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Abstract
This study presents the development of sliding mode control (SMC) using the diagonal recurrent neural network (DRNN)

for nonlinear systems. Firstly, the SMC for linear systems is developed for nonlinear coupled tank system. Second, the

DRNN is used to design the equivalent part of the SMC law, which is performed to approximate the dynamics of a

controlled process. Third, the sliding surface for the switching control is developed using the DRNN. The DRNN

parameters are tuned using Lyapunov function to achieve the controlled process stability. For the developed scheme,

discontinuous signum function is used to compensate the chattering phenomenon. The developed scheme is applied for

controlling the uncertain nonlinear coupled tank system. The simulation results indicate that the developed scheme can

respond to the effects of system uncertainties compared to other existing schemes.

Keywords Sliding mode control � Diagonal recurrent neural network � Sliding surface � Coupled tank system �
Lyapunov function

1 Introduction

Most practical dynamic systems have uncertain effects

such as parameter uncertainties, external disturbances,

model nonlinearities and structure uncertainties. These

challenging problems cannot be covered using linear and

conventional controllers. Subsequently, it is essential to

develop robust control schemes for solving such problems

and to obtain certain performance requirements [1–3]. In

recent years, robust adaptive schemes based on trajectory

tracking have attracted great attention for nonlinear sys-

tems such as adaptive probabilistic Takagi–Sugeno–Kang

(TSK) fuzzy controller [4], adaptive interval type-2 TSK

fuzzy controller [5], adaptive sliding mode control (SMC)

[6] and SMC based on proportional-integral-derivative

(PID) and proportional-integral (PI) sliding surface,

respectively [7, 8].

SMC approach is a class of the variable structure control

schemes, which is a nonlinear robust controller that is able

to respond insensitivity to structure uncertainties, rejection

of an external disturbance, fast and good transient

response, and stable control system [9]. SMC contains a

switching control law that moves the states of the plant

from any initial value on the sliding surface, which is set by

the user in the switching surface and to preserve the system

states on a desired sliding surface [10, 11]. However, the

SMC includes the following problems: (1) it is necessary to

obtain the precise mathematical model for the controlled

process to design the SMC [9]. This problem decreases the

performance of the controller in some control applications.

(2) chattering phenomenon, which is an inherent problem

in the design of SMC [10]. This problem also decreases the

SMC performance. (3) uncertainty bounds, which are

required for designing the switching control law of SMC

[11]. To avoid such problems, several researchers proposed

several approaches for solving the chattering problems

such as approximating the discontinuous switching control

law by using saturation function [12], using low pass filter

[13], using variable structure adaptive control [14] and
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using adaptive intelligent technique [15]. On the other

hand, some researchers used the adaptive control schemes

using Lyapunov theory such as genetic algorithm [16],

event-triggering dissipative control [17] and other schemes

for complex industrial systems [18] to handle the problem

of knowing the perfect mathematical model of the con-

trolled process. In [19], SMC with a bound estimation was

introduced for controlling robot manipulator to solve the

problem of the uncertainty bounds.

In recent years, several researchers have integrated the

SMC with intelligent techniques such as fuzzy logic sys-

tems (FLSs) [20] and neural networks (NNs)

[9, 11, 21–29]. In [10], the fuzzy SMC with PI sliding

surface for linear system was introduced. SMC law

requires a precise knowledge about the controlled process.

Moreover, the FLS was proposed to compensate the chat-

tering phenomenon. In [9], an adaptive radial basis func-

tion NN (RBFNN)-based SMC for nonlinear plants was

introduced. RBFNN was performed to approximate the

unknown parameters of the controlled process. Also, the

problem of chattering is solved based on a smooth con-

tinuous control action. In [11], a NN-based SMC for

rotating stall and surge in axial compressors was intro-

duced. The adaptive NN was used to avoid the problem of

obtaining a precise mathematical model for the controlled

process. In [25], a recurrent NN (RNN) based fuzzy SMC

was introduced for 4-degree freedom remotely operated

vehicle. The model uncertainties were compensated and

estimated using RNN. On the other hand, the chattering

phenomenon was handled using FLS as a switching term.

In [29], NN was proposed to approximate the unknown

continuous uncertainties and disturbance for an autono-

mous surface vehicle where the uncertainty bounds for the

sliding surface was compensated using Lyapunov theory.

1.1 Motivation

In this paper, SMC based on diagonal RNN (DRNN) is

introduced for uncertain nonlinear systems. The developed

controller is motivated from the previous published works

in [9–11, 21–29] to cover the disadvantages of the work in

[10]. First, the SMC in [10], which was designed to linear

systems is developed to uncertain nonlinear system (cou-

pled tank system as a benchmark in this paper). Second, the

NN in [9, 11, 21–29], which was used to approximate the

unknown controlled system is developed to DRNN as the

first time that used with SMC based on the authors’ best

knowledge. DRNN is a type of NN, which belongs to the

partially connected RNNs [30]. DRNN was introduced to

identify nonlinear systems, which have a superior modeling

accuracy compared with other NN techniques [31].

In this paper, the SMC is designed based on the DRNN.

