
ORIGINAL ARTICLE

Network security AIOps for online stream data monitoring

Giang Nguyen1,2 • Stefan Dlugolinsky2 • Viet Tran2 • Álvaro López Garcı́a3

Received: 13 November 2023 / Accepted: 12 April 2024
� The Author(s) 2024

Abstract
In cybersecurity, live production data for predictive analysis pose a significant challenge due to the inherently secure nature

of the domain. Although there are publicly available, synthesized, and artificially generated datasets, authentic scenarios

are rarely encountered. For anomaly-based detection, the dynamic definition of thresholds has gained importance and

attention in detecting abnormalities and preventing malicious activities. Unlike conventional threshold-based methods,

deep learning data modeling provides a more nuanced perspective on network monitoring. This enables security systems to

continually refine and adapt to the evolving situation in streaming data online, which is also our goal. Furthermore, our

work in this paper contributes significantly to AIOps research, particularly through the deployment of our intelligent

module that cooperates within a monitoring system in production. Our work addresses a crucial gap in the security research

landscape toward more practical and effective secure strategies.

Keywords AIOps � Network security � Neural networks � Online stream data � Unsupervised learning

Abbreviations
ACL Access control lists

AED Autoencoder

AI Artificial intelligence

AIOps AI for IT operations

API Application programming interface

ARIMA Auto-regressive integrated moving average

BLAST The best last method

CNN Convolutional neural networks

DBM Deep Boltzmann machines

DBN Deep belief networks

DL Deep learning

DNN Deep neural networks

DT Decision tree

DWM Dynamic weighted majority

ELK Elasticsearch-Logstash-Kibana

ELM Extreme learning machines

GRU Gated recurrent unit

HTTP Hypertext transfer protocol

ICMP Internet control message protocol

IDS Intrusion detection systems

IPS Intrusion prevention systems

IT Information technology

JSON JavaScript object notation

kNN K-nearest neighbor

LB Leveraged bagging

LR Logistic regression

LSTM Long short-term memory

MAE Mean absolute error

MAPE Mean absolute percentage error

ML Machine learning

MLP Multilayer perceptron

MSE Mean squared error

NAB Numenta anomaly benchmark

NB Naı̈ve Bayes

NBA Network behavior analysis

NN Neural networks

OS Operating system

PCA Principal component analysis

& Giang Nguyen

giang.nguyen@stuba.sk

Stefan Dlugolinsky

stefan.dlugolinsky@savba.sk

Viet Tran

viet.tran@savba.sk

Álvaro López Garcı́a

aloga@ifca.unican.es

1 Faculty of Informatics and Information Technologies, Slovak

University of Technology, Ilkovičova 2, 84216 Bratislava,

Slovakia

2 Institute of Informatics, Slovak Academy of Sciences,

Dúbravská cesta 9, 84507 Bratislava, Slovakia

3 Instituto de Fı́sica de Cantabria (IFCA), CSIC-UC, Avda. los

Castros s/n, 39005 Santander, Cantabria, Spain

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09863-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-6769-0195
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09863-z&domain=pdf
https://doi.org/10.1007/s00521-024-09863-z

PL Paired learner

RBM Restricted Boltzmann machines

REST Representational state transfer

RF Random forest

RMSE Root mean square error

RNN Recurrent neural network

SABLE Simple adaptive batch learning ensemble

SMAPE Symmetric mean absolute percentage error

SOC Security operations center

SVM Support vector machine

TCP Transmission control protocol

UDP User datagram protocol

VAED Variational Autoencoders

XML Extensible markup language

YAML YAML Ain’t markup language

1 Introduction

An essential component of an organization’s information

technology (IT) infrastructure is the Security Operations

Center (SOC), which provides a centralized unit that

employs people, processes and technology to continuously

monitor and manage the organization’s security assess-

ment. One of its key functions is to identify, investigate,

and resolve cyber threats and attacks. This is achieved

through active monitoring, which involves a continuous

scan of the network for abnormalities or suspicious activ-

ities. The SOC collects and analyzes data from various

sources, such as security devices, logs, and other data

sources, to detect and respond to potential security inci-

dents. By providing continuous monitoring and response

capabilities, SOC helps organizations maintain their secu-

rity posture and protect against cyber threats.

In network monitoring, situational awareness refers to

best-practice engineering approaches used to continuously

monitor IT processes and operations to improve service

provision in the form of automatic action recommendation

and decision support [1]. It is a challenge to deal with large

volumes of data online and in real time. Many of such data

are not labeled [2] or are not significant for detection

purposes. Another challenge presents large quantities of

alerts whose evaluation consumes unnecessary time of

security analysts and thus makes the notification of real

alerts more difficult. Various tools such as firewalls, virtual

private networks, intrusion detection systems (IDSs), and

intrusion prevention systems (IPSs) are used to ensure

network security. Early detection, alerting, and rapid

response are crucial components of a proactive security

approach, helping prevent potential problems from

impacting the network. Other challenges [3] in detecting

network anomalies are a dynamic and fast changing envi-

ronment, the diversity of resources and tools, and the

security nature of the domain that prevents the sharing of

logs among SOCs.

Artificial intelligence (AI), specifically its subfield

neural networks (NNs) and deep learning (DL) in unsu-

pervised way, aids in this process. This involves processing

telemetry data from a monitored network, representing

them as time sequences, and training an intelligent model

to predict the most probable future states (called baseline)

based on previous observations [4, 5]. In typical network

operation, alarms are triggered when a monitored value

exceeds or falls below predefined thresholds. However,

setting these thresholds accurately can be challenging over

time [6, 7]. If the thresholds are too narrow, a large number

of alarms can be triggered, exceeding the analysis capacity

of network managers. If the thresholds are too wide, real

anomalies can be overlooked, leaving the network vul-

nerable to potential threats. Then, dynamically defining

thresholds are becoming increasingly important. Such a

nuanced soft baseline enables a complex system overview

and helps to indicate possible anomalies, allowing security

systems to continuously refine and adapt to changing sit-

uations over time and online. However, real data in real

production are hard to obtain due to the security nature of

the domain. There are a number of public, synthesized, and

artificially generated datasets, but real scenarios are rarely

seen.

The motivation of this work is to deploy an AI module

for proactive network monitoring in real time to improve

security protection. In this field, the implementation aspect

of AI deployment has not yet been thoroughly investigated.

By cooperating with IDS/IPS, the intelligent AI module is

designed to monitor the infrastructure network in produc-

tion and identify potential threats. To achieve this, the

latest trend in multihorizon and multivariate time-series

prediction is used, along with DL techniques in an unsu-

pervised way, to simultaneously model multiple monitor-

ing channels. This approach is expected to provide a more

comprehensive and accurate view of the network’s state,

enabling proactive measures to be taken to improve net-

work security.

The work presented in this paper makes several key

contributions to the field of AI for IT operations (AIOps)

research, specifically in the context of online data stream

monitoring, including:

• The development of a DL-based multihorizon forecast

model that simultaneously models multiple monitoring

channels in an unsupervised manner, enabling a com-

prehensive view of network activities.

Neural Computing and Applications

123

• The deployment of an AIOps module containing the

DL-based trained model for proactive network security

monitoring that cooperates in real-time with IDS in

production and allows a dynamic nuanced baseline to

improve the effectiveness of threat detection.

• The automated development for the entire software

stack using declarative composition, which helps to

simplify AIOps deployment and management over

time.

These contributions demonstrate the potential for AI and

advanced modeling techniques presented in this work to

improve network security and improve the efficiency of IT

operations.

The paper is further structured as follows: Section 2

surveys the related work. Section 3 provides the main idea

about the cooperation architecture in Sect. 3.1, the learning

development phase in Sect. 3.2, the online model deploy-

ment in Sect. 3.3, and the online anomaly detection in

Sect. 3.4. Section 4 goes through the deployment of the

architecture in Sect. 4.1, online data processing in

Sect. 4.2, the quality forecast in Sect. 4.3, and anomaly

detection results in Sect. 4.4. Section 5 concludes the main

points of the work and its future extension.

2 Related work

2.1 Network behavior analysis

Network anomaly and detection, real-time monitoring,

behavior baseline, analysis dashboards, network security

measures, and access to threat intelligence are essential

components of the network security strategy. By imple-

menting these measures, organizations ensure that their

networks are secure and protected against cyber threats.

There are several types of IDS, including network IDS,

host IDS, wireless IDS, and their combination. IDS only

alerts against network threats and vulnerabilities, and more

intervention is needed to act on these alerts. More than

IDS, IPS alerts and blocks network threats and vulnera-

bilities based on a signature approach. Automated thread

response is based on user-predefined thresholds.

Most of the current IDS/IPS are capable to respond in

real time or near real time to network activities. This is

achieved primarily by reactive solutions, typically as a set

of rules. These rules are used to identify known patterns of

malicious behavior, such as known attack signatures, and

to trigger an alert or take an action to block activity in real

time [8]. However, the effectiveness of these reactive

solutions is limited by the system’s ability to recognize

previously unknown or novel attack patterns. To address

this limitation, the use of machine learning (ML)

algorithms is merged to learn from historical data and

proactively detect and prevent potential threats [9].

In this context, network behavior analysis (NBA) [10] is

a technique used in cybersecurity to monitor and analyze

network traffic for suspicious behavior (Table 1). Unlike

misuse-based detection methods that rely on known attack

patterns, NBA is designed to detect anomalous behavior

that may indicate a new or unknown threat. NBA involves

analyzing network traffic in real time to identify patterns of

behavior that deviates from normal usage. This approach

can help detect a wide range of attacks, including malware

infections, data exfiltration, and insider threats. Examples

of cybersecurity platforms and tools [11, 12] that can

incorporate NBA techniques are IDS/IPS software such as

ZEEK, Snort, Nessus, Suricata, Zabbix, OSSEC, Flow-

Mon, and Rapid7.

2.2 Predictive analysis in cybersecurity

A data-driven approach and intelligent data modeling

extract information from large volumes of data for

informed decision making, using advanced analytics to

identify patterns, predict trends, and respond to threats and

opportunities [13]. There are two main types of network

analysis:

• Misuse-based detection, also called the knowledge-

based or signature-based approach, aims to detect

known attacks by using the signatures of attacks. Its

strong side is its high accuracy and it can identify types

of attacks. However, it is a reactive solution and

requires a data background of attacks. There is a lack of

real labeled datasets of known patterns due to the

diversity of variety of IDS/IPS working in real

production.

• Anomaly-based detection considers an anomaly as a

deviation from a known behavior (other words: profile,

baseline, threshold), representing the normal or

expected behaviors derived from monitoring regular

activities over a period of time [14]. It is a proactive

solution, predicting in advance and in time, for any type

of attack and does not require a data background of

attacks. However, the approach may provide low

accuracy in dynamic environments where all events

dynamically change.

In the context of misuse-based detection, the works

[15–17] present a range of techniques for data prepro-

cessing, data filtering, feature learning, and representation,

which are presented across multiple topics, including semi-

supervised anomaly detection and insider detection of

network traffic [18]. The authors compare and select from a

variety of ML methods such as logistic regression (LR),

Naı̈ve Bayes (NB), k-nearest neighbor (kNN), support

Neural Computing and Applications

123

vector machine (SVM), decision tree (DT), random forest

(RF), extreme learning machines (ELMs), and multilayer

perceptron (MLP). These works utilize various techniques

to calculate anomaly scores, such as local outlier factor,

one-class SVM, isolation forest, histogram-based outlier

score, or distance distribution-based anomaly detection. To

calculate the distances between feature spaces, dimen-

sionality reduction techniques, such as principal compo-

nent analysis (PCA) or random projection, are often used.

