh + R̂�

h ∇′zh . (26)

The limit of the first and the third terms on the right-hand side of (26) is of no importance
for us, apart from the fact that they do not depend on x3. This is obvious in the case of the
first term. As for the third term, let MY×I

(
Tε(zh)

) := ∫Y×I Tε(zh)dydx3 and consider

wh := ε−1 (Tε(zh) − MY×I (Tε(zh))) .

It is easy to see that∇ywh = Tε(∇′zh) and ∂3wh = ∂3ε
−1Tε(zh) = ε−1hTε(h−1∂3zh). Hence

we have ‖∇y,x3wh‖L p(�′×Y ) ≤ C . Since MY×I (wh) = 0, we can use the Poincaré inequality
‖wh‖L p(�′×Y ) ≤ C‖∇y,x3wh‖L p(�′×Y ), hence wh is bounded in L p(ω′;W 1,p(Y × I )).
Therefore, up to a subsequence, we have

wh ⇀ w(x, y) weakly in L p (ω′;W 1,p(Y × I )
)
.

On the other hand, we know that ∂3wh vanishes in the limit, hence w is independent of x3:

w = w(x ′, y). (27)

Therefore, we have

h−1 R̂�
h (∇′ũh − R̂h) + R̂�

h ∇′zh
2
⇀ H(x ′, y) (28)

for some H ∈ L2(ω′ × Y ), up to a subsequence.
Nowwe examine the expression R̂�

h ∇′ñh . The element (1, 1) of this matrix can be written
as

Rh,1 · ∂1ñh = Rh,1 · ∂11ũh ∧ ∂2ũh + Rh,1 · ∂1ũh ∧ ∂12ũh

= ∂11ũh · ∂2ũh ∧ Rh,1 + ∂12ũh · Rh,1 ∧ ∂1ũh

= −∂11ũh · Rh,3+∂11ũh · (∂2ũh−Rh,2) ∧ Rh,1+∂12ũh · Rh,1 ∧ (∂1ũh−Rh,1),

where the vector product operations take priority over the inner products. Consider the second
term in the last expression (the third term can be dealt in the same way). By Theorems 1 and
2 one has

‖∂11ũh‖L2(ω′) ≤ C, ‖∂2ũh − Rh,2‖L2(ω′) ≤ Ch′ ‖∂2ũh − Rh,2‖L∞(ω′) ≤ C.

On the one hand, the second term is bounded in L2(ω′), and so converges weakly two-scale to
some function from L2(ω′ ×Y ) up to a subsequence; on the other hand, for any C∞

0 (ω′ ×Y )

test function we get zero in the limit. We conclude that the weak two-scale limits of the
second and the third terms are zero. We can apply analogous argument to the other elements
of R̂�

h ∇′ñh . Therefore we see that R̂�
h ∇′ñh and−∇′ 2ũh · Rh,3 have the same weak two-scale

limit (the “dot” product gives a 2 × 2 matrix whose elements are −∂i j ũh · Rh,3). Applying
Theorem 3 to ũh one has

∇′ 2ũh
2
⇀ ∇′ 2u(x ′) + ∇2

yϕ(x ′, y)

up to a subsequence, for some ϕ ∈ L2(�′; H2
per(Y )), whereas Rh,3 converges strongly to n

due to Theorem 1. Hence,

R̂�
h ∇′ñh

2
⇀
(
−∇′ 2u + ∇2

yϕ
)

· n = II + ∇2
yψ, (29)
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where ψ := −ϕ · n ∈ L2
(
�′; H2

per(Y )
)
. Putting together (28) and (29) we conclude that up

to a subsequence

Gh
2
⇀ x3

(
II(x ′) + ∇2

yψ(x ′, y)
)

+ H(x ′, y). (30)

We can proceed to the last step of the proof. In order to use the Taylor expansion of W
we need to control Gh pointwise. Let χh be a characteristic function of the subset of �′ on
which hGh is relatively small, namely,

χh :=
{
1 if |hGh | ≤ h1/2,

0 otherwise.
(31)

It is easy to see that
∫
�′(1−χh)dx → 0. SinceW is non-negative we can restrict the integral

to �′ and discard the set of points on which |hGh | > h1/2 by using χh :

h−2Eh(uh) = h−2
∫

�

W (ε−1x ′,∇huh)dx ≥ h−2
∫

�′
W (ε−1x ′, χh∇huh)dx

= h−2
∫

�′
W
(
ε−1x ′, χh(I3 + hGh)

)
dx =

∫

�′
Q3(ε

−1x ′, χhGh)dx

+ h−2
∫

�′
r(ε−1x ′, χhhGh)dx, (32)

where r is defined by (4). By the assumption (5) we have
∣∣r(ε−1x ′, χhhGh)

∣∣ ≤ g
(
χh |hGh |2

)
for some function g(t) = o(t), t → 0. An elementary lemma below implies that3

h−2
∫

�′
r
(
ε−1x ′, χhhGh

)
dx

h→0−→ 0. (33)

Lemma 1 Suppose that t−1g(t) → 0 as t → 0, and let { ft } ⊂ L1(�′) be a family of
non-negative functions such that t−1

∫
�′ ft is bounded with respect to t and ‖ ft‖L∞(�′) → 0

as t → 0. Then the convergence

t−1
∫

�′
g ( ft (x)) dx

t→0−→ 0

holds.

Proof Notice that

∫

�′

g( ft (x))

t
dx =

∫

�′

g( ft (x))

ft (x)

ft (x)

t
dx ≤

(
sup

s∈(0, ‖ ft‖L∞(�′))

g(s)

s

) ∫

�′

ft (x)

t
dx → 0.

Here it is implied, with some abuse of notation, that ( ft (x))−1g( ft (x)) = 0 whenever
ft (x) = 0.

3 Note that the expression r
(
ε−1x ′, χhhGh

) = χhr
(
ε−1x ′, hGh

) + (1 − χh)r(ε−1x ′, 0) =
χhr

(
ε−1x ′, hGh

)
is measurable, in view of the facts that r = r(y,G) is a Carathédory function and χh

is measurable.
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We apply Lemma 1 to the expression (33) by setting t := h2, ft := χh |hGh |2. Notice that
the particular choice of the cut-off threshold in (31) is not important: instead of h1/2 one can
take any threshold that goes to zero slower than h.

Nowwe estimate the quadratic term in (32). By definition of the form Q2 and the properties
of the unfolding operator we have∫

�′
Q3(ε

−1x ′, χhGh)dx ≥
∫

�′
Q2(ε

−1x ′, χhGh)dx ≥
∫

�′

∫

Y

Q2
(
y, Tε(χhGh)

)
dydx

(34)

It is well known that convex integral functionals are lower semi-continuous with respect to
the weak convergence, see e.g. [7]. Assume that we deal with a weakly converging (as in
(30)) subsequence Gh . Then passing to the limit and recalling that χh converges strongly to
1 we obtain the following inequality:

lim inf
h→0

∫

�′

∫

Y

Q2
(
y, Tε(χhGh)

)
dydx

≥
∫

�′

∫

Y

Q2
(
y, x3(II(x

′) + ∇2
yψ(x ′, y)) + H(x ′, y)

)
dydx

= 1

12

∫

ω′

∫

Y

Q2(y, II + ∇2
yψ)dydx ′ +

∫

ω′

∫

Y

Q2(y, H)dydx ′

≥ 1

12

∫

ω′

∫

Y

Q2(y, II + ∇2
yψ)dydx ′ ≥ 1

12

∫

ω′

∫

Y

Qm
hom(II)dydx ′. (35)

Note that in the second step in the above we integrate with respect x3 ∈ I , which causes the
cross term of x3(II+ ∇2

yψ) and H in the quadratic form Q2 to disappear. At the last step we
just used the definition of Qm

hom.
A simple argument by contradiction shows that the inequality

lim inf
h→0

∫

�′

∫

Y

Q2
(
y, Tε(χhGh)

)
dydx ≥ 1

12

∫

ω′

∫

Y

Qm
hom(II)dydx ′ (36)

holds for the whole sequence Gh . Putting together (32), (33), (34) and (36) and noting that
ω′ is an arbitrary subset of ω concludes the proof of the lower bound.

Remark 2 The above proof applies to the general case of h � ε, up to the last inequality in
(35). We will use this observation in our analysis of the lower bound in the case h � ε2 in
Sect. 7.

Recovery sequence. In order to build a recovery sequence one normally needs to ensure
that the argument of the stored-energy density W is an L∞-function, so that one can pass to
the limit using the Taylor expansion (4). If this condition is not in place one would have to
estimateW on the “bad” set where the argument might be uncontrollably large, which would
require additional restrictions on W . For example in [8] the authors used a truncation result
for Sobolev maps, which consists of changing a function on some subset to make it together
with its gradient essentially bounded and estimating the measure of this set. In this paper we
will use a result of Pakzad from [20] (which appeared after [8]). It states that the space of
infinitely smooth isometric immersions from a convex set ω ⊂ R

2 into R
3 is strongly dense
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in the Sobolev space of isometric immersion H2
iso(ω). Let u ∈ H2

iso(ω) ∩ C∞(ω), and let II
be the matrix of the corresponding second fundamental form. Let also ψ(x ′, y) and d(x ′, y)
be correspondingly a scalar and a vector functions from C∞(ω × Y ) periodic with respect
to y.

