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Abstract
The fashion industry’s traditional price-setting methods, based on historical sales and Fashion Week trends, are inadequate

in the digital era. Rapid changes in collections and consumer preferences necessitate advanced Artificial Intelligence (AI)

techniques. These AI methods should analyze data from various sources, including social media and e-commerce, to

predict future fashion trends and prices. In this paper, we propose, apply, and assess a data analytics approach, i.e.,

FashionXpert, employing several image processing and machine learning techniques in an AI pipeline for garment price

prediction. It integrates various heterogeneous data sources (e.g., textual and image data from e-stores, brand websites, and

social media) to obtain more consistent, accurate, and beneficial information. We evaluated its effectiveness with an

industrial data set obtained by a fashion search tool from the electronic commerce sites of clothing brands. FashionXpert

predicted garment prices with an average Mean Absolute Error (MAE) of 15.31 EUR on a data set that has a standard

deviation of 72.99 EUR.

Keywords Image segmentation � Multi-label classification � Price regression

1 Introduction

The fashion industry is known to be enormously fast-

moving and short-lived. There are persistent threats, even

for well-established brands, such as little brand loyalty due

to high market fragmentation, high cost of handling online

returns, as high as 50%, and an ever-increasing number of

fashion seasons. Some fashion businesses produce up to 52

micro-seasons1 every year. Some manufacturers and

retailers in the fashion industry already use automated

solutions that collect and analyze data from social media

and e-stores to generate statistical reports about trends and

prices, e.g., follow.fashion [1] and Edited [2]. However, the

statistical postmortem information is insufficient for fash-

ion industry players to keep up in today’s fast-paced

fashion world. Therefore, the industry is moving toward

using Artificial Intelligence (AI) to learn from the collected

data and predict fashion trends and prices.

Fashion data are often images from various sources, e.g.,

e-stores, brand websites, Facebook, and Instagram. These

data are usually, to some extent, enriched by metadata such
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as color, garment category, brand, size, location and date.

Examples of publicly available data sets are the

DeepFashion database [3] and iMaterialist.2 Extracting as

much information as possible from fashion images is cru-

cial to building Machine Learning (ML) models able to

learn and predict trends and prices. Our objective is to

develop, integrate, and leverage image processing and ML

techniques to provide the online fashion industry, not only

purely statistical information about online fashion products

(e.g., the number of items sold online), but also predictions

about online consumer behavior such as emerging items,

fabrics, and colors among consumers. Those predictions

will enable the fashion industry to optimize production

lines and supply chains and align pricing strategies.

In this paper, we propose, apply, and assess a data

analytics approach, i.e., FashionXpert, employing several

image processing and ML techniques in an AI pipeline for

price prediction for the fashion industry (see Fig. 1). The

proposed approach integrates multiple heterogeneous data

sources (e.g., textual and image data from e-stores, brand

websites, and social media) to produce more consistent,

accurate, and beneficial information. Textual data (e.g.,

product descriptions or customer comments on social

media) do not provide enough information for price pre-

diction. It needs to be augmented with data extracted

through image processing, such as colors, garment cate-

gory, fabric types, and cutting complexity. Therefore, we

employ advanced, state-of-the-art computer vision models

(i.e., Mask-RCNN [4], ResNet [5], and U-Net [6]) to

extract additional and missing information from the col-

lected images. FashionXpert first segments the image to

localize individual garments. It analyzes each garment

using ML models and image processing to extract addi-

tional information. FashionXpert then combines the col-

lected metadata with the data extracted from the images to

train ML models for price prediction.

There are several challenges and limitations we face in

FashionXpert. They are mostly related to image processing

tasks. The first one is about obtaining data. Some ML

models FashionXpert employs require a fashion image data

set labeled with ground truth masks and bounding boxes

for garment detection and segmentation. It is costly and

laborious to produce such training data sets. FashionXpert

’s performance depends on the generation of labeled ima-

ges. We use data augmentation techniques, i.e., horizontal

flipping and random rotation (�20�) of labeled images, to

address this limitation (see Fig. 13). The second major

challenge concerns the garment classification problem. As

presented in the following sections, we have defined sixty-

six categories among which garments should be classified.

The differences among these categories can be quite subtle

and hard for the ML models to differentiate (see Fig. 14).

Therefore, we split the classification problem into two

subproblems (superclass and subclass identification) and

define a superclass-subclass tree.

Another challenge is the segmentation of human skin to

avoid propagating skin pixels through the pipeline, which

is critical for the color extraction part. We employ a pre-

trained skin segmentation model [6] to remove skin pixels

after garment mask generation. Finally, the price prediction

model has to deal with different target price distributions

depending on the garment type (superclass). In addition,

the most significant brands and countries vary between

superclasses. To address this challenge, we build one price

prediction model per each superclass and assign each

superclass the set of relevant brands and countries we

consider. The models are robust against outliers and

missing data in order to ensure that the output follows the

price distribution of each superclass.

We have evaluated FashionXpert on an industrial data

set. Although not ideal, we consider the performance of

Mask-RCNN effective with reliable results for superclass

prediction. The total F1-score for superclass prediction is

67%, and the IoU-score for mask extraction is 81%.

FashionXpert performed remarkably well in predicting

subclasses (45% on average), taking into account the

complexity of the problem to solve (see Fig. 14). The only

prediction having accuracy under 40% is for the subclasses

of the superclass dress due to its several subclasses

(nineteen subclasses). The average (among all super-

classes) Mean Absolute Error (MAE) of the price predic-

tion model is 15.31 EUR, which is relatively a good result

when considering the standard deviation of the price dis-

tribution in our data set (i.e., 72.99 EUR). Our main con-

tributions are as follows.

• Development of a novel AI pipeline for garment price

projection, integrating advanced computer vision tech-

niques with market trend analysis. This pipeline not

only predicts prices based on visual attributes of

garments but also incorporates dynamic market data,

setting it apart from existing methodologies.

• Introduction of a comprehensive data set that combines

visual features with temporal market trends, enabling a

more nuanced understanding of fashion pricing dynam-

ics. This data set serves as a foundation for both training

our AI model and facilitating future research in the

field.

The rest of the paper is structured as follows: In Sect. 2, we

present the background and related work. Section 3

describes the overview of FashionXpert. Sections 4 and 5

provide the core technical solutions. In Sect. 6, we report

on the results of the empirical validation. We conclude the

paper in Sect. 7.2 https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/rules.
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2 Related work

We review the literature on image processing (Sect. 2.1),

price prediction (Sect. 2.2), and the application of AI to the

fashion industry (Sect. 2.3).

2.1 Image processing

Our pipeline extracts fashion attributes (e.g., garment type,

color, design complexity) from fashion images to build an

efficient and robust price prediction model. These attributes

constitute a natural vocabulary to describe styles in cloth-

ing and apparel. Chen et al. [7] introduce a new fashion

data set from New York Fashion Show and follow a

learning-based approach that adapts Support Vector

Machines (SVM) to extract the fashion attributes from

images. They apply pose estimation to retrieve the body

region of the fashion model (i.e., part of the human wearing

the garments in the image). Instead, we get the fashion

attributes from an image processing pipeline composed of

several computer vision models without any previous clue

about the position or pose of the fashion model. Chen et al.

aim to produce a data set, while our goal is to predict the

price of the garments.

Yamaguchi et al. [8] propose one of the first computer

vision approaches for the fashion domain [9]. They intro-

duce a new parsing method to predict a person’s outfit from

both the image and garment tags using a Conditional

Random Field (CRF) model. Earlier, Borràs et al. [10]

develop a content-based image segmentation and inter-

pretation method, describing garments using their color,

texture, and structural compositions. The main difference

between these two works above and our work is that they

need to perform human pose prediction first, which is not

ideal due to the inconsistent targets between pose estima-

tion and garment detection [9].

Liang et al. [11] propose an approach similar to ours.

They use deep Convolutional Neural Networks (CNN),

decompose human images into semantic fashion/body

regions, and formulate the human parsing task as an Active

Template Regression (ATR) problem. They use two dif-

ferent CNNs in parallel to retrieve the mask of the regions.

In contrast, we use Mask-RCNN for this task. We also

extend their work by retrieving color and design com-

plexity, apart from performing garment price prediction.

