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Abstract Under suitable conditions on the range of the Gauss map of a complete subman-
ifold of Euclidean space with parallel mean curvature, we construct a strongly subharmonic
function and derive a-priori estimates for the harmonic Gauss map. The required conditions
here are more general than in previous work and they therefore enable us to improve sub-
stantially previous results for the Lawson–Osseman problem concerning the regularity of
minimal submanifolds in higher codimension and to derive Bernstein type results.
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1 Introduction

We consider an oriented n-dimensional submanifold M in R
n+m with n ≥ 3, m ≥ 2. The

Gauss map γ : M → Gn,m maps M into a Grassmann manifold. In fact, for codimension
m = 1, this Grassmann manifold Gn,1 is the unit sphere Sn . In this paper, however, we
are interested in the case m ≥ 2 where the geometry of this Grassmann manifold is more
complicated. By the theorem of Ruh and Vilms [16], γ is harmonic if and only if M has par-
allel mean curvature. This result applies thus in particular to the case where M is a minimal
submanifold of Euclidean space.
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712 J. Jost et al.

Now, the Bernstein problem for entire minimal graphs is one of the central problems in
geometric analysis. Let us summarize the status of this problem, first for the case of codi-
mension 1. The central result is that an entire minimal graph M of dimension n ≤ 7 and
codimension 1 has to be planar, but there are counterexamples to such a Bernstein type
theorem in dimension 8 or higher. However, when the additional condition is imposed that
the slope of the graph be uniformly bounded, then a theorem of Moser [15], called a weak
Bernstein theorem asserts that such an M in arbitrary dimension has to be planar. Thus, the
counterexamples arise from a non-uniform behavior at infinity. In fact, by a general scaling
argument, the Bernstein theorems are intimately related to the regularity question for the
minimal hypersurface equation.

A natural and important question then is to what extent such Bernstein type theorems gen-
eralize to entire minimal graphs of codimension m ≥ 2. Moser’s result has been extended
to higher codimension by Chern and Osserman [3] for dimension n = 2 and Barbosa [2]
and Fisher and Colbrie [5] for dimension n = 3. For dimension n = 4 and codimension
m = 3, however, there is a counterexample given by Lawson and Osserman [14]. In fact,
their paper emphasizes the stark contrast between the cases of codimension 1 and greater
than 1 for the minimal submanifold system, concerning regularity, uniqueness, and existence.
The Lawson–Osserman problem then is concerned with a systematic understanding of the
analytic aspects of the minimal submanifold system in higher codimension. As in the case
of codimension 1, the Bernstein problem provides a key towards this aim.

While the work of Lawson–Osserman produced a counterexample for a general Bernstein
theorem, there are also some positive results in this direction which we shall now summa-
rize. Hildebrandt et al. [10] started a systematic approach on the basis of the aforementioned
Ruh–Vilms theorem. That is, they developed and employed the theory of harmonic maps
and the convex geometry of Grassmannian manifolds, and obtained Bernstein type results
in general dimension and codimension. Their main result says that a Bernstein result holds
if the image of the Gauss map is contained in a strictly convex distance ball. Since the
Riemannian sectional curvature of Gn,m is nonnegative, the maximal radius of such a convex
ball is bounded. In codimension 1, this in particular reproduces Moser’s theorem, and in
this sense, their result is optimal. For higher codimension, their result can be improved, for
the following reason. Since the sectional curvature of Gn,m for n,m ≥ 2 is not constant,
there exist larger convex sets than geodesic distance balls, and it turns out that harmonic
(e.g. Gauss) maps with values in such convex sets can still be well enough controlled. In
this sense, the results of [10] could be improved by Jost and Xin [12], Wang [18] and Xin
and Yang [21]. In [12], the largest such geodesically convex set in a Grassmannian manifold
was found. Formulating it somewhat differently, the harmonic map approach is based on
the fact that the composition of a harmonic map with a convex function is a subharmon-
ic function, and by using quantitative estimates for such subharmonic functions, regularity
and Liouville type results for harmonic maps can be obtained. Thus, convex functions were
systematically utilized in [21]. In this paper, also the fundamental connection between esti-
mates for the second fundamental form of minimal submanifolds and estimates for their
Gauss maps was systematically explored. On this basis, the fundamental curvature estimate
technique, as developed by Schoen et al. [17] and Ecker and Huisken [4], could be used in
[21].

Still, there remains a large quantitative gap between those positive results and the coun-
terexample of Lawson–Osserman. In this situation, it could either be that Bernstein theorems
can be found under more general conditions, or that there exist other counterexamples in the
so far unexplored range.
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The Gauss image and Bernstein type theorems 713

In the present paper, we make a step towards closing this gap in the positive direction. We
identify a geometrically natural function v on a Grassmann manifold and a natural quantita-
tive condition under which the precomposition of this function with a harmonic (Gauss) map
is (strongly) subharmonic (Theorem 3.1). When the precomposition of v with the Gauss map
of a complete minimal submanifold is bounded, then that submanifold is an entire graph of
bounded slope. On one hand, this is the first systematic example in harmonic map regularity
theory where this auxiliary function is not necessarily convex. On the other hand, the Law-
son–Osserman’s counterexample can also be readily characterized in terms of this function.
Still, the range of values for v where we can apply our scheme is strictly separated from the
value of v in that example. Therefore, still some gap remains which should be explored in
future work.

Our work also finds its natural position in the general regularity theory for harmonic maps.
Also, once we have a strongly subharmonic function, we could derive Bernstein type results
within the frame work of geometric measure theory, by the standard blow-down procedure
and appeal to Allard’s regularity theorem [1]. By building upon the work of many people
on harmonic map regularity, we can obtain more insight, however. In particular, we shall
use the iteration method of [10], we can explore the relation with curvature estimates, and
we shall utilize a version of the telescoping trick (Theorem 4.1) to finally obtain a quanti-
tatively controlled Gauss image shrinking process (Theorems 5.1 and 6.1). In this way, we
can understand why the submanifold is flat as the Bernstein result asserts. More precisely,
we obtain the following Bernstein type result, which substantially improves our previous
results.

Theorem 1.1 Let zα = f α(x1, . . . , xn), α = 1, . . . ,m, be smooth functions defined every-
where in R

n (n ≥ 3,m ≥ 2). Suppose their graph M = (x, f (x)) is a submanifold with
parallel mean curvature in R

n+m . Suppose that there exists a number β0 < 3 such that

� f =
[

det

(
δi j +

∑
α

∂ f α

∂xi

∂ f α

∂x j

)] 1
2

≤ β0. (1.1)

Then f 1, . . . , f m has to be affine linear, i.e., it represents an affine n-plane.

The essential point is to show that v := � f is subharmonic when <3. In fact, when
v ≤ β0 < 3, then �v ≥ K0|B|2 where K0 is a positive constant and B is the second funda-
mental form of M in R

n+m . This principle is not new. Wang [18] has given conditions under
which log v is subharmonic and has derived Bernstein results from this, as indicated above.
He only needs that v be uniformly bounded by some constant, not necessarily <3, but in
addition that there exist some δ > 0 such that for any two eigenvalues λi , λ j with i �= j,
the inequality |λiλ j | ≤ 1 − δ holds (the latter condition means in geometric terms that d f
is strictly area decreasing on any two-dimensional subspace). Since subharmonicity of log v
is a weaker property than subharmonicity of v itself, his computation is substantially easier
than ours, and our results cannot be deduced from his. In fact, v2 = ∏(1 + λ2

i ), and while
the condition of [12] which can be reformulated as v2 being bounded away from 4 implies
the condition of [18] so that the latter result generalizes the former, the condition needed in
the present paper is only the weaker one that v2 be bounded away from 9.

In fact, somewhat more refined results can be obtained, as will be pointed out in the final
remarks of this paper.
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714 J. Jost et al.

2 Geometry of Grassmann manifolds

Let R
n+m be an (n + m)-dimensional Euclidean space. Its oriented n-subspaces constitute

the Grassmann manifold Gn,m, which is the Riemannian symmetric space of compact type
SO(n + m)/SO(n)× SO(m).

Gn,m can be viewed as a submanifold of some Euclidean space via the Plücker embedding.
The restriction of the Euclidean inner product on M is denoted by w : Gn,m × Gn,m → R

w(P, Q) = 〈e1 ∧ · · · ∧ en, f1 ∧ · · · ∧ fn〉 = det W

where P is spanned by a unit n-vector e1 ∧ · · · ∧ en, Q is spanned by another unit n-vector
f1 ∧ · · · ∧ fn, and W = (〈ei , f j 〉

)
. It is well-known that

W T W = OT	O

with O an orthogonal matrix and

	 =
⎛
⎜⎝
μ2

1
. . .