The SMC law consists of two terms; the first one is the

equivalent control law, which is performed based on the

DRNN. The nonlinear controlled system is approximated

using DRNN. The second part is the switching control

signal, which is dependent on the sliding surface. The

sliding surface is performed based on DRNN. For the

proposed controller, the discontinuous signum function is

used to compensate the chattering problem. The updating

weights of DRNN are obtained using Lyapunov function to

guarantee the controlled system stability. The proposed

scheme is designed for controlling uncertain nonlinear

coupled tank system. The simulation results indicate that

the developed controller can respond to the effects of

system uncertainties and external disturbances compared to

other existing schemes.

1.2 Novelties and contributions

The main contributions of this study are summarized as:

1. Design a novel SMC based on the DRNN for nonlinear

systems that is motivated from previous works.

Fig. 1 Coupled tank system [32]

Table 1 Parameters of coupled tank system [32]

Ad Destination tank area 0.03 m2

As Source tank area 0.08 m2

C1 Controlled cross section of valve 1 0.00008 m2

C2 Controlled cross section of valve 2 0.00008 m2

C3 Controlled cross section of valve 3 0.00008 m2

D1 Discharge coefficient 1

D2 Discharge coefficient 1

D3 Discharge coefficient 1

L1 Destination tank level 0.6 m

L2 Source tank level 0.2 m

u Input voltage 12 v

Kg Pump gain 7.5 m3/s.v

Kt Transducer gain 40 v/m

g Gravity constant 9.8 m/s
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2. Developing the sliding surface based on DRNN.

3. Updating the DRNN weights using Lyapunov function

to achieve the controlled system stability.

4. The problem of the knowledge of the controlled system

and chattering phenomenon are compensated.

The remainder of this paper is organized as: Sect. 2

presents the problem formulation. The second order SMC

for nonlinear coupled tank system is introduced in Sect. 2.

The proposed SMC based on the DRNN is presented in

Sect. 3. The updating algorithm for the DRNN parameters

using Lyapunov function is presented in Sect. 4. Simula-

tion results for the coupled tank system is presented in

Sect. 5. Finally, conclusions are given in Sect. 6.

2 Problem formulation

Figure 1 shows the coupled tank system, which is used in

this paper as a benchmark. It is considered as one of the

hydraulic control systems in industrial applications

[32, 33]. The function of the controller is controlling the

destination tank level (L1) by varying the pump (P) flow

using valve 1 or by valve 2, which is considered as a

disturbance.

The relation between the pump supply voltage (u) and

the input flow (Q) is given as [32]:

Q ¼ Kgu

Q2 ¼ C2D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðL1 � L2Þ
p

Q3 ¼ C3D3

ffiffiffiffiffiffiffiffiffiffi

2gL2

p

8

<

:

ð1Þ

The destination tank can be filled from the source tank

by opening the valve 1 placed after the pump, which

changes the incoming flow. The output flow (Q2) can

change using valve 2, which inserted below the destination

tank. Consider Q1 ¼ Q for the level control case, we obtain

the following using the flow equilibrium equation [32]:

_L1 ¼ 1

Ad
ðQ1 � Q2Þ

_L2 ¼ 1

As
ðQ2 � Q3Þ

8

>

<

>

:

ð2Þ

Finally, the mathematical model of the coupled tank

system is given as [32]:

_L1 ¼ 1

Ad
ðKgu� C2D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðL1 � L2Þ
p

Þ

_L2 ¼ 1

As
ðC2D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðL1 � L2Þ
p

� C3D3

ffiffiffiffiffiffiffiffiffiffi

2gL2

p

y ¼ KtL1

8

>

>

>

<

>

>

>

:

ð3Þ

The above equation can be rewritten as the following

considering xa ¼ 0ptxa1xa2

� �

, xa1 ¼ L1 and xa2 ¼ L2

_xa1 ¼ 1

Ad
ðKgu� C2D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðxa1 � xa2Þ
p

Þ

_xa2 ¼ 1

As
ðC2D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðxa1 � xa2Þ
p

� C3D3

ffiffiffiffiffiffiffiffiffiffiffi

2gxa2

p

y ¼ Ktxa1

8

>

>

>

<

>

>

>

:

ð4Þ

Using the above equation, the nonlinear model of the

coupled tank system is obtained as:

_xa1 ¼ f 1 xað Þ þ Bu
_xa2 ¼ f 2 xað Þ
y ¼ Cxa1

8

<

:

ð5Þ

where

f 1 xað Þ ¼ �C2D2

Ad

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g xa1 � xa2ð Þ
p

, C ¼ Kt, f 2 xað Þ ¼
C2D2

As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g xa1 � xa2ð Þ
p

� C3D3

As

ffiffiffiffiffiffiffiffiffiffiffi

2gxa2

p
and B ¼ Kg

Ad
.

The nonlinear model, which is described in Eq. (5), can

be modified by considering parameter uncertainties.