Another example of using CNNs in the fashion domain is

Fig. 1 The AI Pipeline of FashionXpert. It is composed by two main

modules: image processing pipeline (IPP) and price prediction model

(PPM). The IPP (Fig. 2) takes an image of the garment and retrieves

visual fashion attributes: category (superclass and subclass), color,

design complexity. We combine these attributes with metadata that

influences the price (brand, country, month, size) and we input all

these features in the PPM, that uses both a GMM (Gaussian Mixture

Model) and RF (Random Forest), and outputs the predicted price
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Where To Buy It, the application developed by Kiapour

et al. [12]. The application extracts fashion attributes

(garment category, color, pattern, and material) from street

fashion images to query shop websites for similar gar-

ments. Although our goal is to predict future garment

prices, our feature extraction problem is similar. The main

limitation of the Where To Buy It application is that it

requires the user to specify the location of the garment

inside the image, while we do not.

Some other recent works [13, 14] use CNNs too. They

exploit the latest advancements in ML by training a deep

neural network for the feature extraction part. More

specifically, they adopt ResNet [5] and AlexNet [15] for

the problem of fashion attribute extraction. For instance,

Al-Halah et al. [14] learn the fashion attributes (e.g., color,

fabric, shape, texture) using AlexNet-like architecture [15]

and augment them by employing a smoothing model using

text data to discover fashion styles. Jin et al. [13] extract

the fashion attributes in the fashion images by using a CNN

[15] trained on DeepFashion [3] data set. In contrast,

instead of adopting ResNet or AlexNet, we build our

pipeline based on Mask-RCNN and add additional models

on top of Mask-RCNN. We use ResNet to extract the

garment type but combine it with other models (e.g.,

U-Net, K-means, local entropy) to extract other attributes

(RGB colors and design complexity).

Jia et al. [16] introduce Fashionpedia, where they adopt

Mask-RCNN to perform garment attribute extraction on

top of garment detection and classification. Our image

processing pipeline is similar to Fashionpedia. However,

we employ a skin segmentation module using U-Net [6], a

layer of ResNet-18 [5] models for better garment classifi-

cation, color extraction, and design complexity estimation.

There are some approaches addressing skin segmenta-

tion in the literature. Sreekumar et al. [17] propose a

technique using U-Net architectures for hand segmentation

for the first time. Also, Xie et al. [18] use a U-Net-based

method successfully to segment faces, necks, and shoulders

in images. Our pipeline similarly uses a U-Net architecture

to remove faces, hands, legs, and other skin elements that

can potentially introduce noisy pixels in garment masks. As

for color extraction, Pavan Kumar et al. [19] probe the

suitability of the K-means clustering algorithm [20] for

unsupervised color extraction. We use U-Net and K-means

for the same purpose these works do but in a different

domain. The two works of Xie et al. and Pavan Kumar

et al. provided proof of the suitability of U-Net and

K-means for two tasks (i.e., skin segmentation and color

extraction, respectively) in our work.

The main difference between our work and the existing

works mentioned above is that we introduce a novel, full-

fledged AI pipeline using Mask-RCNN followed by U-Net

as the core model with three branches (i.e., K-means,

ResNet-18, and local entropy) that extract fashion attri-

butes (e.g., garment type, colors, design complexity).

FashionXpert predicts not only the garment superclass

(e.g., top, dress, bottom) but also the subclass (e.g., evening

dress, blouse top, wrapped, polo). Instead of using labeled

data to predict the fabric or pattern, we measure the design

complexity of garments by using local entropy. Also,

similar to Pavan Kumar et al. [19], we extract the color in

an unsupervised way, i.e., with K-means clustering, with-

out requiring labeled data. Getting the design complexity

and color using unsupervised methods is crucial due to the

cost of data sets.

Our image processing framework incorporates cutting-

edge computer vision techniques available until 2022,

exploring novel methodologies, particularly for garment

detection. Innovations such as visual transformers [21] and

masked autoencoders for self-supervised learning [22],

culminating in comprehensive models like Meta’s Segment

Anything Model [23], herald new avenues for enhancing

image segmentation. While our methodology primarily

employs supervised learning and CNNs for garment

detection, the advent of Transformer models presents

exciting prospects for advancing object detection capabil-

ities [24, 25], reflecting a significant shift toward experi-

mental approaches in garment detection leveraging the

latest AI advancements.

2.2 Price prediction

Some existing approaches [26–28] employ the time-series

modeling of historical price data and Recurrent Neural

Networks (RNN) (or its variant called Long-short term

memory (LSTM) [29] networks) to predict the future price

of a fashion item. For instance, Kedia et al. [26] leverage

machine learning to find the optimal price point for prod-

ucts in fashion e-commerce platforms. To this end, they

generate price-demand pairs using the concept of price

elasticity, i.e., as the price increases, the demand goes

down and vice versa. They employ an ensemble of multiple

regressors (LSTM, ARIMA, Random Forest, and

XGBoost) to build a demand prediction model that predicts

the demand for a particular product for the next day based

on its current price (discounted).

FashionXpert relies on computer vision and metadata

rather than time-series modeling. Even though the works

mentioned above achieve good performance in price pre-

diction, their architecture complexity is mostly high as they

follow time series forecasting, i.e., predicting the future

value by observing the historical ones, modeled using
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LSTMs. On the contrary, FashionXpert provides a novel

combination of multiple computer vision tasks for fashion

attribute prediction (e.g., color, category, design com-

plexity) and other metadata (e.g., country, brand) to

achieve price prediction. More specifically, we learn

fashion attributes on a pixel level using Mask-RCNN [4]

and other models on top of it, which helps extract the mask

of the fashion item along with its classification and local-

ization in the image. We propose using Gaussian Mixture-

based regression to effectively map the metadata to the

learned fashion attributes.

Advancements in AI and ML have significantly impac-

ted price prediction research not only in the fashion domain

but also in other domains like stock trading. Ferreira et al.

[30] systematically reviewed AI in stock market trading,

covering various models and their performance. Fash-

ionXpert distinguishes itself from those models by apply-

ing AI to the fashion industry, proposing a novel use case

of AI for garment price prediction based on design com-

plexity and visual features. Warner et al. [31] explored

hybrid genetic algorithms and BERT for stock market

prediction, highlighting AI’s potential in financial fore-

casting. While this study emphasizes the integration of

textual analysis and historical data, FashionXpert focuses

on visual attributes of garments for price prediction, indi-

cating a domain-specific application of AI in understanding

fashion items’ value.

Mohanty et al. [32] proposed a hybrid model combining

autoencoders and kernel extreme learning machines for

financial market prediction. This research underlines the

efficacy of deep learning in capturing complex market

dynamics. Similarly, FashionXpert leverages deep learn-

ing, particularly CNNs, for feature extraction from fashion

images, showcasing the adaptability of deep learning

techniques across different contexts. Mokhtari et al. [33]

discussed machine learning algorithms’ role in stock mar-

ket predictions, focusing on technical and fundamental

analysis approaches. In contrast, FashionXpert applies AI

to decode visual fashion attributes, illustrating the diverse

applicability of AI across sectors.

2.3 AI in the Fashion Industry

The fusion of AI with the fashion industry has seen

remarkable growth, introducing innovative solutions for

design creation, sustainability, and customer experience

optimization [34–38]. For instance, Ciklacandir et al. [34]

employed several feature extraction methods, including

Discrete Cosine Transform, Principal Component Analysis,

Gray Level Co-occurrence Matrix, and deep learning

architectures like ResNet18 and GoogLeNet, for fabric

defect detection. The extracted features were classified

using K-Nearest Neighbor, Support Vector Machine, and

Decision Tree classifiers to enhance defect detection in

textiles. This contrasts with FashionXpert, which applies

AI for garment price prediction, analyzing visual attributes

through computer vision. While the former addresses

quality control in textile manufacturing by identifying

defects, FashionXpert leverages AI to understand market-

driven aspects of fashion, such as pricing strategies based

on garment features. Zhong et al. [35] introduced a data set

(TextileNet) for ML models for textile material classifi-

cation to support sustainable fashion initiatives, featuring

over 760,949 images classified into detailed fiber and fabric

categories. While TextileNet focuses on material identifi-

cation crucial for sustainability, FashionXpert applies AI to

determine garment prices, reflecting the diverse applica-

tions of AI in enhancing both sustainable practices and

commercial strategies within the fashion industry.

FashionXpert distinguishes itself by specifically lever-

aging AI for garment price prediction, a niche yet critical

aspect of the fashion industry’s economic landscape. While

the reviewed works demonstrate AI’s expansive role in

enhancing creativity, sustainability, and operational effi-

ciency, FashionXpert uniquely applies AI to decode the

complexities of fashion pricing, offering innovative and

commercially valuable insights.

3 Overview of the approach

Figure 1 presents an overview of FashionXpert which has

two parts: (i) the image processing pipeline and (ii) the

price prediction model. These two parts are fully auto-

mated. Sections 4 and 5 provide their details. The image

processing pipeline contains all the computer vision mod-

els that extract relevant features required for price predic-

tion from the images (see Fig. 2). We propose using Mask-

RCNN to perform garment segmentation and classification.