μ2
n

⎞
⎟⎠ .

Here each 0 ≤ μ2
i ≤ 1. Putting p := min{m, n}, then at most p elements in {μ2

1, . . . , μ
2
n}

are not equal to 0. Without loss of generality, we can assume μ2
i = 1 whenever i > p. We

also note that the μ2
i can be expressed as

μ2
i = 1

1 + λ2
i

. (2.1)

The Jordan angles between P and Q are defined by

θi = arccos(μi ) 1 ≤ i ≤ p.

The distance between P and Q is defined by

d(P, Q) =
√∑

θ2
i . (2.2)

Thus, (2.1) becomes

λi = tan θi . (2.3)

In the sequel, we shall assume n ≥ m without loss of generality. We use the summation
convention and agree on the ranges of indices:

1 ≤ i, j, k, l ≤ n, 1 ≤ α, β, γ ≤ m, a, b, . . . = 1, . . . , n + m.

Now we fix P0 ∈ Gn,m . We represent it by n vectors εi , which are complemented by m
vectors εn+α, such that {εi , εn+α} form an orthonormal base of R

m+n .
Denote

U := {P ∈ Gn,m, w(P, P0) > 0}.
We can span an arbitrary P ∈ U by n-vectors fi :

fi = εi + Ziαεn+α.
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The Gauss image and Bernstein type theorems 715

The canonical metric in U can be described as

ds2 = tr((In + Z Z T )−1d Z(Im + Z T Z)−1d Z T ), (2.4)

where Z = (Ziα) is an (n × m)-matrix and In (res. Im) denotes the (n × n)-identity (res.
m × m) matrix. It is shown that (2.4) can be derived from (2.2) in [20].

For any P ∈ U, the Jordan angles between P and P0 are defined by {θi }. Let Eiα be the
matrix with 1 in the intersection of row i and columnα and 0 otherwise. Then, sec θi sec θαEiα

form an orthonormal basis of TP Gn,m with respect to (2.4). Denote its dual frame by ωiα.

Our fundamental quantity will be

v(·, P0) := w−1(·, P0) on U. (2.5)

For arbitrary P ∈ U determined by an n × m matrix Z , it is easily seen that

v(P, P0) =
[
det(In + Z Z T )

] 1
2 =

m∏
α=1

sec θα =
m∏
α=1

1

μα
. (2.6)

where θ1, . . . , θm denote the Jordan angles between P and P0.

In this terminology, Hess(v(·, P0)) has been estimated in [21]. By (3.8) in [21], we have

Hess(v(·, P0)) =
∑
i �=α

v ω2
iα+

∑
α

(
1 + 2λ2

α

)
v ω2

αα+
∑
α �=β

λαλβv(ωαα⊗ωββ+ωαβ⊗ωβα)

=
∑

m+1≤i≤n,α

v ω2
iα +

∑
α

(
1 + 2λ2

α

)
v ω2

αα +
∑
α �=β

λαλβv ωαα ⊗ ωββ

+
∑
α<β

⎡
⎣(1 + λαλβ)v

(√
2

2
(ωαβ + ωβα)

)2

+ (1 − λαλβ)v

(√
2

2
(ωαβ − ωβα)

)2
⎤
⎦. (2.7)

It follows that

v(·, P0)
−1Hess(v(·, P0)) = g +

∑
α

2λ2
αω

2
αα +

∑
α �=β

λαλβ(ωαα ⊗ ωββ + ωαβ ⊗ ωβα).

(2.8)

The canonical Riemannian metric on Gn,m derived from (2.2) can also be described by
the moving frame method. This will be useful for understanding some of the sequel. Let
{ei , en+α} be a local orthonormal frame field in R

n+m . Let {ωi , ωn+α} be its dual frame field
so that the Euclidean metric is

g =
∑

i

ω2
i +

∑
α

ω2
n+α.

The Levi-Civita connection forms ωab of R
n+m are uniquely determined by the equations

dωa = ωab ∧ ωb,

ωab + ωba = 0.
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716 J. Jost et al.

It is shown in [20] that the canonical Riemannian metric on Gn,m can be written as

ds2 =
∑
i, α

ω2
i n+α. (2.9)

3 Subharmonic functions

Let Mm → R
n+m be an isometric immersion with second fundamental form B. Around any

point p ∈ M, we choose an orthonormal frame field ei , . . . , en+m in R
n+m, such that {ei }

are tangent to M and {en+α} normal to M. The metric on M is g = ∑
i ω

2
i . We have the

structure equations

ωi n+α = hαi jω j , (3.1)

where hαi j are the coefficients of second fundamental form B of M in R
n+m .

Let 0 be the origin of R
n+m, SO(m + n) be the Lie group consisting of all orthonor-

mal frames (0; ei , en+α), T F = {(p; e1, . . . , en) : p ∈ M, ei ∈ Tp M, 〈ei , e j 〉 = δi j
}

be the
principle bundle of orthonormal tangent frames over M, and N F = {(p; en+1, . . . , en+m) :
p ∈ M, en+α ∈ Np M

}
be the principle bundle of orthonormal normal frames over M. Then

π̄ : T F ⊕ N F → M is the projection with fiber SO(n)× SO(m).
The Gauss map γ : M → Gn,m is defined by

γ (p) = Tp M ∈ Gn,m

via the parallel translation in R
n+m for every p ∈ M. Then the following diagram commutes

T F ⊕ N F
i−−−−→ SO(n + m)

π̄

⏐⏐� ⏐⏐�π
M

γ−−−−→ Gn,m

where i denotes the inclusion map and π : SO(n + m) → Gn,m is defined by

(0; ei , en+α) → e1 ∧ · · · ∧ en .

It follows that

|dγ |2 =
∑
α,i, j

h2
αi j = |B|2. (3.2)

(2.8) was computed for the metric (2.4) whose corresponding coframe field is ωiα. Since
(2.4) and (2.9) are equivalent to each other, at any fixed point P ∈ Gn,m there exists an iso-
tropic group action, i.e., an SO(n)× SO(m) action, such that ωiα is transformed to ωi n+α,
namely, there are a local tangent frame field and a local normal frame field such that at the
point under consideration,

ωi n+α = γ ∗ωiα. (3.3)

In conjunction with (3.1) and (3.3) we obtain

γ ∗ωiα = hαi jω j . (3.4)

By the Ruh–Vilms theorem [16], the mean curvature of M is parallel if and only if its
Gauss map is a harmonic map. Now, we assume that M has parallel mean curvature.
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The Gauss image and Bernstein type theorems 717

We define

v := v(·, P0) ◦ γ, (3.5)

This function v on M will be the source of the basic inequality for this paper. Its geometric
significance is seen from the following observation. If the v-function has an upper bound
(or the w-function has a positive lower bound), M can be described as an entire graph on R

n

by f : R
n → R

m, provided M is complete. In this situation, λi is the singular values of d f
and

v =
[

det

(
δi j +

∑
α

∂ f α

∂xi

∂ f α

∂x j

)] 1
2

(3.6)

Using the composition formula, in conjunction with (2.8), (3.2) and (3.4), and the fact that
τ(γ ) = 0 (the tension field of the Gauss map vanishes [16]), we deduce the important formula
of Lemma 1.1 in [5] and Prop. 2.1 in [18].

Proposition 3.1 Let M be an n-submanifold in R
n+m with parallel mean curvature. Then

�v = v|B|2 + v
∑
α, j

2λ2
αh2

α,α j + v
∑
α �=β, j

λαλβ(hα,α j hβ,β j + hα,β j hβ,α j ), (3.7)

where hα,i j are the coefficients of the second fundamental form of M in R
n+m (see 3.1).

A crucial step in this paper is to find a condition which guarantees the strong subharmo-
nicity of the v-function on M. More precisely, under a condition on v, we shall bound its
Laplacian from below by a positive constant times squared norm of the second fundamental
form.