Anomaly-based detection is also a widely used tech-

nique to identify situations in data that deviate from

expected behavior. It finds applications in various domains,

including fraud detection in credit card, insurance, traffic

flows, intrusion detection in the cybersecurity industry, and

fault detection in industrial analytics [19]. In time series,

the objective is to recognize temporal patterns in past data

and to use these results for forecasting. Kalman filtering

method was one of the models capable of resolving

regression concerns and minimizing variance to achieve

optimal results. After that, the auto-regressive integrated

moving average (ARIMA) model is a well-known and

standard framework for predicting short-term data flow.

Numerous modifications to the ARIMA model were

implemented, and the results ensured improved perfor-

mance [20]. Unsupervised real-time anomaly detection for

streaming data was adequately investigated in [21] to

evaluate the performance of hierarchical temporal memory

networks over the Numenta Anomaly Benchmark (NAB)

corpus that contains a single metric with timestamps.

In works [22, 23], the authors present dynamic moni-

toring characteristics and propose the use of incremental

DL to handle concept drift in simulated evolving data

stream scenarios. The comparison result between tradi-

tional approaches such as ARIMA versus DL showed that

DL outperformed traditional approaches, providing better

results. We can list DL methods from references such as

NN, deep neural networks (DNNs), convolutional neural

networks (CNNs), recurrent neural network (RNN), long

short-term memory (LSTM) with incremental learning

[24], gated recurrent unit (GRU), autoencoder (AED), and

variational autoencoders (VAEDs), as well as their com-

binations. More examples are restricted Boltzmann

machines (RBMs), deep Boltzmann machines (DBMs),

deep belief networks (DBNs) [25, 26], and recently trans-

former [27, 28] for multiple metrics with timestamp

problem as sequences.

These works provide valuable information on the

strengths and weaknesses of different approaches, helping

researchers and practitioners makes informed decisions

about the methods to apply to specific use cases and

identify inherent obstacles to applying ML/DL in practical

domains [30]. The authors report a significant interest in

validating the effectiveness of their network intrusion

detection approach [31] to simulate a wide range of sce-

narios that mirror real-world conditions as closely as pos-

sible. Using various techniques such as time series, graph

network, DL, and their combination [32], the authors aim

to develop a robust and reliable system to detect anomalies

in network traffic flows.

DL has become increasingly popular in anomaly

detection with multihorizon time-series forecasting

(Table 2), showing significant performance improvements

compared to traditional time-series methods [33, 34].

Multihorizon forecasting is a technique in time-series data

analysis [35]. Unlike one-step-ahead forecasting, which

predicts the value of a variable only one time period ahead,

multihorizon forecasting allows the estimation of future

trends over multiple time periods [36]. This capability is

especially valuable for situational awareness and decision

support, as it enables optimization of actions in multiple

steps in advance.

This surge in the use of DL has led to various experi-

ments aimed at developing intelligent modules that address

intrusion detection in a complex way. In this problem,

patterns that deviate from a baseline, estimated only from

normal traffic, are indicated as anomalous. Here is also a

discussion of technical challenges of applications of deep

ensemble models [37, 38] with the challenges that arise

during the data management, model learning, model veri-

fication, and model deployment stages, as well as

Table 1 Cybersecurity tools and platforms that can incorporate NBA techniques

Tool Production IDS/IPS software

ZEEK Open-source IDS that provides real-time analysis of network traffic

Snort Open-source IPS that uses signature-based detection to identify known threats

Nessus Vulnerability scanner that identifies weaknesses in monitored systems and networks

Suricata Open-source IPS that uses signature-based and behavior-based detection techniques

Zabbix Real-time alerts and notifications of security events

OSSEC Host-based IPS that monitors system logs and other data sources for signs of an intrusion

FlowMon Network monitoring and analysis tool that provides real-time visibility into network traffic

Rapid7 Includes IoT tools for vulnerability management, incident detection and response, and threat intelligence

Neural Computing and Applications

123

considerations that affect the whole deployment pipeline in

production [39].

2.3 AI for IT operations

AIOps is the term used to describe the integration of AI and

ML algorithms into IT operations to improve the efficiency

and reliability of IT services [40]. It represents a significant

step forward in the field of IT operations, enabling orga-

nizations to take advantage of the power of AI to improve

their IT operations and provide better services.

In this context and for cybersecurity intrusion detection

research, several artificially generated, public, and syn-

thesis datasets [17, 25, 41] are widely recognized as

valuable resources. The most well-known are presented in

Table 3. These datasets provide a valuable resource for

researchers and practitioners to test and evaluate new

approaches to cybersecurity challenges, allowing the

development of more effective and robust cybersecurity

solutions.

Furthermore, an annotation approach is presented to

generate artificial alerts in [49], which includes a

pioneering automatic scheduling scheme. This method

enables efficient and effective monitoring of data streams,

providing timely alerts for potential anomalies or other

important events. Similarly, in the work [50], an automated

adaptation strategy for stream learning is presented, which

has been tested on 36 publicly available datasets and five

ensemble ML methods such as the simple adaptive batch

learning ensemble (SABLE), dynamic weighted majority

(DWM), paired learner (PL), leveraged bagging (LB), and

the best last method (BLAST) for stream data analysis.

These experiments demonstrate the potential of ML/DL to

enable real-time analysis of data streams, helping to detect

important patterns and anomalies.

As mentioned in Sects. 2.1 and 2.2, in a wide range of

studies, including those mentioned and many others,

researchers have conducted experiments that demonstrate

promising results in the development and testing of various

methods for data analysis and monitoring [51]. These

studies have used a variety of public datasets that contain

various monitoring information, allowing rigorous testing

and comparison of different approaches. The positive

results of these experiments suggest that these methods

have the potential to be useful in a wide range of appli-

cations, from anomaly detection to predictive modeling

and beyond. These works have made important contribu-

tions to cybersecurity research, their focus has often been

on predictive analysis (that is, data analytics with ML

methods but without real deployment), using publicly

available, synthesis, or artificially generated datasets

(Table 4).

Although such datasets can provide valuable informa-

tion on the performance of different approaches, it is

important to recognize that real-world cybersecurity chal-

lenges often involve unique and complex data that are not

fully represented in them. It is crucial to validate cyber-

security solutions over real data to ensure their

Table 2 Deep learning models for multihorizon multichannel modeling

DL model Specific description and usage in our work for data modeling

MLP MLP works well in many cases with proper hyperparameter setting such as various regularization and the appropriate activation

function (Table 7). MLP is used as a baseline for the performance of the models in our work

CNN CNN is well-known for image processing. CNN is great for extracting features from images and has been shown to be very

effective in finding patterns that are difficult to detect with traditional methods. Recent studies that applied CNN to time-series

problems show promising results

LSTM The most well-known RNN type is LSTM. It has a hidden state that is recurrently updated on the basis of previous time steps.

LSTM modeling results are not presented in our work because it acts similarly to GRU performance but with a longer runtime

GRU GRU belongs to the RNN architecture group. It is similar to, but lighter in architecture complexity with performance comparable

to that of LSTM

CNN-GRU In our work, CNN-GRU combines the CNN block (two subsequent Conv1D layers are placed at the beginning) to extract features
and the GRU block (two stacked GRU layers are used) to learn the representation of the sequence in the data. The settings are in

Table 7

s2s-GRU Sequence-to-sequence GRU or also called GRU-encoder-decoder contains a GRU layer that acts as encoder, which processes the

input sequence and returns its own internal state. Then, the RepeatVector layer is used to repeat the input for the number of

multihorizons of times. The other GRU layer acts as decoder and learns to generate the output conditioned on the input sequence

AEC Autoencoder (AEC) compresses a multidimensional sequence into a single vector that represents this information. The final layer

is a dense layer that produces a sequence similar to our input. AEC is not presented in our work because it acts similarly to CNN

based on preliminary testing

Transformer The architecture adopt the self-attention mechanism [29], which provides context for any position in the input sequence. In our

work, transformer has a simpler form in comparison with Natural Language Processing (NLP) ones. Our encoder block contains

of MultiHeadAttention layer and the feed forward part. The model contains four stacked encoder blocks and the head, which

consists of dense layers with sigmoid activation function for time-series forecasting

Neural Computing and Applications

123

effectiveness in practical settings to develop robust and

effective cybersecurity solutions.

Network intrusion detection based on anomalies is an

area of great interest in cybersecurity research, but its real-

world applications pose a significant challenge. Although

many studies have focused on developing intelligent

approaches to detect anomalies in network traffic,

deploying these methods in real production with real

stream data and flows is difficult and rarely achieved due to

the natural security of the domain as presented in Table 4.

3 Method description

To bridge the gap between research and real production,

the AIOps integration process and the challenges involved

in the deployment of intelligent approaches for anomaly

detection in stream data merges, while technologies are

already active [53]. The starting point of our work is the

integration of the AI/DL model to cooperate with ZEEK

IDS, which supervises the infrastructure network in the

online real-time data stream for anomaly detection.

3.1 Cooperation architecture

Network anomalies and detection are critical to ensuring

the security of computer networks. Real-time monitoring is

essential to detect unusual activity or behavior that may

indicate a security breach. To establish a baseline for net-

work behavior, it is crucial to understand what normal

activity looks like. This is where behavior baseline comes

in, which provides a clear picture of expected network

activity.

To make sense of the large amounts of data generated by

real-time monitoring and behavior baseline, analysis

dashboards are essential. These dashboards provide net-

work administrators with insight into network perfor-

mance, traffic patterns, and potential security threats.

The cooperation architecture (Fig. 1) in this work is

designed with the main components and technologies

presented in Table 5. The combination of ZEEK, Apache

Kafka, Elasticsearch, Kibana, and Docker and Docker

Compose creates a system architecture that is capable of

integrating an intelligent module to improve the detection

capacity of Zeek. It can also provide a dashboard for

visualization analysis with a dynamic behavior baseline

produced by the module.

Table 3 Cybersecurity datasets: public, generated, and synthesis

Dataset Description

DARPA [42] 1998, Defense Advanced Research Projects Agency intrusion detection and offline evaluation datasets used in a series of

evaluations to assess IDS

KDDCup’99 [43] 1999, Public dataset, including NSL-KDD, is network traffic data

Kyoto 2006?

[41]

2006–2009, The 3-year dataset of honeypots

UNSW-NB15

[31]

2015, The raw network packets of the data set were created using the IXIA PerfectStorm tool in the Cyber Range Lab of the

University of New South Wales Canberra containing normal and attack traffic

ISCX series [44] 2009–2016, Intrusion detection evaluation dataset series, synthesized and provided by the Canadian Institute of

Cybersecurity

MAWILab data

[45]

2011–today, The large amount of Internet Control Message Protocol (ICMP) traffic from the Analysis of Network Traffic

project at the University of Southern California is filtered out to reduce detector computational time. It contains various

types of attacks

NAB corpus [21] 2017, Open-source NAB environment contains 58 labeled, artificial time-series, and a scoring mechanism designed for real-

time applications

CIDDS dataset

[46]

2017, Coburg Intrusion Detection Datasets is an evaluation data set generated for network-based IDS

CIC-IDS series

[47]

2017–2018, Dataset series extracted from flows generated from the CICFlowMeter tool, provided by Canadian Institute of

Cybersecurity. They include a variety of features of network traffic and has been used for a variety of intrusion detection

and malware analysis tasks

CERT series [48] 2014–today, The Computer Emergency Response Team, Division of Software Engineering Institute, Carnegie Mellon