Denote ψε := ψ(x ′, ε−1x ′), dε := d(x ′, ε−1x ′) and consider the sequence

uh = u − ε2ψεn + hx3nε + h2
x23
2
Rdε, (37)

where n := ∂1u ∧ ∂2u, nε := n + ε∂y1ψε∂1u + ε∂y2ψε∂2u and R := (∇′u|n). Calculating
the rescaled gradient of uh we obtain

∇huh = (∇′u − ε∇y(ψεn)|nε) + hx3(∇′n + ∇y(∂y1ψε∂1u + ∂y2ψε∂2u)|Rdε) +Uh,

where Uh denotes the remainder:

Uh := −ε2(∇′(ψεn)|0) + εhx3(∇′(∂y1ψε∂1u + ∂y2ψε∂2u)|0)

+ h2
x23
2

(
(∇′ + ε−1∇y)(Rdε)|0

)
.

Due to our assumptionswe see thatUh = O(ε2) = o(h) uniformly onω. A simple calculation
shows that

(∇′u − ε∇y(ψεn)|nε)
�(∇′u − ε∇y(ψεn)|nε)

= I3 + ε2

⎛
⎜⎝

(∂y1ψε)
2 ∂y1ψε∂y2ψε 0

∂y1ψε∂y2ψε (∂y2ψε)
2 0

0 0 |∇yψε|2

⎞
⎟⎠ = I3 + o(h). (38)

This implies that there exists an infinitely smooth function Rh with values in SO(3) such
that

R�
h (∇′u − ε∇y(ψεn)|nε) = I3 + o(h).

(It can be constructed explicitly via Gram–Schmidt orthonormalisation for the columns of
the matrix (∇′u − ε∇y(ψεn)|nε)).

Further, consider the expression

Gh := h−1(R�
h ∇huh − I3) = x3R

�
h (∇′n + ∇y(∂y1ψε∂1u + ∂y2ψε∂2u)|Rdε) + o(1).

Notice that Rh converges to R uniformly on ω, ∇2
yψε converges strongly two-scale to ∇2

yψ,

and dε converges strongly two-scale to d . Hence, the convergence

Gh
2→ x3(II + ∇2

yψ | d) (39)

holds. Passing to the limit in

h−2Eh(uh) = h−2
∫

�

W (ε−1x ′,∇huh)dx

=
∫

�

Q3(ε
−1x ′,Gh)dx + h−2

∫

�

r(ε−1x ′, hGh)dx
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we see that the remainder term vanishes since Gh is uniformly bounded in L∞(ω), and for
the quadratic term due to (39) we have∫

�

Q3(ε
−1x ′,Gh)dx =

∫

�×Y

Q3
(
y, Tε(Gh)

)
dxdy +

∫

�ε×I

Q3(ε
−1x ′,Gh)dx

→ 1

12

∫

ω×Y

Q3
(
y, (II + ∇2

yψ | d)
)
dx ′dy

(for the definition of �ε see Appendix 1). Thus

lim
h→0

h−2Eh(uh) = 1

12

∫

ω×Y

Q3

(
y, (II + ∇2

yψ | d)
)
dx ′dy. (40)

We conclude the proof with a standard argument showing that the above assumption
of smoothness of u, ψ, d is not restrictive. Let u be an arbitrary element of H2

iso(ω) and
take ψ = ψ(x ′, y) ∈ L2(ω; H2

per(Y )) to be a solution to the minimisation problem in (22)
corresponding to the matrix of the second fundamental form of u, that is

Qm
hom(II) =

∫

Y

Q2(y, II + ∇2
yψ)dy.

Let also d(x ′, y) be such that

Q2(y, II + ∇2
yψ) = Q3

(
y, (II + ∇2

yψ | d)
)

.

There exist sequences of C∞-functions u j , ψ j and d j converging to u, ψ and d in the
corresponding function spaces such that∣∣∣∣∣∣

∫

ω×Y

Q3

(
y, (II j + ∇2

yψ j | d j )
)
dx ′dy −

∫

ω

Qm
hom(II)dx ′

∣∣∣∣∣∣ ≤
1

j
.

For each j define u( j)
h via formula (37) with u, ψ and d replaced by u j , ψ j and d j . For

each sequence u( j)
h the analogue of convergence (40) holds. It follows that there exists a

subsequence h j → 0 such that
∣∣∣∣∣∣Eh(u

( j)
h j

) −
∫

ω

Qm
hom(II)dx ′

∣∣∣∣∣∣ ≤
2

j
.

Hence urech := u( j)
h j

is the required recovery sequence.

5 A microscale isometry constraint on the limits of finite bending energy
sequences in the “supercritical” regime h � ε2

During the process of constructing a recovery sequence we have encountered a problem in
the case when h � ε2. Namely, introducing the corrector terms −ε2ψεn and ε∂y1ψε∂1u +
ε∂y2ψε∂2u in (37) incurs an error of order ε2 (cf. (38)) which becomes of order h−1ε2 when
scaled in the subsequent argument. This error does not vanish if h � ε2 or h ∼ ε2. In order to
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understand the nature of the problem we write a formal asymptotic expansion for a recovery
sequence, see Appendix 2. In the process of eliminating the errors of order ε2 and higher,
it transpires that ψε needs to satisfy some solvability condition which is equivalent to the
zero-determinant condition (41) below. As we show in the next theorem, this condition is
intrinsic for the limits of finite bending energy sequences in the case h � ε2. This is due
to the fact that II + ∇2

yψε approximates the matrix of the second fundamental form of the
mollified mid-surface ũh of the plate (defined in Sect. 3) on ε-scale. It appears that ũh has to
be almost isometric in the case h � ε2 for the expression (∇′ũh)�∇′ũh − I2 to be of order
o(h). Noting that the matrix of the second fundamental form of an isometric surface has zero
determinant suggests the condition det(II+∇2

yψ) = 0, where ψ is the two-scale limit of the
sequence ψε.

Theorem 5 (Zero determinant condition for the two-scale limit isometric surface) Let uh be
a finite bending energy sequence, ũh be the mollified mid-surface of the plate defined by (8)
and ω′ � ω. Assume that h � ε2. Then the weak two-scale limit ∇′2u + ∇2

yϕ of ∇′2ũh in

L2(ω′ × Y ), u ∈ H2
iso(ω

′), ϕ ∈ L2(ω′; H2
per(Y )), satisfies the “zero determinant” condition

det(II + ∇2
yψ) = (II11 + ∂2y1y1ψ)(II22 + ∂2y2 y2ψ) − (II12 + ∂2y1y2ψ)2 = 0, (41)

where ψ := −ϕ · n.
Proof The proof is inspired by the general idea of the proof of the identity det II = 0 for
H2 isometric surfaces (see [20]). In our setting, however, the mollified mid-surface ũh of
the plate is not exactly isometric. This, together with the two-scale nature of our problem,
requires in-depth analysis on the microscale.

The following identity is easily checked by a straightforward calculation (recall that ũh is
a C∞-function):

det∇′2ũh = ∂212(∂1ũh · ∂2ũh) − 1

2

(
∂222(∂1ũh)

2 + ∂211(∂2ũh)
2) .

Note that we can consider the third order tensor∇2ũh as a 2×2 matrix whose elements ∂i j ũh
are vector-valued functions. Thus when we take its determinant we understand the multipli-
cation of entries as the scalar product of vectors. We will use this convention henceforth. We
can rewrite the above identity by applying the unfolding operator:

Tε(det∇2ũh) = ε−2
(

∂2y1y2Tε(∂1ũh · ∂2ũh) − 1

2

(
∂2
y22
Tε(∂1ũh)

2 + ∂2
y21
Tε(∂2ũh)

2
))

. (42)

We consider the left-hand side of the last identity as a scalar product of two “vectors”
fε := (Tε(∂

2
11ũh), Tε(∂

2
12ũh))

� and gε := (Tε(∂
2
22ũh),−Tε(∂

2
12ũh))

�. Since curly fε = 0
and divygε = 0, we can apply the compensated compactness theorem, see e.g. [24], which
implies that the left-hand side of (42) *-weak converges to the scalar product of their weak
limits, that is

lim
h→0

∫
ω′

∫
Y
Tε(det∇′2ũh)ηdydx ′ =

∫
ω′

∫
Y
det(∇′2u + ∇2

yϕ)ηdydx ′

for any η ∈ C∞
0 (ω′ × Y ). Note that x ′ plays the role of a parameter, and does not affect our

argument. Let us now consider the right-hand side of (42). Due to Proposition 1 we have
∂i ũh = Rh,i + O(h), h → 0, i = 1, 2, where O(h) is understood in terms of the L2-norm.
In particular, ∂1ũh · ∂2ũh = O(h), (∂i ũh)2 = 1 + O(h). Thus
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ε−2
(

∂2y1y2Tε(∂1ũh · ∂2ũh) − 1

2

(
∂2
y22
Tε(∂1ũh)

2 + ∂2
y21
Tε(∂2ũh)

2
))

= ε−2
(

∂2y1y2O(h) − 1

2

(
∂2
y22

(1 + O(h)) + ∂2
y21

(1 + O(h))
))

= ∂2y1y2O(h/ε2) + ∂2
y22
O(h/ε2) + ∂2

y21
O(h/ε2). (43)

Multiplying the last expression in (43) by an arbitrary function η ∈ C∞
0 (ω′ × Y ) and

integrating by parts twice we see that it converges *-weakly to zero given that h/ε2 = o(1),
i.e. ∫

ω′

∫
Y
det
(
∇′2u(x ′) + ∇2

yϕ(x ′, y)
)

ηdydx ′ = 0.