Therefore, the nonlinear model is given as:

_xa1 ¼ f 1n xað Þ þ Df 1 xað Þ þ Buþ E1ðtÞ
_xa2 ¼ f 2n xað Þ þ Df 2 xað Þ þ E2ðtÞ
y ¼ Cxa1

8

<

:

ð6Þ

where f 1n xað Þ, f 2n xað Þ represent the nominal values of the

nonlinear functions; f 1 xað Þ andf 2 xað Þ, respectively. Df 1 xað Þ
and Df 2 xað Þ represent the parameter uncertainties of the

nonlinear functions f 1 xað Þ andf 2 xað Þ, respectively. E1ðtÞ
and E2ðtÞ represent the unknown external perturbations. It

is assumed that all the uncertainties can be given as:

q1ðtÞ ¼ Df 1 xað Þ þ E1ðtÞ
q2ðtÞ ¼ Df 2 xað Þ þ E2ðtÞ

�

ð7Þ

Therefore, Eq. (6) can be rewritten as:

_xa1 ¼ f 1n xað Þ þ Buþ q1ðtÞ
_xa2 ¼ f 2n xað Þ þ q2ðtÞ
y ¼ Cxa1

8

<

:

ð8Þ

3 Second order sliding mode control

In this section, the second order SMC (SOSMC), which is

applied previously [8, 10], is developed to applied to

uncertain nonlinear coupled tank system as described in

Eq. (8). The PI sliding surface is chosen as [10]:

S tð Þ ¼ k1e tð Þ þ k2

Z t

0

e sð Þds ð9Þ

where e tð Þ ¼ xd1 � xa1 is the tracking error, xd1 is the

desired level and xa1 is the actual level of the coupled tank

system defined by Eq. (8). The parameters; k1 and k2 are

the proportional and integral positive gains, respectively

for the PI sliding surface.
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The main goal of the SOSMC is to make the output of

the system; xa1 to successfully track a given desired signal;

xd1 under the effect of system uncertainties. Therefore, the

sliding surface; S tð Þ and the time derivative of the sliding

surface; _S tð Þ should equal zero to make the tracking error

kept on the sliding surface [10]. The total control law of the

SOSMC consists of two parts, which is given in Eq. (10);

the first is the equivalent control term; ueq tð Þ and the other

is the switching control term; usw tð Þ.
u tð Þ ¼ ueq tð Þ þ uswðtÞ ð10Þ

The equivalent control term; ueq tð Þ is obtained as the

solution of _S tð Þ ¼ 0 under nominal system dynamic model

(q1 tð Þ ¼ q2ðtÞ ¼ 0). The time derivative of sliding surface,

which is described in Eq. (9) is obtained as:

_S tð Þ ¼ k1 _e tð Þ þ k2e tð Þ ð11Þ

Putting e tð Þ ¼ xd1 � xa1 and _e tð Þ ¼ _xd1 � _xa1, Eq. (11)

can be rewritten as:

_S tð Þ ¼ k1 _xd1 � k1 _xa1 þ k2xd1 � k2xa1 ð12Þ

Substitute _xa1 from Eq. (8) into Eq. (12), we get the

following:

_S tð Þ ¼ k1 _xd1 þ k2xd1 � k2xa1 � k1f 1n xað Þ � k1Bu� k1q1ðtÞ
ð13Þ

Putting _S tð Þ ¼ 0 and q1ðtÞ ¼ 0, the equivalent control

term; ueqðtÞ is obtained as:

ueq tð Þ ¼ 1

k1B
½k1 _xd1 þ k2eðtÞ � k1f 1n xað Þ� ð14Þ

The above equation shows ueq tð Þ, which provides the

desired performance for the controlled system. The

switching control term; usw tð Þ should be obtained to com-

pensate the effect of the system uncertainties such as

external disturbances and parameters variations. Lyapunov

function; V tð Þ is chosen to design the switching control

term; usw tð Þ as follow:

V tð Þ ¼ 1

2
S2 tð Þ ð15Þ

The time derivative _V tð Þ is obtained as:

_V tð Þ ¼ S tð Þ _S tð Þ ð16Þ

By Substituting Eqs. (10 and 13) into Eq. (16), we get

the following:

_V tð Þ ¼ S tð Þ½k1 _xd1 þ k2xd1 � k2xa1 � k1f 1n xað Þ � k1Bðueq
þ uswÞ � k1q1ðtÞ�

ð17Þ

By Substituting Eq. (14) into Eq. (17), we get the

following:

_V tð Þ ¼ S tð Þ
�

k1 _xd1 þ k2xd1 � k2 xa1 � k1f1n xað Þ

�k1B
1

k1B
ðk1 _xd1 þ k2e tð Þ

�

� k1f1n xað Þ
�

� k1Busw � k1q1 tð Þ
	

ð18Þ

The above equation can be rearranged as:

_V tð Þ ¼ S tð Þ k1 _xd1 þ k2e tð Þ � k1f 1n xað Þ � k1 _xd1 � k2e tð Þ½
þk1f 1n xað Þ � k1Busw � k1q1 tð Þ�

¼ S tð Þ½�k1Busw � k1q1ðtÞ�
ð19Þ

The switching control signal; uswðtÞ can be selected as:

usw tð Þ ¼ �kr
k1B

sign S tð Þð Þ ð20Þ

where kr is the switching control gain and signð�Þ denotes

sign function that defined as [10]:

sign S tð Þð Þ ¼
1; SðtÞ[ 0

0; S tð Þ ¼ 0

�1; S tð Þ\0

8

<

:

ð21Þ

By Substituting Eq. (20) into Eq. (19), we get the

following:

_V tð Þ ¼ krS tð Þsign S tð Þð Þ � k1S tð Þq1ðtÞ ð22Þ

By using SðtÞj j ¼ S tð ÞsignðS tð ÞÞ, the above equation is

rewritten as:

_V tð Þ ¼ kr SðtÞj j � k1S tð Þq1ðtÞ ð23Þ
_V tð Þ� � S tð Þj jð�kr þ k1qmax tð ÞÞ ð24Þ

To achieve controlled system stability using SOSMC

and the reaching condition _V tð Þ \ 0 is satisfied, the

switching control gain; kr must be selected as:

kr\k1qmax tð Þ ð25Þ

Therefore, the total control law of the SOSMC is given

as:

u tð Þ ¼ 1

k1B
k1 _xd1 þ k2e tð Þ � k1f 1n xað Þ � krsign S tð Þð Þ½ �

ð26Þ

Fig. 2 Block diagram of SOSMC for coupled tank system
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The block diagram of the SOSMC scheme is shown in

Fig. 2. The SOSMC law that is given in Eq. (26) can

compensate the chattering problem where the switching

control part contains the discontinuous signum function.

Moreover, the witching control gain; kr is concerned with

the boundaries of unknown uncertainties (as indicated by

the stability condition in Eq. (25)), and it is required to

know the precise mathematical model of the controlled

uncertain system as it appears in the control signal.

4 SMC based on diagonal recurrent NN

In this section, the structure of DRNN is presented. Then,

the development of SMC based on DRNN is introduced.

4.1 Structure of DRNN

The structure of the DRNN is shown in Fig. 3. It consists of

three layers; input layer, hidden layer, and output layer

[30]. The input vector for the DRNN is

Z tð Þ ¼ z1 tð Þz2 tð Þ � � � zPðtÞ½ �T , the hidden weight matrix for

the hidden layer is represented by Eq. (27) and the diagonal

weight vector for the hidden nodes is represented as

WD ¼ wD
1 w

D
2 � � �wD

R


 �T
. The output weight vector for the

output layer is represented as WO ¼ wO
1 w

O
2 � � �wO

R


 �T
. P

and R denote the number of inputs and the number of nodes

in hidden layer, respectively.

WI ¼
wI

11 � � � wI
1P

..

. . .
. ..

.

wI
R1 � � � wI

RP

2

6

4

3

7

5

ð27Þ

For any recurrent neuron, the output mrðtÞ at any t time

and sampling period T is obtained as follows:

gr tð Þ ¼
X

P

p¼1

wI
rpzp tð Þ þ wD

r tð Þmr t � Tð Þ; r ¼ 1; 2; . . .R andP

¼ 1; 2; . . .P

ð28Þ

mr tð Þ ¼ f gr tð Þð Þ ¼ 2

1 þ e�rgrðtÞ
� 1; ; r ¼ 1; 2; . . .R ð29Þ

where r is constant. The DRNN output; ODRNNðtÞ is given

as:

ODRNN tð Þ ¼
X

R

r¼1

wO
r tð ÞmrðtÞ ¼ WO tð ÞMðtÞ ð30Þ

where tð Þ ¼ m1 tð Þm2 tð Þ � � �mRðtÞ½ �T .

4.2 Proposed structure

The approximation ability of the DRNN is used to propose

the SMC based on DRNN (SMC-DRNN), where the

equivalent control term of SMC law, which depends on the

dynamic model of a controlled system, is approximated

using DRNN. Equation (13) can be rearranged as follows:

_S tð Þ ¼ k1 _xd1 þ k2eðtÞ � k1f 1n xað Þ � k1BuðtÞ � k1q1 tð Þ
ð31Þ

_S tð Þ ¼ �k1Bu� k1q1 tð Þ þ f d xAð Þ ð32Þ

where f d xAð Þ represents an unknown uncertain nonlinear

function and is defined as:

Fig. 3 Structure of DRNN
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f d xAð Þ ¼ k1 _xd1 þ k2eðtÞ � k1f 1n xað Þ ð33Þ

where xA ¼ ½e tð Þ _xd1 tð Þxa1ðtÞxa2 tð Þ�T . The function; f d xAð Þ
can be universally approximated using the DRNN as:

f d xAð Þ ¼ WO
d ðtÞMdðtÞ ð34Þ

where WO
d ðtÞ ¼ wO

d1ðtÞwO
d2ðtÞ � � �wO

dRðtÞ

 �T

is the output

weight vector of the DRNN, which approximate the func-

tion; f d xAð Þ and MdðtÞ ¼ md1 tð Þmd2 tð Þ � � �mdRðtÞ½ �T is the

input vector for the output layer and it is obtained as the

following where R is the number of nodes in hidden layer

of DRNN, which approximate the function; f dðxAÞ:
Md tð Þ ¼ f ½Gd tð Þ� ð35Þ

Gd tð Þ ¼ WD
d ðtÞMd t � Tð Þ þWI

dðtÞxA ð36Þ

where WD
d ðtÞ ¼ wD

d1w
D
d2 � � �wD

dR


 �T
is the diagonal weight

vector for the hidden layer of DRNN, which approximate

the function; f d xAð Þ and WI
d is the weight matrix for the

hidden layer of DRNN, which is given as:

WI
dðtÞ ¼

wI
d11

..