We employ a U-Net architecture model to retrieve the skin

from the images. To provide a detailed garment classifi-

cation, we use ResNet-18. We also propose K-means

clustering to get the primary colors of the garment, while

we get the design complexity using the local entropy of the

image.

Following the feature extraction through the image

processing pipeline, the price prediction model constitutes

the second critical component of FashionXpert. The model

integrates the extracted features, including garment seg-

mentation, skin detection, detailed classification, primary

colors, and design complexity, to forecast the garment’s

price. Utilizing a Gaussian Mixture Model (GMM) with a

Random Forest Model (RFM), the model is trained on a

data set comprising these features alongside historical price

data, allowing it to learn the intricate relationships between

a garment’s visual attributes and market value. By feeding
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the comprehensive feature set into the price prediction

model, FashionXpert achieves a nuanced understanding of

how different attributes contribute to pricing, facilitating

accurate and dynamic price predictions. The integration of

these components forms a cohesive and automated system,

detailed further in Sects. 4 and 5, designed to revolutionize

garment price prediction by leveraging the full potential of

AI and machine learning technologies.

4 Image processing pipeline

We propose using a combination of models (see Fig. 2) to

predict the taxonomy of the garments in the input image,

the principal colors of each garment as RBG, and its design

complexity. The pipeline includes (i) a Mask-RCNN we

use to have the initial garment classification and the mask

of the garments in the image, (ii) a U-Net performing skin

segmentation, (iii) a layer of ResNet-18 models to address

further the garment classification, and (iv) K-means clus-

tering for color extraction and local entropy to estimate the

design complexity. Figure 3 presents the image processing

pipeline step-by-step with an example.

4.1 Garment Taxonomy and Classification
Problem

We provide a garment taxonomy having nine superclasses

and sixty-six subclasses for FashionXpert. Given the low

number of samples on our data set (13,138), it is difficult to

train an ML model that distinguishes 66 categories with

enough accuracy. Therefore, we first train a model to solve

a 9-category classification. For each category, we train

another model to predict the subclasses. In other words, we

split the classification problem into two subproblems (su-

perclass and subclass identification) and define a super-

class-subclass tree, as shown on Fig. 4.

Each garment has a tuple of superclass-subclass that

should be predicted using the image. The taxonomy in

Fig. 3 provides what type of garment (e.g., dress, top) and

subclass (e.g., wrap dress, evening dress) we have in the

input image. The taxonomy structure is a tree-like graph of

depth ¼ 2. Nodes with depth ¼ 1 are superclasses (S), and

nodes with depth ¼ 2 are subclasses (T). Therefore, each

subclass is only connected to a single superclass, which

enables us to split the problem into two subproblems. First,

we segment the image by localizing garments and pre-

dicting superclass labels (sk 2 S). Second, we determine

subclasses to refine the labels (tkl 2 Tk).

Fig. 2 The image processing pipeline in FashionXpert. The core

model is Mask-RCNN that performs garment mask extraction and

superclass prediction, we also apply a skin segmentation network with

U-Net architecture. On top of it we build three branches: (1) color

extraction using K-means, (2) subclass prediction using a layer of

ResNet-18 models and (3) design complexity estimation using the

local entropy of the garment mask
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4.2 Mask extraction and superclass prediction

Before predicting the superclasses, we need to localize

garments in the image. More specifically, we identify the

image pixels that belong to a specific garment (i.e., its

mask). To do so, we use Mask-RCNN [4]. Mask-RCNN

performs object detection, segmentation, and classification

[4]. We propose using it for mask extraction and superclass

prediction, playing a central role in the application. Fig-

ure 2 illustrates the role of MASK-RCNN in our pipeline.

Mask-RCNN performs the following function:

F : IðoriginalÞ �! ðMðgarmentÞ; sk 2 S; p 2 ½0; 1�Þ ð1Þ

where IðoriginalÞ 2 ½0; 255�256�256�3
is the input resized

image, MðgarmentÞ 2 f0; 1g256�256
is the mask identifying

the pixels of a garment, S is the set of superclasses, and

p the normalized prediction confidence.

Next, we identify the garment image IðgarmentÞ 2
½0; 255�256�256�3

by computing the intersection between the

mask and the input image:

IðoriginalÞ �MðgarmentÞ ¼ IðgarmentÞ ð2Þ

Since Mask-RCNN mostly returns more than one predic-

tion for each image, we have to choose one. By default, we

select the prediction with the highest probability p. How-

ever, we allow FashionXpert users to choose among the

alternatives.

4.3 Skin segmentation

Once Mask-RCNN retrieves the mask, the pipeline

employs a U-Net model [6] to perform skin segmentation

(Fig. 2). The model weights have been transferred from an

external repository.3 without further training. The skin

segmentation is crucial to avoid propagating noisy skin

pixels to the later stages of our pipeline.

Fig. 3 Illustration of the image processing pipeline steps in Fig. 2 using an example image

3 https://github.com/MRE-Lab-UMD/abd-skin-segmentation.

Fig. 4 Taxonomy with superclasses and subclasses
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The U-Net model receives the image IðoriginalÞ and pro-

duces the skin mask MðskinÞ that we subtract from the

garment mask MðgarmentÞ to produce the final output mask

MðfinalÞ:

MðgarmentÞ �MðskinÞ ¼ MðfinalÞ ð3Þ

where MðskinÞ 2 f0; 1g256�256
is computed by the U-Net

model (U).

U : IðoriginalÞ �! MðskinÞ ð4Þ

We compute the intersection of IðoriginalÞ and MðfinalÞ 2
f0; 1g256�256

for the final segmentation image IðfinalÞ:

IðoriginalÞ �MðfinalÞ ¼ IðfinalÞ ð5Þ

4.4 Garment color extraction

We identify the garment colors in the image as they may

have a crucial impact on the product price. The image

processing pipeline in Fig. 2 employs the k-means clus-

tering algorithm [20] (K) to extract the colors in the final

image:

K : ðIðfinalÞ; kÞ �! C 2 ½0; 255�3�k ð6Þ

where the hyper-parameter k indicates the number of

clusters to produce and C is the set of positions in RGB

coordinates of the k clusters’ centroids. k is set to 5 by

default. FashionXpert users can change the default value

when using the application.

Every pixel is treated as a point in a three-dimensional

space defined by the RGB color representation components

(range of 0 to 255). We consider the primary colors as the

RGB coordinates of the centroids. The algorithmic com-

plexity of K-means is oðn2Þ [20], which is a potential

bottleneck for FashionXpert and may slow down its real-

time responsiveness. One way of significantly reducing the

execution time of K-means might be to decrease the input

image resolution. Therefore, we tried several image reso-

lutions and measured the execution time for each one.

Since there is no labeled data for garment colors, we

checked the correct performance of color extraction qual-

itatively. We observed that, beyond 88 � 88, the color

extraction stops being the bottleneck of the pipeline, and its

execution time is already comparable with the rest of the

stages of the pipeline. At this size, reducing image reso-

lution does not make a big difference in the accuracy of the

model but it leads to a significant reduction in execution

time. With images of 88 � 88 resolution, the clustering

algorithm encounters no substantial problems.

Once we have a set of RGB triplets as the output of

K-means, we assign each triplet a label using a Nearest

Neighbor approach (see Fig. 5). We define a set of prin-

cipal colors whose coordinates we know in the RGB space.

We then measure the Euclidean distance from the output

RGB triplet to each principal color in the RGB space. The

color label showing the closest distance is the label we

assign to our unlabeled triplet.

4.5 Subclass prediction

The pipeline employs a ResNet-18 model [5] to predict

subclasses (see Fig. 3). The input of this model is the

image IðfinalÞ computed after skin-pixel removal. The model

classifies IðfinalÞ among a set of categories Tk that corre-

sponds to the superclass sk. Subclass prediction (R) is done

exclusively by the ResNet-18 architecture:

R : IðfinalÞ �! tkl 2 Tk ð7Þ

The pipeline uses a different ResNet-18 model based on the

superclass sk obtained by Mask-RCNN. The architecture is

identical among all the superclasses, but the models are

trained specifically to classify the image among the sub-

classes corresponding to the given superclass.

4.6 Design complexity

In addition to garment type and color, the complexity of a

garment design may also impact its price under certain

circumstances. Thus, we devised a novel method in the

image processing pipeline to quantify the design com-

plexity of a garment using its image. The method uses the

local entropy measurements of the final garment image

Fig. 5 Color categorization by Nearest Neighbor. PC stands for

Principal Color, and NC stands for New Color
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IðfinalÞ. Considering only IðfinalÞ, we avoid noise from the

background and skin.