University, in partnership with ExactData LLC. and under sponsorship from the DARPA I2O project, generated a

collection of synthetic insider threat test datasets. These datasets provide both synthetic background data and data from

synthetic malicious actors

Neural Computing and Applications

123

Table 4 Predictive analysis in cybersecurity

Work Description Datasets Methods

[41] 2022, Overview, comparison and development of the cybersecurity

datasets

UNSW-NB15, CIC-IDS2017,

NSL-KDD, DS2OS, BoT-IoT

–

[21] 2017, Open-source environment for evaluating algorithms for anomaly

detection in streaming applications

NAB corpus of public and

synthesis datasets

Hierarchical Temporal

Memory

[16] 2019, Hybrid anomaly detection to filter network traffic and identify

malicious activities

ISCX-2012, ISCX-2017, UNSW-

NB15, MAWILab-2018

ELM, MLP, SVM, kNN,

DT, LR

[25] 2020, DL for cybersecurity intrusion detection: approaches, datasets,

and comparison

CIC-IDS-2018 RNN, DNN, RBM, DBN,

CNN, AED

[17] 2021, Comparison of ML methods for cybersecurity intrusion

detection, examination of the attack detection capability of IDS

datasets

NSL-KDD, ISCX-2012, UNSW-

NB15, CIC-IDS-2018, CIDDS-

001

SVM, kNN, DT

[30] 2021, Anomaly detection and intrusion detection with semi-supervised

learning

Kyoto 2006?, NSL-KDD, UNSW-

NB15, CIC-IDS-2017

AED, VAED

[50] 2021, Automated ML and multiple adaptive mechanisms in batch

streaming scenario

10 public datasets and 26 synthetic

datasets

SABLE, DWM, PL, LB,

BLAST

[52] 2021, Network service modeling combining functional data analysis

and neuron networks

benchmark functions, Spain private

dataset

Threshold, ranking,

k-means, PCA, AED,

LSTM

[22] 2021, Constructing ensemble learning to handle concept drift in

simulated evolving data stream scenarios

Five synthetic datasets, five public

datasets

Massive Online Analysis

package for simulation

[51] 2022, IoT intrusion detection using deep feature extraction KDDCUP99, UNSW-NB15, CIC-

IDS2017

Deep Feature Extraction

[53] 2022, Connecting data stream production and consumption with ML/

AI frameworks

CIFAR-10 public image

classification dataset

CNN, data stream,

containerization

[54] 2023, Network IDS design combined from feature optimization and

classification techniques

UNSW-NB15 Genetic algorithm, DNN

[24] 2023 Incremental learning approach for real-time data processing and

decision making for industrial control applications

University of New South Wales

IIoT testbed dataset

LSTM-autoencoder

Kafka
Zookeeper

Computing
Infrastructure

Network protocol
producers - streams

Kibana
web application

ElasticSearch Intelligent module
consumer stream

Intelligent module
consumer batch

ZEEK IDS

Fig. 1 Cooperation architecture of proactive network monitoring deployment

Neural Computing and Applications

123

The detailed description of each software component in

our cooperation architecture with its purpose and key fea-

tures is as follows:

ZEEK is an open-source IDS that continuously monitors

network traffic to detect and identify potential intrusions in

real-time. It does so by parsing network traffic and

extracting application-level information to analyze and

match input traffic patterns with stored signatures. ZEEK is

known for its speed and efficiency, and it is capable of

performing detection without dropping any network pack-

ets. Additionally, it includes an extensive set of scripts

designed to minimize false alarms and support the detec-

tion of signature-based and event-oriented attacks.

Apache Kafka is an open-source distributed event

streaming platform that enables high-performance data

pipelines, streaming analytics, data integration, and mis-

sion-critical applications. It operates as a cluster of one or

more servers communicating through a high-performance

transmission control protocol (TCP) network protocol and

can span multiple data centers or cloud regions for

enhanced scalability and fault tolerance.

It provides a variety of application programming inter-

face (API) in Java and Scala, including higher-level

libraries for Go, Python, C/C??, and Representational

State Transfer (REST) API. The primary concepts of Kafka

include topics, partitions, producers, consumers, brokers,

and zookeeper. The main concept of Kafka (Fig. 2) used in

our work are:

• Topics represent a stream of records or events that are

stored in a distributed manner across partitions. They

are partitioned data (distributed placements of data)

spread over a number of buckets located on different

Kafka brokers.

• Producers publish data to topics, they are those client

applications that publish (write) events to Kafka;

• Consumers subscribe to topics to consume the data,

they are the clients that read and process these events;

• Brokers serve as intermediaries between producers and

consumers, managing the storage and replication of

data across partitions.

• Zookeeper is a centralized service for maintaining

configuration information, providing distributed syn-

chronization. Kafka uses it to monitor the status of

cluster nodes, as well as topics and partitions. Zoo-

keeper stores the list of existing topics, the number of

partitions for each topic, the location of replicas, and

access control lists (ACLs).

Elasticsearch is a distributed RESTful search and

analysis engine, designed to handle a wide range of use

cases. As the core component of the Elastic Stack, it pro-

vides lightning-fast search capabilities, fine-tuned rele-

vancy, and robust analytics that can easily scale to handle

even the largest datasets. Elasticsearch is the most popular

enterprise search engine based on Lucene, offering a dis-

tributed multi-tenant capable full-text search engine with a

user-friendly hypertext transfer protocol (HTTP) interface

and schema-free JavaScript Object Notation (JSON)

documents.

Kibana is an open-source front-end application that

works seamlessly with the Elastic Stack. Kibana provides

search and data visualization capabilities, allowing users to

easily explore and analyze data indexed in Elasticsearch. It

was originally part of the Elasticsearch-Logstash-Kibana

(ELK) stack. Kibana also serves as a user interface to

manage, monitor, and secure an Elastic Stack cluster. Its

aim is to configure and monitor Elasticsearch indices,

visualize data using pre-built dashboards and graphs, and

manage security settings to ensure data privacy and access

control.

Docker is a standardized unit of software. It is a set of

platform-as-a-service products that use operating system

(OS) level virtualization to deliver software in packages

(containerization). Developers and operation teams use the

Docker tool to create and automate the deployment of

applications in lightweight containers, for example, on

virtual machines, to ensure that applications work effi-

ciently in multiple environments. Using OS-level virtual-

ization, Docker provides a consistent and

predictable environment in which applications can run,

regardless of the underlying infrastructure [55].

Table 5 Main software components and technologies of the cooperation architecture

Component Software and technology

ZEEK Network IDS that provides real-time monitoring and detection of network anomalies

Apache Kafka Distributed streaming platform that allows data to be processed in real time

Elasticsearch Search Engine that enables the storage and retrieval of large volumes of data

Kibana User-friendly interface for visualizing and analyzing data

Docker Containerization technologies

Docker Compose Composition for the deployment of applications in a lightweight and portable manner

Neural Computing and Applications

123

Docker Compose is used to define and run multi-con-

tainer docker applications within a single command to

create and start all services from the configuration YAML

Ain’t Markup Language (YAML) file. Docker Compose is

used to run multiple containers as a single service. Each of

the containers runs in isolation but can interact with each

other when required.

The description and the online state of our monitoring

stream data are in Sect. 4.2. The snapshot with details of

our architecture deployed as the software stack running in

its production testing environment is in Sect. 4.1.

In the following sections, the two phases of our pro-

posed intelligent module designed for the cooperation

architecture are presented as follows:

• The development of our multihorizon multichannel

model is described in Sect. 3.2.

• The online deployment of the model is presented in

Sect. 3.3.

The online anomaly detection principle is presented in

Sect. 3.4.

3.2 Multihorizon multichannel modeling
as dynamic baselines

Complex network monitoring is considered a data function

y of the time point t indicated by yt. It has the form of a

multivariate vector containing multiple variables of m

multichannel monitoring ðy1
t ; y

2
t ; . . .; y

m
t Þ for proactive

modeling of network activity.

yt ¼ y1
t ; y

2
t ; . . .; y

m
t

� �
ð1Þ

at time t. The mathematical basis for proactive forecasting

of the y value at the next q time points ðt þ 1Þ . . .; ðt þ qÞ is

based on the y values at the previous p time points ðt �
pþ 1Þ . . .; ðtÞ with added/subtracting error terms.

In this work, we extend the motivation based on time-

series forecasting backgrounds [56, 57] from forecasting

one horizon (or one time point) as in [58] to generalizing

the forecast to the k horizon ahead of the direct forecast of

the q horizons (Fig. 3) as follows (Eq. 2):

y1
t�pþ1 � � � y1

t

y2
t�pþ1 � � � y2

t

..

.

ymt�pþ1 � � � ymt

0

BBBBB@

1

CCCCCA
!

y1
tþk � � � y1

tþkþq�1

y2
tþk � � � y2

tþkþq�1

..

.

ymtþk � � � ymtþkþq�1

0

BBBBB@

1

CCCCCA
ð2Þ

as vector form (Eq. 3):

yt�pþ1; . . .; yt ! ytþk; . . .; ytþkþq�1 ð3Þ

where:

1� k\p;

1� q\p;

k indicates the time points ahead between the current

time t and the start time point ðt þ kÞ of the forecast;

q indicates the multihorizon forecast from time point

ðt þ kÞ to time point ðt þ k þ p� 1Þ.

The modeling values of yt, called predicted byt , are used as

known behavior (other words: dynamic baseline, dynamic

threshold), representing the normal behavior of regular

network activities over a period of time t for anomaly

detection purposes (more details in Sect. 3.4).

Kafka

Network protocol

Network protocol

Network protocol

Topics

Producer

Producer

Producer

Aggregator Zookeper

Intelligent
module stream

Intelligent
module batch

Kibana
Elasticsearch

ZEEK
logs

stream

 Push

 Push

 Push

 Push

 Pull

 Pull

 Pull

 Pull

 Pull

Consumers

Fig. 2 Kafka concept in the ZEEK log stream context

Neural Computing and Applications

123

The direct forecasting strategy involves training models

using time-series values that have been shifted to the

desired number of time periods in the future. It can be

improved by using a multichannel forecasting strategy, also

known as a multiple-output strategy. With this approach, a

single model is developed that can predict the entire

forecast sequence in one go. This can make the AIOps

deployment easier and more flexible compared to making

separate predictions for each time period using multiple

models.

Data preprocessing is a crucial step before modeling and

prediction. An important aspect of preprocessing is feature

engineering, which involves transforming raw logs into

time-series data that can be used for modeling. To ensure

the quality of transformed data, network protocols are

checked against white noise, randomness, and unit root

[59] using the augmented Dickey–Fuller (ADF) test [60]. A

unit root is a stochastic trend in a time series, sometimes

called a random walk with drift. If a time series has a unit

root, it shows a systematic pattern that is unpredictable.

The origin Dickey–Fuller test is to test the model (Eq. 4).

Dyt ¼ yt � yt�1 ¼ aþ bt þ cyt�1 þ et ð4Þ

ADF is the augmented version of the Dickey–Fuller test. It

allows for higher-order autoregressive processes by

including Dyt�p in the model (Eq. 5).

Dyt ¼ aþ bt þ cyt�1 þ d1Dyt�1 þ d2Dyt�2 þ � � � ð5Þ

For both tests, the null hypothesis (H0) is a unit root pre-

sented in the data. The alternative hypothesis (H1) is that

the unit root is not present in the data. Mathematically, H0

states that if c ¼ 0 then y is a random walk (or non-sta-

tionary) process. If the ADF test returns p value\0:05

threshold then y is stationary. The goal of these tests as part

of data preprocessing is to identify and filter out protocols

that contain excessive noise or randomness, as they are not

suitable for modeling. Unlike most of the other forecasting

algorithms, DL architecture or models are capable of

learning non-linearities and long-term dependencies in the

sequence. Then, stationary is less of a concern for DL

models. By performing data filtering, the quality of the data

is improved, leading to more accurate predictions [61].

To model the complex behavior of network traffic, we

employ the state-of-the-art DL architectures (Table 2) to

handle online stream data. These DL models were inves-

tigated, customized according to our domain data, and

compared (Sect. 4.3.2) to select the best, i.e., GRU model

for online deployment (Sect. 3.3).

The forecast quality is evaluated using a separated error

matrix (Eq. 6) for multihorizon modeling (k horizon before

direct forecast of q horizons) of multichannels (m moni-

toring channels). We denote

E ¼

e1
tþk e1

tþkþ1 � � � e1
tþkþq�1

e2
tþk e2

tþkþ1 � � � e2
tþkþq�1

..