Looking at the expression (3.7), we group its terms according to the different types of the
indices of the coefficients of the second fundamental form as follows.

v−1�v =
∑
α

∑
i, j>m

h2
α,i j +

∑
j>m

I j +
∑

j>m,α<β

I I jαβ +
∑

α<β<γ

I I Iαβγ +
∑
α

I Vα

(3.8)

where

I j =
∑
α

(
2 + 2λ2

α

)
h2
α,α j +

∑
α �=β

λαλβhα,α j hβ,β j , (3.9)

I I jαβ = 2h2
α,β j + 2h2

β,α j + 2λαλβhα,β j hβ,α j , (3.10)

I I Iαβγ = 2h2
α,βγ + 2h2

β,γ α + 2h2
γ,αβ + 2λαλβhα,βγ hβ,γ α

+ 2λβλγ hβ,γ αhγ,αβ + 2λγ λαhγ,αβhα,βγ (3.11)

and

I Vα = (1 + 2λ2
α

)
h2
α,αα +

∑
β �=α

(
h2
α,ββ +

(
2 + 2λ2

β

)
h2
β,βα

)

+
∑
β �=γ

λβλγ hβ,βαhγ,γ α + 2
∑
β �=α

λαλβhα,ββhβ,βα. (3.12)

It is easily seen that

I j =
(∑

α

λαhα,α j

)2

+
∑
α

(
2 + λ2

α

)
h2
α,α j ≥ 2

∑
α

h2
α,α j . (3.13)
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718 J. Jost et al.

Obviously

I I jαβ = λαλβ
(
hα,β j + hβ,α j

)2 + (2 − λαλβ
) (

h2
α,β j + h2

β,α j

)
. (3.14)

v = (∏α(1 + λ2
α)
) 1

2 implies (1 + λ2
α)(1 + λ2

β) ≤ v2. Assume (1 + λ2
α)(1 + λ2

β) ≡ C ≤ v2,

then differentiating both sides implies

λαdλα
1 + λ2

α

+ λβdλβ
1 + λ2

β

= 0.

Therefore

d(λαλβ) = λβdλα + λαdλβ

=
[
λ2
β

(
1 + λ2

α

)− λ2
α

(
1 + λ2

β

)] dλα
λβ
(
1 + λ2

α

)
=
(
λ2
β − λ2

α

) dλα
λβ
(
1 + λ2

α

) . (3.15)

It follows that (λα, λβ) → λαλβ attains its maximum at the point satisfying λα = λβ,which

is hence ((C
1
2 − 1)

1
2 , (C

1
2 − 1)

1
2 ). Thus λαλβ ≤ C

1
2 − 1 ≤ v − 1 and moreover

I I jαβ ≥ (3 − v)
(

h2
α,β j + h2

β,α j

)
. (3.16)

Lemma 3.1 I I Iαβγ ≥ (3 − v)
(

h2
α,βγ + h2

β,γ α + h2
γ,αβ

)
.

Proof It is easily seen that

I I Iαβγ − (3 − v)
(

h2
α,βγ + h2

β,γ α + h2
γ,αβ

)
= (λαhα,βγ + λβhβ,γ α + λγ hγ,αβ

)2 + (v − 1 − λ2
α

)
h2
α,βγ

+
(
v − 1 − λ2

β

)
h2
β,γ α +

(
v − 1 − λ2

γ

)
h2
γ,αβ .

If λ2
α, λ

2
β, λ

2
γ ≤ v − 1, then I I Iαβγ − (3 − v)(h2

α,βγ + h2
β,γ α + h2

γ,αβ) is obviously

nonnegative definite. Otherwise, we can assume λ2
γ > v− 1 without loss of generality, then

(1 + λ2
α)(1 + λ2

β)(1 + λ2
γ ) ≤ v2 implies λ2

α < v − 1, λ2
β < v − 1.

Denote s = λαhα,βγ + λβhβ,γ α, then by the Cauchy–Schwarz inequality,

s2 = (λαhα,βγ + λβhβ,γ α)
2

=
⎛
⎝ λα√

v − 1 − λ2
α

√
v − 1 − λ2

αhα,βγ + λβ√
v − 1 − λ2

β

√
v − 1 − λ2

βhβ,γ α

⎞
⎠

2

≤
(

λ2
α

v − 1 − λ2
α

+ λ2
β

v − 1 − λ2
β

)((
v − 1 − λ2

α

)
h2
α,βγ +

(
v − 1 − λ2

β

)
h2
β,γ α

)

i.e.

(
v − 1 − λ2

α

)
h2
α,βγ +

(
v − 1 − λ2

β

)
h2
β,γ α ≥

(
λ2
α

v − 1 − λ2
α

+ λ2
β

v − 1 − λ2
β

)−1

s2.

(3.17)
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The Gauss image and Bernstein type theorems 719

Hence

I I Iαβγ − (3 − v)
(

h2
α,βγ + h2

β,γ α + h2
γ,αβ

)

≥ (s + λγ hγ,αβ
)2 +

(
λ2
α

v − 1 − λ2
α

+ λ2
β

v − 1 − λ2
β

)−1

s2 +
(
v − 1 − λ2

γ

)
h2
γ,αβ

=
⎡
⎣1 +

(
λ2
α

v − 1 − λ2
α

+ λ2
β

v − 1 − λ2
β

)−1
⎤
⎦ s2 + (v − 1)h2

γ,αβ + 2λγ shγ,αβ . (3.18)

It is well known that ax2 + 2bxy + cy2 is nonnegative definite if and only if a, c ≥ 0 and
ac − b2 ≥ 0. Hence the right hand side of (3.18) is nonnegative definite if and only if

(v − 1)

⎡
⎣1 +

(
λ2
α

v − 1 − λ2
α

+ λ2
β

v − 1 − λ2
β

)−1
⎤
⎦− λ2

γ ≥ 0 (3.19)

i.e.

1

v − 1 − λ2
α

+ 1

v − 1 − λ2
β

+ 1

v − 1 − λ2
γ

≤ 2

v − 1
. (3.20)

Denote x = 1 + λ2
α, y = 1 + λ2

β, z = 1 + λ2
γ . Let C be a constant ≤ v2, denote

� = {(x, y, z) ∈ R
3 : 1 ≤ x, y < v, z > v, xyz = C

}
and f : � → R

(x, y, z) → 1

v − x
+ 1

v − y
+ 1

v − z
.

We claim f ≤ 2
v−1 on �. Then (3.20) follows and hence

I I Iαβγ − (3 − v)
(

h2
α,βγ + h2

β,γ α + h2
γ,αβ

)
is nonnegative definite.

We now verify the claim. For arbitrary ε > 0, denote

fε = 1

v + ε − x
+ 1

v + ε − y
+ 1

v + ε − z
,

then fε is obviously a smooth function on

�ε = {(x, y, z) ∈ R
3 : 1 ≤ x, y ≤ v, z ≥ v + 2ε, xyz = C

}
.

The compactness of �ε implies the existence of (x0, y0, z0) ∈ �ε satisfying

fε(x0, y0, z0) = sup
�ε

fε. (3.21)

Fix x0, then (3.21) implies that for arbitrary (y, z) ∈ R
2 satisfying 1 ≤ y ≤ v, z ≥ v+2ε

and yz = C
x0
, we have

fε,x0(y, z) = 1

v + ε − y
+ 1

v + ε − z
≤ 1

v + ε − y0
+ 1

v + ε − z0
.
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720 J. Jost et al.

Differentiating both sides of yz = C
x0

yields dy
y + dz

z = 0. Hence

d

(
1

v + ε − y
+ 1

v + ε − z

)
= dy

(v + ε − y)2
+ dz

(v + ε − z)2

=
[

y

(v + ε − y)2
− z

(v + ε − z)2

]
dy

y
= ((v + ε)2 − yz)(y − z)

(v + ε − y)2(v + ε − z)2
dy

y
. (3.22)

It implies that fε,x0

(
y, C

yx0

)
is decreasing in y and y0 = 1. Similarly, one can derive x0 = 1.

Therefore

sup
�ε

fε = fε(1, 1,C) = 2

v + ε − 1
+ 1

v + ε − C
<

2

v + ε − 1
.

Note that fε → f and � ⊂ limε→0+ �ε. Hence by letting ε → 0 one can obtain f ≤ 2
v−1 .��

Lemma 3.2 There exists a positive constant ε0, such that if v ≤ 3, then

I Vα ≥ ε0

⎛
⎝h2

α,αα +
∑
β �=α

(
h2
α,ββ + 2h2

β,βα

)⎞⎠.
Proof For arbitrary ε0 ∈ [0, 1), denote C = 1 − ε0, then

I Vα − ε0

⎛
⎝h2

α,αα +
∑
β �=α

(
h2
α,ββ + 2h2

β,βα

)⎞⎠

=
⎛
⎝∑

β

λβhβ,βα

⎞
⎠

2

+ (C + λ2
α

)
h2
α,αα

+
∑
β �=α

[
Ch2

α,ββ +
(

2C + λ2
β

)
h2
β,βα + 2λαλβhα,ββhβ,βα

]
.