.

wI
dR1

wI
d12

..

.

wI
dR2

wI
d13

..

.

wI
dR3

wI
d14

..

.

wI
dR4

2

6

4

3

7

5

ð37Þ

Therefore, the equivalent control part; ueq�DRNN tð Þ for

the proposed SMC-DRNN is obtained as the following by

substituting Eqs. (34–36) into Eq. (14):

ueq�DRNN tð Þ ¼ 1

k1B
f d xAð Þ½ � ¼ 1

k1B
WO

d tð ÞMd tð Þ

 �

ð38Þ

ueq�DRNN tð Þ ¼ 1

k1B
WO

d tð Þf WD
d tð ÞMd t � Tð Þ þWI

d tð ÞxA

 �
 �

ð39Þ

On the other hand, the switching control part for the

proposed SMC-DRNN is developed, where the function of

the sliding surface; SðtÞ is designed based on DRNN.

Therefore, the proposed sliding surface; SDRNNðtÞ is

obtained as follows:

SDRNN tð Þ ¼ WO
s ðtÞf ½WD

s ðtÞMs t � Tð Þ þWI
sðtÞxs� ð40Þ

where WO
s ðtÞ ¼ wO

s1ðtÞwO
s2ðtÞ � � �wO

sMðtÞ

 �T

is the output

weight vector of the DRNN, which approximate the sliding

surface; SDRNN tð Þ and MsðtÞ ¼ ms1 tð Þms2 tð Þ � � �msDðtÞ½ �T is

the input vector for the output layer where D is the number

of nodes in hidden layer of DRNN, which approximate the

sliding surface; SDRNN tð Þ. xs ¼ ½e tð Þ
R

e tð Þ�T is the input

vector, WD
s ðtÞ ¼ wD

s1w
D
s2 � � �wD

sD


 �T
is the diagonal weight

vector for the hidden layer of DRNN, which approximate

the sliding surface; SDRNN tð Þ and WI
s is the weight matrix

for the hidden layer of DRNN, which is given as:

WI
dðtÞ ¼

wI
s11

..

.

wI
sD1

wI
s12

..

.

wI
sD2

2

6

4

3

7

5

ð41Þ

Therefore, the switching control term for the proposed

SMC-DRNN; usw�DRNN tð Þ is obtained as follows:

usw�DRNN tð Þ ¼ �kr
k1B

sign SDRNN tð Þð Þ ð42Þ

usw�DRNN tð Þ ¼ �kr
k1B

sign WO
s tð Þf WD

s tð ÞMs t � Tð Þ þWI
s tð Þxs


 �� �

ð43Þ

Therefore, the total control law of the proposed SMC-

DRNN is given as:

uDRNN tð Þ ¼ 1

k1B
WO

d tð Þf WD
d tð ÞMd t � Tð Þ þWI

d tð ÞxA

 �


�kr sign WO
s tð Þf WD

s tð ÞMs t � Tð Þ þWI
s tð Þxs


 �� �� ��

ð44Þ

Figure 4 indicates the block diagram of the developed

SMC-DRNN. The total control law of the proposed

scheme; uDRNN tð Þ consists of two terms; the first term is the

equivalent control term; ueq�DRNN tð Þ, which performed

using the DRNN to approximate the dynamics of the

controlled system to compensate the problem of the precise

knowledge of the mathematical model for the controlled

process. The other part is the switching control term;

usw�DRNN tð Þ, which depends on the sliding surface that

designed based on the DRNN to compensate the problem

of chattering. The weights of the DRNNs are tuned using

the Lyapunov function to achieve the controlled system

stability. In the next section, the updating algorithm is

introduced in detail.

5 Updating algorithm based on Lyapunov
function

In this section, the weights of the DRNN are updated online

using Lyapunov function to achieve the coupled tank sys-

tem stability. The weight vectors; WI
d, WD

d and WO
d for the

DRNN, which approximate the equivalent control term and

the weight vectors; WI
s, W

D
s and WO

s for the DRNN, which

approximate the sliding surface are updated online. The

weight adjustment rule is derived using the Lyapunov

stability criterion. The error at the . th instant between the

plant output; xa1ð.Þ and the reference input; xd1ð.Þ is

referred to as e .ð Þ ¼ xd1ð.Þ � xa1ð.Þ, which is utilized to

adjust the weight vectors of the DRNN. The following is

the derivation of the weight adjustment rule using the

Lyapunov stability criteria:
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First, a scalar function; VLðXÞ should be selected, where

X represents an argument vector, and VLðXÞ is positive

definite for all initial conditions of its arguments, except

when they are all simultaneously equal to zero [31]. A

system is considered asymptotically stable if it satisfies

both conditions described by Eqs. (45) and (46).