This implies

det
(
∇′2u(x ′) + ∇2

yϕ(x ′, y)
)

= 0. (44)

At the last step of our proofwe need one additional property of the two-scale limitϕ(x ′, y).
We know that the second-order derivatives of u(x ′) are parallel to the vector n(x ′): one has

∂i j u · Rk = ∂i R j · Rk = ∂ j Ri · Rk = ∂i (R j · Rk) − R j · ∂k Ri

= −R j · ∂k Ri = 0, i, j, k ∈ {1, 2},
since at least two of the indices i, j, k coincide. Notice further that

−∂i j u · n = ∂1 j u · (∂2u ∧ ∂i u) + ∂2 j u · (∂i u ∧ ∂1u)

= ∂i u · (∂1 j u ∧ ∂2u) + ∂i u · (∂1u ∧ ∂2 j u)

= ∂i u · ∂ j (∂1u ∧ ∂2u) = ∂i u · ∂ j n = IIi j , i, j ∈ {1, 2}, (45)

hence ∂i j u = −IIi j n. In particular, one has det∇′2u = − det II. In order to derive (41) from
(44) we need a similar property for ϕ to be held. In fact, we require a much weaker property
of ∂yi ϕ being orthogonal to Ri for i = 1, 2. We establish it with the help of the following
statement.

Proposition 3 Let

zε(x, y) := ε−1 (ε−1 (Tε(̃uh) − MY (Tε(̃uh))) − MY (Tε(∇′ũh)) yc
)
,

(cf. (17)). Then

‖∂yi zε · Tε(Rh,i )‖L1(ω′×Y ) → 0 as h → 0, i = 1, 2. (46)

In the proof of this proposition we will need the following simple inequality, which is a kind
of Poincaré inequality.

Lemma 2 Let f ∈ H1(Y ). Then∫

Y×Y

| f (y) − f (ζ )|2dydζ ≤ 2
∫

Y

|∇ f (y)|2dy.

Proof Since the set of C∞(Y ) functions is dense in H1(Y ) we only need to prove the lemma
for f ∈ C∞(Y ). First we write down a pointwise estimate for | f (y) − f (ζ )|:
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| f (y) − f (ζ )| =
∣∣∣∣
∫ y1

ζ1

∂1 f (t, ζ2)dt +
∫ y2

ζ2

∂2 f (y1, t)dt

∣∣∣∣
≤
∫ 1

0
(|∇ f (t, ζ2)| + |∇ f (y1, t)|) dt.

We finish the proof with
∫

Y×Y

| f (y) − f (ζ )|2 dydζ ≤
∫

Y×Y

∫ 1

0

(|∇ f (t, ζ2)|2 + |∇ f (y1, t)|2
)
dtdydζ

= 2
∫

Y

|∇ f (y)|2 dy.

Proof (Proposition 3) Taking the gradient of the function zε and using the properties of the
unfolding operator we have

∇y zε = ε−1 (Tε(∇′ũh) − MY (Tε(∇′ũh))
)
.

Let us write the L2-norm of the right-hand side (dropping the coefficient ε−1) in a special
form:

‖Tε(∇′ũh) − MY (Tε(∇′ũh))‖2L2(ω′×Y )

=
∫

ω′×Y

∣∣∣∣∣∣Tε(∇′ũh) −
∫

Y

Tε(∇′ũh)dζ

∣∣∣∣∣∣
2

dydx

=
∫

ω′×Y

∣∣∣∣∣∣
∫

Y

(Tε(∇′ũh)(x, y) − Tε(∇′ũh)(x, ζ ))dζ

∣∣∣∣∣∣
2

dydx

≤
∫

ω′×Y×Y

∣∣Tε(∇′ũh)(x, y) − Tε(∇′ũh)(x, ζ )
∣∣2 dζdydx (47)

Applying Lemma 2 to Tε(∇′ũh) we have∫

ω′×Y×Y

∣∣Tε(∇′ũh)(x, y) − Tε(∇′ũh)(x, ζ )
∣∣2 dζdydx ≤ 2

∥∥∇yTε(∇′ũh)
∥∥2
L2(ω′×Y )

= 2ε2
∥∥Tε(∇′2ũh)

∥∥2
L2(ω′×Y )

≤ Cε2, (48)

where in the last inequality we used the property of boundedness of the second gradient of
ũh , see Theorem 2. Due to Proposition 1 we can replace Tε(∇′ũh) in the last estimate by
Tε(R̂h): ∫

ω′×Y×Y

∣∣Tε(R̂h)(x, y) − Tε(R̂h)(x, ζ )
∣∣2 dζdydx ≤ Cε2. (49)

Similarly to (47) we can write the expression in (46) as∫

ω′×Y×Y

ε−1(Tε(∂i ũh)(x, y) − Tε(∂i ũh)(x, ζ )
) · Tε(Rh,i )(x, y)dζdydx .
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As follows from Proposition 1, in order to prove the statement it is enough to show that

ε−1
∫

ω′×Y×Y

(
Tε(Rh,i )(x, y) − Tε(Rh,i )(x, ζ )

) · Tε(Rh,i )(x, y)dζdydx → 0, i = 1, 2.

The expression under the sign of integral has the form (a − b) · a at every point, where a
and b are unit vectors. We use the following elementary identity, 2(a − b) · a = |a − b|2,
together with (49) to conclude the proof of the proposition:

ε−1
∫

ω′×Y×Y

(
Tε(Rh,i )(x, y) − Tε(Rh,i )(x, ζ )

) · Tε(Rh,i )(x, y)dζdydx

= 1

2
ε−1

∫

ω′×Y×Y

∣∣Tε(Rh,i )(x, y) − Tε(Rh,i )(x, ζ )
∣∣2 dζdydx ≤ Cε.

Theorem3 implies that the sequence zε convergesweakly in L2
(
ω′; H2(Y )

)
to the function

(cf. (18))

z = 1

2
(yc1)

2∂21u + yc1 y
c
2∂1∂2u + 1

2
(yc2)

2∂22u + ϕ.

Since Tε(Rh) converges to R strongly in L2(ω′ × Y ), we have

∂yi zε · Tε(Rh,i ) ⇀ ∂yi z · Ri ,

*-weakly, i.e. with test functions taken from C∞
0 (ω′ ×Y ) (In fact, it is possible to show weak

convergence in L2(ω′ × Y ), however, *-weak convergence is sufficient for our purposes).
Further, since the second-order derivatives of u are parallel to the vector b, we have

∂yi z · Ri = ∂yi ϕ · Ri .

Lastly, it follows from Proposition 3 that the *-weak limit of ∂yi zε · Tε(Rh,i ) equals zero,
hence

∂yi ϕ · Ri = 0, i = 1, 2.

The above orthogonality property implies that the derivatives of ϕ can be represented in the
form ∂y1ϕ = (∂y1ϕ · R2)R2+ (∂y1ϕ ·n)n, ∂y2ϕ = (∂y2ϕ · R1)R1+ (∂y2ϕ ·n)n. Differentiating
further we get the following identities for the second derivatives of ϕ (in particular we see
that the mixed derivative is orthogonal to both R1 and R2):

∂2y1ϕ = (∂2y1ϕ · R2)R2 + (∂2y1ϕ · n)n,

∂2y2ϕ = (∂2y2ϕ · R1)R1 + (∂2y2ϕ · n)n,

∂y1∂y2ϕ = (∂y1∂y2ϕ · n)n.

Substituting the latter and ∇′2u = −II n into (44) and recalling that ψ = −ϕ · n we obtain
(41).

6 The structure of isometric immersions

The idea of the construction of a recovery sequence for the supercritical regime h � ε2,which
is performed in the next section, relies on the properties of isometric surfaces from H2

iso(ω).

123



Bending of thin periodic plates 4101

There has recently been a number of works devoted to this topic, see [12,13,16,20]. The
results of Sect. 5 (as discussed at the beginning of Sect. 7) imply a discontinuous dependence
of the homogenised energy density function on the direction of the bending. This observation
drastically reduces the number of manipulations one can perform with a surface in order to
construct a recovery sequence. In particular, we can not use the result on approximation of
H2
iso(ω)-surfaces by infinitely smooth ones because this approximation does not preserve the

orientation of the bending directions. In our paper we will use mostly the results of [20],
which we review below. We then give an example of an isometric surface for which the set
of rational directions is irregular (cf. Theorem 8), and prove a statement on regularisation of
isometric surfaces required for the construction of a recovery sequence.