Local entropy is related to the complexity contained in a

given pixel neighborhood [39]. In our case, the local

entropy computation is a function S that takes an RGB

image J 2 ½0; 255�m�n�3
and gives another image

K 2 ðRþÞm�n
:

S : ðJ; rÞ �! K ð8Þ

The idea of the local entropy is to compute per-pixel

entropy using a sliding window that covers the pixel itself

and the surrounding pixels up to a certain radius. The

formula is just an adaptation of the Shanon entropy Eq. (9).

Each element i, j of K is the local entropy value of the

neighborhood of pixel i, j in the image J. The neighborhood

is defined under the disk radius r 2 N [39].

SðJrÞ ¼
Xr

i¼1

PðXiÞ log2 PðXiÞ ð9Þ

We compute the global entropy (or complexity) of a gar-

ment by averaging over all the pixels’ values of its local

entropy image (see Fig. 6 for an example design com-

plexity calculations).

5 Price prediction model

FashionXpert employs a hybrid approach for price pre-

diction, combining a Gaussian Mixture Model (GMM)

with a Random Forest Model (RFM) (refer to Fig. 7). The

image processing pipeline extracts features, including

superclasses, subclasses, primary RGB colors, and design

complexity, which are then combined with metadata such

as country, month, and brand to form a comprehensive

feature vector. Most of these features are categorical, with

the exception of design complexity and primary RGB

colors, which are represented numerically. The RFM uti-

lizes the numerical attributes (color and design complexity)

to generate a price estimate, which serves as a correction

factor for the price predicted by the GMM. The RFM’s

price estimation output, in conjunction with categorical

features (superclass, subclass, brand, month, and country),

is then fed into the GMM for the final price prediction (see

Sect. 5.1 for detailed information on the GMM).

Due to the preponderant impact of categorical variables

on price, and the prevalence of such predictors in our data

set, we have opted to utilize a Gaussian Mixture Model

(GMM). GMMs are inherently robust against outliers and

noise in the data. In our context, we define noise as data

samples automatically sourced from fashion websites

without accurately reflecting reality, e.g., some suits in the

data set have been labeled with a much lower price as the

web price only accounts for the bottom part. These errors

in data acquisition contribute to a highly noisy data set.

Additionally, a GMM can accommodate missing data when

no samples match all the combinations of categorical

variables. For instance, no data is available for Adidas

leggings in France, while price prediction for Adidas leg-

gings in France are expected from production data. After

experimenting with various architectures of Random Forest

and Neural Networks, we have discovered that data noise

significantly influences the accuracy of the predictions.

Despite the fact that the training procedure results in an

acceptable convergence of the loss function, the predictions

tend to deviate significantly from the actual price distri-

butions when provided with inputs that differ from those

utilized in the model’s training. However, by utilizing a

GMM, which possesses robustness, we can ensure that,

regardless of the combination of categorical variables that

we input, the predicted price will align with the observed

price distributions in the market.

We have designed the GMM algorithm to deal exclu-

sively with categorical variables. But we still have

numerical variables in the input feature vector. Since these

Fig. 6 Examples of design complexity calculations. We show both the segmented mask image (reshaped to original size) and the local entropy

image. The number c represents the design complexity of the garment. Higher value indicates higher design complexity

Fig. 7 Architecture of the price prediction approach
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variables have much less impact on the price than the

categorical ones, we have decided not to include them in

the GMM architecture. Then, we need another way to

decode its information. We have decided to process them

using a RFM. This model will decode the information of

the numerical variables and will output a price estimation

based on it. This estimation will be used later as an addi-

tional input for the GMM to perform the price predictions.

The details of this operations are explained in Sect. 5.1, but

essentially the resulting price is mixed with the mean prices

output by the GMM. The key in this process is converting

color and complexity information in price information that

can be used later in the algorithm without further

processing.

5.1 Gaussian mixture model

The categorical features, namely superclass, subclass,

country, brand, and month, undergo processing via a

Gaussian Mixture Model (GMM) approach. We develop a

unique GMM per superclass, with subclass, country, brand,

and month serving as inputs to this section of the Price

Prediction Model. These variables are utilized to partition

the total data set into Gaussian Slots (GS), which comprise

subsets of data possessing a specific combination of the

four input variables (see Fig. 8). Given a set of values for

these variables, the GMM output represents the mean price

of the GS defined by this particular set of values. For

instance, to determine the price of a Zara t-shirt in Ger-

many during March, we obtain the mean price of the gar-

ment offered in the data set with matching attributes (i.e., t-

shirt, Zara, Germany, and March). Up to this point, we

have a rudimentary implementation of the GMM, which

performs the following operation:

GMM : ðtkl; ci; bj;mhÞ �! meanðSÞ
with S ¼ Pðt ¼ tkljc ¼ cijb ¼ bjjm ¼ mhÞ

ð10Þ

where P is the total price data set, tkl is the subclass, ci is

the country, bj is the brand, mh is the month, and S is the

GS subset. The expression Pðc1j:::jcnÞ denotes the subset of

P that satisfies all the conditions c1; :::; cn. In terms of

logical operations, ðajbÞ would be (a AND b).

Ideally, the data set should contain sufficient sam-

ples for all possible combinations of input variables to

ensure that each Gaussian Slot (GS) has a representa-

tive number of samples. However, missing data is a

common issue that should be addressed. In such cases,

we infer the content of a GS from other higher-level

GSs that have enough samples. For instance, if there

are insufficient samples in a GS, (e.g. t-shirt, Zara,

Germany, March), we relax the matching conditions

and estimate the price of a t-shirt in Germany in

March, irrespective of the brand. Alternatively, we use

the mean price of Zara garments to improve the esti-

mation. To estimate the content of a GS, we rely on

two other GSs, namely GS1 (t-shirt, Germany, March)

and GS2 (Zara). If GS1 still lacks sufficient samples,

we split it until we obtain adequate samples for price

estimation. Our GMM uses this strategy to deal with

the absence of training data. However, each time we

split a GS, we introduce an error in the prediction

since we must infer a price distribution. Figure 9

shows all the prediction steps of our approach using a

GMM.

Algorithm 1 outlines the steps involved in the GMM-

based price prediction process of FashionXpert. To provide

a comprehensive understanding of the process, we will

delve into each step of the algorithm. The algorithm

requires various inputs, including the price data set (P) for

training, superclass (sk), subclass (tkl), country (ci), brand

(bj), month (mh), and an array of numerical features (v) -

the RGB components of the principal color and the design

complexity. First, we obtain subsets of the total price dis-

tribution (Lines 1–3). The price distribution is filtered for a

given superclass SðsÞ (Line 1), for superclass, subclass,

country, and brand SðstcbÞ (Line 2), and for superclass and

month SðsmÞ (Line 3). The process begins by defining two

Gaussian slots (refer to Fig. 9a). We calculate rm (Line 4),

which is the ratio of meanðSðsmÞÞ to meanðSðsÞÞ. This

coefficient rm represents the influence of the variable m ¼
mh on the price prediction. We also compute rtcb (Line 5)

and obtain pv (Line 6) by feeding v into the RFM. Finally,

we calculate rv (Line 7), which is the ratio of pv to

meanðSðsÞÞ.

Fig. 8 Graphical representation of the concept of Gaussian Slot (GS)
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Algorithm 1 Price Prediction

The adequacy of the available samples (threshold = 4) in

SðstcbÞ is verified (Line 8). We chose 4 because, due to the

low number of data in our training data set, we consider it

acceptable to provide a price estimation. If this condition is

satisfied, the price is estimated as the product of meanðSðsÞÞ
and the three impact coefficients rtcb, rm, and rv (Line 9).

To account for outliers, the coefficients rm and rv are

subjected to an activation function, which takes the form of

a sigmoid function with an upper bound of 1.2 and a lower

bound of 0.8, thereby smoothing the impact of the month

and the numerical variables on the final price prediction by

allowing fluctuations of up to 20%. This percentage value

has been set intuitively, and then we have checked that we

obtain the outcome we pursue.

In case there are insufficient samples in SðstcbÞ, the

algorithm proceeds to split the Gaussian slot into two

higher-level ones: SðscbÞ (Line 11) and SðstÞ (Line 12). In

contrast to filtering the price data set for country, brand,

and subclass, we filter it for brand and country and for

subclass, combined with the previously defined month

SðsmÞ, representing the second attempt of the algorithm to

obtain the price estimation (Fig. 9b). We compute the

impact coefficients of the brand and country (Line 13) and

the subclass (Line 14). The impact coefficients of the

month and the numerical features were calculated before-

hand. If there are sufficient samples in SðscbÞ (Line 15), we

determine the price by applying the impact coefficients to

SðsÞ and passing rm and rv through the activation function

a (Line 16).