VL Xð Þ[ 0for all X except X ¼ 0 ð45Þ
dVL

dt
¼ negative definite for all X ð46Þ

The controlled system is asymptotically stable if both

conditions are satisfied. To establish the basis for the

weight learning algorithm, we can express the generalized

form of the weight update equation as follows:

N .þ 1ð Þ ¼ N .ð Þ � gDN .ð Þ ð47Þ

where N .ð Þ represents a generalized weight vector, which

denotes (WI
d,WD

d , WO
dW

I
s, WD

s and WO
s ). Here, DN .ð Þ

represents the necessary weight adjustment to be made and

g represents the learning rate. Let eð.Þ be the cost function,

which is a function of the error; ð.Þ. It is defined as:

eð.Þ ¼ 1

2
ðeð.ÞÞ2 ð48Þ

The positive definite Lyapunov function is chosen as:

VL .ð Þ ¼ 1

2
½ðeð.ÞÞ2 þ ðN .ð ÞÞ2� ð49Þ

The time derivative of VL .ð Þ in discrete form is deter-

mined as:

DVL .ð Þ ¼ VL .þ 1ð Þ � VL .ð Þ� 0 ð50Þ

Theorem: For Lyapunov function, VL .ð Þ ¼ 1
2
½ðeð.ÞÞ2 þ

ðN .ð ÞÞ2�[ 0; condition DVL .ð Þ ¼ VL .þ 1ð Þ � VL .ð Þ� 0

is satisfied if and only if

DN .ð Þ ¼ �
N .ð Þ þ e .ð Þ oe .ð Þ

oN .ð Þ

h in o

1 þ oe .ð Þ
oN .ð Þ

h i2
ð51Þ

Proof By substituting Eq. (49) into Eq. (50), we get the

following:

DVL .ð Þ ¼ 1

2
f½ðeð.þ 1ÞÞ2 þ ðN .þ 1ð ÞÞ2� � ½ðeð.ÞÞ2

þ N .ð Þð Þ2�g
ð52Þ

The above equation can be rearranged as:

DVL .ð Þ ¼ 1

2
½ðeð.þ 1ÞÞ2 � ðeð.ÞÞ2� þ 1

2
½ðN .þ 1ð ÞÞ2

� N .ð Þð Þ2�
ð53Þ

DVL .ð Þ ¼ 1

2
½e .þ 1ð Þ þ eð.Þ�½eð.þ 1Þ � eð.Þ�

þ 1

2
½N .þ 1ð Þ þN .ð Þ�½N .þ 1ð Þ �N .ð Þ�

ð54Þ

Let De .ð Þ ¼ eð.þ 1Þ � eð.Þ and DN .ð Þ ¼ N .þ 1ð Þ �
N .ð Þ and putting them in Eq. (54), we get the following:

DVL .ð Þ ¼ 1

2
De .ð Þ De .ð Þ þ 2e .ð Þ½ � þ DN .ð Þ DN .ð Þ þ 2N .ð Þ½ �f g

ð55Þ

Fig. 4 Block diagram of the

proposed SMC-DRNN for

coupled tank system
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The above equation can be written as:

DVL .ð Þ ¼ 1

2
DN .ð Þ½ �2 1 þ De .ð Þ

DN .ð Þ

� 	2
" #

þ DN .ð Þ N .ð Þ þ e .ð Þ De .ð Þ
DN .ð Þ

� 	� 	

ð56Þ

For a very small change, Eq. (56) can be written as:

DVL .ð Þ ¼ 1

2
DN .ð Þ½ �2 1 þ oe .ð Þ

oN .ð Þ

� 	2
" #

þ DN .ð Þ N .ð Þ þ e .ð Þ oe .ð Þ
oN .ð Þ

� 	� 	

ð57Þ

From the above equation, let the following:

DVL .ð Þ ¼ 1

2
DN .ð Þ½ �2 1 þ oe .ð Þ

oN .ð Þ

� 	2
" #

þ DN .ð Þ N .ð Þ þ e .ð Þ oe .ð Þ
oN .ð Þ

� 	� 	

¼ � d
2

ð58Þ

where d� 0 in order to make DVL .ð Þ� 0. Therefore, the

above equation becomes as:

DVL .ð Þ ¼ 1

2
DN .ð Þ½ �2 1 þ oe .ð Þ

oN .ð Þ

� 	2
" #

þ DN .ð Þ N .ð Þ þ e .ð Þ oe .ð Þ
oN .ð Þ

� 	� 	

þ d
2

¼ 0 ð59Þ

Consider a general quadratic equation:

az2 þ bzþ c ¼ 0, then the roots of it are given by

r1 ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
andr1 ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
ð60Þ