(3.23)

Obviously

C h2
α,ββ + C−1λ2

αλ
2
βh2

β,βα + 2λαλβhα,ββhβ,βα

≥
(

C
1
2 hα,ββ + C− 1

2 λαλβhβ,βα
)2 ≥ 0,

hence, the third term of the right hand side of (3.23) satisfies

Ch2
α,ββ +

(
2C + λ2

β

)
h2
β,βα + 2λαλβhα,ββhβ,βα ≥

(
2C + λ2

β − C−1λ2
αλ

2
β

)
h2
β,βα

(3.24)

If there exist 2 distinct indices β, γ �= α satisfying

2C + λ2
β − C−1λ2

αλ
2
β ≤ 0

and

2C + λ2
γ − C−1λ2

αλ
2
γ ≤ 0,
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then λ2
α > C and

λ2
β ≥ 2C2

λ2
α − C

, λ2
γ ≥ 2C2

λ2
α − C

.

It implies

(
1 + λ2

α

) (
1 + λ2

β

) (
1 + λ2

γ

)
≥
(
λ2
α + 1

) (
λ2
α + 2C2 − C

)2
(
λ2
α − C

)2 .

Define f : x ∈ (1,+∞) → (x+1)(x+2C2−C)2

(x−C)2
, then a direct calculation shows

(log f )′ = 1

x + 1
+ 2

x + 2C2 − C
− 2

x − C
= (x − C(2C + 3))(x + C)

(x + 1)(x + 2C2 − C)(x − C)
.

It follows that f (x) ≥ f (C(2C + 3)) = (2C+1)3

C+1 , i.e.

v2 ≥ (1 + λ2
α

) (
1 + λ2

β

) (
1 + λ2

γ

)
≥ (2C + 1)3

C + 1
. (3.25)

If C = 1, then (2C+1)3

C+1 = 27
2 > 9; hence there is ε1 > 0, once ε0 ≤ ε1, then C = 1 − ε0

satisfies (2C+1)3

C+1 > 9, which causes a contradiction to v2 ≤ 9.
Hence, one can find an index γ �= α, such that

2C + λ2
β − C−1λ2

αλ
2
β > 0 for arbitrary β �= α, γ. (3.26)

Denote s =∑β �=γ λβhβ,βα, then by using the Cauchy–Schwarz inequality,

(
C + λ2

α

)
h2
α,αα +

∑
β �=α,γ

(
2C + λ2

β − C−1λ2
αλ

2
β

)
h2
β,βα

≥
⎛
⎝ λ2

α

C + λ2
α

+
∑
β �=α,γ

λ2
β

2C + λ2
β − C−1λ2

αλ
2
β

⎞
⎠

−1

s2. (3.27)

Substituting (3.27) and (3.24) into (3.23) yields

I Vα − ε0

⎛
⎝h2

α,αα +
∑
β �=α

(
h2
α,ββ + 2h2

β,βα

)⎞⎠

≥ (s + λγ hγ,γ α)
2 +

⎛
⎝ λ2

α

C + λ2
α

+
∑
β �=α,γ

λ2
β

2C + λ2
β − C−1λ2

αλ
2
β

⎞
⎠

−1

s2

+
(

2C + λ2
γ − C−1λ2

αλ
2
γ

)
h2
γ,γ α

≥
⎡
⎢⎣1 +

⎛
⎝ λ2

α

C + λ2
α

+
∑
β �=α,γ

λ2
β

2C + λ2
β − C−1λ2

αλ
2
β

⎞
⎠

−1
⎤
⎥⎦ s2

+
(

2C + 2λ2
γ − C−1λ2

αλ
2
γ

)
h2
γ,γ α + 2λγ shγ,γ α. (3.28)

Note that when m = 2, s = λαhα,αα and
∑
β �=α,γ

λ2
β

2C+λ2
β−C−1λ2

αλ
2
β

= 0.
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722 J. Jost et al.

The right hand side of (3.28) is nonnegative definite if and only if

2C + 2λ2
γ − C−1λ2

αλ
2
γ ≥ 0 (3.29)

and⎡
⎢⎣1+

⎛
⎝ λ2

α

C+λ2
α

+
∑
β �=α,γ

λ2
β

2C + λ2
β − C−1λ2

αλ
2
β

⎞
⎠

−1
⎤
⎥⎦(2C+2λ2

γ −C−1λ2
αλ

2
γ

)
−λ2

γ ≥0.

(3.30)

Assume 2C + 2λ2
γ − C−1λ2

αλ
2
γ < 0, then λ2

α > 2C and λ2
γ >

2C2

λ2
α−2C

, which implies

(1 + λ2
α)(1 + λ2

γ ) ≥ (λ2
α+1)(λ2

α+2C(C−1))
λ2
α−2C

. Define f : x ∈ (2C,+∞) → (x+1)(x+2C(C−1))
x−2C ,

then

(log f )′ = 1

x + 1
+ 1

x + 2C(C − 1)
− 1

x − 2C
= x2 − 4Cx − 2C2(2C − 1)

(x + 1)(x + 2C(C − 1))(x − 2C)
.

and hence

min f = f
(

C(2 + √
4C + 2)

)
= 2C2 + 2C + 1 + 2C

√
4C + 2.

In particular, when C = 1, min f = 5 + 2
√

6 > 9. There exists ε2 > 0, such that once
ε0 ≤ ε2, one can derive min f > 9 and moreover v2 ≥ (1 + λ2

α)(1 + λ2
γ ) > 9, which

contradicts v ≤ 3. Therefore (3.29) holds.
If 2C + λ2

γ − C−1λ2
αλ

2
γ ≥ 0, (3.30) trivially holds.

At last, we consider the situation when there exists γ, γ �= α, such that

2C + λ2
γ − C−1λ2

αλ
2
γ < 0.

In this case, (3.30) is equivalent to

λ2
α

C + λ2
α

+
∑
β �=α

λ2
β

2C + λ2
β − C−1λ2

αλ
2
β

≤ −1. (3.31)

Noting that

λ2
β

2C + λ2
β − C−1λ2

αλ
2
β

= C

C − λ2
α

− 2C3(
C − λ2

α

)2 1

1 + λ2
β + λ2

α+C(2C−1)
C−λ2

α

and let xβ = 1 + λ2
β, then (3.31) is equivalent to

xα − 1

xα + C − 1
+
∑
β �=α

⎡
⎣ C

C + 1 − xα
− 2C3

(C + 1 − xα)2
1

xβ − xα+2C2−C−1
xα−C−1

⎤
⎦ ≤ −1.

(3.32)

Denote

ψ(xα) = xα − 1

xα + C − 1
, ϕ(xα) = xα + 2C2 − C − 1

xα − C − 1
,

ζ(xα) = C

C + 1 − xα
, ξ(xα) = 2C3

(C + 1 − xα)2
.
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Let

� =
⎧⎨
⎩(x1, . . . , xm) ∈ R

m : xα > C + 1, 1 ≤ xβ < ϕ(xα) for all β �= α, γ,

xγ > ϕ(xα),
∏
β

xβ = v2

⎫⎬
⎭ (3.33)

and define f : � → R

(x1, . . . , xm) → ψ(xα)+
∑
β �=α

[
ζ(xα)− ξ(xα)

xβ − ϕ(xα)

]
.

We point out that in (3.33), α and γ are fixed indices.
Now we claim

sup
�

f = sup
�

f (3.34)

where

� =
⎧⎨
⎩(x1, . . . , xm) ∈ R

m : xα ≥ C + 1, xβ = 1 for all β �= α, γ,

xγ ≥ ϕ(xα),
∏
β

xβ = v2

⎫⎬
⎭ ⊂ �. (3.35)

When m = 2, obviously � = � and (3.34) is trivial. We put

ϕε(xα) = ϕ(xα + ε), ζε(xα) = ζ(xα + ε), ξε(xα) = ξ(xα + ε)

for arbitrary ε > 0. If m ≥ 3, as in the proof of Lemma 3.1, we define

fε = ψ(xα)+
∑
β �=α

[
ζε(xα)− ξε(xα)

xβ − ϕε(xα)

]
,

then fε is well-defined on

�ε =
⎧⎨
⎩(x1, . . . , xm) ∈ R

m : xα ≥ C + 1, 1 ≤ xβ ≤ ϕ2ε(xα) for all β �= α, γ,

xγ ≥ ϕ ε
2
(xα),

∏
β

xβ = v2

⎫⎬
⎭.