.

emtþk emtþkþ1 � � � emtþkþq�1

0

BBBBB@

1

CCCCCA
¼

e1

e2

..

.

em

2

66664

3

77775
ð6Þ

The average error value avgðejÞ of the series (Eq. 8) of

errors ej of each communication protocol j (Eq. 7) is cal-

culated for the m monitoring channels with direct forecast

of the horizons q.

ej ¼ ejtþk ejtþkþ1. . . ejtþkþq�1

h i
ð7Þ

avgðejÞ ¼ 1

q

Xtþkþq�1

i¼tþk

eji ð8Þ

Errors are indicated mainly by the smooth version of

symmetric mean absolute percentage error (SMAPE)

(Eqs. 9). SMAPE is used to avoid zero division. It is also

less sensitive to near-zero values compared to mean

absolute percentage error (MAPE) (Eqs. 10).

network
monitoring

0

10

20

30

40

50

60

70

80

90

100

ac
tiv

ity
 le

ve
l

time

direct q-horizons forecast

 k-horizon ahead

Fig. 3 Multihorizon

multichannel modeling

Neural Computing and Applications

123

SMAPE ¼ 100%
1

n

Xn

i¼1

jyi � byi j
1
2
ðjyij þ jbyi jÞ

ð9Þ

MAPE ¼ 100%
1

n

Xn

i¼1

ðyi � byiÞ
yi

����

���� ð10Þ

Root Mean Square Error (RMSE) (Eqs. 11) and coeffi-

cients of determination (R2) (Eqs. 12) are used as sup-

ported metrics.

RMSE ¼
ffi
1

n

Xn

i¼1

ðyi � byiÞ2

s

ð11Þ

R2 ¼ 1 �
Pn

i¼1

�
yi � byi

�2

Pn
i¼1

�
yi � 1

n

Pn
j¼1 yj

�2
ð12Þ

All the aforementioned metrics measure the inconsistency

between the ground truth y and the prediction by of n

observations. Mean squared error (MSE) (Eq. 13) and

mean absolute error (MAE) (Eq. 14) are used as a loss

function in model training.

MSE ¼ 1

n

Xn

i¼1

ðyi � byiÞ2 ð13Þ

MAE ¼ 1

n

Xn

i¼1

jyi � byi j ð14Þ

The hyperparameter settings for our DL architectures

are presented in Table 7 (Sect. 4.3.1). All features are

transformed by normalization scaling [62]. The dropout

layer works great with our data. The main advantage of

using unsupervised (self-supervised) methods is that we do

not need to label the data. The main disadvantage is that

detected patterns may not be anomalous, but rather

intrinsic to the dataset.

3.3 Model online deployment

Teacher forcing is a method of quickly and efficiently

training and retraining neural network models using ground

truth values. It is a critical training method used in DL for

natural language modeling, such as machine translation,

text summarization, image captioning, and many other

applications. In some cases, teacher forcing is also called

changeably incremental online learning. After the model is

first trained, it is used to start the process and ensures the

predicted output in a predefined interval. The recursive

output-as-input process approach can be used when train-

ing the model for the first time, but it can result in problems

like model instability or poor skill in a dynamic changing

environment. Teacher forcing is used to address model

skills and stability regularly over time [63].

Algorithm 1 Online model execution over streamed data with teacher

forcing periodic model updates

Neural Computing and Applications

123

DL comes with more complex architectures, which

promise more accurate learning, but at the cost of model

complexity and computing resources. Our choice of GRU

architecture is based on the comparison analysis of the DL

architecture [58] and based on the analysis done in this

work for the implementation of online learning with real-

time stream data (Sect. 4.3). GRU behaves well in the

development phase, and teacher forcing is supported in

realization with production-grade TensorFlow for

deployment.

Due to the dynamic nature of the monitoring data, model

adaptation and its updating are needed during the deploy-

ment, especially when the model is run for a longer period

of time. This process is described in (Algorithm 1). The

prediction model is deployed within a Kafka consumer that

consumes two streams online:

• topic in: used for the prediction, and

• topic benign: used to update the model.

Both streams are processed using a sliding window

approach, but each with different length and step settings.

The resolution of time (that is, the time step) is set to

10 min according to the domain experience and the delay

effect described in Sect. 4.2.2 with the statistical results

presented in Fig. 6.

Regarding the prediction task (Algorithm 1, lines 9–15),

the sliding window defines the prediction context. The

length of the sliding window is context len and corre-

sponds to the number of recent time steps that the model

sees in its input. Step slide step is the same as the model

forecast horizon, in our case, it is one time step corre-

sponding to 10 min (Table 7).

Predictions are made continuously at each sliding win-

dow step (Algorithm 1, line 13) by feeding the model with

a sliding window content; that is, a multivariate time series

of features features in. The forecasting results in the form

of a feature vector features out enriched with model

metadata (for example, model name) are sent to the output

1: procedure ExecOnlineModel(topic in, topic benign, topic pred, model, features in,
features out, context len, update context len, slide step, update period)

2: consumer ← new Kafka consumer of topics topic in, topic benign
3: producer ← new Kafka producer of topic topic pred
4: buf in ← empty list
5: buf benign ← empty list
6: last update ← 0
7: for message in consumer do
8: if message.topic == topic in then
9: data ← message.value[features in]

10: buf in.append(data)
11: if |buf in| ≥ context len then
12: X ← buf in
13: Y ← model.predict(X) � online model prediction over streamed data
14: producer.send(Y)
15: buf in ← buf in[slide step :]
16: end if
17: else if message.topic == topic benign then
18: data ← message.value[features in ∪ features out]
19: buf benign.append(data)
20: last update ← last update + 1
21: if |buf benign| ≥ update context len & last update ≥ update period then
22: XY ← buf benign
23: model ← model.update(XY) � online model update over streamed data
24: buf benign ← buf benign[update period :]
25: last update ← 0
26: end if
27: end if
28: end for
29: end procedure

Neural Computing and Applications

123

stream topic pred with the help of a Kafka producer

(Algorithm 1, line 14), where they can be further processed

by other consumers, such as a consumer feeding Elastic-

search (Fig. 5).

Updates to the online model are made periodically if

sufficient training data are received from the benign data

stream (Algorithm 1, line 20). In our case, for the 24-h

update period and the training data for 24 h, the sliding

window length (update context len) and its step

(update period) are set to 144 (24 h / 10 min = 144).

The complexity of EXECONLINEMODEL (Algorithm 1) is

O(n), where n is the number of message in Kafka’s con-

sumer (Algorithm 1, line 7). The algorithm presents the

inference using the pre-trained model in production, which

is not computationally or communication intensive. The

model works in place with a regular amount of online

stream data from the monitoring log flow (Algorithm 1,

lines 2 and 3) in the context of one current sliding window

(Algorithm 1, from line 7 to line 14).

3.4 Online anomaly detection

Anomalies in network monitoring are identified as signif-

icant deviations from the values of normal activity level

[14]. The most important point is the precision of the

prediction values of by (Sect. 3.2) compared to the real

values of y to keep alert warnings at an acceptable level for

network administration. The overall anomaly detection

score for the m monitoring channels at time t is calculated

as:

scoret ¼ cosine byt;upper; yt
� �

ð15Þ

where:

byit;upper ¼ ð1 þ aiÞ byit;

model is the model architecture in production;

yt is a vector of real values of m channels at time t;

byt is predicted values of yt calculated at time ðt � kÞ;
byt;upper is an upper boundary for yt;

ai is a threshold coefficient for ith channel in percents;

where amodeli � 1
2
SMAPEmodel

i .

The warning of an abnormal state at time t is called

anomaly detection rules applied for multichannel monitor-

ing (Eq. 16), which is activated when

scoret [#� 0 ð16Þ

where # is a threshold constant reservation.

Algorithm 2 Online anomaly detection

1: procedure AnomalyDetection(model, t,
k, α, ϑ=0, y)

2: ŷt ← modelt−k � calculated at (t − k)
3: ŷt,upper = (1 + α) ŷt
4: scoret = cosine(ŷt,upper, yt) � Equation 15
5: if scoret > ϑ then � Equation 16
6: warning of an abnormal state at t
7: end if
8: end procedure

Conventional threshold-based methods provide a hori-

zontal baseline line. DL data modeling provides a nuanced

soft baseline in the form of the prediction by during the

monitoring time of the network (Fig. 3). Algorithm 2

works well under IDS production conditions. The core is to

obtain the predicted values byt and use them as a flexible

baseline (or threshold). The result is indicated as the blue

line in Fig. 10 (Sect. 4.4), where the green line indicates

the real values y.

Fig. 4 The snapshot of the complex software deployment stack

running in its production testing environment

Table 6 Component serving instances

Component Instance

Elasticsearch elastic

Kafka cluster kafka

Kibana instance kibana

DL model mods2

DL model database mods2_db

NGINX reserve proxy service

Zookeeper zookeeper

Neural Computing and Applications

123

4 Experiments and evaluation

The cooperation architecture (Fig. 1) based on the Kafka

concept for ZEEK log stream processing (Fig. 2) is real-

ized as a production testing environment as follows:

• Deployment of the cooperation architecture (Sect. 3.1)

as running software stack (Sect. 4.1) with online model

deployment for multihorizon multichannel forecasting.

• Online stream data in cooperation with ZEEK super-

vising network activities (Sect. 4.2);

The details of the experiments carried out in the production

testing environment are presented as follows:

• Stream data processing (Sect. 4.2.1);

• Online delayed log effect (Sect. 4.2.2);

• Forecasting quality (Sect. 4.3);

• Anomaly detection results (Sect. 4.4).

4.1 Software stack deployment

The deployment [64] of the complete software stack in our

work for data streams follows automation and orchestration

with Ansible semantic declaration. The snapshot of the

deployment is shown in Fig. 4 with the component serving

instances as shown in Table 6.

The Ansible YAML file uses a declarative composition

to easily compose, deploy, and scale the software stack

(Fig. 4) for our deployment into the testing environment.

YAML is a human-readable data serialization language

that serves the same purpose as Extensible Markup Lan-

guage (XML) but with Python-style indentation for nest-

ing. Compared to XML, YAML has a more compact

format.

4.2 Online stream data

The next part of our work is cooperation with one instance

of ZEEK working in production. The instance is installed

on the network routing machine. Here are two kinds of

logs:

• Compressed log files: ZEEK collects metadata on

ongoing activity within a monitored network. This

activity is recorded as transaction logs and organized

into compressed textual log files that are grouped by

date, protocol, and capture time within specific direc-

tories $PREFIX/logs. These logs are collated and

organized into compressed textual log files for long-

term storage [65] that can be easily searched and

analyzed to identify patterns and trends in network

traffic [58].

• Online stream log files: ZEEK analyzes traffic accord-

ing to the predefined setting policy and produces the

results of a real-time network activity in a specific and

special directory $PREFIX/logs/current on the

ZEEK monitoring server. These incremental logs are

stored as uncompressed log files [66], which serve as a

source of streaming data for subsequent analysis and

modeling in this work.

By default, ZEEK regularly takes all logs from $PREFIX/

logs/current and compresses them by date time and

archives to $PREFIX/logs. The frequency is set to every

hour by default and can be specified in the configuration

file as the value $PREFIX.

Online logs are in human-readable (ASCII) format and

data are organized into tab-delimited columns. Logs that

deal with analysis of a network protocol often start like

with:

• a timestamp,

• a unique connection identifier (UID),

• a connection 4-tuple (originator host/port and responder

host/port),

• protocol-dependent activities that’s occurring.

Apart from the conventional network protocol specific log

files, ZEEK also generates other important log files based

on the network traffic statistics, interesting activity cap-

tured in the traffic, and detection-focused log files, for

example, conn.log, notice.log, known_ser-

vices.log, weird.log.