6.1 Auxiliary observations

For any u ∈ H2
iso(ω) the domain ω can be partitioned into “bodies” and “arms”, according

to the following definition.

Definition 2 A body is a maximal subdomain of ω on which u is affine and whose boundary
contains at least three segments inside ω.

A differentiable curve � : [0, l] → ω is referred to as a leading curve if u is affine
when restricted to the lines normal to �

([0, l]), which we refer to as leading segments.
In the approximation procedure below we also use the term “leading curve” for the curve
γ := (u ◦ �) on the surface.

For a given leading curve �, generatrices are the lines tangent to the surface u at the
points of γ and orthogonal to the latter.

An armω[�] is a subdomain ofω covered by leading segments corresponding to a leading
curve � (See Remark 4 below).

Remark 3 Note that a maximal subdomain of ω on which u is affine and whose boundary
contains at most two segments inside ω is always an arm or part of an arm.

Remark 4 Suppose that � is a leading curve parametrised by its arclength, and denote by
T := �′ the tangent vector and by N := (−T2, T1)� the unit vector orthogonal to �. Then
the corresponding arm is given by

ω[�] = {�(t) + sN (t) : s ∈ R, t ∈ [0, l]} ∩ ω. (50)

For each t ∈ [0, l], the set {�(t)+ sN (t) : s ∈ R
}∩ω is the corresponding leading segment.

Since leading curves are not uniquely defined, it is more reasonable to define the vector
field N on the whole ω[�] as a continuous vector field of unit vectors parallel to leading
segments, and the vector field T as the continuous unit vector field orthogonal to N . In
particular, we have T = �′ for any leading curve �. In what follows we consider N and T
either as vector fields N (x ′), T (x ′) or the normal N (t) and the tangent T (t) of the curve�(t),
depending on the context. We will say that the value of T (equivalently, N ) is rational if the
ratio of its components is rational. We will also say in this situation that the corresponding
leading segment is rational.
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Remark 5 It can be shown that:

(a) For any given body or arm, the part of its boundary that is situated in the interior of ω

is a union of straight segments whose vertices belong to ∂ω;
(b) As follows from [20], all leading curves are in the class C1,1

loc . A combination of this
observation with the result of [16] establishing that H2

iso ⊂ C1(ω) implies the fact that
leading curves γ on the surface u are in the class C1.

Since the leading segments do not intersect in ω, the vector field N (and, hence, T ) is
locally Lipschitz in ω. In is not difficult to prove, using a geometric argument, the following
lemma.

Lemma 3 The local Lipschitz constant

CL(x ′
0) := lim sup

x ′→x ′
0

|N (x ′) − N (x ′
0)|

|x ′ − x ′
0|

= lim sup
x ′→x ′

0

|T (x ′) − T (x ′
0)|

|x ′ − x ′
0|

, x ′
0 ∈ ω,

satisfies the estimate

CL(x ′
0) ≤ dist−1(x ′

0, ∂ω).

This lemma implies, in particular, local Lipschitz continuous differentiability of leading
curves.

Note that for any leading curve �, unit tangent vectors of γ are also tangent to the surface
u : R

2 → R
3. Therefore, the surface u is reconstructed on each arm from the knowledge of

the corresponding leading curve and the non-vanishing principal curvature. Indeed, denote
by κ� the curvature of �, so that �′′ = T ′ = κ�N . For a given γ,we define a Darboux frame
(τ, ν, n) by the tangent τ = γ ′ to the curve γ, the unit vector ν = (∇′u)N tangent to u and
orthogonal to τ , and n = τ ∧ ν. This Darboux frame satisfies the system of equations (see
e.g. [22, p. 277], [20])

⎛
⎝ τ ′

ν′
n′

⎞
⎠ =

⎛
⎜⎝

0 κ� κ

−κ� 0 0

−κ 0 0

⎞
⎟⎠
⎛
⎝ τ

ν

n

⎞
⎠ (51)

which has a unique solution subject to appropriate initial values. Given γ (t) and ν(t) we can
write u|ω[�] as

u = γ (t) + sν(t), (52)

where s parametrises the generatrix corresponding to the value t on the curve �.

Remark 6 There is freedom in the choice of the sign of κ� and the direction of the vector
field N . We make this choice in such a way that the normal n in the above Darboux frame
coincides with the normal n defined as ∂1u ∧ ∂2u in the discussion preceding the current
section.

Let uswrite down the formulae for for the gradients∇′u, ∇′2u and thematrix II in terms of
the leading directions and curvatures. Since x ′ is related to (t, s) via x ′(t, s) = �(t)+ sN (t).
We have

∂(x1, x2)

∂(t, s)
= (�′ + sN ′, N ) =

(
T1(1 − sκ�) −T2

T2(1 − sκ�) T1

)
,
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and therefore

∂(t, s)

∂(x1, x2)
=
(
T1(1 − sκ�)−1 T2(1 − sκ�)−1

−T2 T1

)
.

The above expression is well defined since 1−sκ� is positive everywhere onω[�], cf. Lemma
3. Then we can write the gradient and the second gradient of u in terms of the geometry of
the curves γ and �:

∇′u = (
T1τ − T2ν, T2τ + T1ν

)
,

∇′2u = κ

1 − sκ�

(
T 2
1 n T1T2 n

T1T2 n T 2
2 n

)
. (53)

Notice that (cf. (45))

II = − κ

1 − sκ�

(
T 2
1 T1T2

T1T2 T 2
2

)
. (54)

Let us introduce the following notation

ĨI =
(

T 2
1 T1T2

T1T2 T 2
2

)
. (55)

As will be shown in the next section, the homogenised stored energy density Qsc
hom in the

supercritical regime is in general a discontinuous function of its argument II. More precisely,
it is continuous with respect to the coefficient−κ(1−sκ�)−1, but discontinuous with respect
to ĨI (the direction T ). This suggests that one can modify the curvature κ in a continuous way
(i.e. without changing much the homogenised energy), however, a perturbation of the vector
field T may lead to uncontrollable changes in the homogenised energy.

6.2 Regularisation of irregular surfaces.

The results of [20] and [16] assert some regularity of isometric immersions u ∈ H2
iso(ω),

namely, u ∈ C1(ω) and its associated leading curves in ω have locally Lipschitz deriva-
tive. Nevertheless, isometric immersions can be quite irregular for the purpose of this paper.
To illustrate this, we give an example of a surface for which the set of “rational” direc-
tions for the corresponding leading curve is the union of a fat Cantor set and a set of zero
measure.

Example. Let us recall the construction of a fat Cantor set. At the first step we remove from
the middle of [0, 1] an open interval B1 of length 1/4 and denote the remaining set A1. At
the next step from the middle of each the two subintervals of A1 we remove open intervals of
length 1/16 each, the remaining set is denoted by A2 and its complement by B2 and so on:
at the n-th step we remove 2n−1 disjoint intervals of length 1/22n, whose union is a set of
measure 1/2n+1. Thus we have λ1(A) = λ1(B) = 1

2 , where A := ∩n An , B := ∪n Bn . By λd

we denote the Lebesgue measure in R
d . The fat Cantor set A is closed and is nowhere dense

(i.e. contains no interior points). For each n we define a leading curve via its unit tangent
vector Tn(t) given as follows. Let φ be a function that is continuously differentiable on the
interval [0, 1], has zero mean and is such that φ(0) = φ(1) = φ′(0) = φ′(1) = 0, e.g.
φ(t) = (

sin(2π t)
)3

, and set A0 = [0, 1], B0 = ∅, T0 := (1, 0)�. For each n = 1, 2, . . . ,
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we define Tn := Tn−1 on the set [0, 1]\(Bn\Bn−1), and on each component interval In,k of
the set Bn\Bn−1 we define

Tn :=
(√

1 − φ2
n,k, φn,k

)�
, k = 1, 2, . . . ,

where φn,k = βnφ(22nt − tn,k) is the scaled (by a coefficient βn, |βn | < 1, and the length
of the interval 1/22n) and appropriately translated (by the left end tn,k of the interval In,k)
version of φ, which “fits” into this interval. We then integrate Tn to obtain the curves �n :

�n(t) :=
t∫

0

Tn, t ∈ [0, 1].

Note that at each step of this procedure we “redefine” the vector Tn only on the set Bn\Bn−1.

We take βn = β/22n , where 0 < β < 4
(
max |φ|)−1 is a constant that will be specified

later. So far we have a sequence of curves �n with a bounded second derivative4: �′′
n ≤ Cβ.

It has a subsequence that converges strongly in H1(0, 1) to a curve � ∈ H2(0, 1) with
|�′′| ≤ Cβ. In particular, one has �′ = (1, 0)� on the fat Cantor set defined above, and the
subset of B on which �′ takes rational directions has zero measure. Let ω := (0, l) × (0, 1),
where l < 1 is defined by the right end of �, namely it is the first coordinate of the point
�(1). If we choose β so that |�′′| ≤ Cβ ≤ (diam(ω))−1, the lines normal to � do not
intersect within ω. (Clearly, one has diam(ω) ≤ √

2, so the choice β ≤ 1/(C
√
2) satisfies

the required condition.) Lastly, we can construct an isometric surface u via the procedure
described above [see formulae (51, 52)] with some “reasonable” curvature κ , e.g. κ ≡ 1. For
thus constructed u the domain ω is the only arm and � is its leading curve in the sense of
Definition 2.