In the case where there are still insufficient samples in

SðscbÞ, the Gaussian slot is divided into SðscÞ (Line 17) and

SðsbÞ (Line 18). We derive the impact coefficient of the

country rc (line 20) and the brand rb (Line 21) separately.

The price is computed (Line 22) in the same manner as

before (Lines 9 and 16). This marks the final attempt of the

price prediction model (see Fig. 9c). Since all slots are

filtered using only one variable in addition to the super-

class, further division is not feasible.

Throughout the price prediction steps, we assess sample

sufficiency (4 samples) in SðstcbÞ (Line 8) and SðscbÞ (Line

15) due to the fact that these are the only slots that filter the

data set based on the superclass s in combination with at

least two other variables tcb or cb). The remaining slots

filter the data set on the superclass and one other variable

(at most), where the latter is guaranteed to be non-empty,

due to the restriction of working only with categories

available within each superclass. Specifically, for a given

superclass s, there is a list of its most frequent brands BðsÞ,
and thus for any possible brand bj in the list of the super-

class BðsÞ, it is impossible for SðsbÞ ¼ ;. This property

extends to all categorical variables.

Each of the three splits made in the algorithm separates

one variable from the others on the filter. The first split

separates the month variable m from the rest (Lines 2 and

3), followed by the separation of the subclass variable

t from the country and brand variables (Lines 11 and 12) in

the second split, and finally, the separation of country and

brand variables in the last split (Lines 18 and 19). The

order of these separations is based on the variable inde-

pendence level and the impact of the variables on the price.

The month variable is the most independent and thus split

first to minimize the error. The brand and country variables

are highly dependent and have a higher impact on the price,

so they are avoided until the last attempt to minimize the

error. The algorithm splits the variables less costly to

separate, in terms of error, before the more expensive ones.
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6 Evaluation

In this section, we investigate, based on our industrial data

set in the fashion domain, the following Research Ques-

tions (RQs):

• RQ1. Do the fashion attributes we extract affect

garment pricing? The goal of this research question is

to investigate whether the fashion attributes we extract

affect garment pricing and, in turn, whether we can use

them in our price prediction model.

• RQ2. Is the superclass prediction and garment segmen-

tation model effective? The goal of this research

question is to assess whether FashionXpert identifies,

in a reliable manner, the superclasses of our garment

Fig. 9 The price prediction steps of FashionXpert using a GMM
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taxonomy in input images while getting an accurate

mask of the garments.

• RQ3. Is the subclass prediction model effective? The

goal of this research question is to assess whether the

ResNet-18 Layer of FashionXpert identifies, in a

reliable manner, the subclasses of our garment taxon-

omy in input images.

• RQ4. Is the price prediction model effective? The price

prediction model depends on the image processing

pipeline output and metadata. We investigate in this

research question whether the price prediction model of

FashionXpert mitigates the effects of missing data and

outliers in the data sets and predicts garment prices

accurately.

All models employed by our solution described in Sects. 4

and 5 are built using supervised learning algorithms.

Therefore, they should be trained with labeled data

(training data set) and tested using a data set different than

the training one. We address each RQ in a separate sub-

section. We first present how the models are trained and

tested for each RQ (in each subsection except for RQ1).

Then, we report the results obtained for RQs. Due to the

lack of labeled data, some parts of the pipeline are unsu-

pervised, (e.g., color extraction and design complexity

estimation). So, it is not possible to provide an accuracy

metric, because there is not ground truth data. Since we use

their outputs to perform price prediction (see RQ4), we

consider them successful as long as they contribute to

reaching good results when evaluating the price prediction

model.

6.1 Subjects of the evaluation

We used an industrial data set (combining two sub-data

sets) to evaluate image processing and price prediction in

FashionXpert: (i) the bounding box data set and (ii) the

price prediction data set. Table 1 compares our data set

with various data sets in the literature used for object

detection and classification in the fashion domain.

6.1.1 Bounding box data set

The data set used to train and evaluate the models of the

image processing pipeline consists of 13,137 images. The

images are divided into nine superclasses and sixty-six

subclasses. Table 2 gives the number of images per

superclass. Each image contains one labeled garment with

a bounding box and a mask that indicates the location and

pixels of the garment.

We used follow.fashion [1] (i.e., a fashion search tool

automatically visiting the electronic commerce sites of

clothing brands) to collect garment images for the bound-

ing box data set. follow.fashion enables users to monitor

the price and stock changes on clothing products. It visits

each website in 24-hour periods and obtains the price and

stock information of the clothing products together with

product images. We gathered the product images from the

follow.fashion database and used the labelme tool4 (i.e., an

online annotation tool to build image databases for com-

puter vision research) to draw the bounding boxes manu-

ally for the training data set.

6.1.2 Price prediction data set

This data set is a CSV file in which each row represents the

metadata of the garment offer (i.e., the price, date, brand,

year, and country of the garment sold). We added the

ground truth superclass, subclass, and garment image to

this metadata. All these data (superclass, subclass, brand,

country, year, month, complexity, RGB components, and

price) are input into the price prediction model. We applied

the previously trained image processing pipeline to the

garment image to obtain the design complexity and RGB

components. Table 2 gives the number of rows and offers

per superclass (in total, 128.4K) that have been used for

training and testing our models. One garment image has

several offers assigned, one for each combination of

metadata values (i.e. brand, country, month, year). In order

to build the price prediction data set, we use a different set

of images than the ones in the bounding box data set.

The final price prediction data set CSV had several

preprocessing stages. We first converted all the currencies

to Euro (EUR) while considering the currency conversion

rate in the European Central Bank database.5 We addressed

the high cardinality in the ‘‘brand’’ variable (3437 different

brands as categorical data in the data set). Since we

implemented a different price prediction model per

superclass, we got for each the list of 35 most frequent

brands. Samples with a different brand will fall into the

category other. We kept only 5% of the samples with brand

other, in order to avoid a huge imbalance of the data set on

this variable. This way, we reduce the cardinality from

3437 to 36.

The price prediction data set includes the data acquired

between 2016 and 2022. We obtained the data set from the

follow.fashion database. Follow.fashion has a fashion

ontology and supports natural language processing. It

extracts the title, description, category, price, and stock

4 http://labelme.csail.mit.edu/.
5 We used Python Currency Converter.
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information from the product descriptions in natural lan-

guage, and stores them in its database.

6.2 RQ1: Do the fashion attributes we extract
in FashionXpert affect garment pricing?

We investigated the fashion attributes affecting garment

pricing to answer which fashion attributes we can use in

our prediction model. We used the price prediction data set

having the garment prices (the target variable) along with

the ground truth superclass, subclass, color,6 brand, month,

and country. We used the Shapiro-Wilk test [43] to test, for

each variable, whether the price distribution is normal. The

outcome was negative in all cases (i.e., the price distribu-

tion cannot be assumed normal), which abstained us from

using ANOVA and forced us to use a nonparametric test

(the Mann–Whitney U test [44]). This test gives a p value

for each category of each independent variable. The p

value solves the hypothesis contrast on Eq. (11).

H0 : Pðxi ¼ kÞ ¼ Pðxi 6¼ kÞ
H1 : Pðxi ¼ kÞ 6¼ Pðxi 6¼ kÞ

ð11Þ

where Pðxi ¼ kÞ is the price distribution of the samples in

which the independent variable xi takes the value k, and

Pðxi 6¼ kÞ is the price distribution of the rest of the data set.

If the p value is more than 0.05, we confirm the null

hypothesis H0; otherwise, we reject it and assume the

alternative hypothesis H1. Rejecting the null hypothesis

implies Pðxi ¼ kÞ 6¼ Pðxi 6¼ kÞ and, in turn, that xi ¼ k

affects the price distribution. We consider a variable useful

for price prediction when the p value\0:05 for more than

half of the categories of the variable. For instance, if the p

value is lower than 0.05 for the category ‘‘Zara’’ of the

variable ‘‘brand’’, that category affects the price, i.e., useful

to predict the price. If the p value\0:05 for more than half

of the categories (brands in this case), then we consider the

variable ‘‘brand’’ useful to predict the price.

Answer to RQ1: For each variable, we selected in the

price prediction data set, more than half of the categories

fulfill p value\0:05. Therefore, we conclude that the

fashion attributes we extract in FashionXpert affect gar-

ment pricing, and, in turn, we can use them in our price

prediction model.