Comparing the general quadratic equation and Eq. (59),

it can be seen that DN .ð Þ acts as z in the general quadratic

equation and values a, b and c in Eq. (59) are obtained as:

a ¼ 1

2
1 þ oeð.Þ

oNð.Þ

� 	2
" #

; b ¼ Nð.Þ þ eð.Þ oeð.Þ
oNð.Þ

� 	� 	

andc ¼ d
2

ð61Þ

To have a single unique of quadratic equation, term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

must be equal zero, so, putting values of a, b

and c in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

¼ 0, we get the value of d as:

d ¼
N .ð Þ þ e .ð Þ oe .ð Þ

oN .ð Þ

h ih i2

1 þ oe .ð Þ
oN .ð Þ

h i2
ð62Þ

Since d� 0, which means

N .ð Þ þ e .ð Þ oe .ð Þ
oN .ð Þ

h ih i2

1 þ oe .ð Þ
oN .ð Þ

h i2
� 0 ð63Þ

Therefore, the unique root of Eq. (59) will be given as:

DN .ð Þ ¼ � b

2a
¼ �

N .ð Þ þ e .ð Þ oe .ð Þ
oN .ð Þ

h in o

1 þ oe .ð Þ
oN .ð Þ

h i2
ð64Þ

So, Eq. (51) is proved. By substituting Eq. (64) to

Eq. (47), we get the following generalized form of the

weight update equation:

N .þ 1ð Þ ¼ N .ð Þ þ g
N .ð Þ þ e .ð Þ oe .ð Þ

oN .ð Þ

h in o

1 þ oe .ð Þ
oN .ð Þ

h i2
ð65Þ

The following algorithm shows the pseudo-code for the

proposed controller.

Algorithm 1 The proposed SMC-DRNN Pseudo Code

6 Simulation results

The developed SMC-DRNN is applied to the nonlinear

coupled tank system in this section. To show the robustness

of the developed SMC-DRNN, the simulation results of the

proposed scheme are compared with other existing

schemes such as an adaptive radial basis function neural

network estimator-based SMC (ARBFNNE-SMC) [9],

which used RBFNN to estimate the dynamics of the con-

trolled system and a PID sliding mode control (PID-SMC),

which is designed previously for a coupled tank system

[32]. The comparisons are done by measuring some per-

formance indices for all controller such as the mean

absolute error (MAE) and the root mean square error

(RMSE), which are defined as [34, 35]:
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MAE ¼ 1

N

X

N

.¼1

eð.Þj j ð66Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

.¼1

eð.Þ2

v

u

u

t ð67Þ

where N is the total number of iterations.

6.1 Task 1: Normal case

In this task, the performance of the coupled-tank system

under three different set-points, namely 0.5 m, 0.3 m, and

0.55 m is presented. Figure 5 indicates the output response

for the proposed SMC-DRNN, ARBFNNE-SMC and PID-

SMC. The performance of the developed SMC-DRNN is

better than other schemes in which it has less settling time

and overshoot than other controllers. Figure 6 indicates the

MAE for all schemes. The MAE for the developed SMC-

DRNN is less than those obtained for other schemes. So,

the developed SMC-DRNN scheme can track the change of

desired output with good performance compared with other

schemes.

6.2 Task 2: Uncertainty due to an external
disturbance

This task aims to demonstrate how the uncertainty resulting

from external disturbance in the water level of the desti-

nation tank affects the coupled-tank system. Figure 7

depicts the response of the system with adding external

disturbance; DL1 ¼ 0:02m after at . ¼ 150 of simulation.

The results indicate that the developed SMC-DRNN has a

better performance with less settling time and an overshoot

after adding the disturbance value compared with other

schemes. Additionally, Fig. 8 displays that the MAE for

the developed SMC-DRNN is less than those obtained with

other controllers. Therefore, the developed SMC-DRNN

can handle the effect of uncertainties due to an external

disturbance.

Fig. 5 Response of the coupled-tank system for task 1

Fig. 6 MAE for task 1
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6.3 Task 3: Uncertainty in the system
parameters

This task demonstrates how introducing uncertainty in the

system parameters; Ad and C2 affects the performance of

the system. Figure 9 shows the output of the coupled-tank

system when the uncertainty values; Ad ¼ 0:01 and C2 ¼

0:15 are added at . ¼ 150 of simulation. Figure 10 shows

the MAE for the developed SMC-DRNN and other

schemes. It is seen from the results that the developed

SMC-DRNN can handle the effect of the uncertainties due

to the variations in system parameters compared to other

controllers.

Fig. 7 Response of the coupled-tank system for task 2

Fig. 8 MAE for task 2

Fig. 9 Response of the coupled-tank system for task 3
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Fig. 10 MAE for task 3

Fig. 11 Response of the coupled-tank system for task 4

Fig. 12 MAE for task 4
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6.4 Task 4: Uncertainty due to external
disturbance and parameters variations

This task demonstrates the impact of introducing uncer-

tainty in the system parameters; Ad and C2, as well as the

uncertainty resulting from adding external disturbance in

the destination tank level. Figure 11 indicates the response

of the system after adding uncertainties values; Ad ¼ 0:01,

C2 ¼ 0:15 and DL1 ¼ 0:02m at . ¼ 150 of simulation. The

results indicate that the performance of the developed

SMC-DRNN after adding the uncertainty values is better

than other controllers in which the settling time and the

overshoot for the developed controller are less than those

obtained for other schemes. On the other hand, the MAE

for the developed SMC-DRNN is less than other schemes

as shown in Fig. 12. So, the developed SMC-DRNN can

reduce the effect of uncertainties due to the variations in

system parameters and external disturbance compared with

other controllers.