The above example illustrates that for a leading curve �(t) the set on which T (t) has
rational directions can not in general be represented as a union of intervals (up to a null set).
Inwhat followsweargue that one can replace an arbitrary isometric surfaceu by a “sufficiently
regular” isometric surface, in order to obtain an explicit construction of a recovery sequence.
Note that one can not simply approximate u by an infinitely smooth isometric surface, since
Qsc

hom, in general, is an everywhere discontinuous function of its argument. Thus thematrix ĨI,
see (55), of the replacement surface should be different from the one of u only on a relatively
small set. First we need to recall some properties of isometric surfaces. We reformulate and
complement some results of [20] (Lemmas 3.8 and 3.9) in the following statement.

Theorem 6 Let u ∈ H2
iso(ω). For any δ > 0 there exists v ∈ H2

iso(ω) such that

λ2({x ′ : u(x ′) �= v(x ′)}) + ‖u − v‖H2(ω) ≤ δ,

the surface v has a finite number of bodies and arms, each maximal connected region with
non-zeromean curvature lies between two regionswherev is affine, the corresponding leading
curves are Lipschitz differentiable and do not have common points with ∂ω.

The above properties of v are partly derived from the proofs of Lemmas 3.8 and 3.9 in [20].
Next, we briefly elucidate them. Every maximal connected region (we denote it by�) where

4 A direct calculation shows that

|�′′
n | ≤ |φ′

n,k |(1 − φ2
n,k )

−1/2 = 22nβn |φ′|(1 − β2
nφ2)−1/2,

which e.g. for the choice φ(t) = (sin(2π t))3, t ∈ [0, 1], and β ≤ 2
√
2 gives the value C = 4π

√
2/3.
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u has non-zero mean curvature is attached to either one or two regions where u is affine. If
� is situated between two regions where u is affine, then the lengths of the leading segments
that cover � are bounded below by a positive constant. Lemma 3 implies that on any closed
subset ofω the vector field T is Lipschitz continuous. In particular, we can cover� by a finite
number of leading curves so that they do not have common points with the boundary of ω,
and hence have Lipschitz continuous derivative. If � has just one “affine” region attached to
it or� = ω, then it may happen that the infimum of the lengths of leading segments covering
� is zero. Then one can not control the Lipschitz constant on the sequence of segments whose
lengths tend to zero (such sequence will converge to a point on the boundary of ω). In this
case we can replace u in a small region near the boundary point where such degeneration of
leading segments occurs by an affine function, making sure that the new surface is still an
element of H2

iso(ω). Then we arrive at the situation discussed previously.
As was mentioned at the beginning of this section, we aim at the construction of recovery

sequences for the homogenised functional E sc
hom in the supercritical case h � ε2, given by

(67). Theorem 6 implies, in particular, that for δ > 0 there exists v ∈ H2
iso(ω) with a finite

number of bodies and arms that depends on δ so that
∣∣E sc

hom(u) − E sc
hom(v)

∣∣ ≤ δ.

The next theorem ensures that we can replace u ∈ H2
iso(ω) with an isometric surface such

that the set on which its leading segments are rational can be represented as a union of finite
number of arms and a set of arbitrary small measure.

Theorem 7 Let u ∈ H2
iso(ω) be such that the subset ωr (u) of ω covered by rational leading

segments has positive measure. Then for each δ > 0 there exists a surface uδ ∈ H2
iso(ω) such

that:

(a) The surface uδ has a finite number of bodies and arms, which we generically denote by
ω[�̃];

(b) The subset ωr (uδ) of ω covered by rational leading segments can be represented as

ωr (uδ) =
⎛
⎝⋃

�̃r

ω[�̃r ]
⎞
⎠ ∪ Sδ,

where each armω[�̃r ] consists of parallel rational segments (in particular, each leading
curve �̃r is a straight segment and u(ω[�̃r ]) is cylindrical);

(c) The set Sδ is measurable;
(d) The estimate

λ2(Sδ) + ‖u − uδ‖H2(ω) + |E sc
hom(u) − E sc

hom(uδ)| < δ (56)

holds.

Moreover, uδ can be chosen in such a way that on each arm the corresponding curvature
κ (cf. (51), (54)) is infinitely smooth and IIδ ∈ L∞(ω), where the latter is the matrix of the
second fundamental form of uδ .

Remark 7 The conditions that the curvature κ is smooth and that IIδ ∈ L∞(ω) are required
for the construction of a recovery sequence. In particular, we take advantage of these facts
when using the Taylor expansion formula for W , see (4).
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Proof In view of Theorem 6 we may assume without loss of generality that u has a finite
number of bodies and arms from the outset. Let us consider an arm ω[�] with the corre-
sponding leading curve �(t), t ∈ [0, l], and assume that the subset K = K (�) of [0, l]
on which the directions of T = T (t) are rational has positive measure λ1(K ) > 0. Since
the set of rational directions is countable, we can order its elements in such a way that
λ1(K1) ≥ λ1(K2) ≥ . . ., where Ki is the preimage of a particular rational direction Ti ,
i = 1, 2, 3, . . . , so that K = ∪i Ki . We take an arbitrary η > 0 and let m = m(η) be such
that for Kη := ∪m

i=1Ki we have λ1(K\Kη) ≤ η. Note that all Ki are closed, in particular,
the distance between any two of these sets is positive. This implies that we can remove
a finite number of open intervals L̃i ⊂ [0, l]\Kη, i = 1 . . . , k, so that the remaining set
Lη := [0, l]\(∪k

i=1 L̃i ) (we may also remove the points 0 and l from Lη if they are isolated)
possesses the following properties:

1. The estimate λ1(Lη\Kη) < η holds.
2. The set Lη is the union of a finite number of mutually disjoint closed intervals L j ,

j = 1, . . . , n.

3. For each j one has L j ∩ Kη = L j ∩ Ki for some i ∈ {1, 2, . . . , k} and both ends of the
interval L j belong to Ki .

Let us consider a particular interval L j = [a j , b j ]. The part of ω[�] covered by the
restriction of � to L j , which we denote by ω[�|L j ], is contained between two parallel
segments �(a j ) + sNi and �(b j ) + sNi corresponding to the rational direction Ti . In fact,
loosely speaking, ω[�|L j ] is mostly covered by the leading segments which are parallel to
Ni . On the remainder of the set, corresponding to the restriction �|L j \Ki , where the leading
segments are not parallel to Ni , we replace them with new leading segments that are parallel
to Ni . Notice that the difference between N (t) and Ni on the set L j\Ki is not greater than
Cη, where C is the Lipschitz constant of N (t). We can write

ω[�|L j ] = {�(t) + sNi , s ∈ R, t ∈ L j } ∩ ω.

We carry out this procedure for each interval L j . In this way we change the leading segments
covering ω[�] only on a small set ωη[�]. We estimate the measure of this set as follows:

λ2
(
ωη[�]) ≤ λ1(Lη\Kη)diam(ω) ≤ η diam(ω). (57)

Let us denote by Nη and Tη the vector fields corresponding to the new set of leading segments.
We have

Nη = N , Tη = T in ω[�]\ωη[�],
‖Nη − N‖L∞(ωη[�]) → 0, ‖Tη − T ‖L∞(ωη[�]) → 0 as η → 0. (58)

We denote by S�
η the union of all rational leading segments that do not belong to the set⋃n

j=1 ω[�|L j ] and estimate its measure as follows:

λ2

(
S�
η

)
≤ λ1(K\Kη)diam(ω) ≤ η diam(ω). (59)

The idea behind the rest of the proof is as follows. For each arm arm we build a family of
leading curves �η and isometric surfaces Uη, which will be shown to converge to the surface
u uniformly as η → 0. We assemble the approximating parts Uη on all arms and bodies in
a continuous fashion. We then choose a sufficiently small value of η so that the resulting
surface denoted by uδ satisfies the inequality (56).
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Proceeding with this plan, we define �η as the maximal solution in ω[�] to the following
ODE:

�′
η(t) = Tη

(
�η(t)

)
, �η(0) = �(0), (60)

where Tη is the field of unit vectors orthogonal to the modified set of leading segments of
ω[�]. Notice that �η uniformly tends to � as η → 0. In particular, for small enough values
of η, the new curve will cover the whole of ω[�], i.e. one has ω[�] = ω[�η]. We denote the
domain of �η by [0, lη], noting that in general lη �= l. Both T an Tη are Lipschitz continuous
on any compact subset ofω, and themeasure of the setωη[�] onwhich T �= Tη is proportional
to η. This implies that on ω[�η] one has a pointwise estimate |T (t) − Tη(t)| ≤ Cη, where
C is proportional to the Lipschitz constant. It follows that the solution of (60) converges
to � uniformly as η → 0. For each leading segment of ω[�] there are unique t ∈ [0, l]
and t̂ ∈ [0, lη] such that �(t) and �η(t̂) belong to this segment. Let us denote by ζη the
corresponding map ζη : t �→ t̂ . It is not difficult to see that ζη is differentiable, with ζ ′

η

converging to 1 as η → 0. A direct calculation yields the following expression for the
directional derivative of T (x ′) in the direction of T (x ′):

(∇′T ) T = κ�(t)

1 − sκ�(t)
N (t),

where (t, s) is such that x ′ = �(t) + sN (t). In particular, on the set ω[�]\ωη[�] we have

κ�η ◦ ζη(t) = κ�(t)

1 − (�η ◦ ζη(t) − �(t)
) · N (t) κ�(t)

, κ�η ◦ ζη(t) → κ�(t) as η → 0.