6.3 RQ2: Is the superclass prediction
and garment segmentation model effective?

6.3.1 Model training

We trained Mask-RCNN for 30k optimization iterations

with a batch size of four images. We determined the

number of iterations empirically. Figure 10 presents the

evolution of the top-1 classification accuracy of Mask-

RCNN for superclass prediction (defined as the average of

the values obtained performing fourfold cross-validation).

The accuracy stops increasing in the interval between

30,000 and 37,500 iterations. We fixed the number of

iterations as 30,000 to prevent over-fitting. We started from

a model that had been pre-trained using the data set COCO

Table 1 Different data sets in

the literature used for object

detection and classification

FashionAI [40] WTBI [12] DeepFashion2 [41] iMaterialist [42] Our Data

# Images 357 K 425 K 491 K 1 M 78 K

# Categories 41 11 13 228 66

# Bounding boxes 100 K 39 K 801 K 1 M 13 K

# Masks NO NO 801 K 1 M 13 K

# Price prediction NO NO NO NO 65 K

All of them belong to the fashion domain. Note that FashionAI data set contains landmarks instead of

bounding boxes. #Images indicates the total number of images in the data set. #Categories the number of

classes. #Bounding boxes the number of garments labeled with a bounding box, #Masks the number of

garments labeled with a mask. #Price prediction the number of garments labeled with its price

Table 2 Number of images per superclass in the bounding box data

set (N bbox images)

Superclass N subclasses N bbox images N offers

Co_ord 3 510 4585

Suits 1 200 3601

Outerwear 8 1295 17,001

Jumpsuit 7 1251 13,745

Dress 19 3569 40,419

Shirts 3 672 4464

Knitwear 2 700 6813

Bottom 8 1343 14,666

Top 15 3598 23,125

We also display the number of offers used for training and evaluating

in the price prediction data set (N offers)

6 Ground truth color comes in a categorical format (back, blue, red,

etc.) instead of RGB components.
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[45]. The learning rate during training was 2:5 � 10�4. We

used a multitask loss function to train classification,

bounding box7 regression, and mask prediction:

L ¼ Lclf þ Lbbox þ Lmask, where Lclf is the term of the loss

function that measures the classification error, Lbbox quan-

tifies the error in the bounding box estimation, and Lmask
measures the error in the mask prediction. For a more

detailed description of the loss function of Mask-RCNN,

the reader is referred to He et al. [4].

Mask-RCNN’s first operation was to get a feature map

using a backbone network [4], i.e., a ResNet-101 formed

by a convolutional stage and four residual blocks (five

backbone network blocks in total). We relied on the pre-

training to perform the first operations of feature extraction.

Since we imported pre-trained weights, we ignored the first

layers of the network while training. We froze the first two

blocks of the backbone (the convolutional stage and the

first residual block) and trained the rest of the network

blocks with the parameters established. We implemented

the setup using detectron2,8 a Mask-RCNN API using

PyTorch.

6.3.2 Experiment setup, model testing, and results

Mask-RCNN performs both superclass prediction and

mask extraction (see Fig. 2). To measure the performance

of this model, we used four metrics: precision, recall, and

F1-score for superclass prediction and intersection over

union (IoU) for mask extraction. Table 3 presents the

results per superclass.

We computed IoU using the predicted (pred) and the

ground truth (gt) masks. It is the quotient of their inter-

section and union:

IoU ¼ Nð1ÞðMðgtÞ \MðpredÞÞ
Nð1ÞðMðgtÞ [MðpredÞÞ ; 8M 2 f0; 1gm�n ð12Þ

where Nð1Þ is a function that takes a binary array of a

dimension and returns the number of 1 elements. The

intersection (\) is an element-wise AND operation between

two masks (1 � 1 ¼ 1, 1 � 0 ¼ 0 and 0 � 0 ¼ 0). The

union ([) is an element-wise OR operation (1 � 1 ¼ 1, 1 �
0 ¼ 1 and 0 � 0 ¼ 0). We assessed the performance of

mask prediction using the average of all the IoUs computed

for the testing set (see Table 3).

Each result shown in Table 3 is the average of the four

values obtained by fourfold cross-validation. In each fold,

we used 75% of the data for training and 25% for testing

(randomly split).

Answer to RQ2: Although not ideal, the performance of

Mask-RCNN is good, and Mask-RCNN has reliable results

on superclass prediction and mask extraction. The F1-score

for overall superclass prediction is 67%, which can be

improved. As we can see in Fig. 11, the errors of Mask-

RCNN are focused on certain matrix elements. Table 4

presents the main confusions. The model has problems to

differentiate knitwear, shirts, and outerwear (low F1-

score). For future work, we plan to increase the number of

labeled images in our data set and fine-tune the training

setup to improve the F1-score. The IoU score for mask

prediction is 0.81, which is a good result due to the com-

plexity of the garments’ boundaries. The top is the only

superclass with an IoU score under 80% because most

models in the pictures are women with long hair. The hair

is the source of noisy pixels propagating through the rest of

the models. Therefore, we plan to implement a hair seg-

mentation model in the image processing pipeline.

6.4 RQ3: Is the subclass prediction model
effective?

6.4.1 Model training

We started with pre-trained weights on the ImageNet data

set. We performed model training for subclass prediction in

four stages. Figure 12 shows a scheme of the stages;

Table 5 gives the stage parameters. The loss function used

in model training is the Cross-Entropy, i.e.,

L ¼ �
PN

i¼1 bi logðpiÞ, where bi is a binary label (1 if the

truth class is class i) and pi is the softmax probability. We

decreased the learning rate and included more layers in

each stage to slow down the weight update as we approa-

ched the optimal solution. We followed, in general terms,

the principles of the transfer learning scheme [46]. When

the test loss did not reach an absolute minimum during

three consecutive epochs, we concluded the stage and

started the following one to prevent over-fitting. In other

words, each training stage concluded when: (i) the test loss

did not reach an absolute minimum in three consecutive

epochs or (ii) we reached the number of epochs stated in

Table 5. The training data set was the garment images

which Mask-RCNN output after skin segmentation (IðfinalÞ

in Eq. (5)).

We performed data augmentation on images in the

training data set due to the complexity of subclass

7 In addition to mask and category, Mask-RCNN returns four vertices

(called the bounding box) that enclose the mask in a rectangle. We do

not use it in our pipeline, but it is used internally by Mask-RCNN and

it requires a term in the loss function.
8 https://github.com/facebookresearch/detectron2.
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prediction. We did not change the nature of the images we

input into the models. For instance, we did not flip the

image vertically because the garments would look upside

down (something that does not happen in reality). Fig-

ure 13 presents some data augmentation examples on

images. We included two more versions of the training

images through the horizontal flip and random rotations not

higher than 20�. These transformations were introduced to

our data loader and applied in each training iteration. We

used the horizontal flip with a probability of 0.5. Random

rotation could take any value in the range of �20� for each

iteration.

6.4.2 Experiment Setup, Model Testing, and Results

As mentioned before, the garment taxonomy prediction is a

66-categories classification problem. Section 4 presents

how we split the problem into two steps: (i) superclass

prediction using Mask-RCNN and (ii) subclass prediction

using a different ResNet-18 model for each superclass. The

alternative is to predict the subclasses directly using Mask-

RCNN in a single step. We tested both approaches. Split-

ting the problem into two steps had a 5% better F1 score for

subclass prediction than the single-step approach (see

Table 6). In addition, the main reason to split this problem

into superclass and subclass prediction is to ensure at least

one confident feature related to the garment taxonomy.

Superclass prediction has an F1-score of 67%; subclass

prediction has an F1-score of 45% after propagating the

errors. We implemented the two steps subclass prediction

in the final version of our pipeline.

Subclass prediction was performed once we knew the

superclass result. We trained a different ResNet-18 model

for each superclass outcome. We performed the fourfold

cross-validation to test the accuracy of each ResNet-18

model separately (i.e., in each fold, we used 75% of the

data for training and 25% for testing). We measured the

performance of each ResNet model in the same way we did

to evaluate Mask-RCNN for superclass prediction, i.e., top-

1 accuracy. Table 6 gives the average F1-score for each

superclass’ model. The classification errors propagate

through the pipeline. Therefore, the results in Table 6 for

subclass prediction are for an ideal scenario in the super-

class prediction. The model has a better subclass prediction

accuracy for superclasses having fewer subclasses to dif-

ferentiate (N). The accuracy decreases for superclasses

having visually similar subclasses (e.g., ballerina and a-line

dresses, formal and sport shirts, or henley and t-shirt tops).

Figure 14 gives some images for different subclasses that

are hard to distinguish.