4.2.1 Data stream processing

Before any further analysis, an initial analysis of the

transaction logs was performed to filter out white noise

protocols with stochastic characteristics (Sect. 3.2). This

ZEEK
pool

Push

Pull

intelligent
modulesaggregators

Fig. 5 High-level view on stream data flow

Neural Computing and Applications

123

filtering process helps to remove irrelevant or noisy data

from the dataset, improving the accuracy and efficiency of

subsequent analysis steps. For network protocols that pass

data validation tests and are used for modeling, it is

important to recognize that time-series data have charac-

teristics of ordered time-dependency sequences, where

each observation has a temporal dependency on previous

observations. Preserving this temporal dependency is cru-

cial for accurate modeling.

For incremental filtered log files conn.log,

dns.log, http.log, sip.log, ssh.log, ssl.log

of network protocols, dedicated Kafka producers are

launched to monitor them for new records in real time.

New records are treated as live streams (Fig. 5) and parsed

as soon as they appear in the log files.

The parsed logs are immediately sent to the Kafka

cluster. They are organized by topic and key (Fig. 2),

where the topic refers to message origin (a particular ZEEK

instance) and the key refers to originating log files (e.g.,

conn, http).

In our work, a concept of aggregators is engaged to

consume ZEEK messages from Kafka, and compute

statistics over predefined sliding windows (10min, 30min

or 1 h) are applied to preprocess streaming data. Aggre-

gated statistics are pushed back to Kafka as new messages

under dedicated topics, e.g., ’zeek1-agg1-10 m’ and

keys, e.g., conn, http. Aggregations are computed

according to a specified set of declarative rules. There are

two types of aggregation rules:

• agg rule computes the number of total and unique

connections (for instance conn log file), the sum of

received and sent bytes, and the average duration of

connections within the sliding window.

• groupby type of rules is used to group data within the

sliding window by a specified column before computing

the aggregation statistics.

The groupby aggregation rule is useful if we want to

compute the statistics for particular column values. An

example of such statistics is counting the total number of

values true and false for the column AA within the

sliding window as follows.

• The rule leads to the creation of two columns in the

resulting record; i.e., dns_AA_T_count for the

true value count and dns_AA_F_count for the

false value count.

• Column names are automatically generated according

to the original log file and the expansion of the

aggregation rules.

Before applying the aggregation rules, the data are grouped

within the sliding window by direction of communication

into three groups:

• in,

• out,

• internal.

The direction is resolved by IP address, where applicable,

and the result is taken from the perspective of the moni-

tored network. It should be noted that before applying any

aggregation rules, there is an option to prepare the data

consumed using declarative data cleaning rules.

Fig. 6 Statistics of delayed logs in conn.log for a monitoring period of

32 months

Table 7 Hyperparameter setting

Hyperparameter Value

m channels 5

q horizons 24

p time points 1, 2, ..., 10

k steps ahead 1, 2, ..., 10

Sliding window size 10 min

Data aggregation 10 min

Teacher forcing update 2 epochs

Early stopping 10 epochs

Restore best weights True

Stacked units 2

Recurrent units 48

Dense units 128

Dropout rate 0.5

Kernel size 3

Pool size 2

Filters 128

Optimizer Adam

Activity regularizer L2

Bias regularizer L2

Kernel regularizer L1, L2

Activation function elu, relu, sigmoid

Neural Computing and Applications

123

4.2.2 Online delayed logging effect

The analysis of more than 2.1 billion records collected over

a 32-month period revealed that the logs in the incremental

files are sometimes delayed. Delays present a problem for

online aggregation, because delayed logs are not included

in their aggregator sliding window. Figure 6 illustrates the

analysis of the conn.log data with the graph showing

how long an aggregator should wait for delayed logs to

receive the desired percentage of incoming logs for the

relevant sliding window, i.e., the 300-s interval is needed

for delayed log aggregation to obtain 97% of the logs for

the actual sliding window.

The conn.log file is one of the most important ZEEK

logs. It contains logs of TCP/UDP/ICMP connections that

have been completed [65]. Log records are written to the

incremental log file at the time of completing a connection;

i.e., when the connection is closed gracefully or abruptly.

There is also a third option when a connection is consid-

ered completed, despite the fact that it might still be alive.

It is the case when it exceeds the inactivity timer set by

ZEEK. This timer is set to 1 h by default, so longer con-

nections are incorrectly broken into multiple sessions.

However, the timer is not the main cause of delays, as

there are up to 97% logs with delays below this timer. The

user datagram protocol (UDP) and internet control message

protocol (ICMP) connections are interpreted by ZEEK

using flow semantics; that is, the sequence of packets from

a source host/port to a destination host/port is grouped.

Each log contains ts and duration fields, where ts is

the time of the first packet and duration is the elapsed

time between the first and last packets in a session. For

3-way and 4-way connection teardowns, the final

acknowledgment (ACK) packet is not included in the

duration computation, which could be the reason for the

delays.

Table 8 MLP, CNN, GRU:

model performance by SMAPE
for multihorizons (1–10)

DL model Horizons conn_in conn_out dns_out http_in ssl_in

MLP 1 32.6074 14.1178 66.9427 65.0237 15.3440

2 33.6900 16.2179 73.8676 78.1281 15.6130

3 33.2265 14.8425 68.5074 67.8217 16.6031

4 31.5003 15.6617 71.1183 62.9709 15.6202

5 29.6596 14.9112 68.9015 65.8445 16.0721

6 29.6841 15.9388 69.2472 65.8615 16.6836

7 30.7761 14.4433 62.6327 63.0537 14.6732

8 32.6167 15.6903 72.2940 70.9173 15.1695

9 32.9512 15.0010 68.2066 75.7919 16.1794

10 32.5214 15.7100 72.6347 63.8964 15.3866

CNN 1 33.2349 14.9278 70.8350 70.1225 15.3058

2 34.0094 15.0491 71.3221 72.6247 15.3051

3 34.6965 14.9949 71.7149 74.5933 15.2988

4 35.7148 15.2894 74.2488 72.4131 15.3917

5 35.6431 15.0365 73.5564 70.2452 15.3479

6 36.1117 15.1240 73.3048 71.2854 15.3257

7 36.9947 15.4521 73.1516 74.4957 15.2907

8 38.9747 15.7042 75.1035 73.9931 15.3935

9 39.3912 15.7438 76.1343 72.1810 15.3259

10 39.1869 15.3281 76.5981 69.1700 15.3843

GRU 1 24.4384 13.4022 56.7985 39.4903 14.5497

2 24.9317 15.4523 66.8484 52.5418 14.0335

3 26.1116 15.1958 65.3976 63.5033 15.2409

4 27.0921 16.1870 67.2243 66.7748 15.9430

5 27.8488 15.1563 69.2780 63.8398 15.3117

6 28.6709 17.1541 68.6387 56.2776 16.7705

7 28.3024 15.4470 61.3476 51.5239 14.5048

8 29.0827 17.1609 69.4926 56.7744 14.0241

9 29.5948 15.8405 68.6654 63.7903 15.3598

10 29.8149 15.9297 69.8077 67.6426 15.9263

Neural Computing and Applications

123

The delays in the analysis were calculated as follows:

The logs from the beginning are chronologically iterated as

they were recorded, while computing the end timestamp

ts_end for each transaction log as tsþ duration

(Eq. 17).

ts end ¼ tsþ duration ð17Þ

Logs with missing duration were skipped. The differ-

ence between consecutive logs is computed as in Eq. 18.

The negative difference diff is considered a delay.

diff ¼ ts endt � ts endt�1 ð18Þ

Based on our experience and experiments with domain

data, the optimal sliding window of 10 min is set with a 10-

min step for data aggregation. The waiting time for the

delayed logs is set to 5 min, which according to the anal-

ysis presented above should cover up to 97% of the actual

window logs. Following these settings, the data aggregator

is deployed as a Kafka consumer/producer, which reads

new Kafka logs and performs data aggregation.

4.3 Forecasting quality

In addition to DL data modeling (Sect. 3.2), the cross-

validation based on a rolling window is used, that is, the

data are divided into fixed-size sliding windows. This

approach allows us to train the model on a subset of the

data and then test it on a different subset of the data. By

repeating this process, we assess the model performance

and make sure that it generalizes well to new data without

overfitting and to ensure that our model makes accurate

predictions on incoming online stream data.

Table 9 s2s-GRU, CNN-GRU,

Transformer: model

performance by SMAPE for

multihorizons (1-10)

DL model Horizons conn_in conn_out dns_out http_in ssl_in

s2s-GRU 1 27.2171 13.7581 59.9974 45.6975 15.2562

2 28.9156 16.1512 71.6646 58.4491 14.4694

3 31.4228 15.6400 68.8700 69.0222 15.9253

4 32.3798 16.9289 71.1819 74.1978 16.8821

5 32.4376 14.9325 71.7328 73.8563 15.6125

6 32.0163 16.1928 73.1490 63.1393 17.0337

7 31.6855 14.4577 64.7610 54.7261 15.0476

8 31.9523 16.3741 74.0286 63.2969 15.0117

9 32.5453 15.7045 70.5987 71.9669 16.5346

10 32.4280 16.0650 71.1921 72.0785 16.7214

CNN-GRU 1 27.3830 14.3280 61.6766 43.3812 14.6482

2 28.5315 16.2699 68.2829 49.4702 14.8999

3 29.7744 16.3573 68.7906 58.3108 15.6417

4 30.6856 17.0369 72.1817 64.9133 15.9550

5 31.1615 16.3901 73.7276 58.3675 15.9773

6 31.2718 16.4988 70.7121 56.9650 16.3539

7 30.7577 14.7132 64.9167 49.7276 14.5116

8 30.2340 16.0579 69.5749 53.6250 14.6550

9 30.0093 15.6443 69.0254 61.7720 16.0080

10 29.5836 16.6208 70.8198 66.4263 16.0096

Transformer 1 25.4973 14.6590 62.4886 57.0054 10.9180

2 25.1883 15.7716 70.6864 60.1888 14.8486

3 25.5799 15.3155 65.2602 64.5912 16.7511

4 24.8320 16.7765 68.0568 67.7150 21.1624

5 25.1061 15.0851 64.7965 68.8427 19.4706

6 25.5120 16.0420 70.5444 63.4448 16.2439

7 26.9128 14.3541 66.2955 62.0608 10.6629

8 26.8877 16.0263 74.0908 61.5305 13.9453

9 27.5950 15.0606 68.5557 69.7200 16.7184

10 29.0168 15.9175 74.0419 71.2068 20.8841

Neural Computing and Applications

123

4.3.1 Hyperparameter setting

The complete setting of the hyperparameters is presented in

Table 7. Hyperparameter tuning is performed on the basis

of the Bayesian optimization sequential design strategy

[67] in combination with preliminary exploratory online

data analysis (Sect. 4.2.2) and our previous experience [68]

with data and DL modeling in the domain.

4.3.2 Model performance

The deployment model works well to monitor simultane-

ously conn in, conn out, dns out, http in, ssl in network

protocols. SMAPE and cosine are used as main metrics for

the performance measurements of the model, and the rest

are auxiliary supporting metrics. In practice, the number of

metrics used is greater for the development and

deployment of models. It is appropriate to mention that the

range SMAPE is \0%; 200%[(Eqs. 9).

• The forecasting quality for multiple (1–10) horizons in

one go with SMAPE (Tables 8, 9). The best model

performance value (the lower value is the better quality)

of combinations (protocol and horizon) is highlighted in

bold for the values in these two tables together for DL

models: MLP, CNN, GRU, s2s-GRU, CNN-GRU, and

transformer.

• The forecasting quality for multiple (1–10) horizons in

one go with cosine (Tables 10, 11). The best model

performance value (the higher value is the better

quality) of combinations (protocol and horizon) is

highlighted in bold for the values in these two

tables together for DL models: MLP, CNN, GRU,

s2s-GRU, CNN-GRU, and transformer.