(61)

Now we can construct a new surface on ω[�η]. To this end we will use the equations
analogous to (51) and (52). First, we need to adjust the non-zero principal curvature of the
surface κ to compensate the shift of the leading curve �η along the leading segments, so let

κη(t) := κ(t)

1 − (�η ◦ ζη(t) − �(t)
) · N (t) κ�(t)

. (62)

We define the leading curve on the surface by

γη(t̂) :=
t̂∫

0

τη, γη(0) = γ (0),

with a unique Darboux frame satisfying the following system of equations:

⎛
⎜⎝

τ ′
η(t̂)

ν′
η(t̂)

n′
η(t̂)

⎞
⎟⎠ =

⎛
⎜⎝

0 κ�η (t̂) κη ◦ ζ−1
η (t̂)

−κ�η (t̂) 0 0

−κη ◦ ζ−1
η (t̂) 0 0

⎞
⎟⎠
⎛
⎜⎝

τη(t̂)

νη(t̂)

nη(t̂)

⎞
⎟⎠ , (63)

with the initial conditions
(
τη(0), νη(0), nη(0)

) = (
τ(0), ν(0), n(0)

)
, where ζ−1

η is the
inverse of ζη. Then the new surface Uη is defined by

Uη(t̂, s) = γη(t̂) + sνη(t̂),
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for suitable values of t̂ and s. Substituting t̂ = ζη(t)wesee that
(
τη◦ζη(t), νη◦ζη(t), nη◦ζη(t)

)
is the solution to the system

d

dt

⎛
⎜⎝

τη ◦ ζη(t)

νη ◦ ζη(t)

nη ◦ ζη(t)

⎞
⎟⎠ = ζ ′

η(t)

⎛
⎜⎝

0 κ�η ◦ ζη(t) κη(t)

−κ�η ◦ ζη(t) 0 0

−κη(t) 0 0

⎞
⎟⎠
⎛
⎜⎝

τη ◦ ζη(t)

νη ◦ ζη(t)

nη ◦ ζη(t)

⎞
⎟⎠, (64)

with the initial conditions
(
τη ◦ ζη(0), νη ◦ ζη(0), nη ◦ ζη(0)

) = (
τ(0), ν(0), n(0)

)
. Due to

(61) and the properties of ζη, the coefficients on the right hand side of (64) converge to the
coefficients of system (51) in the L∞-norm. This implies∥∥(τη ◦ ζη, νη ◦ ζη, nη ◦ ζη) − (τ, ν, n)

∥∥
L∞(0,l) → 0,

‖γη ◦ ζη − γ ‖L∞(0,l) → 0,∥∥Uη − u
∥∥
L∞(ω[�]) → 0. (65)

Analogously we have

∇′Uη = (Tη,1τη − Tη,2νη, Tη,2τη + Tη,1νη

)
,

∇′2Uη = κη ◦ ζ−1
η

1 − ŝκ�η

(
T 2

η,1 nη Tη,1Tη,2 nη

Tη,1Tη,2 nη T 2
η,2 nη

)
,

where the terms on the right-hand sides are functions of t̂ ∈ [0, lε], cf. (63). Let us substitute
t̂ = ζη(t) and ŝ = s − (�η ◦ ζη(t) − �(t)) · N (t) in the above, so that �η(t̂) + ŝNη(t̂) =
�(t) + sN (t) everywhere in ω[�]\ωη[�]. We obtain, in particular, via (61) and (62) that

κη ◦ ζ−1
η (t̂)

1 − ŝκ�η (t̂)
=
⎧⎨
⎩

κ(t)

1 − sκ�(t)
on ω[�]\ωη[�],

κ(t) on ωη[�].
Then from (57), (58) and (65) we derive the following convergence properties:∥∥∇′Uη − ∇′u

∥∥
L∞(ω[�]) → 0,∥∥∇′2Uη − ∇′2u
∥∥
L2(ω[�]) → 0,∥∥∇′2Uη − ∇′2u

∥∥
L∞(ω[�]\ωη[�]) → 0,

IIη = II on ω[�]\ωη[�], as η → 0, (66)

where IIη is the matrix of the second fundamental form of Uη.
The estimates (59), (66) imply the validity of (56). Indeed, since the number of bodies

and arms of u is finite, we can carry out the above construction for every arm (on bodies the
surface remains unchanged), and then assemble an H2(ω) isometric surface starting from an
arbitrary arm or body and attaching sequentially to a current piece the next one by applying
a rigid motion, so that the resulting surface satisfies the properties analogous to (66). Then
choosing a sufficiently small η and denoting the corresponding surface by uδ and the union
of all S�

η by Sδ yields the estimate (56). Finally, we split each arm of uδ into smaller arms

ω[�̃r ] corresponding to the cylindrical parts with rational directions and the remainder.
We conclude the proof with an argument for additional regularity of uδ , which is claimed

in the statement. On each arm we can approximate the corresponding curvature κ in the
L2-norm by an infinitely smooth function. We then reconstruct the pieces of the new surface
using the Eqs. (51), (52) and γ ′ = τ with appropriate initial conditions, and attach them
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together in a fashion similar to the above. Taking sufficiently good approximations of κ we
ensure the validity of the estimate (56) for the new surface.

The following scaling argument allows us to obtain the boundedness of IIδ in ω. Due to
the smoothness of κ and (54) the matrix of the second fundamental form IIδ is bounded on
any compact subset ofω. Without loss of generality we can assume thatω contains the origin.
Since ω is convex by the assumption, it is a star-shaped domain, i.e. ωη := (1 − η)ω ⊂ ω,
where we use η again to denote a small positive parameter. Let us define the scaled surface:
uδ,η(x ′) := (1− η)−1uδ

(
(1− η)x ′), x ′ ∈ ω. It is easy to see that uδ,η is an isometric surface

(this is why we need to use the coefficient (1 − η)−1 in front of uδ). In addition, one has
IIδ,η(x ′) = (1 − η)IIδ

(
(1 − η)x ′) and IIδ,η ∈ L∞(ω). Therefore, for any quadratic form Q,

in particular for Qsc
hom, we obtain∫

ω

Q
(
IIδ,η(x

′)
)
dx ′ = (1 − η)2

∫

ω

Q
(
IIδ((1 − η)x ′)

)
dx ′ = (1 − η)

∫

ωη

Q
(
IIδ(x

′)
)
dx ′.

Hence, choosing small enough η and re-denoting uδ,η by uδ , we arrive at (56).

7 Limit functional and �-convergence in the “supercritical” regime
h � ε2

As follows from the compactness result of Sect. 3 and the isometry constraint of Sect. 5, in
the case when h � ε2 we should define the homogenised energy functional as

E sc
hom(u) := 1

12

∫

ω

Qsc
hom (II) dx ′, (67)

with the elastic stored-energy function

Qsc
hom(II) := min

∫

Y

Q2

(
y, II + ∇2

yψ
)
dy, ψ ∈ H2

per(Y ), det
(
II + ∇2

yψ
)

= 0. (68)

Zero determinant condition is rather restrictive in the case of periodic functions. Next we
state a theorem describing the structure of periodic functionsψ subject to this condition, first
recalling that II can be represented in the form (54). The coefficient −κ(1 − sκ�)−1 is one
of the two principal curvatures of u, the other principal curvature is always zero.

Theorem 8 Let II be a non-zero matrix of the form (54) and let ψ ∈ H2
per(Y ) be such that

det
(
II + ∇2

yψ
)

= 0. (69)

Then the derivative of ψ in the direction (−T2, T1)� is zero, i.e. one has

ψ(y1, y2) = ψT (T1y1 + T2y2)

for some ψT . In particular, we have ψT = ψT (y1) or ψT = ψT (y2), and ψT is 1-periodic
for T = (1, 0)�, and T = (0, 1)�, respectively. For other rational T such that T1/T2 =
p/q ∈ Q, where p/q is an irreducible fraction, the function ψT is periodic with period
P = |T1/p| = |T2/q|. For irrational vectors T the function ψT (and, hence the function ψ)
is constant.
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Proof The proof is based on a result by Pakzad [20]. Let us denote

v(y) := 1

2
y21 II11 + y1y2II12 + 1

2
y22 II22 + ψ,

so that det(∇2
yv) = 0 is equivalent to Eq. (69). Then ∇v is continuous and for any regular

convex domain D in R
2 and any y ∈ D there exists a segment of line passing through y and

connecting two points on the boundary of D such that ∇yv = IIy + ∇yψ is constant along
this segment. Since the periodicity and continuity (by the Sobolev Embedding Theorem) of
ψ imply its boundedness, it follows that the segment along which ∇yv is constant is parallel
to the vector (−T2, T1)�: along this direction IIy is constant. Hence ∇yψ is constant in the
direction (−T2, T1)�, and the derivative ofψ in this direction is zero due to the boundedness
of ψ . The rest of the statement of the theorem easily follows from the periodicity of ψ .