The compactness of �ε enables us to find (y1, . . . , ym) ∈ �ε, such that

fε(y1, . . . , ym) = sup
�ε

fε. (3.36)

Denote b = ϕε(yα), then (3.36) implies for arbitrary β �= α, γ that

1

xβ − b
+ 1

xγ − b
≥ 1

yβ − b
+ 1

yγ − b
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724 J. Jost et al.

holds whenever xβxγ = yβ yγ , 1 ≤ xβ ≤ ϕ2ε(yα) and xγ ≥ ϕ ε
2
(yα). Differentiating both

sides yields dxβ
xβ

+ dxγ
xγ

= 0, thus

d

(
1

xβ − b
+ 1

xγ − b

)
= − dxβ

(xβ − b)2
− dxγ
(xγ − b)2

= (b2 − xβxγ )(xγ − xβ)

(xβ − b)2(xγ − b)2
dxβ
xβ

.

(3.37)

Similarly to (3.25), one can prove yαb2 = yα(yα+ε+2C2−C−1)2

(yα+ε−C−1)2
> 9 when ε0 ≤ ε1 (note that

C = 1 − ε0) and ε1 is sufficiently small. In conjunction with yαxβxγ = yα yβ yγ ≤ v2 < 9,
we have b2 − xβxγ > 0. Hence (3.37) implies yβ = 1 for all β �= α, γ. In other words, if
we put

�ε =
⎧⎨
⎩(x1, . . . , xm) ∈ R

m : xα ≥ C + 1, xβ = 1 for all β �= α, γ,

xγ ≥ ϕ ε
2
(xα),

∏
β

xβ = v2

⎫⎬
⎭ ,

then max�ε fε = max�ε fε. Therefore, (3.34) follows from � ⊂ ⋃
ε>0 �ε, � ⊂ ⋃

ε>0 �ε
and limε→0 fε = f.

To prove (3.30), i.e. f ≤ −1 , it is sufficient to show on �,

ψ(xα)+ ζ(xα)− ξ(xα)
v2

xα
− ϕ(xα)

≤ −1 (3.38)

whenever xα > C + 1 and v2

xα
> ϕ(xα). After a straightforward calculation, the above

inequality is equivalent to

x3
α + (2C2 − C − 2)x2

α + (C3 − 3C2 + C + 1)xα
−v2 (x2

α − (C + 2)xα − (C2 − C − 1)
) ≥ 0. (3.39)

It is easily seen that if

inf
t2−(C+2)t−(C2−C−1)>0

t3 + (2C2 − C − 2)t2 + (C3 − 3C2 + C + 1)t

t2 − (C + 2)t − (C2 − C − 1)
> 9. (3.40)

then (3.39) naturally holds and furthermore one can deduce that I Vα − ε0
(
h2
α,αα +∑β �=α(

h2
α,ββ + 2h2

β,βα

))
is nonnegative definite.

When C = 1, (3.40) becomes

inf
t> 3+√

5
2

t2(t − 1)

t2 − 3t + 1
> 9. (3.41)

If this is true, one can find a positive constant ε3 to ensure (3.40) holds true whenever ε0 ≤ ε3.

Finally, by taking ε0 = min{ε1, ε2, ε3} we obtain the final conclusion.
(3.41) is equivalent to the property that h(t) = t2(t−1)−9(t2−3t+1) = t3−10t2+27t−9

has no zeros on
(

3+√
5

2 ,+∞
)
. h′(t) = 3t2 −20t +27 implies h′(t) < 0 on

(
3+√

5
2 , 10+√

19
3

)
and h′(t) > 0 on

(
10+√

19
3 ,+∞

)
, hence
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The Gauss image and Bernstein type theorems 725

inf
t> 3+√

5
2

h = h

(
10 + √

19

3

)
= 187 − 38

√
19

27
> 0

and (3.41) follows. ��
In conjunction with (3.13), (3.16), Lemma 3.1 and 3.2, we can arrive at

Theorem 3.1 Let Mn be a submanifold in R
n+m with parallel mean curvature, then for

arbitrary p ∈ M and P0 ∈ Gn,m, once v(γ (p), P0) ≤ 3, then �(v(·, P0) ◦ γ ) ≥ 0 at p.
Moreover, if v(γ (p), P0) ≤ β0 < 3, then there exists a positive constant K0, depending only
on β0, such that

�(v(·, P0) ◦ γ ) ≥ K0|B|2 (3.42)

at p.

We also express this result by saying that the function v satisfying (3.42) is strongly
subharmonic under the condition v(γ (p), P0) ≤ β0 < 3.

Remark 3.1 If log v is a strongly subharmonic function, then v is certainly strongly subhar-
monic, but the converse is not necessarily true. Therefore, the above result does not seem to
follow from Theorem 1.2 in [18].

4 Curvature estimates

Let zα = f α(x1, . . . , xn), α = 1, . . . ,m be smooth functions defined on DR0 ⊂ R
n . Their

graph M = (x, f (x)) is a submanifold with parallel mean curvature in R
n+m . Suppose there

is β0 ∈ [1, 3), such that

� f =
[

det

(
δi j +

∑
α

∂ f α

∂xi

∂ f α

∂x j

)] 1
2

≤ β0. (4.1)

Denote by ε1, . . . , εn+m the canonical basis of R
n+m and put P0 = ε1 ∧ · · · ∧ εn . Then

by (4.1)
v(·, P0) ◦ γ ≤ β0

holds everywhere on M. Putting v = v(·, P0) ◦ γ, Theorem 3.1 tells us

�v ≥ K0(β0)|B|2. (4.2)

Let η be a nonnegative smooth function on M with compact support. Multiplying both sides
of (4.2) by η and integrating on M gives

K0

∫
M

|B|2η ∗ 1 ≤ −
∫
M

∇η · ∇v ∗ 1. (4.3)

F : DR0 → M defined by

x = (x1, . . . , xn) → (x, f (x))

is obviously a diffeomorphism. F∗ ∂
∂xi = εi + ∂ f α

∂xi εn+α implies〈
F∗

∂

∂xi
, F∗

∂

∂x j

〉
= δi j +

∑
α

∂ f α

∂xi

∂ f α

∂x j
.
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Hence

F∗g =
(
δi j +

∑
α

∂ f α

∂xi

∂ f α

∂x j

)
dxi dx j (4.4)

where g is the metric tensor on M. In other words, M is isometric to the Euclidean ball
DR0 equipped with the metric gi j dxi dx j (gi j = δi j +∑α

∂ f α

∂xi
∂ f α

∂x j ). It is easily seen that for
arbitrary ξ ∈ R

n,

ξ i gi jξ
j = |ξ |2 +

∑
α

(∑
i

∂ f α

∂xi
ξ i

)2

≥ |ξ |2. (4.5)

On the other hand, � f ≤ β0 implies
∏n

i=1 μi ≤ β2
0 , with μ1, . . . , μn the eigenvalues of

(gi j ), thus

ξ i gi jξ
j ≤ β2

0 |ξ |2 ≤ 9|ξ |2. (4.6)

In local coordinates, the Laplace–Beltrami operator is

� = 1√
G

∂

∂xi

(√
Ggi j ∂

∂x j

)
.

Here (gi j ) is the inverse matrix of (gi j ), and G = det(gi j ) = �2
f . From (4.1), (4.5) and (4.6)

it is easily seen that

1

3
|ξ |2 ≤ β−1

0 |ξ |2 ≤ ξ i
(√

Ggi j
)
ξ j ≤ β0|ξ |2 ≤ 3|ξ |2. (4.7)

Following [11,13] we shall make use of the following abbreviations: For arbitrary R ∈
(0, R0), let

BR = {(x, f (x)) : x ∈ DR} ⊂ M. (4.8)

And for arbitrary h ∈ L∞(BR) denote

h+,R
def.= sup

BR

h, h−,R
def.= = inf

BR
h, h̄ R

def.= −
∫
BR

h =
∫

BR
h ∗ 1

|Vol(BR)|

|h̄|p,R
def.=
⎛
⎜⎝−
∫
BR

|h|p

⎞
⎟⎠

1
p

(p ∈ (−∞,+∞)). (4.9)

(4.7) shows that � is a uniform elliptic operator. Moser’s Harnack inequality [15] for
supersolutions of elliptic PDEs in divergence form gives

Lemma 4.1 For a positive superharmonic function h on BR with R ∈ (0, R0], p ∈ (0, n
n−2 )

and θ ∈ [ 1
2 , 1), we have the following estimate

|h̄|p,θR ≤ γ1h−,θR .

Here γ1 is a positive constant only depending on n, p and θ, but not on h and R.

(4.2) shows the subharmonicity of v, and therefore v+,R − v + ε is a positive superhar-
monic function on BR for arbitrary ε > 0. With the aid of Lemma 4.1, one can follow [11]
to get
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Corollary 4.1 There is a constant δ0 ∈ (0, 1), depending only on n, such that

v+, R
2

≤ (1 − δ0)v+,R + δ0v̄ R
2
.