Table 10 MLP, CNN, GRU:

model performance by cosine
for multihorizons (1-10)

DL model Horizons conn_in conn_out dns_out http_in ssl_in

MLP 1 0.9470 0.9807 0.8403 0.6360 0.9744

2 0.9425 0.9761 0.7764 0.5771 0.9731

3 0.9395 0.9792 0.7975 0.5785 0.9723

4 0.9376 0.9753 0.7718 0.5751 0.9727

5 0.9363 0.9779 0.7823 0.5743 0.9740

6 0.9367 0.9749 0.7634 0.6023 0.9712

7 0.9371 0.9794 0.8152 0.6282 0.9741

8 0.9362 0.9751 0.7588 0.5801 0.9729

9 0.9365 0.9787 0.7858 0.5891 0.9723

10 0.9362 0.9756 0.7654 0.5891 0.9726

CNN 1 0.9281 0.9772 0.7734 0.6034 0.9740

2 0.9280 0.9772 0.7732 0.6035 0.9740

3 0.9279 0.9772 0.7731 0.6035 0.9739

4 0.9278 0.9772 0.7725 0.6030 0.9739

5 0.9277 0.9773 0.7733 0.6028 0.9739

6 0.9277 0.9772 0.7730 0.6031 0.9739

7 0.9276 0.9772 0.7727 0.6026 0.9740

8 0.9277 0.9773 0.7723 0.6031 0.9739

9 0.9279 0.9772 0.7723 0.6031 0.9738

10 0.9279 0.9773 0.7717 0.6027 0.9739

GRU 1 0.9433 0.9831 0.8420 0.8853 0.9754

2 0.9420 0.9769 0.7606 0.6065 0.9750

3 0.9397 0.9785 0.7815 0.4165 0.9738

4 0.9379 0.9736 0.7693 0.3845 0.9721

5 0.9348 0.9759 0.7624 0.3613 0.9735

6 0.9312 0.9716 0.7534 0.4702 0.9711

7 0.9312 0.9771 0.8137 0.6317 0.9755

8 0.9262 0.9718 0.7432 0.5002 0.9751

9 0.9223 0.9763 0.7745 0.4168 0.9731

10 0.9233 0.9747 0.7689 0.4243 0.9723

Neural Computing and Applications

123

Table 11 s2s-GRU, CNN-GRU,

Transformer: model

performance (cosine) for

multihorizons (1–10)

DL model Horizons conn_in conn_out dns_out http_in ssl_in

s2s-GRU 1 0.9367 0.9814 0.8486 0.7417 0.9735

2 0.9313 0.9743 0.7572 0.5243 0.9737

3 0.9247 0.9774 0.7738 0.4406 0.9717

4 0.9202 0.9714 0.7634 0.4058 0.9699

5 0.9197 0.9766 0.7603 0.3932 0.9727

6 0.9177 0.9738 0.7458 0.5637 0.9699

7 0.9160 0.9802 0.8241 0.7025 0.9735

8 0.9121 0.9736 0.7327 0.5295 0.9729

9 0.9097 0.9771 0.7549 0.4503 0.9705

10 0.9094 0.9738 0.7488 0.4659 0.9699

CNN-GRU 1 0.9338 0.9811 0.7998 0.8202 0.9751

2 0.9289 0.9756 0.7488 0.6104 0.9733

3 0.9249 0.9759 0.7523 0.5139 0.9724

4 0.9209 0.9721 0.7193 0.4193 0.9722

5 0.9207 0.9729 0.7277 0.4761 0.9725

6 0.9218 0.9722 0.7364 0.5088 0.9715

7 0.9247 0.9783 0.7981 0.6943 0.9750

8 0.9246 0.9745 0.7659 0.5126 0.9739

9 0.9260 0.9776 0.7751 0.4518 0.9715

10 0.9294 0.9747 0.7628 0.4008 0.9721

Transformer 1 0.9285 0.9807 0.8313 0.7707 0.9755

2 0.9279 0.9755 0.7626 0.6153 0.9732

3 0.9270 0.9781 0.7882 0.4326 0.9707

4 0.9260 0.9744 0.7605 0.4414 0.9689

5 0.9243 0.9760 0.7663 0.4356 0.9717

6 0.9232 0.9749 0.7572 0.5165 0.9689

7 0.9243 0.9793 0.8201 0.7126 0.9746

8 0.9231 0.9748 0.7613 0.5548 0.9731

9 0.9227 0.9781 0.7896 0.4154 0.9702

10 0.9220 0.9746 0.7613 0.4258 0.9691

Table 12 GRU forecasting stability in n-step ahead forecast (SMAPE)

n conn_in conn_out dns_out http_in ssl_in

1 24.4384 13.4022 56.7985 39.4903 14.5497

2 29.2106 13.8107 63.4759 45.1138 15.0773

3 30.1755 15.2928 70.0952 43.3214 14.7377

4 33.1680 14.6043 69.1565 44.4586 14.6016

5 32.2127 15.4750 63.9237 48.2072 15.0173

6 29.2470 14.6225 64.2450 50.4903 14.7420

7 28.6201 14.4581 60.3089 44.9094 14.2955

8 31.4441 14.3926 61.6404 39.8739 14.7126

9 29.5515 14.4690 62.4645 43.3955 14.3298

10 30.3792 14.9451 62.4086 44.0573 14.7379

Table 13 GRU forecasting stability in n-step ahead forecast (cosine)

n conn_in conn_out dns_out http_in ssl_in

1 0.9433 0.9831 0.8420 0.8853 0.9754

2 0.9324 0.9823 0.8188 0.8349 0.9747

3 0.9204 0.9790 0.7991 0.8422 0.9750

4 0.9233 0.9807 0.8005 0.8577 0.9756

5 0.9126 0.9782 0.7755 0.8493 0.9758

6 0.9262 0.9805 0.8055 0.7907 0.9757

7 0.9245 0.9804 0.8002 0.8492 0.9768

8 0.9192 0.9806 0.8018 0.8719 0.9756

9 0.9186 0.9807 0.7980 0.8479 0.9766

10 0.9115 0.9798 0.7856 0.8259 0.9763

Neural Computing and Applications

123

• The forecasting stability for one-step-ahead of GRU

with SMAPE (Table 12, Fig. 8) and cosine (Table 13,

Fig. 9).

Experiments were carried out to measure the quality of

direct multihorizon forecasts for multichannels. The

selected results are presented as follows: Tables 8, 9, 10

and 11 present the quality of the model for multiple hori-

zons (1, 10) in one go simultaneously forecast with metrics

SMAPE and cosine. The model works simultaneously for

all selected network protocols. The main key findings

based on the evaluations of the experiments are as follows:

• The forecasting quality is not equal for all protocols due

to their dynamic nature in the monitored network

environment. Specifically, dns out and http in have

sharper and more spiky diagrams (Fig. 10), and their

fluctuations are more significantly reflected in the

metrics, especially in SMAPE.

• The cosine metric corresponds more or less to SMAPE

for all monitoring protocols. The average values of

metrics for multihorizon forecast in one go are higher in

comparison with one horizon forecast.

• The result of the multichannel forecast for one horizon

in one go is slightly better than the multihorizon

multichannel forecast in one go (Tables 12, 13).

• The quality of the model decreases gracefully with

time, which is the expectation and the reason why

teacher forcing is used for online deployment.

Fig. 7 GRU versus transformer performance for multiple horizon forecast in one go. The lower value indicates the better quality of the model by

SMAPE in (a, b). The higher value indicates the better quality of the model by cosine in (c, d)

Neural Computing and Applications

123

Tables 12 and 13 present the prediction stability in the

n-step ahead forecast with the GRU model. Values are in

stable ranges for various metrics (as visualized in

Figs. 8, 9); then, we do not emphasize ranges, nor the best

values in bold style like in other tables.

Regarding the selection of the best trained model to

deploy, the following key findings are concluded:

• GRU, CNN-GRU, and transformer are the top three

best models;

• MLP model can be considered as the baseline for

performance comparison, and there is no big difference

between MLP and CNN models;

• s2s-GRU acts as an encoder-decoder with GRU blocks.

The difference between the performance of GRU and

the performance of s2s-GRU is not significant in favor

of GRU;

• CNN-GRU can be seen as an improvement that

combines the advantages of both CNN and RNN. It is

better than CNN and nearly as good as GRU;

• Transformer gives interesting and impressive perfor-

mance. Its performance in the four tables is an average

of 10 times training. Sometimes, the model gives

superior performance, which outperforms other models.

Another time, the training is not always stable, which

can be caused by the dropout rate and normalization

layers. The consequence of that is that the teacher

forcing for transformer is more complicated in com-

parison with other models, concrete GRU such as the

need of learning rate warm-up and linear decay of the

learning rate to ensure the model stability.

In summary, GRU belongs to the best models trained with

our data. We chose GRU over transformer to deploy after

considering and comparing the possible deployment

obstacles of both models. GRU (Fig. 7a, c) has simpler

requirements with comparable or better performance

quality compared to the transformer (Fig. 7b, d).

The effect of direct multihorizon forecast in network

monitoring. Multihorizon forecasts (Tables 8, 9, 10, 11)

have slightly higher errors compared to the forecast for one

horizon (Table 12, 13). This effect can be expected due to

the stochastic character of network monitoring and the

more complex computational models of multihorizon

forecasting on multichannels (Figs. 8, 9). It also reflects

the average errors of multiple horizon modeling (Sect. 3.2).

4.4 Anomaly detection results

Figure 10 illustrates the proactive prediction of the normal

state as the blue soft line, which takes place 10 min in

advance compared to the real monitoring value of the

protocols http and ssl (green lines). The http protocol has a

clear pattern of connections, which is well modeled by the

DL approach. Such patterns are difficult to model with

traditional approaches (Sect. 2).

The abnormal state in proactive network monitoring is

also illustrated in Fig. 10, where the spikes of the green

lines (real monitoring value) significantly exceed the blue

soft line of the proactive predicted states. The difference

between two lines (blue and green) is calculated in

Sect. 3.4 as the angle between two vectors (Eq. 15) with

threshold rules (Eq. 16).

It is suitable to note that monitoring systems usually do

not have two lines (blue, green) as in Fig. 10 of our

Kibana’s dashboard, but only one line of real monitoring

values.

The next detected anomaly is shown in Fig. 11, where

the alerts are displayed in red alert areas. The proactive

effect is 10 min in advance (with k ¼ 1, that is, one horizon

Fig. 8 GRU forecasting stability with SMAPE for multiple-step ahead

Fig. 9 GRU forecasting stability with cosine for multiple-step ahead

Neural Computing and Applications

123

ahead forecasting, Fig. 11) in the flavor of the network

administration to react to the abnormal situation.

However, the concrete type of anomaly excessive port

scanning is not detected using our anomaly-based detection

but reported as the feedback of the network administrator

after log examination. Our anomaly-based detection only

alarms the anomaly state (red alert area) in network secu-

rity according to the high deviation from the baseline (blue

area) of the actual connection number (gray area) using the

anomaly detection rule (Sect. 3.4, Eq. 16).

The proactive time effect is configurable (with the value

of steps ahead k[1) which can give network

administrators more time to react. The number of warning

alerts is set by the value a as described in Eq. 15. The

higher the value of a (in the range of 0 to 1), the lower the

number of alerts for anomaly warnings. Our default value a
is set to 0.5 for the testing production environment (Fig. 4).

The deployed dashboard (Fig. 10) allows us to add a

dynamic adaptive threshold baseline to improve awareness

of the situation. The development of the entire software

stack using a declarative composition simplifies AIOps

deployment in practice.