The F1-score for subclass prediction, knowing the

superclass beforehand, is 66%. This number is reduced up

to 45% due to the errors committed by Mask-RCNN on

superclass prediction (F1-score ¼ 67% Table 3).

Answer to RQ3: As seen in Table 6, all the ResNet-18

models have good performance (considering the number of

subclasses for each superclass and the similarity between

the subclasses). The only models with accuracy under 50%

are the ResNets for the superclasses dress and top due to

the number of subclasses (19 and 15 subclasses, respec-

tively). Even though all the ResNet-18 models perform

well, the errors propagated from Mask-RCNN make the

subclass prediction accuracy 45%. To increase the accu-

racy, we should enhance the accuracy of Mask-RCNN in

superclass prediction. As we see in Table 6, the best

approach is to use Mask-RCNN for superclass prediction

and then ResNet-18 for subclass prediction (instead of

using Mask-RCNN in a single step). Even with the prop-

agation of errors, the accuracy is 6% higher in the first case.

Table 3 Mask-RCNN results on superclass prediction and mask

extraction

Precision Recall F1-score IoU-score

Co_ord 0.60 0.69 0.64 0.83

Suits 0.83 0.90 0.86 0.86

Outerwear 0.40 0.66 0.50 0.83

Jumpsuit 0.64 0.68 0.65 0.82

Dress 0.79 0.69 0.73 0.80

Shirt 0.75 0.41 0.53 0.87

Knitwear 0.70 0.43 0.51 0.85

Bottom 0.80 0.86 0.83 0.85

Top 0.70 0.63 0.66 0.76

Total 0.69 0.66 0.67 0.81

We show precision, recall and F1-score for the superclass prediction

problem and IoU score for the mask extraction problem

Fig. 10 Empirical determination of the optimal number of iterations

to train Mask-RCNN
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6.5 RQ4: Is the price prediction model effective?

6.5.1 Model training

As explained in Sect. 5, the price prediction model is

formed by a Gaussian Mixture Model (GMM) and a Ran-

dom Forest (RF). The training of the GMM consisted of

getting the mean price of each of the Gaussian Slots

reachable by Algorithm 1. As for the RF, we have set it to

hold ten trees and seven nodes as a maximum per tree.

6.5.2 Experiment setup, model testing, and results

We have split the data set into 80% samples for training

and 20% for testing. The price prediction model has been

evaluated using the Mean Absolute Error with the standard

deviation of the price data set of the testing samples. We

propose a metric (we call r) defined by Eq. (13).

r ¼ rtest �MAEtest

rtest

ð13Þ

r ¼ 1 in the ideal scenario where MAE ¼ 0. If MAE	 r,

our predictor is equivalent to a model retrieving the mean

of the data set as a prediction. In this case, we consider that

the model provides a prediction in the range of the real

prices of the data set but does not learn the variance of the

target with respect to the given input variables (r ¼ 0). If

MAE\r, the model learns from the training process

(0\r\1). The closer MAE gets to 1, the more the model

learns. For r\0 (if MAE[ r), the model performs worse

than a random guesser (r ¼ 0), which indicates low

accuracy.

We propose r as a performance evaluator instead of

MAE because it provides a normalized score whose critical

values (0 and 1) are more interpretable by users. In addi-

tion, using r, we can compare the performance of different

models tested on different target distributions. As men-

tioned earlier, we have trained one different model per

Fig. 11 Full results of Mask-RCNN on superclass prediction presented as confusion matrix of each of the four folds in the cross validation

Table 4 Most common confusions of Mask-RCNN in superclass

prediction

Actual superclass Wrong prediction Frequency

Shirts Outerwear 0.29

Knitwear Top 0.28

Knitwear Outerwear 0.21

Shirts Top 0.21

Top Outerwear 0.18

We show the actual superclass along with what the model has pre-

dicted. The Frequency is the percentage of elements misclassified.

E.g. in the first row represents the percentage of shirts misclassified as

outerwear
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superclass. Assume the following two models: (i) the

model estimating the price of tops with MAE ¼ 4 EUR and

(ii) the model estimating the price of suits with MAE ¼ 40

EUR. Although one could claim that the first model is ten

times more accurate, predicting a suit’s price is more

complex since the target price distribution presents sig-

nificantly more variance.

Answer to RQ4: As seen in Table 7, for all the super-

classes, the prediction model has an r score higher than 0.5

(mostly above 0.6). The average r score is 0.67, which we

consider satisfactory due to the problem’s difficulty. Since

we do not consider the market trends, it is hard to predict a

garment’s price using only static information while ignor-

ing temporal evolution.

6.6 Threats to the validity

This section addresses potential limitations and challenges

that may affect the validity of our study’s findings.

6.6.1 Threats to the external validity

Model obsolescence: the selection of models for our AI

pipeline was guided by a strategic balance between cutting-

edge technology and practical applicability within the

dynamic field of computer vision. At the time of imple-

mentation, our chosen models represented the state-of-the-

art, offering the best available balance of accuracy, com-

putational efficiency, and adaptability to the nuanced task

of garment price projection. This decision was underpinned

by the models’ proven performance in similar image

recognition tasks, their robustness in handling diverse

fashion data sets, and their flexibility in integrating with

Table 5 Training stages of ResNet-18

Stage Weights (see Fig. 8) Epochs L.R

1 Heads 50 10�3

2 Heads ? Block 4 30 2 � 10�4

3 Heads ? Blocks 4, 3 15 2 � 10�4

4 Heads ? Blocks 4, 3, 2 10 1 � 10�4

5 Heads ? Blocks 4, 3, 2, 1 10 1 � 10�4

Each stage involves more layers than the stage before. Also, we

decrease the learning rate and the number of epochs we train. Layers

closer to the Heads are trained more epochs than layers closer to the

input, since we have loaded the weights from ImageNet data set

Fig. 12 ResNet-18 architecture

and training stages. We build

Head layers on top of the

ResNet-18 architecture obtained

from [5]. ImageNet weights are

loaded on each ResNet-18

block. Then we perform fine

tuning starting with the layers

closer to the classification

output

Fig. 13 Data augmentation illustration. We perform both random

rotations in the range of �20� and horizontal flip of each image in the

data set. That way we got two augmented images per each original

image
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temporal market trend analysis. Given the rapid advance-

ment in computer vision technologies, the models we

selected as state-of-the-art at the time of our study’s

implementation may now be surpassed by newer models.

This fast-paced evolution could impact the generalizability

and future applicability of our results.

Market variability: our approach assumes a degree of

consistency in market behavior that may not hold in all

cases. Unforeseen economic events, shifts in consumer

behavior, or changes in the fashion industry’s structure

could alter the effectiveness of our model.

Global variability: our research is potentially limited by

its focus on specific markets or regions. The global fashion

industry encompasses a wide range of consumer behaviors,

economic conditions, and regulatory environments. These

differences can affect the generalizability of our results

across different geographical contexts.

Comparison with other approaches: we encountered

significant challenges in implementing and comparing our

method with certain advanced methods directly due to a

variety of factors. Firstly, the availability of implementa-

tions for some of the latest methods is limited, with many

not being publicly accessible or requiring proprietary data

sets for replication. Secondly, the documentation and

reproducibility of these methods vary greatly, making it

difficult to ensure a fair and accurate comparison. Finally,

the resource-intensive nature of training and testing mul-

tiple sophisticated models exceeds our current capabilities,

particularly in terms of computational resources and access

to equivalent data sets.

6.6.2 Threats to the internal validity

We critically examined the inherent challenges within our

evaluation of FashionXpert. We identified potential biases

in model selection, acknowledging that while our models

were state-of-the-art at the time of implementation, the

Table 6 ResNet-18 accuracy results on subclass prediction

Superclass N subclasses F1-score

Co_ord 3 0.72

Suits 1 –

Outerwear 8 0.54

Jumpsuit 7 0.63

Dress 19 0.35

Shirts 3 0.79

Knitwear 2 0.80

Bottom 8 0.54

Top 15 0.45

ResNet-18 layer (isolated) 66 0.66

Mask-RCNN ? ResNet-18 66 0.45

Single-step (Mask-RCNN) 66 0.40

Last three rows present results in the total data set: (i) ResNet-18

Layer (isolated) presents the accuracy of the ResNet-18 layer isolated

in an ideal scenario, (ii) Mask-RCNN ? ResNet-18 presents the

accuracy of the our pipeline (concatenation of Mask-RCNN and

ResNet-18 layer) in subclass prediction, taking into account the

propagation of errors from Mask-RCNN, and (iii) Single-step (Mask-

RCNN) presents the accuracy if we use the approach in which Mask-

RCNN predicts directly the subclass, without prior superclass

prediction

Table 7 Evaluation results of the price prediction model of each

superclass

Superclass rtest (EUR) MAEtest (EUR) r

Co_ord 28.66 8.09 0.72

Suits 376.23 60.34 0.83

Outerwear 53.09 14.89 0.59

Jumpsuit 13.30 5.66 0.57

Dress 20.75 6.77 0.67

Shirts 54.33 19.29 0.64

Knitwear 10.26 4.44 0.56

Bottom 92.23 15.16 0.84

Top 8.02 3.19 0.60

Mean 72.99 15.31 0.67

We provide both the standard deviation and the r score we have

defined

Fig. 14 Example images for different subclasses hard to distinguish. We show four cases where it is hard even for a human to classify the

subclasses
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fast-paced advancements in AI could soon render them less

effective. To mitigate these threats, we employed robust

validation methods, including cross-validation and sensi-

tivity analysis, ensuring our model’s performance is reli-

ably assessed against various data scenarios. We also

highlighted efforts to combat overfitting through careful

data set partitioning and model regularization techniques.