The above theorem implies that at the points x ′ where the principal directions of the
isometric surface u are irrational we have Qsc

hom(II) = ∫Y Q2(y, II)dy, while on the rational
directions the corrector ψ is non-trivial and in general one has Qsc

hom(II) <
∫
Y Q2(y, II)dy.

This means that in general Qsc
hom(II) is an everywhere discontinuous function of the direction

T . We can write ψ in the form

ψ(y1, y2) = − κ

1 − sκ�

ψT (T1y1 + T2y2), (70)

where ψT (t) is the solution of the minimisation problem

min
∫

Y

Q2
(
y, ĨI(1 + ψ ′′

T (T1y1 + T2y2))
)
dy, ψT ∈ H2

per(0, P), (71)

with ĨI defined by (55). Notice that the Sobolev embedding theorem implies that ψT is
continuously differentiable.

Theorem 9 (�-convergence) Suppose that h � ε2, i.e. hε−2 = o(1) as h → 0. Then the
rescaled sequence of functionals h−2Eh �-converges to the limit functional E sc

hom in the sense
that

1. Lower bound. For every bounded bending energy sequence uh ∈ H1(�) such that∇′uh
converges to ∇′u strongly in L2(�), u ∈ H2

iso(ω), the following inequality holds:

lim inf
h→0

h−2Eh(uh) ≥ E sc
hom(u).

2. Recovery of the lower bound. For every u ∈ H2
iso(ω) there exists a sequence

urech ∈ H1(�) such that ∇′urech converges to ∇′u strongly in L2(�) and

lim
h→0

h−2Eh(u
rec
h ) = E sc

hom(u).

Proof Lower bound. The proof follows the derivation of the lower bound in the case when
ε 	 h 	 ε2, up to the last inequality in (35), whose right-hand side can have Qm

hom replaced
by Qsc

hom given by (68), thanks to Theorem 5.

Recovery sequence.Anatural method of approximating the deformation of an elastic plate is
to first write an expression u = u(x ′) for the mid-surface of the deformed plate, which takes
into account the microscopic oscillations in the definition of the homogenised functional
(represented by the function ψ), and then “add thickness” to this surface. One possible
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approach to deriving the mid-surface expression is via an asymptotic expansion, with u(x ′)
as the leading-order term followed by a series of correctors in sequential powers of ε. In the
case h � ε2, the first corrector involving the function ψ is shown to satisfy Eq. (69), see
also Appendix 2, which is the solvability condition for the equation at the next order in ε.

However, higher-order equations all involve two unknown functions and their solution is not
straightforward. As was already mentioned in the previous section, in our construction we
adopt a different approach based on properties of isometric immersions which we describe
next. The details of the formal asymptotic argument are given in Appendix 2.

As was shown in Theorem 8, the corrector ψ is constant whenever T is irrational. This
implies that if the measure of the set on which T is rational is zero, then the limit elastic
energy is simply

1

12

∫

ω

Qsc
hom(II)dx ′ = 1

12

∫

ω×Y

Q2(y, II)dydx
′.

Thus, the only case that remains to be considered is when the above mentioned set has
non-zero measure.

Suppose that u ∈ H2
iso(ω). ByTheorem7we can choose a sequence of regularised surfaces

uδ j , δ j → 0, such that

∣∣E sc
hom(u) − E sc

hom(uδ j )
∣∣ ≤ 1

j
,

∫

Sδ j

∫

Y

Q2(y, IIδj)dx
′dy ≤ 1

j
. (72)

We first construct an approximating sequence of plate deformations for uδ j for each j and
then apply a diagonalisation procedure to obtain a recovery sequence for u. Notice that all
objects below depend on the parameter δ j , however we drop it from the notation in most
cases. Let us consider an arm ω[�r ] of uδ j corresponding to a rational direction T . On this
arm the leading curve �r is a segment of a straight line, T is constant, κ�r = 0, the principal
curvature is −κ(t) (see (54)), and the vector ν of the Darboux frame (τ, ν, n) of uδ j ◦ �r is
constant. Let ψ = −κ(t)ψT (T1y1 + T2y2) be the minimiser of (68), cf. also (70). We have

II = −κ

(
T 2
1 T1T2

T1T2 T 2
2

)
,

Qsc
hom(II) = min

∫

Y

Q2

(
y, II − κ∇2

yψT (T1y1 + T2y2)
)
dy

= min
∫

Y

Q2
(
y, II(1 + ψ ′′

T (T1y1 + T2y2))
)
dy.

Let ψT, j be infinitely smooth functions approximating ψT in L2(0, l). We will make a
more precise choice of these functions later. In order to incorporate the corrector ψT, j in
the equation of the approximating surface, we need to understand the relation between the
coordinates (t, s), x ′ and the underlying εY -periodic lattice. From x ′ = �(t)+sN = �(0)+
tT + sN we derive t = T · (x ′ − �(0)). Applying the unfolding operator to ψT, j (ε

−1t) =
ψT, j (ε

−1T · (x ′ − �(0))) we get

Tε(ψT, j (ε
−1t)) = ψT, j (T · [ε−1x ′ − ε−1�(0)] + T · y)
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with y = {ε−1x ′ − ε−1�(0)}, where [·] and {·} denote the integer and the fractional parts.
Hence, in order to align the argument ε−1t with the lattice, we need to shift it by adding
t∗ε = T · {ε−1�(0)}:

Tε(ψT, j (ε
−1t + t∗ε )) = ψT, j (T · ([ε−1x ′] − [ε−1�(0)]) + T · y) = ψT, j (T · y)

with y = {ε−1x ′}. On the domain [0, l] of �r we define a corrected tangent vector

τε(t) := τ(t)
√
1 − (εκ(t)ψ ′

T, j (ε
−1t + t∗ε ))2 + εκ(t)ψ ′

T, j (ε
−1t + t∗ε )n(t), (73)

so that
∣∣τε(t)| = 1. For small values of ε, the square root in the above is well defined. The

approximating leading curve γε is given by integration of τε , namely

γε(t) :=
t∫

0

τε, γε(0) = γ (0).

Now we set

uε

(
�(t) + sN

) := γε(t) + sν, whenever �(t) + sN ∈ ω[�r ].
Let us estimate the difference between u and uε. First, it is clear that

τε = τ + O(ε), nε = n + O(ε), γε = γ + O(ε), as ε → 0, (74)

where nε := τε ∧ν. Here and until the end of this section o(ε), O(ε) are understood in terms
of the L∞-norm. Hence, one has

‖uε − uδ j ‖L∞(ω[�r ]) → 0, as ε → 0.

Second, we have (cf. (53))

∇′uε = (T1τε − T2ν| T2τε + T1ν) .

It follows immediately that

‖∇′uε − ∇′uδ j ‖L∞(ω[�r ]) → 0. (75)

We carry out this procedure for all rational arms ω[�r ], leaving the surface unchanged on
the rest of ω. We then assemble a new surface denoting it by uε in the same way it was done
in the proof of Theorem 7 using rigid motions. It is clear from the construction that

uε → uδ j in W 1,∞(ω), and, in particular, in H1(ω). (76)

Now we “add thickness” to the plate and define the approximating deformation as

uδ j ,h := uε(x
′) + hx3nε(x

′) + h2
x23
2
d j (x

′, ε−1x ′), (77)

where d j (x ′, y) is some function from C∞(ω × Y ) periodic with respect to y, which will
be chosen later and the normal nε is defined by nε = ∂1uε ∧ ∂2uε on non-rational arms and
bodies. The gradient of uδ j ,h is given by

∇huδ j ,h = (∇′uε| nε) + hx3(∇′nε| d j ) + h2
x23
2

(∇′d j + ε−1∇′
yd j | 0).

Clearly, (∇′uε, nε) ∈ SO(3), thus we have

h−1
(
(∇′uε| nε)

�∇huδ j ,h − I3
)

= x3(∇′uε| nε)
�(∇′nε| d j ) + o(ε).
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On each arm ω(�) that does not belong to the set of rational arms ω(�r ), the surface uε is a
rigidmotion of u. Such a transformation preserves thematrix of the second fundamental form,
i.e. for the matrix of the second fundamental form of uε we have IIε = (∇′uε)

�∇′nε = II
on ω(�).

Let us consider a rational arm ω(�r ). Notice that for κε , which is given via τ ′
ε = κεnε,

after a simple calculation using (73) and (74) one has

κε = κ + κψ ′′
T, j (ε

−1t) + O(ε). (78)

Since n′
ε = −κετε we have

∂i nε = −κετεTi , i = 1, 2.

Then from (74), (75) and (78) we obtain

(∇′uε)
�∇′nε = −(κ + κψ ′′

T, j )ĨI + O(ε).