Denote by Gρ the mollified Green function for the Laplace–Beltrami operator on BR .

Then for arbitrary p = (y, f (y)) ∈ BR, once

Bρ(p) = {(x, f (x)) ∈ M : x ∈ DR(y)} ⊂ BR

we have ∫
BR

∇Gρ(·, p) · ∇φ ∗ 1 = −
∫

Bρ(p)

φ

for every φ ∈ H1,2
0 (BR). The a priori estimates for mollified Green functions of [8] tell us

Lemma 4.2 With o := (0, f (0)), we have

0 ≤ G
R
2 (·, o) ≤ c2(n)R

2−n on BR

G
R
2 (·, o) ≥ c1(n)R

2−n on B R
2
. (4.10)

For arbitrary p ∈ B R
4
,

Gρ(·, p) ≤ C(n)R2−n on BR\B̄ R
2
. (4.11)

Moreover if ρ ≤ R
8 , ∫

BR\B̄ R
2

∣∣∇Gρ(·, p)
∣∣2 ∗ 1 ≤ C(n)R2−n . (4.12)

Based on (4.3), Corollary 4.1 and Lemma 4.2, we can use the method of [11] to derive a
telescoping lemma a la Giaquinta and Giusti [6] and Giaquita and Hildebrandt [7].

Theorem 4.1 There exists a positive constant C1, only depending on n and β0, such that for
arbitrary R ≤ R0,

R2−n
∫

B R
2

|B|2 ∗ 1 ≤ C1

(
v+,R − v+, R

2

)
(4.13)

Moreover, there exists a positive constant C2, only depending on n and β0, such that for
arbitrary ε > 0, we can find R ∈ [exp(−C2ε

−1)R0, R0], such that

R2−n
∫

B R
2

|B|2 ∗ 1 ≤ ε. (4.14)

Proof With

ωR = R−2Vol(B R
2
)G

R
2 (·, o) where o = (0, f (0)),
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then ∫
BR

∇ωR · ∇φ ∗ 1 = R−2
∫

B R
2

φ ∗ 1.

Choosing (ωR)2 ∈ H1,2
0 (BR) as a test function in (4.3), we obtain

K0

∫
BR

|B|2(ωR)2 ∗ 1 ≤ −
∫
BR

∇(ωR)2 · ∇v ∗ 1 = −2
∫
BR

∇ωR · ωR∇(v − v+,R) ∗ 1

= −2
∫
BR

∇ωR ·
(
∇
(
ωR(v − v+,R)

)
− (v − v+,R)∇ωR

)
∗ 1

≤ −2
∫
BR

∇ωR · ∇
(
ωR(v − v+,R)

)
∗ 1

= −2R−2
∫

B R
2

ωR(v − v+,R) ∗ 1.

By (4.10), there exist positive constants c3, c4, depending only on n, such that

0 ≤ ωR ≤ c4 on BR,

ωR ≥ c3 on B R
2
.

Hence ∫
B R

2

|B|2 ∗ 1 ≤ −2K −1
0 c−1

4 c2
3 R−2

∫
B R

2

(v − v+,R) ∗ 1

≤ c5(n, β0)R
n−2
(
v+,R − v̄ R

2

)
. (4.15)

By Corollary 4.1, v+,R − v̄ R
2

≤ δ−1
0 (v+,R − v+, R

2
); substituting it into (4.15) yields (4.13).

For arbitrary k ∈ Z
+, (4.13) gives

k∑
i=0

(2−i R0)
2−n

∫
B2−i−1 R0

|B|2 ∗ 1 ≤ C1

k∑
i=0

(
v+,2−i R0

− v+,2−i−1 R0

)

= C1
(
v+,R0 − v+,2−k−1 R0

)
≤ C1(β0 − 1) ≤ 2C1 (4.16)

For arbitrary ε > 0, we take

k = [2C1ε
−1],

then we can find 1 ≤ j ≤ k, such that

(2− j R0)
2−n

∫
B2− j−1 R0

|B|2 ∗ 1 ≤ 2

k + 1
C1 ≤ ε.
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Since 2− j ≥ 2−k ≥ 2−2C1ε
−1 = exp

[−2(log 2)C1ε
−1
]
, it is sufficient to choose C2 =

−2(log 2)C1. ��

5 Gauss image shrinking property

Lemma 5.1 For arbitrary a > 1 and β0 ∈ [1, a), there exists a positive constant ε1 =
ε1(a, β0) with the following property. If P1, Q ∈ Gn,m satisfies v(Q, P1) ≤ b ≤ β0, then we
can find P2 ∈ Gn,m, such that v(P, P2) ≤ a for every P ∈ Gn,m satisfying v(P, P1) ≤ b,
and

1 ≤ v(Q, P2) ≤
{

1 if b <
√

2(1 + a−1)− 1
2

b − ε1 otherwise.
(5.1)

Proof Obviouslyw(P, P) = 1 for every P ∈ Gn,m,which shows Gn,m is a submanifold in a
Euclidean sphere via the Plücker embedding. Denote by r(·, ·) the restriction of the spherical
distance on Gn,m, then by spherical geometry, w = cos r and hence v = sec r.

Denote α = arccos(a−1) and β = arccos(b−1). Now we put γ = α − β and

c = sec γ =
(

a−1b−1 + (1 − a−2)
1
2 (1 − b−2)

1
2

)−1
. (5.2)

Once v(P2, P1) ≤ c, the triangle inequality implies

r(P, P2) ≤ r(P, P1)+ r(P2, P1) ≤ arccos(b−1)+ arccos(c−1) = α

for every P satisfying v(P, P1) ≤ b, and thus v(P, P2) ≤ a follows.

If b <
√

2(1 + a−1)− 1
2 , then a direct calculation shows β < α

2 , hence γ > β and
moreover v(Q, P1) ≤ b < c. Thereby P2 = Q is the required point.

Otherwise b ≥ √
2(1 + a−1)− 1

2 and hence c ≤ b. Obviously one of the following two
cases has to occur:

Case I. v(Q, P1) < c.One can take P2 = Q to ensure v(·, P2) ≤ a whenever v(·, P1) ≤ b.
In this case

b − v(Q, P2) = b − 1 ≥ √
2(1 + a−1)−

1
2 − 1. (5.3)

Case II. v(Q, P1) ≥ c. Denote by θ1, . . . , θm the Jordan angles between Q and P1, and put
L2 =∑1≤α≤m θ

2
α, then as shown in [19], if we denote the shortest normal geodesic from Q

to P1 by γ, then the Jordan angles between Q and γ (t) are θ1
L t, . . . , θm

L t, while the Jordan

angles between γ (t) and P1 are θ1
L (L − t), . . . , θm

L (L − t). Hence

v(Q, γ (t)) =
∏
α

sec

(
θα

L
t

)
,

v(γ (t), P1) =
∏
α

sec

(
θα

L
(L − t)

)
.

Since t → ∏
α sec

(
θα
L (L − t)

)
is a strictly decreasing function, there exists a unique t0 ∈

[0, L), such that
∏
α sec

(
θα
L (L − t0)

)
= c.Now we choose P2 = γ (t0), then v(P2, P1) = c

and

b − v(Q, P2) = b −
∏
α

sec

(
θα

L
t0

)
. (5.4)
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It remains to show b − ∏α sec
(
θα
L t0
)

is bounded from below by a universal positive

constant ε2. Once this holds true, in conjunction with (5.3) and (5.4),

ε1 = min{√2(1 + a−1)−
1
2 − 1, ε2} (5.5)

is the required constant.
t0 can be regarded as a smooth function on

�=
{
(b, θ1, . . . , θm)∈R

m+1,
√

2(1 + a−1)−
1
2 ≤b≤β0, 0≤θα≤ π

2
, c≤

∏
α

sec(θα)≤b

}

which is the unique one satisfying∏
α

sec

(
θα

L
(L − t0)

)
= c.

(By (5.2), c can be viewed as a function of b.) The smoothness of t0 follows from the implicit
function theorem. Therefore F : � → R

(θ1, . . . , θm) → b −
∏
α

sec

(
θα

L
t0

)

is a smooth function on �. t0 < L implies F > 0; then the compactness of � gives
inf� F > 0, and ε2 = inf� F is the required constant. ��
Remark 5.1 ε1 is only depending on a and β0, non-decreasingly during the iteration process
in Theorem 6.1.