Currently, control over the benign data stream is up to

the SOC operators, who filter malicious data out of this

Fig. 10 Kibana’s dashboard for online monitoring (HTTP and SSL

protocols) backed with Kafka and Elasticsearch in production with

GRU model deployment on stream data. The blue line is the forecast

used as the baseline over time. The green line is the real monitoring

values with anomalies indicated as significant excesses in comparison

with the baseline (color figure online)

Fig. 11 Alert warning in the Kibana’s production dashboard with

GRU model deployment: the forecast baseline (gray color) and the

actual state (blue color), i.e., the real number of unique incoming

connections within a sliding 10 min window. Further inspection of

alert-flagged windows (red color) revealed excessive port scanning

activity during the Russian–Ukrainian conflict from the outside to the

monitored network (color figure online)

Neural Computing and Applications

123

stream based on the monitoring results. In the event of a

detected anomaly based on the rules (Eq. 16), the update of

the model could also be performed automatically without

manual intervention in the automatic teacher forcing pro-

cess (update and exchange model). The initial model,

which is used as the starting model for online prediction, is

always trained on benign historical data. When the model

is already running online, the quality of the model can be

validated backward. If the accuracy of the prediction is

below, a threshold or the anomaly level of the data does not

exceed the predefined threshold (the parameter a in

Eq. 16), then the data can be considered benign and used to

update the model. If the accuracy is above the threshold, an

anomaly alert is raised and the monitoring data are

excluded from the teacher forcing training process (Fig. 5).

We prefer to deploy one model over multiple or

ensemble models. The deployment of a single DL model is

really not an easy task. Deployment is not a simple process

and requires building a complicated pipeline for every

model retraining. The combination of more models in

production certainly increases the deployment and pro-

duction cost with model and data curation online in real

time.

5 Conclusion

The work presented in this paper presents the development

of a DL-based multihorizon forecast model that simulta-

neously models multiple monitoring channels in an unsu-

pervised manner, allowing a comprehensive view of

network activities. With the trained DL model, the

deployment of an AIOps module for proactive network

security monitoring is realized in cooperation with the IDS

working in real-time production.

The deployment of an intelligent module into a pro-

duction environment is often accompanied by various

obstacles, which are presented in this work. Moving for-

ward, there are several directions for future work. A

promising approach involves integrating innovative con-

cepts for hybrid detection that combine anomaly-based

detection with misuse-based detection for attack classifi-

cation. It is also imperative to validate anomaly detection

scores using well-defined labeled reference datasets. Data

curation and model maintenance in production can be time

intensive and require thorough verification, especially in

the context of evolving data distribution and scale. Another

direction is distributed and federated learning for interop-

erability to reduce the sensitive data sharing silos in

cybersecurity.

Acknowledgements This work is funded by the European Union

through the Horizon Europe AI4EOSC project under grant number

101058593.

Author contributions G.N. was contributed conceptualization, formal

analysis, investigation, methodology, project administration, soft-

ware, supervision, visualization, writing–original draft, and writing–

review and editing. S.D. was involved in data curation, investigation,

resources, software, validation, visualization, writing–original draft,

and writing–review and editing. V.T.: was performed data curation,

resources, software, validation, and writing–review and editing.

A.L.G. was responble for methodology, software, validation, and

writing–review and editing.

Funding Open access funding provided by The Ministry of Educa-

tion, Science, Research and Sport of the Slovak Republic in coop-

eration with Centre for Scientific and Technical Information of the

Slovak Republic.

Data availability https://github.com/privacy-security/aiops. We pro-

vide a sample of anonymized and preprocessed buffer data of 6 weeks

when raw stream data cannot be stored in static form.

Declarations

Conflict of interest The authors declare that they have no known

conflict of interest or competing financial interests that could appear

to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Tan L, Yu K, Ming F, Cheng X, Srivastava G (2021) Secure and

resilient artificial intelligence of things: a honeynet approach for

threat detection and situational awareness. IEEE Consum Elec-

tron Mag 11(3):69–78. https://doi.org/10.1109/MCE.2021.

3081874

2. Fahy C, Yang S, Gongora M (2022) Scarcity of labels in non-

stationary data streams: a survey. ACM Comput Surv 55(2):1–39.

https://doi.org/10.1145/3494832

3. Chica JCC, Imbachi JC, Vega JFB (2020) Security in SDN: a

comprehensive survey. J Netw Comput Appl 159:102595. https://

doi.org/10.1016/j.jnca.2020.102595

4. Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H,

Wang C (2018) Machine learning and deep learning methods for

cybersecurity. IEEE Access 6:35365–35381. https://doi.org/10.

1109/ACCESS.2018.2836950

5. Nisioti A, Loukas G, Laszka A, Panaousis E (2021) Data-driven

decision support for optimizing cyber forensic investigations.

Neural Computing and Applications

123

https://github.com/privacy-security/aiops
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MCE.2021.3081874
https://doi.org/10.1109/MCE.2021.3081874
https://doi.org/10.1145/3494832
https://doi.org/10.1016/j.jnca.2020.102595
https://doi.org/10.1016/j.jnca.2020.102595
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950

IEEE Trans Inf Forensics Secur 16:2397–2412. https://doi.org/10.

1109/TIFS.2021.3054966

6. Chen Z, Xu G, Mahalingam V, Ge L, Nguyen J, Yu W, Lu C

(2016) A cloud computing based network monitoring and threat

detection system for critical infrastructures. Big Data Res

3:10–23. https://doi.org/10.1016/j.bdr.2015.11.002

7. Bhatia S, Liu R, Hooi B, Yoon M, Shin K, Faloutsos C (2022)

Real-time anomaly detection in edge streams. ACM Trans Knowl

Discov Data 16(4):1–22. https://doi.org/10.1145/3494564

8. Khraisat A, Gondal I, Vamplew P, Kamruzzaman J (2019) Sur-

vey of intrusion detection systems: techniques, datasets and

challenges. Cybersecurity 2(1):1–22. https://doi.org/10.1186/

s42400-019-0038-7

9. Dasgupta D, Akhtar Z, Sen S (2022) Machine learning in

cybersecurity: a comprehensive survey. J Def Model Simul

19(1):57–106. https://doi.org/10.1177/1548512920951275

10. Azeez NA, Bada TM, Misra S, Adewumi A, Vyver C, Ahuja R

(2020) Intrusion detection and prevention systems: an updated

review. In: Data management, analytics and innovation: pro-

ceedings of ICDMAI 2019, vol 1, pp 685–696. https://doi.org/10.

1007/978-981-32-9949-8_48

11. Cooper S (2023) Intrusion detection systems explained: 14 Best

IDS software tools reviewed. Accessed 11 Nov 2023. https://

www.comparitech.com/net-admin/network-intrusion-detection-

tools/

12. BasuMallick C (2022) Top 10 network behavior analysis soft-

ware in 2022. Accessed 11 Nov 2023. https://www.spiceworks.

com/tech/networking/articles/best-nba-software/

13. Ibrahim A, Thiruvady D, Schneider J, Abdelrazek M (2020) The

challenges of leveraging threat intelligence to stop data breaches.

Front Comput Sci 2:36. https://doi.org/10.3389/fcomp.2020.

00036

14. Melgar-Garcı́a L, Gutiérrez-Avilés D, Rubio-Escudero C, Tron-

coso A (2023) Identifying novelties and anomalies for incre-

mental learning in streaming time series forecasting. Eng Appl

Artif Intell 123:106326. https://doi.org/10.1016/j.engappai.2023.

106326

15. Nguyen G, Nguyen BM, Tran D, Hluchy L (2018) A heuristics

approach to mine behavioural data logs in mobile malware

detection system. Data Knowl Eng 115:129–151. https://doi.org/

10.1016/j.datak.2018.03.002

16. Monshizadeh M, Khatri V, Atli BG, Kantola R, Yan Z (2019)

Performance evaluation of a combined anomaly detection plat-

form. IEEE Access 7:100964–100978. https://doi.org/10.1109/

ACCESS.2019.2930832

17. Kilincer IF, Ertam F, Sengur A (2021) Machine learning methods

for cyber security intrusion detection: datasets and comparative

study. Comput Netw 188:107840. https://doi.org/10.1016/j.com

net.2021.107840

18. Le DC, Zincir-Heywood N (2020) Exploring anomalous beha-

viour detection and classification for insider threat identification.

Int J Netw Manag. https://doi.org/10.1002/nem.2109

19. Djeddi AZ, Hafaifa A, Hadroug N, Iratni A (2022) Gas turbine

availability improvement based on long short-term memory net-

works using deep learning of their failures data analysis. Process

Saf Environ Prot 159:1–25. https://doi.org/10.1016/j.psep.2021.

12.050

20. Sayed SA, Abdel-Hamid Y, Hefny HA (2023) Artificial intelli-

gence-based traffic flow prediction: a comprehensive review.

J Electr Syst Inf Technol. https://doi.org/10.1186/s43067-023-

00081-6

21. Ahmad S, Lavin A, Purdy S, Agha Z (2017) Unsupervised real-

time anomaly detection for streaming data. Neurocomputing

262:134–147. https://doi.org/10.1016/j.neucom.2017.04.070

22. Sun Y, Dai H (2021) Constructing accuracy and diversity

ensemble using pareto-based multi-objective learning for

evolving data streams. Neural Comput Appl 33:6119–6132.

https://doi.org/10.1007/s00521-020-05386-5

23. Aguiar GJ, Cano A (2023) Enhancing concept drift detection in

drifting and imbalanced data streams through meta-learning. In:

2023 IEEE international conference on big data (BigData). IEEE

Computer Society, pp 2648–2657. https://doi.org/10.1109/Big

Data59044.2023.10386364

24. Takele AK, Villány B (2023) LSTM-autoencoder based incre-

mental learning for industrial Internet of Things. IEEE Access.

https://doi.org/10.1109/ACCESS.2023.3339556

25. Ferrag MA, Maglaras L, Moschoyiannis S, Janicke H (2020)

Deep learning for cyber security intrusion detection: approaches,

datasets, and comparative study. J Inf Secur Appl 50:102419.

https://doi.org/10.1016/j.jisa.2019.102419

26. Thaseen IS, Chitturi AK, Al-Turjman F, Shankar A, Ghalib MR,

Abhishek K (2020) An intelligent ensemble of long-short-term

memory with genetic algorithm for network anomaly identifica-

tion. Trans Emerg Telecommun Technol. https://doi.org/10.1002/

ett.4149

27. Tang B, Matteson DS (2021) Probabilistic transformer for time

series analysis. In: Advances in neural information processing

systems, vol 34, pp 23592–23608. https://proceedings.neurips.cc/

paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf

28. Zerveas G, Jayaraman S, Patel D, Bhamidipaty A, Eickhoff C

(2021) A transformer-based framework for multivariate time

series representation learning. In: Proceedings of the 27th ACM

SIGKDD conference on knowledge discovery & data mining,

pp 2114–2124. https://doi.org/10.1145/3447548.3467401

29. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In:

Advances in neural information processing systems, vol 30.

https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

30. Pérez D, Alonso S, Morán A, Prada MA, Fuertes JJ, Domı́nguez

M (2021) Evaluation of feature learning for anomaly detection in

network traffic. Evol Syst 12(1):79–90. https://doi.org/10.1007/

s12530-020-09342-5

31. Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set

for network intrusion detection systems (unsw-nb15 network data

set). In: 2015 Military communications and information systems

conference (MilCIS). IEEE, pp 1–6. https://doi.org/10.1109/Mil

CIS.2015.7348942

32. Pérez SI, Moral-Rubio S, Criado R (2021) A new approach to

combine multiplex networks and time series attributes: building

intrusion detection systems (IDS) in cybersecurity. Chaos Soli-

tons Fractals 150:111143. https://doi.org/10.1016/j.chaos.2021.

111143

33. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P-A

(2019) Deep learning for time series classification: a review. Data

Min Knowl Disc 33(4):917–963. https://doi.org/10.1007/s10618-

019-00619-1

34. Lim B, Zohren S (2021) Time-series forecasting with deep

learning: a survey. Philos Trans R Soc A 379(2194):20200209.

https://doi.org/10.1098/rsta.2020.0209

35. Lim B, Arık SÖ, Loeff N, Pfister T (2021) Temporal fusion

transformers for interpretable multi-horizon time series fore-

casting. Int J Forecast 37(4):1748–1764. https://doi.org/10.1016/j.

ijforecast.2021.03.012

36. Quaedvlieg R (2021) Multi-horizon forecast comparison. J Bus

Econ Stat 39(1):40–53. https://doi.org/10.1080/07350015.2019.