6.5 Task 5: Uncertainty due to external noise

This task demonstrates the performance of the proposed

SMC-DRNN under the effect of uncertainty due to

applying random external noise on the system output.

Figure 13 shows the system output for the proposed SMC-

DRNN and other controllers. Figure 14 shows the MAE for

all controllers. The MAE for the proposed SMC-DRNN is

less than other controllers. Therefore, the proposed SMC-

DRNN can reduce the effect of external random noise.

Tables 2 and 3 present the MAE and RMSE values,

respectively, for the proposed SMC-DRNN and other

existing schemes; ARBFNNE-SMC [9] and PID-SMC

[32]. It is clear that the MAE and RMSE values for the

developed SMC-DRNN are less than those obtained for

ARBFNNE-SMC [9] and PID-SMC [32] for all simulation

tasks. Therefore, the robustness of the developed SMC-

DRNN is better than ARBFNNE-SMC [9] and PID-SMC

[32] to handle the effect of system uncertainties due to

variations of the system parameters, external disturbance

and external random noise.

Table 4 lists the computation time and space complexity

of the proposed SMC-DRNN algorithm and other com-

pared algorithms in terms of sliding surface, equivalent

control part and sliding surface parameters. It is clear that

the computation time for the proposed SMC-DRNN con-

troller is approximately equals the computation time for the

ARBFNNE-SMC [9]. The proposed SMC-DRNN uses

nonlinear sliding surface, which is designed based on

DRNN while the other controllers use linear sliding sur-

face. The proposed SMC-DRNN uses the DRNN to rep-

resent the equivalent control part. On the other hand, the

ARBFNNE-SMC [9] uses an ARBFNN to represent the

equivalent control.

7 Conclusions

In this paper, SMC based-DRNN is introduced for uncer-

tain nonlinear coupled tank system. The control law for the

developed scheme consists of two items; the first item is

the equivalent control term, which is performed using the

DRNN to approximate the dynamics of the coupled tank

system. So, the problem of obtaining the precise mathe-

matical model for the controlled process to design the SMC

is compensated. The other part of the control law for the

developed scheme is the switching control term, in which

the sliding surface is performed using the DRNN. The

discontinuous signum function is used for the switching

control term. Therefore, the problem of chattering is

Fig. 13 Response of the coupled-tank system for task 5
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compensated. The updating weights of the DRNN are

obtained using Lyapunov function to guarantee the con-

trolled system stability. The simulation results including

the system uncertainties due to the effect of variations of

system parameters and an external disturbance for the

proposed controller are compared with other existing

schemes to show the robustness of the developed scheme.

The compressions are done by measuring the MAE and

RMSE for the developed SMC-DRNN and other schemes.

The simulation results indicate that the proposed controller

can handle the effects of system uncertainties and external

disturbances compared to other existing schemes.

Finaly, the proposed SMC-DRNN improved the per-

formance of the controlled system, and it can handle the

problem of knowing the perfect mathematical model of the

controlled process by using DRNN, which is used to rep-

resent the equivalent control part. Also, the proposed

controller handles the problem of the chattering by using

DRNN to represent the sliding surface and discontinuous

signum function. On the other hand, the author uses a

constant number of neurons in the hidden layer of DRNN.

The performance of the DRNN depends on the number of

neurons in the hidden layer and the structure of the net-

work. Therefore, in the future work, the author will develop

Fig. 14 MAE for task 5

Table 2 MAE values for all controllers

Task 1 Task 2 Task 3 Task 4 Task 5

PID-SMC [32] 0.0189 0.0183 0.0115 0.0198 0.5353

ARBFNNE-SMC [9] 0.0150 0.0118 0.0100 0.0097 0.4634

Proposed SMC-DRNN 0.0060 0.0043 0.0043 0.0043 0.3487

Table 3 RMSE values for all controllers

Task 1 Task 2 Task 3 Task 4 Task 5

PID-SMC [32] 0.0494 0.0463 0.0417 0.0481 1.678

ARBFNNE-SMC [9] 0.0450 0.0399 0.0384 0.0383 1.573

Proposed SMC-DRNN 0.0426 0.0391 0.0381 0.0380 1.520

Table 4 The time and space complexity of all algorithms

PID-SMC [32] ARBFNNE-SMC [9] Proposed SMC-DRNN

Computation

time

0.005 s 0.030 s 0.031 s

Sliding surface Linear sliding surface based on PID sliding

surface

Linear sliding surface based on PID sliding

surface

Nonlinear sliding surface

based on DRNN

Sliding surface

parameters

Constant Constant Variable based on DRNN

Equivalent

control part

It uses the nominal equivalent control part

based on the controlled system model

It uses an adaptive radial basis function NN

to represent the equivalent control part

It uses DRNN to represent

the equivalent control part
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the structure of the DRNN by using self-organizing algo-

rithms to learn or update the structure of the DRNN.
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