Theorem 5.1 Let M = {(x, f (x)) : x ∈ DR0 ⊂ R
n
}

be a graph with parallel mean curva-
ture, and� f ≤ β0 withβ0 ∈ [1, 3).Assume there exists P0 ∈ Gn,m, such that v(·, P0)◦γ ≤ b

on M with 1 ≤ b ≤ β0. If b <
√

6
2 , then for arbitrary ε > 0, one can find a constant δ ∈ (0, 1)

depending only on n, β0 and ε such that

1 ≤ v(·, P1) ◦ γ ≤ 1 + ε on BδR0 (5.6)

for a point P1 ∈ Gn,m . If b ≥
√

6
2 , then there are two constants δ0 ∈ (0, 1) and ε1 > 0, only

depending on n and β0, such that

1 ≤ v(·, P1) ◦ γ ≤ b − ε1

2
on Bδ0 R0 (5.7)

for a point P1 ∈ Gn,m .

Proof Let H be a smooth function on Gn,m, then h = H ◦ γ gives a smooth function on M.
Let η be a nonnegative smooth function on M with compact support and ϕ be a H1,2-function
on M, then by Stokes’ Theorem,

0 =
∫
M

div(ϕη∇h) ∗ 1

=
∫
M

ϕ∇η · ∇h ∗ 1 +
∫
M

η∇ϕ · ∇h ∗ 1 +
∫
M

ϕη�h ∗ 1

=
∫
M

ϕ∇η · ∇h ∗ 1 +
∫
M

∇ϕ · ∇(ηh) ∗ 1 −
∫
M

h∇ϕ · ∇η ∗ 1 +
∫
M

ϕη�h ∗ 1.
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Hence∫
M

∇ϕ · ∇(ηh) ∗ 1 = −
∫
M

ϕ∇η · ∇h ∗ 1 +
∫
M

h∇ϕ · ∇η ∗ 1 −
∫
M

ϕη�h ∗ 1. (5.8)

For arbitrary R ≤ R0,we take a cut-off function η supported in the interior of BR, 0 ≤ η ≤ 1,
η ≡ 1 on B R

2
and |∇η| ≤ c0 R−1. For every ρ ≤ R

8 , denote by Gρ the mollified Green func-

tion on BR . For arbitrary p ∈ B R
4
, inserting ϕ = Gρ(·, p) into (5.8) gives∫

BR

∇Gρ(·, p) · ∇(ηh) ∗ 1

= −
∫
BR

Gρ(·, p)∇η · ∇h ∗ 1 +
∫
BR

h∇Gρ(·, p) · ∇η ∗ 1 −
∫
BR

Gρ(·, p)η�h ∗ 1.

(5.9)

We write (5.9) as

Iρ = I Iρ + I I Iρ + I Vρ.

By the definition of mollified Green functions,

Iρ = −
∫

Bρ(p)

ηh = −
∫

Bρ(p)

h. (5.10)

Hence

lim
ρ→0+ Iρ = h(p). (5.11)

Noting that |dγ |2 = |B|2, we have |∇h| ≤ |∇G H ||dγ | = |∇G H ||B|. Here and in the
sequel, ∇G denotes the Levi-Civita connection on Gn,m . In conjunction with (4.11), we have

|I Iρ | ≤
∫
TR

Gρ(·, p)|∇η||∇h| ∗ 1

≤ sup
TR

Gρ(·, p) sup
TR

|∇η| sup
V

|∇G H |
∫
BR

|B| ∗ 1

≤ C(n)R1−n sup
V

|∇G H |
⎛
⎜⎝∫

BR

|B|2 ∗ 1

⎞
⎟⎠

1
2

Vol(BR)
1
2

≤ c1(n) sup
V

|∇G H |
⎛
⎜⎝R2−n

∫
BR

|B|2 ∗ 1

⎞
⎟⎠

1
2

. (5.12)

Here TR
def.= BR\B̄ R

2
and

V = {P ∈ Gn,m : v(P, P0) ≤ 3},
which is a compact subset of U.
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As shown in Sect. 2, there is a one-to-one correspondence between the points in U and the
n × m-matrices. And each n × m-matrix can be viewed as a corresponding vector in R

nm .

Define T : U → R
nm

Z →
(

det(I + Z Z T )
1
2 − 1

) Z(
tr(Z Z T )

) 1
2

Note that
(
tr(Z Z T )

) 1
2 = (

∑
i,α Z2

iα)
1
2 equals |Z | when Z is treated as a vector in R

nm . Since

t ∈ [0,+∞) → [
det
(
I + (t Z)(t Z)T

)] 1
2 is a strictly increasing function and maps [0,+∞)

onto [1,+∞), T is a diffeomorphism. By (2.6), |T (Z)| = v(P, P0) − 1. Via T, we can
define the mean value of γ on BR by

γ̄R = T −1

[∫
BR
(T ◦ γ ) ∗ 1

Vol(BR)

]
. (5.13)

Note that T maps sublevel sets of v(·, P0) onto Euclidean balls centered at the origin. Hence
the convexity of Euclidean balls gives

v(γ̄R, P0) ≤ sup
BR

v(·, P0) ◦ γ ≤ b. (5.14)

The compactness of V ensures the existence of positive constants K1 and K2, such that for
arbitrary X ∈ T V,

K1|X | ≤ |T∗ X | ≤ K2|X |.
The classical Neumann–Poincaré inequality says∫

DR

|φ − φ̄|2 ≤ C(n)R2
∫

DR

|Dφ|2.

As shown above, BR can be regarded as DR equipped with the metric g = gi j dxi dx j , and
the eigenvalues of (gi j ) are bounded. Hence it is easy to get∫

BR

|φ − φ̄|2 ∗ 1 ≤ C(n)R2
∫
BR

|∇φ|2 ∗ 1.

Here φ can be a vector-valued function.
Denote by dG the distance function on Gn,m .Then, by using the above Neumann–Poincaré

inequality we have ∫
BR

d2
G(γ, γ̄R) ∗ 1 ≤ K −2

1

∫
BR

|T ◦ γ − T (γ̄R)|2 ∗ 1

≤ C(n)K −2
1 R2

∫
BR

|d(T ◦ γ )|2 ∗ 1

≤ C(n)K −2
1 K 2

2 R2
∫
BR

|dγ |2 ∗ 1

= C(n)K −2
1 K 2

2 R2
∫
BR

|B|2 ∗ 1. (5.15)
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Now we write

h = H ◦ γ = H(γ̄R)+ (H ◦ γ − H(γ̄R)) ,

then

I I Iρ = H(γ̄R)

∫
BR

∇Gρ(·, p) · ∇η ∗ 1 +
∫
TR

(H ◦ γ − H(γ̄R))∇Gρ(·, p) · ∇η ∗ 1.

(5.16)

Similar to (5.10),

lim
ρ→0+ H(γ̄R)

∫
BR

∇Gρ(·, p) · ∇η ∗ 1 = lim
ρ→0+ H(γ̄R)−

∫
Bρ(p)

η = H(γ̄R). (5.17)

The second term can be controlled by∫
TR

(H ◦ γ − H(γ̄R))∇Gρ(·, p) · ∇η ∗ 1

≤ sup
V

|∇G H | sup
TR

|∇η|
∫
TR

dG(γ, γ̄R)|∇Gρ(·, p)| ∗ 1

≤ c0 R−1 sup
V

|∇G H |
⎛
⎜⎝∫

BR

d2
G(γ, γ̄R)

⎞
⎟⎠

1
2
⎛
⎜⎝∫

TR

|∇Gρ(·, p)|2 ∗ 1

⎞
⎟⎠

1
2

(5.18)

Substituting (4.12) and (5.15) into (5.18) yields

∫
TR

(H ◦ γ − H(γ̄R))∇Gρ(·, p) · ∇η ∗ 1 ≤ c2(n) sup
V

|∇G H |
⎛
⎜⎝R2−n

∫
BR

|B|2 ∗ 1

⎞
⎟⎠

1
2

.

(5.19)

From (5.9), (5.11), (5.12), (5.16), (5.17) and (5.19), letting ρ → 0 we arrive at

h(p) ≤ H(γ̄R)+ c3(n) sup
V

|∇G H |
⎛
⎜⎝R2−n

∫
BR

|B|2 ∗ 1

⎞
⎟⎠

1
2

− lim sup
ρ→0+

∫
BR

Gρ(·, p)η�h ∗ 1. (5.20)

for every p ∈ B R
4
.