Furthermore, we detailed our approach to selecting evalu-

ation metrics that accurately reflect the model’s predictive

capabilities, ensuring a comprehensive assessment of its

performance. Through these strategies, we aimed to bolster

the internal validity of our findings, maintaining trans-

parency and adaptability in our research approach.

7 Conclusion

In this paper, we presented FashionXpert, which performs

price prediction for the fashion industry. FashionXpert

provides an AI pipeline that employs several image pro-

cessing and ML techniques with data from heterogeneous

data sources. Our contributions include (i) an AI pipeline

using computer vision and ML techniques for price pre-

diction, (ii) a data set to assess computer vision and ML

techniques for the fashion industry, and (iii) an empirical

assessment of these techniques in our pipeline using our

data set.

Our empirical results showed that FashionXpert per-

formed well while predicting superclasses (with a total F1

score of 67%) and subclasses (45% on average). Moreover,

the price prediction model has been evaluated with the

metric r-score [Eq. (13)] in all the superclasses showing an

average value of 0.67 and an average MAE of 15.31 EUR.

Considering the standard deviation of the target price data

set (72.99 EUR on average among superclasses) and given

the complexity of the problem, we can conclude that this

result is very satisfactory.

For future work, we aim to add a trend prediction feature

(i.e., predicting fashion trends, including colors, fabrics,

silhouettes, patterns, styles, and more for clothing collec-

tions in upcoming seasons) in our pipeline. Trend predic-

tions allow the fashion industry to know what will be

fashionable in the future and plan the clothing collections

and merchandising appropriately. On the other hand,

emerging trends affect garment pricing for upcoming sea-

sons. Therefore, we also plan to improve our price pre-

diction model with trend predictions.
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10. Borràs A, Tous F, Lladós J, Vanrell M (2003) High-level clothes

description based on colour-texture and structural features. In:

Perales FJ, Campilho AJC, de la Blanca NP, Sanfeliu A (eds)

Pattern recognition and image analysis. IbPRIA 2003. Lecture

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://follow.fashion/
https://edited.com/
http://arxiv.org/abs/1703.06870v3
http://arxiv.org/abs/1505.04597v1
https://doi.org/10.1109/CVPR.2012.6248101
https://doi.org/10.1109/CVPR.2012.6248101
https://doi.org/10.1145/3447239
https://doi.org/10.1145/3447239


notes in computer science, vol 2652. Springer, Berlin, Heidel-

berg. https://doi.org/10.1007/978-3-540-44871-6_13

11. Liang X et al (2015) Deep human parsing with active template

regression. IEEE Trans Pattern Anal Mach Intell 37(12):2402–2414.

https://doi.org/10.1109/TPAMI.2015.2408360

12. Kiapour MH, Han X, Lazebnik S, Berg AC, Berg TL (2015)

Where to buy it: matching street clothing photos in online shops.

In: 2015 IEEE international conference on computer vision

(ICCV), pp 3343–3351. https://doi.org/10.1109/ICCV.2015.382

13. Jin B, Lu B, Wu H, Shi W, Li Y (2021) Fashion style forecasts

based on different price ranges. In: 2021 IEEE 5th advanced

information technology, electronic and automation control con-

ference (IAEAC), vol 5. IEEE, pp 2296–2302

14. Al-Halah Z, Stiefelhagen R, Grauman K (2017) Fashion forward:

forecasting visual style in fashion. In: Proceedings of the IEEE

international conference on computer vision, pp 388–397

15. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. Advances in

neural information processing systems, pp 1097–1105

16. Jia M et al (2020) Fashionpedia: ontology, segmentation, and an

attribute localization dataset. In: Vedaldi A, Bischof H, Brox T,

Frahm JM (eds) Computer vision—ECCV 2020. ECCV 2020.

Lecture notes in computer science, vol 12346. Springer, Cham

17. Sreekumar A, Geetha M (2020) Hand segmentation in complex

background using UNet. In: 2020 2nd international conference on

inventive research in computing applications (ICIRCA),

pp 440–445. https://doi.org/10.1109/ICIRCA48905.2020.9183215

18. Xie H -X, Lin C -Y, Zheng H, Lin P -Y (2018) An UNet-based

head shoulder segmentation network. In: 2018 IEEE international

conference on consumer electronics-Taiwan (ICCE-TW), pp 1–2.

https://doi.org/10.1109/ICCE-China.2018.8448587

19. Pavan Kumar I, Hara Gopal VP, Ramasubbareddy S, Nalluri S,

Govinda K (2020) Dominant color palette extraction by K-means

clustering algorithm and reconstruction of image. In: Raju K,

Senkerik R, Lanka S, Rajagopal V (eds) Data engineering and

communication technology. Advances in intelligent systems and

computing, vol 1079. Springer, Singapore

20. Jin X, Han J (2011) K-means clustering. In: Sammut C, Webb GI

(eds) Encyclopedia of machine learning. Springer, Boston.

https://doi.org/10.1007/978-0-387-30164-8-425

21. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,

Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S,

Uszkoreit J (2021) An image is worth 16 � 16 words: trans-

formers for image recognition at scale. Computer Science,

Computer Vision and Pattern Recognition.arXiv:2010.11929

22. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R (2021) Masked

autoencoders are scalable vision learners. Computer Science,

Computer Vision and Pattern Recognition, arXiv

23. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L,

Xiao T, Whitehead S, Berg AC, Lo WY, Dollár P (2023) Seg-

ment anything. Computer Science, Computer Vision and Pattern

Recognition. arXiv:2304.02643

24. Li Z, Nie Y, Han K, Guo J, Xie L, Wang Y (2022) A transformer-

based object detector with coarse-fine crossing representations.

In: 2022, 36th conference on neural information processing sys-

tems (NeurIPS 2022)

25. He L, Todorovic S (2022) DESTR: object detection With split

transformer. In: 2022, proceedings of the IEEE/CVF conference on

computer vision and pattern recognition (CVPR), pp 9377–9386

26. Kedia S, Jain S, Sharma A (2020) Price optimization in fashion

e-commerce. arXiv preprint arxiv:2007.05216

27. Nguyen HD, Tran KP, Thomassey S, Hamad M (2021) Fore-

casting and anomaly detection approaches using LSTM and

LSTM autoencoder techniques with the applications in supply

chain management. Int J Inf Manag 57:102282. https://doi.org/10.

1016/j.ijinfomgt.2020.102282

28. He QQ, Wu C, Si YW (2022) LSTM with particle swam opti-

mization for sales forecasting. Electron Commer Res Appl

51:101118. https://doi.org/10.1016/j.elerap.2022.101118

29. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

30. Ferreira Fernando GDC, Gandomi Amir H, Cardoso Rodrigo TN

(2021) Artificial intelligence applied to stock market trading: a

review. IEEE Access 9:30898–30917

31. Warner B, Crook A, Cao R (2020) Predicting the DJIA with news

headlines and historic data using hybrid genetic algorithm/sup-

port vector regression and BERT. In: Big data–BigData 2020: 9th

international conference, held as part of the services conference

federation, SCF 2020, Honolulu, HI, USA, September 18–20,

2020, Proceedings 9. Springer, pp 23–37

32. Mohanty DK, Parida AK, Khuntia SS (2021) Financial market

prediction under deep learning framework using auto encoder and

kernel extreme learning machine. Appl Soft Comput 99:106898

33. Mokhtari S, Yen KK, Liu J (2021) Effectiveness of artificial

intelligence in stock market prediction based on machine learn-

ing. arXiv preprint arXiv:2107.01031
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