1620074

37. Yang Y, Lv H, Chen N (2022) A survey on ensemble learning

under the era of deep learning. Artif Intell Rev. https://doi.org/10.

1007/s10462-022-10283-5

Neural Computing and Applications

123

https://doi.org/10.1109/TIFS.2021.3054966
https://doi.org/10.1109/TIFS.2021.3054966
https://doi.org/10.1016/j.bdr.2015.11.002
https://doi.org/10.1145/3494564
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1177/1548512920951275
https://doi.org/10.1007/978-981-32-9949-8_48
https://doi.org/10.1007/978-981-32-9949-8_48
https://www.comparitech.com/net-admin/network-intrusion-detection-tools/
https://www.comparitech.com/net-admin/network-intrusion-detection-tools/
https://www.comparitech.com/net-admin/network-intrusion-detection-tools/
https://www.spiceworks.com/tech/networking/articles/best-nba-software/
https://www.spiceworks.com/tech/networking/articles/best-nba-software/
https://doi.org/10.3389/fcomp.2020.00036
https://doi.org/10.3389/fcomp.2020.00036
https://doi.org/10.1016/j.engappai.2023.106326
https://doi.org/10.1016/j.engappai.2023.106326
https://doi.org/10.1016/j.datak.2018.03.002
https://doi.org/10.1016/j.datak.2018.03.002
https://doi.org/10.1109/ACCESS.2019.2930832
https://doi.org/10.1109/ACCESS.2019.2930832
https://doi.org/10.1016/j.comnet.2021.107840
https://doi.org/10.1016/j.comnet.2021.107840
https://doi.org/10.1002/nem.2109
https://doi.org/10.1016/j.psep.2021.12.050
https://doi.org/10.1016/j.psep.2021.12.050
https://doi.org/10.1186/s43067-023-00081-6
https://doi.org/10.1186/s43067-023-00081-6
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1007/s00521-020-05386-5
https://doi.org/10.1109/BigData59044.2023.10386364
https://doi.org/10.1109/BigData59044.2023.10386364
https://doi.org/10.1109/ACCESS.2023.3339556
https://doi.org/10.1016/j.jisa.2019.102419
https://doi.org/10.1002/ett.4149
https://doi.org/10.1002/ett.4149
https://proceedings.neurips.cc/paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf
https://doi.org/10.1145/3447548.3467401
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1007/s12530-020-09342-5
https://doi.org/10.1007/s12530-020-09342-5
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1016/j.chaos.2021.111143
https://doi.org/10.1016/j.chaos.2021.111143
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1080/07350015.2019.1620074
https://doi.org/10.1080/07350015.2019.1620074
https://doi.org/10.1007/s10462-022-10283-5
https://doi.org/10.1007/s10462-022-10283-5

38. Ganaie MA, Hu M, Malik A, Tanveer M, Suganthan P (2022)

Ensemble deep learning: a review. Eng Appl Artif Intell

115:105151. https://doi.org/10.1016/j.engappai.2022.105151

39. Paleyes A, Urma R-G, Lawrence ND (2022) Challenges in

deploying machine learning: a survey of case studies. ACM

Comput Surv 55(6):1–29. https://doi.org/10.1145/3533378

40. Gil L, Liska A (2019) Security with AI and machine learning, 1st

edn. O’Reilly Media, Inc., Sebastopol

41. Alshaibi A, Al-Ani M, Al-Azzawi A, Konev A, Shelupanov A

(2022) The comparison of cybersecurity datasets. Data 7(2):22.

https://doi.org/10.3390/data7020022

42. Lippmann R, Haines JW, Fried DJ, Korba J, Das K (2000) The

1999 DARPA off-line intrusion detection evaluation. Comput

Netw 34(4):579–595. https://doi.org/10.1016/S1389-

1286(00)00139-0

43. Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed

analysis of the KDD cup 99 data set. In: 2009 IEEE symposium

on computational intelligence for security and defense applica-

tions. IEEE, pp 1–6. https://doi.org/10.1109/CISDA.2009.

5356528

44. UNB: Canadian Institute for Cybersecurity ISCX datasets.

Accessed 11 Nov 2023 (2016). https://www.unb.ca/cic/datasets/

index.html

45. Fontugne R, Borgnat P, Abry P, Fukuda K (2010) Mawilab:

combining diverse anomaly detectors for automated anomaly

labeling and performance benchmarking. In: ACM CoNEXT 10.

http://www.fukuda-lab.org/mawilab/index.html

46. Ring M, Wunderlich S, Grüdl D, Landes D, Hotho A (2017)

Creation of flow-based data sets for intrusion detection. J Inf

Warf 16(4):41–54

47. Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward gen-

erating a new intrusion detection dataset and intrusion traffic

characterization. ICISSp 1:108–116. https://doi.org/10.5220/

0006639801080116

48. Division C (2023) Insider threat test dataset. Accessed 11:2016.

https://doi.org/10.1184/R1/12841247.v1

49. Perdices D, Garcı́a-Dorado JL, Ramos J, De Pool R, Aracil J

(2021) Towards the automatic and schedule-aware alerting of

internetwork time series. IEEE Access 9:61346–61358. https://

doi.org/10.1109/ACCESS.2021.3073598

50. Bakirov R, Fay D, Gabrys B (2021) Automated adaptation

strategies for stream learning. Mach Learn 110(6):1429–1462.

https://doi.org/10.1007/s10994-021-05992-x

51. Basati A, Faghih MM (2022) DFE: efficient IoT network intru-

sion detection using deep feature extraction. Neural Comput Appl

34(18):15175–15195. https://doi.org/10.1007/s00521-021-06826-

6

52. Perdices D, Vergara JEL, Ramos J (2021) Deep-FDA: using

functional data analysis and neural networks to characterize

network services time series. IEEE Trans Netw Serv Manag

18(1):986–999. https://doi.org/10.1109/TNSM.2021.3053835

53. Martı́n C, Langendoerfer P, Zarrin PS, Dı́az M, Rubio B (2022)

Kafka-ML: connecting the data stream with ML/AI frameworks.

Futur Gener Comput Syst 126:15–33. https://doi.org/10.1016/j.

future.2021.07.037

54. Keserwani PK, Govil MC, Pilli ES (2023) An effective NIDS

framework based on a comprehensive survey of feature

optimization and classification techniques. Neural Comput Appl

35(7):4993–5013. https://doi.org/10.1007/s00521-021-06093-5

55. Garcı́a ÁL, De Lucas JM, Antonacci M, Zu Castell W, David M,

Hardt M, Iglesias LL, Moltó G, Plociennik M, Tran V et al (2020)

A cloud-based framework for machine learning workloads and

applications. IEEE Access 8:18681–18692. https://doi.org/10.

1109/ACCESS.2020.2964386

56. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series

analysis: forecasting and control. Wiley, Hoboken

57. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles

and practice. OTexts, Melbourne

58. Nguyen G, Dlugolinsky S, Tran V, López Garcı́a Á (2020) Deep

learning for proactive network monitoring and security protec-

tion. IEEE Access 8:1–21. https://doi.org/10.1109/ACCESS.

2020.2968718

59. Goubeaud M, Joußen P, Gmyrek N, Ghorban F, Kummert A

(2021) White noise windows: data augmentation for time series.

In: 2021 7th International conference on optimization and

applications (ICOA). IEEE, pp 1–5. https://doi.org/10.1109/

ICOA51614.2021.9442656

60. Dickey DA, Fuller WA (1979) Distribution of the estimators for

autoregressive time series with a unit root. J Am Stat Assoc

74(366a):427–431. https://doi.org/10.1080/01621459.1979.

10482531

61. Cerqueira V, Torgo L, Soares C (2023) Model selection for time

series forecasting an empirical analysis of multiple estimators.

Neural Process Lett. https://doi.org/10.1007/s11063-023-11239-8

62. Talavera E, Iglesias G, González-Prieto Á, Mozo A, Gómez-

Canaval S (2023) Data augmentation techniques in time series

domain: a survey and taxonomy. Neural Comput Appl. https://

doi.org/10.1007/s00521-023-08459-3

63. Lamb AM, Alis Parth Goyal AG, Zhang Y, Zhang S, Courville

AC, Bengio Y (2016) Professor forcing: a new algorithm for

training recurrent networks. In: Advances in neural information

processing systems, vol 29. https://proceedings.neurips.cc/paper/

2016/file/16026d60ff9b54410b3435b403afd226-Paper.pdf

64. Pokhrel SR (2022) Learning from data streams for automation

and orchestration of 6g industrial IoT: toward a semantic com-

munication framework. Neural Comput Appl

34(18):15197–15206. https://doi.org/10.1007/s00521-022-07065-

z

65. ZEEK (2023) Zeek’s example logs. Accessed 11 Nov 2023.

https://docs.zeek.org/en/current/examples/logs/

66. Zeek (2024) Zeek documentation—Quick Start Guide—Book of

Zeek. Accessed 26 Jan 2024. https://docs.zeek.org/en/master/

quickstart.html

67. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian

optimization of machine learning algorithms. In: Advances in

neural information processing systems, vol 25

68. Nguyen G, Dlugolinsky S, Bobák M, Tran V, López Garcı́a Á,

Heredia I, Malı́k P, Hluchý L (2019) Machine learning and deep

learning frameworks and libraries for large-scale data mining: a

survey. Artif Intell Rev 52(1):77–124. https://doi.org/10.1007/

s10462-018-09679-z

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1145/3533378
https://doi.org/10.3390/data7020022
https://doi.org/10.1016/S1389-1286(00)00139-0
https://doi.org/10.1016/S1389-1286(00)00139-0
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
http://www.fukuda-lab.org/mawilab/index.html
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1184/R1/12841247.v1
https://doi.org/10.1109/ACCESS.2021.3073598
https://doi.org/10.1109/ACCESS.2021.3073598
https://doi.org/10.1007/s10994-021-05992-x
https://doi.org/10.1007/s00521-021-06826-6
https://doi.org/10.1007/s00521-021-06826-6
https://doi.org/10.1109/TNSM.2021.3053835
https://doi.org/10.1016/j.future.2021.07.037
https://doi.org/10.1016/j.future.2021.07.037
https://doi.org/10.1007/s00521-021-06093-5
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1109/ACCESS.2020.2968718
https://doi.org/10.1109/ACCESS.2020.2968718
https://doi.org/10.1109/ICOA51614.2021.9442656
https://doi.org/10.1109/ICOA51614.2021.9442656
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1007/s11063-023-11239-8
https://doi.org/10.1007/s00521-023-08459-3
https://doi.org/10.1007/s00521-023-08459-3
https://proceedings.neurips.cc/paper/2016/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://doi.org/10.1007/s00521-022-07065-z
https://doi.org/10.1007/s00521-022-07065-z
https://docs.zeek.org/en/current/examples/logs/
https://docs.zeek.org/en/master/quickstart.html
https://docs.zeek.org/en/master/quickstart.html
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1007/s10462-018-09679-z

	Network security AIOps for online stream data monitoring
	Abstract
	Introduction
	Related work
	Network behavior analysis
	Predictive analysis in cybersecurity
	AI for IT operations

	Method description
	Cooperation architecture
	Multihorizon multichannel modeling as dynamic baselines
	Model online deployment
	Online anomaly detection

	Experiments and evaluation
	Software stack deployment
	Online stream data
	Data stream processing
	Online delayed logging effect

	Forecasting quality
	Hyperparameter setting
	Model performance

	Anomaly detection results

	Conclusion
	Author contributions
	Data availability
	References