The compactness of Gn,m implies the existence of a positive constant K3, such that∣∣∣∇Gv(·, P)
∣∣∣ ≤ K3 whenever 1 ≤ v(·, P) ≤ 3 (5.21)
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for arbitrary P ∈ Gn,m . Hence by inserting H = v(·, P) into (5.20) one can obtain

v(γ (p), P) ≤ v(γ̄R, P)+ c3 K3

⎛
⎜⎝R2−n

∫
BR

|B|2 ∗ 1

⎞
⎟⎠

1
2

− lim sup
ρ→0+

∫
BR

Gρ(·, p)η� (v(·, P) ◦ γ ) ∗ 1. (5.22)

By Lemma 5.1, if we put P1 = γ̄R, then 1 ≤ v(·, P1) ≤ 3 whenever 1 ≤ v(·, P0)) ≤ b

provided that b <
√

6
2 , which implies v(·, γ̄R) ◦ γ is a subharmonic function on BR . Letting

P = γ̄R in (5.22) yields

v(γ (p), γ̄R) ≤ 1 + c3 K3

⎛
⎜⎝R2−n

∫
BR

|B|2 ∗ 1

⎞
⎟⎠

1
2

(5.23)

for all p ∈ B R
4
. By Theorem 4.1, for every ε > 0, there is δ ∈ (0, 1), depending only on

n, β0 and ε, such that

R2−n
∫
BR

|B|2 ∗ 1 ≤ c−2
3 K −2

3 ε2 (5.24)

for some R ∈ [4δR0, R0]. Substituting (5.24) into (5.23) gives (5.6).

If b ≥
√

6
2 , we put ε1 = ε1(3, β0) as given in Lemma 5.1. Then Theorem 4.1 enables us

to find R ∈ [4δ0 R0, R0] such that

R2−n
∫
BR

|B|2 ∗ 1 ≤ 1

4
c−2

3 K −2
3 ε2

1, (5.25)

where δ0 only depends on n and β0. Applying Lemma 5.1, one can find P1 ∈ Gn,m, such
that

v(γ̄R, P1) ≤ b − ε1 (5.26)

and 1 ≤ v(·, P1) ≤ 3 whenever 1 ≤ v(·, P0) ≤ b. Theorem 3.1 ensures that v(·, P1) ◦ γ is a
subharmonic function on BR . Taking P = P1 in (5.22) yields

v (γ (p), P1) ≤ v(γ̄R, P1)+ c3 K3

(
1

4
c−2

3 K −1
3 ε2

1

) 1
2 ≤ b − ε1

2
(5.27)

for all p ∈ B R
4
. Here we have used (5.25) and (5.26). From the above inequality (5.7)

immediately follows. ��

6 Bernstein type results

Now we can start an iteration as in [10] and [9] to get the following estimates:
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Theorem 6.1 Let M = {(x, f (x)) : x ∈ DR0 ⊂ R
n
}

be a graph with parallel mean curva-
ture, and � f ≤ β0 with β0 ∈ [1, 3), then for arbitrary ε > 0, there exists δ ∈ (0, 1), only
depending on n, β0 and ε, not depending on f and R0, such that

1 ≤ v(·, γ (o)) ◦ γ ≤ 1 + ε on BδR0 ,

where o = (0, f (0)). In particular, if |D f |(0) = 0, then

� f ≤ 1 + ε on DδR0 .

Proof Let {ε1, . . . , εn+m} be canonical orthonormal basis of R
n+m and put P0 = ε1∧· · ·∧εn .

Then � f ≤ β0 implies v(·, P0) ≤ β0 on BR0 . If β0 <
√

6
2 , we put Q0 = P0. Otherwise by

Theorem 5.1, one can find P1 ∈ Gn,m, such that

v(·, P1) ◦ γ ≤ β0 − ε1 on Bδ0 R0 (6.1)

with constants δ0 and ε1 depending only on n and β0. Similarly for each j ≥ 1, if β0 − jε1 <√
6

2 , then we put Q0 = Pj ; otherwise Theorem 5.1 enables us to find Pj+1 ∈ Gn,m satisfying

v(·, Pj+1) ◦ γ ≤ β0 − ( j + 1)ε1 on B
δ

j+1
0 R0

. (6.2)

Denoting

k =
[(

3 −
√

6

2

)
ε−1

1

]
+ 1,

then obviously β0 − kε1 <
√

6
2 . Hence there exists Q0 ∈ Gn,m, such that

v(·, Q0) ◦ γ ≤ b <

√
6

2
on Bδk

0 R0
. (6.3)

Again using Theorem 5.1, for arbitrary ε > 0, there exists δ1 ∈ (0, 1), depending only on
n, β0 and ε, such that

v(·, Q1) ◦ γ ≤ √
2(1 + (1 + ε)−1)−

1
2 on Bδ1δ

k
0 R0

(6.4)

for a point Q1 ∈ Gn,m . With r(·, ·) as in the proof of Lemma 5.1, then

r(·, Q1) ◦ γ = arccos v(·, Q1)
−1 ◦ γ ≤ 1

2
arccos(1 + ε)−1.

Using the triangle inequality we get

r(·, γ (0)) ◦ γ ≤ r(·, Q1) ◦ γ + r(γ (0), Q1) ◦ γ ≤ arccos(1 + ε)−1.

Thus v(·, γ (0)) ◦ γ ≤ 1 + ε on Bδ1δ
k
0 R0
. It is sufficient to put δ = δ1δ

k
0 . ��

Letting R0 → +∞ we can arrive at a Bernstein-type theorem:

Theorem 6.2 Let zα = f α(x1, . . . , xn), α = 1, . . . ,m, be smooth functions defined every-
where in R

n (n ≥ 3,m ≥ 2). Suppose their graph M = (x, f (x)) is a submanifold with
parallel mean curvature in R

n+m . Suppose that there exists a number β0 < 3 with

� f =
[

det

(
δi j +

∑
α

∂ f α

∂xi

∂ f α

∂x j

)] 1
2

≤ β0. (6.5)

Then f 1, . . . , f m has to be affine linear (representing an affine n-plane).
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Final remarks
For any P0 ∈ Gn,m, denote by r the distance function from P0 in Gn,m . The eigenvalues

of Hess(r) were computed in [12]. Then define

BJ X (P0) =
{

P ∈ Gn,m : sum of any two Jordan angles between P and P0 <
π

2

}
in the geodesic polar coordinate neighborhood around P0 on the Grassmann manifold. From
(3.2), (3.7) and (3.9) in [12] it turns out that Hess(r) > 0 on BJ X (P0). Moreover, let
� ⊂ BJ X (P0) be a closed subset, then θα + θβ ≤ β0 <

π
2 and

Hess(r) ≥ cot β0 g,

where g is the metric tensor on Gn,m . Hence, the composition of the distance function with
the Gauss map is a strongly subharmonic function on M, provided the Gauss image of the
submanifold M with parallel mean curvature in R

n+m is contained in�.The largest sub-level
set of v(·, P0) in BJ X (P0) were studied in [12]. The Theorem 3.2 in [12] shows that

max{w(P, P0); P ∈ ∂BJ X (P0)} = 1

2
.

Therefore,

{P ∈ Gn,m, v(·, P0) < 2} ⊂ BJ X (P0),

and

{P ∈ Gn,m; v(·, P0) ≤ 2}
⋂

BJ X (P0) �= ∅.
On the other hand, we can compute directly. From (2.7) we also have

Hess(v(·, P0)) =
∑

m+1≤i≤n,α

v ω2
iα +

∑
α

(
1 + 2λ2

α

)
v ω2

αα +
∑
α �=β

λαλβv ωαα ⊗ ωββ

+
∑
α<β

⎡
⎣(1 + λαλβ)v

(√
2

2
(ωαβ + ωβα)

)2

+(1 − λαλβ)v

(√
2

2
(ωαβ − ωβα)

)2
⎤
⎦.

It follows that v(·, P0) is strictly convex on BJ X (P0).Moreover, if θα + θβ ≤ β0 <
π
2 , then

Hess(v(·, P0)) ≥ (1 − tan θα tan θβ)v g = cos(θα + θβ)

cos θα cos θβ
v g ≥ cosβ0v g

where g is the metric tensor of Gn,m and

�v(γ (·), P0) ≥ cosβ0v|B|2 ≥ cosβ0|B|2.
Now, we define

�(P0) = BJ X (P0)
⋃

{P ∈ Gn,m; v(·, P0) < 3} ⊂ Gn,m .

The function v(·, P0) is not convex on whole �(P0). But, its composition with Gauss map
could be a strongly subharmonic function on M.

Therefore, we could obtain a more general result: Let M be a complete submanifold in
R

n+m with parallel mean curvature. If its image under the Gauss map is contained in a closed
subset of �(P0) for some P0 ∈ Gn,m, then M has to be an affine linear subspace.
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