We conclude that

h−1
(
(∇′uε, nε)

�∇huδ j ,h − I3
)

=

⎧⎪⎨
⎪⎩
x3
(
II| d̃ j

)
+ o(ε) if x ′ ∈ ωir ∩ Sδ,

x3
(
−(κ + κψ ′′

T, j )ĨI| d̃ j

)
+ O(ε) if x ′ ∈ ωr ,

(79)

where d̃ j := (∇′u, n)�d j , and ω = ωr ∪ ωir ∪ Sδ is the natural decomposition of ω into the
union of rational arms ωr =⋃�r

ω[�r ], the residual set of rational segments Sδ , and the rest
of the set ωir . We understand the notation ψT, j as a family of functions whose members are
related to rational arms ω[�r ] via the corresponding directions T .

Now we are ready to define a recovery sequence and prove the convergence of the elastic
energy. We use the frame indifference of W , its Taylor expansion near I3, the unfolding
operator and (79) to get

h−2Eh(uδ j ,h)

= h−2
∫

�

W (ε−1x ′, ∇uδ j ,h)dx = h−2
∫

�

W
(
ε−1x ′, (∇′uε| nε)

�∇huδ j ,h

)
dx

= 1

12

∫

ωir∩Sδ

∫

Y

Q3

(
y, Tε(II| d̃ j )

)
dx ′dy+ 1

12

∫

ωr

∫

Y

Q3

(
y, Tε(−(κ+κψ ′′

T, j )ĨI| d̃ j )
)
dx ′dy

+
∫

�

O(ε)dx + 1

12

∫

�ε

Q3

(
ε−1x ′, h−1((∇′uε, nε)

�∇huδ j ,h − I3)
)
dx ′.

Notice that we can use the Taylor expansion of W due to the fact that II ∈ L∞(ω) by
Theorem 7. Passing to the limit in the above as h → 0 and taking into account the properties
of two-scale convergence we arrive at

lim
h→0

h−2Eh(uδ j ,h) = 1

12

∫

ωir∩Sδ

∫

Y

Q3

(
y, (II| d̃ j )

)
dx ′dy

+ 1

12

∫

ωr

∫

Y

Q3

(
y, (−(κ + κψ ′′

T, j (T · y))ĨI| d̃ j )
)
dx ′dy.
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Choosing ψT, j and d j close enough to the minimisers of the problems (71) and (23) with
appropriate arguments we can make the term

1

12

∫

ωir

∫

Y

Q3

(
y, (II| d̃ j )

)
dx ′dy + 1

12

∫

ωr

∫

Y

Q3

(
y, (−(κ + κψ ′′

T, j (T · y))ĨI| d̃ j )
)
dx ′dy

arbitrarily close to

1

12

∫

ωir∪ωr

Qsc
hom(II)dx ′.

For the term corresponding to the residual set Sδ j we have, in general,
∫

Sδ j ×Y

Q3

(
y, (II| d̃ j )

)
dx ′dy >

∫

Sδ j

Qsc
hom(II)dx ′,

however thanks to the estimate (72) it can be controlled. Thus, for each j we can choose
ψT, j and d j so that ∣∣∣∣ limh→0

h−2Eh(uδ j ,h) − E sc
hom(uδ j )

∣∣∣∣ ≤ 2

j
.

The latter, together with (72), implies that we can choose a subsequence h j → 0 so that
∣∣∣h−2

j Eh j (uδ j ,h j ) − E sc
hom(u)

∣∣∣ ≤ 4

j
.

Passing to the limit as j → ∞ we get the convergence of energies. Thus

urech := uδ j ,h j

is a recovery sequence. The convergence of the gradients follows from (56), (76) and the
construction procedure.
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Appendix 1: Two-scale convergence and its properties

Let ω ⊂ R
d be a bounded domain and Y := [0, 1)d (in the present paper d = 2). We denote

by [x] the integer part of x , and by {x} its fractional part, i.e. [x] ∈ Z
d , {x} := x−[x] ∈ Y . The

definition uses the unfolding operator which maps functions of one variable x to functions of
two variables x and y, where the “fast” variable y is responsible for the behaviour on ε-scale:

Tε(v)(x, y) :=
{

v
(
ε
[ x

ε

]+ εy
)
if x ∈ ε(ξ + Y ) ⊂ ω for ξ ∈ Z

d ,

0 otherwise,
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for a measurable on ω function v(x). Notice that Tε(v)(x, y) is set to be zero on the cells
intersecting with the boundary of ω. This implies, in particular, that if v ∈ H1(ω) then
Tε(v) ∈ L2(ω; H1(Y )). One has

∫

ω

vdx =
∫

ω×Y

Tε(v)dydx +
∫

�ε

vdx,

where �ε := {x ∈ ε(ξ + Y ) ∩ ω : ε(ξ + Y ) ∩ ∂ω �= ∅, ξ ∈ Z
d}.

Definition 3 We say that a bounded in L p(ω) sequence vε converges weakly (strongly) two-

scale to v ∈ L p(ω × Y ) as ε → 0 and denote this by vε
2
⇀ v (vε

2→ v) if Tε(vε) converges
to v weakly (strongly) in L p(ω × Y ).

We refer the reader to [5] for a comprehensive analysis of the properties of the unfolding oper-
ator Tε , which, in particular, links the convergence of sequences in L2(ω) to the convergence
of their unfoldings in L2(ω × Y ).

We also need a formal definition of two-scale convergence when not all variables have
their fast-scale counterparts, which is just a variation of the standard definition.

Definition 4 Using the notation accepted in this paper (i.e.� = ω× I ,ω ⊂ R
2, Y = [0, 1)2,

x = (x ′, x3)), we say that a bounded in L p(�) sequence vε converges weakly (strongly) two-

scale to v ∈ L p(� × Y ) as ε → 0 and denote this by vε
2
⇀ v (vε

2→ v) if Tε(vε) (where Tε

acts only with respect to x ′) converges to v weakly (strongly) in L p(� × Y ).

Appendix 2: Formal asymptotic expansion for a recovery sequence for the
regime h � ε2

In this appendix we present a formal asymptotic expansion for a recovery sequence which
leads to the zero-determinant condition (41).

Let u(x ′) be an arbitrary isometric surface, u ∈ H2
iso(ω), and ψ(x ′, y) be a sufficiently

smooth scalar function. As a starting point we consider the surface

uap,2ε := u(x ′) − ε2ψ(x ′, ε−1x ′)n(x ′) (80)

(similar to the case ε 	 h 	 ε2). A simple calculation (cf. (38)) shows that
(∇′ũap,2ε )�∇′ũap,2ε = I2 + O(ε2) at least formally. Ideally we need to add a sufficient
number of corrector terms to the expression in (80) to make the error to be of order o(h). Let
us consider a third-order approximation,

uap,3ε := u(x ′) − ε2ψ(x ′, ε−1x ′)n(x ′) + ε3ϕ(x ′, ε−1x ′),

where ϕ is a sufficiently smooth vector-valued function. Taking the gradient we get

∇′uap,3ε = ∇′u − ε∇yψ n − ε2
(∇′ψ n + ψ∇′n + ∇yϕ

)+ ε3∇′ϕ.

Noticing that

∂1n = II11R1 + II12R2, ∂2n = II12R1 + II22R2,
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we have

|∂1uap,3ε |2 = 1 + ε2
(
(∂y1ψ)2 − 2ψ II11 + 2R1 · ∂y1ϕ

)+ O(ε3),

|∂2uap,3ε |2 = 1 + ε2
(
(∂y2ψ)2 − 2ψ II22 + 2R2 · ∂y2ϕ

)+ O(ε3),

∂1u
ap,3
ε · ∂2u

ap,3
ε = ε2

(
∂y1ψ ∂y2ψ − 2ψ II12 + R1 · ∂y2ϕ + R2 · ∂y1ϕ

)+ O(ε3).

Let us equate the second-order terms to zero:

(∂y1ψ)2 − 2ψ II11 + 2R1 · ∂y1ϕ = 0,

(∂y2ψ)2 − 2ψ II22 + 2R2 · ∂y2ϕ = 0,

∂y1ψ ∂y2ψ − 2ψ II12 + R1 · ∂y2ϕ + R2 · ∂y1ϕ = 0.

Clearly, the function ψ has to satisfy certain solvability condition. Indeed, differentiating the
above equations twice with respect to y, we get

R1 · ∂3y1y2 y2ϕ = −(∂2y1 y2ψ)2 − ∂y1ψ ∂3y1y2 y2ψ + ∂2y2 y2ψ II11,

R2 · ∂3y1y1 y2ϕ = −(∂2y1y2ψ)2 − ∂y2ψ ∂3y1y1y2ψ + ∂2y1y1ψ II22,

∂2y1y1 ∂2y2 y2ψ + (∂2y1 y2ψ)2 + ∂y1ψ ∂3y1y2 y2ψ + ∂y2ψ ∂3y1y1 y2ψ − 2∂2y1y2ψ II12

+R1 · ∂3y1y2 y2ϕ + R2 · ∂3y1y1y2ϕ = 0.

Eliminating the terms that contain derivatives of ϕ and recalling that det II = 0 yields

det
(
II + ∇2

yψ
)

= 0.
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